M. A. Burchill, J. Yang, K. B. Vang, J. J. Moon, H. H. Chu et al., Linked T Cell Receptor and Cytokine Signaling Govern??the Development of the Regulatory T Cell Repertoire, Immunity, vol.28, issue.1, pp.112-121, 2008.
DOI : 10.1016/j.immuni.2007.11.022

C. W. Lio and C. S. Hsieh, A Two-Step Process for Thymic Regulatory T Cell Development, Immunity, vol.28, issue.1, pp.100-111, 2008.
DOI : 10.1016/j.immuni.2007.11.021

S. Hori, T. Nomura, and S. Sakaguchi, Control of Regulatory T Cell Development by the Transcription Factor Foxp3, Science, vol.299, issue.5609, pp.1057-1061, 2003.
DOI : 10.1126/science.1079490

R. Khattri, T. Cox, S. A. Yasayko, and F. Ramsdell, An essential role for Scurfin in CD4+CD25+ T regulatory cells, Nature Immunology, vol.4, issue.4, pp.337-342, 2003.
DOI : 10.1038/ni909

J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, Foxp3 programs the development and function of CD4+CD25+ regulatory T cells, Nature Immunology, vol.4, issue.4, pp.330-336, 2003.
DOI : 10.1038/ni904

J. L. Bautista, C. W. Lio, S. K. Lathrop, K. Forbush, Y. Liang et al., References 1 Homeostasis of T cell numbers: from thymus production to peripheral compartmentalization and the indexation of regulatory T cells, Semin. Immunol, vol.17, pp.239-249, 2005.

C. D. Surh and J. Sprent, Homeostasis of Naive and Memory T Cells, Immunity, vol.29, issue.6, pp.848-862, 2008.
DOI : 10.1016/j.immuni.2008.11.002

T. C. Becker, E. J. Wherry, D. Boone, K. Murali-krishna, R. Antia et al., Interleukin 15 Is Required for Proliferative Renewal of Virus-specific Memory CD8 T Cells, The Journal of Experimental Medicine, vol.2, issue.12, pp.1541-1548, 2002.
DOI : 10.1016/S0167-5699(98)01415-7

A. D. Judge, X. Zhang, H. Fujii, C. D. Surh, and J. Sprent, T Cells, The Journal of Experimental Medicine, vol.2, issue.7, pp.935-946, 2002.
DOI : 10.1038/76917

J. T. Tan, W. C. Ernst, E. Kieper, J. Leroy, C. D. Sprent et al., Cells, The Journal of Experimental Medicine, vol.20, issue.12, 2002.
DOI : 10.1182/blood.V97.10.2983

URL : https://hal.archives-ouvertes.fr/hal-01452927

B. Seddon, P. Tomlinson, and R. Zamoyska, Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells, Nature Immunology, vol.4, issue.7, pp.680-686, 2003.
DOI : 10.1038/ni946

L. M. Bradley, L. Haynes, and S. L. Swain, IL-7: maintaining T-cell memory and achieving homeostasis, Trends in Immunology, vol.26, issue.3, pp.172-176, 2005.
DOI : 10.1016/j.it.2005.01.004

G. Kassiotis, S. Garcia, E. Simpson, and B. Stockinger, Impairment of immunological memory in the absence of MHC despite survival of memory T cells, Nature Immunology, vol.3, issue.3, pp.244-250, 2002.
DOI : 10.1038/ni766

K. Murali-krishna, L. L. Lau, S. Sambhara, F. Lemonnier, J. Altman et al., Persistence of Memory CD8 T Cells in MHC Class I-Deficient Mice, Science, vol.286, issue.5443, pp.1377-1381, 1999.
DOI : 10.1126/science.286.5443.1377

K. Takada and S. C. Jameson, Naive T cell homeostasis: from awareness of space to a sense of place, Nature Reviews Immunology, vol.105, issue.12, pp.823-832, 2009.
DOI : 10.1038/nri2657

C. Tanchot, F. A. Lemonnier, B. Pérarnau, A. A. Freitas, and B. Rocha, Differential Requirements for Survival and Proliferation of CD8 Naïve or Memory T Cells, Science, vol.276, issue.5321, pp.2057-2062, 1997.
DOI : 10.1126/science.276.5321.2057

J. T. Tan, E. Dudl, E. Leroy, R. Murray, J. Sprent et al., IL-7 is critical for homeostatic proliferation and survival of naive T cells, Proc. Natl. Acad. Sci. USA, pp.8732-8737, 2001.
DOI : 10.1073/pnas.161126098

B. Martin, C. Bécourt, B. Bienvenu, and B. Lucas, Self-recognition is crucial for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment, Blood, vol.108, issue.1, pp.270-277, 2006.
DOI : 10.1182/blood-2006-01-0017

C. Tanchot, A. Le-campion, S. Léaument, N. Dautigny, and B. Lucas, Naive CD4+ lymphocytes convert to anergic or memory-like cells in T cell-deprived recipients, European Journal of Immunology, vol.187, issue.8, pp.2256-2265, 2001.
DOI : 10.1002/1521-4141(200108)31:8<2256::AID-IMMU2256>3.0.CO;2-8

L. Campion, A. , C. Bourgeois, F. Lambolez, B. Martin et al., Naive T cells proliferate strongly in neonatal mice in response to self-peptide/self-MHC complexes, Proc. Natl. Acad. Sci. USA, pp.4538-4543, 2002.
DOI : 10.1073/pnas.062621699

B. Martin, C. Bourgeois, N. Dautigny, and B. Lucas, On the role of MHC class II molecules in the survival and lymphopenia-induced proliferation of peripheral CD4+ T cells, Proc. Natl. Acad. Sci. USA, pp.6021-6026, 2003.
DOI : 10.1073/pnas.1037754100

