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Résumeé

Au niveau systeme un ensemble d'experts spéaent des propriétés fonctionnelles et
non fonctionnelles en utilisant chacun leurs propres modéles thémues, outils et envi-
ronnements. Chacun essaye d'utiliser les formalismes les plus églats en fonction des
propriétés a véri er. Cependant, chacune des vues d’expertise pour un domaine s'agpu
sur un socle commun et impacte directement ou indirectement lemnodéles décrits par les
autres experts. Il est donc indispensable de maintenir une cohénee sémantique entre
les di érents points de vue et de pouvoir réconcilier et agréger chacun des pits de vue
avant les di érentes phases d’analyse.

Cette thése propose un modele, dénommBRISMSYS, qui s’appuie sur une approche
multi-vue dirigée par les modéles et dans laquelle pour chacun desothaines chaque
expert décrit les concepts de son domaine et la relation que ces comptg entretiennent
avec le modele socle. L'approche permet de maintenir la cohéremsémantique entre les
di érentes vues a travers la manipulation d’événements et d’horlogdsgiques.PRISM-
SYS est basé sur un prol uml qui s’appuie autant que possible sur les prols SysML ,
dédié a l'ingénierie systeme, etmarte , dédié a la conception de systemes temps-réel
embarqués. Le modéele sémantique qui maintient la cohérence esté&p é avec le langage
ccsl qui est un langage formel déclaratif pour la spécication de relations causales et
temporelles entre les événements de dérentes vues.

L'approche est illustrée en s’appuyant sur une architecture matéelle dans laquelle le
domaine d’analyse privilégié est un domaine de consommation de puissandee modeéle
contient di érentes vues de cette architecture : modele fonctionnel, modglarchitectu-
ral, modele équationnel de propriétés liées a la température et &alpuissance, modéle
temporel. L’environnement proposé parPRISMSYS permet la co-simulation du modeéle
et I'analyse. La simulation s’appuie conjointement surTimeSquare pour les aspects
événementiels et liés au contréle, et suSciLab pour la prise en compte des propriétés
non-fonctionnelles (température et puissance). L'analyse est condtie en transformant
le modéle multi-vue dans un format adéquat pourAceplorer, un logiciel expert dédié a
'analyse de consommation.



Abstract

At the system-level, experts specify functional and non-functonal properties by em-
ploying their own theoretical models, tools and environments. Seh experts attempt to

use the most adequate formalisms to verify the dened system properties in a specic

domain. Nevertheless, each one of these experts’ views is supported a common base
and impacts directly or indirectly the models described by the oher experts. As a con-
sequence, it is essential to keep a semantic coherence among the etient points of view

and also to be able to reconcile and to include all the points of view befre undertaking

the di erent phases of the analysis.

This thesis proposes a specc domain model namedPRISMSYS. This model is based
on a model-driven multi-view approach where the concepts, and the elationships be-
tween them, are described for each expert's domain. Moreover, thesconcepts maintain
a relation with a backbone model. PRISMSYS allows keeping a semantic coherence
among the di erent views by means of the manipulation of events and logical clocks.
PRISMSYS is represented in auml pro le, supported as much as possible bysML ,
devoted to the systems engineering, andnarte , dedicated to the design of real-time
embedded systems. The semantic model, which preserves theew coherence, is spec-
i ed by using ccsl , a declarative formal language for the specication of causal and
temporal relationships between events of dierent views.

The approach is illustrated taking as case study an electronic systemwhere the main
domain analysis is power consumption. The system model incorporatesavious views:
a functional model, a power model, a time performance model and a #rmal model. In

turn, these views are divided in three parts: control, structural, and equational. These
parts interact with each other to characterize the temperature and paver consumption
of the system. The environment proposed byPRISMSYS allows the co-simulation of
the model and its analysis. The simulation is supported byTimeSquare , for the event
aspects and correlated to the control, and byScilLab, for taking into account the non-

functional properties (temperature and power consumption). The anaysis is conduced
by transforming the multi-view model in the internal format accept ed by Aceplorer, an

expert tool dedicated to power consumption analysis.
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Chapitre 1

Introduction (Version en

Francais)

La notion de systéme englobe des environnements plus ou moins complexd.es té-
léphones laires autrefois limités a I'aspect communication ont été remplacés ar les
téléphones GSM qui combinent I'envoi de texto, le guidage GPS des lisateurs, la lec-
ture d'un journal et/ou d’un livre ou encore la navigation sur Internet . Les systemes ont
aussi été mis-a-jour avec une technologie plus sophistiquée, ou I'aptisation de certaines
propriétés est une priorité aujourd’hui. Les systémes électroniges sont maintenant in-
tégrés dans les voitures, les avions, les bateaux et les trains. Cgstmes numériques se
veulent plus e caces et plus exibles que les systemes purement mécaniques en aidant
a réduire la consommation de carburant, les colts de maintenance et en atorant la

qualité fonctionnelle.

Dans le but de gérer la complexité des systemes modernes, les dtehtes des systéemes
divisent les aspects en plusieurs domaines. Chaque domaine est canétudié et ana-
lysé par des experts spéciques qui s'y intéressent spéciquement. Ces préoccupations
sont quanti ées par les propriétés établies dans le cahier des charges du systé@es
propriétés peuvent étre soit fonctionnelles (arréter une voiturequand la pédale du frein
est appuyée), ou non fonctionnelles (déterminer un budget sur la ca@ommation de
puissance et de carburant, les temps de réponse, la taille et les dsji Habituellement,

les experts ont leurs propres langages et outils pour modéliser et analgr un domaine
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spéci que. Cependant, ces domaines sont liés et interagissent a de respecter les exi-
gences du systeme. Par exemple, dans les voitures électriqgues ogbtides, I'action de
freinage pourrait générer de I'énergie qui peut étre stockée dansdeatteries pour étre
réutilisée lorsque la voiture a besoin d'accélérer. Ce cycle peuéduire la consomma-
tion de puissance ou de carburant de la voiture en améliorant certainesrppriétés non

fonctionnelles.

Nous proposons d’exprimer comme desues chacun des domaines du systeme. |IEEE-
1471 1] et IEEE-42010 ] sont des standards qui proposent une structure générique a
de spéci er un systeme avec de multiples vues. Cette maniére de décriten systeme est
appeléemodélisation multi-vue. Cependant, ces standards sont extrémement généraux,
ils peuvent donc étre appliqués de diérentes fagons. En plus, en utilisant ces standards,
c’est di cile de décrire les concepts réutilisables déis dans une architecture pour les

appliquer ailleurs.

Dans cette thése, nous proposon®RISMSYS, un langage de modélisation muti-vue
qui permet de spéci er les domaines des experts dans une variété de vueaRISMSYS
est inspiré par les concepts dénis dans IEEE-42010 P]. Néanmoins, nous proposons
des éléments spéciques inclus dans les vues, ses comportements, ses associationsest s
interactions. En utilisant I'Ingénierie Dirigée par les Modéles,nous donnons une syntaxe
aPRISMSYS, i.e., la structure de I'architecture du systéme. La structure dePRISMSYS

est spéci ée par unméta-modéle

PRISMSYS inclut deux types de comportements : un comportement a événemestdis-
crets, représenté par des machines a états et l'interaction parmi & vues dénie par
des événements. Il prévoit aussi un comportement EN temps continuexprimé par des
2quations. Nous dé nissons la sémantique d’exécution de ces comportements en utili-
sant ccsl [3], un langage déclaratif qui décrit les relations causales et temporekeentre
événements. En employantccsl , nous spécions la coordination du comportement des
di érents domaines d’exécution. Nous orchestrons aussi les @rent modéles (a priori
hétérogénes) du comportement dans les vues dBies, comme la synchronisation entre
I'activation des états d’'une machine a états nis (un comportement a événements dis-

crets) et I'évaluation des équations (un comportement en temps contiu).

Nous représentonsPRISMSYS comme un pro | uml. Le pro | de PRISMSYS utilise

autant que possible les concepts dénis dans les prols uml SysML [4] et marte [5].
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Une fois que la sémantique d’exécution d®RISMSYS est dé nie, nous utilisonsTimeS-
quare [6] a n de simuler la partie discrete du modele. Pour évaluer la partie antinue,
nous choisissonscilab [7], une outil de calcul numérique qui o re les fonctions pour ré-
soudre les équations. Nous avons développé wonnecteur entre TimeSquare et Scilab

pour orchestrer la simulation discréte avec la partie continue.

Pour illustrer le potentiel de PRISMSYS, nous avons développé un modeéle d'un systeme
dont la principale préoccupation est la consommation de puissance. Dance modéle,
nous dé nissons les vues et les éléments qui décrivent et impactent lamosommation de
puissance d'un systéme. Ce modéle est simulé et les comportentediscrets et continus
sont présentés €.g., le comportement de la machine d'états nis, et aussi I'évolution
de la consommation de puissance et la température). Finalement, nougroposons une
autre maniére d'utiliser le modéle PRISMSYS. Nous spécions une transformation du
modele PRISMSYS vers un autre modéle d’'un outil de domaine spécique. En prenant
comme cas d’'étude le modelPRISMSYS dédié a la consommation de puissance, nous le
transformons dans le format interne dAceplorer a n de simuler et analyser la consom-
mation de puissance.Aceplorer [8] est un outil commercial qui modélise et simule le
comportement de la consommation de puissance d’'un systeméceplorer a été utilisée

dans le cadre du projet ANR-HeLP (référence ANR-09-SEGI-006).

Le contenu de cette thése est organisé en deux parties principales : ld@ nition de la
structure de PRISMSYS, et le développement du cas d'étude d®RISMSYS, un modele

du systéme dédié a la consommation de puissance.

La premiére partie introduit les concepts principaux de la modéisation multi-vue et de
I'hétérogénéité du comportement spécié dans le modele d’'un systéme. En conséquence,
cette partie est consacrée a la spéctation de la structure de PRISMSYS. Cette partie
est composée des chapitre® et 3. Le premier chapitre introduit I'état de l'art des
préoccupations structurelles et comportementales an de modéliser les systemes. Nous
introduisons les concepts de modélisation multi-vue identiés par la spécication IEEE-
42010. Finalement, Nous identi ons une relation entre la modélisation multi-vue et la
composition des modéles. Sur les préoccupations comportementalemus introduisons
la notion de Modele de Calcul (MoC), les outils qui les implémentety comme Ptolemy

I1 [9] et ModHel'X [10], et nous discutons également le probléeme d’hétérogénéité parmi

di érents MoCs. Le chapitre 3 dé nit la structure de PRISMSYS, sa syntaxe et sa
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sémantique pour spécier un modele multi-vue d’'un systéme. La syntaxe dPRISMSYS
est spéci é par un meta-modéle PRISMSYS suit une approche par composants, ou les
concepts multi-vue sont speciés en accord avec cette approche. Unaie est exprimée par
trois sous-vuesprincipales : controlSubView, StructuralSubView et EquationalSubView

Chaque sous-vue joue un réle spécjue dans la construction d'une vue.

La deuxieme partie de cette thése est dédiée a la modélisation diusysteme dont la
préoccupation principale est la consommation de puissance. Ce modekst dé ni en
utilisant la structure de PRISMSYS. Cette partie de la thése est composée des chapitres
4, 5 and 6. Le chapitre 4 introduit les concepts, les techniques, et les outils employ&pour
modéliser la consommation de puissance d’'un systéeme. Nous spémis les vues et ses
éléments a n d’évaluer et d’analyser le modelePRISMSYS dédié a la consommation de
puissance dans le chapitré. Nous simulons, évaluons et analysons le modeRRISMSYS
dédié a la consommation dans le chapitre6 en utilisant TimeSquare , Scilab et le
connecteur Scilab Solver construit pour I'occasion. Dans ce chapitre, nous spécbns

également la transformation dePRISMSY'S vers Aceplorer.

Finalement, nous concluons ce travail, en soulignant les contribution principales et nous

donnons quelques perspectives futures dans le chapitiz



Chapter 1

Introduction

Nowadays, the complexity of systems is increasing. It began with simle devices that
performed a specic functionality, such as a telephone that makes calls through a cable,
and now, these devices are much more complex including new funomalities and new
technologies. For instance, the telephone is being replaced by mobilphones, which are
wireless and have multiple functionalities such as sending meages, orienting people
to arrive to a destination or allowing to read news and books or to surf on he Inter-
net. Systems have also been upgraded with a more sophisticated temblogy, where
the optimization of certain properties is a priority today. Electron ic systems are now
integrated in cars, airplanes, boats and trains. These systems are moragxise than the
mechanical ones helping to reduce gas consumption, maintenance costsdammproving

the functional quality.

To deal with the complexity of modern systems, system architectssplit them in vari-
ous domains. Each domain is designed, studied and analyzed by expertsahspecify
determined stakeholder’s concerns. These concerns are quargid by properties stated
in system requirements. Such properties can be either functicad, such as stopping a
car when the brake pedal is pressed, or non-functional, like power andas consumption,
time performance, size and costs. Usually, the experts have theirven languages and
tools to model and analyze a specic domain. However, these domains are connected
and they interact to ful Il the system requirements. For instance, in electric or hybrid

cars, the braking action could generate some energy that can be stored in b@ties to
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be re-used once the car needs to accelerate. This cycle can redude tpower or gas

consumption of the car, improving certain non-functional properties

The multiple domains that could be de ned in a system are tackled by expressing them in
views |IEEE-1471 [1] and IEEE-42010 P] are standards that propose a generic framework
to specify a system in multiple views. This way to describe a gstem is namedmulti-view
modeling Nevertheless, these standards are extremely general, thereforbdy can be
applied in di erent ways. Moreover, by using these standards, it is di cult to describe

re-usable concepts dened in an architecture in order to apply them in a di erent one.

In this thesis, we proposePRISMSYS, a multi-view modeling language that allows spec-
ifying expert’s domains in various views. PRISMSYS is inspired by the concepts dened

in IEEE-42010 [2]. However, we propose spect elements included in the views, their
behavior, associations and interactions. By using Model Driven Engieering, we give a
syntax to PRISMSYS, i.e., the system architecture structure. The PRISMSYS struc-

ture is speci ed by meta-models Model Driven Engineering de nes a clear separation of
abstraction levels wheremeta-modelis one of them. Thanks to these abstraction levels,

we can split those specied in IEEE-42010.

PRISMSYS includes two kinds of behaviors: a discrete event behavior, regsented
by state machines and the event interaction between views, as well aa continuous
time behavior, expressed by equations whose values are evaluated tdugh time. We
de ne the execution semantics of this behavior inccsl [3], a declarative language that
describes causal and temporal relationships between events. By eiaging ccsl , we
specify the coordination of the behavior from di erent execution domains. We also
orchestrate the heterogeneity in the behavior modeling in the dened views, such as
the synchronization between a nite state machine (a discrete event behavior) and the

evaluation of an equation (a continuous time behavior).

We representPRISMSYS in uml by specifying a pro le. The PRISMSYS pro le uses
as much as possible the concepts deed in other uml pro les, such asSysML [4] and
marte [5]. The concepts that are not included in uml or in the other two pro les,
are de ned as stereotypes in thePRISMSYS pro le, extending theuml concepts whose

meaning is compatible with the PRISMSYS concept semantics.
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Once the semantics of thePRISMSYS execution is de ned, we useTimeSquare [6]
to simulate the discrete part of the model. To evaluate the continuows part, we chose
Scilab [7], a numerical computing tool that provides the functions to solve euations.
We have developed aconnector between TimeSquare and Scilab to orchestrate the

discrete simulation with the continuous one.

To prove the potential of PRISMSYS, we have developed a model of a power-aware
system. First, we introduce a background in power consumption chaacterization and
power management. We continue dening the views and the elements that describe
and impact the power consumption of a system. This model is simulaté and the
discrete and continuous behaviors are depictedd.g., nite state machine behavior, and
also power and temperature evolution). Finally, we propose another wayto use the
PRISMSYS model. We specify a transformation of thePRISMSYS model to a model
of a specic domain tool. Taking as use case thePRISMSYS power-aware system
model, we transform it to an Aceplorer model in order to simulate and analyze the
power consumption. Aceplorer [8] is a commercial tool that models and simulates the
power behavior of a system. Aceplorer was used in the context of the ANR Project
HeLP (reference ANR-09-SEGI-006).

The content of this thesis is organized in two main parts: The de nition of the PRISM-
SYS framework, and the development of thePRISMSYS use case, a power-aware system

model.

The rst part introduces the main concepts of multi-view modeling and Hghlights the
behavior heterogeneity specied in a system model. Therefore, this rst part is the
stronghold in the speci cation of the PRISMSYS framework. This part is composed of
chapters2 and 3. The former introduces the background about structural and behavioral
concerns to model systems. We present that the complexity of a sysm architecture
could be managed following the multi-view approach. We introduce themulti-view
concepts specied in IEEE-42010. We also split the abstraction level dened in IEEE-
42010 by using the Model-Driven Engineering abstraction levels. Fially, we identify a
relationship between the multi-view modeling and the model compsition. In the be-
havioral concerns, we introduce the notion of Model of Computation (MoC) the tools

that implement them, such as Ptolemy Il [9] and ModHel’X [10], and we also discuss the
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heterogeneity problem between various MoCs. ChapteB de nes thePRISMSYS frame-
work, its syntax and semantics to de ne a multi-view system model. ThePRISMSYS
syntax is speci ed by meta-models PRISMSYS follows a component approach, where
the multi-view concepts are specied accordingly. A view is expressed by three main
sub-views controlSubView, StructuralSubView and EquationalSubView Each sub-view

plays a specic role in the construction of a view.

The second part of this thesis is dedicated to the modeling of a poweaware system by
using PRISMSYS. This part consists of chapters4, 5 and 6. Chapter 4 introduces the
concepts, techniques, and tools employed to model the power camsption of a system.
We specify the views and their elements to describe various domainthat are involved
in the system power consumption in Chapter5. We simulate, evaluate and analyze
the PRISMSYS power-aware model in Chapter6 by using TimeSquare , Scilab and
their connector Scilab Solver In this chapter, we also specify the transformation of

PRISMSYS to Aceplorer.

Finally, we provide the conclusion of this work, highlighting its main contributions and

we give some future perspectives in Chapter.
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2.1. Introduction

Systems have a strong foothold in our daily life. In the customer eletronics market,
mobile phones, tablets, video and music players, and TVs are some ex3es of these
systems. They provide a quick and direct access to the informatior{email, news, arti-
cles, books, etc) and they are marking a milestone in communicationsgiving a great
mobility to consumers. These systems are also installed in cars, glanes, boats and
submarines to upgrade certain mechanical controllers or optimize engly consumption,
time performance and costs. Medicine is also an important domain whereystems play
an important role, e.g., measuring blood pressure, dosing medicament or pacing the

heart.

Experts from di erent domains work together in the design of systems. These experts
ful Il the strict system requirements, generally specied by non-functional properties
such as time performance, security, power consumption, temperate and cost. Each
expert has his/her own language to describe the model of the systemdm his/her point
of view. Therefore, a system model is represented by multipleahguages where each

language satis es certain system requirements.

Whatever its complexity, a language is always dened by a syntax and a semantics. In
this thesis, we use the term “syntax” to refer to the structural de nition of the language.

In contrast, the term “semantics” describes the behavior of the langage.

In this chapter, we present the concepts and the approach that we usenithis thesis to

de ne the structure and the behavior of the languages that model systems.

2.2. Structural Concerns

According to IEEE-1471 [1], a system is“a collection of components organized to ac-
complish a specic function or set of functions”. This standard also de nesarchitecture
as “the fundamental organization of a system embodied in its compants, their rela-
tionships to each other, and to the environment, and the principles dding its design
and evolution”. Taking into account these two de nitions, an architecture speci es the

structure of a system, based on a component approach.
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To de ne a system architecture, it is important to identify the elements involved in the
design of a system. |IEEE-15288 standardl[l] de nes asystem as “man-made, created
and utilized to provide products and/or services in dened environments for the benet
of users and other stakeholders” Following this de nition, we identify that a systemis
associated with two main entities: environment and stakeholder Figure 2.1 presents a
conceptual model of the identi ed elements that are associated with a system. In this
gure, asystemresponds to thestakeholderneeds and it is placed in anenvironment.
An environment may contain other systems or subsystems that interact with each other

A systemexposes one and only onarchitecture.

1.* hasinterests in interacts with 1 -
Stakeholder 2= {system — —{ Environment
responds to 1. - - placed in

defines
exhibits
1

Architecture

Figure 2.1: Conceptual model for the system architecture context from PJ.

The stakeholder needs are represented bgoncernsin IEEE-1471 [1]. These concerns are
de ned in various speci c domains that are studied by di erent experts. These experts
build system models that include functional and non-functional properties to tackle the
concerns related to their domain. The modeling activity where conerns are divided into

various domains is calledmulti-view modeling.

In Section 2.2.1, we present the main concepts of multi-view modeling using the EEE-

42010 standard ). This standard is a reference in this kind of modeling.

2.2.1. Multi-View Modeling

Multi-view modeling was proposed as a solution to manage the complexityf the system
design. This technique de nes a system architecture in di erent views where each view
addresses a set of stakeholder’'s concerng].] Views are de ned by domain experts
that have their own concepts and languages to express the domain elentsmand their
relationships. An example of this modeling technique is applied toconstruction. To
construct a building, architects design oor plans, electrical engineers draw electrical

blueprints and hydraulic engineers create pipe networks. The elgrical blueprints and
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the pipe networks are de ned based on the oor plans, therefore, in this particular case,
there is a reference model to build the other domain models. Sirar to the construction
domain, systems can be speced with diverse views; for instance, power consumption

view, nancial view, structural view and time performance view.

In this thesis, we use the vocabulary specied in the IEEE-42010 standard P] to describe
the multi-view concepts. This standard is an updated version of IEEE1471 [1] and
it is inspired by various multi-view approaches such as DoDAF 2], MODAF [ 13],
TOGAF [ 14, the “4+1” view model [ 15] and Zachman’s framework L 6].

