
�>���G �A�/�, �i�2�H�@�y�y�N�j�R�y�y�R

�?�i�i�T�b�,�f�f�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�y�N�j�R�y�y�R�p�k

�a�m�#�K�B�i�i�2�/ �Q�M �d ���T�` �k�y�R�9

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�J�Q�/�2�H�B�M�; �7�m�M�+�i�B�Q�M���H ���M�/ �M�Q�M�@�7�m�M�+�i�B�Q�M���H �T�`�Q�T�2�`�i�B�2�b �Q�7
�b�v�b�i�2�K�b �#���b�2�/ �Q�M �� �K�m�H�i�B�@�p�B�2�r ���T�T�`�Q���+�?

�*���`�H�Q�b �1�`�M�2�b�i�Q �:�¦�K�2�x �*�€�`�/�2�M���b

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�*���`�H�Q�b �1�`�M�2�b�i�Q �:�¦�K�2�x �*�€�`�/�2�M���b�X �J�Q�/�2�H�B�M�; �7�m�M�+�i�B�Q�M���H ���M�/ �M�Q�M�@�7�m�M�+�i�B�Q�M���H �T�`�Q�T�2�`�i�B�2�b �Q�7 �b�v�b�i�2�K�b �#���b�2�/
�Q�M �� �K�m�H�i�B�@�p�B�2�r ���T�T�`�Q���+�?�X �P�i�?�2�` �(�+�b�X�P�>�)�X �l�M�B�p�2�`�b�B�i�û �L�B�+�2 �a�Q�T�?�B�� ���M�i�B�T�Q�H�B�b�- �k�y�R�j�X �1�M�;�H�B�b�?�X �I�L�L�h �,
�k�y�R�j�L�A�*�1�9�R�8�j�=�X �I�i�2�H�@�y�y�N�j�R�y�y�R�p�k�=

UNIVERSITÉ NICE - SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

T H È S E
pour l’obtention du grade de

Docteur en Sciences

de l’Université Nice - Sophia Antipolis

Mention : Informatique

presentée et soutenue par

Carlos ErnestoGómez Cárdenas

Une approche multi-vue pour la
modélisation système de

propriétés fonctionnelles et
non-fonctionnelles

Modeling Functional and Non-Functional Properties of

Systems Based on A Multi-View Approach

Thèse dirigée par: FrédéricMallet

et encadrée par: JulienDeAntoni

soutenue le 20 décembre 2013

Jury :

M. Frédéric Boulanger Prof. SUPÉLEC Rapporteur
M. Abdoulaye Gamatié C.R. LIRMM-CNRS Rapporteur
M. Michel Auguin D.R. LEAT-CNRS Examinateur
M. Jean-Philippe Diguet D.R. LabSTICC-CNRS Examinateur
M. Frédéric Mallet M.C. INRIA/I3S-CNRS Directeur de Thèse
M. Julien DeAntoni M.C. INRIA/I3S-CNRS Encadrant

A mis padres, mi hermana y mi Tita...

“Il y a des hommes qui luttent un jour et qui sont bons.

Il y en a d’autres qui luttent un an et qui sont meilleurs.

Il y en a qui luttent pendant des années et qui sont excellents.

Mais il y en a qui luttent toute leur vie et ceux-là sont indispensables.”

“There are men who struggle for a day and they are good.

There are men who struggle for a year and they are better.

There are men who struggle many years, and they are better stil l.

But there are those who struggle all their lives:

These are the indispensable ones.”

“Hay hombres que luchan un día y son buenos.

Hay otros que luchan un año y son mejores.

Hay quienes luchan muchos años y son muy buenos.

Pero hay los que luchan toda la vida, esos son los imprescindibles.”

Bertolt Brecht

Résumé

Au niveau système un ensemble d’experts spéci� ent des propriétés fonctionnelles et

non fonctionnelles en utilisant chacun leurs propres modèles théoriques, outils et envi-

ronnements. Chacun essaye d’utiliser les formalismes les plus adéquats en fonction des

propriétés à véri� er. Cependant, chacune des vues d’expertise pour un domaine s’appuie

sur un socle commun et impacte directement ou indirectement lesmodèles décrits par les

autres experts. Il est donc indispensable de maintenir une cohérence sémantique entre

les di� érents points de vue et de pouvoir réconcilier et agréger chacun des points de vue

avant les di� érentes phases d’analyse.

Cette thèse propose un modèle, dénomméPRISMSYS, qui s’appuie sur une approche

multi-vue dirigée par les modèles et dans laquelle pour chacun des domaines chaque

expert décrit les concepts de son domaine et la relation que ces concepts entretiennent

avec le modèle socle. L’approche permet de maintenir la cohérence sémantique entre les

di� érentes vues à travers la manipulation d’événements et d’horlogeslogiques.PRISM-

SYS est basé sur un pro� l uml qui s’appuie autant que possible sur les pro� ls SysML ,

dédié à l’ingénierie système, etmarte , dédié à la conception de systèmes temps-réel

embarqués. Le modèle sémantique qui maintient la cohérence est spéci� é avec le langage

ccsl qui est un langage formel déclaratif pour la spéci� cation de relations causales et

temporelles entre les événements de di� érentes vues.

L’approche est illustrée en s’appuyant sur une architecture matérielle dans laquelle le

domaine d’analyse privilégié est un domaine de consommation de puissance. Le modèle

contient di � érentes vues de cette architecture : modèle fonctionnel, modèle architectu-

ral, modèle équationnel de propriétés liées à la température et à la puissance, modèle

temporel. L’environnement proposé parPRISMSYS permet la co-simulation du modèle

et l’analyse. La simulation s’appuie conjointement surTimeSquare pour les aspects

événementiels et liés au contrôle, et surSciLab pour la prise en compte des propriétés

non-fonctionnelles (température et puissance). L’analyse est conduite en transformant

le modèle multi-vue dans un format adéquat pourAceplorer, un logiciel expert dédié à

l’analyse de consommation.

Abstract

At the system-level, experts specify functional and non-functional properties by em-

ploying their own theoretical models, tools and environments. Such experts attempt to

use the most adequate formalisms to verify the de� ned system properties in a speci� c

domain. Nevertheless, each one of these experts’ views is supportedon a common base

and impacts directly or indirectly the models described by the other experts. As a con-

sequence, it is essential to keep a semantic coherence among the di� erent points of view

and also to be able to reconcile and to include all the points of view before undertaking

the di� erent phases of the analysis.

This thesis proposes a speci� c domain model namedPRISMSYS. This model is based

on a model-driven multi-view approach where the concepts, and the relationships be-

tween them, are described for each expert’s domain. Moreover, these concepts maintain

a relation with a backbone model. PRISMSYS allows keeping a semantic coherence

among the di� erent views by means of the manipulation of events and logical clocks.

PRISMSYS is represented in auml pro� le, supported as much as possible bySysML ,

devoted to the systems engineering, andmarte , dedicated to the design of real-time

embedded systems. The semantic model, which preserves the view coherence, is spec-

i� ed by using ccsl , a declarative formal language for the speci� cation of causal and

temporal relationships between events of di� erent views.

The approach is illustrated taking as case study an electronic system,where the main

domain analysis is power consumption. The system model incorporates various views:

a functional model, a power model, a time performance model and a thermal model. In

turn, these views are divided in three parts: control, structural, and equational. These

parts interact with each other to characterize the temperature and power consumption

of the system. The environment proposed byPRISMSYS allows the co-simulation of

the model and its analysis. The simulation is supported byTimeSquare , for the event

aspects and correlated to the control, and bySciLab, for taking into account the non-

functional properties (temperature and power consumption). The analysis is conduced

by transforming the multi-view model in the internal format accept ed by Aceplorer, an

expert tool dedicated to power consumption analysis.

Acknowledgements

This Ph.D. has been a very rewarding experience, both in a personaland professional

level for me. It is not only an end, but also the incredible journey it has represented.

I hope I will � nd the right words to properly express my gratitude and recognition

to everyone who, directly or indirectly, participated in this work . I will try my best.

To begin with, I owe my gratitude to Frédéric Boulanger, Abdoulaye Gamatié, Michel

Auguin and Jean-Philippe Diguet, for accepting and evaluating my thesis. I appreciate

their comments and the improvement suggestions for this research. To my advisors,

Frédéric Mallet and Julien DeAntoni I am deeply in debt. Throughout th ese years,

Frédéric has shared his researching experience with me, he has given me an external

optic of my work, and showed me how I could improve it; but above all he has taught

me the importance of presenting my ideas written in a clear and properway. Julien

has been beside me during all the development process of my thesis, he has been a

continuous guide, who helped me to address and improve my research.I appreciate

all the time he has granted me, his permanent availability and also his willingness to

redress my initial writing and presentation skills. I am very grateful for their patience

and their personal and professional support when I have needed it throughout these last

three years.

I want to thank the STIC Doctoral School and the University of Nice-Sophia Antipolis

for having rewarded me with the scholarship to develop this thesis. I cherished the

opportunity I had of teaching at the Computer Science Department of the University

during the last two years. I am deeply grateful to INRIA and I3S/CNRS laborat ories

who provided the resources and all the administrative support for this research project.

I would also express my gratitude and recognition to the French Ministry of Higher

Education and Research who provided these scholarships to promote the development

of our research. In particular, I would like to express my great appreciation to Patricia

Lachaume, our assistant, who has been very attentive, kind and extremely helpful. For

our good fortune, she is strongly in� uenced with the Colombian warmth.

It has been a pleasure for me, to work in the AOSTE team during these years. I would

like to address my special thanks to Charles André, who read and commented my � rst

manuscript version, I miss his questions on Spanish grammar, always di� cult to answer.

My gratitude to Robert de Simone for welcoming me in the team, and also integrating

me to the ANR-HELP project, which was in part an inspiration for this thes is; to Marie-

Agnès Peraldi and Arda Goknil for their interest and feedback, to Matias Vara I will

miss our discussions about our research, to Kelly Garcés and Ameni Khecharem for their

help during the implementation of my work. I also want to thank Jean-Viv ien, Sid, Je� ,

v

Calin, Regis, Luc, Nicolas, Benoit, Amin, Emilien, Yuliia, Ling and Zhic hao for sharing

these years in the group. Thanks to each and every one of you, I was able to� nd what

I was looking for in a research team, and I am extremely glad of sharing it with you.

To the people who motivated me to follow this graduate formation, Philippe Esteban,

Jean-Claude Pascal, Mario Paludetto, Fernando Jimenez and Nicanor Quijano. Thank

you very much for showing me that it was really possible to begin this journey full of

promises and dreams. Now I know it has been worth it.

I am in gratitude with the Docea Power technical support for its help in the use of

Aceplorer. I also want to thank to the Arcsis-CIM PACA program to provide the acce ss

to the Aceplorer tool.

Finally, some words in Spanish...

Quiero dar in� nitas gracias a mi papá y a mi mamá que me han acompañado y apoyado

durante todos estos años, por darme la fuerza y el valor de seguir adelante todos los días

y así haber hecho de mi la persona que soy hoy, de la que espero se sientan orgullosos. A

mi hermana Carola con quien siempre he contado y con quien nos apoyamos y ayudamos

a salir adelante, sobre todo cuando las cosas no han estado tan bien y nos reírnos cuando

si lo están, aunque no parezcan. A mis tíos, quienes han sido un gran soporte para mí

en Colombia, a mis abuelos por quererme tanto y a mis primos. Me siento muy feliz de

tener la familia que tengo y los quiero mucho.

Hoy al cierre de mi tesis tengo mucho que agradecerles, a Kelly, Michael, Camilo, Clara,

Oscar, Ruby y Rafael, por acompañarme y apoyarme duranten estos tres años. A Carlos

Quintero por ser un gran amigo y hermano desde que llegamos a Francia. A a mis her-

manas la Beba y Eugenia y mi segunda mamá Rosario por su soporte y ánimo. A Rebeca

por hacernos más agradable nuestra estancia en Europa. A Isabel y Françcois por su

apoyo incondicional. Finalmente, a mi esposa Margarita, que siempre será mi novia, por

haberse aventurado conmigo en este sueño, por su paciencia, su apoyo, sus correcciones,

por leer toda mi tesis, muchas veces, y por ser tú. Tita, gracias por mostrarme que los

sueños se pueden alcanzar. Te amo.

Contents

Résumé III

Abstract IV

Acknowledgements V

List of Figures X

List of Tables XII

Abbreviations XIII

1. Introduction (Version en Français) 1

1. Introduction 5

2. Background 9
2.1. Introduction . 10
2.2. Structural Concerns . 10

2.2.1. Multi-View Modeling . 11
2.2.2. Multi-View Approaches and Model Composition 15
2.2.3. Discussion. 23

2.3. Behavioral Concerns . 24
2.3.1. Models of Computation . 25
2.3.2. Heterogeneous Models. 27
2.3.3. Discussion. 29

2.4. Conclusion . 30

3. PRISMSYS: A Multi-View Modeling Language for Specifying Sys-
tems 31
3.1. Introduction . 32
3.2. PRISMSYS Framework . 33

3.2.1. Structural SubView . 40
3.2.2. SubView Element . 41
3.2.3. Equational SubView . 43
3.2.4. Control SubView . 46

3.3. UML Pro� le for PRISMSYS . 49

vii

Contents viii

3.3.1. UML Concepts for PRISMSYS 50
3.3.2. MARTE Concepts for PRISMSYS 54
3.3.3. SysML Concepts for PRISMSYS 55

3.4. Semantics of Execution . 56
3.4.1. Finite State Machine Semantic Speci� cation 58

3.4.1.1. Finite State Machine Clocks 58
3.4.1.2. Finite State Machine Clocks Relationship 59

3.4.2. Equational View Semantic Speci� cation 64
3.5. Conclusion . 69

4. Power Consumption Modeling 71
4.1. Introduction . 72
4.2. Dynamic Power Consumption . 73
4.3. Static Power Consumption. 74
4.4. Characterization for Power Consumption. 75
4.5. Power Management Techniques. 77

4.5.1. Clock-Gating . 78
4.5.2. Power-Gating . 78
4.5.3. Dynamic Voltage-Frequency Scale 80

4.6. Power Design Speci� cation . 81
4.6.1. UPF, CPF and IEEE 1801 . 81
4.6.2. SystemC. 84
4.6.3. UML . 84

4.7. Discussion. 85
4.8. Conclusion . 86

5. PRISMSYS Framework for Power-Aware Modeling 87
5.1. Introduction . 88
5.2. Views . 89

5.2.1. Hardware View . 89
5.2.2. Application View . 92
5.2.3. Power View . 93
5.2.4. Clock View . 99
5.2.5. Thermal View . 102

5.3. Correspondences. 105
5.3.1. Allocation . 106

5.4. Sub-Correspondences. 107
5.5. Conclusion . 108

6. PRISMSYS Power-Aware Model Analysis 111
6.1. Introduction . 112
6.2. PRISMSYS Power-Aware Model Simulation 112

6.2.1. Scilab Solver . 113
6.2.2. The PRISMSYS Power-Aware Model Scenario 115

6.2.2.1. Application View . 115
6.2.2.2. Hardware View. 121
6.2.2.3. Clock View . 125

Contents ix

6.2.2.4. Power View. 129
6.2.2.5. Thermal View . 133

6.3. PRISMSYS Power-Aware Model Analysis inAceplorer 135
6.3.1. Transformation Overview . 136
6.3.2. Aceplorer Domain Model . 137
6.3.3. PRISMSYS to Aceplorer Transformation 139
6.3.4. Aceplorer Code Generation . 140
6.3.5. Test Scenario Generation . 140

6.4. Conclusion . 144

7. Conclusion (Version en Français) 145
7.1. Perspectives. 147

7. Conclusion 149
7.1. Future works . 151

List of Figures

2.1. Conceptual model for the system architecture context from [2]. 11
2.2. Multi-view modeling according to IEEE-42010. 12
2.3. Architecture Framework concept model [2]. 13
2.4. Abstraction levels in MDE. 14
2.5. Abstraction levels of IEEE-42010 concepts [17].. 15
2.6. Relationship between modeling approaches and speci� c domains. 18
2.7. Petri Net meta-model and a Petri Net model example. 26
2.8. Composition between Synchronous Data Flow and Finite State Machine

in Ptolemy II. 28

3.1. PRISMSYS Framework meta-model. 34
3.2. Relationship betweenAbstraction correspondence andviewElement. . . 36
3.3. Component meta-model and its relationship with View, SubView, Sub-

ViewElement and ConnectorCorrespondence. 37
3.4. Correspondences and Sub-Correspondences inPRISMSYS Framework. . 39
3.5. Example ofstructuralSubViews including the abstraction correspondence. 41
3.6. SubViewElementmeta-model. 42
3.7. EquationalSubViewmeta-model. 44
3.8. EquationalSubViewExample . 45
3.9. Example of the characterization and equivalence correspondences use. . 46
3.10. Controller meta-model . 47
3.11. Example of the use ofControlSubView to control the water level of a tank. 48
3.12. Simpli� ed meta-model ofEncapsulatedClassi� er. 52
3.13. State stereotype. 53
3.14. Abstraction of CPU in a layout component view. 54
3.15. Simpli� ed Constraint Block meta-model from the SysML speci� cation. . 56
3.16. Representation of an active state by clocks. 60
3.17. Representation of the clock ticks leading to a change between twostates

caused by aguardEvent. 61
3.18. Representation of the clock ticks leading to a change between twostates

caused by atriggerEvent. 63
3.19. PRISMSYS model where the temperature of a CPU is characterized in

the equationalSubView. 66
3.20. Temperature evolution through time according a prede� ned execution

scenario. 69

4.1. CMOS inverter circuit. 72
4.2. Leakage currents of a NMOS transistor. 74

x

List of Figures xi

4.3. Example of a clock gating implementation. 78
4.4. Example of a power gating implementation. 79
4.5. Example of a retention register. 79
4.6. Example of Power Domain association.. 83

5.1. Hardware View meta-model.. 90
5.2. Hardware View of the PRISMSYS power-aware model.. 91
5.3. Application View Meta-model. 92
5.4. Application View of the PRISMSYS power-aware model. 93
5.5. Power View Meta-model. 94
5.6. Power View of thePRISMSYS power-aware model without including its

equationalSubView. 96
5.7. EquationalSubViewof PowerView. 98
5.8. Clock View Meta-model. 100
5.9. Clock View of the PRISMSYS power-aware model without including its

equationalSubView. 101
5.10. Equational Sub-view of Clock View. 102
5.11. Thermal view Meta-Model. 103
5.12. Thermal view of the PRISMSYS power-aware model. 104
5.13. Equational Sub-View of Thermal View. 105
5.14. Example of theAbstraction and ControlConnector correspondences be-

tween PowerView and HardwareView. 106
5.15. Example ofAllocation correspondence betweenApplicationView and Hard-

wareView. 107
5.16. Example ofCharacterization sub-correspondence inPowerView. 108
5.17.PRISMSYS Power-Aware Model Overview. 110

6.1. Overview of thePRISMSYS framework co-simulation implementation. . 113
6.2. Sequence diagram of the PRISMSYS model Simulation.. 114
6.3. Execution of ApplicationView and its interaction with HardwareView. . 116
6.4. ApplicationView simulation in TimeSquare 120
6.5. Execution of the HardwareView controlSubView and its interaction with

ApplicationView, PowerView and ClockView. 122
6.6. HardwareView simulation in TimeSquare 124
6.7. Execution of the ClockView controlSubView and its interaction with its

internal subViewElementsand with HardwareView. 126
6.8. ClockView simulation in TimeSquare 128
6.9. Execution of the HardwareView controlSubView and its interaction with

ApplicationView, PowerView and ClockView. 130
6.10.Power View simulation in TimeSquare 132
6.11.Thermal View simulation in TimeSquare 134
6.12. Transformation Overview. 137
6.13. Simpli� ed Aceplorer meta-model. 138
6.14. Control View Scenario generated byTimeSquare (above) and the power

consumption response inAceplorer (below). 143

List of Tables

3.1. PRISMSYS - UML Mapping. 51
3.2. PRISMSYS - MARTE Mapping. 54
3.3. PRISMSYS - SysML Mapping. 56
3.4. Clocks representing the relevant actions in a Finite State Machine for

both SubViewElementand Controller . 59

6.1. Action execution in cpu clock cycles and time. 126
6.2. Multi-View - Aceplorer Mapping. 139

xii

Abbreviations

ATL A TLAS T ransformation Language

CPF C ommon Power Format

CTM C ompact T hermal M odel

DVFS D ynamic V oltage-FrequencyScale

DSML D omain Speci� c-M odeling Languages

ESL E lectronic System-Level

FSM F inite State M achine

HDL H ardware D escription-Language

MARTE M odeling and A nalisis of R eal T ime and Embedded Systems

MDA M odel-D riven A rchitecture

MDE M odel-D riven Engineering

MOF M eta Object Facility

MoC M odel of Computation

NFP N on-Functional Property

EMF E clipse M odeling Framework

QVT Q uery V iew T ransformation

RTL R egister-T ransfer Level

SysML Sys tems M odeling Language

TLM T ransaction-Level M odeling

UML U ni� ed M odeling Language

UPF U ni� ed Power Format

VCD V alue ChangeD ump

VHDL V HSIC H ardware D escription Language

VSL V alue Speci� cation Language

xiii

Chapitre 1

Introduction (Version en

Français)

La notion de système englobe des environnements plus ou moins complexes. Les té-

léphones� laires autrefois limités à l’aspect communication ont été remplacés par les

téléphones GSM qui combinent l’envoi de texto, le guidage GPS des utilisateurs, la lec-

ture d’un journal et/ou d’un livre ou encore la navigation sur Internet . Les systèmes ont

aussi été mis-à-jour avec une technologie plus sophistiquée, où l’optimisation de certaines

propriétés est une priorité aujourd’hui. Les systèmes électroniques sont maintenant in-

tégrés dans les voitures, les avions, les bateaux et les trains. Ces systèmes numériques se

veulent plus e� caces et plus� exibles que les systèmes purement mécaniques en aidant

à réduire la consommation de carburant, les coûts de maintenance et en améliorant la

qualité fonctionnelle.

Dans le but de gérer la complexité des systèmes modernes, les architectes des systèmes

divisent les aspects en plusieurs domaines. Chaque domaine est conçu, étudié et ana-

lysé par des experts spéci� ques qui s’y intéressent spéci� quement. Ces préoccupations

sont quanti� ées par les propriétés établies dans le cahier des charges du système. Ces

propriétés peuvent être soit fonctionnelles (arrêter une voiturequand la pédale du frein

est appuyée), ou non fonctionnelles (déterminer un budget sur la consommation de

puissance et de carburant, les temps de réponse, la taille et les coûts). Habituellement,

les experts ont leurs propres langages et outils pour modéliser et analyser un domaine

1

Chapitre 1. Introduction (Version en Français) 2

spéci� que. Cependant, ces domaines sont liés et interagissent a� n de respecter les exi-

gences du système. Par exemple, dans les voitures électriques ou hybrides, l’action de

freinage pourrait générer de l’énergie qui peut être stockée dans les batteries pour être

réutilisée lorsque la voiture a besoin d’accélérer. Ce cycle peut réduire la consomma-

tion de puissance ou de carburant de la voiture en améliorant certaines propriétés non

fonctionnelles.

Nous proposons d’exprimer comme desvues, chacun des domaines du système. IEEE-

1471 [1] et IEEE-42010 [2] sont des standards qui proposent une structure générique a� n

de spéci� er un système avec de multiples vues. Cette manière de décrireun système est

appeléemodélisation multi-vue. Cependant, ces standards sont extrêmement généraux,

ils peuvent donc être appliqués de di� érentes façons. En plus, en utilisant ces standards,

c’est di� cile de décrire les concepts réutilisables dé� nis dans une architecture pour les

appliquer ailleurs.

Dans cette thèse, nous proposonsPRISMSYS, un langage de modélisation muti-vue

qui permet de spéci� er les domaines des experts dans une variété de vues.PRISMSYS

est inspiré par les concepts dé� nis dans IEEE-42010 [2]. Néanmoins, nous proposons

des éléments spéci� ques inclus dans les vues, ses comportements, ses associations et ses

interactions. En utilisant l’Ingénierie Dirigée par les Modèles,nous donnons une syntaxe

à PRISMSYS, i.e., la structure de l’architecture du système. La structure dePRISMSYS

est spéci� ée par unméta-modèle.

PRISMSYS inclut deux types de comportements : un comportement à événements dis-

crets, représenté par des machines à états et l’interaction parmi des vues dé� nie par

des événements. Il prévoit aussi un comportement EN temps continu, exprimé par des

2quations. Nous dé� nissons la sémantique d’exécution de ces comportements en utili-

sant ccsl [3], un langage déclaratif qui décrit les relations causales et temporelles entre

événements. En employantccsl , nous spéci� ons la coordination du comportement des

di� érents domaines d’exécution. Nous orchestrons aussi les di� érent modèles (a priori

hétérogènes) du comportement dans les vues dé� nies, comme la synchronisation entre

l’activation des états d’une machine à états� nis (un comportement à événements dis-

crets) et l’évaluation des équations (un comportement en temps continu).