B. Min, G. Foucras, M. Meier-schellersheim, and W. E. Paul, Spontaneous proliferation, a response of naive CD4 T cells determined by the diversity of the memory cell repertoire, Proc. Natl. Acad. Sci. USA, pp.3874-3879, 2004.
DOI : 10.1073/pnas.0400606101

B. Min, H. Yamane, J. Hu-li, and W. E. Paul, Spontaneous and Homeostatic Proliferation of CD4 T Cells Are Regulated by Different Mechanisms, The Journal of Immunology, vol.174, issue.10, pp.6039-6044, 2005.
DOI : 10.4049/jimmunol.174.10.6039

M. Guimond, R. G. Veenstra, D. J. Grindler, H. Zhang, Y. Cui et al., Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells, Nature Immunology, vol.178, issue.2, pp.149-157, 2009.
DOI : 10.1038/sj.leu.2403770

R. Setoguchi, S. Hori, T. Takahashi, and S. Sakaguchi, regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization, The Journal of Experimental Medicine, vol.136, issue.5, pp.723-735, 2005.
DOI : 10.1016/S1074-7613(00)80195-8

D. Cruz, L. M. , and L. Klein, Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling, Nature Immunology, vol.172, issue.11, pp.1152-1159, 2005.
DOI : 10.1016/j.micinf.2004.02.020

J. D. Fontenot, J. P. Rasmussen, M. A. Gavin, and A. Y. Rudensky, A function for interleukin 2 in Foxp3-expressing regulatory T cells, Nature Immunology, vol.171, issue.11, pp.1142-1151, 2005.
DOI : 10.1186/gb-2004-5-10-r80

G. Cheng, A. Yu, and T. R. Malek, T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells, Immunological Reviews, vol.207, issue.1, pp.63-76, 2011.
DOI : 10.1111/j.1600-065X.2011.01004.x

C. Cozzo, J. Larkin, I. , and A. J. Caton, Cutting Edge: Self-Peptides Drive the Peripheral Expansion of CD4+CD25+ Regulatory T Cells, The Journal of Immunology, vol.171, issue.11, pp.5678-5682, 2003.
DOI : 10.4049/jimmunol.171.11.5678

C. S. Hsieh, Y. Liang, A. J. Tyznik, S. G. Self, D. Liggitt et al., Recognition of the Peripheral Self by Naturally Arising CD25+ CD4+ T Cell Receptors, Immunity, vol.21, issue.2, pp.267-277, 2004.
DOI : 10.1016/j.immuni.2004.07.009

M. Malissen, A. Gillet, L. Ardouin, G. Bouvier, J. Trucy et al., Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene, EMBO J, vol.14, pp.4641-4653, 1995.

L. Madsen, N. Labrecque, J. Engberg, A. Dierich, A. Svejgaard et al., Mice lacking all conventional MHC class II genes, Proc. Natl. Acad. Sci. USA, pp.10338-10343, 1999.
DOI : 10.1073/pnas.96.18.10338

Y. Wang, A. Kissenpfennig, M. Mingueneau, S. Richelme, P. Perrin et al., Th2 Lymphoproliferative Disorder of LatY136F Mutant Mice Unfolds Independently of TCR-MHC Engagement and Is Insensitive to the Action of Foxp3+ Regulatory T Cells, The Journal of Immunology, vol.180, issue.3, pp.1565-1575, 2008.
DOI : 10.4049/jimmunol.180.3.1565

URL : https://hal.archives-ouvertes.fr/hal-00294270

A. Delpoux, M. Poitrasson-rivière, A. Le-campion, A. Pommier, P. Yakonowsky et al., T-cell suppressive capacities induced by self-deprivation, European Journal of Immunology, vol.114, issue.5, pp.1237-1249
DOI : 10.1002/eji.201142148

L. Saout, C. , M. Villard, C. Cabasse, C. Jacquet et al., IL-2 Mediates CD4+ T Cell Help in the Breakdown of Memory-Like CD8+ T Cell Tolerance under Lymphopenic Conditions, PLoS ONE, vol.1, issue.9, p.12659, 2010.
DOI : 10.1371/journal.pone.0012659.s001

L. Campion, A. , M. C. Gagnerault, C. Auffray, C. Bécourt et al., Lymphopenia-induced spontaneous T-cell proliferation as a cofactor for autoimmune disease development, Blood, vol.114, issue.9, pp.1784-1793, 2009.
DOI : 10.1182/blood-2008-12-192120

T. J. Fry, E. Connick, J. Falloon, M. M. Lederman, D. J. Liewehr et al., A potential role for interleukin-7 in T-cell homeostasis, Blood, vol.97, issue.10, pp.2983-2990, 2001.
DOI : 10.1182/blood.V97.10.2983

L. A. Napolitano, R. M. Grant, S. G. Deeks, D. Schmidt, S. C. De-rosa et al., Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis, Nat. Med, vol.7, pp.73-79, 2001.

