J. Wu, W. Walukiewicz, K. M. Yu, J. W. Iii, E. E. Haller et al., Small band gap bowing in In1???xGaxN alloys, Davydov, A. a. Klochikhin, R. p. Seisyan, V. v. Emtsev, S. v. Ivanov, F. Bechstedt, J. Furthmüller, H, pp.4741-4743, 2002.
DOI : 10.1063/1.1489481

A. V. Harima, J. Mudryi, O. Aderhold, J. Semchinova, P. Graul et al., « Growth kinetics and crystal structure of semiconductor nanowires « Nanoimprint process using epoxy-siloxane low-viscosity prepolymer, Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap Controlled polytypic and twin-plane superlattices in iii?v nanowires 50?55, janv. 2009. [4] Leveraging Crystal Anisotropy for Deterministic Growth of InAs Quantum Dots with Narrow Optical Linewidths Gallo, « Nanostructure III-V pour l'électronique de spin »,phd, Institut National des Sciences Appliquées de Toulouse Préparation de surfaces structurées et reprise d'épitaxie par jets moléculaires, pp.1-3, 2002.

. Phys, ]. S. Lett12, M. Francoeur, A. Seong, S. Mascarenhas et al., Disponible sur Similar and dissimilar aspects of III-V semiconductors containing Bi versus N », Band gap of GaAs1- xBix, 0<x<3.6% » Composition dependence of photoluminescence of GaAs1?xBix alloys Surfactant enhanced growth of GaNAs and InGaNAs using bismuth, pp.3114-041903, 1995.

I. Moussa, H. Fitouri, Z. Chine, A. Rebey, B. E. Jani22-]-a et al., Effect of thermal annealing on structural and optical properties of the GaAs 0.963 Bi 0.037 alloy « The effect of Bi composition to the optical quality of GaAs 1-x Bi x », Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs Thermal annealing effect on photoexcited carrier dynamics in GaBi x As 1?x Clustering effects in Ga(AsBi) Imprint of sub-25 nm vias and trenches in polymers, pp.114-118, 2006.

]. L. Disponible-sur5, P. R. Chou, W. Krauss, L. Zhang, L. Guo et al., « Efficient aminosilane adhesion promoter for soft nanoimprint on GaAs « Mold?assisted nanolithography: A process for reliable pattern replication, Sub-10 nm imprint lithography and applications 4124?4128, nov Step and flash imprint lithography: a new approach to highresolution patterning Hadam, B. Vratzov, B. Spangenberg, et H. Kurz, « Fabrication of nanostructures using a UV-based imprint technique11] Y. Hirai, « Polymer Science in Nanoimprint Lithography, pp.379-389, 1996.

J. Jeong, Y. Sim, H. Sohn, E. Lee, Y. Chen et al., Launois, « Mold-assisted near-field optical lithography Lithographie de nouvelle génération par nanoimpression assistée par UV: étude et développement de matériaux et procédés pour l'application microélectronique », phd, Université Joseph- Fourier -Grenoble I, 227?235. [13]16] Y. Xia et G. M. Whitesides, « Soft Lithography17] Y. Xia, J. A. Rogers, K. E. Paul, et G. M. Whitesides, « Unconventional Methods for Fabricating and, pp.1466-1469, 1998.

P. Nanostructures, ». , C. Rev, J. Chen, U. Soft et al., « Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography: A Step toward High-Throughput Application of Continuous Nanoimprinting Fluoropolymer synthesis and its application as a mold material in UV-nano-imprint lithography process, 393?398, juill High-Resolution Soft Lithography: Enabling Materials for Nanotechnologies 5341?5346, oct Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography Siloxane Polymers for High-Resolution, High-Accuracy Soft Lithography », Macromolecules 3042?3049, avr. 2000. [25] K. Choi et J. Rogers, « A Photocurable Poly(dimethylsiloxane) Chemistry Designed for Soft Lithographic Molding and Printing in the Nanometer Regime Chemical structure and physical properties of cyclic olefin copolymers: (IUPAC technical report) 801?814. [27] S. Garidel, M. Zelsmann, P. Voisin, N. Rochat, et P. Michallon, « Structure and stability characterization of anti-adhesion self-assembled monolayers formed by vapour deposition for NIL use, pp.5796-5799, 1999.