Nous représentonsPRISMSYS comme un pro� l uml . Le pro� l de PRISMSYS utilise

autant que possible les concepts dé� nis dans les pro� ls uml SysML [4] et marte [5].

Chapitre 1. Introduction (Version en Français) 3

Une fois que la sémantique d’exécution dePRISMSYS est dé� nie, nous utilisonsTimeS-

quare [6] a� n de simuler la partie discrète du modèle. Pour évaluer la partie continue,

nous choisissonsScilab [7], une outil de calcul numérique qui o� re les fonctions pour ré-

soudre les équations. Nous avons développé unconnecteur entre TimeSquare et Scilab

pour orchestrer la simulation discrète avec la partie continue.

Pour illustrer le potentiel de PRISMSYS, nous avons développé un modèle d’un système

dont la principale préoccupation est la consommation de puissance. Dans ce modèle,

nous dé� nissons les vues et les éléments qui décrivent et impactent la consommation de

puissance d’un système. Ce modèle est simulé et les comportements discrets et continus

sont présentés (e.g., le comportement de la machine d’états� nis, et aussi l’évolution

de la consommation de puissance et la température). Finalement, nousproposons une

autre manière d’utiliser le modèlePRISMSYS. Nous spéci� ons une transformation du

modèlePRISMSYS vers un autre modèle d’un outil de domaine spéci� que. En prenant

comme cas d’étude le modèlePRISMSYS dédié à la consommation de puissance, nous le

transformons dans le format interne d’Aceplorer a� n de simuler et analyser la consom-

mation de puissance.Aceplorer [8] est un outil commercial qui modélise et simule le

comportement de la consommation de puissance d’un système.Aceplorer a été utilisée

dans le cadre du projet ANR-HeLP (référence ANR-09-SEGI-006).

Le contenu de cette thèse est organisé en deux parties principales : Ladé� nition de la

structure de PRISMSYS, et le développement du cas d’étude dePRISMSYS, un modèle

du système dédié à la consommation de puissance.

La première partie introduit les concepts principaux de la modélisation multi-vue et de

l’hétérogénéité du comportement spéci� é dans le modèle d’un système. En conséquence,

cette partie est consacrée à la spéci� cation de la structure de PRISMSYS. Cette partie

est composée des chapitres2 et 3. Le premier chapitre introduit l’état de l’art des

préoccupations structurelles et comportementales a� n de modéliser les systèmes. Nous

introduisons les concepts de modélisation multi-vue identi� és par la spéci� cation IEEE-

42010. Finalement, Nous identi� ons une relation entre la modélisation multi-vue et la

composition des modèles. Sur les préoccupations comportementales,nous introduisons

la notion de Modèle de Calcul (MoC), les outils qui les implémentent, comme Ptolemy

II [9] et ModHel’X [10], et nous discutons également le problème d’hétérogénéité parmi

di� érents MoCs. Le chapitre 3 dé� nit la structure de PRISMSYS, sa syntaxe et sa

Chapitre 1. Introduction (Version en Français) 4

sémantique pour spéci� er un modèle multi-vue d’un système. La syntaxe dePRISMSYS

est spéci� é par un meta-modèle. PRISMSYS suit une approche par composants, où les

concepts multi-vue sont speci� és en accord avec cette approche. Unevueest exprimée par

trois sous-vuesprincipales : controlSubView, StructuralSubView et EquationalSubView.

Chaque sous-vue joue un rôle spéci� que dans la construction d’une vue.

La deuxième partie de cette thèse est dédiée à la modélisation d’un système dont la

préoccupation principale est la consommation de puissance. Ce modèle est dé� ni en

utilisant la structure de PRISMSYS. Cette partie de la thèse est composée des chapitres

4, 5 and 6. Le chapitre 4 introduit les concepts, les techniques, et les outils employés pour

modéliser la consommation de puissance d’un système. Nous spéci� ons les vues et ses

éléments a� n d’évaluer et d’analyser le modèlePRISMSYS dédié à la consommation de

puissance dans le chapitre5. Nous simulons, évaluons et analysons le modèlePRISMSYS

dédié à la consommation dans le chapitre6 en utilisant TimeSquare , Scilab et le

connecteur Scilab Solver construit pour l’occasion. Dans ce chapitre, nous spéci� ons

également la transformation dePRISMSYS vers Aceplorer.

Finalement, nous concluons ce travail, en soulignant les contributions principales et nous

donnons quelques perspectives futures dans le chapitre7.

Chapter 1

Introduction

Nowadays, the complexity of systems is increasing. It began with simple devices that

performed a speci� c functionality, such as a telephone that makes calls through a cable,

and now, these devices are much more complex including new functionalities and new

technologies. For instance, the telephone is being replaced by mobile phones, which are

wireless and have multiple functionalities such as sending messages, orienting people

to arrive to a destination or allowing to read news and books or to surf on the Inter-

net. Systems have also been upgraded with a more sophisticated technology, where

the optimization of certain properties is a priority today. Electron ic systems are now

integrated in cars, airplanes, boats and trains. These systems are more precise than the

mechanical ones helping to reduce gas consumption, maintenance costs and improving

the functional quality.

To deal with the complexity of modern systems, system architectssplit them in vari-

ous domains. Each domain is designed, studied and analyzed by experts that specify

determined stakeholder’s concerns. These concerns are quanti� ed by properties stated

in system requirements. Such properties can be either functional, such as stopping a

car when the brake pedal is pressed, or non-functional, like power andgas consumption,

time performance, size and costs. Usually, the experts have their own languages and

tools to model and analyze a speci� c domain. However, these domains are connected

and they interact to ful � ll the system requirements. For instance, in electric or hybrid

cars, the braking action could generate some energy that can be stored in batteries to

5

Chapter 1. Introduction 6

be re-used once the car needs to accelerate. This cycle can reduce the power or gas

consumption of the car, improving certain non-functional properties.

The multiple domains that could be de� ned in a system are tackled by expressing them in

views. IEEE-1471 [1] and IEEE-42010 [2] are standards that propose a generic framework

to specify a system in multiple views. This way to describe a system is namedmulti-view

modeling. Nevertheless, these standards are extremely general, therefore they can be

applied in di� erent ways. Moreover, by using these standards, it is di� cult to describe

re-usable concepts de� ned in an architecture in order to apply them in a di� erent one.

In this thesis, we proposePRISMSYS, a multi-view modeling language that allows spec-

ifying expert’s domains in various views. PRISMSYS is inspired by the concepts de� ned

in IEEE-42010 [2]. However, we propose speci� c elements included in the views, their

behavior, associations and interactions. By using Model Driven Engineering, we give a

syntax to PRISMSYS, i.e., the system architecture structure. The PRISMSYS struc-

ture is speci� ed by meta-models. Model Driven Engineering de� nes a clear separation of

abstraction levels wheremeta-model is one of them. Thanks to these abstraction levels,

we can split those speci� ed in IEEE-42010.

PRISMSYS includes two kinds of behaviors: a discrete event behavior, represented

by state machines and the event interaction between views, as well asa continuous

time behavior, expressed by equations whose values are evaluated through time. We

de� ne the execution semantics of this behavior inccsl [3], a declarative language that

describes causal and temporal relationships between events. By employing ccsl , we

specify the coordination of the behavior from di� erent execution domains. We also

orchestrate the heterogeneity in the behavior modeling in the de� ned views, such as

the synchronization between a� nite state machine (a discrete event behavior) and the

evaluation of an equation (a continuous time behavior).

We representPRISMSYS in uml by specifying a pro� le. The PRISMSYS pro� le uses

as much as possible the concepts de� ned in other uml pro� les, such asSysML [4] and

marte [5]. The concepts that are not included in uml or in the other two pro � les,

are de� ned as stereotypes in thePRISMSYS pro� le, extending the uml concepts whose

meaning is compatible with the PRISMSYS concept semantics.

Chapter 1. Introduction 7

Once the semantics of thePRISMSYS execution is de� ned, we useTimeSquare [6]

to simulate the discrete part of the model. To evaluate the continuous part, we chose

Scilab [7], a numerical computing tool that provides the functions to solve equations.

We have developed aconnector between TimeSquare and Scilab to orchestrate the

discrete simulation with the continuous one.

To prove the potential of PRISMSYS, we have developed a model of a power-aware

system. First, we introduce a background in power consumption characterization and

power management. We continue de� ning the views and the elements that describe

and impact the power consumption of a system. This model is simulated and the

discrete and continuous behaviors are depicted (e.g., � nite state machine behavior, and

also power and temperature evolution). Finally, we propose another wayto use the

PRISMSYS model. We specify a transformation of thePRISMSYS model to a model

of a speci� c domain tool. Taking as use case thePRISMSYS power-aware system

model, we transform it to an Aceplorer model in order to simulate and analyze the

power consumption. Aceplorer [8] is a commercial tool that models and simulates the

power behavior of a system. Aceplorer was used in the context of the ANR Project

HeLP (reference ANR-09-SEGI-006).

The content of this thesis is organized in two main parts: The de� nition of the PRISM-

SYS framework, and the development of thePRISMSYS use case, a power-aware system

model.

The � rst part introduces the main concepts of multi-view modeling and highlights the

behavior heterogeneity speci� ed in a system model. Therefore, this� rst part is the

stronghold in the speci� cation of the PRISMSYS framework. This part is composed of

chapters2 and 3. The former introduces the background about structural and behavioral

concerns to model systems. We present that the complexity of a system architecture

could be managed following the multi-view approach. We introduce themulti-view

concepts speci� ed in IEEE-42010. We also split the abstraction level de� ned in IEEE-

42010 by using the Model-Driven Engineering abstraction levels. Finally, we identify a

relationship between the multi-view modeling and the model composition. In the be-

havioral concerns, we introduce the notion of Model of Computation (MoC), the tools

that implement them, such as Ptolemy II [9] and ModHel’X [10], and we also discuss the

Chapter 1. Introduction 8

heterogeneity problem between various MoCs. Chapter3 de� nes thePRISMSYS frame-

work, its syntax and semantics to de� ne a multi-view system model. ThePRISMSYS

syntax is speci� ed by meta-models. PRISMSYS follows a component approach, where

the multi-view concepts are speci� ed accordingly. A view is expressed by three main

sub-views: controlSubView, StructuralSubView and EquationalSubView. Each sub-view

plays a speci� c role in the construction of a view.

The second part of this thesis is dedicated to the modeling of a power-aware system by

using PRISMSYS. This part consists of chapters4, 5 and 6. Chapter 4 introduces the

concepts, techniques, and tools employed to model the power consumption of a system.

We specify the views and their elements to describe various domains that are involved

in the system power consumption in Chapter 5. We simulate, evaluate and analyze

the PRISMSYS power-aware model in Chapter6 by using TimeSquare , Scilab and

their connector Scilab Solver. In this chapter, we also specify the transformation of

PRISMSYS to Aceplorer.

Finally, we provide the conclusion of this work, highlighting its main contributions and

we give some future perspectives in Chapter7.

Chapter 2

Background

Contents

2.1. Introduction . 10

2.2. Structural Concerns . 10

2.2.1. Multi-View Modeling . 11

2.2.2. Multi-View Approaches and Model Composition 15

2.2.3. Discussion. 23

2.3. Behavioral Concerns . 24

2.3.1. Models of Computation . 25

2.3.2. Heterogeneous Models. 27

2.3.3. Discussion. 29

2.4. Conclusion . 30

9

Chapter 2. Background 10

2.1. Introduction

Systems have a strong foothold in our daily life. In the customer electronics market,

mobile phones, tablets, video and music players, and TVs are some examples of these

systems. They provide a quick and direct access to the information(email, news, arti-

cles, books, etc) and they are marking a milestone in communications,giving a great

mobility to consumers. These systems are also installed in cars, airplanes, boats and

submarines to upgrade certain mechanical controllers or optimize energy consumption,

time performance and costs. Medicine is also an important domain where systems play

an important role, e.g., measuring blood pressure, dosing medicament or pacing the

heart.

Experts from di� erent domains work together in the design of systems. These experts

ful� ll the strict system requirements, generally speci� ed by non-functional properties

such as time performance, security, power consumption, temperature and cost. Each

expert has his/her own language to describe the model of the system from his/her point

of view. Therefore, a system model is represented by multiple languages where each

language satis� es certain system requirements.

Whatever its complexity, a language is always de� ned by a syntax and a semantics. In

this thesis, we use the term “syntax” to refer to the structural de� nition of the language.

In contrast, the term “semantics” describes the behavior of the language.

In this chapter, we present the concepts and the approach that we use in this thesis to

de� ne the structure and the behavior of the languages that model systems.

2.2. Structural Concerns

According to IEEE-1471 [1], a system is“a collection of components organized to ac-

complish a speci� c function or set of functions”. This standard also de� nesarchitecture

as “the fundamental organization of a system embodied in its components, their rela-

tionships to each other, and to the environment, and the principles guiding its design

and evolution”. Taking into account these two de� nitions, an architecture speci� es the

structure of a system, based on a component approach.

Chapter 2. Background 11

To de� ne a system architecture, it is important to identify the elements involved in the

design of a system. IEEE-15288 standard [11] de� nes asystem as “man-made, created

and utilized to provide products and/or services in de� ned environments for the bene� t

of users and other stakeholders”. Following this de� nition, we identify that a system is

associated with two main entities: environment and stakeholder. Figure 2.1 presents a

conceptual model of the identi� ed elements that are associated with a system. In this

� gure, a system responds to thestakeholderneeds and it is placed in anenvironment.

An environment may contain other systems or subsystems that interact with each other.

A systemexposes one and only onearchitecture.

Figure 2.1: Conceptual model for the system architecture context from [2].

The stakeholder needs are represented byconcernsin IEEE-1471 [1]. These concerns are

de� ned in various speci� c domains that are studied by di� erent experts. These experts

build system models that include functional and non-functional properties to tackle the

concerns related to their domain. The modeling activity where concerns are divided into

various domains is calledmulti-view modeling.

In Section 2.2.1, we present the main concepts of multi-view modeling using the IEEE-

42010 standard [2]. This standard is a reference in this kind of modeling.

2.2.1. Multi-View Modeling

Multi-view modeling was proposed as a solution to manage the complexityof the system

design. This technique de� nes a system architecture in di� erent views where each view

addresses a set of stakeholder’s concerns [1]. Views are de� ned by domain experts

that have their own concepts and languages to express the domain elements and their

relationships. An example of this modeling technique is applied toconstruction. To

construct a building, architects design � oor plans, electrical engineers draw electrical

blueprints and hydraulic engineers create pipe networks. The electrical blueprints and

Chapter 2. Background 12

the pipe networks are de� ned based on the� oor plans, therefore, in this particular case,

there is a reference model to build the other domain models. Similar to the construction

domain, systems can be speci� ed with diverse views; for instance, power consumption

view, � nancial view, structural view and time performance view.

In this thesis, we use the vocabulary speci� ed in the IEEE-42010 standard [2] to describe

the multi-view concepts. This standard is an updated version of IEEE-1471 [1] and

it is inspired by various multi-view approaches such as DoDAF [12], MODAF [13],

TOGAF [14], the “4+1” view model [15] and Zachman’s framework [16].

According to the IEEE-42010 standard, a system architecture is represented by anarchi-

tecture description. The standard emphasizes that anarchitecture is “abstract, consisting

of concepts and properties”, whereasarchitecture description is a work-product used to

de� ne an architecture. Figure2.2 presents the conceptual model de� ned in IEEE-42010.

In the � gure, an architecture description owns views and correspondences. A view con-

tains modelsthat are the modeling artifacts describing the view. Correspondencebuilds

associations among architecture elements that de� ne the considered system,i.e., the

relationship between models, views, the architecture description, stakeholders, and con-

cerns. The main purpose ofCorrespondenceis to identify the view elements that have

some kind of association in a system architecture in order to maintain the consistency

of the architecture description.

Figure 2.2: Multi-view modeling according to IEEE-42010.

Chapter 2. Background 13

This standard also speci� es a mechanism to build architecture descriptions which could

be reused in various projects that share the same architecture concepts. For this ob-

jective, IEEE-42010 introduces the Architecture Framework concept. Architecture de-

scription is the rei� cation of architecture framework, i.e., the architecture framework

concepts are used to build the architecture description of a system architecture. Fig-

ure 2.3 presents the conceptual model ofarchitecture framework. An architecture frame-

work owns viewpoints, and correspondence rules. Views and correspondencesconform

to viewpoints and correspondence rules, respectively. A viewpoint contains model kinds

where modelsconform to them.

Figure 2.3: Architecture Framework concept model [2]

IEEE-42010 de� nes a conceptual model wherearchitecture framework concepts andar-

chitecture description concepts are mixed,i.e., models, model kinds, views, viewpoints,

correspondencesand correspondence rulesare contained in anarchitecture description.

Demirli et al. [17] consider that architecture framework concepts andarchitecture de-

scription concepts are di� erent abstraction levels. Demirli proposes to use the Model-

Driven Engineering approach to model the abstraction levels of the architecture de� ned

in IEEE-42010.

Model-Driven Engineering (MDE) is a software design technique where the main ar-

tifact is model. The Object Management Group (OMG) de� nes that “a model is a

representation of a part of the function, structure and/or behavior of a system. The

model speci� cation is based on a language that has a well-de� ned form (syntax), mean-

ing (semantics) and possible rules of analysis, inferences or prooffor its constructs.” [18].

According to this de� nition, a model is built based on a language that gives the necessary

expressivity to represent the elements of a speci� c domain. This language is described

through a meta-model. A meta-model expresses the concepts and relationships to build

Chapter 2. Background 14

a model. A meta-model is a model by itself, so that it has another language that con-

tains the required concepts and relationships to de� ne one or more meta-models. Such

a language is calledmeta-meta-model. Examples of meta-meta-models are MOF [19]

and Ecore [20]. MDE does not propose another language to build meta-meta-models.

A meta-meta-model is rather considered as a self-de� ned model, i.e., its concepts and

relationships are represented by them-selves. This self-de� nition avoids the multiplica-

tion of abstraction levels. In Figure 2.4, we present the abstraction levels in MDE. In

the � gure, we identify an association of conformity between the concepts of each level,

i.e., each level relies on the concepts de� ned in the upper abstraction level. The M0

level denotes the real world. In this level, the concrete objects are represented by the

elements of a model.

Meta-Meta-Model

Meta-Model

Model

Object

conforms to

conforms to

conforms To

represented byM0

M1

M2

M3

Figure 2.4: Abstraction levels in MDE.

Following the MDE abstraction levels, Demirli identi � es that the architecture framework

conceptual model is themeta-model of architecture description conceptual model. Fig-

ure 2.5 depicts the abstraction level representation of IEEE-42010 concepts according

to Demirli’s work [17].

Chapter 2. Background 15

Architecture
Framework

ViewPoint ModelKind CorrespondenceRule

1..* 1..* 1..*

Architecture
Description

View Model Correspondence

1..* 1..* 1..*

Conforms toConforms toConforms toConforms to

M1

M2

Figure 2.5: Abstraction levels of IEEE-42010 concepts [17].

MDE o� ers two alternative solutions for the de� nition of models: either through a

General-Purpose Modeling Language (GPML) or through a Domain-Speci� c Modeling

Language (DSML). GPML proposes to use a unique meta-model that has enough ex-

pressivity to de� ne any domain. uml [21] and XML are examples of GPMLs. DSML

proposes to de� ne one dedicated meta-model for each speci� c domain. SysML [4],

marte [5], AADL [22] and ATL [23] are examples of DSMLs. Hence, we considerar-

chitecture framework as a set of DSMLs with a set of correspondence rules between the

DSML elements.

An example of the IEEE-42010 implementation is MEGAF [24]. MEGAF is a tool to

build architecture frameworks according to the IEEE-42010 standard. This infrastruc-

ture allows creating viewpoints, stakeholders and concerns to describe a speci� c system.

MEGAF also de� nes associations between the speci� ed architecture elements to enable

consistency checks based on the de� ned correspondences.

In the following subsection, we present approaches based on the multi-view modeling

requirements de� ned in IEEE-42010. We also explore an alternative solution through

the so-called /model composition/ and we compare the two solutions.

2.2.2. Multi-View Approaches and Model Composition

There are two approaches that use the multi-view concept speci� ed in IEEE-42010:

synthetic and projective [2]. A synthetic approach de� nes oneviewPoint for each speci� c

domain, independently. It integrates theseviewPoints in an architecture framework by

Chapter 2. Background 16

using correspondence rules. In contrast, a projective approach speci� es a reference meta-

model, where theviewPoints are built by hiding irrelevant elements from its meta-model.

In this approach, correspondence rules are already de� ned in the reference meta-model.

Model composition is another modeling approach used in software engineering to com-

bine models with a speci� c purpose. These models can conform to a common meta-

model, or to di� erent ones. Clavreul [25] de� nes that Model Composition is an activity

that “ enables to build a system from the union of independent or dependent software

artifacts ”.

Similarly to the multi-view approaches, model composition speci� es correspondences be-

tween the elements of the models (or meta-models) to be combined.Clavreul de� nes four

main types of correspondences to classify the model element relationships. These corre-

spondences are:operator-based, rule-based, model-basedand delta representation-based.

Operator-based is a set of functions whose actions de� ne the correspondences among

model elements.Rule-based� nds the similarity between model elements, such as term-

matching on names or satis� es certain constraints to associate model elements, such as

pre- or post-conditions. Model-basedis a correspondence type that is formally de� ned as

part of the modeling language speci� cation, e.g., DSMLs. Finally, delta representation-

basedis a correspondence that identi� es by analysis the di� erences between two or more

versions of the same model.

Clavreul also identi� es various interpretations to these correspondences. He de� nes two

interpretation categories in modeling structural associations: overlapping and cross-

cutting. Overlapping is to merge one or more models gathering the model elements

that have equal or similar interpretation. Cross-cutting is to weave new model elements

(aspects) to a base model, modifying the structure and/or behavior. Clavreul also

de� nes two additional categories:add and delete. These categories insert/delete model

elements in a model. Clavreul considers that the designer must know the internal model

structure in order to use the latter two categories. In contrast, using the previous three

interpretation categories does not require a knowledge of the internal model structure

to de� ne correspondences.

Multi-view approaches and model composition have in common the notion of correspon-

dence. Clavreul de� nes correspondence as“any kind of implicit or explicit relationships

Chapter 2. Background 17

between sets of models or sets of model elements”. This de� nition is shared with IEEE-

42010. However, IEEE-42010 speci� es correspondencethrough correspondence rules,

i.e., a correspondenceis the use of acorrespondence rulede� nition in a model.

The correspondence and interpretation given by Clavreul could be applied to the def-

inition of correspondence rules. Nevertheless, the application ofcorrespondence rules

in model composition and the multi-view approaches are di� erent. While the synthetic

approach only usescorrespondence rulesto associate concepts of various DSMLs with-

out generating a new DSML, model (or meta-model) composition has as goal to geta

resulting model (or meta-model) that is built by combining one or more models of the

same language or from di� erent languages usingcorrespondence rules. In the case of the

projective approach, correspondence rulesare de� ned in the reference meta-model from

where the viewPoints are derived.

Figure 2.6 depicts the relationship between languages, de� ned by meta-models, and the

modeling approaches. In this � gure, MM1 and MM2 are independent meta-models

(or languages). The elements of both meta-models are associated bycorrespondence

rules. The correspondence rules can be in both senses,i.e., they associate elements

from MM1 to MM2 or vice versa. The two languages (MM1 and MM2) and their

correspondence rules de� ne a multi-view synthetic approach. The idea of this approach

is to de� ne the correspondence rules betweenviewPoint elements, in order to maintain

the coherence betweenviewPoints. Using the synthetic approach, we can generate a

composed language (MM3) that is the result of the interpretation of correspondence

rules between MM1 and MM2. The projective approach is the decomposition of a

language in other languages,i.e., MM3 can be decomposed inMM1 and MM2. The

correspondence rules inMM3 are internal relationships between its elements,i.e., it is

part of the domain de� nition. Therefore, the composition of MM1 and MM2 keeps the

correspondence rules de� ned betweenMM1 and MM2. Once the projective approach

is applied, the correspondence rules betweenMM1 and MM2 are identi� ed in MM3

in order to extract such correspondences and to de� ne associations betweenMM1 and

MM2.

Chapter 2. Background 18

Figure 2.6: Relationship between modeling approaches and speci� c domains.

It is important to note that the multi-view approaches have as objective to maintain

the independence between speci� c domains. Correspondence rules are the connections

that these domains have. In contrast, the aim of the composition modeling approach is

to generate a model (or meta-model) that contains the elements of the source models

according to the correspondence rules. We could apply the compositionapproach in a

multi-view model to generate analysis models from a selected number of views (projective

or synthetic) to a speci� c purpose. These analysis models could study the impact of

the modeled concerns from di� erent views of a system. For instance, the impact of

increasing the clock frequency in power consumption and time performance.