J. H. Park, Q. Yu, B. Erman, J. S. Appelbaum, D. Montoya-durango et al., Suppression of IL7R?? Transcription by IL-7 and Other Prosurvival Cytokines, Immunity, vol.21, issue.2, pp.289-302, 2004.
DOI : 10.1016/j.immuni.2004.07.016

O. Boyman, M. Kovar, M. P. Rubinstein, C. D. Surh, and J. Sprent, Selective Stimulation of T Cell Subsets with Antibody-Cytokine Immune Complexes, Science, vol.311, issue.5769, pp.1924-1927, 2006.
DOI : 10.1126/science.1122927

J. H. Duarte, S. Zelenay, M. L. Bergman, A. C. Martins, and J. Demengeot, Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions, European Journal of Immunology, vol.12, issue.4, pp.948-955, 2009.
DOI : 10.1002/eji.200839196

B. Seddon, G. Legname, P. Tomlinson, and R. Zamoyska, Long-Term Survival But Impaired Homeostatic Proliferation of Naive T Cells in the Absence of p56lck, Science, vol.290, issue.5489, pp.127-131, 2000.
DOI : 10.1126/science.290.5489.127

B. Seddon and R. Zamoyska, TCR and IL-7 Receptor Signals Can Operate Independently or Synergize to Promote Lymphopenia-Induced Expansion of Naive T Cells, The Journal of Immunology, vol.169, issue.7, pp.3752-3759, 2002.
DOI : 10.4049/jimmunol.169.7.3752

R. Peffault-de-latour, H. C. Dujardin, F. Mishellany, O. Burlen-defranoux, J. Zuber et al., Ontogeny, function, and peripheral homeostasis of regulatory T cells in the absence of interleukin-7, Blood, vol.108, issue.7, pp.2300-2306, 2006.
DOI : 10.1182/blood-2006-04-017947

T. Y. Wuest, J. Willette-brown, S. K. Durum, and A. A. Hurwitz, The influence of IL-2 family cytokines on activation and function of naturally occurring regulatory T cells, Journal of Leukocyte Biology, vol.84, issue.4, pp.973-980, 2008.
DOI : 10.1189/jlb.1107778

N. Bosco, F. Agenès, and R. Ceredig, Effects of Increasing IL-7 Availability on Lymphocytes during and after Lymphopenia-Induced Proliferation, The Journal of Immunology, vol.175, issue.1, pp.162-170, 2005.
DOI : 10.4049/jimmunol.175.1.162

F. Simonetta, N. Gestermann, K. Z. Martinet, M. Boniotto, P. Tissières et al., Interleukin-7 Influences FOXP3+CD4+ Regulatory T Cells Peripheral Homeostasis, PLoS ONE, vol.120, issue.5, p.36596, 2012.
DOI : 10.1371/journal.pone.0036596.g005

A. R. Almeida, N. Legrand, M. Papiernik, and A. A. Freitas, Homeostasis of Peripheral CD4+ T Cells: IL-2R?? and IL-2 Shape a Population of Regulatory Cells That Controls CD4+ T Cell Numbers, The Journal of Immunology, vol.169, issue.9, pp.4850-4860, 2002.
DOI : 10.4049/jimmunol.169.9.4850

URL : https://hal.archives-ouvertes.fr/pasteur-00327445

A. R. Almeida, B. Zaragoza, and A. A. Freitas, Indexation as a Novel Mechanism of Lymphocyte Homeostasis: The Number of CD4+CD25+ Regulatory T Cells Is Indexed to the Number of IL-2-Producing Cells, The Journal of Immunology, vol.177, issue.1, pp.192-200, 2006.
DOI : 10.4049/jimmunol.177.1.192

URL : https://hal.archives-ouvertes.fr/pasteur-00161683

J. Carneiro, K. Leon, I. Caramalho, C. Van-den-dool, R. Gardner et al., T cells, Immunological Reviews, vol.6, issue.1, pp.48-68, 2007.
DOI : 10.1111/j.1600-065X.2007.00487.x

H. Zhang, K. S. Chua, M. Guimond, V. Kapoor, M. V. Brown et al., Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells, Nature Medicine, vol.171, issue.11, pp.1238-1243, 2005.
DOI : 10.1016/S0140-6736(00)02293-5

L. Weiss, F. A. Letimier, M. Carriere, S. Maiella, V. Donkova-petrini et al., In vivo expansion of naive and activated CD4+CD25+FOXP3+ regulatory T cell populations in interleukin-2-treated HIV patients, Proc. Natl. Acad. Sci. USA, pp.10632-10637, 2010.
DOI : 10.1073/pnas.1000027107

URL : https://hal.archives-ouvertes.fr/inserm-00489719

M. L. Gougeon and F. Chiodi, Impact of ??-chain cytokines on T cell homeostasis in HIV-1 infection: therapeutic implications, Journal of Internal Medicine, vol.103, issue.Suppl. 2, pp.502-514, 2010.
DOI : 10.1111/j.1365-2796.2010.02221.x

C. Sportès, F. T. Hakim, S. A. Memon, H. Zhang, K. S. Chua et al., Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets, The Journal of Experimental Medicine, vol.153, issue.7, pp.1701-1714, 2008.
DOI : 10.1016/0198-8859(96)00076-6

Y. Levy, C. Lacabaratz, L. Weiss, J. P. Viard, C. Goujard et al., Enhanced T cell recovery in HIV-1???infected adults through IL-7 treatment, Journal of Clinical Investigation, vol.119, pp.997-1007, 2009.
DOI : 10.1172/JCI38052

URL : https://hal.archives-ouvertes.fr/inserm-00484803

C. L. Mackall, T. J. Fry, and R. E. Gress, Harnessing the biology of IL-7 for therapeutic application, Nature Reviews Immunology, vol.44, issue.5, pp.330-342, 2011.
DOI : 10.1038/nri2970

S. A. Rosenberg, C. Sportès, M. Ahmadzadeh, T. J. Fry, L. T. Ngo et al., IL-7 Administration to Humans Leads to Expansion of CD8+ and CD4+ Cells but a Relative Decrease of CD4+ T-Regulatory Cells, Journal of Immunotherapy, vol.29, issue.3, pp.313-319, 2006.
DOI : 10.1097/01.cji.0000210386.55951.c2