F. A. Houle, E. Guyer, D. C. Miller, and R. Dauskardt, Adhesion between template materials and UVcured nanoimprint resists, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct, vol.25, issue.4, p.p

M. Bender, M. Otto, B. Hadam, B. Spangenberg, and E. H. Kurz, Multiple imprinting in UV-based nanoimprint lithography: related material issues Khang et H. H. Lee, « Sub-100 nm Patterning with an Amorphous Fluoropolymer Mold, 407?413, juill 2445?2448, mars 2004. [31] X. Zhao et R. Kopelman, « Mechanism of Organosilane Self-Assembled Monolayer Formation on Silica Studied by Second-Harmonic Generation 11014?11018, janv. 1996. [32] B. Viallet, P. Gallo, et E. Daran, « Nanoimprint process using epoxy-siloxane low-viscosity prepolymer, 2002.

J. Vac, ]. E. Sci34, S. Schäffer, R. Harkema, U. Blossey et al., Conception d'un amplificateur optique à 1,3 micron : spectroscopie de couches minces de LaF3 dopé Nd3+ et développement de procédés technologiques innovants », phd « Temperature-gradient?induced instability in polymer films « Gaining control of pattern formation of dewetting liquid films, Thin Liquid Polymer Films Rupture via Defects Electrohydrodynamic instabilities in polymer films Electrically induced structure formation and pattern transfer 874?877, févr. 2000. [39] S. Herminghaus, « Dynamical Instability of Thin Liquid Films Between Conducting Media », Phys. Rev, pp.72-75, 1998.

]. W. Lett40, S. Mönch, . Herminghaus, ». Elastic, E. Eur et al., « Pattern formation in hot embossing of thin polymer films Investigation of capillary bridges growth in NIL process Mecerreyes, « Influence of the molecular weight and imprint conditions on the formation of capillary bridges in nanoimprint lithography « Characterization of 8-in. wafers printed by nanoimprint lithography « High fidelity, high yield production of microfluidic devices by hot embossing lithography: rheology and stiction Zeonex®/Zeonor® Cyclo Olefin Polymer (COP) Engineering Thermoplastics: », Zeonex®/Zeonor® Cyclo Olefin Polymer (COP) Engineering Thermoplastics: [En ligne]. Disponible sur Asymmetric growth behavior of selectively grown InP on vicinal (1 0 0) surfaces by low-pressure metal-organic chemical vapor deposition, Impact of vacuum environment on the hot embossing process 5?8, p. 940?944, mai 2007. [44] Air Cushion Press for Excellent Uniformity, High Yield, and Fast Nanoimprint Across a 100 mm Field Preparation of Carbon?Free GaAs Surfaces: AES and RHEED Analysis Electronic structure of GaF_{3} films grown on GaAs via exposure to XeF_{2} [3] M. Iida, H. T. Kaibe, et T. Okumura, « Low-Temperature Fluorination of GaAs Surface by CF 4 Plasma, pp.525-173, 1981.

. J. Jpn, . Appl, A. S. Phys, B. Barrière, H. Desbat et al., Alnot, « Physicochemical characterization of thin films obtained by fluorination of GaAs under 5 bar of fluorine « Wet chemical nitridation of GaAs (100) by hydrazine solution for surface passivation, N2-H2 remote plasma nitridation for GaAs surface passivation XPS study of the formation of ultrathin GaN film on GaAs(1 0 0) Surface passivation and morphology of GaAs(1 0 0) treated in HCl-isopropanol solution [9] K. K. Ko et S. W. Pang, « Plasma passivation of etch?induced surface damage on GaAs », J. Vac. Sci, pp.1581-1584, 1989.

B. E. Technol, B. J. Yablonovitch, R. Skromme, J. P. Bhat, T. J. Harbison et al., Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs, Band bending, Fermi level pinning, and surface fixed charge on chemically prepared GaAs surfaces Sulfur bonding to GaAs », J. Vac. Sci. Technol. B Microelectron, pp.555-557, 1995.

J. R. Vig, «. E. Uv, A. Bedel, C. Munoz-yague, C. A. Fontaine et al., Vieu, « Improved method for GaAs-(Ga,Al) As epitaxial regrowth, Réalisation de micro et nano structures sur GaAs 1027?1034, mai 1985. [16] Measurement of GaAs surface oxide desorption temperatures, 2008.