According to the IEEE-42010 standard, a system architecture is repreented by anarchi-
tecture description. The standard emphasizes that ararchitecture is “abstract, consisting
of concepts and properties; whereasarchitecture description is a work-product used to
de ne an architecture. Figure 2.2 presents the conceptual model dened in IEEE-42010.
In the gure, anarchitecture description owns views and correspondences A view con-
tains modelsthat are the modeling artifacts describing the view. Correspondencebuilds
associations among architecture elements that dene the considered systemj.e., the
relationship between models, views, the architecture descrifon, stakeholders, and con-
cerns. The main purpose ofCorrespondenceis to identify the view elements that have
some kind of association in a system architecture in order to maintain he consistency

of the architecture description.

defines
* i i -
System j—>= exmbéts*l Architecture
has interests In defines| 1
1..x| responds To 1 1 | expressed By

Architecture Descriptionl

? Jo.

| Correspondence |

| StakeholderI enTes
defined By| 1..*

identifies
1 .*

1.4 has
@ 1..* addresses

Figure 2.2: Multi-view modeling according to IEEE-42010.
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This standard also speci es a mechanism to build architecture descriptions which could
be reused in various projects that share the same architecture conpts. For this ob-
jective, IEEE-42010 introduces the Architecture Framework concept. Architecture de-
scription is the rei cation of architecture framework, i.e., the architecture framework
concepts are used to build the architecture description of a systa architecture. Fig-
ure 2.3 presents the conceptual model oarchitecture framework. An architecture frame-
work owns viewpoints, and correspondence rules Views and correspondencesconform
to viewpoints and correspondence rulesrespectively. A viewpoint contains model kinds

where models conform to them.

1..* 1 -
Stakeholder |- — —lArchltecture Framework
| I fi
— identifies

defined By 1 ?
1.4has *identiﬁes
|Concern — IViewpointl |Correspondence Rule
1.* frames l

Figure 2.3: Architecture Framework concept model 2]

IEEE-42010 de nes a conceptual model wherarchitecture framework concepts andar-
chitecture description concepts are mixed,i.e., models model kinds views viewpoints,
correspondencesand correspondence rulesare contained in anarchitecture description.
Demirli et al. [17] consider that architecture framework concepts andarchitecture de-
scription concepts are di erent abstraction levels. Demirli proposes to use the Model-
Driven Engineering approach to model the abstraction levels of the argitecture de ned

in IEEE-42010.

Model-Driven Engineering (MDE) is a software design technique vinere the main ar-
tifact is model The Object Management Group (OMG) de nes that “a model is a
representation of a part of the function, structure and/or behavior of a system. The
model speci cation is based on a language that has a well-deed form (syntax), mean-
ing (semantics) and possible rules of analysis, inferences or prodér its constructs.” [18§].
According to this de nition, a model is built based on a language that gives the necessary
expressivity to represent the elements of a spect domain. This language is described

through a meta-model A meta-model expresses the concepts and relationships to build
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a model. A meta-model is a model by itself, so that it has another langage that con-
tains the required concepts and relationships to dene one or more meta-models. Such
a language is calledmeta-meta-model Examples of meta-meta-models are MOF 19
and Ecore R0l. MDE does not propose another language to build meta-meta-models.
A meta-meta-model is rather considered as a self-deed model,i.e., its concepts and
relationships are represented by them-selves. This self-daition avoids the multiplica-
tion of abstraction levels. In Figure 2.4, we present the abstraction levels in MDE. In
the gure, we identify an association of conformity between the concepts ofagh level,
i.e., each level relies on the concepts dened in the upper abstraction level. The MO
level denotes the real world. In this level, the concrete objects a represented by the
elements of a model.

conforms To

M3 5
..p» Meta-Meta-Model
A
;conforms to
M2 :
Meta-Model
;conforms to
M1 :
Model
A
MO

érepresented by
Object
Figure 2.4:  Abstraction levels in MDE.
Following the MDE abstraction levels, Demirli identi es that the architecture framework
conceptual model is themeta-model of architecture description conceptual model. Fig-

ure 2.5 depicts the abstraction level representation of IEEE-42010 concepts aoeding

to Demirli’'s work [ 17].
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‘ 1. 1. 1.

Architecture

ViewPoint ModelKind CorrespondenceRule
Framework
M2 A A A ) A
EConforms to Conforms to Conforms to Conforms to
Archltgctpre View Model Correspondence
Description
M1 ? 1.% 1.* 1.*

Figure 2.5: Abstraction levels of IEEE-42010 concepts 17].

MDE o ers two alternative solutions for the de nition of models: either through a
General-Purpose Modeling Language (GPML) or through a Domain-Specic Modeling
Language (DSML). GPML proposes to use a unigue meta-model that has enough ex
pressivity to de ne any domain. uml [21] and XML are examples of GPMLs. DSML
proposes to dene one dedicated meta-model for each spea domain. SysML [4],
marte [5], AADL [ 22] and ATL [ 23] are examples of DSMLs. Hence, we consider-
chitecture framework as a set of DSMLs with a set of correspondence rules between the

DSML elements.

An example of the IEEE-42010 implementation is MEGAF [24]. MEGAF is a tool to
build architecture frameworks according to the IEEE-42010 standard. THhs infrastruc-
ture allows creating viewpoints, stakeholders and concerns to degbe a speci ¢ system.
MEGAF also de nes associations between the spe@d architecture elements to enable

consistency checks based on the deed correspondences.

In the following subsection, we present approaches based on the mi#tiew modeling
requirements de ned in IEEE-42010. We also explore an alternative solution through

the so-called /model composition/ and we compare the two solutions.

2.2.2. Multi-View Approaches and Model Composition

There are two approaches that use the multi-view concept speced in IEEE-42010:
synthetic and projective [2]. A synthetic approach de nes oneviewPoint for each specic

domain, independently. It integrates theseviewPoints in an architecture framework by
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using correspondence rules. In contrast, a projective approach spe es a reference meta-
model, where theviewPoints are built by hiding irrelevant elements from its meta-model.

In this approach, correspondence rules are already daed in the reference meta-model.

Model composition is another modeling approach used in software engingeg to com-
bine models with a specic purpose. These models can conform to a common meta-
model, or to di erent ones. Clavreul P5] de nes that Model Composition is an activity
that “ enables to build a system from the union of independent or dependent sofire

artifacts”.

Similarly to the multi-view approaches, model composition species correspondences be-
tween the elements of the models (or meta-models) to be combinedlavreul de nes four
main types of correspondences to classify the model element relatiships. These corre-
spondences areoperator-based rule-baseqd model-basedand delta representation-based
Operator-basedis a set of functions whose actions dene the correspondences among
model elements.Rule-based nds the similarity between model elements, such as term-
matching on names or satises certain constraints to associate model elements, such as
pre- or post-conditions. Model-basedis a correspondence type that is formally dened as
part of the modeling language specication, e.g., DSMLs. Finally, delta representation-
basedis a correspondence that identi es by analysis the di erences between two or more

versions of the same model.

Clavreul also identi es various interpretations to these correspondences. He dees two
interpretation categories in modeling structural associations: overlapping and cross-
cutting. Overlapping is to merge one or more models gathering the model elements
that have equal or similar interpretation. Cross-cutting is to weave new model elements
(aspects) to a base model, modifying the structure and/or behavior Clavreul also
de nes two additional categories:add and delete These categories insert/delete model
elements in a model. Clavreul considers that the designer mustriow the internal model
structure in order to use the latter two categories. In contrast, using the previous three
interpretation categories does not require a knowledge of the interal model structure

to de ne correspondences.

Multi-view approaches and model compaosition have in common the notion of arrespon-

dence. Clavreul de nes correspondence asny kind of implicit or explicit relationships
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between sets of models or sets of model element§his de nition is shared with IEEE-
42010. However, IEEE-42010 speces correspondencethrough correspondence rules

i.e., a correspondenceis the use of acorrespondence rulede nition in a model.

The correspondence and interpretation given by Clavreul could be apled to the def-
inition of correspondence rules Nevertheless, the application ofcorrespondence rules
in model composition and the multi-view approaches are dierent. While the synthetic
approach only usescorrespondence rulesto associate concepts of various DSMLs with-
out generating a new DSML, model (or meta-model) composition has as goal to get
resulting model (or meta-model) that is built by combining one or more models of the
same language or from dierent languages usingorrespondence rules In the case of the
projective approach, correspondence rulesare de ned in the reference meta-model from

where the viewPoints are derived.

Figure 2.6 depicts the relationship between languages, dened by meta-models, and the
modeling approaches. In this gure, MM1 and MM2 are independent meta-models
(or languages). The elements of both meta-models are associated leprrespondence
rules. The correspondence rules can be in both sensese., they associate elements
from MM1 to MM2 or vice versa. The two languages MIM1 and MM2) and their
correspondence rules dene a multi-view synthetic approach. The idea of this approach
is to de ne the correspondence rules betweeviewPoint elements, in order to maintain
the coherence betweerviewPoints. Using the synthetic approach, we can generate a
composed language NIM3) that is the result of the interpretation of correspondence
rules betweenMM1 and MM2. The projective approach is the decomposition of a
language in other languagesj.e., MM3 can be decomposed ilMM1 and MM2. The
correspondence rules ilMM3 are internal relationships between its elementsj.e., it is
part of the domain de nition. Therefore, the composition of MM1 and MM2 keeps the
correspondence rules dened betweenMM1 and MM2. Once the projective approach
is applied, the correspondence rules betweeMM1 and MM2 are identi ed in MM3
in order to extract such correspondences and to dene associations betweeMM1 and

MM2.
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Figure 2.6: Relationship between modeling approaches and spea domains.

It is important to note that the multi-view approaches have as objective to maintain
the independence between spect domains. Correspondence rules are the connections
that these domains have. In contrast, the aim of the composition modelig approach is
to generate a model (or meta-model) that contains the elements of themirce models
according to the correspondence rules. We could apply the compositioapproach in a
multi-view model to generate analysis models from a selected nundy of views (projective
or synthetic) to a speci ¢ purpose. These analysis models could study the impact of
the modeled concerns from dierent views of a system. For instance, the impact of

increasing the clock frequency in power consumption and time pdormance.

In the following items, we analyze some examples that are somehow assated with

synthetic, projective and composition approaches:

= Aspect-Oriented Programming: In an object-oriented program, the non-functional
and the cross-cutting concerns are interwoven in the code. Kiczak et al. 6] pro-
pose to extract these non-functional and cross-cutting concerns fronthe main
concern of the program. These extracted concerns are known asspects The
composition of aspects in the main code is calletveaving An aspect is composed
by an advice and a pointcut. The former is the code of the concern that iswoven
in a speci ¢ place of the main code joint point ). The latter identi es the joint
point where the aspect is added in the main code. An example of language that

implements this kind of programming is AspectJ 27].

This programming approach follows the model composition approach. The aimdg

to weave aspects into a base model to build a composed model. A setafpects is
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not a view of the model and does not specify spectc domains such as the multi-
view approach. All the models (aspects and base model) are speed using the
same languagej.e., the elements of a model (aspects), conform to a meta-model,
are injected (woven) to another model that conforms to the same meta-radel.

The joint points are correspondences between the aspects and the target model.

= Kompose: Kompose R§] is a generic model composition tool that merges models
conforming to the same meta-model. The merging process is deed by two main
steps: matching and merging. Matching identi es the elements that have the same
concepts in the models that are to be composedMerging generates a model that
is the result of merging the matched elements. The elements that @& not matched,

are de ned in the resulting model without any changes.

Kompose follows the model composition approachMatching process identi es the
correspondences between the elements of the models to be compasédcording
to Clavreul, the Kompose correspondences are rule-based and theimterpretation
is overlapping, i.e., the elements that ful Il the de ned composition rules are
merged adding the non-common attributes and relations of each element. Aese
composition rules are dened by a pattern between the elements of the models to
compose. This pattern is generally found in the equivalence of the seamtics and

the structure of the elements to merge.

= VUML: View-based UML (VUML) [ 29] is auml pro le that uses the multi-view
modeling to provide limited access to the system actors through views. The
VUML author points out that the given IEEE-1471 [ 1] recommendations to build
system architectures are specied in a general way, and it does not propose the use
of a language to be implemented. VUML is a language inspired by the IEEE-1471
concepts to model system architectures. VUML employs a base clasdadjram of
the system to extract the actors’ views according to the actor's accesrights. The
view de nes the system elements (classes, attributes and methods) thahe user

can access in the system.

VUML de nes a common stereotype calledefaultView. This class owns the ele-
ments that are shared between the system actors. Other views are spieed accord-

ing to the actor’'s access rights. Theses classes are stereotyped Yiew and they

WVUML considers an actor as a logical or physical entity that interact s with the system at run-time.



Chapter 2. Background 20

contain the elements only related to the actor’s pro le. Views and DefaultView are
associated byuml dependency associations stereotyped byiew-extension This
association allows accessing to the information shared among actors. VUML ais
de nes relationships amongViews to guarantee the correct updating of informa-
tion among the views that share system elements. This relationships represented
by a dependency association stereotyped byiew-dependency The attributes de-

pendency between views is constrained by OCi expressions.

VUML follows the projective approach. From a base meta-model, theviewPoints
are extracted according to the user’s prole. We identify that view-extensionand
view-dependencyare correspondence rulesbetweenviewPoints. According to the
Clavreul’'s correspondence types, both VUML correspondence rules armodel-
based, they are dened in the language specication. We also identify that the
correspondence interpretation is overlapping: each view contains pamwof the fea-
tures of the reference model and these features can be shared amongws,i.e., a

feature of the reference model can be included in one or more views.

= SysML: System Modeling Language $ysML ) [4] is an OMG? speci cation that
speci es auml pro le for systems engineering domain. Some of the elements of this
standard represents the main IEEE-1471 standard concepts to dene a multi-view
approach. SysML uses packages to representiews classes to describ@iewpoints,
and conform associations to specify relationships betweewiews and viewpoints.

This conform relationship is represented by auml dependencyassociation.

The SysML viewpoint contains two properties: stakeholdersand concerns These
properties are de ned by strings. Therefore, the stakeholders and concerns shared
among viewpoints must be rewritten in each viewpoint without guaranteeing the

conformance among viewpoints.

The SysML View limits the package elements to comments, constraint elements,
package import and element import; therefore, the view elements mushe de ned
in a common model to be imported and constrained according to the viewSysML
also species that a view must follow the methods and languages dened in the as-

sociated viewpoints. However, SysML does not de ne a veri cation policy for the

2The Object Constraint Language (OCL) is a language de ned by the OMG to constrain UML
models.
30Object Management Group
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concerned viewpoint properties. Moreovermethodsand languagesare represented

as strings in Viewpoint, making the veri cation task more di cult.

SysML implements a projective approach where each view is built by the lement
models imported from the main model. However, there are not explidicorrespon-
dences between views. Moreover, giewpoint does not have the same meaning as
in IEEE-42010 or IEEE-1471, but rather it is interpreted as the viewpoint features
that a view must answer. SysML viewpoint does not de ne the language used
to express views. Theconform association is not a correspondence according to
the way we interpret the IEEE-42010. This association represents thathe view
elements conform to the concerns dened by stakeholders from their point of view

and it is not a relationship between model elements from dierent views.

= Obeo Designer: Obeo Designer is a system design tool developed by Obko
This tool not only allows system modeling through graphical modeling sandard
languages such asiml and SysML , but it also provides a graphical environment
to build DSMLs in Ecore. Obeo Designer includesviewpoints that are a speci ¢
representation of the concepts from one or more meta-models. These negsenta-
tions can be prede ned (tables, trees, diagrams) or they can be customized by the

system designet.

We consider that Obeo’s Viewpoint concept does not follow any of the multi-
view approaches. An Obeo’sriewpoint is a representation of a model, but it does
not de ne a portion of the model (projective approach) or an independent mode

(synthetic approach).

= Hybrid multi-view modeling: Cicchetti et al. [30] present a multi-view model-
ing approach that is both projective and synthetic. They de ne a base meta-model
to represent every possible concept of a speat system following the projective
approach. However, the architect can build viewPoints in various meta-models
following the synthetic approach. The connection between both approdaes is in
the base meta-model used to create theiewPoints. ViewPoints are de ned ac-
cording to the base meta-model, therefore the concepts and associatis speci ed

in the viewPoint must also be specied in the base meta-model.

“http://www.obeo.fr/pages/obeo-designer
Shttp://www.obeo.fr/resources/WhitePaper _ObeoDesigner.pdf
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A base model andview models are built and they conform to their corresponding
meta-models (base meta-model andiewPoints). The base model is the synchro-
nization reference to the otherview models,i.e., if a view model is changed, the
modi cations are propagated initially to the base model and then to the other
view models. This synchronization mechanism is implemented accordingo the

di erence between the base meta-model and thaewPoints.

This hybrid multi-view modeling approach solves the consistencyproblem present
in the synthetic approach by having a common reference between thele ned
views. However, we consider that the duplication of information betwen the view
models and the base model is a drawback since it requires someat to maintain

consistency.

In this modeling approach, the correspondences are explicitly dened in the base
meta-model. According to Clavreul’s classication, the correspondences speced
in Cicchetti's approach are model-based,i.e., every relationship between view-
Points is de ned in the base meta-model. Nevertheless, wend that there is also
a delta representation-basedcorrespondence in the synchronization between views

and the base model when there is a change of information in a view model.

= Heterogeneous points of view with ModHel'X: Boulanger et al. [31] present
a synthetic approach, de ning independent views of a system model in ModHel'X
blocks. Each block represents an observable behavior of a systerm the context
of multi-view modeling, a block speci es the behavior of a system from a spect
point of view. For instance, a system could have a functional behavigra power
consumption behavior or a temperature behavior. In this work, the corespon-
dences are represented by the behavioral relationships among viewse., using
the ModHel'X relations, we de ne the view connections and the way that the view

behaviors are synchronized.

This approach proposes to use a single language (deed in ModHel'X) to express
the multi-view representation of a system {iewPoints and correspondence rules
However, there is neither a notion of view nor correspondence in thisanguage.
Views and correspondences are interpretations of a ModHel’X concept irg) blocks

(views) and relations (correspondences).
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The type of correspondences are model-based, they are deed in the ModHel'X
meta-model. We consider that their interpretation is associated wih the behavior

of the model. In Section2.3.1, we present it in details.

2.2.3. Discussion

All multi-view approaches have advantages and disadvantages. The projeite approach
allows observing a system model from dierent perspectives owiewPoints focused on the
elements and properties that are important for the stakeholders. Howegr, maintaining
and extending a unique meta-model to describe every possible aiv in a system is a
di cult task. For instance, in VUML, when a new viewPoint is added to the system
meta-model, it can a ect the previously de ned viewPoints and also their associated
information. One possible solution is to de ne consistency mechanisms to preserve the
system model information once a newiewPoint is added. This kind of mechanism is

developed in the Cichetti's work.

The synthetic approach has the advantage of dening independentviewPoints of a sys-
tem splitting the system concerns. ThisviewPoint independence allows the denition of
new viewPoints without altering the previous ones. However, the main challenge is tb
de nition of correspondence ruleshetweenviewPoints. Unlike the projective approach,
where the correspondence rules are explicitly dened in the reference meta-model, in
the synthetic approach such correspondence rules are not explicit ahthey must be
established once aviewPoint is speci ed. The domain experts de ne the relationships

between the concepts of theviewPoint concepts.

Model composition could be seen as a way to unify projective and syhietic approaches.
For instance, when having a multi-view model that follows a synthetic approach, the
correspondences among views could be used to generate composed motlels have as
main goal the analysis of certain properties of the modeled system and thguanti cation

of the impact of the properties from di erent points of view. In contrast, a composed
model (or meta-model) could represent a reference model (or metarodel) in the multi-

view projective approach. Using decomposition rulesyiewpoints could be extracted or
projected from the reference meta-model and correspondence rsleould be identi ed

in the reference meta-model to be explicitly dened in the decomposition process.
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The correspondences and interpretations dened by Clavreul cannot be applied only to
model composition. We identify that the Clavreul’s correspondenes meaning could also
be applied to the correspondence rule denition in the multi-view approach. We note
that correspondence rules among structural elements of dierent viewPoints are used
to maintain the consistency betweenviewPoints, i.e., these structural elements could
represent a single element, but from a dierent point of view. We call these kinds of cor-
respondence rulesyntactic correspondences In the multi-view modeling examples, we
have identi ed some syntactic correspondences, such as VUML, SysML, Obeo Designer
and Ciccheti's work. However, another kind of correspondences couldebapplied, i.e.,
behavioral correspondence rules amongiewPoints. This sort of correspondence rules

was identi ed in Boulanger's work and is further discussed in Sectior2.3.1

Most of the works that apply the multi-view approaches are oriented to the design of
software systems. Nevertheless, we consider that such approaches daa also applied
to the system design. In this thesis, we propose a multi-view moel for system de-
sign. The de nition of this multi-view model gathers the advantages of both multi-view
approaches: the denition of explicit correspondence rules to maintain the model con-
sistency and the de nition of independent viewPoints for each expert domain. We also

use the Clavreul’'s terms to identify the correspondence ruleamong viewPoints.

Another important feature to analyze in this chapter is the behavior in a multi-view
modeling approach. Identifying the behavioral relationships between viewPoints and
placing them in a modeling behavior context. Section2.3 presents the description of the

behavioral concerns in the design of systems.

2.3. Behavioral Concerns

In multi-view modeling, each viewPoint is described by a language with a spect se-
mantics of execution. In a DSML, while the syntactic domain is repregnted by a meta-
model, the semantic domain is dened though di erent approaches. In the language
theory, we can nd three types of semantic denitions. The rst type is Operational
Semantics[32]. It uses functions (endogenous transformations) to manipulate data tlat
represent the execution state of the model. Each execution of theskinctions repre-

sents a step in the model evolution. The second type if\xiomatic semantics [33]. It
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characterizes the execution state by properties that enable reasongnabout the models
and their correct evolution. The last type is Transformational semantics [34]. It is an
exogenous transformation from the syntactic domain to an existing language viin well

de ned semantics.

The concurrent theory has also proposed other ways to describe the bavior of a model.

This behavior is characterized by the so-called Models of ComputationMoCs).

