Algorithmes de prise de décision pour la "cognitive radio" et optimisation du "mapping" de reconfigurabilité de l'architecture de l'implémentation numérique.

Abstract : In this thesis we focus on the development of a decision making method for the cognitive radio receiver that dynamically adapts to its environment. The approach that we use is based on the statistical modeling of the radio environment. By statistically characterizing the observations provided by the radio sensor, we set up statistical decision rules that take into account the observations’ errors. This helps to minimize the rate of bad decisions. Also, we aim to use the intelligent capacities to reduce the computational complexity in the receiver chain. Indeed, we identify decision scenarios that limit some operators. In particular, we address two decision scenarios that adapt the presence of the equalization and of the beamforming to the environment. The limitation of these two operations helps to reduce the computational complexity in reception. Finally, we integrate our decision method and the two decision scenarios in a management architecture of reconfiguration and intelligence.
Document type :
Theses
Liste complète des métadonnées

Cited literature [104 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00931350
Contributor : Abes Star <>
Submitted on : Thursday, May 22, 2014 - 4:03:07 PM
Last modification on : Friday, November 16, 2018 - 1:23:45 AM
Document(s) archivé(s) le : Friday, August 22, 2014 - 12:55:11 PM

File

Bourbia_Salma_These_VF.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00931350, version 2

Citation

Salma Bourbia. Algorithmes de prise de décision pour la "cognitive radio" et optimisation du "mapping" de reconfigurabilité de l'architecture de l'implémentation numérique.. Autre. Supélec, 2013. Français. ⟨NNT : 2013SUPL0027⟩. ⟨tel-00931350v2⟩

Share

Metrics

Record views

721

Files downloads

1169