In the following items, we analyze some examples that are somehow associated with

synthetic, projective and composition approaches:

Aspect-Oriented Programming: In an object-oriented program, the non-functional

and the cross-cutting concerns are interwoven in the code. Kiczales et al. [26] pro-

pose to extract these non-functional and cross-cutting concerns fromthe main

concern of the program. These extracted concerns are known asaspects. The

composition of aspects in the main code is calledweaving. An aspect is composed

by an advice and a pointcut. The former is the code of the concern that iswoven

in a speci� c place of the main code (joint point). The latter identi � es the joint

point where the aspect is added in the main code. An example of language that

implements this kind of programming is AspectJ [27].

This programming approach follows the model composition approach. The aim is

to weave aspects into a base model to build a composed model. A set ofaspects is

Chapter 2. Background 19

not a view of the model and does not specify speci� c domains such as the multi-

view approach. All the models (aspects and base model) are speci� ed using the

same language,i.e., the elements of a model (aspects), conform to a meta-model,

are injected (woven) to another model that conforms to the same meta-model.

The joint points are correspondences between the aspects and the target model.

Kompose: Kompose [28] is a generic model composition tool that merges models

conforming to the same meta-model. The merging process is de� ned by two main

steps: matching and merging. Matching identi � es the elements that have the same

concepts in the models that are to be composed.Merging generates a model that

is the result of merging the matched elements. The elements that are not matched,

are de� ned in the resulting model without any changes.

Kompose follows the model composition approach.Matching process identi� es the

correspondences between the elements of the models to be composed. According

to Clavreul, the Kompose correspondences are rule-based and their interpretation

is overlapping, i.e., the elements that ful� ll the de� ned composition rules are

merged adding the non-common attributes and relations of each element. These

composition rules are de� ned by a pattern between the elements of the models to

compose. This pattern is generally found in the equivalence of the semantics and

the structure of the elements to merge.

VUML: View-based UML (VUML) [29] is a uml pro� le that uses the multi-view

modeling to provide limited access to the system actors1 through views. The

VUML author points out that the given IEEE-1471 [1] recommendations to build

system architectures are speci� ed in a general way, and it does not propose the use

of a language to be implemented. VUML is a language inspired by the IEEE-1471

concepts to model system architectures. VUML employs a base class diagram of

the system to extract the actors’ views according to the actor’s access rights. The

view de� nes the system elements (classes, attributes and methods) that the user

can access in the system.

VUML de � nes a common stereotype calledDefaultView. This class owns the ele-

ments that are shared between the system actors. Other views are speci� ed accord-

ing to the actor’s access rights. Theses classes are stereotyped byView and they

1VUML considers an actor as a logical or physical entity that interact s with the system at run-time.

Chapter 2. Background 20

contain the elements only related to the actor’s pro� le. Views and DefaultView are

associated byuml dependency associations stereotyped byview-extension. This

association allows accessing to the information shared among actors. VUML also

de� nes relationships amongViews to guarantee the correct updating of informa-

tion among the views that share system elements. This relationship is represented

by a dependency association stereotyped byview-dependency. The attributes de-

pendency between views is constrained by OCL2 expressions.

VUML follows the projective approach. From a base meta-model, theviewPoints

are extracted according to the user’s pro� le. We identify that view-extensionand

view-dependencyare correspondence rulesbetween viewPoints. According to the

Clavreul’s correspondence types, both VUML correspondence rules are model-

based, they are de� ned in the language speci� cation. We also identify that the

correspondence interpretation is overlapping: each view contains part of the fea-

tures of the reference model and these features can be shared among views, i.e., a

feature of the reference model can be included in one or more views.

SysML: System Modeling Language (SysML) [4] is an OMG3 speci� cation that

speci� es auml pro� le for systems engineering domain. Some of the elements of this

standard represents the main IEEE-1471 standard concepts to de� ne a multi-view

approach. SysML uses packages to representviews, classes to describeviewpoints,

and conform associations to specify relationships betweenviews and viewpoints.

This conform relationship is represented by auml dependencyassociation.

The SysML viewpoint contains two properties: stakeholdersand concerns. These

properties are de� ned by strings. Therefore, the stakeholders and concerns shared

among viewpoints must be rewritten in each viewpoint without guaranteeing the

conformance among viewpoints.

The SysML View limits the package elements to comments, constraint elements,

package import and element import; therefore, the view elements must be de� ned

in a common model to be imported and constrained according to the view.SysML

also speci� es that a view must follow the methods and languages de� ned in the as-

sociated viewpoints. However,SysML does not de� ne a veri� cation policy for the

2The Object Constraint Language (OCL) is a language de � ned by the OMG to constrain UML
models.

3Object Management Group

Chapter 2. Background 21

concerned viewpoint properties. Moreover,methodsand languagesare represented

as strings in Viewpoint, making the veri� cation task more di� cult.

SysML implements a projective approach where each view is built by the element

models imported from the main model. However, there are not explicit correspon-

dences between views. Moreover, aviewpoint does not have the same meaning as

in IEEE-42010 or IEEE-1471, but rather it is interpreted as the viewpoint features

that a view must answer. SysML viewpoint does not de� ne the language used

to express views. Theconform association is not a correspondence according to

the way we interpret the IEEE-42010. This association represents thatthe view

elements conform to the concerns de� ned by stakeholders from their point of view

and it is not a relationship between model elements from di� erent views.

Obeo Designer: Obeo Designer is a system design tool developed by Obeo4.

This tool not only allows system modeling through graphical modeling standard

languages such asuml and SysML , but it also provides a graphical environment

to build DSMLs in Ecore. Obeo Designer includesviewpoints that are a speci� c

representation of the concepts from one or more meta-models. These representa-

tions can be prede� ned (tables, trees, diagrams) or they can be customized by the

system designer5.

We consider that Obeo’s Viewpoint concept does not follow any of the multi-

view approaches. An Obeo’sviewpoint is a representation of a model, but it does

not de� ne a portion of the model (projective approach) or an independent model

(synthetic approach).

Hybrid multi-view modeling: Cicchetti et al. [30] present a multi-view model-

ing approach that is both projective and synthetic. They de� ne a base meta-model

to represent every possible concept of a speci� c system following the projective

approach. However, the architect can build viewPoints in various meta-models

following the synthetic approach. The connection between both approaches is in

the base meta-model used to create theviewPoints. ViewPoints are de� ned ac-

cording to the base meta-model, therefore the concepts and associations speci� ed

in the viewPoint must also be speci� ed in the base meta-model.

4http://www.obeo.fr/pages/obeo-designer
5http://www.obeo.fr/resources/WhitePaper_ObeoDesigner.pdf

Chapter 2. Background 22

A base model andview models are built and they conform to their corresponding

meta-models (base meta-model andviewPoints). The base model is the synchro-

nization reference to the otherview models, i.e., if a view model is changed, the

modi� cations are propagated initially to the base model and then to the other

view models. This synchronization mechanism is implemented accordingto the

di� erence between the base meta-model and theviewPoints.

This hybrid multi-view modeling approach solves the consistencyproblem present

in the synthetic approach by having a common reference between thede� ned

views. However, we consider that the duplication of information between the view

models and the base model is a drawback since it requires some e� ort to maintain

consistency.

In this modeling approach, the correspondences are explicitly de� ned in the base

meta-model. According to Clavreul’s classi� cation, the correspondences speci� ed

in Cicchetti’s approach are model-based,i.e., every relationship between view-

Points is de� ned in the base meta-model. Nevertheless, we� nd that there is also

a delta representation-basedcorrespondence in the synchronization between views

and the base model when there is a change of information in a view model.

Heterogeneous points of view with ModHel’X: Boulanger et al. [31] present

a synthetic approach, de� ning independent views of a system model in ModHel’X

blocks. Each block represents an observable behavior of a system. In the context

of multi-view modeling, a block speci� es the behavior of a system from a speci� c

point of view. For instance, a system could have a functional behavior, a power

consumption behavior or a temperature behavior. In this work, the correspon-

dences are represented by the behavioral relationships among views, i.e., using

the ModHel’X relations, we de� ne the view connections and the way that the view

behaviors are synchronized.

This approach proposes to use a single language (de� ned in ModHel’X) to express

the multi-view representation of a system (viewPoints and correspondence rules).

However, there is neither a notion of view nor correspondence in thislanguage.

Views and correspondences are interpretations of a ModHel’X concept using blocks

(views) and relations (correspondences).

Chapter 2. Background 23

The type of correspondences are model-based, they are de� ned in the ModHel’X

meta-model. We consider that their interpretation is associated with the behavior

of the model. In Section2.3.1, we present it in details.

2.2.3. Discussion

All multi-view approaches have advantages and disadvantages. The projective approach

allows observing a system model from di� erent perspectives orviewPoints focused on the

elements and properties that are important for the stakeholders. However, maintaining

and extending a unique meta-model to describe every possible view in a system is a

di� cult task. For instance, in VUML, when a new viewPoint is added to the system

meta-model, it can a� ect the previously de� ned viewPoints and also their associated

information. One possible solution is to de� ne consistency mechanisms to preserve the

system model information once a newviewPoint is added. This kind of mechanism is

developed in the Cichetti’s work.

The synthetic approach has the advantage of de� ning independent viewPoints of a sys-

tem splitting the system concerns. ThisviewPoint independence allows the de� nition of

new viewPoints without altering the previous ones. However, the main challenge is the

de� nition of correspondence rulesbetweenviewPoints. Unlike the projective approach,

where the correspondence rules are explicitly de� ned in the reference meta-model, in

the synthetic approach such correspondence rules are not explicit and they must be

established once aviewPoint is speci� ed. The domain experts de� ne the relationships

between the concepts of theviewPoint concepts.

Model composition could be seen as a way to unify projective and synthetic approaches.

For instance, when having a multi-view model that follows a synthetic approach, the

correspondences among views could be used to generate composed modelsthat have as

main goal the analysis of certain properties of the modeled system and thequanti� cation

of the impact of the properties from di� erent points of view. In contrast, a composed

model (or meta-model) could represent a reference model (or meta-model) in the multi-

view projective approach. Using decomposition rules,viewpoints could be extracted or

projected from the reference meta-model and correspondence rules could be identi� ed

in the reference meta-model to be explicitly de� ned in the decomposition process.

Chapter 2. Background 24

The correspondences and interpretations de� ned by Clavreul cannot be applied only to

model composition. We identify that the Clavreul’s correspondences meaning could also

be applied to the correspondence rule de� nition in the multi-view approach. We note

that correspondence rules among structural elements of di� erent viewPoints are used

to maintain the consistency betweenviewPoints, i.e., these structural elements could

represent a single element, but from a di� erent point of view. We call these kinds of cor-

respondence rulessyntactic correspondences. In the multi-view modeling examples, we

have identi� ed some syntactic correspondences, such as VUML, SysML, Obeo Designer

and Ciccheti’s work. However, another kind of correspondences could be applied, i.e.,

behavioral correspondence rules amongviewPoints. This sort of correspondence rules

was identi� ed in Boulanger’s work and is further discussed in Section2.3.1.

Most of the works that apply the multi-view approaches are oriented to the design of

software systems. Nevertheless, we consider that such approaches canbe also applied

to the system design. In this thesis, we propose a multi-view model for system de-

sign. The de� nition of this multi-view model gathers the advantages of both multi-vi ew

approaches: the de� nition of explicit correspondence rules to maintain the model con-

sistency and the de� nition of independent viewPoints for each expert domain. We also

use the Clavreul’s terms to identify the correspondence rulesamong viewPoints.

Another important feature to analyze in this chapter is the behavior in a multi-view

modeling approach. Identifying the behavioral relationships between viewPoints and

placing them in a modeling behavior context. Section2.3 presents the description of the

behavioral concerns in the design of systems.

2.3. Behavioral Concerns

In multi-view modeling, each viewPoint is described by a language with a speci� c se-

mantics of execution. In a DSML, while the syntactic domain is represented by a meta-

model, the semantic domain is de� ned though di� erent approaches. In the language

theory, we can � nd three types of semantic de� nitions. The � rst type is Operational

Semantics[32]. It uses functions (endogenous transformations) to manipulate data that

represent the execution state of the model. Each execution of thesefunctions repre-

sents a step in the model evolution. The second type isAxiomatic semantics [33]. It

Chapter 2. Background 25

characterizes the execution state by properties that enable reasoning about the models

and their correct evolution. The last type is Transformational semantics [34]. It is an

exogenous transformation from the syntactic domain to an existing language with well

de� ned semantics.

The concurrent theory has also proposed other ways to describe the behavior of a model.

This behavior is characterized by the so-called Models of Computation(MoCs).

2.3.1. Models of Computation

A model of computation (MoC) is “a formal abstraction of execution in a computer” [35].

In other words, it de� nes the behavioral semantics of a model. MoCs are used in di� erent

speci� c domains to express and to evaluate the behavior of a system. For instance, the

control experts uses ordinary di� erential equation (ODE) solvers to analyze the behavior

of the system to be controlled in continuous time. However, these solvers discretize the

continuous time in order to be computed. The speci� cation that de� nes the execution

rules of these continuous systems in the computing world is a type ofMoC. Modelica [36]

and Simulink [37] are tools that implement MoCs that allow to model continuous systems

and they are often used by control and mechanic experts to represent and to analyze

their speci� c domains.

Ptolemy II [9] and ModHel’X [10] are tools that implement a variety of MoCs. Using

these tools, sequential processes, discrete event and continuous time systems can be

modeled. These tools share the way they de� ne their modeling syntax, based on the

component approach. While Ptolemy II usesactors, ModHel’X uses blocks to describe

the structure of the system behavior. However, this generic use ofthe component-based

modeling restricts the application of the DSML approach. Moreover, if we consider

that a viewPoint is a DSML in a multi-view approach, the behavioral semantics of the

viewPoint could be hardly speci� ed using these tools because of the incompatibility of

the structure de� nition.

On the other hand, we note that MoCs in these tools are independent fromthe structure

de� nition. Ptolemy II represents the MoCs implementation by directors and ModHel’X

calls them with the same name, MoCs. They associate a speci� c MoC to a determined

structure and this MoC manages the execution of the structure elements. The separation

Chapter 2. Background 26

between semantics and syntax helps to use the MoC de� nition to specify the DSML

semantics. For instance, Petri net is a modeling language that represents the control

execution of a system. A Petri net syntax could be de� ned by a meta-model. Figure2.7

presents the Petri net meta-model (left-side) and a Petri net instance (right-side) that

follows the concepts and relationships de� ned in the meta-model. To de� ne the execution

of this meta-model, we can use a formal language in order to specify the rules that

the behavior of the Petri net model must follow. Nevertheless, the mentioned tools

implement these rules in programming language such as Java, creating a gapbetween the

formal de� nitions and their implementation. In this thesis, we propose to useCCSL [3]

as a formal language to specify the rules that the DSML must ful� ll during its execution.

Using CCSL, the mentioned gap could be reduced, thanks to the proximity of the formal

semantics and its implementation.

Figure 2.7: Petri Net meta-model and a Petri Net model example.

We have explained in Section2.2 that a system can be represented by variousview-

Points. These viewPoints are associated with each other in their structural de� nition

by syntactic correspondences. However, theseviewPoints also have a semantic de� ni-

tion, whose actions can a� ect the behavior of other viewPoints. For this reason, there

are also correspondence rules in the semantic de� nition of the views.

Clavreul [25] has already identi� ed a correspondence interpretation to describe the exe-

cution relationship between models. This interpretation is called interaction . It consists

in describing the execution ordering of the model elements according to their associa-

tions and to control elements,e.g., sequence and parallel execution. Clavreul also de� nes

Chapter 2. Background 27

two design activities that are associated with the interactions between models, in order

to de� ne a composed model behavior. The� rst activity is Orchestration that synchro-

nizes the service execution of two or more models to create a fully running process.

The second activity is Integration that produces a composed system from the inter-

action of several independent and running systems. We consider thatthese activities

are strongly associated with the correspondence rules between the behavioral seman-

tics among DSMLs, i.e., we could identify a behavioral impact among DSMLs by using

behavioral correspondences.

In the multi-view approach, the behavioral correspondences amongviewPoints are the

combination of homogeneous or heterogeneous behavioral semantics. This combination

is known in the MoC community as heterogeneous models.

2.3.2. Heterogeneous Models

There are di� erent approaches that propose a way to combine heterogeneous MoCs.

Ptolemy II and ModHel’X specify the combination of MoCs by using a hierarchical

execution. Figure 2.8 depicts a model example where the semantics of execution is

a hierarchical MoC combination in Ptolemy II. In this � gure, there are two MoCs:

Synchronous Data Flow (SDF) and Finite State Machine (FSM). The structure of the

model contains four actors: a main composite actor that owns two atomic actors6 (A1

and A2) and a composite actor (C1). The composite actor C1 contains a FSM that

has two atomic actors (S1 and S2). The main composite actor speci� es its behavioral

semantics by a SDF director. In contrast,C1 has a FSM director. The domain execution

ordering is controlled by the director at the highest level in the model hierarchy, i.e., SDF

director. During the execution sequence in the SDF graph, the SDFdirector executes

C1 and then the FSM director is activated to execute the FSM. Once the execution of

the FSM � nishes, SDF director resumes its execution.

6An atomic actors is an actor that does not contain other actors.

Chapter 2. Background 28

A1 C1 A2

SDF Director

S1 S2

FSM Director

Figure 2.8: Composition between Synchronous Data Flow and Finite State Machine
in Ptolemy II.

In Figure 2.8, there is a behavioral correspondence between SDF and FSM directors.

Once the SDF director executes C1, the FSM director takes the external information

to execute the FSM. According to Clavreul, we could consider thatthis correspondence

is an Orchestration between two MoC directors. The orchestration between MoCs is

implemented in a di� erent way in Ptolemy II and ModHel’X. On one hand, Ptolemy II

o� ers a � xed and encoded interaction semantics between MoCs that the modeler must

use. On the other hand, ModHel’X proposes the use ofadapters to de� ne the semantics

between the internal and external execution of a hierarchical model. However, adapters

are operators that implement the MoC interaction according to the modeler needs.

Therefore, there is not guarantee that properties de� ned in each MoC, such as deadlock

or safety properties, are kept after the orchestration of MoCs.

Another approach to combine heterogeneous MoCs is by synchronizing the actions be-

tween MoCs. BIP [38] is a component-based language that de� nes the behavior of each

component and their interactions by a speci� c algebra. The BIP semantics is described

by extending the automaton de� nition. In the BIP approach, the use of the automaton

model to de� ne the component interaction allows to study properties, such as deadlock

and safety issues. However, the dependency to the automaton model does not allow to

describe MoCs that follow other kinds of behavior such as� ow-oriented behavior. This

behavior is commonly used to de� ne and analyze image processing algorithms.

Chapter 2. Background 29

2.3.3. Discussion

MoCs are a way to de� ne the behavioral semantics of a DSML. A DSML could con-

tain other DSMLs that have their own behavioral semantics, or a DSML could specify

their semantics by using various behavioral semantics. For instance, Figure 2.8 could

be represented by two DSMLs: DSML 1 that de� nes the � rst hierarchy level (A1, C1

and A2) and DSML 2 that speci� es the internal behavior of C1. Both DSMLs have a

syntactic correspondencethat associates theDSML 1 element C1 with DSML 2. This

correspondence represents that the internal behavior of C1 is expressed byDSML 2.

DSML 1 and DSML 2 have also abehavioral correspondencewhere the synchronization

between SDF and FSM execution is de� ned. Following the Ptolemy II and ModHel’X

approach, we can represent the example of Figure2.8 by using a single DSML de� nition

(actor-based or block-based representation). In these tools, the behavioral correspon-

dence is de� ned to a speci� c element of the DSML, i.e., the DSML can have a di� erent

meaning according to the MoC assigned to the model element. We consider that it is

more clear to have a DSML with a single meaning,e.g., a Petri Net structure whose

behavior follows the Petri Net rules.

In the multi-view approach, each viewPoint is a DSML, and each DSML has its own

behavior de� nition speci� ed by a MoC. As syntactic correspondence, we identify that

there are also other kinds of correspondences between views that we call semantic cor-

respondences. These correspondences de� ne the interactions between the elements of

di� erent views, i.e., the result of the interaction speci� cation between MoCs. The in-

teractions between views highlight the impact of the view executionon a system design

that would be di � cult to grasp using only syntactic correspondences.

In this thesis, we use syntactic and semantic correspondences to de� ne the multi-view

modeling of systems. We give speci� c examples where both correspondences are used

to maintain the structure consistency among views, the synchronization of the view

execution and the impact of the view execution.

Chapter 2. Background 30

2.4. Conclusion

In this chapter, we have presented a background of the pivotal concepts used in the

following chapters. We have introduced the architecture concept visualized in the sys-

tem domain. Afterwards, we have presented the multi-view modeling vocabulary spec-

i� ed in the IEEE-42010 standard and its relationship with MDE. We have noted that

a viewPoint is a DSML in the MDE context. We have identi � ed the connection be-

tween the multi-view approaches and model composition. We have determined that

the model composition work could be used in the multi-view approach tocharacterize

the correspondence rules and their interpretations. We have presented some works that

implement these approaches (multi-view and model composition) and we have identi� ed

the correspondences and their interpretations according to Clavreul’s work.

We have continued with the behavioral de� nition in the multi-view approach. The

importance to separate semantics and syntax in the de� nition of a viewPoint has been

highlighted. MoCs are adopted as the modeling approach to specify the semantic domain

in a viewPoint. We stressed the importance of behavioral correspondences in addition

to purely structural correspondences in the multi-view modeling. Such behavioral corre-

spondences are bound to the heterogeneous behavior associated with MoCinteractions.

We have presented two approaches (hierarchy and automaton based) frequently used to

specify the interactions between MoCs.

In the next chapter, we use the concepts from this chapter to de� ne a multi-view frame-

work to model systems.

Chapter 3

PRISMSYS: A Multi-View

Modeling Language for Specifying

Systems

Contents

3.1. Introduction . 32

3.2. PRISMSYS Framework . 33

3.2.1. Structural SubView . 40

3.2.2. SubView Element . 41

3.2.3. Equational SubView . 43

3.2.4. Control SubView . 46

3.3. UML Pro � le for PRISMSYS 49

3.3.1. UML Concepts for PRISMSYS 50

3.3.2. MARTE Concepts for PRISMSYS 54

3.3.3. SysML Concepts for PRISMSYS 55

3.4. Semantics of Execution . 56

3.4.1. Finite State Machine Semantic Speci� cation 58

3.4.2. Equational View Semantic Speci� cation 64

3.5. Conclusion . 69

31

Chapter 3. Muti-View Modeling Language for Specifying Systems 32

3.1. Introduction

This chapter presents the de� nition of our language namedPRISMSYS1. PRISMSYS is

a domain speci� c modeling language (DSML) dedicated to the speci� cation and analysis

of functional and non-functional properties at the system level throughmultiple views.

Each view describes a part of the system, by using the language commonlyemployed

by domain experts focusing on a speci� c concern. For instance, a safety expert uses

a domain language whose concepts describe a safety infrastructure, at the same time

as it presents the safety properties of the system. The system views are independently

speci� ed, but the existing relationships inside each view are extremely important to

maintain the consistency of the system. In a multi-view model, these relationships are

correspondences among views. They should bring semantic consistency between the

di� erent parts of the system speci� ed in the views.

The multi-view concepts of PRISMSYS are inspired by the notions de� ned in IEEE-

42010. However, the standard is a general framework, therefore we have had tospecialize

in PRISMSYS the concepts de� ned in IEEE-42010. Our specialization aims at identi-

fying concepts needed to have a semantic consistency between the di� erent views. For

instance, the abstract concept ofView from the IEEE speci� cation is re� ned into three

well-identi � ed subViews in PRISMSYS, each of them representing sub-concerns of a

domain-speci� c language. This specialization helps us to provide a semantics to the

correspondences depending on the kind of elements they refer to.

MDE is largely used to de� ne the PRISMSYS domain language. The abstract syntax

of PRISMSYS is speci� ed as meta-models in Ecore [20], while the behavioral event-

based semantics is de� ned in ccsl [3]. ccsl is a formal declarative language used to

de� ne causal and temporal constraints between events. An event represents a speci� c

evolution of a system, such as the sampling of a robot position or a state change in a

� nite state machine. Events are spread along all the views to bring consistency through

the model. Similarly to tagged signals [39] they serve as anchor points to specify the

model of computation (MoC) [40] of the system model. We introduce inPRISMSYS

speci� c correspondences as a prede� ned way to coordinate the execution of two MoCs.

1PRISMSYS is a composed name wherePRISM refers to prism, which is a transparent optical
element that refracts any composite light producing a variety of colors. We identify the prism behavior
as an analogy to de� ne our multi-view approach. SYS denotes system.

Chapter 3. Muti-View Modeling Language for Specifying Systems 33

We begin this chapter by de� ning the PRISMSYS framework. This framework speci� es

the basic elements needed to represent views that capture the di� erent concerns of a

system. We continue the chapter by describing the correspondences that can be applied

between the views to tight them together; we detail eachPRISMSYS subViewde� nition,

we present its uses and we give some examples to illustrate the use ofthe subViewsand

the identi � ed correspondences. Taking as reference thePRISMSYS domain model, i.e.,

the meta-model of the PRISMSYS framework and the detailed description of each one

of its views, we have built a uml pro� le as a light-weight mechanism to implement the

PRISMSYS concepts. ThePRISMSYS pro� le applies, as much as possible, the elements

de� ned in SysML and marte , including uml elements as well. Finally, we de� ne the

semantics of thePRISMSYS framework execution by usingccsl to express the actions

presented in the behavior evolution of aPRISMSYS model.