2.3.1. Models of Computation

A model of computation (MoC) is “a formal abstraction of execution in a computer” [35].
In other words, it de nes the behavioral semantics of a model. MoCs are used in dérent
speci ¢ domains to express and to evaluate the behavior of a system. For instae, the
control experts uses ordinary di erential equation (ODE) solvers to analyze the behavior
of the system to be controlled in continuous time. However, these swérs discretize the
continuous time in order to be computed. The specication that de nes the execution
rules of these continuous systems in the computing world is a type dfloC. Modelica [36]
and Simulink [37] are tools that implement MoCs that allow to model continuous systems
and they are often used by control and mechanic experts to represent ahto analyze

their speci ¢ domains.

Ptolemy Il [9] and ModHel'X [10] are tools that implement a variety of MoCs. Using

these tools, sequential processes, discrete event and contintime systems can be
modeled. These tools share the way they dene their modeling syntax, based on the
component approach. While Ptolemy Il usesactors, ModHel'X uses blocksto describe

the structure of the system behavior. However, this generic use dhe component-based
modeling restricts the application of the DSML approach. Moreover, f we consider
that a viewPoint is a DSML in a multi-view approach, the behavioral semantics of the
viewPoint could be hardly speci ed using these tools because of the incompatibility of

the structure de nition.

On the other hand, we note that MoCs in these tools are independent fronthe structure
de nition. Ptolemy Il represents the MoCs implementation by directors and ModHel’X
calls them with the same name, MoCs. They associate a spea@ MoC to a determined

structure and this MoC manages the execution of the structure elemets. The separation
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between semantics and syntax helps to use the MoC daition to specify the DSML

semantics. For instance, Petri net is a modeling language that repremts the control
execution of a system. A Petri net syntax could be dened by a meta-model. Figure2.7
presents the Petri net meta-model (left-side) and a Petri net nstance (right-side) that
follows the concepts and relationships dened in the meta-model. To de ne the execution
of this meta-model, we can use a formal language in order to specify the kes that
the behavior of the Petri net model must follow. Nevertheless, tle mentioned tools
implement these rules in programming language such as Java, creating a gégtween the
formal de nitions and their implementation. In this thesis, we propose to useCCSL [3]
as a formal language to specify the rules that the DSML must ful ll during its execution.

Using CCSL, the mentioned gap could be reduced, thanks to the proxinty of the formal

semantics and its implementation.
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Figure 2.7: Petri Net meta-model and a Petri Net model example.

We have explained in Section2.2 that a system can be represented by variousiew-
Points. These viewPoints are associated with each other in their structural de nition
by syntactic correspondences However, theseviewPoints also have a semantic deni-
tion, whose actions can aect the behavior of other viewPoints. For this reason, there

are also correspondence rules in the semantic deition of the views.

Clavreul [25] has already identi ed a correspondence interpretation to describe the exe-
cution relationship between models. This interpretation is called interaction . It consists
in describing the execution ordering of the model elements accomdg to their associa-

tions and to control elements,e.g., sequence and parallel execution. Clavreul also dees
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two design activities that are associated with the interactions between models, in order
to de ne a composed model behavior. Therst activity is Orchestration that synchro-

nizes the service execution of two or more models to create a fullyunning process.
The second activity is Integration that produces a composed system from the inter-
action of several independent and running systems. We consider thathese activities

are strongly associated with the correspondence rules between theebavioral seman-
tics among DSMLs, i.e., we could identify a behavioral impact among DSMLs by using

behavioral correspondences

In the multi-view approach, the behavioral correspondences amongiewPoints are the
combination of homogeneous or heterogeneous behavioral semantics. This candtion

is known in the MoC community as heterogeneous models

2.3.2. Heterogeneous Models

There are di erent approaches that propose a way to combine heterogeneous MoCs.
Ptolemy Il and ModHel'X specify the combination of MoCs by using a hierarchical
execution. Figure 2.8 depicts a model example where the semantics of execution is
a hierarchical MoC combination in Ptolemy II. In this gure, there are two MoCs:
Synchronous Data Flow (SDF) and Finite State Machine (FSM). The structure of the
model contains four actors: a main composite actor that owns two atomic actor$ (Al
and A2) and a composite actor C1). The composite actor C1 contains a FSM that
has two atomic actors (S1 and S2). The main composite actor speags its behavioral
semantics by a SDF director. In contrast,C1 has a FSM director. The domain execution
ordering is controlled by the director at the highest level in the model hierarchy, i.e., SDF
director. During the execution sequence in the SDF graph, the SDRdirector executes
C1 and then the FSM director is activated to execute the FSM. Once he execution of

the FSM nishes, SDF director resumes its execution.

6An atomic actors is an actor that does not contain other actors.
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Figure 2.8: Composition between Synchronous Data Flow and Finite State Machine
in Ptolemy 1.

In Figure 2.8, there is a behavioral correspondence between SDF and FSM directar
Once the SDF director executes C1, the FSM director takes the extmal information
to execute the FSM. According to Clavreul, we could consider thatthis correspondence
is an Orchestration between two MoC directors. The orchestration between MoCs is
implemented in a di erent way in Ptolemy Il and ModHel'’X. On one hand, Ptolemy Il

o0 ers a xed and encoded interaction semantics between MoCs that the modealenust
use. On the other hand, ModHel’X proposes the use ddidaptersto de ne the semantics
between the internal and external execution of a hierarchical model However, adapters
are operators that implement the MoC interaction according to the modekr needs.
Therefore, there is not guarantee that properties dened in each MoC, such as deadlock

or safety properties, are kept after the orchestration of MoCs.

Another approach to combine heterogeneous MoCs is by synchronizing the ons be-
tween MoCs. BIP [38] is a component-based language that denes the behavior of each
component and their interactions by a specic algebra. The BIP semantics is described
by extending the automaton de nition. In the BIP approach, the use of the automaton
model to de ne the component interaction allows to study properties, such as deddck
and safety issues. However, the dependency to the automaton model ds not allow to
describe MoCs that follow other kinds of behavior such as ow-oriented behavior. This

behavior is commonly used to dene and analyze image processing algorithms.
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2.3.3. Discussion

MoCs are a way to de ne the behavioral semantics of a DSML. A DSML could con-
tain other DSMLs that have their own behavioral semantics, or a DSML coud specify
their semantics by using various behavioral semantics. For instanceFigure 2.8 could
be represented by two DSMLs: DSML ; that de nes the rst hierarchy level (Al, C1
and A2) and DSML , that speci es the internal behavior of C1. Both DSMLs have a
syntactic correspondencethat associates theDSML ; element C1 with DSML 5. This
correspondence represents that the internal behavior of C1 is expssed byDSML ».
DSML ; and DSML » have also abehavioral correspondencavhere the synchronization
between SDF and FSM execution is dened. Following the Ptolemy Il and ModHel’X
approach, we can represent the example of Figur@.8 by using a single DSML de nition
(actor-based or block-based representation). In these tools, the Iavioral correspon-
dence is dened to a speci c element of the DSML,i.e., the DSML can have a di erent
meaning according to the MoC assigned to the model element. We consd that it is
more clear to have a DSML with a single meaning,e.g., a Petri Net structure whose

behavior follows the Petri Net rules.

In the multi-view approach, each viewPoint is a DSML, and each DSML has its own
behavior de nition speci ed by a MoC. As syntactic correspondence we identify that
there are also other kinds of correspondences between views that weallcsemantic cor-
respondences These correspondences dee the interactions between the elements of
di erent views, i.e., the result of the interaction speci cation between MoCs. The in-
teractions between views highlight the impact of the view executionon a system design

that would be di cult to grasp using only syntactic correspondences.

In this thesis, we use syntactic and semantic correspondences teedne the multi-view
modeling of systems. We give spect examples where both correspondences are used
to maintain the structure consistency among views, the synchroniation of the view

execution and the impact of the view execution.
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2.4. Conclusion

In this chapter, we have presented a background of the pivotal concept used in the
following chapters. We have introduced the architecture concepvisualized in the sys-
tem domain. Afterwards, we have presented the multi-view modelng vocabulary spec-
i ed in the IEEE-42010 standard and its relationship with MDE. We have noted that

a viewPoint is a DSML in the MDE context. We have identi ed the connection be-
tween the multi-view approaches and model composition. We have detenined that

the model composition work could be used in the multi-view approach tocharacterize
the correspondence rules and their interpretations. We have prested some works that
implement these approaches (multi-view and model composition) and & have identi ed

the correspondences and their interpretations according to Clavral's work.

We have continued with the behavioral de nition in the multi-view approach. The
importance to separate semantics and syntax in the denition of a viewPoint has been
highlighted. MoCs are adopted as the modeling approach to specify the sgantic domain
in a viewPoint. We stressed the importance of behavioral correspondences in addii
to purely structural correspondences in the multi-view modeling. Such behavioral corre-
spondences are bound to the heterogeneous behavior associated with Ma@eractions.
We have presented two approaches (hierarchy and automaton based) frequtly used to

specify the interactions between MoCs.

In the next chapter, we use the concepts from this chapter to dene a multi-view frame-

work to model systems.
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3.1. Introduction

This chapter presents the de nition of our language namedPRISMSYS?!. PRISMSYS is
a domain speci ¢ modeling language (DSML) dedicated to the specication and analysis
of functional and non-functional properties at the system level throughmultiple views
Each view describes a part of the system, by using the language commongmployed
by domain experts focusing on a specic concern. For instance, a safety expert uses
a domain language whose concepts describe a safety infrastructure, at éhsame time
as it presents the safety properties of the system. The system wes are independently
speci ed, but the existing relationships inside each view are extremgl important to
maintain the consistency of the system. In a multi-view model, these relationships are
correspondences among views. They should bring semantic consistgnbetween the

di erent parts of the system specied in the views.

The multi-view concepts of PRISMSYS are inspired by the notions de ned in IEEE-
42010. However, the standard is a general framework, therefore we have hadspecialize
in PRISMSYS the concepts de ned in IEEE-42010. Our specialization aims at identi-
fying concepts needed to have a semantic consistency betweenetidi erent views. For
instance, the abstract concept ofView from the IEEE speci cation is re ned into three
well-identi ed subViewsin PRISMSYS, each of them representing sub-concerns of a
domain-speci c language. This specialization helps us to provide a semantics to the

correspondences depending on the kind of elements they refer to.

MDE is largely used to de ne the PRISMSYS domain language. The abstract syntax
of PRISMSYS is speci ed as meta-models in Ecored0], while the behavioral event-
based semantics is dened in ccsl [3]. ccsl is a formal declarative language used to
de ne causal and temporal constraints between events. An event represena speci ¢
evolution of a system, such as the sampling of a robot position or a state chae in a
nite state machine. Events are spread along all the views to bring constency through
the model. Similarly to tagged signals B9] they serve as anchor points to specify the
model of computation (MoC) [40] of the system model. We introduce inPRISMSYS

speci ¢ correspondences as a predaed way to coordinate the execution of two MoCs.

PRISMSYS is a composed name wherePRISM refers to prism, which is a transparent optical
element that refracts any composite light producing a variety of colors. We identify the prism behavior
as an analogy to de ne our multi-view approach. SYS denotes system
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We begin this chapter by de ning the PRISMSYS framework. This framework speci es
the basic elements needed to represent views that capture the derent concerns of a
system. We continue the chapter by describing the correspondems that can be applied
between the views to tight them together; we detail eachPRISMSYS subViewde nition,
we present its uses and we give some examples to illustrate the usetbe subViewsand
the identi ed correspondences. Taking as reference tlRRISMSYS domain model,i.e.,
the meta-model of the PRISMSYS framework and the detailed description of each one
of its views, we have built auml pro le as a light-weight mechanism to implement the
PRISMSYS concepts. ThePRISMSYS pro le applies, as much as possible, the elements
de ned in SysML and marte , including uml elements as well. Finally, we dene the
semantics of thePRISMSYS framework execution by usingccsl to express the actions

presented in the behavior evolution of aPRISMSYS model.

3.2. PRISMSYS Framework

The PRISMSYS framework provides prede ned rules and elements that can describe
and coordinate di erent views in the specication of a multi-view system. More pre-
cisely, based on a system backbone representation, it allows deing speci ¢ views that
are focused on the management of its non-functional properties. By apping this frame-
work, experts from various domains (time performance, power, nance, etc.) can build
a system from their own point of view while specifying explicitly the relationships with
the other points of view. For instance, a time performance expert can gecify temporal
constraints by using the concepts frequently used in his/her domai (deadline, worst
case execution time, etc.). However, domain experts do not specifggain the elements
already de ned in other domains on which they state their constraints (like the hardware
or software elements). They just import them and provide an abstraction of existing

elements from their point of view.

We use MDE to de ne the syntax of the PRISMSYS framework. Figure 3.1 depicts
the PRISMSYS framework meta-model. The root element isArchitectureDescription.
IEEE-42010 de nes architecture description as the base concept to specify the archi-
tecture of a system through views. To re-use an architecture desiption in various

system designs, IEEE-42010 denes the architecture framework concept that governs
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the construction of architecture descriptions. IEEE-42010 has needethe de nition of
these two separated concepts in order to describe the abstractionvels in its multi-view
system framework. However, these two concepts are not needed if weset MDE. MDE
establishes the needed abstraction levels to specify the vocalarly to express a specic
domain (i.e., a meta-model), and the way to use it {.e., a model conforming to its meta-
model). As a consequence, if we dae ArchitectureDescription as a meta-class in the
PRISMSYS framework meta-model, it represents thearchitecture framework concept
de ned in IEEE-42010. Similar reasoning can be made witlview-viewpoints, correspon-
dencecorrespondence rulesand modelmodel kind We decide to employ the IEEE-42010
terms that de ne an architecture description to specify the concepts of thdPRISMSYS

framework meta-model,i.e., view, model and correspondence

Figure 3.1: PRISMSYS Framework meta-model.

In PRISMSYS meta-model, anArchitectureDescription is a set ofviews and correspon-
dences A view de nes the needed elements to describe a specidomain. According to

IEEE-42010, aview is composed of one or morenodels The standard de nes amodel as
“modeling conventions appropriate to the concerns to be addressef]. With this very

abstract vision of what is comprised in a view, it is not straightforward to guarantee
the semantic consistency of a multi-view system model. To ease thautomated man-
agement of a multi-view system model, thePRISMSYS framework proposes to specify

systematically three modelsused for the description of each view.

In this context, a domain speci c language for a multi-view system model (e., a view)
is speci ed by models of di erent nature. Such models have their own features that

describe view parts. Indeed, these parts are sub-domains needed specify a complete
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view. We name themsubViews We have identi ed three main subViewsthat provide
the required elements to de ne aview: a structuralSubView, an equationalSubViewand a
controlSubView. StructuralSubView states the concepts and relations of a spect domain
with a component-based approach. AStructuralSubView is composed ofsubViewEle-
ments. Such elements are the internal concepts that express the struate of a specic
domain. A ControlSubView controls/schedules the execution of thesubViewElements
Finally, EquationalSubViewcharacterizes the evolution of non-functional properties of a
StructuralSubView, such as frequency, voltage and temperature, by using mathematical

equations.

For each system, there is always aeference or backboneview. Relying on the backbone
view, the other views can “import” existing elements to de ne the (non-functional) prop-
erties of the specic domain. For instance, considering a thermal domain example, the
thermal view de nition depends on the elements included in the hardware architeaire
view, i.e., thermal experts reference elements from another view to build teir own view.

The “importing” action is identi ed as acorrespondencebetween views.

In the PRISMSYS framework meta-model, Correspondenceis an abstract concept spe-
cialized into a type of relationship namedAbstraction. An abstraction speci es that the
sourcesubViewElementis a representation of the targetsubViewElementbetween two
structuralViews of di erent views i.e., a structural element de ned in a view is used in
another view to specify features that belong to this particular view. This correspondence
plays the role of “importing” a subViewElementfrom a view to another. For instance,
a memory component dened in a structuralSubView of a hardware architecture could
be abstracted in astructuralSubView of a time performance view. This abstraction al-
lows the de nition of temporal features, such as maximum time of writing and reading
data. Figure 3.2 depicts the relationship between the Abstraction correspondence and
ViewElement To express this relationship, we dene two abstract concepts: Associa-
tionElement and AssociationEnd. Such abstract concepts are associated by an oriented
relationship (source and target). As Abstraction inherits from AssociationElement and
ViewElement from AssociationEnd, therefore Abstraction links two viewElementsin an

oriented way.
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Figure 3.2: Relationship betweenAbstraction correspondence andriewElement

Just as subViewsare sub-elements ofView, subCorrespondencesre relationships that
maintain the consistency betweensubViews Moreover, SubViews must be linked to-
gether in order to fully describe aview. For instance, the relationship between a struc-
tural element and an equational description is di erent to the relationship between a
hardware component and the hardware component representation in a time @rfformance
view. While the rst relationship is a subCorrespondencehat associates a structural
sub-view element with an equational sub-view element, the seconcklationship is a cor-
respondencebetween two di erent expert domains, a hardware architectural view and

its representation in a time performance view.

We have determined two main types ofsubCorrespondencesn a view: Equivalenceand
Characterization. Equivalenceis the equality of the value between a property de ned
in a subViewElementand a parameter in an equation specied in a equationalSubView
For instance, if the level property is de ned in a subViewElementto quantify the wa-
ter level of a tank; level could also be specied as parameter of an equation in an
equationalSubViewto calculate the output ow of the tank. Level is expressed in two
di erent subViewsand the consistency between thessubViewsis de ned by the Equiv-
alence subCorrespondenceCharacterization is the association between the behavior of
a subViewElement and an equation de ned in the EquationalView. A change in the
subViewElement behavior causes the change of the active equation designated by the
Characterization relationship. For instance, the subViewElementbehavior is described
by a nite state machine (FSM). Each state is associated by &haracterization subCor-
respondencewith a speci ¢ equation in the EquationalSubView Thus, when a state is
active, the associated equation is activated. These twsubCorrespondencare explained

in details in Subsection3.2.3
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View, SubViewand SubViewElementfollow the component approach. Such an approach
is used by several domains in the design of systemsnarte [5], a domain language for
the design and analysis of real-time systems, denes the hardware structure following the
component approach. Other examples ar&SysML [4], AADL [ 22], EAST-ADL [ 41] and
Rosetta [42]. Moreover, The IEEE-1471 and IEEE-42010 standards, which are the inspi-
ration source of PRISMSYS, have also based the architecture denition of a system on
components. View, SubView and SubViewElementshare di erent kinds of information
that can be exposed throughports and transmitted through connectors Figure 3.3 de-
picts a generic component meta-model and its relationship with thePRISMSYS frame-
work concepts. View, SubView and SubViewElementinherit from Component i.e., they
contain ports, connectorsand owned components. The owned components of \diew are
subViews and the internal components ofsubViewsare subViewElements SubViewEle-

ments can contain other subViewElements

Figure 3.3: Component meta-model and its relationship with View, SubView, Sub-
ViewElement and ConnectorCorrespondence

Port is an abstract concept that is specialized inOrientedPort and Parameter. An ori-

entedPort has as an attribute direction. Direction could be eitherin or out, to express
the direction of the information ow. OrientedPort is specialized inPropertyPort and
ControlPort. PropertyPort represents asubViewElementproperty that is shared with

its environment. Properties are shared with other subViewElementsof the same Struc-
turalSubView. Properties can also be used by theontrolSubView to take decisions in the
control of the structuralSubView. For instance, if a robot reaches the limit of its running
area, the position value is transmitted to the correspondingcontrolSubView to stop the

robot movement. PropertyPort is an abstract component that is specialized to express
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the nature of the property according to the speci ¢ domain, e.g., PositionPort could
be apropertyPort that shares the position property of a subViewElement ControlPort
de nes the control ow between acontrolSubView and a structuralSubView. This ow is
speci ed by events that change the behavior of thesubViewElements PropertyPort and
ControlPort can be de ned by views subViewElements structuralSubViews and control-
SubViews To expose parameter values in sequationalSubView we specify Parameter.
This port does not have any direction. The value of the connected equabn parameters
is equal,i.e., the available parameter value of an equation is replaced in the associated

equations.

We consider that the ow of information between views and betweensubViewsthrough
ports is a kind of correspondenceand subCorrespondencgrespectively. Therefore, Ar-
chitecturalDescription and View share an abstract concept namedConnectorCorrespon-
dencein the PRISMSYS framework. This concept inherits from Connector and rep-
resents the ow of information between subViews betweenviews and possibly between
views and subViewsthrough ports. ConnectorCorrespondenceis specialized into three

di erent concepts: ControlConnector, DataConnector and ParameterConnector.

In the View context, ControlConnector is the connection betweencontrolPorts of Con-
trolSubView and StructuralSubView. This connector transmits the control messages sent
from the controlSubView to the corresponding subViewElements However, in the Ar-
chitectureDescription context, ControlSubView coordinates control actions amongviews
Therefore, we constrain the use oControlConnector between views only to connectcon-

trolPorts of ControlSubViews

DataConnector represents the connection between twaqoropertyPorts. Such property-
Ports must be de ned either in structuralSubViews in controlSubViewsor in views The
connector betweenpropertyPorts of subViewElementsis speci ed according to the do-
main. The connected propertyPorts must have the same type,e.g., if a propertyPort
expresses the torque of an electric motor, theropertyPort that receives this informa-
tion must have the same torque nature. ControlConnector and DataConnector must
connect two ports whose directions are in in the same directionij.e., these connectors

can only bind two output ports or two input ports.
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ParameterConnector is the connection between twoparameter ports. It represents the
shared parameter value between twoequationalSubViews Figure 3.4 summarizes the

correspondences and sub-correspondences ider@d in the PRISMSYS Framework

Control Parameter
Connector Connector
Control -
Connector Characterization =
Control —— Structural ————— | Equational

= = Equivalence i
View <@——— View View

Data

Connector ’ Data
Connector

Data * Abstraction
Connector

Figure 3.4: Correspondences and Sub-Correspondences RRISMSYS Framework.

Correspondencesand sub-correspondencesre associated with the correspondences and
the interpretations given by Clavreul [25]. A rst identi cation is that the PRISM-
SYS correspondences and sub-correspondences amodel-basedcorrespondences. The
PRISMSYS framework meta-model and the previous semantic description dene the way
they are employed. Nevertheless, their interpretations are divese. Abstraction could
have anequivalenceinterpretation, i.e., the associatedsubViewElementsare equivalent
and in a merge process bottsubViewElementscan be replaced by onesubViewElement
that has the properties of both mergedsubViewElements Equivalenceis another ex-
ample of equivalenceinterpretation. In contrast, Characterization has an interaction
interpretation. Once a subViewElementbehavior changes the active equation, the new
active equation must be evaluated. The same interpretation can be giverio Control,
Data and Parameter Connectors once aParameter, a controlPort or a propertyPort

changes its value, the bound port also changes its value.