M. Pellegrini, T. Calzascia, J. G. Toe, S. P. Preston, A. E. Lin et al., IL-7 Engages Multiple Mechanisms to Overcome Chronic Viral Infection and Limit Organ Pathology, Cell, vol.144, issue.4, pp.601-613, 2011.
DOI : 10.1016/j.cell.2011.01.011

R. M. Dean, T. Fry, C. Mackall, S. M. Steinberg, F. Hakim et al., Association of Serum Interleukin-7 Levels With the Development of Acute Graft-Versus-Host Disease, Journal of Clinical Oncology, vol.26, issue.35, pp.5735-5741, 2008.
DOI : 10.1200/JCO.2008.17.1314

T. Tomita, T. Kanai, Y. Nemoto, T. Totsuka, R. Okamoto et al., Systemic, but Not Intestinal, IL-7 Is Essential for the Persistence of Chronic Colitis, The Journal of Immunology, vol.180, issue.1, pp.383-390, 2008.
DOI : 10.4049/jimmunol.180.1.383

T. Tomita, T. Kanai, T. Totsuka, Y. Nemoto, R. Okamoto et al., memory T cells in chronic colitis, European Journal of Immunology, vol.132, issue.10, pp.2737-2747, 2009.
DOI : 10.1002/eji.200838905

F. Ponchel, R. J. Cuthbert, and V. Goëb, IL-7 and lymphopenia, Clinica Chimica Acta, vol.412, issue.1-2, pp.7-16, 2011.
DOI : 10.1016/j.cca.2010.09.002

T. R. Mosmann, H. Cherwinski, M. W. Bond, M. A. Giedlin, and R. L. Coffman, Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins, J. Immunol, vol.136, pp.2348-2357, 1986.

A. K. Abbas, K. M. Murphy, and A. Sher, Functional diversity of helper T lymphocytes, Nature, vol.383, issue.6603, pp.787-793, 1996.
DOI : 10.1038/383787a0

P. Ye, Requirement of Interleukin 17 Receptor Signaling for Lung Cxc Chemokine and Granulocyte Colony-Stimulating Factor Expression, Neutrophil Recruitment, and Host Defense, The Journal of Experimental Medicine, vol.13, issue.4, pp.519-527, 2001.
DOI : 10.4049/jimmunol.165.11.6107

S. C. Liang, Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides, The Journal of Experimental Medicine, vol.203, issue.10, pp.2271-2279, 2006.
DOI : 10.1016/j.intimp.2004.01.010

A. M. Bilate and J. J. Lafaille, Regulatory T Cells in Immune Tolerance, Annual Review of Immunology, vol.30, issue.1, pp.733-758, 2012.
DOI : 10.1146/annurev-immunol-020711-075043

S. J. Szabo, A Novel Transcription Factor, T-bet, Directs Th1 Lineage Commitment, Cell, vol.100, issue.6, pp.655-669, 2000.
DOI : 10.1016/S0092-8674(00)80702-3

W. Zheng and R. A. Flavell, The Transcription Factor GATA-3 Is Necessary and Sufficient for Th2 Cytokine Gene Expression in CD4 T Cells, Cell, vol.89, issue.4, pp.587-596, 1997.
DOI : 10.1016/S0092-8674(00)80240-8

I. I. Ivanov, The Orphan Nuclear Receptor ROR??t Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells, Cell, vol.126, issue.6, pp.1121-1133, 2006.
DOI : 10.1016/j.cell.2006.07.035

S. Hori, T. Nomura, and S. Sakaguchi, Control of Regulatory T Cell Development by the Transcription Factor Foxp3, Science, vol.299, issue.5609, pp.1057-1061, 2003.
DOI : 10.1126/science.1079490

J. D. Fontenot, M. A. Gavin, and A. Rudensky, Foxp3 programs the development and function of CD4+CD25+ regulatory T cells, Nature Immunology, vol.4, issue.4, pp.330-336, 2003.
DOI : 10.1038/ni904

H. Groux, A CD4 þ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis, Nature, vol.389, pp.737-742, 1997.

M. Veldhoen, Transforming growth factor-?? 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9???producing subset, Nature Immunology, vol.194, issue.12, pp.1341-1346, 2008.
DOI : 10.1038/ni.1659

R. I. Nurieva, Generation of T Follicular Helper Cells Is Mediated by Interleukin-21 but Independent of T Helper 1, 2, or 17 Cell Lineages, Immunity, vol.29, issue.1, pp.138-149, 2008.
DOI : 10.1016/j.immuni.2008.05.009

C. S. Hsieh, Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages, Science, vol.260, issue.5107, pp.547-549, 1993.
DOI : 10.1126/science.8097338

M. Kopf, Disruption of the murine IL-4 gene blocks Th2 cytokine responses, Nature, vol.362, issue.6417, pp.245-248, 1993.
DOI : 10.1038/362245a0

M. Veldhoen, R. J. Hocking, C. J. Atkins, R. M. Locksley, and B. Stockinger, TGF?? in the Context of an Inflammatory Cytokine Milieu Supports De Novo Differentiation of IL-17-Producing T Cells, Immunity, vol.24, issue.2, pp.179-189, 2006.
DOI : 10.1016/j.immuni.2006.01.001

E. Bettelli, Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells, Nature, vol.31, issue.7090, pp.235-238, 2006.
DOI : 10.1038/nature04753

E. Corse, R. A. Gottschalk, and J. P. Allison, Strength of TCR-Peptide/MHC Interactions and In Vivo T Cell Responses, The Journal of Immunology, vol.186, issue.9, pp.5039-5045, 2011.
DOI : 10.4049/jimmunol.1003650

A. J. Schlueter, Distribution of Ly-6C on lymphocyte subsets: I. Influence of allotype on T lymphocyte expression, J. Immunol, vol.158, pp.4211-4222, 1997.