3.2. PRISMSYS Framework

The PRISMSYS framework provides prede� ned rules and elements that can describe

and coordinate di� erent views in the speci� cation of a multi-view system. More pre-

cisely, based on a system backbone representation, it allows de� ning speci� c views that

are focused on the management of its non-functional properties. By applying this frame-

work, experts from various domains (time performance, power,� nance, etc.) can build

a system from their own point of view while specifying explicitly the relationships with

the other points of view. For instance, a time performance expert can specify temporal

constraints by using the concepts frequently used in his/her domain (deadline, worst

case execution time, etc.). However, domain experts do not specifyagain the elements

already de� ned in other domains on which they state their constraints (like the hardware

or software elements). They just import them and provide an abstraction of existing

elements from their point of view.

We use MDE to de� ne the syntax of the PRISMSYS framework. Figure 3.1 depicts

the PRISMSYS framework meta-model. The root element isArchitectureDescription .

IEEE-42010 de� nes architecture description as the base concept to specify the archi-

tecture of a system through views. To re-use an architecture description in various

system designs, IEEE-42010 de� nes the architecture framework concept that governs

Chapter 3. Muti-View Modeling Language for Specifying Systems 34

the construction of architecture descriptions. IEEE-42010 has neededthe de� nition of

these two separated concepts in order to describe the abstraction levels in its multi-view

system framework. However, these two concepts are not needed if we use MDE. MDE

establishes the needed abstraction levels to specify the vocabulary to express a speci� c

domain (i.e., a meta-model), and the way to use it (i.e., a model conforming to its meta-

model). As a consequence, if we de� ne ArchitectureDescription as a meta-class in the

PRISMSYS framework meta-model, it represents thearchitecture framework concept

de� ned in IEEE-42010. Similar reasoning can be made withview-viewpoints, correspon-

dence-correspondence rulesand model-model kind. We decide to employ the IEEE-42010

terms that de� ne an architecture description to specify the concepts of thePRISMSYS

framework meta-model, i.e., view, model and correspondence.

Figure 3.1: PRISMSYS Framework meta-model.

In PRISMSYS meta-model, anArchitectureDescription is a set ofviews and correspon-

dences. A view de� nes the needed elements to describe a speci� c domain. According to

IEEE-42010, aview is composed of one or moremodels. The standard de� nes amodel as

“ modeling conventions appropriate to the concerns to be addressed” [2]. With this very

abstract vision of what is comprised in a view, it is not straightforward t o guarantee

the semantic consistency of a multi-view system model. To ease the automated man-

agement of a multi-view system model, thePRISMSYS framework proposes to specify

systematically three modelsused for the description of each view.

In this context, a domain speci� c language for a multi-view system model (i.e., a view)

is speci� ed by models of di� erent nature. Such models have their own features that

describe view parts. Indeed, these parts are sub-domains needed to specify a complete

Chapter 3. Muti-View Modeling Language for Specifying Systems 35

view. We name them subViews. We have identi� ed three main subViewsthat provide

the required elements to de� ne aview: a structuralSubView, an equationalSubViewand a

controlSubView. StructuralSubView states the concepts and relations of a speci� c domain

with a component-based approach. AStructuralSubView is composed ofsubViewEle-

ments. Such elements are the internal concepts that express the structure of a speci� c

domain. A ControlSubView controls/schedules the execution of thesubViewElements.

Finally, EquationalSubViewcharacterizes the evolution of non-functional properties of a

StructuralSubView, such as frequency, voltage and temperature, by using mathematical

equations.

For each system, there is always areferenceor backboneview. Relying on the backbone

view, the other views can “import” existing elements to de� ne the (non-functional) prop-

erties of the speci� c domain. For instance, considering a thermal domain example, the

thermal view de� nition depends on the elements included in the hardware architecture

view, i.e., thermal experts reference elements from another view to build their own view.

The “importing” action is identi � ed as acorrespondencebetween views.

In the PRISMSYS framework meta-model,Correspondenceis an abstract concept spe-

cialized into a type of relationship namedAbstraction. An abstraction speci� es that the

sourcesubViewElement is a representation of the targetsubViewElementbetween two

structuralViews of di� erent views, i.e., a structural element de� ned in a view is used in

another view to specify features that belong to this particular view. This correspondence

plays the role of “importing” a subViewElement from a view to another. For instance,

a memory component de� ned in a structuralSubView of a hardware architecture could

be abstracted in astructuralSubView of a time performance view. This abstraction al-

lows the de� nition of temporal features, such as maximum time of writing and reading

data. Figure 3.2 depicts the relationship between theAbstraction correspondence and

ViewElement. To express this relationship, we de� ne two abstract concepts: Associa-

tionElement and AssociationEnd. Such abstract concepts are associated by an oriented

relationship (source and target). As Abstraction inherits from AssociationElement and

ViewElement from AssociationEnd, therefore Abstraction links two viewElementsin an

oriented way.

Chapter 3. Muti-View Modeling Language for Specifying Systems 36

Figure 3.2: Relationship betweenAbstraction correspondence andviewElement.

Just as subViewsare sub-elements ofView, subCorrespondencesare relationships that

maintain the consistency betweensubViews. Moreover, SubViews must be linked to-

gether in order to fully describe aview. For instance, the relationship between a struc-

tural element and an equational description is di� erent to the relationship between a

hardware component and the hardware component representation in a time performance

view. While the � rst relationship is a subCorrespondencethat associates a structural

sub-view element with an equational sub-view element, the secondrelationship is a cor-

respondencebetween two di� erent expert domains, a hardware architectural view and

its representation in a time performance view.

We have determined two main types ofsubCorrespondencesin a view: Equivalenceand

Characterization. Equivalence is the equality of the value between a property de� ned

in a subViewElementand a parameter in an equation speci� ed in a equationalSubView.

For instance, if the level property is de� ned in a subViewElement to quantify the wa-

ter level of a tank; level could also be speci� ed as parameter of an equation in an

equationalSubViewto calculate the output � ow of the tank. Level is expressed in two

di� erent subViewsand the consistency between thesesubViewsis de� ned by the Equiv-

alence subCorrespondence. Characterization is the association between the behavior of

a subViewElement and an equation de� ned in the EquationalView. A change in the

subViewElement behavior causes the change of the active equation designated by the

Characterization relationship. For instance, the subViewElementbehavior is described

by a � nite state machine (FSM). Each state is associated by aCharacterization subCor-

respondencewith a speci� c equation in the EquationalSubView. Thus, when a state is

active, the associated equation is activated. These twosubCorrespondenceare explained

in details in Subsection3.2.3.

Chapter 3. Muti-View Modeling Language for Specifying Systems 37

View, SubViewand SubViewElementfollow the component approach. Such an approach

is used by several domains in the design of systems.marte [5], a domain language for

the design and analysis of real-time systems, de� nes the hardware structure following the

component approach. Other examples areSysML [4], AADL [22], EAST-ADL [41] and

Rosetta [42]. Moreover, The IEEE-1471 and IEEE-42010 standards, which are the inspi-

ration source of PRISMSYS, have also based the architecture de� nition of a system on

components. View, SubView and SubViewElementshare di� erent kinds of information

that can be exposed throughports and transmitted through connectors. Figure 3.3 de-

picts a generic component meta-model and its relationship with thePRISMSYS frame-

work concepts. View, SubView and SubViewElementinherit from Component, i.e., they

contain ports, connectorsand owned components. The owned components of aView are

subViews, and the internal components ofsubViewsare subViewElements. SubViewEle-

ments can contain other subViewElements.

Figure 3.3: Component meta-model and its relationship with View, SubView, Sub-
ViewElement and ConnectorCorrespondence.

Port is an abstract concept that is specialized inOrientedPort and Parameter. An ori-

entedPort has as an attribute direction. Direction could be either in or out, to express

the direction of the information � ow. OrientedPort is specialized inPropertyPort and

ControlPort . PropertyPort represents asubViewElement property that is shared with

its environment. Properties are shared with othersubViewElementsof the sameStruc-

turalSubView. Properties can also be used by thecontrolSubView to take decisions in the

control of the structuralSubView. For instance, if a robot reaches the limit of its running

area, the position value is transmitted to the correspondingcontrolSubView to stop the

robot movement. PropertyPort is an abstract component that is specialized to express

Chapter 3. Muti-View Modeling Language for Specifying Systems 38

the nature of the property according to the speci� c domain, e.g., PositionPort could

be a propertyPort that shares the position property of a subViewElement. ControlPort

de� nes the control � ow between acontrolSubView and a structuralSubView. This � ow is

speci� ed by events that change the behavior of thesubViewElements. PropertyPort and

ControlPort can be de� ned by views, subViewElements, structuralSubViewsand control-

SubViews. To expose parameter values in aequationalSubView, we specifyParameter.

This port does not have any direction. The value of the connected equation parameters

is equal, i.e., the available parameter value of an equation is replaced in the associated

equations.

We consider that the � ow of information between views and betweensubViewsthrough

ports is a kind of correspondenceand subCorrespondence, respectively. Therefore,Ar-

chitecturalDescription and View share an abstract concept namedConnectorCorrespon-

dence in the PRISMSYS framework. This concept inherits from Connector and rep-

resents the� ow of information between subViews, betweenviews and possibly between

views and subViews through ports. ConnectorCorrespondenceis specialized into three

di� erent concepts:ControlConnector, DataConnector and ParameterConnector.

In the View context, ControlConnector is the connection betweencontrolPorts of Con-

trolSubView and StructuralSubView. This connector transmits the control messages sent

from the controlSubView to the corresponding subViewElements. However, in the Ar-

chitectureDescription context, ControlSubView coordinates control actions amongviews.

Therefore, we constrain the use ofControlConnector between views only to connectcon-

trolPorts of ControlSubViews.

DataConnector represents the connection between twopropertyPorts. Such property-

Ports must be de� ned either in structuralSubViews, in controlSubViewsor in views. The

connector betweenpropertyPorts of subViewElementsis speci� ed according to the do-

main. The connectedpropertyPorts must have the same type,e.g., if a propertyPort

expresses the torque of an electric motor, thepropertyPort that receives this informa-

tion must have the same torque nature. ControlConnector and DataConnector must

connect two ports whose directions are in in the same direction,i.e., these connectors

can only bind two output ports or two input ports.

Chapter 3. Muti-View Modeling Language for Specifying Systems 39

ParameterConnector is the connection between twoparameter ports. It represents the

shared parameter value between twoequationalSubViews. Figure 3.4 summarizes the

correspondences and sub-correspondences identi� ed in the PRISMSYS Framework.

Control
Connector Characterization

Abstraction

Control
View

Structural
View

Equational
View

Data
Connector

Equivalence

View

Data
Connector

Control
Connector

Parameter
Connector

Data
Connector

Figure 3.4: Correspondences and Sub-Correspondences inPRISMSYS Framework.

Correspondencesand sub-correspondencesare associated with the correspondences and

the interpretations given by Clavreul [25]. A � rst identi � cation is that the PRISM-

SYS correspondences and sub-correspondences aremodel-basedcorrespondences. The

PRISMSYS framework meta-model and the previous semantic description de� ne the way

they are employed. Nevertheless, their interpretations are diverse. Abstraction could

have an equivalenceinterpretation, i.e., the associatedsubViewElementsare equivalent

and in a merge process bothsubViewElementscan be replaced by onesubViewElement

that has the properties of both mergedsubViewElements. Equivalence is another ex-

ample of equivalenceinterpretation. In contrast, Characterization has an interaction

interpretation. Once a subViewElementbehavior changes the active equation, the new

active equation must be evaluated. The same interpretation can be givento Control,

Data and Parameter Connectors, once a Parameter, a controlPort or a propertyPort

changes its value, the bound port also changes its value.

An ArchitectureDescription must contain at least oneview that represents the function-

ality and structure of the system. If system experts add non-functional properties to

the multi-view model, such as time, power or temperature, they add for each expert’s

domain a view and its corresponding subViews to represent their properties and the

necessary elements that a� ect them. PRISMSYS can be extended with other kinds of

subViews that do not follow the three sorts previously de� ned. Nevertheless, the de-

signer must de� ne the necessarycorrespondencesand subCorrespondencesof this new

subView to keep the consistency of the multi-view model.

Chapter 3. Muti-View Modeling Language for Specifying Systems 40

In the next subsections, we detail the de� nition of the StructuralSubView, SubViewEle-

ment, EquationalSubViewand ControlSubView.

3.2.1. Structural SubView

StructuralSubView is a genericsubView that can be specialized to represent expert do-

mains. Adopting this StructuralSubView de� nition implies that, the structural repre-

sentation of each view can be speci� ed by domain experts and the relationship between

views can also be expressed by usingabstraction, dataConnector and ParameterCon-

nector correspondences. Nevertheless, if a domain expert does not want to use Struc-

turalSubView to represent his/her viewpoint of the system, this expert can specialize the

SubView concept from the PRISMSYS meta-model to de� ne his/her own subView, the

subCorrespondenceswith the other subViewsand the correspondenceswith other views.

An application of StructuralSubView is the representation of the thermal domain of an

embedded system. One of the techniques used by thermal expertsto represent the tem-

perature evolution of the components is using electrical components,such as capacitors

and resistances. The resulting Resistor-Capacitor circuit represents the temperature be-

havior among the junction points between the hardware components withthe heat sink

devices and the heat transmission among the components that are part of a system. This

thermal representation of a system is known as Compact Thermal Model (CTM) [43].

Hotspot [44] is a tool that uses this modeling technique to represent the thermal layout

of systems to analyze the temperature evolution of the components.

Figure 3.5 depicts an example of two views that de� ne their structuralSubViews. Exe-

cution Platform View represents the hardware architecture of a system.Thermal View

describes the thermal representation of the system. Each view has astructuralSubView

where the structure of the domain is represented. We note that CPU is abstracted in

the thermal view to specify the thermal properties and the thermal behavior that can

be expressed using CTM. To de� ne the association between the thermal representation

and the hardware architectural representation of CPU, we use theabstraction corre-

spondence. In thestructuralSubView of the thermal view, there are also other elements

that belong to the thermal domain. They are not included in the structuralSubView

of the execution platform view, such as the heat sink and temperature source (Tenv).

Chapter 3. Muti-View Modeling Language for Specifying Systems 41

Finally, note that a propertyPort P is speci� ed in the thermal view. This port repre-

sents the power consumption value of the CPU, used and evaluated in other views. The

CPU power consumption value is needed to evaluate the CPU temperature. P port

is connected byDataConnector correspondences to another view that characterizes the

system power consumption.

Figure 3.5: Example of structuralSubViewsincluding the abstraction correspondence.

3.2.2. SubView Element

SubViewElement is the main concept of a structuralSubView. Such a concept has a

speci� c role in the structural description of the concerning domain. SubViewElement

de� nes the structure and the behavior of theStructuralSubView internal elements. Fig-

ure 3.6presents theSubViewElementmeta-model where the structure (on the right-hand

side) and the behavior (on the left-hand side) of this concept are de� ned. SubViewEle-

ment follows the component approach, therefore we bring the component meta-model

depicted in Figure 3.3 to de� ne the SubViewElement structure. A subViewElement

is a Component that contains connectors, controlPorts, propertyPorts, properties and

possibly nestedsubViewElements(ownedComponents). Property represents an internal

feature of ViewElement, e.g., cost or size.ControlPort is sensitive toEvent occurrences

from the controlSubView that change the subViewElementbehavior accordingly. Every

subViewElementable to change its internal behavior must contain at least onecontrol-

Port . Note that Property and State are respectively associated withParameter and

Chapter 3. Muti-View Modeling Language for Specifying Systems 42

Equation, which are EquationalSubView concepts. The association is de� ned through

Equivalenceand Characterization subCorrespondences. We explain in details their use

in Subsection3.2.3.

Figure 3.6: SubViewElementmeta-model.

The behavioral de� nition of SubViewElement consists of aBehavior represented by a

StateMachine. The behavior can be specialized in other kinds of behavioral descriptions

such as Petri nets and synchronous data� ow graphs, even though we only study here

the case ofStateMachine. According to the domain, the expert chooses which behav-

ior de� nition � ts better the domain description. For instance, a control expert may

prefer to use state machines to describe the behavior of a thermal controller, whereas

an image processing expert may choose a synchronous data� ow graph to specify the

face detection algorithm in a video stream. However, we consider that this de� nition

must be homogeneous in all the domain speci� cations, i.e., if StateMachine is chosen

as asubViewElementbehavior de� nition, every subViewElementin the speci� ed Struc-

turalSubView must be a stateMachine. This homogeneity helps to work with a single

semantics of execution, easing the control speci� cation de� ned in the controlSubView.

Dedicated tools for heterogeneous composition might be used (see Chapter 2), however,

this is not speci� cally supported by our methodology and tools at this level.

In the SubViewElement meta-model, a StateMachine contains states and transitions.

The StateMachine has an initialState , which is the � rst state that is active when the

StateMachine is executed. Eachstate represents a speci� c behavior mode according to

the domain. For instance, to indicate the execution modes of a CPU, we can de� ne two

states: running, to express that the CPU is executing a task, andhalt, when the CPU

Chapter 3. Muti-View Modeling Language for Specifying Systems 43

stops. In Figure 3.6, State is associated with Equation through the Characterization

subCorrespondence. This subCorrespondencemeans that when astate in a viewElement

is active, the associated equation is activated,i.e., the state is characterized by the

associated equation. A state also represents the value change of a property de� ned

in the subViewElement, which is speci� ed by the associated equation. TheEquation

concept is part of the EquationalSubViewde� nition detailed in Section 3.2.3. To change

from one state to another, the corresponding transition is� red when the associatedEvent

(see associationTransition -Event in Figure 3.6) occurs on theViewElement controlPort

(see associationControlPort -Event in Figure 3.6). The execution semantics of the state

machine is detailed in Section3.4.1.

3.2.3. Equational SubView

EquationalSubView de� nes the evolution of non-functional properties of a view. This

evolution is speci� ed by equations that associate properties from a view with properties

from other views in an acausal way. For instance, in classical mechanics,the equation

that describes the force applied to an object in one dimension is represented byF = m• a.

The parameters of this equation are de� ned as properties, possibly, in di� erent views.

F could be de� ned in a force view where only force features such as torque, thrust,or

drag can be described. In contrast,m could be speci� ed in an object characteristic view,

where mass, dimension and color features are represented.

We consider that the EquationalSubViewmeta-model is independent of theStructural-

SubView and the ControlSubView meta-model, because the nature of theEquational-

SubView elements is di� erent from the elements of theStructuralSubView and Control-

SubView. Such elements represent continuous behaviors through equations,while the

StructuralSubView and the ControlSubView elements specify discrete behaviors. How-

ever, they shareComponent to de� ne their concepts and the sub-correspondences with

the other subViews.

Figure 3.7 presents the EquationalSubView meta-model. This meta-model is inspired

on the SysML Parametric Diagram. An equationalSubViewis a subView, i.e., it is de-

� ned as a component. AnequationalSubViewcontains parametersand a clockPort (Port

Chapter 3. Muti-View Modeling Language for Specifying Systems 44

specializations),bindings (Connector specialization) andequationalModels(ownedCom-

ponent specialization). An equationalModel owns equations and its Component spe-

cialization is constrained to be associated withparameters. Equation is an acausal

relationship among parameters. This relationship is given by the de� nition in form of a

mathematical relation between parameters,e.g., v = d/t is an equation de� nition, where

v, d and t are parameters. A single parameter value can be employed in various equa-

tions using bindings. Binding connects the parameters that share their values between

two equationalModels. The ClockPort is employed to receive the events that execute the

evaluation of equations. EveryequationalModel have a parametert to express the time

dependence in the evolution of the non-functional properties. In fact, we only consider

the case that the equations are time-dependent. It does not mean that equations of the

equationalModelsmust include t as part of its de� nition. To transmit the events from

ClockPort to the t parameters, we usebindings.

Figure 3.7: EquationalSubViewmeta-model.

Figure 3.8 presents an example of two views where theirequationalSubViewsare de� ned.

In the � gure,Force View describes itsequationalSubViewwith two equationalModels: one

de� nes a constant mass (m = 1 kg) and the other one the force (F = a • m). Movement

View contains three equationalModelsdescribing the acceleration (a = dv/dt) and the

speed (v = dx/dt). In the same view, x is used to evaluate the speed, even though it is

given by another view. Note that eachequationalModelthat de� nes a non-constant value

equation (e.g., a = dv/dt) contains a t parameter. Hence, these equations are evaluated

Chapter 3. Muti-View Modeling Language for Specifying Systems 45

for each tick arrived to step. The equations that need the value oft to calculate the

unknown value (e.g., v = dx/dt), extract t from the speci� cation of the clock signal

that arrives to step. Usually, the clock is de� ned in another view where the time model

of the system is its main concern. We describe in details the eventspeci� cation in

Subsection3.4.2. We point out that the force equation does not have thet parameter.

However, its equationalModel contains this parameter to evaluate the equation at each

occurrence ofstep. We realize that the evaluation order of the equations depends on

which value is known. In the example, we cannot evaluateF = m • a if we do not

evaluate beforea = dv/dt , and this last equation cannot be evaluated ifv = dx/dt is

not calculated. The equation dependency and the evaluation order could be established

by the step event speci� cation. In the � gure, we also present theParameterConnector

to bind parameters from one view to another. In the example,ParamterConnector

connects thea parameters de� ned in Force View and Movement View.

Figure 3.8: EquationalSubViewExample

In the EquationalSubView meta-model, we also represent theEquivalenceand Charac-

terization subCorrespondenceswith their corresponding associations. By extracting a

portion of the example depicted in Figure 3.8, we present the use of thesesubCorre-

spondences. In Figure 3.9, we de� ne a Mechanical View that describes the mechanical

structure of a system (a trailer hooked to a car) and its behavior according to the charge

in the trailer. This view owns two subViews: a structuralSubView that de� nes the struc-

ture and behavior of the system, and anequationalSubViewwhere the equations and

values of the system physics are speci� ed. In the structuralSubView, the trailer has two

possible mechanical states:charged and empty. On the other hand, the car has only

one state namedmove that represents the action to move the car by its engine. Trailer

Chapter 3. Muti-View Modeling Language for Specifying Systems 46

has also amass property whose value changes according to them parameter value. In

the equationalSubView, we specify the mass values of the trailer states associating such

states with the corresponding equations by usingCharacterization subCorrespondences.

By selecting a state, a mass value is assigned to them parameter. At the same time,

the value of the mass property de� ned in the structuralSubView of the trailer is equiv-

alent to the m parameter value, because of theEquivalence subCorrespondence. In the

EquationalSublView, we also de� ne a force equation. This equation describes the re-

quired force that the car engine has to generate in order to move the trailer according

to its mechanical states (charged or empty). In this example, we note that by using the

EquationalSubView, we can study the impact of the behavior betweensubViewElements

of the samestructuralSubView, and it is possible to associate other behaviors from other

views.

Figure 3.9: Example of the characterization and equivalence correspondences use.

3.2.4. Control SubView

ControlSubView synchronizes the execution of thestructuralSubView according to the

actions produced in its own view and from other views.ControlSubView also provides the

events needed to evaluate the active equations in theequationalSubView. The goal of this

subView is to coordinate the execution between views ful� lling the system requirements.

For instance, the execution of a task in a CPU must satisfy a speci� c deadline de� ned

in the system requirements. To achieve this deadline, we must set the frequency clock

Chapter 3. Muti-View Modeling Language for Specifying Systems 47

of the CPU. This setting action is speci� ed in the controlSubView of a time performance

view.

The subViewElementexecution is commanded by control events sent from acontrolSub-

View. The controlSubView designers of each speci� c domain must specify the relation-

ships among control events to ensure the correct coordination amongsubViewElements.

Additionally, the designers have to synchronize the execution of the views guarantee-

ing the system requirements. These relationships can be de� ned in ccsl [3], which is

a declarative language that speci� es causal and temporal relationships among events.

Using ccsl , we can generate a possible scenario that follows the event relationship

de� nition using TimeSquare tool [6]. We can also generate observers that check the

correctness of a hardware implementation [45].

The relationship between the events generated and received bycontrolSubView could

directly be de� ned by ccsl expressions. However, we could also split thecontrolSubView

structure in one or more sub-components namedcontrollers. Figure 3.10 depicts the

meta-model of controller. A controller is a component that owns ports (controlPorts

and propertyPorts) and connectors (controlConnectors). These concepts are employed

to send control events tosubViewElementsand to other views. Additionally, a controller

can receive control events from othercontrolSubViews which may belong to di� erent

views, in order to synchronize the view execution. Acontroller can also receive property

values from asubViewElementof its view. This value can be employed to take decisions

in the controller.