An ArchitectureDescription must contain at least oneview that represents the function-
ality and structure of the system. If system experts add non-functonal properties to
the multi-view model, such as time, power or temperature, they adl for each expert’s
domain a view and its corresponding subViews to represent their properties and the
necessary elements that aect them. PRISMSYS can be extended with other kinds of
subViewsthat do not follow the three sorts previously de ned. Nevertheless, the de-
signer must de ne the necessarycorrespondencesand subCorrespondence®f this new

subView to keep the consistency of the multi-view model.
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In the next subsections, we detail the denition of the StructuralSubView, SubViewEle-

ment, EquationalSubViewand ControlSubView.

3.2.1. Structural SubView

StructuralSubView is a genericsubView that can be specialized to represent expert do-
mains. Adopting this StructuralSubView de nition implies that, the structural repre-
sentation of each view can be speced by domain experts and the relationship between
views can also be expressed by usingbstraction, dataConnector and ParameterCon-
nector correspondences. Nevertheless, if a domain expert does not want tes@Struc-
turalSubView to represent his/her viewpoint of the system, this expert can speialize the
SubView concept from the PRISMSYS meta-model to de ne his/her own subView the

subCorrespondencesvith the other subViewsand the correspondenceswith other views

An application of StructuralSubView is the representation of the thermal domain of an
embedded system. One of the techniques used by thermal experts represent the tem-
perature evolution of the components is using electrical componentsuch as capacitors
and resistances. The resulting Resistor-Capacitor circuit repreents the temperature be-
havior among the junction points between the hardware components withthe heat sink
devices and the heat transmission among the components that are part of a sfem. This
thermal representation of a system is known as Compact Thermal Model CTM) [ 43).
Hotspot [44] is a tool that uses this modeling technique to represent the tlermal layout

of systems to analyze the temperature evolution of the components.

Figure 3.5 depicts an example of two views that de ne their structuralSubViews Exe-
cution Platform View represents the hardware architecture of a systemThermal View
describes the thermal representation of the system. Each view has structuralSubView
where the structure of the domain is represented. We note that CPU $ abstracted in
the thermal view to specify the thermal properties and the thermal behavior that can
be expressed using CTM. To dene the association between the thermal representation
and the hardware architectural representation of CPU, we use theabstraction corre-
spondence. In thestructuralSubView of the thermal view, there are also other elements
that belong to the thermal domain. They are not included in the structuralSubView

of the execution platform view, such as the heat sink and temperature aurce (Teny).
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Finally, note that a propertyPort P is speci ed in the thermal view. This port repre-
sents the power consumption value of the CPU, used and evaluated in otmeviews. The
CPU power consumption value is needed to evaluate the CPU temperatie. P port
is connected byDataConnector correspondences to another view that characterizes the

system power consumption.

Figure 3.5: Example of structuralSubViewsincluding the abstraction correspondence.

3.2.2. SubView Element

SubViewElementis the main concept of astructuralSubView. Such a concept has a
speci ¢ role in the structural description of the concerning domain. SubViewElement
de nes the structure and the behavior of theStructuralSubView internal elements. Fig-
ure 3.6 presents theSubViewElementmeta-model where the structure (on the right-hand
side) and the behavior (on the left-hand side) of this concept are dened. SubViewEle-
ment follows the component approach, therefore we bring the component metaaodel
depicted in Figure 3.3 to de ne the SubViewElement structure. A subViewElement
is a Component that contains connectors controlPorts, propertyPorts, properties and
possibly nestedsubViewElements(ownedComponent¥. Property represents an internal
feature of ViewElement, e.g., cost or size.ControlPort is sensitive to Event occurrences
from the controlSubView that change the subViewElementbehavior accordingly. Every
subViewElementable to change its internal behavior must contain at least onecontrol-

Port. Note that Property and State are respectively associated withParameter and
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Equation, which are EquationalSubView concepts. The association is dened through
Equivalenceand Characterization subCorrespondencesWe explain in details their use

in Subsection3.2.3

Figure 3.6: SubViewElementmeta-model.

The behavioral de nition of SubViewElementconsists of aBehavior represented by a
StateMachine The behavior can be specialized in other kinds of behavioral desgriions
such as Petri nets and synchronous data ow graphs, even though we only study here
the case ofStateMachine According to the domain, the expert chooses which behav-
ior de nition ts better the domain description. For instance, a control expert may
prefer to use state machines to describe the behavior of a thermalootroller, whereas
an image processing expert may choose a synchronous dataw graph to specify the
face detection algorithm in a video stream. However, we consider thathis de nition
must be homogeneous in all the domain spectations, i.e., if StateMachine is chosen
as asubViewElementbehavior de nition, every subViewElementin the speci ed Struc-
turalSubView must be a stateMachine This homogeneity helps to work with a single
semantics of execution, easing the control speccation de ned in the controlSubView.
Dedicated tools for heterogeneous composition might be used (see Chapt®), however,

this is not speci cally supported by our methodology and tools at this level.

In the SubViewElement meta-model, a StateMachine contains states and transitions.
The StateMachine has an initialState, which is the rst state that is active when the
StateMachine is executed. Eachstate represents a specic behavior mode according to
the domain. For instance, to indicate the execution modes of a CPU, wean de ne two

states: running, to express that the CPU is executing a task, andhalt, when the CPU
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stops. In Figure 3.6, State is associated with Equation through the Characterization
subCorrespondence This subCorrespondenceneans that when astate in a viewElement
is active, the associated equation is activated,i.e., the state is characterized by the
associated equation. A state also represents the value change of a propeide ned
in the subViewElement which is speci ed by the associated equation. TheEquation
concept is part of the EquationalSubViewde nition detailed in Section 3.2.3 To change
from one state to another, the corresponding transition is red when the associatedevent
(see associatiorTransition -Event in Figure 3.6) occurs on theViewElement controlPort
(see associatiorControlPort -Event in Figure 3.6). The execution semantics of the state

machine is detailed in Section3.4.1

3.2.3. Equational SubView

EquationalSubView de nes the evolution of non-functional properties of a view. This
evolution is speci ed by equations that associate properties from a view with properties
from other views in an acausal way. For instance, in classical mechanicshe equation
that describes the force applied to an object in one dimension is regsented byF = mea.
The parameters of this equation are dened as properties, possibly, in dierent views.
F could be de ned in a force view where only force features such as torque, thrustr
drag can be described. In contrastim could be specied in an object characteristic view,

where mass, dimension and color features are represented.

We consider that the EquationalSubView meta-model is independent of theStructural-
SubView and the ControlSubView meta-model, because the nature of theEquational-
SubView elements is di erent from the elements of theStructuralSubView and Control-
SubView Such elements represent continuous behaviors through equationsyhile the
StructuralSubView and the ControlSubView elements specify discrete behaviors. How-
ever, they shareComponent to de ne their concepts and the sub-correspondences with

the other subViews

Figure 3.7 presents the EquationalSubView meta-model. This meta-model is inspired
on the SysML Parametric Diagram. An equationalSubViewis a subView i.e., it is de-

ned as a component. AnequationalSubViewcontains parametersand a clockPort (Port
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specializations), bindings (Connector specialization) and equationalModels(ownedCom-
ponent specialization). An equationalModel owns equations and its Component spe-
cialization is constrained to be associated withparameters Equation is an acausal
relationship among parameters This relationship is given by the de nition in form of a
mathematical relation between parameters,e.g.,v = d/t is an equation de nition, where
v, d and t are parameters. A single parameter value can be employed in various equa-
tions using bindings. Binding connects the parameters that share their values between
two equationalModels The ClockPort is employed to receive the events that execute the
evaluation of equations. EveryequationalModel have a parametert to express the time
dependence in the evolution of the non-functional properties. In fat; we only consider
the case that the equations are time-dependent. It does not mean thateuations of the
equationalModelsmust include t as part of its de nition. To transmit the events from

ClockPort to the t parameters, we usebindings.

Figure 3.7: EquationalSubView meta-model.

Figure 3.8 presents an example of two views where theiequationalSubViewsare de ned.
Inthe gure, Force View describes itsequationalSubViewwith two equationalModels one
de nes a constant massrh = 1 kg) and the other one the force £ = a* m). Movement
View contains three equationalModelsdescribing the acceleration & = dv/dt) and the
speed ¢ = dx/dt). In the same view, x is used to evaluate the speed, even though it is
given by another view. Note that eachequationalModelthat de nes a non-constant value

equation (e.g., a = dv/dt) contains at parameter. Hence, these equations are evaluated
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for each tick arrived to step The equations that need the value oft to calculate the
unknown value (e.g., v = dx/dt), extract t from the speci cation of the clock signal
that arrives to step Usually, the clock is de ned in another view where the time model
of the system is its main concern. We describe in details the evenspeci cation in
Subsection3.4.2 We point out that the force equation does not have thet parameter.
However, its equationalModel contains this parameter to evaluate the equation at each
occurrence ofstep. We realize that the evaluation order of the equations depends on
which value is known. In the example, we cannot evaluateF = m e+ a if we do not
evaluate beforea = dv/dt, and this last equation cannot be evaluated ifv = dx/dt is
not calculated. The equation dependency and the evaluation order could & established
by the step event speci cation. In the gure, we also present theParameterConnector
to bind parameters from one view to another. In the example, ParamterConnector

connects thea parameters de ned in Force View and Movement View.

Figure 3.8: EquationalSubView Example

In the EquationalSubView meta-model, we also represent th€equivalenceand Charac-
terization subCorrespondenceswith their corresponding associations. By extracting a
portion of the example depicted in Figure 3.8, we present the use of thesesubCorre-
spondences In Figure 3.9, we de ne a Mechanical View that describes the mechanical
structure of a system (a trailer hooked to a car) and its behavior accoding to the charge
in the trailer. This view owns two subViews a structuralSubView that de nes the struc-
ture and behavior of the system, and anequationalSubViewwhere the equations and
values of the system physics are specéd. In the structuralSubView, the trailer has two

possible mechanical states:charged and empty. On the other hand, the car has only

one state namedmove that represents the action to move the car by its engine. Trailer
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has also amass property whose value changes according to then parameter value. In
the equationalSubView we specify the mass values of the trailer states associating such
states with the corresponding equations by usingCharacterization subCorrespondences
By selecting a state, a mass value is assigned to then parameter. At the same time,
the value of the mass property de ned in the structuralSubView of the trailer is equiv-
alent to the m parameter value, because of th&equivalence subCorrespondenceln the
EquationalSublView we also de ne a force equation. This equation describes the re-
quired force that the car engine has to generate in order to move the tréér according
to its mechanical states (charged or empty). In this example, we note lhat by using the
EquationalSubView we can study the impact of the behavior betweersubViewElements
of the samestructuralSubView, and it is possible to associate other behaviors from other

views.

Figure 3.9: Example of the characterization and equivalence correspondences use.

3.2.4. Control SubView

ControlSubView synchronizes the execution of thestructuralSubView according to the
actions produced in its own view and from other views.ControlSubView also provides the
events needed to evaluate the active equations in thequationalSubView The goal of this
subViewis to coordinate the execution between views fullling the system requirements.
For instance, the execution of a task in a CPU must satisfy a specic deadline de ned

in the system requirements. To achieve this deadline, we mustet the frequency clock
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of the CPU. This setting action is speci ed in the controlSubView of a time performance

view.

The subViewElementexecution is commanded by control events sent from @&ontrolSub-
View. The controlSubView designers of each spect domain must specify the relation-
ships among control events to ensure the correct coordination amongubViewElements
Additionally, the designers have to synchronize the execution of he views guarantee-
ing the system requirements. These relationships can be deed in ccsl [3], which is
a declarative language that species causal and temporal relationships among events.
Using ccsl , we can generate a possible scenario that follows the event relationgh
de nition using TimeSquare tool [6]. We can also generate observers that check the

correctness of a hardware implementation45).

The relationship between the events generated and received bgontrolSubView could
directly be de ned by ccsl expressions. However, we could also split theontrolSubView
structure in one or more sub-components namedontrollers. Figure 3.10 depicts the
meta-model of controller. A controller is a component that owns ports (controlPorts
and propertyPorts) and connectors (controlConnectors). These concepts are employed
to send control events tosubViewElementsand to other views. Additionally, a controller
can receive control events from othercontrolSubViews which may belong to di erent
views, in order to synchronize the view execution. Acontroller can also receive property
values from asubViewElementof its view. This value can be employed to take decisions

in the controller.

Figure 3.10: Controller meta-model
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The behavior of a controller is expressed by a state machine. Contrasted withsub-
ViewElement state machine, the controller state machine transition contains a boolean
condition to be able to re it. uml state machine species this condition asguard. Nev-
ertheless, instead of following theuml guard semantics, where the guard only enables
the transition to be red by a trigger event, we de ne that once the guard condition is
true, the transition is red. In our study, guard always evaluates a property value that
is controlled, i.e., guard is true if the controlled property is higher or lower than a given
value. In addition to the ring transition generated by the guard condition, the transi-
tion can directly be triggered by an event. This event arrives to the controller control
ports coming from the other views. Once the transition is red, ane ect event is gener-
ated. This event is sent either to the correspondingsubViewElementor to other views.
The control event allows to change the active state of thesubViewElementaccording
to the changes of other views. As soon as a new state is active, one or more pssty
values could change due to the transition of the associated equation. Inansequence,

the new values impact the controlled property value.

Figure 3.11: Example of the use ofControlSubView to control the water level of a
tank.

In Figure 3.11, we present an example of acontrolSubView by employing a controller.
We depict a mechanical view of a system that controls the level of a watetank. This
view contains acontrolSubView and a structuralSubView. The structuralSubView de nes
two elements in the system: awater source and a valve The water source supplies a
ow of water to a tank and the valve controls the tank level by draining water from
the tank. The ControlSubView is composed by alevel controller that commands the
valve actions according to the tank level. The behavior ofwater source and tank is
speci ed as a state machine with a single statei.e., there is an associated equation that
de nes the water ow supplied by the water source and another equation that expresses

the tank level dynamic. These equations are dened in an equationalSubView The
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controlled property is the tank level, therefore this property is sent to the controlSubView
in order to take control decisions when the tank level arrives to the naximum or to the
half of the tank. The behavior of level Controller reacts in two cases: when the tank
level is higher than the maximum (h_max) or once it is lower than half of the tank
(h_half). If the tank level reaches the maximum, level controller generates a control
event (e_open) to open the valve reducing the tank level. In contrast if the tank level is
lower than half of the tank, level controller orders to close the valve, allowing the lling
of the tank. We remark that there are controlConnector subCorrespondencedetween
ControlSubView and StructuralSubView. This subCorrespondenceallows to orchestrate

the structuralSubView elements.

If we add more views to this example,e.g., an electrical view or a time performance
view, the actions of their subViewElementsmust be coordinated with the mechani-
cal view execution to keep the execution consistency among views artd achieve the
system requirements. The coordination is specied through the controlConnector cor-
respondencesamong views. These correspondences transmit the control events among

views and synchronize the execution of each view.

The behavior of controllers could be specied by using another model of computation,
such as Petri nets. This behavior can also be deed by algorithms that optimize
speci ¢ property values ful lling certain restrictions, e.g., reducing the time to Il the

tank, taking into account the cross-sectional area of thewater sink.

3.3. UML Pro le for PRISMSYS

In Model-Driven Engineering, there are two branches for the develping of modeling
languages. One branch denes specic languages adjusted to the terms and the way ex-
perts visualize their domains. This branch is the Domain Specic Modeling Languages
(DSML). In contrast, the other branch de nes a general language whose concepts give
the necessary eloquence to represent a long range of domains. The mairomoter of
the later branch is the Object Management Group (OMG). The OMG de nes theuml
speci cation and has added other specic domains that useuml concepts as basis to

represent their domain languages throughuml pro les Examples of these domains are
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real-time systems with marte [5], systems engineering withSysML [4], or telecommu-

nication with TelcoML  [46].

There is an important uml community that uses this language to model their domains
adopting the pro le mechanism. Moreoveruml is implemented in recent modeling tools
like Eclipse-Papyrus B7], UML Designer [48], MagicDraw [49], Modelio [50], Rational
Software Architect [51] and Rhapsody p2)].

To bene t from the uml development, we dene auml pro le to represent the PRISM-
SYS framework. We use as much as possible theml meta-classes including the stereo-
types speci ed in SysML and marte to represent the PRISMSYS concepts. The con-
cepts that are not included in uml or in the mentioned pro les, are de ned by extending
carefully selecteduml meta-classes whose semantics are as close as possible to the ex-

pected PRISMSYS semantics.

3.3.1. UML Concepts for PRISMSYS

We represent part of the PRISMSYS framework meta-model concepts by using as basis
the uml composite structures. We extend the composite structure meta-esses with the
correspondingPRISMSYS concepts by de ning stereotypes in the PRISMSYS pro le.
Table 3.1 lists the mappings between the PRISMSYS concepts andiml composite

structures concepts.
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PRISMSYS UML
ArchitectureDescription EncapsulatedClassier
View EncapsulatedClassi er
SubView EncapsulatedClassi er
SubViewElement EncapsulatedClassi er, BehavioredClassi er
Property Property
Connector Connector
StateMachine StateMachine
State State
Transition Transition
Abstraction Abstraction

Table 3.1: PRISMSYS - UML Mapping.

The main uml concept that we use to represent the structure ofPRISMSYS is En-
capsulatedClassier. Figure 3.12 presents a simpli ed meta-model of thisuml concept.
We note that EncapsulatedClassier inherits from StructuredClassi er, which contains
properties, connectors and parts. Parts are instances ofStructuredClassi ers. From
the PRISMSYS point of view, these parts are the instances oViews subViewsor sub-
ViewElementsde ned asEncapsulatedClassiers. In Figure 3.12 we also observe that an
encapsulatedClassier not only has properties, but also ports, which are property special-
izations. In consequence, arencapsulatedClassier contains parts, properties, ports and
connectors and that is the same structural de nition speci ed for ArchitectureDescrip-

tion, View, SubView and SubViewElementin the PRISMSYS framework meta-model.
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Figure 3.12: Simpli ed meta-model ofEncapsulatedClassier.

The SubView stereotype is specialized irStructuralSubView, ControlSubView and Equa-
tionalSubView. Therefore, these three kinds ofsubViews also specializeEncapsulated-
Classi er. A view part is included in an architectureDescription and a subViewElement

part is contained in a structuralView, following the PRISMSYS framework meta-model.

In the PRISMSYS framework meta-model, we also dene that a SubViewElementcon-
tains a behavior specied by a StateMachine Therefore, SubViewElementis also a
BehavioredClassi er specialization. We constrain that the SubViewElementstereotype
only owns a StateMachine In the StateMachine de nition, Transition keeps theuml
de nition. Nevertheless, State is extended to represent theCharacterization subCorre-
spondencebetween state-equation dened in the PRISMSYS framework. Figure 3.13
presents the state extension. ThePRISMSYSState stereotype contains the equations
property whose type is Constraint, i.e., a state stereotyped by PRISMSY SState must
associate aConstraint, which is the way SysML recommends to specify equations in a

ConstraintBlock.
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Figure 3.13: State stereotype.

The Abstraction correspondence oPRISMSYS is represented by theuml Abstraction
relationship. According to the uml speci cation, an Abstraction “is a relationship that
relates two elements or sets of elements that represent the same concept at etent
levels of abstraction orfrom di  erent viewpoints " [21], which is the semantics that
we want to give in PRISMSYS. To represent the abstraction of asubViewElementin
a view, we specify that the abstractedsubViewElementis a uml reference of the sub-
ViewElement de ned in the original view. Figure 3.14depicts the use of theAbstraction
relationship and reference in PRISMSYS represented inuml. We de ne two views: a
layoutView that represents the physical layout of the system, and ahardwareView that
expresses the functionality of the system hardware components. IhayoutView, CPU is
abstracted from HardwareView to give physical dimensions toCPU. We use themarte
HW_Layout package, which is part of the marte HW_Physical package, to represent
the physical components by using thehwComponent stereotype. HwComponent con-
tains the necessary properties to describe the physical componespeci ed in a circuit
layout, such as dimension, position, number of pins. At the top of the gure, we depict
the physical layout that is represented by the uml LayoutView. To indicate that the
abstracted CPU is not a part of LayoutView (i.e., CPU is not owned by LayoutView),
but a reference (i.e., only shared), it is graphically represented with a dashed border
in CPU. We also note the abstraction association between theCPU reference and the

CPU part.
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Figure 3.14: Abstraction of CPU in a layout component view.

3.3.2. MARTE Concepts for PRISMSYS

To represent the oriented direction ofOrientedPort de ned in the PRISMSYS framework

meta-model, we use somenarte concepts that are listed in Table 3.2,

PRISMSYS MARTE

OrientedPort FlowPort

ControlPort Clock, FlowPort

Table 3.2: PRISMSYS - MARTE Mapping.

OrientedPort is an abstract concept in PRISMSYS that is represented by the uml

Port. We add the marte extensiondirection, the property that represents the incoming
or outgoing data ow in a port stereotyped by FlowPort. We have mentioned that
ControlPort is a specialization ofPort in PRISMSYS. This port is represented by the
uml Port adding the marte FlowPort and Clock stereotypes. TheClock stereotype
speci es that ControlPort is a set of instants, in this case, a set of control instants. This
kind of clock is known as LogicalClock in marte . Other kinds of clocks can exist in

speci ¢ domains of a system, such as th&quationalView that describes the physical
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time domain. The physical time is represented byChronometricClocks in marte . We
explain the importance of Clock in the de nition of the PRISMSYS execution semantics

in Section 3.4.

3.3.3. SysML Concepts for PRISMSYS

EquationalSubView follows the component approach such asStructuralSubView and
ControlSubView. Therefore, EquationalSubView is also an encapsulatedClassier in
uml . However, We use theSysML ConstraintBlock stereotype to represent thissub-
View in order to apply the SysML parametric diagram. ConstraintBlock extends Block
and this last stereotype extends theuml Class concept. A Class inherits from encap-
sulatedClassi er, when it contains an internal structure based on components. In fact,

EquationalSubView stereotype extendsEncapsulatedClassier.