S. Ingrey, W. M. Lau, N. S. Mcintyre, G. W. Smith, A. J. Pidduck et al., An x?ray photoelectron spectroscopy study on ozone treated GaAs surfaces [21] G. Monier, « Nanostructuration de surfaces de GaAs : oxydation et nitruration », phd, Université Blaise Pascal -Clermont-Ferrand II, 2011. [22] Y. Asaoka, « Desorption process of GaAs surface native oxide controlled by direct Ga-beam irradiation, « GaAs surface oxide desorption by annealing in ultra high vacuum Thin solid films 984?988, mai 1986. [20] P. Gallo, « Nanostructure III-V pour l'électronique de spin », phd, Institut National des Sciences Appliquées de Toulouse Surface topography changes during the growth of GaAs by molecular beam epitaxy Effect of the starting surface on the morphology of MBE-grown GaAs 2?3, p. 153?156, juin 2000. [25] M. Yamada et Y. Ide, « Anomalous behaviors observed in the isothermal desorption of GaAs surface oxides L914?L918, oct. 1995. [26] R. P. H. Chang et S. Darack, « Hydrogen plasma etching of GaAs oxide27] M. Yamada, Y. Ide, et K. Tone, « Effect of Atomic Hydrogen on GaAs (001) Surface Oxide Studied by, pp.159-163, 1981.

». Temperature-programmed-desorption, J. J. Appl, S. Phys, S. R. Ritchie, C. Johnson et al., « Semiconductor substrate cleaning and surface morphology in molecular beam epitaxy 0 0) surface cleaned by atomic hydrogen Kroemer, « Reduction of oxides on silicon by heating in a gallium molecular beam at 800 °Ca) Munoz?Yague, « Two dimensional like nucleation of GaAs on Si by room temperature deposition Heyn, « Highly versatile ultra-low density GaAs quantum dots fabricated by filling of self-assembled nanoholes, Comparative study of the GaAs 7647?7658, août 2006. [30] S. Wright et H Formation and ordering of epitaxial quantum dots 788?803, oct The growth of (InGa)As quantum wells on GaAs(111)A, (211)A and (311)A substrates Basic analysis of atomic #x2010;scale growth mechanisms for molecular beam epitaxy of GaAs using atomic hydrogen as a surfactant », J. Vac. Sci. Technol. B Microelectron, pp.418-426, 1988.

]. J. Nanometer-struct37, Z. M. Lee, G. J. Wang, and . Salamo, Role of Ga2O in the removal of GaAs surface oxides induced by atomic hydrogen « Ga-triggered oxide desorption from GaAs(100) and non-(100) substrates » [38] Fares Chouchane, « Confinement électrique et optique dans la filière GaAs: ingénierie libre par oxydation sélective et reprise d'épitaxie ». phd GaAs facet formation and progression during MBE overgrowth of patterned mesas, 1858?1863, juill Multidimensional quantum well laser and temperature dependence of its threshold current 1?4, p. 482?487, mai 2005. [41] M. Hata, T. Isu, A. Watanabe, et Y. Katayama, « Real?time observation of molecular beam epitaxy growth on mesa?etched GaAs substrates by scanning microprobe reflection high?energy electron diffraction42] M. López et Y. Nomura, « Surface diffusion length of Ga adatoms in molecular-beam epitaxy on, pp.1725-1728, 1990.

N. Gaas-substrates, ». , J. J. Appl, . D. Phys46-]-r, G. P. Smardon et al., Etude de la rugosité aux interfaces d'hétérostructures GaAs-(Al,Ga)As épitaxiées sous jets moléculaires», phd, Institut National Polytechnique de Grenoble Controlled ordering and positioning of InAs selfassembled quantum dots « Strain-engineered self-assembled semiconductor quantum dot lattices, Electronic structure of the GaAs(114)A?(2×1) and GaAs(114)B?(2×1) surfaces » Selective growth of single InAs quantum dots using strain engineering Size evolution of sitecontrolled InAs quantum dots grown by molecular beam epitaxy on prepatterned GaAs substrates, pp.11-17, 1991.

. Sci, . Technol, . Microelectron, C. Nanometer-struct, T. Schneider et al., Microcavity enhanced single photon emission from an electrically driven site -controlled quantum dot, Baranwal, S. Heun, M. Prasciolu, M. Tormen, A. Locatelli, T. O. Mentes, M. A. Niño, e t L, pp.1523-1526, 2006.

D. M. Sorba, S. Schaadt, R. Krauss, K. H. Koch, . Z. Ploog54-]-d et al., « Stress evolution during growth of bilayer selfassembled InAs/GaAs quantum dots Morphology and stress evolution of InAs QD grown and annealed in-situ at high temperature « Growth and characterization of site-selective quantum dots « Structural characterization of InAs quantum dot chains grown by molecular beam epitaxy on nanoimprint lithography patterned GaAs(100), 447?451, janv. 2010. [55] Self-assembled InAs quantum dots on patterned GaAs(001) substrates: Formation and shape evolution et D. Gammon, « Leveraging Crystal Anisotropy for Deterministic Growth of InAs Quantum Dots with Narrow Optical Linewidths 4870?4875, oct. 2013. [59] D. J. Srolovitz, « On the stability of surfaces of stressed solids, pp.176-179, 1989.