L. J. Mcheyzer-williams and M. G. Mcheyzer-williams, Developmentally Distinct Th Cells Control Plasma Cell Production In Vivo, Immunity, vol.20, issue.2, pp.231-242, 2004.
DOI : 10.1016/S1074-7613(04)00028-7

F. Powrie, M. W. Leach, S. Mauze, L. B. Caddle, and R. L. Coffman, mice, International Immunology, vol.5, issue.11, pp.1461-1471, 1993.
DOI : 10.1093/intimm/5.11.1461

B. Martin, Suppression of CD4+ T Lymphocyte Effector Functions by CD4+CD25+ Cells In Vivo, The Journal of Immunology, vol.172, issue.6, pp.3391-3398, 2004.
DOI : 10.4049/jimmunol.172.6.3391

P. Pandiyan, CD4+CD25+Foxp3+ Regulatory T Cells Promote Th17 Cells In??Vitro and Enhance Host Resistance in Mouse Candida albicans Th17 Cell Infection Model, Immunity, vol.34, issue.3, pp.422-434, 2011.
DOI : 10.1016/j.immuni.2011.03.002

Y. Chen, Foxp3+ Regulatory T Cells Promote T Helper 17 Cell Development In??Vivo through Regulation of Interleukin-2, Immunity, vol.34, issue.3, pp.409-421, 2011.
DOI : 10.1016/j.immuni.2011.02.011

K. Lahl, regulatory T cells induces a scurfy-like disease, The Journal of Experimental Medicine, vol.125, issue.1, pp.57-63, 2007.
DOI : 10.1126/science.1096472

URL : https://hal.archives-ouvertes.fr/pasteur-00161238

L. Gabrysova, Integrated T-cell receptor and costimulatory signals determine TGF-??-dependent differentiation and maintenance of Foxp3+ regulatory T cells, European Journal of Immunology, vol.180, issue.5, pp.1242-1248, 2011.
DOI : 10.1002/eji.201041073

URL : https://hal.archives-ouvertes.fr/hal-00609604

V. G. Oliveira, M. Caridade, R. S. Paiva, J. Demengeot, and L. Graca, Sub-optimal CD4+ T-cell activation triggers autonomous TGF-??-dependent conversion to Foxp3+ regulatory T cells, European Journal of Immunology, vol.22, issue.5, pp.1249-1255, 2011.
DOI : 10.1002/eji.201040896

|. Doi-boursalian, T. E. Golob, J. Soper, D. M. Cooper, C. J. Fink et al., 2209 | DOI: 10.1038/ncomms3209 | www.nature.com/naturecommunications 29 Continued maturation of thymic emigrants in the periphery, NATURE COMMUNICATIONS NATURE COMMUNICATIONS | Nat. Immunol, vol.4, issue.5, pp.10-418, 1038.

M. Poitrasson-riviere, Regulatory CD4+ T Cells Are Crucial for Preventing CD8+ T Cell-Mediated Autoimmunity, The Journal of Immunology, vol.180, issue.11, pp.7294-7304, 2008.
DOI : 10.4049/jimmunol.180.11.7294

A. Delpoux, T-cell suppressive capacities induced by self-deprivation, European Journal of Immunology, vol.114, issue.5, pp.1237-1249, 2012.
DOI : 10.1002/eji.201142148

B. Martin, C. Becourt, B. Bienvenu, and B. Lucas, Self-recognition is crucial for maintaining the peripheral CD4+ T-cell pool in a nonlymphopenic environment, Blood, vol.108, issue.1, pp.270-277, 2006.
DOI : 10.1182/blood-2006-01-0017

L. Campion and A. , Lymphopenia-induced spontaneous T-cell proliferation as a cofactor for autoimmune disease development, Blood, vol.114, issue.9, pp.1784-1793, 2009.
DOI : 10.1182/blood-2008-12-192120

H. S. Azzam, CD5 Expression Is Developmentally Regulated By T Cell Receptor (TCR) Signals and TCR Avidity, The Journal of Experimental Medicine, vol.154, issue.12, pp.2301-2311, 1998.
DOI : 10.1146/annurev.iy.12.040194.003331

K. Smith, Sensory Adaptation in Naive Peripheral CD4 T Cells, The Journal of Experimental Medicine, vol.190, issue.9, pp.1253-1261, 2001.
DOI : 10.1006/smim.2000.0232

J. N. Mandl, Quantification of lymph node transit times reveals differences in antigen surveillance strategies of naive CD4 þ and CD8 þ T cells, Proc. Natl Acad. Sci. USA, pp.18036-18041, 2012.