Figure 3.10: Controller meta-model

Chapter 3. Muti-View Modeling Language for Specifying Systems 48

The behavior of a controller is expressed by a state machine. Contrasted withsub-

ViewElement state machine, thecontroller state machine transition contains a boolean

condition to be able to � re it. uml state machine speci� es this condition asguard. Nev-

ertheless, instead of following theuml guard semantics, where the guard only enables

the transition to be � red by a trigger event, we de� ne that once the guard condition is

true, the transition is � red. In our study, guard always evaluates a property value that

is controlled, i.e., guard is true if the controlled property is higher or lower than a given

value. In addition to the � ring transition generated by the guard condition, the transi-

tion can directly be triggered by an event. This event arrives to the controller control

ports coming from the other views. Once the transition is� red, an e� ect event is gener-

ated. This event is sent either to the correspondingsubViewElementor to other views.

The control event allows to change the active state of thesubViewElement according

to the changes of other views. As soon as a new state is active, one or more property

values could change due to the transition of the associated equation. In consequence,

the new values impact the controlled property value.

Figure 3.11: Example of the use ofControlSubView to control the water level of a
tank.

In Figure 3.11, we present an example of acontrolSubView by employing a controller.

We depict a mechanical view of a system that controls the level of a water tank. This

view contains acontrolSubView and a structuralSubView. The structuralSubView de� nes

two elements in the system: awater source and a valve. The water source supplies a

� ow of water to a tank and the valve controls the tank level by draining water from

the tank. The ControlSubView is composed by alevel controller that commands the

valve actions according to the tank level. The behavior ofwater source and tank is

speci� ed as a state machine with a single state,i.e., there is an associated equation that

de� nes the water� ow supplied by the water source and another equation that expresses

the tank level dynamic. These equations are de� ned in an equationalSubView. The

Chapter 3. Muti-View Modeling Language for Specifying Systems 49

controlled property is the tank level, therefore this property is sent to the controlSubView

in order to take control decisions when the tank level arrives to the maximum or to the

half of the tank. The behavior of level Controller reacts in two cases: when the tank

level is higher than the maximum (h_max) or once it is lower than half of th e tank

(h_half). If the tank level reaches the maximum, level controller generates a control

event (e_open) to open the valve reducing the tank level. In contrast, if the tank level is

lower than half of the tank, level controller orders to close the valve, allowing the� lling

of the tank. We remark that there are controlConnector subCorrespondencesbetween

ControlSubView and StructuralSubView. This subCorrespondenceallows to orchestrate

the structuralSubView elements.

If we add more views to this example,e.g., an electrical view or a time performance

view, the actions of their subViewElementsmust be coordinated with the mechani-

cal view execution to keep the execution consistency among views andto achieve the

system requirements. The coordination is speci� ed through the controlConnector cor-

respondencesamong views. These correspondences transmit the control events among

views and synchronize the execution of each view.

The behavior of controllers could be speci� ed by using another model of computation,

such as Petri nets. This behavior can also be de� ned by algorithms that optimize

speci� c property values ful� lling certain restrictions, e.g., reducing the time to � ll the

tank, taking into account the cross-sectional area of thewater sink.

3.3. UML Pro � le for PRISMSYS

In Model-Driven Engineering, there are two branches for the developing of modeling

languages. One branch de� nes speci� c languages adjusted to the terms and the way ex-

perts visualize their domains. This branch is the Domain Speci� c Modeling Languages

(DSML). In contrast, the other branch de� nes a general language whose concepts give

the necessary eloquence to represent a long range of domains. The mainpromoter of

the later branch is the Object Management Group (OMG). The OMG de� nes theuml

speci� cation and has added other speci� c domains that useuml concepts as basis to

represent their domain languages throughuml pro� les. Examples of these domains are

Chapter 3. Muti-View Modeling Language for Specifying Systems 50

real-time systems with marte [5], systems engineering withSysML [4], or telecommu-

nication with TelcoML [46].

There is an important uml community that uses this language to model their domains

adopting the pro� le mechanism. Moreover,uml is implemented in recent modeling tools

like Eclipse-Papyrus [47], UML Designer [48], MagicDraw [49], Modelio [50], Rational

Software Architect [51] and Rhapsody [52].

To bene� t from the uml development, we de� ne a uml pro� le to represent thePRISM-

SYS framework. We use as much as possible theuml meta-classes including the stereo-

types speci� ed in SysML and marte to represent the PRISMSYS concepts. The con-

cepts that are not included in uml or in the mentioned pro� les, are de� ned by extending

carefully selecteduml meta-classes whose semantics are as close as possible to the ex-

pected PRISMSYS semantics.

3.3.1. UML Concepts for PRISMSYS

We represent part of the PRISMSYS framework meta-model concepts by using as basis

the uml composite structures. We extend the composite structure meta-classes with the

correspondingPRISMSYS concepts by de� ning stereotypes in thePRISMSYS pro� le.

Table 3.1 lists the mappings between the PRISMSYS concepts anduml composite

structures concepts.

Chapter 3. Muti-View Modeling Language for Specifying Systems 51

PRISMSYS UML

ArchitectureDescription EncapsulatedClassi� er

View EncapsulatedClassi� er

SubView EncapsulatedClassi� er

SubViewElement EncapsulatedClassi� er, BehavioredClassi� er

Property Property

Connector Connector

StateMachine StateMachine

State State

Transition Transition

Abstraction Abstraction

Table 3.1: PRISMSYS - UML Mapping.

The main uml concept that we use to represent the structure ofPRISMSYS is En-

capsulatedClassi� er. Figure 3.12 presents a simpli� ed meta-model of thisuml concept.

We note that EncapsulatedClassi� er inherits from StructuredClassi� er, which contains

properties, connectors and parts. Parts are instances ofStructuredClassi� ers. From

the PRISMSYS point of view, these parts are the instances ofviews, subViewsor sub-

ViewElementsde� ned asEncapsulatedClassi� ers. In Figure 3.12, we also observe that an

encapsulatedClassi� er not only has properties, but also ports, which are property special-

izations. In consequence, anencapsulatedClassi� er contains parts, properties, ports and

connectors, and that is the same structural de� nition speci� ed for ArchitectureDescrip-

tion, View, SubView and SubViewElementin the PRISMSYS framework meta-model.

Chapter 3. Muti-View Modeling Language for Specifying Systems 52

Figure 3.12: Simpli� ed meta-model ofEncapsulatedClassi� er.

The SubViewstereotype is specialized inStructuralSubView, ControlSubView and Equa-

tionalSubView. Therefore, these three kinds ofsubViews also specializeEncapsulated-

Classi� er. A view part is included in an architectureDescription and a subViewElement

part is contained in a structuralView, following the PRISMSYS framework meta-model.

In the PRISMSYS framework meta-model, we also de� ne that a SubViewElementcon-

tains a behavior speci� ed by a StateMachine. Therefore, SubViewElement is also a

BehavioredClassi� er specialization. We constrain that the SubViewElementstereotype

only owns a StateMachine. In the StateMachine de� nition, Transition keeps theuml

de� nition. Nevertheless, State is extended to represent theCharacterization subCorre-

spondencebetween state-equation de� ned in the PRISMSYS framework. Figure 3.13

presents the state extension. ThePRISMSYSState stereotype contains theequations

property whose type is Constraint , i.e., a state stereotyped byPRISMSYSState must

associate aConstraint , which is the way SysML recommends to specify equations in a

ConstraintBlock.

Chapter 3. Muti-View Modeling Language for Specifying Systems 53

Figure 3.13: State stereotype.

The Abstraction correspondence ofPRISMSYS is represented by theuml Abstraction

relationship. According to the uml speci� cation, an Abstraction “is a relationship that

relates two elements or sets of elements that represent the same concept at di� erent

levels of abstraction orfrom di � erent viewpoints ” [21], which is the semantics that

we want to give in PRISMSYS. To represent the abstraction of a subViewElement in

a view, we specify that the abstractedsubViewElement is a uml reference of the sub-

ViewElement de� ned in the original view. Figure 3.14depicts the use of theAbstraction

relationship and reference in PRISMSYS represented inuml . We de� ne two views: a

layoutView that represents the physical layout of the system, and ahardwareView that

expresses the functionality of the system hardware components. InLayoutView, CPU is

abstracted from HardwareView to give physical dimensions toCPU. We use themarte

HW_Layout package, which is part of the marte HW_Physical package, to represent

the physical components by using thehwComponent stereotype. HwComponent con-

tains the necessary properties to describe the physical componentspeci� ed in a circuit

layout, such as dimension, position, number of pins. At the top of the� gure, we depict

the physical layout that is represented by the uml LayoutView. To indicate that the

abstracted CPU is not a part of LayoutView (i.e., CPU is not owned by LayoutView),

but a reference (i.e., only shared), it is graphically represented with a dashed border

in CPU. We also note theabstraction association between theCPU reference and the

CPU part.

Chapter 3. Muti-View Modeling Language for Specifying Systems 54

Figure 3.14: Abstraction of CPU in a layout component view.

3.3.2. MARTE Concepts for PRISMSYS

To represent the oriented direction ofOrientedPort de� ned in the PRISMSYS framework

meta-model, we use somemarte concepts that are listed in Table 3.2.

PRISMSYS MARTE

OrientedPort FlowPort

ControlPort Clock, FlowPort

Table 3.2: PRISMSYS - MARTE Mapping.

OrientedPort is an abstract concept in PRISMSYS that is represented by the uml

Port . We add the marte extensiondirection, the property that represents the incoming

or outgoing data � ow in a port stereotyped by FlowPort. We have mentioned that

ControlPort is a specialization ofPort in PRISMSYS. This port is represented by the

uml Port adding the marte FlowPort and Clock stereotypes. TheClock stereotype

speci� es that ControlPort is a set of instants, in this case, a set of control instants. This

kind of clock is known as LogicalClock in marte . Other kinds of clocks can exist in

speci� c domains of a system, such as theEquationalView that describes the physical

Chapter 3. Muti-View Modeling Language for Specifying Systems 55

time domain. The physical time is represented byChronometricClocks in marte . We

explain the importance of Clock in the de� nition of the PRISMSYS execution semantics

in Section 3.4.

3.3.3. SysML Concepts for PRISMSYS

EquationalSubView follows the component approach such asStructuralSubView and

ControlSubView. Therefore, EquationalSubView is also an encapsulatedClassi� er in

uml . However, We use theSysML ConstraintBlock stereotype to represent thissub-

View in order to apply the SysML parametric diagram. ConstraintBlock extendsBlock

and this last stereotype extends theuml Class concept. A Class inherits from encap-

sulatedClassi� er, when it contains an internal structure based on components. In fact,

EquationalSubViewstereotype extendsEncapsulatedClassi� er.

The EquationalSubView meta-model concepts are mapped to the elements that build

the parametric diagram in SysML . Table 3.3 presents the mapping. InSysML , Con-

straintBlock contains constraintProperties, parameters, constraints and bindingConnec-

tors, such as they are shown in Figure3.15. ConstraintProperties are instances of other

constraintBlocks and play the role of “parts” in the internal de� nition of a constraint-

Block. By observing the EquationalSubView meta-model (Figure 3.7) and the Con-

straintBlock meta-model (Figure 3.15), we can distinguish that the EquationalModel

concept is a genericSysML ConstraintBlock. In the EquationalView meta-model, we

specify that an equationalSubView contains equationalModels that are not instances

of other equationalSubViews. Due to the general use ofConstraintBlock, the separa-

tion between EquationalSubView and EquationalModel is not present in SysML . As a

consequence, the way to represent these two concepts limits the usage ofConstraint-

Block according to the PRISMSYS pro� le. The ConstraintBlock that is stereotyped

by EquationalSubViewonly contains bindingConnectors (binding), constraintProperties

(instance ofEquationalModels) and parameters. On the other hand, the ConstraintBlock

stereotyped by EquationalModel owns parameters and constraints (equations).

Chapter 3. Muti-View Modeling Language for Specifying Systems 56

PRISMSYS SysML

EquationalSubView ConstraintBlock

EquationalModel ConstraintBlock

Parameter ConstraintParameter

Equation Constraint

Binding BindingConnector

Table 3.3: PRISMSYS - SysML Mapping.

The association betweenParameter and Property, which is the Equivalence subCorre-

spondence, is mapped using theSysML path name dot notion to get a nested property

in a block hierarchy. For instance, to use thew property de� ned in viewElement1, we

can de� ne a parameter using the following path name:

CircuitLayoutView.StructuralView.subViewElement1.w,

i.e., this parameter is a reference to thew property de� ned in subViewElement1, which

is contained in the structuralSubView of CircuitLayoutView .

Figure 3.15: Simpli� ed Constraint Block meta-model from the SysML speci� cation.

3.4. Semantics of Execution

Once the syntax of PRISMSYS is speci� ed, we de� ne the way a PRISMSYS model is

executed. In other words, we specify the execution semantics ofPRISMSYS. It is based

on the partial ordering of event occurrences, where each event represents a relevant

change in the system. To achieve this goal, we use the Constraint ClockSpeci� cation

Language (CCSL) [3].

Chapter 3. Muti-View Modeling Language for Specifying Systems 57

ccsl is a formal declarative language to specify causal and temporal relationships be-

tween events. This language was� rstly introduced in marte [5] to represent func-

tional and extra-functional constraints over the time modeling of embedded systems.

In marte , it is possible to de� ne Clocks, which are an ordered set of instants. These

clocks are used to represent the relevant changes in a system, on which constraints can

be speci� ed. For instance, a clock can represent the entering in a state, a function call, a

data writing. Based on such clocks, relations can be speci� ed to represent causalities or

temporal aspects of the system. A clock can be of two types:Chronometric or Logical.

Logical clocks represent functional time. For instance, based on clocks we can specify

that the execution of an application is caused by touching the screen of asmart phone.

In this example, the clock associated with the screen touching isin a causal relationship

with the application execution. It is also possible to specify logicalperiodicity between

clocks. For instance, specifying that a task is started every 100th cycle of a processor.

Depending on the energy management in a computer, the start of the task can be pe-

riodic or not. When we want to specify something related to a physical dimension like

the physical time or a distance, a chronometric clock is used. That is why, it is then

possible to state that the CPU cycle is periodic every 3ms.

Logical and chronometric clocks are employed inPRISMSYS. For example, a chronomet-

ric clock can express the physical time periodicity of a CPU cycle in a time description

view. Furthermore, this clock can be used to de� ne the instants when the equations

in equationalSubViewmust be evaluated; e.g., the temperature equation of a CPU is

evaluated every 5ms. On the other hand, a logical clock can describe the instant when

a CPU starts to be busy (i.e., once a task begins its execution on it). Logical clocks can

also be used to de� ne the execution semantics of Models of Computation (MoCs) [40].

In our case, we employ logical clocks to specify the behavior of the� nite state ma-

chine (FSM) and the interactions that occur among controlSubViews, controllers and

subViewElements(i.e., the semantics of the sub-correspondence rules). Consequently,

logical clocks are used to specify the coordination of the execution between MoCs of dif-

ferent nature. More precisely, inPRISMSYS, there are two behavior domains that have

to be combined: a discrete event behavior represented by a set of� nite state machines

and a continuous time behavior, represented by a set of equations.

Chapter 3. Muti-View Modeling Language for Specifying Systems 58

In this section, we � rst de� ne the execution semantics of the� nite state machine. Sec-

ond, we specify the evaluation of the equations represented inEquationalSubView. Fi-

nally, the coordination between the � nite state machine and the equation evaluation is

described.

3.4.1. Finite State Machine Semantic Speci � cation

In Section 3.2.2, we have chosen to specify theSubViewElementand Controller behavior

by using a Finite State Machine (FSM). Sub-view elements and controllers do not use the

same kind of FSM. TheSubViewElementFSM changes from one state to another by the

reception of a control event. In contrast, Controller reacts to either a guard condition

or to the reception of a speci� c event. Additionally, Controller FSM can generate a

control event (e� ectEvent) when a transition is � red. In this subsection, we de� ne the

FSM semantics by usingclocks and relations de� ned in ccsl . First, we identify and

specify the relevant clocks used to establish the FSM executionaccording to the concepts

de� ned in the SubViewElement and Controller FSM meta-model. Second, we specify

the relationship between clocks to describe the FSM semantics.In the following, we use

the terms event and clock interchangeably.

3.4.1.1. Finite State Machine Clocks

In a FSM, there are various relevant events that occur during an execution. Most of the

FSM concepts are associated with one or more events that describe a particular FSM

change,e.g., the entering in a state or the � ring of a transition. We begin the de� nition

of FSM clocks by representing the state activation. In a state, there are two possible

events: Entering and leaving the state. For each of these events, we specify a clock in

ccsl . To represent the entry into a state s, we de� ne the clock senter and to express

the leaving of this state, we de� ne the clocksleave.

The transition between two states is also represented by a clock.We namet ij the clock

that represents the � ring of the transition between the two states si and sj . A transition

can be triggered either by an event representing the evaluation to true of the guard

(guardEvent) or by the reception of a trigger event (triggerEvent). We designateguardij

the guardEventof the transition t ij and trigger ij its triggerEvent. SubViewElementFSM

Chapter 3. Muti-View Modeling Language for Specifying Systems 59

transition is only sensitive to a triggerEvent, while Controller FSM can be sensitive

to both events (guardEvent and triggerEvent). When one of these events occurs, the

transition is � red instantaneously. Additionally, a Controller FSM can generate an

e� ectEvent when a transition is � red. An e� ectEvent is a control event sent to either

a SubViewElement to change its active state or to another view to synchronize the

execution among views. We nameeffect ij the e� ectEvent of the transition t ij .

Finally, we represent the event that initializes the state machine execution. We de� ne

the init clock that contains a unique instant. When init ticks, the FSM is entering

simultaneously into the initial state.

Table 3.4 summarizes the clocks de� ned to represent the activity in the FSM of sub-

ViewElement and controller.

Clock Action FSM

init initialization of the FSM SubViewElement, Controller

senter Entering into state s SubViewElement, Controller

sleave Leaving from state s SubViewElement, Controller

t ij Firing the transition from si to sj SubViewElement, Controller

guardij Evaluation to true of the t ij guard Controller

trigger ij Reception of the trigger event oft ij SubViewElement, Controller

ef fect ij Event generated whent ij is � red Controller

Table 3.4: Clocks representing the relevant actions in a Finite State Machine for both
SubViewElementand Controller .

3.4.1.2. Finite State Machine Clocks Relationship

Once the FSM clocks are de� ned, we identify the relationships of these clocks to describe

the FSM execution semantics. We start de� ning the activation of a speci� c state, which

is between the corresponding entering and leaving occurrences. Figure 3.16 presents a

sequence of activations of thes state.

Chapter 3. Muti-View Modeling Language for Specifying Systems 60

Actives

senter

Active Active

sleave

Figure 3.16: Representation of an active state by clocks

We specify that the s state is active when thesenter clock ticks. The s state stops being

active when sleave ticks. We de� ne that a state cannot be transitory, i.e., the enter

and leave events cannot be simultaneous. Moreover, a state can not be activated ifit

is already active. Consequently, we state an alternate relationship forall the states of

FSM betweensenter and sleave in ccsl as follows:

� s � StateMachine.states,

senter � sleave (3.1)

where StateMachine.states represents the set of states that belong to a FSM.

We have de� ned t ij as the clock that represents the� ring of a transition between two

states si (source state) andsj (target state). t ij is formally speci� ed as follows:

� i, j such that si , sj � StateMachine.states,

t ij = { t � StateMachine.transitions |t.source = si , � , s.target = sj } (3.2)

According to the execution semantics of FSM [53], a transition t ij is � red if two condi-

tions are achieved:

si is active, and

Either the guardij occurs or trigger ij ticks.

Chapter 3. Muti-View Modeling Language for Specifying Systems 61

We therefore study these conditions in the following items:

Transition � red by a guard: Figure 3.17 depicts the transition between two

states (si and sj) caused by aguardEvent (guardij). Once si is active, i.e., si enter

ticks, it is possible to change tosj . eval is a chronometric clock that commands

the evaluation of the guardij condition. Hence, if the evaluated condition is true,

guardij occurs. Considering thatsi is active and guardij ticks, then the t ij tran-

sition is � red.

Activesi

si
enter

Activesj

tij

si
leave

sj
enter

guardij

effectij

eval

Figure 3.17: Representation of the clock ticks leading to a change between two states
caused by aguardEvent.

We specify the relationship of these clocks by usingccsl expressions. We state

the ccsl constraints to � re the t ij transition by the following de� nition:

� i, j such that t ij � StateMachine.transitions,

guardij <> null and trigger ij = null implies:

let t ik = { t � StateMachine.transitions |t.source = Si , � , t <> tij } and

let f ij � [(si enter � guardij) �
�

t � t ik t] • f ij in

t ij = f ij (3.3)

Chapter 3. Muti-View Modeling Language for Specifying Systems 62

this expression can be read as ifguardij occurs and not trigger ij then si enter

is strictly sampled (�) by guardij . Once si enter is sampled, if some transi-

tion � red from si occurs, di� erent to t ij , then f ij is killed, i.e., any other tran-

sition going out from si cannot be � red. The de� nition of the inability of si

is represented by theccsl relation upto (�). The � rst part of Equation 3.3

([(si enter � guardij) �
�

t � t ik t]) is only one occurrence oftk , therefore each timesi

is active, the application of the � rst expression generates anotherf ij occurrence.

In consequence, we join thef ij ticks by the ccsl concatenation operation (•) in

order to gather all the f ij occurrences in one clock. Finally,t ij coincides with f ij .

Following the execution illustrated in Figure 3.17, si stops being active whent ij

occurs,i.e., si leave ticks. The relationship betweent ij and si leave is speci� ed by the

ccsl equality relation (=):

� i such that si � StateMachine.states,

let tout = { t ij � StateMachine.transitions |t ij = si .outgoing} in

si leave =
�

t � tout t (3.4)

we can interpret this speci� cation as the leaving of si occurs when one of its

outgoing transitions is � red, i.e., the union of the occurrences of the outgoing

transitions (
�

t � tout t). The operator
�

is derived from the union operator (+) in

ccsl .

In Figure 3.17, we can also note that thet ij clock coincides with the activation of

sj state, i.e., sj enter ticks. We specify this coincidence relationship by:

� j such that sj � StateMachine.states,

let t in = { t ij � StateMachine.transitions |tij = sj .incoming } in

sj enter =
�

t � t in t (3.5)

this relation is read as the ticks of the� red incoming transitions of sj (t in) coincide

with the sj enter occurrences.

If the FSM belongs to acontroller, then an e� ect can be generated, simultaneously

with the transition � ring, i.e., ef fect ij occurs (see Figure3.17). This relationship

Chapter 3. Muti-View Modeling Language for Specifying Systems 63

is speci� ed by:

� i, j such that t ij � StateMachine.transitions,

ef fect ij <> null implies :

t ij = ef fect ij (3.6)

Transition � red by an event: A transition could be � red by an event according

to the FSM meta-model. If t ij is � red by trigger ij , there is not synchronization

with a chronometric clock to generate at ij tick. Figure 3.18presents thet ij � ring

case caused bytrigger ij .

triggerij

Activesi

si
enter

Activesj

tij

si
leave

sj
enter

effectij

Figure 3.18: Representation of the clock ticks leading to a change between two states
caused by atriggerEvent.

In the same way that guardij , the relationship betweensi enter , t ij and trigger ij is

also speci� ed in ccsl as follows:

� i, j such that t ij � StateMachine.transitions,

guardij = null and trigger ij <> null implies:

let t ik = { t � StateMachine.transitions |t.source = Si , � , t <> tij } and

let f ij � [(si enter � trigger ij) �
�

t � t ik t] • f ij in

t ij = f ij (3.7)

Chapter 3. Muti-View Modeling Language for Specifying Systems 64

Initial state de � nition: The FSM must have at least one initial state to start

its execution. We only consider the case that a FSM has only one initial state. We

de� ne a clock that begins the FSM execution activating the initial state. We have

named this clock init . We only need a tick in init to active the initial state (see

FSM mata-model - Figure 3.6). Therefore, we de� ne fsmClk, which is a logical

clock only used to specifyinit . Thus we state init in ccsl as follows:

init = fsmClk � 1(0)w (3.8)

this equation means that init is the result of � ltering fsmClk with the binary

periodic word 1(0)w . This word denotes that only the � rst tick of fsmClk is

taken.

The init clock must be associated with the initial state. Considering that sinit is

the initial state of the FSM, we de� ne its activation as follows:

let sinit = { s � StateMachine.states |s = StateMachine.initialState }

sinit enter = init (3.9)

However, sinit is also activated during the FSM execution by its � red incoming

transitions. Therefore, by using Equation 3.5 and 3.9, we complete thesinit spec-

i� cation by:

let sinit = { s � StateMachine.states |s = StateMachine.initialState } and

t in = { t � StateMachine.transitions |t = sinit .incoming } in

sinit enter = init +
�

t � t in t (3.10)

we can interpret this equation as the initial state of the FSM (sinit) is active when

either init occurs or an incoming transition to the initial state is � red.