A. Karmous, A. Cuenat, A. Ronda, I. Berbezier, S. Atha et al., Ge dot organization on Si substrates patterned by focused ion beam, 6401?6403, déc. 2004. [1] « COST MP0805 -Home », COST MP805, Novel gain materials and devices based on III-V-N compounds
DOI : 10.1063/1.1828597

M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki et al., A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance [3] K. Kim et A. Zunger, « Spatial correlations in GaInAsN alloys and their effects on band-gap enhancement and electron localization Ramakrishnan, « 1.3 µm VCSELs for fiber-optical communication systems, Disponible sur International Conference on Indium Phosphide and Related Materials Low threshold InGaAsN/GaAs lasers beyond 1500nm Jurkovic, et W. I. Wang, « Photoluminescence of as-grown and thermally annealed InGaAsN/GaAs quantum wells grown by molecular beam epitaxy, pp.1273-1275, 1996.

M. Adamcyk, S. Tixier, B. J. Ruck, J. H. Schmid, T. Tiedje et al., Faceting transition in epitaxial growth of dilute GaNAs films on GaAs, 1417?1421, juill. 2001. [8] B. Joukoff et A. M. Jean-Louis, « Growth of InSb1-xBix single crystals by Czochralski method
DOI : 10.1116/1.1386379

». Epitaxy, J. J. Appl, . J. Phys10-]-a, M. Noreika, K. Y. Fang et al., « Indium antimonide-bismuth compositions grown by molecular beam epitaxy « Improved optical quality of GaNAsSb in the dilute Sb limit, Photoluminescence of InAsBi and InAsSbBi grown by organometallic vapor phase epitaxy 1187?1191, août 1990. [12] Surfactant enhanced growth of GaNAs and InGaNAs using bismuth et J. C. Harmand, « Investigations on GaInNAsSb quinary alloy for 1.5 ?m laser emission on GaAs GaInAs/GaAs quantum-well growth assisted by Sb surfactant: Toward 1.3 ?m emission Temperature-independent Lasing Wavelength with Semiconductors?Can we get it? », in Symp. Rec. Elecronic Mat. Symp, pp.4932-113510, 1982.

E. C. Young, . Ganas, ]. S. Gaasbi18, M. Francoeur, A. Seong et al., structural and electronic properties of two resonant state semiconductor alloys », phd, The university of British Columbia, Band gap of GaAs1- xBix, 0<x<3.6% » Metalorganic vapor phase epitaxial growth of metastable GaAs1?xBix alloy, pp.3874-3876, 2002.

K. Oe, Characteristics of Semiconductor Alloy GaAs 1-x Bi x », Jpn. J. Appl. Phys, vol.41, issue.1

5. , P. , 2. M. Yoshimoto, S. Murata, A. Chayahara et al., « Temperature dependence of Bi behavior in MBE growth of InGaAs/InP, « Defects associated with the accommodation of misfit between crystals Crystal structure data of inorganic compounds, AP-MOVPE of thin GaAs1?xBix alloys 114?118, oct. 2006. [23] Growth of high Bi concentration GaAs1?xBix by molecular beam epitaxy Defects in epitaxial multilayers: I. Misfit dislocations Molecular beam epitaxy growth of GaAs1-xBix28] J. H. Robertson, « Landolt?Börnstein. Numerical data and functional relationships in science and technology. Group III. Crystal and solid state physics, pp.82112-126, 1975.

M. Ferhat and A. Zaoui, Structural and electronic properties of III-V bismuth compounds, Physical Review B, vol.73, issue.11
DOI : 10.1103/PhysRevB.73.115107

URL : https://hal.archives-ouvertes.fr/hal-00069764

R. France, C. Jiang, and A. J. Ptak, strain relaxation comparison between GaAsBi and GaInAs grown by molecular-beam epitaxy, Applied Physics Letters, vol.98, issue.10, pp.115107-101908, 2006.
DOI : 10.1063/1.3562952

. Trans, ]. W. Electron32, W. Shan, J. W. Walukiewicz, E. E. Ager et al., Similar and dissimilar aspects of III-V semiconductors containing Bi versus N », Band Anticrossing in GaInNAs Alloys Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs Giant Spin-Orbit Bowing in GaAs1-xBix », pp.155201-245202, 1996.

«. Tiedje, Influence of bismuth incorporation on the valence and conduction band edges of GaAs1?xBix

C. Amand, X. Fontaine, G. E. Marie, G. L. Pikus, and . Bir, « Electron spin dynamics and g-factor in GaAsBi, Effect of deformation on the hole energy spectrum of germanium and silicon », Sov Phys Solid State, pp.252107-1502, 1960.