The EquationalSubView meta-model concepts are mapped to the elements that build
the parametric diagram in SysML . Table 3.3 presents the mapping. InSysML , Con-
straintBlock contains constraintProperties, parameters constraints and bindingConnec-
tors, such as they are shown in Figure3.15. ConstraintProperties are instances of other
constraintBlocks and play the role of “parts” in the internal de nition of a constraint-
Block. By observing the EquationalSubView meta-model (Figure 3.7) and the Con-
straintBlock meta-model (Figure 3.15, we can distinguish that the EquationalModel
concept is a genericSysML ConstraintBlock. In the EquationalView meta-model, we
specify that an equationalSubView contains equationalModels that are not instances
of other equationalSubViews Due to the general use ofConstraintBlock, the separa-
tion between EquationalSubView and EquationalModel is not present in SysML . As a
consequence, the way to represent these two concepts limits ¢husage ofConstraint-
Block according to the PRISMSYS pro le. The ConstraintBlock that is stereotyped
by EquationalSubViewonly contains bindingConnectors (binding), constraintProperties
(instance of EquationalModels and parameters On the other hand, the ConstraintBlock

stereotyped by EquationalModel owns parameters and constraints (equations).
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PRISMSYS SysML

EquationalSubView ConstraintBlock

EquationalModel ConstraintBlock
Parameter ConstraintParameter
Equation Constraint
Binding BindingConnector

Table 3.3: PRISMSYS - SysML Mapping.

The association betweenParameter and Property, which is the Equivalence subCorre-
spondence is mapped using theSysML path name dot notion to get a nested property
in a block hierarchy. For instance, to use thew property de ned in viewElementl, we

can de ne a parameter using the following path name:
CircuitLayoutView.StructuralView.subViewElement1.w,

i.e., this parameter is a reference to thew property de ned in subViewElementl which

is contained in the structuralSubView of CircuitLayoutView .

Figure 3.15: Simpli ed Constraint Block meta-model from the SysML speci cation.

3.4. Semantics of Execution

Once the syntax of PRISMSYS is speci ed, we de ne the way a PRISMSYS model is
executed. In other words, we specify the execution semantics (fRISMSYS. It is based
on the partial ordering of event occurrences, where each event repsents a relevant
change in the system. To achieve this goal, we use the Constraint Clockpeci cation

Language (CCSL) B].
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ccsl is a formal declarative language to specify causal and temporal relationshgpbe-
tween events. This language was rstly introduced in marte [5] to represent func-
tional and extra-functional constraints over the time modeling of embedded systems.
In marte , it is possible to de ne Clocks, which are an ordered set of instants. These
clocks are used to represent the relevant changes in a system, on ieh constraints can
be speci ed. For instance, a clock can represent the entering in a state, aifiction call, a
data writing. Based on such clocks, relations can be specid to represent causalities or
temporal aspects of the system. A clock can be of two typesChronometric or Logical.
Logical clocks represent functional time. For instance, based on clogkwe can specify
that the execution of an application is caused by touching the screen of amart phone.
In this example, the clock associated with the screen touching itn a causal relationship
with the application execution. It is also possible to specify logicalperiodicity between
clocks. For instance, specifying that a task is started every 100th ogle of a processor.
Depending on the energy management in a computer, the start of the taskan be pe-
riodic or not. When we want to specify something related to a physi@al dimension like
the physical time or a distance, a chronometric clock is used. Thats why, it is then

possible to state that the CPU cycle is periodic every ans.

Logical and chronometric clocks are employed ilPRISMSYS. For example, a chronomet-
ric clock can express the physical time periodicity of a CPU cya in a time description
view. Furthermore, this clock can be used to dene the instants when the equations
in equationalSubViewmust be evaluated; e.g., the temperature equation of a CPU is
evaluated every 5ms. On the other hand, a logical clock can describe the instant when
a CPU starts to be busy (i.e., once a task begins its execution on it). Logical clocks can
also be used to dene the execution semantics of Models of Computation (MoCs)40].
In our case, we employ logical clocks to specify the behavior of thenite state ma-
chine (FSM) and the interactions that occur among controlSubViews controllers and
subViewElements(i.e., the semantics of the sub-correspondence rules). Consequently,
logical clocks are used to specify the coordination of the execution ween MoCs of dif-
ferent nature. More precisely, iInPRISMSYS, there are two behavior domains that have
to be combined: a discrete event behavior represented by a set ohite state machines

and a continuous time behavior, represented by a set of equations.
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In this section, we rst de ne the execution semantics of the nite state machine. Sec-
ond, we specify the evaluation of the equations represented iEquationalSubView Fi-
nally, the coordination between the nite state machine and the equation evaluation is

described.

3.4.1. Finite State Machine Semantic Speci cation

In Section 3.2.2, we have chosen to specify th&ubViewElementand Controller behavior
by using a Finite State Machine (FSM). Sub-view elements and contllers do not use the
same kind of FSM. The SubViewElementFSM changes from one state to another by the
reception of a control event. In contrast, Controller reacts to either a guard condition
or to the reception of a specic event. Additionally, Controller FSM can generate a
control event (e ectEvent) when a transition is red. In this subsection, we de ne the
FSM semantics by usingclocks and relations de ned in ccsl . First, we identify and
specify the relevant clocks used to establish the FSM executioaccording to the concepts
de ned in the SubViewElementand Controller FSM meta-model. Second, we specify
the relationship between clocks to describe the FSM semanticdn the following, we use

the terms event and clock interchangeably.

3.4.1.1. Finite State Machine Clocks

In a FSM, there are various relevant events that occur during an exegtion. Most of the
FSM concepts are associated with one or more events that describe a patilar FSM
change,e.g., the entering in a state or the ring of a transition. We begin the de nition
of FSM clocks by representing the state activation. In a state, thee are two possible
events: Entering and leaving the state. For each of these events, avspecify a clock in
ccsl . To represent the entry into a state s, we de ne the clock sener and to express

the leaving of this state, we de ne the clock Sieave.

The transition between two states is also represented by a clockWe namet;; the clock
that represents the ring of the transition between the two statess; and s;. A transition
can be triggered either by an event representing the evaluation to tue of the guard
(guardEvent) or by the reception of a trigger event (triggerEvent). We designateguardj

the guardEventof the transition t; andtrigger its triggerEvent. SubViewElementFSM
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transition is only sensitive to a triggerEvent, while Controller FSM can be sensitive
to both events (guardEvent and triggerEvent). When one of these events occurs, the
transition is red instantaneously. Additionally, a Controller FSM can generate an
e ectEvent when a transition is red. An e ectEventis a control event sent to either
a SubViewElement to change its active state or to another view to synchronize the

execution among views. We nameeffectj the e ectEvent of the transition tj; .

Finally, we represent the event that initializes the state machine execution. We de ne
the init clock that contains a unique instant. When init ticks, the FSM is entering

simultaneously into the initial state.

Table 3.4 summarizes the clocks dened to represent the activity in the FSM of sub-

ViewElement and controller.

Clock Action FSM
init initialization of the FSM SubViewElement, Controller
Senter Entering into state s SubViewElement, Controller
Sleave Leaving from state s SubViewElement, Controller
tij Firing the transition from s; to s; | SubViewElement, Controller
guardj Evaluation to true of the t; guard Controller
triggerjj | Reception of the trigger event oftj | SubViewElement, Controller
effect j Event generated whent;; is red Controller

Table 3.4: Clocks representing the relevant actions in a Finite State Machire for both
SubViewElementand Controller.

3.4.1.2. Finite State Machine Clocks Relationship

Once the FSM clocks are dened, we identify the relationships of these clocks to describe
the FSM execution semantics. We start de ning the activation of a speci c state, which
is between the corresponding entering and leaving occurrences$igure 3.16 presents a

sequence of activations of thes state.
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Figure 3.16: Representation of an active state by clocks

We specify that the s state is active when theseneer clock ticks. The s state stops being
active when sigave ticks. We de ne that a state cannot be transitory, i.e., the enter
and leave events cannot be simultaneous. Moreover, a state can not be activated if
is already active. Consequently, we state an alternate relationship fomll the states of

FSM betweenSegnter and Sieave iN ccsl  as follows:

s StateMachine.states,

Senter | | Sleave (3.1)

where StateM achine.states represents the set of states that belong to a FSM.

We have de ned tj as the clock that represents the ring of a transition between two

states s; (source state) ands; (target state). tj is formally speci ed as follows:

i,j suchthatsj,s; StateMachine.states,

tj = {t StateMachine.transitions [t.source = s;, ,s.target= s;} (3.2)

According to the execution semantics of FSM $3], a transition tj; is red if two condi-

tions are achieved:

= S; is active, and

= Either the guard; occurs ortrigger; ticks.
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We therefore study these conditions in the following items:

= Transition red by a guard: Figure 3.17 depicts the transition between two
states (s; and s;) caused by aguardEvent (guard;j ). Once s; is active, i.e., Sj
ticks, it is possible to change tos;. eval is a chronometric clock that commands
the evaluation of the guard;; condition. Hence, if the evaluated condition is true,

guard;j occurs. Considering thats; is active and guard;; ticks, then the tj tran-

sition is  red.

s Active
guard; ‘

eval | 1ttt bttt
effect; !

t; f B

S| f

St Y

S, f

Figure 3.17: Representation of the clock ticks leading to a change between two ates
caused by aguardEvent

We specify the relationship of these clocks by usingcsl expressions. We state

the ccsl constraints to re the tj transition by the following de nition:

i,j suchthatt; StateMachine.transitions,
guardj <>null and trigger; = null implies:
let tx = {t StateMachine.transitions |t.source=S;, ,t<>tj } and
let [(Sicer  Quardi) t 5 t] o fij in

tij [= i (3.3)
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this expression can be read as ifjuardj occurs and not triggerj then si,,

is strictly sampled () by guardj. Once s, is sampled, if some transi-
tion red from s; occurs, di erent to tj, then fj; is killed, i.e., any other tran-
sition going out from s; cannot be red. The de nition of the inability of s;
is represented by theccsl relation upto (). The rst part of Equation 3.3
([(Siener  Quardij) t 1, t]) is only one occurrence oty, therefore each times;
is active, the application of the rst expression generates anothef; occurrence.
In consequence, we join the j ticks by the ccsl concatenation operation (¢ ) in

order to gather all the fj; occurrences in one clock. Finallytj coincides withfj; .

Following the execution illustrated in Figure 3.17, s; stops being active whent;;
occurs,i.e., Sj,,.. ticks. The relationship betweent; ands;_,. is speci ed by the

ccsl equality relation ( [=]):

i such thats; StateMachine.states,
let toye = {tj  StateMachine.transitions |tj = s;j.outgoing} in

=]t touwt (3.4)

Si leave ‘

we can interpret this speci cation as the leaving ofs; occurs when one of its
outgoing transitions is red, i.e., the union of the occurrences of the outgoing
transitions (¢ t,, t). The operator is derived from the union operator (+) in

ccsl .

In Figure 3.17, we can also note that thet;; clock coincides with the activation of

Sj State, i.e., Sj. ticks. We specify this coincidence relationship by:

j such thats; StateMachine.states,
let ti, = {tj  StateMachine.transitions |[tij = sj.incoming} in

Sjenter E t tint (35)

this relation is read as the ticks of the red incoming transitions of s; (ti, ) coincide

with the sj.., oOccurrences.

If the FSM belongs to acontroller, then an e ect can be generated, simultaneously

with the transition ring, i.e., effectj occurs (see Figure3.17). This relationship
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is speci ed by:

i,j suchthatt; StateMachine.transitions,
effectj <> null implies :

tj [= | effect;; (3.6)

= Transition red by an event: A transition could be red by an event according
to the FSM meta-model. If tj is red by triggerj , there is not synchronization
with a chronometric clock to generate atjj tick. Figure 3.18 presents thetj ring

case caused byriggerj .

Active

Si

S;

trigger;

effect;

S|t [N
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. f

Figure 3.18: Representation of the clock ticks leading to a change between two ates
caused by atriggerEvent.

In the same way that guardj , the relationship betweens;, .. , tj and triggerjj is

also specied in ccsl as follows:

i,j suchthattj StateMachine.transitions,
guard;j = null and triggerj <> null implies:
let tyx = {t StateMachine.transitions |t.source=S;, ,t<>tj } and
let fij  [(Sicner  triggerij) t t t] e fijin

tj [=]fi 3.7)
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= Initial state de  nition: The FSM must have at least one initial state to start
its execution. We only consider the case that a FSM has only one initial ate. We
de ne a clock that begins the FSM execution activating the initial state. We have
named this clockinit. We only need a tick in init to active the initial state (see
FSM mata-model - Figure 3.6). Therefore, we de ne fsmCIk, which is a logical

clock only used to specifyinit. Thus we stateinit in ccsl as follows:
init [=]fsmClk  1(0)" (3.8)

this equation means that init is the result of Itering fsmClk with the binary
periodic word 1(0)". This word denotes that only the rst tick of fsmClIk is

taken.

The init clock must be associated with the initial state. Considering that sj,i; is

the initial state of the FSM, we de ne its activation as follows:

let sint = {s StateMachine.states|s = StateMachine.initialState }

Sinit enter | = | init (3.9

However, siyi; is also activated during the FSM execution by its red incoming
transitions. Therefore, by using Equation 3.5 and 3.9, we complete thesj,i; spec-

i cation by:

let st = {s StateMachine.states|s = StateMachine.initialState } and
tin = {t StateMachine.transitions |t = S, .incoming} in

Sinit enter E init + t tint (310)

we can interpret this equation as the initial state of the FSM (sjyi; ) is active when

either init occurs or an incoming transition to the initial state is red.

3.4.2. Equational View Semantic Speci cation

In systems, the notion of time is always present in the evolution of norfunctional prop-
erties. These properties are evaluated in a time instant and their alues could be used to

calculate other properties by using equations. For instance, the temperature evolution
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of a cpu depends on the progression of its dissipated power. IRRISMSYS, Equational-
SubView contains such equations and the active ones are evaluated through time. Teh
characterization subCorrespondencesllows to change the active equations according to
the active subViewElementstates. In this section, we formally specify the non-functional
property evolution through equations. These equations are evaluated at dicrete time
and according to active states. To this end, we useccsl to specify a chronometric
clock to state the discrete time for the equation evaluation. ccsl is also employed to
de ne the causal relationship between the active states and the associateequations to

be evaluated.

We specify that the time notion in an equationalSubView follows the physical time
speci ed in marte . This standard describes that physical time is“a continuous and
unbounded progression of physical instants’[5]. Physical time can be modeled as a
dense time base. Such a time base is an ordered set of instants whefer a given pair
of instants, there always exists at least one instant between thao” [5]. Dense clocks
could be de ned from the dense time base. Themarte TimeLibrary contains a dense
clock called idealClock This dense clock represents the physical time that describes
physical laws. For instance, in the equationa = dv/dt, dt could be represented by
idealClock IdealClock has as time base unitsecond By using idealClock we de ne
chronometricClocks A chronometricClock represents the periodic occurrences of the
physical time evolution. Therefore, we de ne chronometricClocks to mark the periodic
time evolution of certain subViewElementsthat need the time notion. For instance, we
could represent the measure of humidity by using achronometricClock that ticks every

10s. For each clock tick, the humidity is measured.

We specify achronometricClock to evaluate the equations de ned in equationalSubView
We name this clockstep At each occurrence ofstep, a new value is calculated according
to the equations activated by the subViewElementstates. The step clock can be spec-
i ed by discretizing idealClock or it can be derived from the relationships with other
chronometricClocks speci ed in other views. For instance,step occurrences could coin-
cide with the ticks generated from the CPU clock source, clock thatcan be de ned in a

time performance view.

Figure 3.19presents an example of #RISMSYS model where the temperature evolution

of a CPU is speci ed.
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Figure 3.19: PRISMSYS model where the temperature of a CPU is characterized in
the equationalSubView

In the gure, three views are depicted.Hardware View is the view where the structure
and the functional behavior of the system components are dened. Thermal View de-
scribes the thermal architecture of the system, including its termal behavior and its
equational representation. The thermal behavior corresponds to the €U activity that

is speci ed in ThermalElement, which is the CPU abstraction from the thermal point of
view. We represent the CPU thermal activity by states The transition between states is
controlled by the controlSubView. In this example, we only recreate a possible execution
scenario in the ControlSuvView of ThermalView to command the thermal states of the
CPU. The thermal states of the CPU are two: Normal and Heat. The former expresses
that the CPU maintains the typical temperature when it is not active. In contrast, Heat
describes that the CPU temperature raises if it is active. Both staies are associated by
transitions that are sensitive to the e_heat and e_normal events generated from the

controlSubView.

The thermal representation of the CPU also contains a temperature progrty whose
value depends on the active thermal state. The temperature value ishe result of the
evaluation of the active thermal equation de ned in the equationalSubView The ther-

mal equations belong to anequationalModel named Temperature. Such equations are



Chapter 3. Muti-View Modeling Language for Specifying Systems 67

associated with the thermal states inThermalView. The equations are rst-order di er-
ential equations whose solutions are exponential functionsNormal state is associated
with a temperature equation whose response is asymptotic ta iy , which is the min-
imum temperature that the CPU can achieve in halting state (i.e., without activity).
The Heat state is characterized by the second temperature equation whose respse is
asymptotic to Tmax, the maximum temperature that CPU can support before burning
out. The Temperature equationalModelalso contains the parametersT, Tmin, Tmax, To
andt. T is the temperature evaluated according to the active equation,Trin and Trmax
are constant values as well adl,, which is the initial temperature at t = 0, i.e., Ty is

the environmental temperature.

The t parameter is the physical time of the equations.t is discretized by achronomet-
ricClock de ned in TimePerformanceView. Such a view de nes the temporal features of
the example system. We note that itsstructuralSubView contains a ClockSourcethat is

a clock generator. TheClockSourceowns a frequency property whose value is dened by
the associated equationf = 1 kHz. By using this de nition, we specify the generated

clock signal from ClockSourceby the following ccsl expression:

clkOut [=]idealClk discretizedBy 0.001 (3.11)

where Q001 is the period dened by the equationf = 1kHz. This generated clock
signal is used to evaluate the active thermal equation. To share theclkOut signal, we
send the generated clock signal ta@ontrolSubView of Time Performance View through
clkSrc port. The connection betweenStructuralSubView and ControlSubView is a Data-
Connector subCorrespondenceThe controlSubView retransmits the clkSrc clock signal
to the Thermal View through the connection between theclkTpv and clkRef ports. This
connection is aDataConnector Correspondence Afterwards, clkRef port is connected
to clkin, which is an input port of Thermal View controlSubView. As a consequence,
controlSubView can generate the temperature scenario synchronizing the_heat and
e _normal occurrences with the clock signal received orclkin. Additionally, the re-
ceived clock signal is shared withequationalSubViewto mark the instants when the
active equation of the equationalModel is evaluated. The received clock signal is sent
through the step port to equationalSubView step is associated witht by using the

binding connector. This association species that the step clock evolution is equal to
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the t progression. Consequently, for each tick of thestep clock, the active equation is

evaluated.

By using this example, we can specify the semantics dbataConnector correspondence
and subCorrespondencean the speci ¢ case of the transmission of a clock signal. Addi-
tionally, we de ne the coordination between the active statesi(e., the active equation)
and the equation evaluation. We can specify inccsl the relationship between clkOut,

clkSrc, clkTpv, clkRef, clkin and step as:

clkOut [=1] clkSrc (3.12)
clkSrc [=] clkTpv (3.13)
clkTpv [=] clkRef (3.14)
clkRef [=7] clkin (3.15)

clkkin  [=] step (3.16)

theseccsl relations could be read as the instants generated bglkOut, clkSrc, clkTpv,
clkRef, clkin and stepare coincidental, in other words, they tick at the same time instant.
Therefore, the execution semantics oDataConnector correspondenceand subCorrespon-
denceis speci ed by an equality ccsl clock relation, in the case that the transmitted

data is a clock signal.

In the controlSubView of ThermalView, we de ne an execution scenario to specify at
which instant e_heat and e_normal occur. Figure 3.20 presents the temperature evo-
lution through time according to an execution scenario. At the beginning of the simu-
lation, i.e., at t = 0, the state machines in ClockSourceand ThermalElement enter into
their respective initial states (freql in ClockSource and Normal in ThermalElement).
Therefore, the active equations in theequationalSubViewsare f =1 kHz in Frequency
equationalModel and the rst equation in Temperature equationalModel At the same
instant, the clock generated byClockSource i.e., clkOut, starts to tick. Following Equa-
tions 3.12 3.13 3.14, 3.15and 3.16, for each clkOut occurrence, the rst equation of
Temperature equationalModelis evaluated. Note the coordination between the state ma-
chine execution (discrete time behavior) and the equation evaluatin (continuous time
behavior). Once ane_heat event occurs, the transition from Normal to Heat is red

and the Heat state is active. In consequence, the associated equation is activatezhd
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the temperature value is evaluated at the nextstep tick. After producing the e_heat
event, step ticks twice before e_normal ticks. This e _normal event res the transition
from Heat to Normal returning to the Normal state. In the gure, we note the change
of the active equation by the new evaluated temperature value in the ngt step tick.
This value is calculated by the rst equation of the Temperature equationalModel
TA
T

max ...,

min

(0]

oot 1 HH1H

T
LClvC,

Normal
Heat

e heat *
e_normal f

Figure 3.20: Temperature evolution through time according a prede ned execution
scenario.

We note in this example that the synchronization between heterogenea behaviors
( nite state machine and continuous time) is given by the time discreization and the
relationship speci cation between the actions in the state machine and the instants

where the equations are evaluated. This relationship is specéd in ccsl .

3.5. Conclusion

In this chapter, we have presented thePRISMSYS framework This framework is a

language that allows the description of systems from dierent points of view. PRISMSYS
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exposes dierent sub-views that must be specied in each view to describe a spect
domain. PRISMSYS provides the basic sub-views to be extended in order to express
the necessary views of the stakeholders’ concerns. THEBRISMSYS framework also
de nes the necessary correspondences to maintain the coherence among thews and
to coordinate their execution. We also dene the sub-correspondences between the
prede ned sub-views to keep the consistency among sub-views. Corresgtances avoid
the re-de nition of domain elements, re-using elements and properties from o#r views.
Additionally, correspondences expose the execution impact betweeviews in a single

system model. This impact is also projected in the achievementef system requirements.