J. N. Mandl, J. P. Monteiro, N. Vrisekoop, and R. N. Germain, T Cell-Positive Selection Uses Self-Ligand Binding Strength to Optimize Repertoire Recognition of Foreign Antigens, Immunity, vol.38, issue.2, pp.263-274, 2012.
DOI : 10.1016/j.immuni.2012.09.011

I. Stefanova, J. R. Dorfman, and R. N. Germain, Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes, Nature, vol.151, issue.6914, pp.429-434, 2002.
DOI : 10.1084/jem.186.5.757

I. Grandjean, T Cells?, The Journal of Experimental Medicine, vol.163, issue.7, pp.1089-1102, 2003.
DOI : 10.1046/j.1365-3083.1996.d01-267.x

G. Kassiotis, R. Zamoyska, and B. Stockinger, Involvement of Avidity for Major Histocompatibility Complex in Homeostasis of Naive and Memory T Cells, The Journal of Experimental Medicine, vol.14, issue.8, pp.1007-1016, 2003.
DOI : 10.1084/jem.192.12.1719

W. L. Lo, An endogenous peptide positively selects and augments the activation and survival of peripheral CD4+ T cells, Nature Immunology, vol.176, issue.11, pp.1155-1161, 2009.
DOI : 10.1038/ni.1796

P. J. Ebert, S. Jiang, J. Xie, Q. J. Li, and M. M. Davis, An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a, Nature Immunology, vol.162, issue.11, pp.1162-1169, 2009.
DOI : 10.1038/ni.1797

K. Hochweller, Dendritic cells control T cell tonic signaling required for responsiveness to foreign antigen, Proc. Natl Acad. Sci. USA, pp.5931-5936, 2010.
DOI : 10.1073/pnas.0911877107

J. H. Cho, H. O. Kim, C. D. Surh, and J. Sprent, T Cell Receptor-Dependent Regulation of Lipid Rafts Controls Naive CD8+ T Cell Homeostasis, Immunity, vol.32, issue.2, pp.214-226, 2010.
DOI : 10.1016/j.immuni.2009.11.014

T. A. Stoklasek, S. L. Colpitts, H. M. Smilowitz, and L. Lefrancois, MHC Class I and TCR Avidity Control the CD8 T Cell Response to IL-15/IL-15R?? Complex, The Journal of Immunology, vol.185, issue.11, pp.6857-6865, 2010.
DOI : 10.4049/jimmunol.1001601

M. J. Palmer, V. S. Mahajan, J. Chen, D. J. Irvine, and D. A. Lauffenburger, Signaling thresholds govern heterogeneity in IL-7-receptor-mediated responses of na??ve CD8+ T cells, Immunology and Cell Biology, vol.601, issue.5, pp.581-594, 2011.
DOI : 10.1073/pnas.212515399

N. Garbi, G. J. Hammerling, H. C. Probst, and M. Van-den-broek, Tonic T cell signalling and T cell tolerance as opposite effects of self-recognition on dendritic cells, Current Opinion in Immunology, vol.22, issue.5, pp.601-608, 2010.
DOI : 10.1016/j.coi.2010.08.007

N. A. Hosken, K. Shibuya, A. W. Heath, K. M. Murphy, and A. Garra, The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model, Journal of Experimental Medicine, vol.182, issue.5, pp.1579-1584, 1995.
DOI : 10.1084/jem.182.5.1579

X. Tao, S. Constant, P. Jorritsma, and K. Bottomly, Strength of TCR signal determines the costimulatory requirements for Th1 and Th2 CD4 þ T cell differentiation, J. Immunol, vol.159, pp.5956-5963, 1997.

R. A. Gottschalk, E. Corse, and J. P. Allison, TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo, The Journal of Experimental Medicine, vol.163, issue.8, pp.1701-1711, 2010.
DOI : 10.4049/jimmunol.176.6.3321

L. Campion and A. , IL-2 and IL-7 Determine the Homeostatic Balance between the Regulatory and Conventional CD4+ T Cell Compartments during Peripheral T Cell Reconstitution, The Journal of Immunology, vol.189, issue.7, pp.3339-3346, 2012.
DOI : 10.4049/jimmunol.1103152

Y. Wang, Th2 Lymphoproliferative Disorder of LatY136F Mutant Mice Unfolds Independently of TCR-MHC Engagement and Is Insensitive to the Action of Foxp3+ Regulatory T Cells, The Journal of Immunology, vol.180, issue.3, pp.1565-1575, 2008.
DOI : 10.4049/jimmunol.180.3.1565

URL : https://hal.archives-ouvertes.fr/hal-00294270

W. Yu, Continued RAG expression in late stages of B cell development and no apparent re-induction after immunization, Nature, vol.400, pp.682-687, 1999.

J. R. Dorfman, I. Stefanova, K. Yasutomo, and R. N. Germain, CD4 þ T cell survival is not directly linked to self-MHC-induced TCR signaling, Nature Immunology, vol.1, issue.4, pp.329-335, 2000.
DOI : 10.1038/79783

S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, and M. Toda, Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25) Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases, J Immunol, vol.155, issue.3, pp.1151-1164, 1995.

S. Hori, T. Nomura, and S. Sakaguchi, Control of Regulatory T Cell Development by the Transcription Factor Foxp3, Science, vol.299, issue.5609, pp.1057-1061, 2003.
DOI : 10.1126/science.1079490

R. North and I. Bursuker, Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2- suppressor T cells down-regulate the generation of Ly-1-2+ effector T cells, Journal of Experimental Medicine, vol.159, issue.5, pp.1295-1311, 1984.
DOI : 10.1084/jem.159.5.1295

J. Shimizu, S. Yamazaki, and S. Sakaguchi, Induction of tumor immunity by removing CD25+CD4+ T cells: A common basis between tumor immunity and autoimmunity, J Immunol, vol.163, issue.10, pp.5211-5218, 1999.