Z. Batool, K. Hild, T. J. Hosea, X. Lu, T. Tiedje et al., Varshni, « Temperature dependence of the energy gap in semiconductors Composition and temperature dependence of the direct band gap of GaAs1?xNx (0?x?0.0232) using contactless electroreflectance Oe, « Temperature dependence of GaAs 1-x Bi x band gap studied by photoreflectance spectroscopy, Photoluminescence investigation of high quality GaAs 1?x Bi x on GaAs The effect of Bi composition to the optical quality of GaAs 1-x Bi x » Molecular-beam-epitaxy grown GaBiAs for terahertz optoelectronic applications, pp.113108-149, 1967.

A. Cherkashin, N. A. Bert, N. N. Ledentsov, D. S. Bimberg48-]-t, A. M. Shamirzaev et al., Effect of nonradiative recombination centers on photoluminescence efficiency in quantum dot structures « Strong sensitivity of photoluminescence of InAs/AlAs quantum dots to defects: evidence for lateral inter-dot transport, 1207?1211, oct Improving optical properties of 1.55 ?m GaInNAs/GaAs multiple quantum wells with Ga(In)NAs barrier and space layer, p.527, 2004.

. Phys, A. R. Lett, F. Mohmad, C. J. Bastiman, R. Hunter et al., Effects of rapid thermal annealing on GaAs 1-x Bi x alloys Influence of surfactants in Ge and Si epitaxy on Si(001) Motta, « Ge dots self-assembling: Surfactant mediated growth of Ge on SiGe (118) stress-induced kinetic instabilities, Surfactants in epitaxial growth Improvement of the growth of In x Ga 1?x As on GaAs (001) using Te as surfactant Kinetic roughening of Si surfaces and surfactant effect in low temperature molecular beam epitaxy growth Gushina, « Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs Light emission from InGaAs:Bi/GaAs quantum wells at 1.3 ?m, pp.2742-2745, 1989.

M. R. Pillai, S. Kim, S. T. Ho, S. A. Barnett, R. R. Wixom et al., « Growth of In x Ga 1?x As/GaAs heterostructures using Bi as a surfactant Stringfellow, « Sb and Bi surfactant effects on homo-epitaxy of GaAs on (0 0 1) patterned substrates, Infrared measurements in annealed molecular beam epitaxy GaAs grown at low temperature, pp.1232-1236, 1995.

«. Calawa, Structural properties of As?rich GaAs grown by molecular beam epitaxy at low temperatures

. Phys, J. Lett, R. Gebauer, S. Krause-rehberg, M. Eichler et al., « Ga vacancies in lowtemperature-grown GaAs identified by slow positrons « GaAs buffer layers grown at low substrate temperatures using As2 and the formation of arsenic precipitates « On the practical applications of MBE surface phase diagrams, Clustering effects in Ga(AsBi), pp.638-640, 1989.

P. R. Kent, A. Zunger, . Evolution, E. Iii-v-nitride-alloy-electronic-structure, T. Pavelescu et al., The Localized to Delocalized Transition Pessa, « Growthtemperature-dependent (self-)annealing-induced blueshift of photoluminescence from 1.3 ?m GaInNAs/GaAs quantum wells, Effect of thermal annealing on structural and optical properties of the GaAs 0.963 Bi 0.037 alloy Effect of annealing on the structural and optical properties of (3 1 1)B GaAsBi layers Optical properties of GaNAs and GaInAsN quantum wells », J. Phys. Condens, pp.125034-125052, 2001.

M. Karachevtseva, A. S. Ignat-'ev, V. G. Mokerov, G. Z. Nemtsev, V. A. Strakhov et al., « Temperature dependence of the photoluminescence of In x Ga 1 -x As/GaAs quantum-well structures, Structural investigation of GaAs 1?x Bi x /GaAs multiquantum wells Optical properties of InGaAsBi/GaAs strained quantum wells studied by temperature-dependent photoluminescence », pp.31-3387, 2004.

G. J. Mazur, S. R. Salamo, Z. M. Johnson, «. Wang, M. Mbe-grown-gaasbi et al., GaAs double quantum well separate confinement heterostructures Tiedje, « Surface reconstructions during growth of GaAs 1?x Bi x alloys by molecular beam epitaxy Conclusion Générale Chaque solution amène de nouveaux problèmes, MOVPE growth of Ga(AsBi)/(AlGa)As heterostructures and laser diodes », COST MP0805 Final Meet., sept. 2013. [80] B. Viallet, « Conception d'un amplificateur optique à 1,3 micron, 2004.