We also propose auiml pro le to represent aPRISMSYS model in uml by using as much
as possible the concepts already spead in uml, SysML and marte . The designers
that employ uml tools to describe systems, they could easily apply thePRISMSYS

framework in a uml environment.

We de ne the execution semantics ofPRISMSYS by using ccsl . Thanks to ccsl ,
we could de ne the execution of a discrete event modelj.e., Finite State Machine,
and the instants when the equations of a continuous time model are evaated. The
relationship de nition between both models (discrete event and continuous time) dbws
the coordination of the execution of these models, through the use of anber way to

execute heterogeneous models.

In the next chapter, we present a use case that denes the necessary views to describe
power consumption of an embedded system. We also illustrate the imget of other views

in the system power consumption.
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4.1. Introduction

Nowadays, digital circuits are built using the CMOS technology. In gure 4.1, we depict
the base gate of the CMOS technology whose behavior corresponds to a NOT logic
function. From this gate, various logical functions can be built. In the gure, the CMOS
gate contains aPMOS transistor and a NMOS transistor. These transistors have the
same physical characteristics in order to have the same behavior whehey are switched.
Vi, is the input signal that can be a logicO (a voltage close to ground) andl (a voltage

close toVyg). Vout is the output signal of the gate.

?Vdd

[ PMOS
Vin Vout

[NMOS Load

Figure 4.1: CMOS inverter circuit.

According to the Vi, signal, Vo is obtained. ConsideringVi, is initially in 1, i.e., in
Vyd, @and we change theVi, value to 0. Once the change is done, thd®MOS transistor
is closed and theNMOS transistor is open during a short period of time. If the PMOS
transistor is closed, the current that circulates from Vyq to the charge Load is reduced
to almost OA. In contrast, the NMOS transistor is opened, therefore there is a current
that circulates from Load to ground though the NMOS transistor. This current is also
generated for a short period of time; while theLoad charge is discharged. During the
state change, the produced current in both transistors generate poweconsumption.
Once the circuit arrives to a stable state, the Vy; value becomes & logic. However,
this 0 is not exactly a OV. There is a small current that circulates from Vgyq to ground

during the stable state, producing additional power consumption.

Various authors [54] [55] [56] [57] identify three sources of power consumption in digital
CMQOS circuits:
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Piotal = Pshort + Pswitch + Pstatic 4.1)

where Pgnhort IS the power consumed when theNMOS and PMOS transistors are si-
multaneously active, i.e., producing a short-circuit current from Vgq to ground. This
power consumption is usually small compared tPsyicch and Psiatic - Pswitch 1S the power
consumed during the period that the circuit is in constant activity, i.e., the transistor
are switching. The sum of Pgyitch and Pghort is known as dynamic power consumption
(Pgyn)- In contrast, Pstatic is the power consumed when the digital circuit is in stand-by

state, i.e., when the transistor are not switching.

The power consumption that predominates among the mentioned powerssiPgynamic -
However, in the last years, caused by the transistor size reductionPgiic IS becoming

an important source of power consumption.

In the next sections, we explain in more detail the dynamic and static power con-
sumptions. We continue describing the power consumption estimabn according to the
abstraction description level of the system. Afterward, we presentthe main strategies
to manage the power consumption. Finally, we expose the dierent approaches that

specify power design for electronic systems.

4.2. Dynamic Power Consumption

Previously, we mentioned that the dynamic power consumption is dened by the follow-

ing equation:

den = Pshort + Pswitch 4.2)
where Pghort IS the power consumed during the period when both transistors are aive,

and Pgyitch is the power consumed during the switching period. We can exps Pgyitch

according to the following equation:

Pswitch = CLdedf 4.3
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Where s the input transition activity factor of the CMOS gate, C_ is the capacitance
of Load, Vyq is the voltage of the CMOS gate source and is the transition frequency.

Load represents the wires and other transistors that are connected to th€ MOS output.

According to this equation, Pgyitch depends mainly on the voltage and the frequency,
therefore there are certain techniques to reduce the power consption at this point,
for example Dynamic Voltage-Frequency Scale (DVFS) and clock-gating. Wepresent

these techniques in detail in Sectior4.5.

4.3. Static Power Consumption

According to [54] and [58], static power consumption of a CMOS gate is due to var-
ious leakage currents that ow through the gate during the stable state. Figure 4.2,
depicts a NMOS transistor with its main leakage currents. This transistor contains a
p-type substrate, i.e., this substrate contains excess of charge carries or “holes” and a
n-type channel, i.e., the channel transmits free-electrons fromDrain (D) to Source (S)
terminals. The Gate (G) terminal controls the electrons ow betweenDrain and Source
according to the voltage applied. Finally, the Body terminal (B) is connected to the

p-type substrate. Generally, Body is connected to ground in aNMOS transistor.

vdd

1 |
J__ B

Figure 4.2: Leakage currents of a NMOS transistor.

Inthe gure,lrey represents theJunction Leakagecurrent. This current is produced by
the reverse-biased junction.l g p. represents theGate-Induced Drain Leakagecurrent.

This current is produced by the band-to-band tunneling e ect in the gate-drain overlap
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region. | g depicts the current that ows from the gate terminal to the p-type substrate
through the oxide insulation. |syg represents the Substhreshold leakageurrent. This
current that is produced between Source and Drain terminals caused by working the

transistor in the weak inversion region.

All these currents are a ected by the transistor characteristics (size, voltage applied,
etc.) and by the temperature. One of the most signi cant leakage current isl syg. This

current can be modeled by the following equation:

lsug = KVT2 ﬂ eVes Vi)Vt 1 o Vos/Vr (4.4)

L
where K, W, L, n are transistor characteristics, Vgs is the Gate-Source voltage, Vps
is the Drain-Source voltage, Vy, is the threshold voltage andV+ is the thermal voltage.
Vr is directly proportional to the transistor temperature, therefore according to the

equation, I syg exponentially increases in function of the temperature.

4.4. Characterization for Power Consumption

Power models characterize the power consumption of hardware componnaccording
to a functional execution. These power models are implemented iwvarious tools using
di erent abstraction levels. Ibrahim et al. [59] present a survey of the techniques used to
estimate the power consumption of system components. They classifijhese techniques

in the following levels:

= Transistor-Level: This level is a detailed description of the system components in
circuits based on transistors. This level uses the physical transtor model, which
is described in a continuous time domain, to get the component behaer and
its characteristics such as time performance and power consumptionGenerally,
the power consumption is estimated by monitoring current and voltage ofthe
analyzed circuit. This level is the most precise power consumptin estimation
technique because every characteristic of the transistor is dened. However, the

simulation time is too long, moreover when designers want to simulateomponents
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that have millions of transistors. Tools that use this technique are $ICE [60] and

PowerMil [61].

= Gate-Level In this level, the system components are described by logical gates.
Therefore, the system simulation changes from a continuous-time domaito a
discrete-time domain where each component is sensitive to eventsAccording to
the equation 4.3 from Section 4.2, represents the input transition activity in a
CMOS gate. In gate-level, this activity parameter can be estimated uang di erent
probabilistic methods. Chou and Roy [62] present a signal activity estimator based
on Monte-Carlo experiments. Ding et al. [63] use probability waveforms to estimate

the average switching activity.

= Register Transfer-Level: The register transfer models are interconnected blocks
where each block has a spect functionality in a system. To characterize the
power consumption of these models, their internal blocks are indidually measured
and analyzed from their physic implementation and their power propeties are
extracted. As gate-level, Register Transfer-Level estimation mainlyworks focused
on extracting the activity information from the blocks and measure their power

consumption response.

= Architecture-Level: This level uses a combination of the techniques mentioned
before, mainly Gate-Level and Register Transfer-Level to estimate tle power con-
sumption of a system. For instance,SimplePower[64] employs transition-sensitive
power models to estimate the power consumption of functional units In contrast,
SoftWatt [ 65] and Wattch [66] use a xed-activity model. PowerSC [67] is a C++
library that extends SystemC [68] to specify power features and to estimate power

consumption using di erent power modeling techniques.

Another tool that is part of this level is Aceplorer [8]. They de ne the power
consumption though the speci cation of voltage and current for each component
of the system. These parameters are dened by equations and they can represent
from the lower level power characterization, such as transistor-legl, to the higher
level, like instruction-level. However, this tool is commonly used to estimate power
in the rst phases of the system design. We detail this tool in Chapter6. We use

this tool to analyze the power consumption of the system specied in PRISMSYS.
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= Instruction-Level: This level is exclusive to components that execute instructios.
In this level, current measurements are taken when a sequence aifstructions is
executed. For each instruction a cost is assigned according to the mea®ments.
An extra-cost is also assigned according to the transition from an instrution to
another. Tiwari et al. [ 69] and Konstantakos et al. [70] present power consumption
estimator models in this level. Tiwari was one of the rst authors to propose this
power estimation in processors. Konstantokos denes a power consumption model

for an embedded system based on a microcontroller.

= Functional-Level: As the previous level, this level is also applied to processing
components. Here, the studied component is split in dierent functional blocks.
Thus, the application features that impact the power consumption of the func-
tional blocks activity are de ned, such as parallelism rate, clock frequency and
data mapping. Once the parameters are speckd, their values are changed ac-
cording to an algorithm that individually stimulates the functional bl ocks. During
the program execution, the current consumed by the component is measad. Re-
gressions are applied to the current consumed according to the featas variation
thus obtaining the power model of the component. SoftExplorer 71] is a power

estimation tool that follows this technique.

4.5. Power Management Techniques

Power management is the use of certain hardware elements to optimizéené component
power consumption; these can be switches, voltage sources and cloakusces where
properties such as current, voltage and frequency can be changed. Theexist di erent
techniques to reduce the power consumption of systems. Power pgrts combine these
techniques to reduce power in each system state. The combination afuch techniques
is de ned in a functional block called power manager This block synchronizes the
implemented control techniques to guarantee the system functiondty and optimizing the

power consumption. In this section, we describe three of the mosniportant techniques:

Clock-Gating, Power-Gating and Dynamic Voltage-Frequency Scale
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4.5.1. Clock-Gating

Clock-gating is one of the rst techniques used to reduce dynamic power consumption
when a processing component is not active. This technique consistin turning o the
signal clock that is received by the component when it is not in use. Tie power reduction
directly a ects the registers that belong to the component. These registers ardp- ops
with clock inputs. For each clock cycle, the ip- ops consume dynamic power, even

when the data input is not changed.

D Q
Flip-Flop
cIk clk D
en ;

Figure 4.3: Example of a clock gating implementation.

Clock-gating can be implemented with a simple AND gate. Figure4.3 presents a D-type
ip- op where the clock input is controlled by an AND gate. Such a gate allows pagsg
the clock signal only whenEN input has a logic 1. This implementation can easily be
described in RTL models using theand operator. Okuhira and Ishihara [72] report that
around 40% of the total power consumption in microprocessors is caused byegister
circuits. In this percentage, more than 80% of the power consumption i€aused by the
clock signal transition in the register circuits. In consequenceapplying this technique,

a signi cant energy reduction can be made.

4.5.2. Power-Gating

Power-gating is a technique exclusively conceived to reduce atic power consumption.
This technigue can be applied to every hardware component during te time periods
when it is not in use. Whereas clock-gating only turns the clock inut o , power gating
turns the hardware component o when it is not active. The implementation of this

technique uses a transistor as power switch to cut o the current supplied to the hardware
component. Figure 4.4 presents a power gating implementation. The transistor is xed
between Vyq and the component to control the current ow. The switch can also be

located from the component to ground or both.
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Figure 4.4: Example of a power gating implementation.
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Figure 4.5: Example of a retention register.

Once the hardware component is turned o, the component outputs can generate un-
decided signals. Such signals could act other components that are active during the
period the component is gated. To solve this problem, power expertaidd an isolation
cell for each component output. Before turning the component o, the isolation cells
are activated producing a logic value to the interconnected componerst These isolation
cells can be implemented by AND gates. Figure4.4 depicts the implementation of the
isolation cells. Each output of the hardware component is connected to arsplation cell,

as well as it is connected to the interconnected component inputs.

We can also add another functionality to a power gated component. This fuctionality
is to save the current state of the internal registers before the comonent is turned o .

Once the component is turned on, the saved state is restored and theomponent can
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continue its execution from its previous state. To implement sucha functionality, the
internal register information can be charged inretention cells. Figure 4.5 depicts the
retention register structure. This register contain two internal registers: a main register
that is identi ed by aFlip- op and a shadow register calledRetention Cell. The main
register is supplied by VDD_sw. In contrast, the shadow register is supplied byVDD.
VDD_sw is the gated power supply. D, CIk, Resetand Q are connected to the main
register. Saveand Restore are bound to Retention Cell. The main register operation is
made by the main internal register. Before the power gated component isurned o , an
event is sent toSavein order to record the information of the main register in Retention
Cell. Once the register information is saved, the power gated component isurned
o and VDD_sw does not supply current to the internal main register. Nevertheless,
Retention Cell is on, becauseé/DD is not cut o . Once the gated component is turned
on, an event is sent toRestore to return the saved information in the internal main

register.

The retention functionality takes certain time to save and restore the gated component

information. Therefore, this functionality is only used in certain cases.

4.5.3. Dynamic Voltage-Frequency Scale

According to Equation 4.3, the switching power depends on voltage and the transition
frequency in a CMOS circuit. In a processing component, if we var these values accord-
ing to the component workload, we could signi cantly reduce its power consumption.
However, we can not choose voltage and frequency values randomly. A specifrequency
value must correspond to a specic voltage value. Technologically speaking, when we
reduce the switching frequency, the voltage level can be reducedntil a certain limit.
This limit is given by the transistor characteristics and the voltage control implemented.
Processors that implement this kind of technique calledoperation points the determined
frequency/voltage values. For instance, OMAP3 [73], which is an application processor,

has up to six operation points.

To optimally apply this technique, it is necessary to know the worklioad and the time
constraints to be executed. Most of the works apply this techniquetaking into account

the task execution deadline given by the scheduling policy. Accorithg to this deadline,
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the operation point is dynamically changed. For instance, Ejlali et al. [74] propose to use
DVFS and power-gating techniques to reduce power consumption in @dundant-hardware
employed in real-time systems. They present a DVFS algorithm accorithg to a common
execution deadline for a task sequence, the operation points can be chged according
to the time execution of each task that conforms the sequence. Genset al. [75] propose
an algorithm where the operation point changes to execute a task dependgnon the time

execution of the previous one.

This technique can be applied in di erent zones of a system, so that the system can
have multiple voltage level zones. Power experts called these zomeoltage domains To
guarantee the communication between components of derent voltage domains, power
experts add level shifters to each connector that crosses the voltage domain border.

Level shifters level the voltage of a logic signal from a voltage domain to anotheone.

4.6. Power Design Speci cation

The elements employed to reduce power consumption were initigl designed at transistor-
level. The power techniques impact the system functionality, which is usually speci ed
at higher levels than transistor-one. Therefore, the validation of the @rrectness between
power and functional execution is evaluated in the last stages of the sysm design. In
consequence, such elements have begun to be implemented at a tegldescription level.
In this section, we present various languages that have been conceivad de ne power

architectures at three di erent description levels.

4.6.1. UPF, CPF and IEEE 1801

Hardware description languages (HDLSs), like VHDL [76] and Verilog [77], were devel-
oped to model the functionality and the time performance of digital sydems. However,
these languages lack expressivity to implement all the elements #t are involved in the

power reduction techniques. In 2006, various semiconductor and eleanics companies
demand to the electronic design automation industry to de ne an open standard for

power speci cation.
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Responding to this need, Accellera Systems Initiativé, with the support of Synopsys
and Mentor Graphics companies, developed a standard namedni ed Power Format
(UPF) [78]. The aim of this standard is to de ne the elements needed to implement
the predominant power reduction techniques at a register transferlevel (RTL). The

rst UPF version was released in 2007 and, in same year, it was transferred tthe
IEEE in order to create a new IEEE standard. In 2009, IEEE publishes its rst power
speci cation standard named|EEE-1801 [79].

Another power speci cation standard was also developed this time in 2007 by Ca-
dence. This specication is namedCommon Power Format (CPF) [ 80]. Such a standard
was also transferred to an independent organization called Silicon Intgration Initiative
(Si2)? to continue its development. This organization has produced two new ersions.

The last CPF version was released in 2011.

The two standards have many concepts in common, however the most notasus is the
power intent description complexity. UPF describes the exact plysical structure of the
power intent in RTL, i.e., it speci es the wires, the ports and the connection between
the power elements. In contrast, CPF de nes the power concepts that include the basic
information to reduce the physical structure complexity. For instance, apower domain
is associated to a voltage level fominal condition in CPF) in a power mode3. |EEE-
1801 is a new UPF version that uni es the concepts from CPF and UPF in a unique
standard. The convergence between the two standards continues and a&ew IEEE-1801
version, whose release is available since therst semester of 2013, contains more Si2

contributions.

Lhttp://www.accelera.org
Zhttp://lwww.si2.org
3a power modede nes the voltage levels that each power domain must be.
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Figure 4.6: Example of Power Domain association.

The main concepts of these standards used to d@e a system power architecture are:
Power Domain, Power Switch Level Shifter, Isolation Cell and Retention Cell. We
have mentioned in Section4.5 that Power Switch Isolation Cell and Retention Cell
are elements employed to implement power gating technique. Adtonally, we have
commented that Level Shifters guarantee the logic level between voltage domain in
DVFS.

The dynamic of the power elements is speced in a Power State Table(PST), where the
voltage levels are coordinated with the states ofPower Switches Retention Cells and
Isolation Cells. By using PST, the designer can verify the synchronization betwee the
power and functional model execution. Nevertheless, not one of thess#andards specify
a way to estimate the power consumption of the hardware components whe the power

modes are applied.

In IEEE-1801, Power Domain is the concept that gathers the elements of a system
architecture where the power design is applied. For instance, Figte 4.6 depicts aPower
Domain that contains a Power Switch a Retention Cell and an Isolation Cell to provide
the hardware elements needed to implement the power-gating tectique. Assigning the
Power Domain to one or more hardware components means that these components are
supplied in function to the power domain mode. We remember that tre associated
hardware components are specied in RTL and these standards are only applied to RTL

models.
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4.6.2. SystemC

Transaction-Level Modeling (TLM) [ 81] is a system description level where the commu-
nication between components is realized by transactions through chante SystemC B8]
is a C++-based language that implements this modeling level*. Such as RTL, TLM
has initially been developed to describe functionality and to analyz time performance.
However, when the system designers had to model the power characigtics of their
models, a new research area was open in TLM to implement these new afacteristics
to existing TLM models. Mbarek et al. [82] implement the power concepts dened in
IEEE-1801 to describe a power architecture in SystemC. They dene a framework called
PwWARCH. In this framework, the IEEE-1801 power control elements are dened in a
C++ library and can directly be used in the SystemC system model. PWARCH also
includes a test engine to validate the behavior constraints betwee power and functional
architectures. For instance, if a component is turned o by the power architecture, this
component cannot be executed in the functional architecture. Addifonally, the authors
add a power estimation analyzer that evaluates the power consumption, amrding to

the system execution.

4.6.3. UML

Uni ed Modeling Language (ml ) [21] is a graphical general purpose modeling language
developed by the Object Management Group (OMG).uml was initially used mainly to
specify object oriented software systems. Nevertheless, this lguage has been more
and more employed to de ne various kinds of systems, like real-time systems, hardware
platforms, control systems, etc. Such specic languages have been built by extending
the uml concepts. This extension process is daed in a uml pro le. For instance,
Modeling and Analysis of Real-Time Embedded Systemsnrfarte ) [5] is a pro le used
to model and to analyze real-time systems, and System Modeling Languad&ysML ) [4]

is another pro le used in systems engineering.

uml is considered as a language that can be used to specify systems at a higladastrac-
tion level than TLM. In uml, there are some works to specify power concerns: Hagner

et al. [83] and Arpien et al. [84] de neduml pro les providing the modeling elements to

4SystemC can also implement RTL. This language eases the task to re ne the model from TLM to
RTL
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represent power management techniques and to analyze power consutigm. However,
these two approaches abstract the elements involved in the power magement tech-
nigues, without taking into account the impact that causes the control made by these

elements on the system behavior.

4.7. Discussion

In the design of low-power systems, we note a clear separation of concsr on one hand, a
power design represented by power characterization and power managemt techniques,
and, on the other hand, the functional design of the system. The powerlaracterization
is implemented in certain tools that hide their power models, forcing the user to employ
their models and approaches. We also observe that the aim of the power dign is
to optimize the power consumption, which is one of several non-funébnal properties
de ned in a system. By the construction of a power architecture, whid controls the
power consumption of the system according to its activity, we can idatify the impact
of the power design on the functionality of the system. The power degn alters the

functionality of the system, therefore veri cation process must be applied.

Following the PRISMSYS approach, we provide a modeling framework that allows the
separation of concerns throughviews The structure and behavior of the functional
design could be dened in a view, while the power design could be specied in another
view. The tools that implement the power management techniques are genally di erent
to the tools that estimate the power consumption. The PRISMSYS equationalSubView
can be employed to specify the characterization of the power consuniipn de ned by
equations. A StructuralSubView can be used to dene the structure needed to implement
the power management techniques. This framework follows a white boapproach, i.e.,
the power design is freely dened and modi ed by the user. Finally, thanks to the
PRISMSYS correspondencewe can state the relationship between power and functional

design.
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4.8. Conclusion

In this chapter, we have introduced a background of the existent conepts and ap-
proaches to model and characterize the power consumption in electran systems. We
have introduced the main sources of power consumption in systemsat are based on the
CMOS technology: dynamic and static power. Afterwards, we have presged how the
power consumption is estimated in di erent abstraction levels. We have continued by
describing the power management techniques, daing hardware elements that controls
the energy supplied to the hardware components of the system. We havalso showed
that these power management techniques are represented in dérent abstraction lev-
els and that the power community is looking for an adequate way to add powr-related
management in existing system models. We use this background to delop a case study

where the PRISMSYS framework is employed.