P. Antony, CD8+ T Cell Immunity Against a Tumor/Self-Antigen Is Augmented by CD4+ T Helper Cells and Hindered by Naturally Occurring T Regulatory Cells, The Journal of Immunology, vol.174, issue.5, pp.2591-2601, 2005.
DOI : 10.4049/jimmunol.174.5.2591

N. Chaput, Regulatory T Cells Prevent CD8 T Cell Maturation by Inhibiting CD4 Th Cells at Tumor Sites, The Journal of Immunology, vol.179, issue.8, pp.4969-4978, 2007.
DOI : 10.4049/jimmunol.179.8.4969

G. Darrasse-jèze, Tumor emergence is sensed by self-specific CD44hi memory Tregs that create a dominant tolerogenic environment for tumors in mice, Journal of Clinical Investigation, vol.119, issue.9, pp.2648-2662, 2009.
DOI : 10.1172/JCI36628DS1

S. Quezada, K. Peggs, T. Simpson, and J. Allison, Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication, Immunological Reviews, vol.205, issue.1, pp.104-118, 2011.
DOI : 10.1111/j.1600-065X.2011.01007.x

A. Boissonnas, Foxp3+ T Cells Induce Perforin-Dependent Dendritic Cell Death in Tumor-Draining Lymph Nodes, Immunity, vol.32, issue.2, pp.266-278, 2010.
DOI : 10.1016/j.immuni.2009.11.015

URL : https://hal.archives-ouvertes.fr/hal-00553080

T. Fujimura, S. Ring, V. Umansky, K. Mahnke, and A. Enk, Regulatory T Cells Stimulate B7-H1 Expression in Myeloid-Derived Suppressor Cells in ret Melanomas, Journal of Investigative Dermatology, vol.132, issue.4, pp.1239-1246, 2012.
DOI : 10.1038/jid.2011.416

M. Kato, Transgenic mouse model for skin malignant melanoma, Oncogene, vol.17, issue.14, pp.1885-1888, 1998.
DOI : 10.1038/sj.onc.1202077

J. Eyles, Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma, Journal of Clinical Investigation, vol.120, issue.6, pp.2030-2039, 2010.
DOI : 10.1172/JCI42002DS1

B. Toh, Mesenchymal Transition and Dissemination of Cancer Cells Is Driven by Myeloid-Derived Suppressor Cells Infiltrating the Primary Tumor, PLoS Biology, vol.11, issue.9, p.1001162, 2011.
DOI : 10.1371/journal.pbio.1001162.s012

R. Lengagne, Spontaneous Vitiligo in an Animal Model for Human Melanoma: Role of Tumor-specific CD8+ T Cells, Cancer Research, vol.64, issue.4, pp.1496-1501, 2004.
DOI : 10.1158/0008-5472.CAN-03-2828

J. Bystryn, D. Rigel, R. Friedman, and A. Kopf, Prognostic Significance of Hypopigmentation in Malignant Melanoma, Archives of Dermatology, vol.123, issue.8, pp.1053-1055, 1987.
DOI : 10.1001/archderm.1987.01660320095019

P. Duhra and A. Ilchyshyn, Prolonged survival in metastatic malignant melanoma associated with vitiligo, Clinical and Experimental Dermatology, vol.50, issue.4, pp.303-305, 1991.
DOI : 10.1111/1523-1747.ep12284190

P. Quaglino, Vitiligo is an independent favourable prognostic factor in stage III and IV metastatic melanoma patients: results from a single-institution hospital-based observational cohort study, Annals of Oncology, vol.21, issue.2, pp.409-414, 2010.
DOI : 10.1093/annonc/mdp325

K. Byrne and M. Turk, New Perspectives on the Role of Vitiligo in Immune Responses to Melanoma, Oncotarget, vol.2, issue.9, pp.684-694, 2011.
DOI : 10.18632/oncotarget.323

M. Viguier, Foxp3 Expressing CD4+CD25high Regulatory T Cells Are Overrepresented in Human Metastatic Melanoma Lymph Nodes and Inhibit the Function of Infiltrating T Cells, The Journal of Immunology, vol.173, issue.2, pp.1444-1453, 2004.
DOI : 10.4049/jimmunol.173.2.1444

J. Jacobs, S. Nierkens, C. Figdor, I. De-vries, and G. Adema, Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy?, The Lancet Oncology, vol.13, issue.1, pp.32-42, 2012.
DOI : 10.1016/S1470-2045(11)70155-3

R. Lengagne, T Cells Contribute to Tumor Progression by Favoring Pro-Tumoral Properties of Intra-Tumoral Myeloid Cells in a Mouse Model for Spontaneous Melanoma, PLoS ONE, vol.3, issue.5, p.20235, 2011.
DOI : 10.1371/journal.pone.0020235.t001

R. Lengagne, Distinct Role for CD8 T Cells toward Cutaneous Tumors and Visceral Metastases, The Journal of Immunology, vol.180, issue.1, pp.130-137, 2008.
DOI : 10.4049/jimmunol.180.1.130

M. Sandoval-cruz, Immunopathogenesis of vitiligo, Autoimmunity Reviews, vol.10, issue.12, pp.762-765, 2011.
DOI : 10.1016/j.autrev.2011.02.004

N. Serbina and E. Pamer, Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2, Nature Immunology, vol.187, issue.3, pp.311-317, 2006.
DOI : 10.1038/ni1309

S. Soudja, Tumor-Initiated Inflammation Overrides Protective Adaptive Immunity in an Induced Melanoma Model in Mice, Cancer Research, vol.70, issue.9, pp.3515-3525, 2010.
DOI : 10.1158/0008-5472.CAN-09-4354

URL : https://hal.archives-ouvertes.fr/hal-00507316

I. Bronkhorst and M. Jager, Uveal Melanoma: The Inflammatory Microenvironment, Journal of Innate Immunity, vol.4, issue.5-6, pp.5-6454, 2012.
DOI : 10.1159/000334576

F. Piras, The predictive value of CD8, CD4, CD68, and human leukocyte antigen-D-related cells in the prognosis of cutaneous malignant melanoma with vertical growth phase, Cancer, vol.48, issue.6, pp.1246-1254, 2005.
DOI : 10.1002/cncr.21283