3.4.2. Equational View Semantic Speci � cation

In systems, the notion of time is always present in the evolution of non-functional prop-

erties. These properties are evaluated in a time instant and their values could be used to

calculate other properties by using equations. For instance, the temperature evolution

Chapter 3. Muti-View Modeling Language for Specifying Systems 65

of a cpu depends on the progression of its dissipated power. InPRISMSYS, Equational-

SubView contains such equations and the active ones are evaluated through time. The

characterization subCorrespondencesallows to change the active equations according to

the active subViewElementstates. In this section, we formally specify the non-functional

property evolution through equations. These equations are evaluated at discrete time

and according to active states. To this end, we useccsl to specify a chronometric

clock to state the discrete time for the equation evaluation. ccsl is also employed to

de� ne the causal relationship between the active states and the associated equations to

be evaluated.

We specify that the time notion in an equationalSubView follows the physical time

speci� ed in marte . This standard describes that physical time is “a continuous and

unbounded progression of physical instants”[5]. Physical time can be modeled as a

dense time base. Such a time base is an ordered set of instants where“for a given pair

of instants, there always exists at least one instant between thetwo” [5]. Dense clocks

could be de� ned from the dense time base. Themarte TimeLibrary contains a dense

clock called idealClock. This dense clock represents the physical time that describes

physical laws. For instance, in the equationa = dv/dt , dt could be represented by

idealClock. IdealClock has as time base unitsecond. By using idealClock, we de� ne

chronometricClocks. A chronometricClock represents the periodic occurrences of the

physical time evolution. Therefore, we de� ne chronometricClocks to mark the periodic

time evolution of certain subViewElementsthat need the time notion. For instance, we

could represent the measure of humidity by using achronometricClock that ticks every

10 s. For each clock tick, the humidity is measured.

We specify achronometricClock to evaluate the equations de� ned in equationalSubView.

We name this clockstep. At each occurrence ofstep, a new value is calculated according

to the equations activated by the subViewElementstates. The step clock can be spec-

i� ed by discretizing idealClock or it can be derived from the relationships with other

chronometricClocks speci� ed in other views. For instance,step occurrences could coin-

cide with the ticks generated from the CPU clock source, clock thatcan be de� ned in a

time performance view.

Figure 3.19presents an example of aPRISMSYS model where the temperature evolution

of a CPU is speci� ed.

Chapter 3. Muti-View Modeling Language for Specifying Systems 66

Heat
Sink

Normal

Heat

Thermal Element Temperature

Thermal View

T

T

temperature

dT
dt

= �� (T�� Tmin)

dT
dt

= �� (T �� Tmax)

staCtr

heatCtr

?e_heat ?e_normal

T

staCtr

heatCtr

ControlSubView

t Tmax Tmin

Execution
Scenario

(step, e_heat, e_normal)

Time Performance View

Clock Source

Clocked
Element

clkOut clkIn
freq1

Hardware View

Memory CPU
data data

frequency

To

StructuralSubView

Frequency

f = 1kHz
f

EquationalSubView

StructuralSubView

EquationalSubViewStructuralSubView

ControlSubView

clkRef
step

clkIn

step

clkSrc

clkTpv

Figure 3.19: PRISMSYS model where the temperature of a CPU is characterized in
the equationalSubView.

In the � gure, three views are depicted.Hardware View is the view where the structure

and the functional behavior of the system components are de� ned. Thermal View de-

scribes the thermal architecture of the system, including its thermal behavior and its

equational representation. The thermal behavior corresponds to the CPU activity that

is speci� ed in ThermalElement, which is the CPU abstraction from the thermal point of

view. We represent the CPU thermal activity by states. The transition between states is

controlled by the controlSubView. In this example, we only recreate a possible execution

scenario in theControlSuvView of ThermalView to command the thermal states of the

CPU. The thermal states of the CPU are two: Normal and Heat. The former expresses

that the CPU maintains the typical temperature when it is not active. In contrast, Heat

describes that the CPU temperature raises if it is active. Both states are associated by

transitions that are sensitive to the e_heat and e_normal events generated from the

controlSubView.

The thermal representation of the CPU also contains a temperature property whose

value depends on the active thermal state. The temperature value is the result of the

evaluation of the active thermal equation de� ned in the equationalSubView. The ther-

mal equations belong to anequationalModel named Temperature. Such equations are

Chapter 3. Muti-View Modeling Language for Specifying Systems 67

associated with the thermal states inThermalView. The equations are� rst-order di� er-

ential equations whose solutions are exponential functions.Normal state is associated

with a temperature equation whose response is asymptotic toTmin , which is the min-

imum temperature that the CPU can achieve in halting state (i.e., without activity).

The Heat state is characterized by the second temperature equation whose response is

asymptotic to Tmax , the maximum temperature that CPU can support before burning

out. The Temperature equationalModelalso contains the parametersT, Tmin , Tmax , To

and t. T is the temperature evaluated according to the active equation,Tmin and Tmax

are constant values as well asTo, which is the initial temperature at t = 0, i.e., To is

the environmental temperature.

The t parameter is the physical time of the equations.t is discretized by achronomet-

ricClock de� ned in TimePerformanceView. Such a view de� nes the temporal features of

the example system. We note that itsstructuralSubView contains a ClockSourcethat is

a clock generator. TheClockSourceowns a frequency property whose value is de� ned by

the associated equationf = 1 kHz . By using this de� nition, we specify the generated

clock signal from ClockSourceby the following ccsl expression:

clkOut = idealClk discretizedBy 0.001 (3.11)

where 0.001 is the period de� ned by the equation f = 1kHz . This generated clock

signal is used to evaluate the active thermal equation. To share theclkOut signal, we

send the generated clock signal tocontrolSubView of Time Performance View through

clkSrc port. The connection betweenStructuralSubView and ControlSubView is a Data-

Connector subCorrespondence. The controlSubView retransmits the clkSrc clock signal

to the Thermal View through the connection between theclkTpv and clkRef ports. This

connection is aDataConnector Correspondence. Afterwards, clkRef port is connected

to clkIn, which is an input port of Thermal View controlSubView. As a consequence,

controlSubView can generate the temperature scenario synchronizing thee_heat and

e_normal occurrences with the clock signal received onclkIn. Additionally, the re-

ceived clock signal is shared withequationalSubView to mark the instants when the

active equation of the equationalModel is evaluated. The received clock signal is sent

through the step port to equationalSubView. step is associated with t by using the

binding connector. This association speci� es that the step clock evolution is equal to

Chapter 3. Muti-View Modeling Language for Specifying Systems 68

the t progression. Consequently, for each tick of thestep clock, the active equation is

evaluated.

By using this example, we can specify the semantics ofDataConnector correspondence

and subCorrespondencein the speci� c case of the transmission of a clock signal. Addi-

tionally, we de� ne the coordination between the active states (i.e., the active equation)

and the equation evaluation. We can specify inccsl the relationship between clkOut,

clkSrc, clkTpv, clkRef, clkIn and step as:

clkOut = clkSrc (3.12)

clkSrc = clkTpv (3.13)

clkTpv = clkRef (3.14)

clkRef = clkIn (3.15)

clkIn = step (3.16)

these ccsl relations could be read as the instants generated byclkOut, clkSrc, clkTpv,

clkRef, clkIn and stepare coincidental, in other words, they tick at the same time instant.

Therefore, the execution semantics ofDataConnector correspondenceand subCorrespon-

dence is speci� ed by an equality ccsl clock relation, in the case that the transmitted

data is a clock signal.

In the controlSubView of ThermalView, we de� ne an execution scenario to specify at

which instant e_heat and e_normal occur. Figure 3.20 presents the temperature evo-

lution through time according to an execution scenario. At the beginning of the simu-

lation, i.e., at t = 0, the state machines in ClockSourceand ThermalElement enter into

their respective initial states (freq1 in ClockSource and Normal in ThermalElement).

Therefore, the active equations in theequationalSubViewsare f = 1 kHz in Frequency

equationalModel and the � rst equation in Temperature equationalModel. At the same

instant, the clock generated byClockSource, i.e., clkOut, starts to tick. Following Equa-

tions 3.12, 3.13, 3.14, 3.15 and 3.16, for each clkOut occurrence, the� rst equation of

Temperature equationalModelis evaluated. Note the coordination between the state ma-

chine execution (discrete time behavior) and the equation evaluation (continuous time

behavior). Once an e_heat event occurs, the transition from Normal to Heat is � red

and the Heat state is active. In consequence, the associated equation is activatedand

Chapter 3. Muti-View Modeling Language for Specifying Systems 69

the temperature value is evaluated at the next step tick. After producing the e_heat

event, step ticks twice before e_normal ticks. This e_normal event � res the transition

from Heat to Normal returning to the Normal state. In the � gure, we note the change

of the active equation by the new evaluated temperature value in the next step tick.

This value is calculated by the � rst equation of the Temperature equationalModel.

t
step

Normal

e_heat

e_normal

Heat

T
min

T
T

max

T
o

Active
Active

Active

Figure 3.20: Temperature evolution through time according a prede� ned execution
scenario.

We note in this example that the synchronization between heterogeneous behaviors

(� nite state machine and continuous time) is given by the time discretization and the

relationship speci� cation between the actions in the state machine and the instants

where the equations are evaluated. This relationship is speci� ed in ccsl .

3.5. Conclusion

In this chapter, we have presented thePRISMSYS framework. This framework is a

language that allows the description of systems from di� erent points of view. PRISMSYS

Chapter 3. Muti-View Modeling Language for Specifying Systems 70

exposes di� erent sub-views that must be speci� ed in each view to describe a speci� c

domain. PRISMSYS provides the basic sub-views to be extended in order to express

the necessary views of the stakeholders’ concerns. ThePRISMSYS framework also

de� nes the necessary correspondences to maintain the coherence among the views and

to coordinate their execution. We also de� ne the sub-correspondences between the

prede� ned sub-views to keep the consistency among sub-views. Correspondences avoid

the re-de� nition of domain elements, re-using elements and properties from other views.

Additionally, correspondences expose the execution impact between views in a single

system model. This impact is also projected in the achievementsof system requirements.

We also propose auml pro� le to represent aPRISMSYS model in uml by using as much

as possible the concepts already speci� ed in uml , SysML and marte . The designers

that employ uml tools to describe systems, they could easily apply thePRISMSYS

framework in a uml environment.

We de� ne the execution semantics ofPRISMSYS by using ccsl . Thanks to ccsl ,

we could de� ne the execution of a discrete event model,i.e., Finite State Machine,

and the instants when the equations of a continuous time model are evaluated. The

relationship de� nition between both models (discrete event and continuous time) allows

the coordination of the execution of these models, through the use of another way to

execute heterogeneous models.

In the next chapter, we present a use case that de� nes the necessary views to describe

power consumption of an embedded system. We also illustrate the impact of other views

in the system power consumption.

Chapter 4

Power Consumption Modeling

Contents

4.1. Introduction . 72

4.2. Dynamic Power Consumption 73

4.3. Static Power Consumption . 74

4.4. Characterization for Power Consumption 75

4.5. Power Management Techniques 77

4.5.1. Clock-Gating . 78

4.5.2. Power-Gating . 78

4.5.3. Dynamic Voltage-Frequency Scale 80

4.6. Power Design Speci � cation . 81

4.6.1. UPF, CPF and IEEE 1801 . 81

4.6.2. SystemC. 84

4.6.3. UML . 84

4.7. Discussion . 85

4.8. Conclusion . 86

71

Chapter 4. Power Consumption Modeling 72

4.1. Introduction

Nowadays, digital circuits are built using the CMOS technology. In � gure 4.1, we depict

the base gate of the CMOS technology whose behavior corresponds to a NOT logical

function. From this gate, various logical functions can be built. In the � gure, the CMOS

gate contains aPMOS transistor and a NMOS transistor. These transistors have the

same physical characteristics in order to have the same behavior when they are switched.

Vin is the input signal that can be a logic0 (a voltage close to ground) and1 (a voltage

close toVdd). Vout is the output signal of the gate.

Figure 4.1: CMOS inverter circuit.

According to the Vin signal, Vout is obtained. ConsideringVin is initially in 1, i.e., in

Vdd, and we change theVin value to 0. Once the change is done, thePMOS transistor

is closed and theNMOS transistor is open during a short period of time. If the PMOS

transistor is closed, the current that circulates from Vdd to the charge Load is reduced

to almost 0A. In contrast, the NMOS transistor is opened, therefore there is a current

that circulates from Load to ground though the NMOS transistor. This current is also

generated for a short period of time; while theLoad charge is discharged. During the

state change, the produced current in both transistors generate power consumption.

Once the circuit arrives to a stable state, the Vout value becomes a0 logic. However,

this 0 is not exactly a 0V. There is a small current that circulates from Vdd to ground

during the stable state, producing additional power consumption.

Various authors [54] [55] [56] [57] identify three sources of power consumption in digital

CMOS circuits:

Chapter 4. Power Consumption Modeling 73

Ptotal = Pshort + Pswitch + Pstatic (4.1)

where Pshort is the power consumed when theNMOS and PMOS transistors are si-

multaneously active, i.e., producing a short-circuit current from Vdd to ground. This

power consumption is usually small compared toPswitch and Pstatic . Pswitch is the power

consumed during the period that the circuit is in constant activit y, i.e., the transistor

are switching. The sum ofPswitch and Pshort is known as dynamic power consumption

(Pdyn). In contrast, Pstatic is the power consumed when the digital circuit is in stand-by

state, i.e., when the transistor are not switching.

The power consumption that predominates among the mentioned powers is Pdynamic .

However, in the last years, caused by the transistor size reduction,Pstatic is becoming

an important source of power consumption.

In the next sections, we explain in more detail the dynamic and static power con-

sumptions. We continue describing the power consumption estimation according to the

abstraction description level of the system. Afterward, we presentthe main strategies

to manage the power consumption. Finally, we expose the di� erent approaches that

specify power design for electronic systems.

4.2. Dynamic Power Consumption

Previously, we mentioned that the dynamic power consumption is de� ned by the follow-

ing equation:

Pdyn = Pshort + Pswitch (4.2)

where Pshort is the power consumed during the period when both transistors are active,

and Pswitch is the power consumed during the switching period. We can expressPswitch

according to the following equation:

Pswitch = � CL V 2
ddf (4.3)

Chapter 4. Power Consumption Modeling 74

Where � is the input transition activity factor of the CMOS gate, CL is the capacitance

of Load, Vdd is the voltage of the CMOS gate source andf is the transition frequency.

Load represents the wires and other transistors that are connected to theCMOS output.

According to this equation, Pswitch depends mainly on the voltage and the frequency,

therefore there are certain techniques to reduce the power consumption at this point,

for example Dynamic Voltage-Frequency Scale (DVFS) and clock-gating. Wepresent

these techniques in detail in Section4.5.

4.3. Static Power Consumption

According to [54] and [58], static power consumption of a CMOS gate is due to var-

ious leakage currents that � ow through the gate during the stable state. Figure 4.2,

depicts a NMOS transistor with its main leakage currents. This transistor contains a

p-type substrate, i.e., this substrate contains excess of charge carries or “holes” and a

n-type channel, i.e., the channel transmits free-electrons fromDrain (D) to Source (S)

terminals. The Gate (G) terminal controls the electrons � ow betweenDrain and Source

according to the voltage applied. Finally, the Body terminal (B) is connected to the

p-type substrate. Generally, Body is connected to ground in aNMOS transistor.

Figure 4.2: Leakage currents of a NMOS transistor.

In the � gure, I REV represents theJunction Leakagecurrent. This current is produced by

the reverse-biased junction.I GIDL represents theGate-Induced Drain Leakagecurrent.

This current is produced by the band-to-band tunneling e� ect in the gate-drain overlap

Chapter 4. Power Consumption Modeling 75

region. I G depicts the current that � ows from the gate terminal to the p-type substrate

through the oxide insulation. I SUB represents theSubsthreshold leakagecurrent. This

current that is produced between Source and Drain terminals caused by working the

transistor in the weak inversion region.

All these currents are a� ected by the transistor characteristics (size, voltage applied,

etc.) and by the temperature. One of the most signi� cant leakage current isI SUB . This

current can be modeled by the following equation:

I SUB = KV 2
T

�
W
L

�
e(VGS � Vth)/nV T

�
1 � e� VDS /V T

�
(4.4)

where K , W , L , n are transistor characteristics, VGS is the Gate-Sourcevoltage, VDS

is the Drain-Source voltage, Vth is the threshold voltage andVT is the thermal voltage.

VT is directly proportional to the transistor temperature, therefore according to the

equation, I SUB exponentially increases in function of the temperature.

4.4. Characterization for Power Consumption

Power models characterize the power consumption of hardware components according

to a functional execution. These power models are implemented invarious tools using

di� erent abstraction levels. Ibrahim et al. [59] present a survey of the techniques used to

estimate the power consumption of system components. They classifythese techniques

in the following levels:

Transistor-Level : This level is a detailed description of the system components in

circuits based on transistors. This level uses the physical transistor model, which

is described in a continuous time domain, to get the component behavior and

its characteristics such as time performance and power consumption.Generally,

the power consumption is estimated by monitoring current and voltage of the

analyzed circuit. This level is the most precise power consumption estimation

technique because every characteristic of the transistor is de� ned. However, the

simulation time is too long, moreover when designers want to simulatecomponents

Chapter 4. Power Consumption Modeling 76

that have millions of transistors. Tools that use this technique are SPICE [60] and

PowerMil [61].

Gate-Level: In this level, the system components are described by logical gates.

Therefore, the system simulation changes from a continuous-time domain to a

discrete-time domain where each component is sensitive to events. According to

the equation 4.3 from Section 4.2, � represents the input transition activity in a

CMOS gate. In gate-level, this activity parameter can be estimated using di� erent

probabilistic methods. Chou and Roy [62] present a signal activity estimator based

on Monte-Carlo experiments. Ding et al. [63] use probability waveforms to estimate

the average switching activity.

Register Transfer-Level: The register transfer models are interconnected blocks

where each block has a speci� c functionality in a system. To characterize the

power consumption of these models, their internal blocks are individually measured

and analyzed from their physic implementation and their power properties are

extracted. As gate-level, Register Transfer-Level estimation mainlyworks focused

on extracting the activity information from the blocks and measure their power

consumption response.

Architecture-Level: This level uses a combination of the techniques mentioned

before, mainly Gate-Level and Register Transfer-Level to estimate the power con-

sumption of a system. For instance,SimplePower [64] employs transition-sensitive

power models to estimate the power consumption of functional units. In contrast,

SoftWatt [65] and Wattch [66] use a� xed-activity model. PowerSC [67] is a C++

library that extends SystemC [68] to specify power features and to estimate power

consumption using di� erent power modeling techniques.

Another tool that is part of this level is Aceplorer [8]. They de� ne the power

consumption though the speci� cation of voltage and current for each component

of the system. These parameters are de� ned by equations and they can represent

from the lower level power characterization, such as transistor-level, to the higher

level, like instruction-level. However, this tool is commonly used to estimate power

in the � rst phases of the system design. We detail this tool in Chapter6. We use

this tool to analyze the power consumption of the system speci� ed in PRISMSYS.

Chapter 4. Power Consumption Modeling 77

Instruction-Level : This level is exclusive to components that execute instructions.

In this level, current measurements are taken when a sequence of instructions is

executed. For each instruction a cost is assigned according to the measurements.

An extra-cost is also assigned according to the transition from an instruction to

another. Tiwari et al. [69] and Konstantakos et al. [70] present power consumption

estimator models in this level. Tiwari was one of the� rst authors to propose this

power estimation in processors. Konstantokos de� nes a power consumption model

for an embedded system based on a microcontroller.

Functional-Level: As the previous level, this level is also applied to processing

components. Here, the studied component is split in di� erent functional blocks.

Thus, the application features that impact the power consumption of the func-

tional blocks activity are de� ned, such as parallelism rate, clock frequency and

data mapping. Once the parameters are speci� ed, their values are changed ac-

cording to an algorithm that individually stimulates the functional bl ocks. During

the program execution, the current consumed by the component is measured. Re-

gressions are applied to the current consumed according to the features variation

thus obtaining the power model of the component. SoftExplorer [71] is a power

estimation tool that follows this technique.

4.5. Power Management Techniques

Power management is the use of certain hardware elements to optimize the component

power consumption; these can be switches, voltage sources and clock sources where

properties such as current, voltage and frequency can be changed. There exist di� erent

techniques to reduce the power consumption of systems. Power experts combine these

techniques to reduce power in each system state. The combination ofsuch techniques

is de� ned in a functional block called power manager. This block synchronizes the

implemented control techniques to guarantee the system functionality and optimizing the

power consumption. In this section, we describe three of the most important techniques:

Clock-Gating, Power-Gating and Dynamic Voltage-Frequency Scale.

Chapter 4. Power Consumption Modeling 78

4.5.1. Clock-Gating

Clock-gating is one of the� rst techniques used to reduce dynamic power consumption

when a processing component is not active. This technique consists in turning o� the

signal clock that is received by the component when it is not in use. The power reduction

directly a� ects the registers that belong to the component. These registers are� ip-� ops

with clock inputs. For each clock cycle, the � ip-� ops consume dynamic power, even

when the data input is not changed.

Figure 4.3: Example of a clock gating implementation.

Clock-gating can be implemented with a simple AND gate. Figure4.3 presents a D-type

� ip-� op where the clock input is controlled by an AND gate. Such a gate allows passing

the clock signal only whenEN input has a logic 1. This implementation can easily be

described in RTL models using theand operator. Okuhira and Ishihara [72] report that

around 40% of the total power consumption in microprocessors is caused by register

circuits. In this percentage, more than 80% of the power consumption iscaused by the

clock signal transition in the register circuits. In consequence,applying this technique,

a signi� cant energy reduction can be made.

4.5.2. Power-Gating

Power-gating is a technique exclusively conceived to reduce static power consumption.

This technique can be applied to every hardware component during the time periods

when it is not in use. Whereas clock-gating only turns the clock input o� , power gating

turns the hardware component o� when it is not active. The implementation of this

technique uses a transistor as power switch to cut o� the current supplied to the hardware

component. Figure 4.4 presents a power gating implementation. The transistor is� xed

between Vdd and the component to control the current � ow. The switch can also be

located from the component to ground or both.

Chapter 4. Power Consumption Modeling 79

Figure 4.4: Example of a power gating implementation.

Figure 4.5: Example of a retention register.
.

Once the hardware component is turned o� , the component outputs can generate un-

decided signals. Such signals could a� ect other components that are active during the

period the component is gated. To solve this problem, power expertsadd an isolation

cell for each component output. Before turning the component o� , the isolation cells

are activated producing a logic value to the interconnected components. These isolation

cells can be implemented by AND gates. Figure4.4 depicts the implementation of the

isolation cells. Each output of the hardware component is connected to an isolation cell,

as well as it is connected to the interconnected component inputs.

We can also add another functionality to a power gated component. This functionality

is to save the current state of the internal registers before the component is turned o� .

Once the component is turned on, the saved state is restored and the component can

Chapter 4. Power Consumption Modeling 80

continue its execution from its previous state. To implement sucha functionality, the

internal register information can be charged in retention cells. Figure 4.5 depicts the

retention register structure. This register contain two internal registers: a main register

that is identi � ed by a Flip- � op and a shadow register calledRetention Cell. The main

register is supplied byVDD_sw . In contrast, the shadow register is supplied byVDD .

VDD_sw is the gated power supply. D, Clk, Reset and Q are connected to the main

register. Saveand Restore are bound to Retention Cell. The main register operation is

made by the main internal register. Before the power gated component isturned o� , an

event is sent toSavein order to record the information of the main register in Retention

Cell. Once the register information is saved, the power gated component isturned

o� and VDD_sw does not supply current to the internal main register. Nevertheless,

Retention Cell is on, becauseVDD is not cut o� . Once the gated component is turned

on, an event is sent toRestore to return the saved information in the internal main

register.

The retention functionality takes certain time to save and restore the gated component

information. Therefore, this functionality is only used in certain cases.

4.5.3. Dynamic Voltage-Frequency Scale

According to Equation 4.3, the switching power depends on voltage and the transition

frequency in a CMOS circuit. In a processing component, if we vary these values accord-

ing to the component workload, we could signi� cantly reduce its power consumption.

However, we can not choose voltage and frequency values randomly. A speci� c frequency

value must correspond to a speci� c voltage value. Technologically speaking, when we

reduce the switching frequency, the voltage level can be reduceduntil a certain limit.

This limit is given by the transistor characteristics and the voltage control implemented.

Processors that implement this kind of technique calledoperation points the determined

frequency/voltage values. For instance, OMAP3 [73], which is an application processor,

has up to six operation points.

To optimally apply this technique, it is necessary to know the workload and the time

constraints to be executed. Most of the works apply this technique,taking into account

the task execution deadline given by the scheduling policy. According to this deadline,

Chapter 4. Power Consumption Modeling 81

the operation point is dynamically changed. For instance, Ejlali et al. [74] propose to use

DVFS and power-gating techniques to reduce power consumption in redundant-hardware

employed in real-time systems. They present a DVFS algorithm according to a common

execution deadline for a task sequence, the operation points can be changed according

to the time execution of each task that conforms the sequence. Genseret al. [75] propose

an algorithm where the operation point changes to execute a task depending on the time

execution of the previous one.

This technique can be applied in di� erent zones of a system, so that the system can

have multiple voltage level zones. Power experts called these zones voltage domains. To

guarantee the communication between components of di� erent voltage domains, power

experts add level shifters to each connector that crosses the voltage domain border.