We have pointed out the separation of concerns between power and funichal design.
Moreover, we have discussed about the division between power cleterization and
power management, being both parts of the power design, a single exgetomain. Even
though the power design is separated of the functional, they are associed and one

design impacts on the other one.

In the next chapters, we use the power expert domain concepts and thnologies to
show how the architecture de ned in the PRISMSYS framework can be used to deal
with such problems. The PRISMSYS model describes the power expert domain and the

other domains that a ect the power consumption in a system.
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5.1. Introduction

To illustrate the use of PRISMSYS framework, we apply it to de ne the views that
impact and characterize the power consumption in embedded systemsTo this pur-
pose, we specializeView and SubViewElementto represent the elements of specic
domains according to the expert knowledge. We identify ve views that are associated
with power consumption: HardwareView, ApplicationView, PowerView, ClockView and

ThermalView.

StructuralSubView, ControlSubView and EquationalSubView are integral parts of the
identi ed views. As such we have explained in ChapteB, the controlSubViewsare spec-
i ed to coordinate the subViewElementsof each expert domain. Furthermore, they are
employed to synchronize the execution between views. In the peer-aware model, these
subViewElementcoordination and view synchronization rather than ful lling the func-
tional system requirements, such as executing a task in a procesg element, they satisfy
the system non-functional constraints, like the maximum system pever consumption or
the deadline to execute a certain application. These constraints argerformed by the
synchronization of each expert domain guaranteeing the preservation of # functional
requirements. For instance, applying power management techniquse the power experts
can reduce the power consumption, while the time performance of taskxecution and
the system functionality are impacted in other expert domains. The structuralSubView
concepts are specialized dening the concepts commonly employed by experts of each
speci ¢ domain. The equationalSubViewsstate the equations needed to evaluate the
power consumption and temperature of the system components, as well dee values of
the non-functional properties employed to calculate such equationssuch as frequency

and voltage.

To represent the multi-view model for a power-aware system, wéuild a uml model of
the system applying the PRISMSYS pro le. View, StructuralSubView and SubViewEle-
ment stereotypes are specialized according to the spe@ domain. We also use other

marte stereotypes to de ne subViewElementsthat are already speci ed in this pro le.

By applying the PRISMSYS framework on this use case, we identify a spect corre-

spondencecommonly employed in the design of embedded systems. This correspdence
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is namedAllocation and associatesubViewElementsfrom the application domain (Ap-
plicationView) to the execution platform domain (HardwareView). Allocation is not
expressed by the semantics ofbstraction, therefore it must separately be specied,

specializing the correspondenceconcept from the PRISMSYS meta-model.

In this chapter, we begin de ning the views that describe the expert domains of the
power-aware model. The rst two views are the domains that specify the execution
platform (HardwareView) and the application that is executed on it (ApplicationView ).
HardwareView is the backbone of thePRISMSYS power-aware model. Therefore, the
other views are specied abstracting the elements of this view to dene their non-
functional properties and other domain elements. Between these derd views, we
rst specify PowerView that characterizes the power consumption properties of the
HardwareView elements and the power control elements. We continue dening ClockView
that states the HardwareView temporal properties and the control clock signal elements.
Afterwards, we specify ThermalView that represents the thermal elements associated
with the backbone model. This view also characterizes the temperaire evolution of
the HardwareView elements. Finally, we illustrate the use ofcorrespondencesand sub-

correspondencedor the views de ned in the PRISMSYS power-aware model.

5.2. Views

In this section, we de ne the views that describe the expert domains of the power-aware
model. For each view, we specify the concepts of itsubViewsspecializing the PRISM-
SYS framework meta-model concepts. Afterwards, we represent the viewlements with
the PRISMSYS pro le. The elements are specied in the pro le either extending them
or employing the marte stereotypes. Finally, each view is depicted inuml to describe

a PRISMSYS power-aware model.

5.2.1. Hardware View

We de ne HardwareView as the platform execution of the system. This view plays the
role of backbone of thePRISMSYS power-aware model. Figure5.1 depicts the Hard-

wareView meta-model. In this gure, the white meta-classes describe thelardwareView
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concepts. HardwareView inherits from View and it contains a structuralSubView and
a controlSubView. HardwareView does not include anequationalSubViewbecause the
non-functional properties are described in other views. StructuralSubView de nes the
concepts and relationships needed to describe the hardware architiure. SubViewEle-
ment is specialized byHwComponent which represents any hardware component dened
in the platform execution. For instance, a CPU can be aHwComponentwhose functional
modes free and Busy) are de ned. The CPU modes are expressed by the states of a
state machine. ControlSubView commands the states of thehwComponentssynchro-
nized with the execution of the other views. For instance, if a task,which is described
in another view, e.g., in an application view, is mapped to a CPU, the controlSubView
of HardwareView must be noti ed when the task is executed. Once theontrolSubView
receives the noti cation, it sends a control event to the CPU to change its internal mode
e.g., to Busy state. The communication betweenhwComponentsis represented by the
connection ofhwPorts. A hwPort is a specialization ofPropertyPort. HwPort transmits

data betweenhwComponentsthrough wires, a Connector specialization.

Figure 5.1: Hardware View meta-model.

Each new de nition of a view is represented inuml by extending the view stereotype of
PRISMSYS. In consequenceHardwareView extends the View stereotype. In the same
way, we extend the otherPRISMSYS stereotypes according to the expert domain. How-

ever, in HardwareView, we expressHwComponentin uml by using the marte model
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elements that state the hardware structure of a system. Such modetlements are spec-
i edinmarte HW_Logical package [5]. Similarly to HwComponent HwPort is repre-
sented by themarte  owPort stereotype. The use ofmarte is a simple way to follow
the component paradigm employed inPRISMSYS while reusing as much as possible

concepts frommarte instead of de ning new ones.

Figure 5.2 presents theHardwareView of a PRISMSYS power-aware model. This view
has astructuralSubView and a controlSubView. StructuralSubView includes three parts
that are CPU, Memory and Bus. We identify each part with the corresponding marte
stereotype. For instance,CPU, which is aHwComponent is stereotyped byhwProcessor
The connection hub is abus so that memory and cpu can be communicated through
bus A Data type is assigned to eachtHwPort to de ne the nature of the data that is
transmitted between hwComponents Each hwComponenthas one or morecontrolPorts
to change the internal state of the hwComponent behavior. The modes ofcpu are
speci ed in a state machine. In the same way, the modes dfusand memory are de ned.
ControlSubView owns the control ports needed to coordinate thehwComponentmodes,
according to the execution of the other views. ThissubView also synchronizes the
execution of the Power and Clock views according to the ApplicationView execution. In
the gure, we depict that HardwareView receives control events fromApplicationView
to inform that an action is executed. Therefore, controlSubView sends control events to
its structuralSubView according to the events received and it also sends control events

to ClockView and PowerView to synchronize their execution.

Clock View Power View

Figure 5.2: Hardware View of the PRISMSYS power-aware model.
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5.2.2. Application View

ApplicationView represents and abstraction of the application that is executed on the
execution platform speci ed in a HardwareView. Figure 5.3 depicts the ApplicationView

meta-model. ApplicationView is a view that contains two subViews a controlSubView
and a structuralSubView. The subViewElementsof StructuralSubView are specialized
by Actions. We de ne that an action represents an atomic element of the application
that cannot be re ned. PropertyPort is specialized inDataPort, which means that the

information transmitted between actions is data. Such ports are bond bydependency-

Connetors.

ControlSubView coordinates the execution of the actions in thestructuralSubView. This
coordination could depend on control events received from the other @ws. For instance,
if an action is executed incpu, ApplicationView controlSubView must notify to Hard-
wareView controlSubViewthat an action is in execution. Once the action is executed,
ApplicationView controlSubView informs to HardwareView controlSubView that the ac-
tion was executed. NeverthelessApplicationView controlSubView could be noti ed by
HardwareView that the hwComponentwhere the action is executed has been stopped
since the hwComponent temperature attained its maximum limit. The control event
coordination de ned in controlSubView is expressed byccsl [3], which is detailed in

Chapter 6.

Figure 5.3: Application View Meta-model.
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In uml, actions are de ned as componentsthat are parts of the StructuralSubView.
DataPorts and DependencyConnectorsare speci ed by marte  owPorts and uml con-
nectors, respectively. Figure5.4 presents the ApplicationView of a PRISMSYS power-
aware model. In this gure, there are two actions: tl and t2. Each action behavior is
represented by a state machine that contains two statesExecute when the action is in
execution, and Stop, when it nishes or is interrupted. There is a data ow dependency
between these actions that is expressed by the connection betweeil and d2 owPorts.
ControlSubView commands the execution of theactions. Once an action is executed,
HardwareView is noti ed to coordinate its subViewElementsand to inform the other

views the performed actions.

Hardware View

Figure 5.4: Application View of the PRISMSYS power-aware model.

5.2.3. Power View

The elements of this view intend to supply and control power propeties of system
components dened in HardwareView. These control elements implement the power
management techniques that have been described in Chaptet. Power experts build
their power model without modifying HardwareView, which is the objective of the multi-
view modeling approach. The elements from these views are inspileby the concepts

de ned in the IEEE-1801 [79] and CPF [80Q] languages.
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Figure 5.5 depicts the specialization of thePRISMSYS framework concepts to de ne
the power domain concepts. PowerView contains the three subViews previously de-
ned in the PRISMSYS framework: a structuralSubView, an equationalSubViewand a

controlSubView.

The StructuralSubView owns the followingviewElements voltageSourcespowerDomains
and poweredElements PoweredElementde nes the power features of theviewElements
speci ed in HardwareView. In other words, PoweredElementis the abstraction of a
HwComponentfrom a power point of view. A poweredElementowns asupplyPort. This
port receives a voltage value from apowerDomain or from a voltageSource SupplyPort
specializesPropertyPort to represent the transmission of voltage valuesj.e., a power-
speci c feature. A poweredElementalso possessesontrolPorts to change the active state
of its state machine. Such a state machine expresses the power congption modes of

a HwComponent

Figure 5.5: Power View Meta-model.

VoltageSourcerepresents the functionality of a power source. This power sourceupplies
current to the hardware components using di erent voltage levels. In the PowerView
de nition, VoltageSourcegenerates di erent voltage values to implement a part of power
management techniques such as DVFS8p. A voltageSourceowns a supplyPort to
transmit the voltage values to a powerDomain, or directly to a poweredElement Changes
in voltage are specied by the subViewElement state machine. The states represent

the di erent voltage levels provided by the voltage source.VoltageSourcesalso have
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controlPorts that receive events from the controlSubView to re transitions between

states, changing the generated voltage level.

A powerDomain controls the voltage value transmission from avoltageSourceto a set of
poweredElements A PowerDomain owns two kinds of subViewElements PowerSwitch
and RetentionCell. A violet composite association is depicted in Figure5.5 to illustrate

which subViewElementsare owned by PowerDomain. However, this association is not
de ned in the original meta-model, because it is explicitly de ned in the SubViewElement
de nition (the self-contained association inherited fromComponent). PowerSwitch cuts
the current that is supplied to a poweredElementwhen it is not in use,.e., the voltage
applied to the target poweredElementis OV. A PowerSwitch contains two supplyPorts
and two controlPorts. The rst supplyPort receives voltage value from avoltageSource
and this value is sent to the connectedpoweredElementsaccording to its active state
(On or O ) through the second supplyPort. ControlPorts receive the control events to
change the active state.RetentionCell saves information of theViewElement associated
with the supplied PoweredElementbefore this element is turned o. Meanwhile the
element is turned on, the RetentionCell restores the saved information. PowerDomain
also ownscontrolPorts and connectors that transmit the control events sent from the

controlSubView to its internal subViewElements Connector is specialized inNet to be
compatible with the power expert domain. Additionally, a powerDomain hassupplyPorts
to receive and to transmit voltage values. UsingpowerSwitchesand retentionCells, we
can implement the power-gating technique $6]. Low abstraction level elements from
IEEE 1801 [79] and CPF [80], like isolation cells and level shifters are not speci ed in
this thesis because using the MDE transformation technique, theycan be automatically
generated from thePowerView model de nition according to the powerSwitchesand the

voltageSourceghat supply the poweredElements

Each subViewElement of the structuralSubView contains its controlPorts that are ex-
posed on thestructuralSubView (see Figure5.6). These controlPorts are connected to
the controlSubView controlPorts. Such acontrolSubView coordinates the execution of
the mentioned power subViewElementsaccording to control events received fromHard-
wareView. Additionally, controlSubView receives a clock signal (throughctrStepCitr)
from ClockView to evaluate the active power consumption equation at each tick of this

clock in the equationalSubView
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Whereas HardwareView has a prede ned representation of their subViewElementsin
uml and marte , PowerView does not have it. In consequence, th&ubViewElements
of PowerView must specialize the stereotypes of thePRISMSYS pro le. Similarly to
the other speci ¢ domains, PowerView is speci ed as a stereotype that inherits from
the View stereotype. PowerDomain and VoltageSourceare also de ned as stereotypes
inheriting the SubViewElement stereotype. The SupplyPort nature and certain Pow-
eredElement property types are specied by marte NFP! types. NFP follows the
International System of Units standard (Sl) [86]. For instance, a typical property in the
power view isvoltage This property is expressed in function of the unit Volt, in short,

V and its value.

Hardware View

el

Clock View

Figure 5.6: Power View of the PRISMSYS power-aware model without including its
equationalSubView

Figure 5.6 represents part of thePowerView of a PRISMSYS power-aware model inuml .
The structuralSubView de nes three parts that represent powersubViewElements vs1,
pdl and cpu. vsl and pdl are respectively instances oMoltageSourceland PowerDo-
mainl components. These components are stereotyped byoltageSourceand Power-
Domain extending the PRISMSYS SubViewElementstereotype. PowerDomainl owns
a PowerSwitch instance (psw) to control the current ow from vsl to cpu. In con-
trast to VoltageSourceand PowerDomain, PowerSwitch is a component predened in
a uml PRISMSYS library that is imported to be reused in this model. This library
also includes the NFP types that are not included in the marte library, like voltage,
current and temperature. Cpu is a poweredElementwhose stereotype also extends the

SubViewElement stereotype. SupplyPorts are represented bymarte  owPorts in the

!Non-Functional Property
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gure. To specify their voltage nature, aNFP_Voltage type is assigned to these ports.
Thanks to the ow port properties, the data ow direction is de ned. For instance, the
vout owPort in vslis con gured as output, i.e., the voltage value generated byvsl is

shared with its environment, in this case with pd1

Each subViewElementsde ned in the PRISMSYS power-aware model expresses its be-
havior by a state machine in Figure5.6. Cpu poweredElementwhich is a HwComponent
in the HardwareView, owns a power behavior whose modes arddle, to express that
CPU is consumingstatic power, and Active, to describe that CPU is consumingdynamic
power. VoltageSourcebehavior (vs1) contains two states: V1 and V2. Each state repre-
sents a specic voltage level that is de ned in the equationalSubView The powerSwitch
behavior is expressed by two states that represent the poweringn (state ON) and the

cutting o (state OFF) of the current from voltageSourceto the cpu poweredElement

ControlSubView are also represented in Figures.6. This subViewreceives control events
from HardwareView in order to coordinate the powersubViewElementsbehavior de ned
in structuralSubView according to the HardwareView execution. hwStrActCtr and hw-
StpActCtr ports receives the events indicating that anaction is executed or stopped.
hwV1Ctr, hwV2Ctr and hwO Ctr collect the events to change thecpu operation points.

According to the received events, thesubViewElementcontrol events are generated.

The execution of the ControlSubView must ful Il the system requirements. A system
requirement focused on power consumption could bethe CPU must be ON when an
action is executed In this example, there are involved three views: HardwareView,

where the CPU component is dened, ApplicationView, where the actions are executed
in the CPU and PowerView, where the CPU power control is described. In this case,
we only focus on the power control. To ful Il the mentioned system requirement, we
must synchronize the execution to turn CPU on, if it is OFF, and the actions execution.

Therefore, we can specify these executions through the followingeps:

1. PowerView ControlSubView receives a control event from theHardwareView Con-

trolSubView that cpu is executing an actions,i.e., it is in mode Busy.

2. PowerView ControlSubView sends a control event to turn the powerSwitchon in

order to supply current to the cpu poweredElement
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3. PowerView ControlSubView sends a control event to change thepu power mode

to Active.

These steps can be dened by the speci cation of the relationships among control events.
Therefore, we can useccsl [3] to this speci cation. Such specication is stated in

Chapter 6.

We characterize the power consumption of thepoweredElementsby means of equa-
tionalModels de ned in the equationalSubView These equationalModels include the
equations that de ne the power consumption according to thepoweredElementbehav-
ior. We also specify otherequationalModelsthat specify constant values. Such values are
associated with the power consumption equations. We do not extend ta concepts previ-
ously de ned in the EquationalSubViewmeta-model of PRISMSYS framework, because
the equation representation is used in multiple domains, and the poer consumption

domain is not an exception.

| pv.pwCtr.clkStepCtr |

t
vout lieak

\ lieak
voltageModel | }——{ | switchModel D’VD D—‘—E] currentModel

vin —— powerModel
: clc f
:capModel

Fp | clkv.clks.cs.l:.'%requency l

| pv.ps.cpu.power |

v Y 4 Y y

Figure 5.7: EquationalSubView of PowerView.

Figure 5.7 depicts an example of this representation to evaluate power consumin
of cpu. We employ the SysML parametric diagram to represent this subView In
this gure, there are ve equationalModelsde ned by constraintBlocks: voltageMode)

switchModel capMode| currentModel and powerModel Each equationalModel de nes
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its parameters and equations. For instanceyoltageModelspeci es av parameter whose
type is NFP_Voltage, i.e., this parameter is a voltage type. This equationalModel also
owns two equations that assign a constant value to thev parameter: v = (1.1,V) and
v =(2.2,V). The NFP types follow the Value Speci cation Language (VSL) datatype
syntax de ned inmarte . Such a datatype is a 2-tuple where the rst element is the value
and the second one is theNFP unit. For instance, in the rst equation 1.2 represents

the value and V the voltage unit.

In PowerView, the main equationalModel is powerModel It characterizes the dynamic
and static power consumption equations of thecpu poweredElement This equationalModel
depends on the values given by otheequationalModelsde ned in this subView There-
fore, according to the active values in the otherequationalModelsand the active pow-
erModel equation, the power consumption is evaluated. The evaluation of the actie
power equation is executed by the clock signal received oolkStepCtr. PowerModel is
also relied on thefrequency parameter. Frequency value is shared from theClockView
equationalSubView ClockView speci es the temporal features of the system. The details

of ClockView are described in the following section.

5.2.4. Clock View

ClockView speci es the elements that provide and control the clock signals. Such ct
signals activate the HardwareView elements and give temporal properties to the actions
executed in these elements. Likewis®owerView, we specialize thePRISMSYS frame-
work concepts to de ne the ClockView elements. Figure 5.8 presents the meta-model
of ClockView. ClockView has the three identi ed subViews of the PRISMSYS frame-
work. Nevertheless, we only specify thesubView elements needed to evaluate power
consumption. The structuralSubView contains equivalent concepts toPowerView struc-
turalSubView, but the nature of the non-functional properties speci ed and controlled
is di erent. For instance, ClockPort and PowerPort are concepts derived fromPropery-
Port. Whereas PowerPort represents a power nature property,ClockPort expresses a
timing nature, i.e., the non-functional property transmitted by this port is a clock sig-
nal. Another example is ClockSourcethat is a clock signal generator. TheClockSource

states identify the frequency of the clock signal transmitted by ClockPort instead of



Chapter 5. PRISMSYS Framework for Power-Aware Modeling 100

a voltage value change such a¥oltageSource performs. ClockSwitch and ClockedEle-
ment is the ClockView representation ofPowerSwitchand PoweredElement respectively.
However, ClockSwitch controls the clock signal transmission from aClockSourceto a
ClockedElement ClockedElementis the abstract time performance representation of a

hwComponentand de nes the timing properties of the abstractedhwComponent

Figure 5.8: Clock View Meta-model.

ClockSourcesand clockSwitchesa ect the power consumption by changing the clock
frequency or cutting the clock signal o . Therefore, there is a coordination between the
ClockView controlSubView and the controlSubViews of the other views. For instance, if
an ApplicationView action must be executed before a spect deadline, ClockView con-
trolSubView could change the frequency clock in order to reach the required deéide.
This frequency change depends on the voltage level, therefore theowerView control-
SubView must also be noti ed in order to change the voltage to the specied frequency.
As well as other views, thecontrolSubView is speci ed by usingccsl . This speci cation

is detailed in Chapter 6.

Similarly to PowerView, the subViewElementsof ClockView are implemented inuml by
specializing SubViewElementstereotypes of thePRISMSYS pro le. Figure 5.9 depicts
the ClockView of a PRISMSYS power-aware model represented iuml . This view con-
tains two subViews a structuralSubView and a controlSubView. The structuralSubview
is composed by four parts: ClockSourceland ClockSource2instances sl and cs2), a

ClockSwitchinstance (csw), and a ClockedElementinstance (cpu). csl is a ClockSource
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that supplies a clock signal through clkout port. This port not only is stereotyped by
the marte FlowPort, but also by marte Clock In consequence, the time properties
of the clock signal, like frequency, can be speced by ccsl and the clock signal be-
havior can be simulated in TimeSquare . cs2 is another ClockSourcethat generates a
clock signal with a xed frequency. This signal is shared with the othePowerView and
ThermalView to coordinate the equation evaluation in their equationalSubViews cs2
sends the clock signal tocontrolView, and this sends two clock signals toPowerView
and ThermalView, whose ticks are coincident with thecs2 clock. cpu is the timing do-
main representation of the HardwareView cpu The structuralSubView elements de ne
their behavior by state machines. Thecsl states represent the change of frequency of
the generated clock signal tocsw. cs2 owns only one state where the clock frequency
is xed. The csw states specify the action to cut o or to transmit the clock signal to
the clockedElement The clockedElementstate machine is specied by two states: Run,
to express that clockedElementis executing a sequence of instructions per clock cycles,

and Stop, to indicate that cpu stops the instruction execution.