M. Varney, S. Johansson, and R. Singh, Tumour-associated macrophage infiltration, neovascularization and aggressiveness in malignant melanoma: role of monocyte chemotactic protein-1 and vascular endothelial growth factor-A, Melanoma Research, vol.15, issue.5, pp.417-425, 2005.
DOI : 10.1097/00008390-200510000-00010

S. Nizar, B. Meyer, C. Galustian, D. Kumar, and A. Dalgleish, T regulatory cells, the evolution of targeted immunotherapy, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1806, issue.1, pp.7-17, 2010.
DOI : 10.1016/j.bbcan.2010.02.001

S. Kimpfler, Skin Melanoma Development in ret Transgenic Mice Despite the Depletion of CD25+Foxp3+ Regulatory T Cells in Lymphoid Organs, The Journal of Immunology, vol.183, issue.10, pp.6330-6337, 2009.
DOI : 10.4049/jimmunol.0900609

B. Ahmed and M. , Functional defects of peripheral regulatory T lymphocytes in patients with progressive vitiligo, Pigment Cell & Melanoma Research, vol.8, issue.1, pp.99-109, 2012.
DOI : 10.1111/j.1755-148X.2011.00920.x

URL : https://hal.archives-ouvertes.fr/pasteur-00661665

J. Klarquist, Reduced skin homing by functional Treg in vitiligo, Pigment Cell & Melanoma Research, vol.112, issue.2, pp.276-286, 2010.
DOI : 10.1111/j.1755-148X.2010.00688.x

Y. Lili, Global Activation of CD8+ Cytotoxic T Lymphocytes Correlates with an Impairment in Regulatory T Cells in Patients with Generalized Vitiligo, PLoS ONE, vol.20, issue.5, p.37513, 2012.
DOI : 10.1371/journal.pone.0037513.t002

L. Gal and F. , Direct Evidence to Support the Role of Antigen-Specific CD8+ T Cells in Melanoma-Associated Vitiligo, Journal of Investigative Dermatology, vol.117, issue.6, pp.1464-1470, 2001.
DOI : 10.1046/j.0022-202x.2001.01605.x

G. Ogg, R. Dunbar, P. Romero, P. Chen, J. Cerundolo et al., High Frequency of Skin-homing Melanocyte-specific Cytotoxic T Lymphocytes in Autoimmune Vitiligo, The Journal of Experimental Medicine, vol.154, issue.6, pp.1203-1208, 1998.
DOI : 10.1002/eji.1830260803

K. Byrne, Autoimmune melanocyte destruction is required for robust CD8+ memory T cell responses to mouse melanoma, Journal of Clinical Investigation, vol.121, issue.5, pp.1797-1809, 2011.
DOI : 10.1172/JCI44849DS1

C. Auffray, CR1 in their response to inflammation, The Journal of Experimental Medicine, vol.11, issue.3, pp.595-606, 2009.
DOI : 10.1172/JCI29919

URL : https://hal.archives-ouvertes.fr/pasteur-00428989

C. Auffray, M. Sieweke, and F. Geissmann, Blood Monocytes: Development, Heterogeneity, and Relationship with Dendritic Cells, Annual Review of Immunology, vol.27, issue.1, pp.669-692, 2009.
DOI : 10.1146/annurev.immunol.021908.132557

URL : https://hal.archives-ouvertes.fr/hal-00407757

A. Velde and C. Figdor, Monocyte mediated cytotoxic activity against melanoma, Melanoma Research, vol.1, issue.5, pp.5-6303, 1992.
DOI : 10.1097/00008390-199201000-00001

T. Griffith, Monocyte-mediated Tumoricidal Activity via the Tumor Necrosis Factor???related Cytokine, TRAIL, The Journal of Experimental Medicine, vol.88, issue.8, pp.1343-1354, 1999.
DOI : 10.1084/jem.186.8.1365

J. Martin and S. Edwards, Changes in mechanisms of monocyte/macrophagemediated cytotoxicity during culture Reactive oxygen intermediates are involved in monocyte-mediated cytotoxicity, whereas reactive nitrogen intermediates are employed by macrophages in tumor cell killing, J Immunol, vol.1508, issue.1, pp.3478-3486, 1993.

Y. Rubtsov, Regulatory T Cell-Derived Interleukin-10 Limits Inflammation at Environmental Interfaces, Immunity, vol.28, issue.4, pp.546-558, 2008.
DOI : 10.1016/j.immuni.2008.02.017

T. Bosschaerts, Tip-DC Development during Parasitic Infection Is Regulated by IL-10 and Requires CCL2/CCR2, IFN-?? and MyD88 Signaling, PLoS Pathogens, vol.108, issue.8, p.1001045, 2010.
DOI : 10.1371/journal.ppat.1001045.t001

B. Qian, CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis, Nature, vol.64, issue.7355, pp.222-225, 2011.
DOI : 10.1038/nature10138

A. Lesokhin, Monocytic CCR2+ Myeloid-Derived Suppressor Cells Promote Immune Escape by Limiting Activated CD8 T-cell Infiltration into the Tumor Microenvironment, Cancer Research, vol.72, issue.4, pp.876-886, 2012.
DOI : 10.1158/0008-5472.CAN-11-1792

M. Wolf, Endothelial CCR2 Signaling Induced by Colon Carcinoma Cells Enables Extravasation via the JAK2-Stat5 and p38MAPK Pathway, Cancer Cell, vol.22, issue.1, pp.91-105, 2012.
DOI : 10.1016/j.ccr.2012.05.023

$. Lud5, DPKDZL6%HONDLG<:\QQ7$DQGG6DFNV