Level shifters level the voltage of a logic signal from a voltage domain to another one.

4.6. Power Design Speci � cation

The elements employed to reduce power consumption were initially designed at transistor-

level. The power techniques impact the system functionality, which is usually speci� ed

at higher levels than transistor-one. Therefore, the validation of the correctness between

power and functional execution is evaluated in the last stages of the system design. In

consequence, such elements have begun to be implemented at a higher description level.

In this section, we present various languages that have been conceivedto de� ne power

architectures at three di� erent description levels.

4.6.1. UPF, CPF and IEEE 1801

Hardware description languages (HDLs), like VHDL [76] and Verilog [77], were devel-

oped to model the functionality and the time performance of digital systems. However,

these languages lack expressivity to implement all the elements that are involved in the

power reduction techniques. In 2006, various semiconductor and electronics companies

demand to the electronic design automation industry to de� ne an open standard for

power speci� cation.

Chapter 4. Power Consumption Modeling 82

Responding to this need, Accellera Systems Initiative1, with the support of Synopsys

and Mentor Graphics companies, developed a standard namedUni � ed Power Format

(UPF) [78]. The aim of this standard is to de� ne the elements needed to implement

the predominant power reduction techniques at a register transferlevel (RTL). The

� rst UPF version was released in 2007 and, in same year, it was transferred tothe

IEEE in order to create a new IEEE standard. In 2009, IEEE publishes its � rst power

speci� cation standard namedIEEE-1801 [79].

Another power speci� cation standard was also developed this time in 2007 by Ca-

dence. This speci� cation is namedCommon Power Format (CPF) [80]. Such a standard

was also transferred to an independent organization called Silicon Integration Initiative

(Si2)2 to continue its development. This organization has produced two new versions.

The last CPF version was released in 2011.

The two standards have many concepts in common, however the most notorious is the

power intent description complexity. UPF describes the exact physical structure of the

power intent in RTL, i.e., it speci� es the wires, the ports and the connection between

the power elements. In contrast, CPF de� nes the power concepts that include the basic

information to reduce the physical structure complexity. For instance, apower domain

is associated to a voltage level (nominal condition in CPF) in a power mode3. IEEE-

1801 is a new UPF version that uni� es the concepts from CPF and UPF in a unique

standard. The convergence between the two standards continues and a new IEEE-1801

version, whose release is available since the� rst semester of 2013, contains more Si2

contributions.
1http://www.accelera.org
2http://www.si2.org
3a power mode de� nes the voltage levels that each power domain must be.

Chapter 4. Power Consumption Modeling 83

Component1

Power
switch

Isolation
Cell

Power Domain

Vdd

Component2

Retention
Cell

Vss

Figure 4.6: Example of Power Domain association.

The main concepts of these standards used to de� ne a system power architecture are:

Power Domain, Power Switch, Level Shifter, Isolation Cell and Retention Cell. We

have mentioned in Section4.5 that Power Switch, Isolation Cell and Retention Cell

are elements employed to implement power gating technique. Additionally, we have

commented that Level Shifters guarantee the logic level between voltage domain in

DVFS.

The dynamic of the power elements is speci� ed in a Power State Table(PST), where the

voltage levels are coordinated with the states ofPower Switches, Retention Cells and

Isolation Cells. By using PST, the designer can verify the synchronization between the

power and functional model execution. Nevertheless, not one of thesestandards specify

a way to estimate the power consumption of the hardware components where the power

modes are applied.

In IEEE-1801, Power Domain is the concept that gathers the elements of a system

architecture where the power design is applied. For instance, Figure 4.6 depicts aPower

Domain that contains a Power Switch, a Retention Cell and an Isolation Cell to provide

the hardware elements needed to implement the power-gating technique. Assigning the

Power Domain to one or more hardware components means that these components are

supplied in function to the power domain mode. We remember that the associated

hardware components are speci� ed in RTL and these standards are only applied to RTL

models.

Chapter 4. Power Consumption Modeling 84

4.6.2. SystemC

Transaction-Level Modeling (TLM) [81] is a system description level where the commu-

nication between components is realized by transactions through channels. SystemC [68]

is a C++-based language that implements this modeling level4. Such as RTL, TLM

has initially been developed to describe functionality and to analyze time performance.

However, when the system designers had to model the power characteristics of their

models, a new research area was open in TLM to implement these new characteristics

to existing TLM models. Mbarek et al. [82] implement the power concepts de� ned in

IEEE-1801 to describe a power architecture in SystemC. They de� ne a framework called

PwARCH. In this framework, the IEEE-1801 power control elements are de� ned in a

C++ library and can directly be used in the SystemC system model. PwARCH also

includes a test engine to validate the behavior constraints between power and functional

architectures. For instance, if a component is turned o� by the power architecture, this

component cannot be executed in the functional architecture. Additionally, the authors

add a power estimation analyzer that evaluates the power consumption, according to

the system execution.

4.6.3. UML

Uni� ed Modeling Language (uml) [21] is a graphical general purpose modeling language

developed by the Object Management Group (OMG).uml was initially used mainly to

specify object oriented software systems. Nevertheless, this language has been more

and more employed to de� ne various kinds of systems, like real-time systems, hardware

platforms, control systems, etc. Such speci� c languages have been built by extending

the uml concepts. This extension process is de� ned in a uml pro� le. For instance,

Modeling and Analysis of Real-Time Embedded Systems (marte) [5] is a pro� le used

to model and to analyze real-time systems, and System Modeling Language(SysML) [4]

is another pro� le used in systems engineering.

uml is considered as a language that can be used to specify systems at a higherabstrac-

tion level than TLM. In uml , there are some works to specify power concerns: Hagner

et al. [83] and Arpien et al. [84] de� ned uml pro� les providing the modeling elements to

4SystemC can also implement RTL. This language eases the task to re� ne the model from TLM to
RTL

Chapter 4. Power Consumption Modeling 85

represent power management techniques and to analyze power consumption. However,

these two approaches abstract the elements involved in the power management tech-

niques, without taking into account the impact that causes the control made by these

elements on the system behavior.

4.7. Discussion

In the design of low-power systems, we note a clear separation of concerns: on one hand, a

power design represented by power characterization and power management techniques,

and, on the other hand, the functional design of the system. The power characterization

is implemented in certain tools that hide their power models, forcing the user to employ

their models and approaches. We also observe that the aim of the power design is

to optimize the power consumption, which is one of several non-functional properties

de� ned in a system. By the construction of a power architecture, which controls the

power consumption of the system according to its activity, we can identify the impact

of the power design on the functionality of the system. The power design alters the

functionality of the system, therefore veri� cation process must be applied.

Following the PRISMSYS approach, we provide a modeling framework that allows the

separation of concerns throughviews. The structure and behavior of the functional

design could be de� ned in a view, while the power design could be speci� ed in another

view. The tools that implement the power management techniques are generally di � erent

to the tools that estimate the power consumption. The PRISMSYS equationalSubView

can be employed to specify the characterization of the power consumption de� ned by

equations. AStructuralSubView can be used to de� ne the structure needed to implement

the power management techniques. This framework follows a white box approach, i.e.,

the power design is freely de� ned and modi� ed by the user. Finally, thanks to the

PRISMSYS correspondence, we can state the relationship between power and functional

design.

Chapter 4. Power Consumption Modeling 86

4.8. Conclusion

In this chapter, we have introduced a background of the existent concepts and ap-

proaches to model and characterize the power consumption in electronic systems. We

have introduced the main sources of power consumption in systems that are based on the

CMOS technology: dynamic and static power. Afterwards, we have presented how the

power consumption is estimated in di� erent abstraction levels. We have continued by

describing the power management techniques, de� ning hardware elements that controls

the energy supplied to the hardware components of the system. We have also showed

that these power management techniques are represented in di� erent abstraction lev-

els and that the power community is looking for an adequate way to add power-related

management in existing system models. We use this background to develop a case study

where the PRISMSYS framework is employed.

We have pointed out the separation of concerns between power and functional design.

Moreover, we have discussed about the division between power characterization and

power management, being both parts of the power design, a single expert domain. Even

though the power design is separated of the functional, they are associated and one

design impacts on the other one.

In the next chapters, we use the power expert domain concepts and technologies to

show how the architecture de� ned in the PRISMSYS framework can be used to deal

with such problems. ThePRISMSYS model describes the power expert domain and the

other domains that a� ect the power consumption in a system.

Chapter 5

PRISMSYS Framework for

Power-Aware Modeling

Contents

5.1. Introduction . 88

5.2. Views . 89

5.2.1. Hardware View . 89

5.2.2. Application View . 92

5.2.3. Power View . 93

5.2.4. Clock View . 99

5.2.5. Thermal View . 102

5.3. Correspondences . 105

5.3.1. Allocation . 106

5.4. Sub-Correspondences . 107

5.5. Conclusion . 108

87

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 88

5.1. Introduction

To illustrate the use of PRISMSYS framework, we apply it to de� ne the views that

impact and characterize the power consumption in embedded systems. To this pur-

pose, we specializeView and SubViewElement to represent the elements of speci� c

domains according to the expert knowledge. We identify� ve views that are associated

with power consumption: HardwareView, ApplicationView, PowerView, ClockView and

ThermalView.

StructuralSubView, ControlSubView and EquationalSubView are integral parts of the

identi � ed views. As such we have explained in Chapter3, the controlSubViewsare spec-

i� ed to coordinate the subViewElementsof each expert domain. Furthermore, they are

employed to synchronize the execution between views. In the power-aware model, these

subViewElementcoordination and view synchronization rather than ful � lling the func-

tional system requirements, such as executing a task in a processing element, they satisfy

the system non-functional constraints, like the maximum system power consumption or

the deadline to execute a certain application. These constraints areperformed by the

synchronization of each expert domain guaranteeing the preservation of the functional

requirements. For instance, applying power management techniques, the power experts

can reduce the power consumption, while the time performance of taskexecution and

the system functionality are impacted in other expert domains. ThestructuralSubView

concepts are specialized de� ning the concepts commonly employed by experts of each

speci� c domain. The equationalSubViewsstate the equations needed to evaluate the

power consumption and temperature of the system components, as well asthe values of

the non-functional properties employed to calculate such equations, such as frequency

and voltage.

To represent the multi-view model for a power-aware system, webuild a uml model of

the system applying thePRISMSYS pro� le. View, StructuralSubView and SubViewEle-

ment stereotypes are specialized according to the speci� c domain. We also use other

marte stereotypes to de� ne subViewElementsthat are already speci� ed in this pro� le.

By applying the PRISMSYS framework on this use case, we identify a speci� c corre-

spondencecommonly employed in the design of embedded systems. This correspondence

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 89

is namedAllocation and associatessubViewElementsfrom the application domain (Ap-

plicationView) to the execution platform domain (HardwareView). Allocation is not

expressed by the semantics ofAbstraction, therefore it must separately be speci� ed,

specializing thecorrespondenceconcept from the PRISMSYS meta-model.

In this chapter, we begin de� ning the views that describe the expert domains of the

power-aware model. The� rst two views are the domains that specify the execution

platform (HardwareView) and the application that is executed on it (ApplicationView).

HardwareView is the backbone of thePRISMSYS power-aware model. Therefore, the

other views are speci� ed abstracting the elements of this view to de� ne their non-

functional properties and other domain elements. Between these derived views, we

� rst specify PowerView that characterizes the power consumption properties of the

HardwareView elements and the power control elements. We continue de� ning ClockView

that states the HardwareView temporal properties and the control clock signal elements.

Afterwards, we specify ThermalView that represents the thermal elements associated

with the backbone model. This view also characterizes the temperature evolution of

the HardwareView elements. Finally, we illustrate the use ofcorrespondencesand sub-

correspondencesfor the views de� ned in the PRISMSYS power-aware model.

5.2. Views

In this section, we de� ne the views that describe the expert domains of the power-aware

model. For each view, we specify the concepts of itssubViewsspecializing thePRISM-

SYS framework meta-model concepts. Afterwards, we represent the viewelements with

the PRISMSYS pro� le. The elements are speci� ed in the pro� le either extending them

or employing the marte stereotypes. Finally, each view is depicted inuml to describe

a PRISMSYS power-aware model.

5.2.1. Hardware View

We de� ne HardwareView as the platform execution of the system. This view plays the

role of backbone of thePRISMSYS power-aware model. Figure5.1 depicts the Hard-

wareView meta-model. In this � gure, the white meta-classes describe theHardwareView

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 90

concepts. HardwareView inherits from View and it contains a structuralSubView and

a controlSubView. HardwareView does not include anequationalSubViewbecause the

non-functional properties are described in other views.StructuralSubView de� nes the

concepts and relationships needed to describe the hardware architecture. SubViewEle-

ment is specialized byHwComponent, which represents any hardware component de� ned

in the platform execution. For instance, a CPU can be aHwComponentwhose functional

modes (Free and Busy) are de� ned. The CPU modes are expressed by the states of a

state machine. ControlSubView commands the states of thehwComponentssynchro-

nized with the execution of the other views. For instance, if a task,which is described

in another view, e.g., in an application view, is mapped to a CPU, the controlSubView

of HardwareView must be noti� ed when the task is executed. Once thecontrolSubView

receives the noti� cation, it sends a control event to the CPU to change its internal mode,

e.g., to Busy state. The communication betweenhwComponentsis represented by the

connection ofhwPorts. A hwPort is a specialization ofPropertyPort . HwPort transmits

data betweenhwComponentsthrough wires, a Connector specialization.

Figure 5.1: Hardware View meta-model.

Each new de� nition of a view is represented inuml by extending the view stereotype of

PRISMSYS. In consequence,HardwareView extends the View stereotype. In the same

way, we extend the otherPRISMSYS stereotypes according to the expert domain. How-

ever, in HardwareView, we expressHwComponent in uml by using the marte model

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 91

elements that state the hardware structure of a system. Such modelelements are spec-

i� ed in marte HW_Logical package [5]. Similarly to HwComponent, HwPort is repre-

sented by the marte � owPort stereotype. The use ofmarte is a simple way to follow

the component paradigm employed inPRISMSYS while reusing as much as possible

concepts frommarte instead of de� ning new ones.

Figure 5.2 presents theHardwareView of a PRISMSYS power-aware model. This view

has astructuralSubView and a controlSubView. StructuralSubView includes threeparts

that are CPU, Memory and Bus. We identify each part with the corresponding marte

stereotype. For instance,CPU, which is a HwComponent, is stereotyped byhwProcessor.

The connection hub is abus, so that memory and cpu can be communicated through

bus. A Data type is assigned to eachHwPort to de� ne the nature of the data that is

transmitted between hwComponents. Each hwComponenthas one or morecontrolPorts

to change the internal state of the hwComponent behavior. The modes ofcpu are

speci� ed in a state machine. In the same way, the modes ofbusand memory are de� ned.

ControlSubView owns the control ports needed to coordinate thehwComponentmodes,

according to the execution of the other views. ThissubView also synchronizes the

execution of thePower and Clock views according to theApplicationView execution. In

the � gure, we depict that HardwareView receives control events fromApplicationView

to inform that an action is executed. Therefore,controlSubView sends control events to

its structuralSubView according to the events received and it also sends control events

to ClockView and PowerView to synchronize their execution.

Clock View Power View

A
pp

lic
at

io
n

V
ie

w

Figure 5.2: Hardware View of the PRISMSYS power-aware model.

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 92

5.2.2. Application View

ApplicationView represents and abstraction of the application that is executed on the

execution platform speci� ed in a HardwareView. Figure 5.3 depicts the ApplicationView

meta-model. ApplicationView is a view that contains two subViews: a controlSubView

and a structuralSubView. The subViewElementsof StructuralSubView are specialized

by Actions. We de� ne that an action represents an atomic element of the application

that cannot be re� ned. PropertyPort is specialized inDataPort , which means that the

information transmitted between actions is data. Such ports are bond bydependency-

Connetors.

ControlSubView coordinates the execution of the actions in thestructuralSubView. This

coordination could depend on control events received from the other views. For instance,

if an action is executed in cpu, ApplicationView controlSubView must notify to Hard-

wareView controlSubView that an action is in execution. Once the action is executed,

ApplicationView controlSubView informs to HardwareView controlSubView that the ac-

tion was executed. Nevertheless,ApplicationView controlSubView could be noti� ed by

HardwareView that the hwComponent where the action is executed has been stopped

since the hwComponent temperature attained its maximum limit. The control event

coordination de� ned in controlSubView is expressed byccsl [3], which is detailed in

Chapter 6.

Figure 5.3: Application View Meta-model.

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 93

In uml , actions are de� ned as components that are parts of the StructuralSubView.

DataPorts and DependencyConnectorsare speci� ed by marte � owPorts and uml con-

nectors, respectively. Figure5.4 presents theApplicationView of a PRISMSYS power-

aware model. In this � gure, there are two actions: t1 and t2. Each action behavior is

represented by a state machine that contains two states:Execute, when the action is in

execution, andStop, when it � nishes or is interrupted. There is a data� ow dependency

between these actions that is expressed by the connection betweend1 and d2 � owPorts.

ControlSubView commands the execution of theactions. Once an action is executed,

HardwareView is noti� ed to coordinate its subViewElementsand to inform the other

views the performed actions.

Hardware View

Figure 5.4: Application View of the PRISMSYS power-aware model.

5.2.3. Power View

The elements of this view intend to supply and control power properties of system

components de� ned in HardwareView. These control elements implement the power

management techniques that have been described in Chapter4. Power experts build

their power model without modifying HardwareView, which is the objective of the multi-

view modeling approach. The elements from these views are inspired by the concepts

de� ned in the IEEE-1801 [79] and CPF [80] languages.

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 94

Figure 5.5 depicts the specialization of thePRISMSYS framework concepts to de� ne

the power domain concepts. PowerView contains the three subViews previously de-

� ned in the PRISMSYS framework: a structuralSubView, an equationalSubViewand a

controlSubView.

The StructuralSubView owns the followingviewElements: voltageSources, powerDomains

and poweredElements. PoweredElementde� nes the power features of theviewElements

speci� ed in HardwareView. In other words, PoweredElement is the abstraction of a

HwComponent from a power point of view. A poweredElementowns asupplyPort. This

port receives a voltage value from apowerDomain or from a voltageSource. SupplyPort

specializesPropertyPort to represent the transmission of voltage values,i.e., a power-

speci� c feature. A poweredElementalso possessescontrolPorts to change the active state

of its state machine. Such a state machine expresses the power consumption modes of

a HwComponent.

Figure 5.5: Power View Meta-model.

VoltageSourcerepresents the functionality of a power source. This power sourcesupplies

current to the hardware components using di� erent voltage levels. In the PowerView

de� nition, VoltageSourcegenerates di� erent voltage values to implement a part of power

management techniques such as DVFS [85]. A voltageSourceowns a supplyPort to

transmit the voltage values to apowerDomain, or directly to a poweredElement. Changes

in voltage are speci� ed by the subViewElement state machine. The states represent

the di� erent voltage levels provided by the voltage source.VoltageSourcesalso have

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 95

controlPorts that receive events from the controlSubView to � re transitions between

states, changing the generated voltage level.

A powerDomain controls the voltage value transmission from avoltageSourceto a set of

poweredElements. A PowerDomain owns two kinds of subViewElements: PowerSwitch

and RetentionCell. A violet composite association is depicted in Figure5.5 to illustrate

which subViewElementsare owned byPowerDomain. However, this association is not

de� ned in the original meta-model, because it is explicitly de� ned in the SubViewElement

de� nition (the self-contained association inherited fromComponent). PowerSwitchcuts

the current that is supplied to a poweredElementwhen it is not in use,i.e., the voltage

applied to the target poweredElementis 0V . A PowerSwitch contains two supplyPorts

and two controlPorts. The � rst supplyPort receives voltage value from avoltageSource

and this value is sent to the connectedpoweredElementsaccording to its active state

(On or O�) through the secondsupplyPort. ControlPorts receive the control events to

change the active state.RetentionCell saves information of theViewElement associated

with the supplied PoweredElement before this element is turned o� . Meanwhile the

element is turned on, theRetentionCell restores the saved information.PowerDomain

also ownscontrolPorts and connectors that transmit the control events sent from the

controlSubView to its internal subViewElements. Connector is specialized inNet to be

compatible with the power expert domain. Additionally, a powerDomain hassupplyPorts

to receive and to transmit voltage values. UsingpowerSwitchesand retentionCells, we

can implement the power-gating technique [56]. Low abstraction level elements from

IEEE 1801 [79] and CPF [80], like isolation cells and level shifters, are not speci� ed in

this thesis because using the MDE transformation technique, theycan be automatically

generated from thePowerView model de� nition according to the powerSwitchesand the

voltageSourcesthat supply the poweredElements.

Each subViewElement of the structuralSubView contains its controlPorts that are ex-

posed on thestructuralSubView (see Figure5.6). These controlPorts are connected to

the controlSubView controlPorts. Such a controlSubView coordinates the execution of

the mentioned powersubViewElementsaccording to control events received fromHard-

wareView. Additionally, controlSubView receives a clock signal (throughctrStepCtr)

from ClockView to evaluate the active power consumption equation at each tick of this

clock in the equationalSubView.

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 96

Whereas HardwareView has a prede� ned representation of their subViewElements in

uml and marte , PowerView does not have it. In consequence, theSubViewElements

of PowerView must specialize the stereotypes of thePRISMSYS pro� le. Similarly to

the other speci� c domains, PowerView is speci� ed as a stereotype that inherits from

the View stereotype. PowerDomain and VoltageSourceare also de� ned as stereotypes

inheriting the SubViewElement stereotype. The SupplyPort nature and certain Pow-

eredElement property types are speci� ed by marte NFP 1 types. NFP follows the

International System of Units standard (SI) [86]. For instance, a typical property in the

power view is voltage. This property is expressed in function of the unit Volt , in short,

V and its value.

H
ar

dw
ar

e
V

ie
w

Clock View

Figure 5.6: Power View of the PRISMSYS power-aware model without including its
equationalSubView.

Figure 5.6 represents part of thePowerView of a PRISMSYS power-aware model inuml .

The structuralSubView de� nes three parts that represent powersubViewElements: vs1,

pd1 and cpu. vs1 and pd1 are respectively instances ofVoltageSource1and PowerDo-

main1 components. These components are stereotyped byVoltageSourceand Power-

Domain extending the PRISMSYS SubViewElementstereotype. PowerDomain1 owns

a PowerSwitch instance (psw) to control the current � ow from vs1 to cpu. In con-

trast to VoltageSourceand PowerDomain, PowerSwitch is a component prede� ned in

a uml PRISMSYS library that is imported to be reused in this model. This library

also includes the NFP types that are not included in the marte library, like voltage,

current and temperature. Cpu is a poweredElementwhose stereotype also extends the

SubViewElement stereotype. SupplyPorts are represented bymarte � owPorts in the

1Non-Functional Property

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 97

� gure. To specify their voltage nature, aNFP_Voltage type is assigned to these ports.

Thanks to the � ow port properties, the data � ow direction is de� ned. For instance, the

vout � owPort in vs1 is con� gured as output, i.e., the voltage value generated byvs1 is

shared with its environment, in this case with pd1.

Each subViewElementsde� ned in the PRISMSYS power-aware model expresses its be-

havior by a state machine in Figure5.6. Cpu poweredElement, which is a HwComponent

in the HardwareView, owns a power behavior whose modes are:Idle, to express that

CPU is consumingstatic power, and Active, to describe that CPU is consumingdynamic

power. VoltageSourcebehavior (vs1) contains two states: V1 and V2. Each state repre-

sents a speci� c voltage level that is de� ned in the equationalSubView. The powerSwitch

behavior is expressed by two states that represent the poweringon (state ON) and the

cutting o� (state OFF) of the current from voltageSourceto the cpu poweredElement.

ControlSubView are also represented in Figure5.6. This subView receives control events

from HardwareView in order to coordinate the powersubViewElementsbehavior de� ned

in structuralSubView according to the HardwareView execution. hwStrActCtr and hw-

StpActCtr ports receives the events indicating that anaction is executed or stopped.

hwV1Ctr, hwV2Ctr and hwO� Ctr collect the events to change thecpu operation points.

According to the received events, thesubViewElementcontrol events are generated.

The execution of the ControlSubView must ful� ll the system requirements. A system

requirement focused on power consumption could be:the CPU must be ON when an

action is executed. In this example, there are involved three views: HardwareView,

where the CPU component is de� ned, ApplicationView, where the actions are executed

in the CPU and PowerView, where the CPU power control is described. In this case,

we only focus on the power control. To ful� ll the mentioned system requirement, we

must synchronize the execution to turn CPU on, if it is OFF, and the actions execution.

Therefore, we can specify these executions through the following steps:

1. PowerView ControlSubViewreceives a control event from theHardwareView Con-

trolSubView that cpu is executing an actions,i.e., it is in mode Busy.

2. PowerView ControlSubView sends a control event to turn the powerSwitch on in

order to supply current to the cpu poweredElement.

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 98

3. PowerView ControlSubView sends a control event to change thecpu power mode

to Active.

These steps can be de� ned by the speci� cation of the relationships among control events.