Power View —»
Thermal View —»

Figure 5.9: Clock View of the PRISMSYS power-aware model without including its
equationalSubView

The equationalSubViewis also de ned in ClockView. Figure 5.10 depicts a parametric

diagram that represents the equationalModels of the ClockView subViewElementsfor



Chapter 5. PRISMSYS Framework for Power-Aware Modeling 102

the PRISMSYS power-aware model. These elements are associated with tlopu power
consumption de ned in PowerView. Furthermore, we de ne a clock signal to evaluate
the equations of the other equationalSubViews In the diagram, there are three equa-
tionalModels: frequencyModell and frequencyModel2 to respectively set the frequency
of the cs1 and cs2 clock sources, andswitchModel to kill the clock signal or to trans-
mit it to cpu. frequencyModell and switchModel share a frequency parameter repre-
sented by the binding connection betweerf and f_in . SwitchModel is also connected to
clkvl.clksl.csl.frequecywhich is the frequency property de ned in the clock sourcecsl
In the same way, frequencyModel2is linked with clkvl.clksl.cs2.frequecy Afterwards,
cv.clksl.csl.frequencyand clkvl.clksl.cs2.frequecyare shared with the PowerView equa-
tionalSubView. The former to provide a frequency value in order to evaluate the paver
consumption of the cpu. The latter to generate a clock signal whose instants causes the

evaluation of the power consumption and the temperature progression.

frequencyModel2| —{ clkv.clks.cs2.frequency |
f

f f out
frequencyModel1 | |—{"| switchModel | | clkv.clks.csl.frequency |
; f_in .

Figure 5.10: Equational Sub-view of Clock View.

5.2.5. Thermal View

ThermalView describes the domain specied by thermal experts to represent thermal
features of the HardwareView subViewElementsand to de ne subViewElementsof this
domain such as heat sinks. Figures.11 presents the thermal view meta-model. Simi-
larly to PowerView and ClockView, ThermalView inherits from View. The ThermalView
structuralSubView owns two types ofsubViewElements ThermalElement and HeatSink
The former is the thermal abstraction of a hwComponent The latter represents the
element that helps to dissipate the heat. This heat dissipation causs a temperature de-

crease. AheatSinkis connected to athermalElement by a junctionPoint . JunctionPoint
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is the specialization of Connector in ThermalView. ThemperaturePort inherits from
PropertyPort to represent the temperature nature transmitted between ThermalEle-

ment and HeatSink

Figure 5.11: Thermal view Meta-Model.

ThermalView contains the threesubViewsspeci ed in the PRISMSYS framework. Struc-
turalSubView and controlSubView are depicted in Figure 5.12, which is auml represen-
tation of ThermalView. In the structuralSubView, we de ne athermalElement named
cpu. It is the thermal abstraction of the cpu de ned in HardwareView. The thermal be-
havior of cpu is speci ed by a state machine with a single state. This state represents the
cpu temperature behavior. The cpu thermalElement transmits the temperature value
to the controlSubView named T. Unlike the controlSubViewsde ned in the other views,
T speci es its behavior by a state machine in acontroller. Such state machine contains
two states: HIGH, to represent that the cpu temperature rises to its limit, and LOW,
to express that the temperature is in a typical operation temperature. The transitions
between states containguards where the cpu temperature is evaluated in order to re
the transition and to change the control state. Once a guard is red, an event is sent to
the controlSubView of the PowerView. This event commands to turn cpu o to fall its
temperature. When the temperature descends to 50C, ThermalView controlsubView
allows to PowerView turning cpu on sending an event to turncpu on. To evaluate the
temperature property, a clock signal is sent fromClockView to ThermalView control-

SubView This clock is received on theclkin port.
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Figure 5.12: Thermal view of the PRISMSYS power-aware model.

The Temperature state de ned in the cpu thermalElementis characterized by an equa-
tion in the equationalSubView We use the Compact Thermal Model (CTM) [43] to

express the thermal equation of theHardwareView elements. Figure 5.13 depicts the

equationalSubView of the ThermalView. In this gure, TempModel de nes the tem-
perature evolution through time. This equationalModel owns a rst-order di erential

equation whose parameters are thermal properties of the hardware componeiicTh

and rTh), temp_env is a constant temperature, p is evaluated in powerView and im-

ported through ParameterConnectors (pv.ps.cpu.powej and t is generated fromCon-

trolView, transmitted through DataConnectors to the controlSubView of ThermalView

(thv.thCtr.clkin ).
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Figure 5.13: Equational Sub-View of Thermal View.

5.3. Correspondences

In the speci cation of the PRISMSYS power-aware model, we use theorrespondences
de ned in the PRISMSYS framework to state the relationships between views.Abstrac-
tion is one of the rst correspondence that we can identify. Figure5.14 presents an
example of the abstraction use. cpu, which is a hwElement de ned in HardwareView is
abstracted by the cpu poweredElement In this example, the cpu power representation
specify the properties and behavior associated witlPowerView. Similar correspondence

use is de ned for clockedElementand thermalElement

In the same gure, we depict the ControlConnector Correspondence. This correspon-
dence is specied between thehwV1Ctr, hwV2Ctr and hwO Cctr controlPorts and the
pwV1Ctr, pwV2Ctr and pwO Ctr controlPorts, respectively. For instance, if the cpu
HwElement enters to Busy mode, controlSubView sends a control event toPowerView in

order to inform that the cpu power abstraction must change is power mode (tdActive).
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Figure 5.14: Example of the Abstraction and ControlConnector correspondences be-
tween PowerView and HardwareView.

We also employ the parameterConnector correspondencdo import the property value

evaluated in other expert domain. For instance, in Figure5.13 TempModel needs the
power value that is evaluated in PowerView. Therefore, by using theSysML path name
dot notion (see pvl.psl.cpu.powerparameter), we import the power parameter from the
PowerView equationalSubView This imported parameter represents aparameterCon-

nector correspondencebetweenPowerView and ThermalView.

5.3.1. Allocation

We identify a correspondencethat is commonly employed to associate amaction from
ApplicationView to a hwComponentin HardwareView. This association is namedAllo-
cation. This correspondence is only used betweeapplication and hardware views. The
semantics ofAllocation is to map actions to an hwComponents The mapping type is a

spatial distribution, i.e., an action is executed in the associatechwComponent

Figure 5.15depicts an example of allocation representation iruml betweenApplication-

View and HardwareView. In ApplicationView, t1 and t2 are allocated to cpy, i.e., the
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execution oftl and t2 is performed incpu. This correspondence also gives the possibil-
ity to assign multiple hwComponentsto execute and store anApplicationView action.
We reuse the Allocate association de ned in marte to represent this correspondence.
The nature property employed in Allocate is spatialDistribution to maintain the de ned

correspondence semantics.

Figure 5.15: Example of Allocation correspondence betweerfpplicationView and
HardwareView.

5.4. Sub-Correspondences

The PRISMSYS power-aware model also appliesubCorrespondencesspeci ed in the
PRISMSYS framework. Figure 5.16 presents the use ofcharacterization and equiva-
lence subCorrespondencén PowerView. Each state of the subViewElementsare asso-
ciated with one or more equations. For instance, theidle state is associated with the
static equation p= v lleak. This state is also associated withlleak = (8, mA) in order
to activate the static current employed in the static equation. The equivalence subCor-
respondences expressed by a parameter that import a property from asubViewElement

by using the SysML path name dot notion, such aspv.ps.vsl.voutand pv.ps.pdl.psw.vin
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parameters. The binding among pv.ps.vsl.vout pv.ps.pdl.psw.vin v and vin expresses
the equivalent subCorrespondencbetween the parameters dened in equationalSubView

and properties of subViewElements

Figure 5.16: Example of Characterization sub-correspondence irPowerView.

Summarizing the PRISMSYS power-aware model, Figure5.17 presents the big picture

of its ve de ned views.

5.5. Conclusion

In this chapter, we have presented the syntax denition of the PRISMSYS power-aware
model extending the PRISMSYS framework concepts. We have identied the expert
domains that evaluate and impact the power consumption of a system. For edcdomain,
we de ne a meta-model where the concepts commonly employed are represed. We

depict the views by using theuml representation.

In the next chapter, we implement the execution semantics of thePRISMSYS power-

aware model to be simulated. Such a simulation allows observing thevolution of the
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system power consumption and temperature through time. We also propas an power
consumption analysis by transforming thePRISMSYS power-aware model to an specic

analysis tool, such asAceplorer [8].
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Figure 5.17: PRISMSYS Power-Aware Model Overview.
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6.1. Introduction

The speci cation of the PRISMSYS power-aware model is completed by the denition
of the execution semantics. Such a semantics allows the analysis ofemon-functional
properties de ned in the model through time. This analysis is possible, once the miel

is simulated and the properties are evaluated through time.

We specify the execution semantics of the®RISMSYS power-aware model by employing
the PRISMSYS execution semantics dened in Chapter 3. We additionally de ne the
controlSubView execution semantics of each views by only usingcsl expressions. The
controlSubView execution de nition is bound with the clocks described in the PRISM-
SYS execution semantics. Moreover, ThecontrolSubView execution expresses the sce-
nario to synchronize the execution of the views. We support thecontrolSubView exe-
cution speci cation by employing the uml sequence diagram to dene the interactions
among the controlSubViewsand among their subViewElements For each view, we de ne
a sequence diagram to illustrate thecontrolSubView interaction. Afterwards, we specify

the ccsl expressions that specify the interactions represented in the sgience diagrams.

Once the semantics of thePRISMSYS power-aware model is dened, it is simulated
in TimeSquare . Nevertheless, the evaluation of the equations €.g., power and tem-
perature equations) must be performed in another tool. We choose as eqtion solver
Scilab [7], an open source tool for numerical computation. Thus, we develop dcon-
nector” between TimeSquare and Scilab to evaluate the active equations, regarding

TimeSquare simulation. We named Scilab Solverto this connector.

In this section, we simulate the evolution of power consumption and tenperature in
a cpu speci ed in the PRISMSYS power-aware model. In addition to the simulation,
we propose to analyze thecpu power consumption by transforming the PRISMSYS

power-aware model toAceplorer.

6.2. PRISMSYS Power-Aware Model Simulation

In this section, we explain how Scilab Solverworks. Thereafter, we describe the in-

teraction between the di erent software components ie.,, PRISMSYS Model, Scilab
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Solver and Scilab) supporting us on a sequence diagram. This interaction is employed

to simulate the continuous time behavior of the PRISMSYS power-aware model.

6.2.1. Scilab Solver

The de nition of the PRISMSYS execution semantics is specied in order to be simu-
lated or to verify the results of the implementation in lower abstraction levels. We know
there are two kinds of execution behaviors to simulate aPRISMSYS model: discrete
event and continuous time. The former is represented by the state rachine behavior
and the event constraints that could be de ned in ControlSubView by using ccsl . The
latter is expressed by equations inequationalSubViews The tools used to run each exe-
cution domain are di erent. To simulate the ccsl speci cations, we useTimeSquare .
To resolve the equations, we choos&cilah Both tools, TimeSquare and Scilab, pro-
vide an application programming interface (API) that allows the implementation of a

“connector” that interacts with the services that o er these tools.

PRISMSYS Model
Syntax

A
R

SI/ZZ@/;C,@ )
Xt TimeSquare
S

PRISMSYS Model /exvy/v
siel

Semantics i

Graph Plot

i active equations
Scilab q -
Solver

Figure 6.1: Overview of the PRISMSYS framework co-simulation implementation.

Figure 6.1 presents an overview of this implementation. TimeSquare is a module ap-
plication based on the Eclipse plug-in approach. In consequence, we ptement Scilab
Solver as an Eclipse Plug-in to connect theTimeSquare solver module with the eval-
uation of the PRISMSYS model equations. From theccsl speci cation, Scilab Solver
extracts the clocks that are associated with entering states in thePRISMSYS Model.
Next, Scilab Solverextracts the equations that characterize the states from thePRISM-

SYS Model. In the TimeSquare solver, once an event occurs in some of the entering
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state clocks, the associated equation is sent t&cilab in order to evaluate it and gener-
ate the graph plot of the property evolution. In the PRISMSYS model, a chronometric
clock is assigned to manage the equation evaluation. This clock has beemmed asstep

in Chapter 3. As soon asstep ticks, a new value is generated inScilab.

Figure 6.2: Sequence diagram of the PRISMSYS model Simulation.

Figure 6.2 depicts a sequence diagram that summarizes th®@RISMSYS model execu-
tion. The Solver lifeline represents theScilab Solver Once the simulation starts, Scilab
Solver extracts the clocks that represent the enteringuml states associated in theccsl
speci cation. The uml states are Itered by their stereotype in the uml model, i.e.,
having the clocks associated withuml states, Scilab Solver only searches the states
stereotyped asPRISMSYSState In the uml model, Scilab Solveralso identi es and
extracts the equations associated with the stereotyped states and # initial values of

the equation parameters. Thestep clock is also extracted from theccsl speci cation.
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This clock is identi ed by the clockPort that are bound to the t parameters in equation-

alSubViews

Once the TimeSquare simulation starts, Scilab Solverobserves the extracted clocks.
When an event occurs in some of these entering state clockScilab Solverchanges the
equation associated with the active state. If thestep clock ticks, the active equations
are evaluated in Scilab with the initial parameter values. The result of the evaluation
is marked in a Scilab plot window. After the equation evaluation, the new parameter
values are gotten by Scilab Solverand it updates the initial parameter values. This

execution continues up to the laststep occurrence in theTimeSquare simulation.

Scilab Solveris employed to simulate thePRISMSYS Power-Aware Model. This simu-
lation exhibits the evolution of non-functional properties de ned in the model, such as

power consumption and temperature.

6.2.2. The PRISMSYS Power-Aware Model Scenario

The scenario ofPRISMSYS power-aware model allows to stimulate the execution of the
views and the de nition of the execution coherence among views. In order to specify #
scenario, we state thecontrolSubView interaction with its subViewElementsand with
other controlSubViews These interactions are represented iuml sequence diagrams. A
sequence diagram identies which control events are sent from and received to dierent
elements of the PRISMSYS power-aware model. Once the diagrams are nished, its
execution semantics is described irccsl . The controlSubView speci cation is added
to the ccsl constraints that express the behavior of the subViewElementsand then
to have a completeccsl speci cation of the PRISMSYS power-aware model. Such a
ccsl speci cation is simulated in TimeSquare in order to activate the subViewElement
states. Additionally, the equations associated to the active states a& processed byscilab

Solver. The equations are evaluated and traced inScilah

6.2.2.1. Application View

ApplicationView starts the coordination of the other views. This view de nes the way as

the actions are executed. Once araction begins its execution, thecontrolSubView of this
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view informs to HardwareView that an action is been executed. In order to determine
the instant that an action starts or stops, the controlSubView de nes achronometric
clock whose ticks coincide with the clock occurrences generated bys2 in ClockView.

We name this clockappCtrPhysClk_ms.

The applicationView controlSubView sends ve control events to the HardwareView:
exeAction, stopAction, cpuOpl, cpuOp2 and cpuO . ExeAction announces toHard-
wareView that an action starts its execution. In contrast, StopAction informs that an
action stops. CpuOp1 and cpuOp2 command that the cpu runs in operation point 1 or
2, respectively. An operation point is the selection of a specic frequency and voltage
to execute anaction. The use of operation points is a strategy to reduce the power con-
sumption tuning the performance time when anaction is executed in thecpu. CpuO

requests to turn the cpu o .

Figure 6.3: Execution of ApplicationView and its interaction with HardwareView.
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Figure 6.3 presents a sequence diagram that speaés the way as theT1l and T2 actions
are executed inApplicationView. This diagram depicts the control events sent to the
other views in order to synchronize their execution regarding theApplicationView exe-
cution. The ControlSubView of ApplicationView (appCtr) sends anexeT1 event to t1
in order to change thetl state from Stop to Run. This event is sent 5ms after start-
ing the model simulation. AppCtr also sends an control event éxeAction) to announce
to HardwareView that an action is being executed inApplicationView. HardwareView
coordinates the execution ofClockView and PowerView according to the control events
received from ApplicationView. ThermalView does not receive any event from the other
views. This view only evaluates thecpu temperature evolution depending on the power

dissipated.

Following the ApplicationView sequenceappCtr con gures the cpu operation point to
execute the action. IntheT1 execution caseappCtr sends acpuOpl event to con gure
Operation Point 1. We detail the frequency and voltage selected for the operation points
in Section 6.2.2.2 At 35ms of the appCtr execution, T1 is stopped. stopT1l event is
sent to t1 in order to change its state to Stop. Next, HardwareView is informed that
the action was stopped by sending arstopAction event. This event is received by the
HardwareView ControlSubView (hwCtr). In the same way, T2 is executed. However,
Operation Point 2 is con gured to executeT2 (cpuOp2). T2 starts at 45ms and stops

at 60ms. Finally, appCtr commands to turn the cpu 0 by sendingcpuO event.

The relationships among the control events sent fromappCtr is speci ed in ccsl . We
consider each control event as ticks of alock in ccsl . Therefore, we de ne a clock
for each interaction with the controlSubView. To express that T1 starts at 5ms and

nishes at35ms we de ne periodic clocks that tick once in a predened period. These
clocks are synchronized with thechronometric clock appCtrP hysClk _ms. Hence, we
de ne as period60ms i.e., the periodic clocks tick once eacl60ms We also de ne the
instant that the periodic clocks tick. We name this instant o set To specify the instant
when the T1 action starts, we represent this instant by a periodic clock that ticks in
the fth occurrence of appCtrP hysClk _ms, i.e., at 5ms. This periodic clock repeats
this occurrence each60ms i.e., at 65ms 125ms etc. In ccsl , we specifyexeT1 clock

as follows:

exeT1lisPeriodicOn appCtrPhysClk _ms period 600 set5 (6.1)
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these specication are read asexeT1 occurs in the fth tick of appCtrP hysClk__ms each
60ms Once the exeT1 ticks, exeAction and cpuOpl are generated. The relationships

between these clocks are speatd by:

exeTl [=] exeAction (6.2)

exeTl [=] cpuOpl (6.3)

These two ccsl relations mean that once exeT1 occurs, an event in exeAction and

cpuOpl ticks simultaneously.

In the same wayexeT1 is speci ed, we state the instants whenT1 stops:

stopT1isPeriodicOn appCtrP hysClk _ms period 600 set 35 (6.4)

The relationship betweenstopAction and stopT1 is speci ed as well asexeT1:

stopAction [= |stopT1 (6.5)

Once T1 stops, the time continues running. After 10ms (at 45ms), appCtr sends an
exeT2 to starts the T2 action. To de ne whenT2 starts its execution, we state the

following ccsl speci cation:

exeT2 isPeriodicOn appCtrP hysClk _ms period 600 set 45 (6.6)

which means that exeT2 occurs in the 45th tick of appCtrP hysClk_ms each60ms

As soon asexeT2 is sent, appCtr commands toHardwareView to change the operation
point sending acpuOp2 event. AppCitr also informs that an new action starts. Therefore,
appCtr sends anexeAction to hwCtr. Similarly to the ccsl speci cation of the t1Start

relationships, the t2Start relations are de ned by:

exeT2 [=] exeAction (6.7)

exeT2 [=] cpuOm (6.8)
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To specify the end of T2, which occurs at 60ms we de ne the following periodic clock:

firstappCtrP hysClk _ms isPeriodicOn appCtrPhysClk_ms period 600 set 0

(6.9)

and then, we lter this clock deleting the rst tick:
stopT2[= | firstappCtrPhysClk _ms 2(1)" (6.10)
where is the ccsl operator that Iters appCtrPhysClk_ms and the word 2(1)"

means that the st occurrence offirstP hysClk _ms is ltered, i.e., this clock starts to

tick at 60ms.

Finally, once stopT2 occurs, astopAction is sent to hwCtr. the relationship between

these clocks is specied in ccsl as:

stopAction [= | stopT2 (6.11)

Figure 6.4 depicts the simulation of the ApplicationView speci ed in ccsl by using
TimeSquare . In this gure, we presents the state machine behavior reacting to the
control events from controlSubView. Each action state is represented by a start and
nish event, e.g., t1StopStatand t1StopFinish. At the begin of the simulation, the T1
and T2 are in Stop state. Once the controlSubView commands to execute anaction,
the states of T1 and/or T2 change. In this simulation, the sequencell, T2 and T1
is executed. The relationship between events are depicted by bé arrows (precedence)

and red lines (coincidence).



Figure 6.4: ApplicationView simulation in TimeSquare .

sisA[euy [9pON aIemy-1amod SASINSIEd "9 Jaideyd

0ct



Chapter 6. PRISMSYS Power-Aware Model Analysis 121

6.2.2.2. Hardware View

Once ApplicationView is in execution, HardwareView receives control events to coordi-
nate its subViewElementsand to synchronize thePowerView and ClockView execution.
Figure 6.5 presents the sequence diagram of the interaction amonblardwareView, Ap-
plicationView, ClockView and PowerView from the HardwareView point of view. At the
beginning of the execution sequencehwCtr, which is the controlSubView of Hardware-
View, receives two events:cpuOpl and exeAction. The former commands tohwCtr to
con gure Operation Point 1. Usually, the cpu manufacturers give the possible operation
points where their cpus could works. Therefore, in this example,hwCtr sends anactV1
event to PowerView and an actF1 event to ClockView to con gure the operation point.
These events activeV1l and F1 states in the corresponding views, if they are not al-
ready in these states.ExeAction causes thathwCtr changes thecpu state to Busy, i.e.,
cpu is executing anaction, and it sends pwExeAction and clkExeAction to PowerView
and ClockView, respectively, to change the abstractedcpu states. Thanks to the alloca-
tion correspondenceHardwareView can know which action (T1 or T2) is in execution

according to the action active state.
We specify inccsl that actV1l and actV2 are caused bycpuOpl as:

cpuOpl [=] actvVl (6.12)

cpuOpl [=] actF1l (6.13)

these ccsl relations mean that once cpuOpl ticks, actVl and actV2 occur. Similar
speci cation is de ned to the relationship among exeAction, pwExeAction and clkExe-

Action :

exeAction [=] pwExeAction (6.14)

exeAction clkExeAction (6.15)



























































































