Therefore, we can useccsl [3] to this speci� cation. Such speci� cation is stated in

Chapter 6.

We characterize the power consumption of thepoweredElementsby means of equa-

tionalModels de� ned in the equationalSubView. These equationalModels include the

equations that de� ne the power consumption according to thepoweredElementbehav-

ior. We also specify otherequationalModelsthat specify constant values. Such values are

associated with the power consumption equations. We do not extend the concepts previ-

ously de� ned in the EquationalSubViewmeta-model ofPRISMSYS framework, because

the equation representation is used in multiple domains, and the power consumption

domain is not an exception.

voltageModel switchModel

powerModel

pv.ps.cpu.power

v

vin

vout

v

p

fc

Ileak

capModel
c

currentModel
Ileak

clkv.clks.cs1.frequency

t

pv.pwCtr.clkStepCtr

Figure 5.7: EquationalSubViewof PowerView.

Figure 5.7 depicts an example of this representation to evaluate power consumption

of cpu. We employ the SysML parametric diagram to represent this subView. In

this � gure, there are � ve equationalModelsde� ned by constraintBlocks: voltageModel,

switchModel, capModel, currentModel and powerModel. Each equationalModel de� nes

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 99

its parameters and equations. For instance,voltageModelspeci� es av parameter whose

type is NFP_Voltage , i.e., this parameter is a voltage type. This equationalModel also

owns two equations that assign a constant value to thev parameter: v = (1 .1, V) and

v = (2 .2, V). The NFP types follow the Value Speci� cation Language (VSL) datatype

syntax de� ned in marte . Such a datatype is a 2-tuple where the� rst element is the value

and the second one is theNFP unit. For instance, in the � rst equation 1.2 represents

the value and V the voltage unit.

In PowerView, the main equationalModel is powerModel. It characterizes the dynamic

and static power consumption equations of thecpu poweredElement. This equationalModel

depends on the values given by otherequationalModelsde� ned in this subView. There-

fore, according to the active values in the otherequationalModelsand the active pow-

erModel equation, the power consumption is evaluated. The evaluation of the active

power equation is executed by the clock signal received onclkStepCtr. PowerModel is

also relied on thefrequency parameter. Frequency value is shared from theClockView

equationalSubView. ClockView speci� es the temporal features of the system. The details

of ClockView are described in the following section.

5.2.4. Clock View

ClockView speci� es the elements that provide and control the clock signals. Such clock

signals activate theHardwareView elements and give temporal properties to the actions

executed in these elements. LikewisePowerView, we specialize thePRISMSYS frame-

work concepts to de� ne the ClockView elements. Figure5.8 presents the meta-model

of ClockView. ClockView has the three identi� ed subViews of the PRISMSYS frame-

work. Nevertheless, we only specify thesubView elements needed to evaluate power

consumption. The structuralSubView contains equivalent concepts toPowerView struc-

turalSubView, but the nature of the non-functional properties speci� ed and controlled

is di� erent. For instance,ClockPort and PowerPort are concepts derived fromPropery-

Port . Whereas PowerPort represents a power nature property,ClockPort expresses a

timing nature, i.e., the non-functional property transmitted by this port is a clock sig-

nal. Another example is ClockSourcethat is a clock signal generator. TheClockSource

states identify the frequency of the clock signal transmitted by ClockPort instead of

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 100

a voltage value change such asVoltageSourceperforms. ClockSwitch and ClockedEle-

ment is the ClockView representation ofPowerSwitchand PoweredElement, respectively.

However, ClockSwitch controls the clock signal transmission from aClockSource to a

ClockedElement. ClockedElement is the abstract time performance representation of a

hwComponentand de� nes the timing properties of the abstractedhwComponent.

Figure 5.8: Clock View Meta-model.

ClockSourcesand clockSwitchesa� ect the power consumption by changing the clock

frequency or cutting the clock signal o� . Therefore, there is a coordination between the

ClockView controlSubViewand the controlSubViewsof the other views. For instance, if

an ApplicationView action must be executed before a speci� c deadline,ClockView con-

trolSubView could change the frequency clock in order to reach the required deadline.

This frequency change depends on the voltage level, therefore thePowerView control-

SubView must also be noti� ed in order to change the voltage to the speci� ed frequency.

As well as other views, thecontrolSubView is speci� ed by usingccsl . This speci� cation

is detailed in Chapter 6.

Similarly to PowerView, the subViewElementsof ClockView are implemented inuml by

specializingSubViewElementstereotypes of thePRISMSYS pro� le. Figure 5.9 depicts

the ClockView of a PRISMSYS power-aware model represented inuml . This view con-

tains two subViews: a structuralSubView and a controlSubView. The structuralSubview

is composed by four parts:ClockSource1and ClockSource2 instances (cs1 and cs2), a

ClockSwitch instance (csw), and a ClockedElementinstance (cpu). cs1 is a ClockSource

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 101

that supplies a clock signal throughclkout port. This port not only is stereotyped by

the marte FlowPort, but also by marte Clock. In consequence, the time properties

of the clock signal, like frequency, can be speci� ed by ccsl and the clock signal be-

havior can be simulated in TimeSquare . cs2 is another ClockSourcethat generates a

clock signal with a � xed frequency. This signal is shared with the otherPowerView and

ThermalView to coordinate the equation evaluation in their equationalSubViews. cs2

sends the clock signal tocontrolView, and this sends two clock signals toPowerView

and ThermalView, whose ticks are coincident with thecs2 clock. cpu is the timing do-

main representation of the HardwareView cpu. The structuralSubView elements de� ne

their behavior by state machines. Thecs1 states represent the change of frequency of

the generated clock signal tocsw. cs2 owns only one state where the clock frequency

is � xed. The csw states specify the action to cut o� or to transmit the clock signal to

the clockedElement. The clockedElementstate machine is speci� ed by two states: Run,

to express that clockedElementis executing a sequence of instructions per clock cycles,

and Stop, to indicate that cpu stops the instruction execution.

H
ar

dw
ar

e
V

ie
w

P
ow

er
V

ie
w

T
he

rm
al

V
ie

w

Figure 5.9: Clock View of the PRISMSYS power-aware model without including its
equationalSubView.

The equationalSubViewis also de� ned in ClockView. Figure 5.10 depicts a parametric

diagram that represents the equationalModelsof the ClockView subViewElementsfor

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 102

the PRISMSYS power-aware model. These elements are associated with thecpu power

consumption de� ned in PowerView. Furthermore, we de� ne a clock signal to evaluate

the equations of the other equationalSubViews. In the diagram, there are three equa-

tionalModels: frequencyModel1and frequencyModel2, to respectively set the frequency

of the cs1 and cs2 clock sources, andswitchModel, to kill the clock signal or to trans-

mit it to cpu. frequencyModel1 and switchModel share a frequency parameter repre-

sented by the binding connection betweenf and f_in . SwitchModel is also connected to

clkv1.clks1.cs1.frequecy, which is the frequency property de� ned in the clock sourcecs1.

In the same way, frequencyModel2 is linked with clkv1.clks1.cs2.frequecy. Afterwards,

cv.clks1.cs1.frequencyand clkv1.clks1.cs2.frequecyare shared with thePowerView equa-

tionalSubView. The former to provide a frequency value in order to evaluate the power

consumption of the cpu. The latter to generate a clock signal whose instants causes the

evaluation of the power consumption and the temperature progression.

frequencyModel1
f

clkv.clks.cs1.frequencyswitchModel
f_in

f_out

frequencyModel2 clkv.clks.cs2.frequency
f

Figure 5.10: Equational Sub-view of Clock View.

5.2.5. Thermal View

ThermalView describes the domain speci� ed by thermal experts to represent thermal

features of the HardwareView subViewElementsand to de� ne subViewElementsof this

domain such as heat sinks. Figure5.11 presents the thermal view meta-model. Simi-

larly to PowerView and ClockView, ThermalView inherits from View. The ThermalView

structuralSubView owns two types ofsubViewElements: ThermalElement and HeatSink.

The former is the thermal abstraction of a hwComponent. The latter represents the

element that helps to dissipate the heat. This heat dissipation causes a temperature de-

crease. AheatSink is connected to athermalElement by a junctionPoint . JunctionPoint

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 103

is the specialization of Connector in ThermalView. ThemperaturePort inherits from

PropertyPort to represent the temperature nature transmitted between ThermalEle-

ment and HeatSink.

Figure 5.11: Thermal view Meta-Model.

ThermalView contains the threesubViewsspeci� ed in the PRISMSYS framework. Struc-

turalSubView and controlSubView are depicted in Figure 5.12, which is a uml represen-

tation of ThermalView. In the structuralSubView, we de� ne a thermalElement named

cpu. It is the thermal abstraction of the cpu de� ned in HardwareView. The thermal be-

havior of cpu is speci� ed by a state machine with a single state. This state represents the

cpu temperature behavior. The cpu thermalElement transmits the temperature value

to the controlSubView namedT. Unlike the controlSubViewsde� ned in the other views,

T speci� es its behavior by a state machine in acontroller. Such state machine contains

two states: HIGH , to represent that the cpu temperature rises to its limit, and LOW,

to express that the temperature is in a typical operation temperature. The transitions

between states containguards, where the cpu temperature is evaluated in order to � re

the transition and to change the control state. Once a guard is� red, an event is sent to

the controlSubView of the PowerView. This event commands to turn cpu o� to fall its

temperature. When the temperature descends to 50� C, ThermalView controlsubView

allows to PowerView turning cpu on sending an event to turn cpu on. To evaluate the

temperature property, a clock signal is sent fromClockView to ThermalView control-

SubView. This clock is received on theclkIn port.

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 104

Figure 5.12: Thermal view of the PRISMSYS power-aware model.

The Temperature state de� ned in the cpu thermalElement is characterized by an equa-

tion in the equationalSubView. We use the Compact Thermal Model (CTM) [43] to

express the thermal equation of theHardwareView elements. Figure 5.13 depicts the

equationalSubViewof the ThermalView. In this � gure, TempModel de� nes the tem-

perature evolution through time. This equationalModel owns a � rst-order di� erential

equation whose parameters are thermal properties of the hardware component (cTh

and rTh), temp_env is a constant temperature, p is evaluated in powerView and im-

ported through ParameterConnectors (pv.ps.cpu.power) and t is generated fromCon-

trolView , transmitted through DataConnectors to the controlSubView of ThermalView

(thv.thCtr.clkIn).

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 105

capThModel

TempModel
temp

rTh

ptemp_env

t

EnvTempModel
c

pv.ps.cpu.power

cTh

thv.thCtr.clkIn

resThModelcTh rTh

thv.ts.cpu.T

Figure 5.13: Equational Sub-View of Thermal View.

5.3. Correspondences

In the speci� cation of the PRISMSYS power-aware model, we use thecorrespondences

de� ned in the PRISMSYS framework to state the relationships between views.Abstrac-

tion is one of the � rst correspondence that we can identify. Figure5.14 presents an

example of theabstraction use. cpu, which is a hwElement de� ned in HardwareView is

abstracted by the cpu poweredElement. In this example, the cpu power representation

specify the properties and behavior associated withPowerView. Similar correspondence

use is de� ned for clockedElementand thermalElement.

In the same � gure, we depict the ControlConnector Correspondence. This correspon-

dence is speci� ed between thehwV1Ctr, hwV2Ctr and hwO� Cctr controlPorts and the

pwV1Ctr, pwV2Ctr and pwO� Ctr controlPorts , respectively. For instance, if the cpu

HwElement enters to Busy mode,controlSubView sends a control event toPowerView in

order to inform that the cpu power abstraction must change is power mode (toActive).

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 106

Figure 5.14: Example of the Abstraction and ControlConnector correspondences be-
tween PowerView and HardwareView.

We also employ theparameterConnector correspondenceto import the property value

evaluated in other expert domain. For instance, in Figure 5.13, TempModel needs the

power value that is evaluated in PowerView. Therefore, by using theSysML path name

dot notion (seepv1.ps1.cpu.powerparameter), we import the power parameter from the

PowerView equationalSubView. This imported parameter represents aparameterCon-

nector correspondencebetweenPowerView and ThermalView.

5.3.1. Allocation

We identify a correspondencethat is commonly employed to associate anaction from

ApplicationView to a hwComponent in HardwareView. This association is namedAllo-

cation. This correspondence is only used betweenapplication and hardware views. The

semantics ofAllocation is to map actions to an hwComponents. The mapping type is a

spatial distribution, i.e., an action is executed in the associatedhwComponent.

Figure 5.15depicts an example of allocation representation inuml betweenApplication-

View and HardwareView. In ApplicationView, t1 and t2 are allocated to cpu, i.e., the

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 107

execution of t1 and t2 is performed in cpu. This correspondence also gives the possibil-

ity to assign multiple hwComponentsto execute and store anApplicationView action.

We reuse theAllocate association de� ned in marte to represent this correspondence.

The nature property employed in Allocate is spatialDistribution to maintain the de� ned

correspondence semantics.

Figure 5.15: Example of Allocation correspondence betweenApplicationView and
HardwareView.

5.4. Sub-Correspondences

The PRISMSYS power-aware model also appliessubCorrespondencesspeci� ed in the

PRISMSYS framework. Figure 5.16 presents the use ofcharacterization and equiva-

lence subCorrespondencein PowerView. Each state of the subViewElementsare asso-

ciated with one or more equations. For instance, theidle state is associated with the

static equation p = v � Ileak . This state is also associated withIleak = (8 , mA) in order

to activate the static current employed in the static equation. The equivalence subCor-

respondenceis expressed by a parameter that import a property from asubViewElement

by using the SysML path name dot notion, such aspv.ps.vs1.voutand pv.ps.pd1.psw.vin

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 108

parameters. The binding among pv.ps.vs1.vout, pv.ps.pd1.psw.vin, v and vin expresses

the equivalent subCorrespondencebetween the parameters de� ned in equationalSubView

and properties of subViewElements.

Figure 5.16: Example of Characterization sub-correspondence inPowerView.

Summarizing the PRISMSYS power-aware model, Figure5.17 presents the big picture

of its � ve de� ned views.

5.5. Conclusion

In this chapter, we have presented the syntax de� nition of the PRISMSYS power-aware

model extending the PRISMSYS framework concepts. We have identi� ed the expert

domains that evaluate and impact the power consumption of a system. For each domain,

we de� ne a meta-model where the concepts commonly employed are represented. We

depict the views by using theuml representation.

In the next chapter, we implement the execution semantics of thePRISMSYS power-

aware model to be simulated. Such a simulation allows observing theevolution of the

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 109

system power consumption and temperature through time. We also propose an power

consumption analysis by transforming thePRISMSYS power-aware model to an speci� c

analysis tool, such asAceplorer [8].

Chapter 5. PRISMSYS Framework for Power-Aware Modeling 110

frequencyModel1

f

clkv.clks.cs1.frequency

frequencyModel1

<<Abstraction>>

<<Characacterization>>

v

f

c
powerModel

p

Ileak

clkv.clks.cs1.frequency

powerModel

t

TempModel

temp

rTh

p

t

temp_env

pwv.ps.cpu.power

cTh

thv.ths.cpu.T

TempModel

<<Allocate>>

ControlConnectors

DataConnectors

Figure 5.17: PRISMSYS Power-Aware Model Overview.

Chapter 6

PRISMSYS Power-Aware Model

Analysis

Contents

6.1. Introduction . 112

6.2. PRISMSYS Power-Aware Model Simulation 112

6.2.1. Scilab Solver . 113

6.2.2. The PRISMSYS Power-Aware Model Scenario 115

6.3. PRISMSYS Power-Aware Model Analysis in Aceplorer . . 135

6.3.1. Transformation Overview . 136

6.3.2. Aceplorer Domain Model . 137

6.3.3. PRISMSYS to Aceplorer Transformation 139

6.3.4. Aceplorer Code Generation . 140

6.3.5. Test Scenario Generation . 140

6.4. Conclusion . 144

111

Chapter 6. PRISMSYS Power-Aware Model Analysis 112

6.1. Introduction

The speci� cation of the PRISMSYS power-aware model is completed by the de� nition

of the execution semantics. Such a semantics allows the analysis of the non-functional

properties de� ned in the model through time. This analysis is possible, once the model

is simulated and the properties are evaluated through time.

We specify the execution semantics of thePRISMSYS power-aware model by employing

the PRISMSYS execution semantics de� ned in Chapter 3. We additionally de� ne the

controlSubView execution semantics of each views by only usingccsl expressions. The

controlSubView execution de� nition is bound with the clocks described in the PRISM-

SYS execution semantics. Moreover, ThecontrolSubView execution expresses the sce-

nario to synchronize the execution of the views. We support thecontrolSubView exe-

cution speci� cation by employing the uml sequence diagram to de� ne the interactions

among thecontrolSubViewsand among their subViewElements. For each view, we de� ne

a sequence diagram to illustrate thecontrolSubView interaction. Afterwards, we specify

the ccsl expressions that specify the interactions represented in the sequence diagrams.

Once the semantics of thePRISMSYS power-aware model is de� ned, it is simulated

in TimeSquare . Nevertheless, the evaluation of the equations (e.g., power and tem-

perature equations) must be performed in another tool. We choose as equation solver

Scilab [7], an open source tool for numerical computation. Thus, we develop a“con-

nector” between TimeSquare and Scilab to evaluate the active equations, regarding

TimeSquare simulation. We named Scilab Solverto this connector.

In this section, we simulate the evolution of power consumption and temperature in

a cpu speci� ed in the PRISMSYS power-aware model. In addition to the simulation,

we propose to analyze thecpu power consumption by transforming the PRISMSYS

power-aware model toAceplorer.

6.2. PRISMSYS Power-Aware Model Simulation

In this section, we explain how Scilab Solver works. Thereafter, we describe the in-

teraction between the di� erent software components (i.e.,, PRISMSYS Model, Scilab

Chapter 6. PRISMSYS Power-Aware Model Analysis 113

Solver and Scilab) supporting us on a sequence diagram. This interaction is employed

to simulate the continuous time behavior of the PRISMSYS power-aware model.

6.2.1. Scilab Solver

The de� nition of the PRISMSYS execution semantics is speci� ed in order to be simu-

lated or to verify the results of the implementation in lower abstraction levels. We know

there are two kinds of execution behaviors to simulate aPRISMSYS model: discrete

event and continuous time. The former is represented by the state machine behavior

and the event constraints that could be de� ned in ControlSubView by using ccsl . The

latter is expressed by equations inequationalSubViews. The tools used to run each exe-

cution domain are di� erent. To simulate the ccsl speci� cations, we useTimeSquare .

To resolve the equations, we chooseScilab. Both tools, TimeSquare and Scilab, pro-

vide an application programming interface (API) that allows the implementation of a

“connector” that interacts with the services that o� er these tools.

TimeSquare

PRISMSYS Model
Syntax

PRISMSYS Model
Semantics

Scilab
Solver

frequencies,

equations, states

Enter State,

Step cloc ks

active equations

Graph Plot

Figure 6.1: Overview of the PRISMSYS framework co-simulation implementation.

Figure 6.1 presents an overview of this implementation.TimeSquare is a module ap-

plication based on the Eclipse plug-in approach. In consequence, we implement Scilab

Solver as an Eclipse Plug-in to connect theTimeSquare solver module with the eval-

uation of the PRISMSYS model equations. From theccsl speci� cation, Scilab Solver

extracts the clocks that are associated with entering states in thePRISMSYS Model.

Next, Scilab Solverextracts the equations that characterize the states from thePRISM-

SYS Model. In the TimeSquare solver, once an event occurs in some of the entering

Chapter 6. PRISMSYS Power-Aware Model Analysis 114

state clocks, the associated equation is sent toScilab in order to evaluate it and gener-

ate the graph plot of the property evolution. In the PRISMSYS model, a chronometric

clock is assigned to manage the equation evaluation. This clock has been named asstep

in Chapter 3. As soon asstep ticks, a new value is generated inScilab.

Figure 6.2: Sequence diagram of the PRISMSYS model Simulation.

Figure 6.2 depicts a sequence diagram that summarizes thePRISMSYS model execu-

tion. The Solver lifeline represents theScilab Solver. Once the simulation starts, Scilab

Solver extracts the clocks that represent the enteringuml states associated in theccsl

speci� cation. The uml states are � ltered by their stereotype in the uml model, i.e.,

having the clocks associated withuml states, Scilab Solver only searches the states

stereotyped asPRISMSYSState. In the uml model, Scilab Solver also identi� es and

extracts the equations associated with the stereotyped states and the initial values of

the equation parameters. Thestep clock is also extracted from theccsl speci� cation.

Chapter 6. PRISMSYS Power-Aware Model Analysis 115

This clock is identi� ed by the clockPort that are bound to the t parameters inequation-

alSubViews.

Once the TimeSquare simulation starts, Scilab Solver observes the extracted clocks.

When an event occurs in some of these entering state clocks,Scilab Solverchanges the

equation associated with the active state. If thestep clock ticks, the active equations

are evaluated in Scilab with the initial parameter values. The result of the evaluation

is marked in a Scilab plot window. After the equation evaluation, the new parameter

values are gotten by Scilab Solver and it updates the initial parameter values. This

execution continues up to the laststep occurrence in theTimeSquare simulation.

Scilab Solver is employed to simulate thePRISMSYS Power-Aware Model. This simu-

lation exhibits the evolution of non-functional properties de� ned in the model, such as

power consumption and temperature.

6.2.2. The PRISMSYS Power-Aware Model Scenario

The scenario ofPRISMSYS power-aware model allows to stimulate the execution of the

views and the de� nition of the execution coherence among views. In order to specify the

scenario, we state thecontrolSubView interaction with its subViewElementsand with

other controlSubViews. These interactions are represented inuml sequence diagrams. A

sequence diagram identi� es which control events are sent from and received to di� erent

elements of thePRISMSYS power-aware model. Once the diagrams are� nished, its

execution semantics is described inccsl . The controlSubView speci� cation is added

to the ccsl constraints that express the behavior of thesubViewElementsand then

to have a completeccsl speci� cation of the PRISMSYS power-aware model. Such a

ccsl speci� cation is simulated in TimeSquare in order to activate the subViewElement

states. Additionally, the equations associated to the active states are processed byScilab

Solver. The equations are evaluated and traced inScilab.

6.2.2.1. Application View

ApplicationView starts the coordination of the other views. This view de� nes the way as

the actions are executed. Once anaction begins its execution, thecontrolSubView of this

Chapter 6. PRISMSYS Power-Aware Model Analysis 116

view informs to HardwareView that an action is been executed. In order to determine

the instant that an action starts or stops, the controlSubView de� nes achronometric

clock whose ticks coincide with the clock occurrences generated bycs2 in ClockView.

We name this clockappCtrPhysClk_ms.

The applicationView controlSubView sends � ve control events to the HardwareView:

exeAction, stopAction, cpuOp1, cpuOp2 and cpuO� . ExeAction announces toHard-

wareView that an action starts its execution. In contrast, StopAction informs that an

action stops. CpuOp1 and cpuOp2 command that the cpu runs in operation point 1 or

2, respectively. An operation point is the selection of a speci� c frequency and voltage

to execute anaction. The use of operation points is a strategy to reduce the power con-

sumption tuning the performance time when anaction is executed in thecpu. CpuO�

requests to turn the cpu o� .

Figure 6.3: Execution of ApplicationView and its interaction with HardwareView.

Chapter 6. PRISMSYS Power-Aware Model Analysis 117

Figure 6.3 presents a sequence diagram that speci� es the way as theT1 and T2 actions

are executed inApplicationView. This diagram depicts the control events sent to the

other views in order to synchronize their execution regarding theApplicationView exe-

cution. The ControlSubView of ApplicationView (appCtr) sends anexeT1 event to t1

in order to change the t1 state from Stop to Run. This event is sent 5ms after start-

ing the model simulation. AppCtr also sends an control event (exeAction) to announce

to HardwareView that an action is being executed inApplicationView. HardwareView

coordinates the execution ofClockView and PowerView according to the control events

received fromApplicationView. ThermalView does not receive any event from the other

views. This view only evaluates thecpu temperature evolution depending on the power

dissipated.

Following the ApplicationView sequence,appCtr con� gures the cpu operation point to

execute the action. In theT1 execution case,appCtr sends acpuOp1 event to con� gure

Operation Point 1. We detail the frequency and voltage selected for the operation points

in Section 6.2.2.2. At 35ms of the appCtr execution, T1 is stopped. stopT1 event is

sent to t1 in order to change its state to Stop. Next, HardwareView is informed that

the action was stopped by sending anstopAction event. This event is received by the

HardwareView ControlSubView (hwCtr). In the same way, T2 is executed. However,

Operation Point 2 is con� gured to executeT2 (cpuOp2). T2 starts at 45ms and stops

at 60ms. Finally, appCtr commands to turn the cpu o� by sending cpuO� event.

The relationships among the control events sent fromappCtr is speci� ed in ccsl . We

consider each control event as ticks of aclock in ccsl . Therefore, we de� ne a clock

for each interaction with the controlSubView. To express that T1 starts at 5ms and

� nishes at35ms, we de� ne periodic clocks that tick once in a prede� ned period. These

clocks are synchronized with thechronometric clock appCtrP hysClk_ ms. Hence, we

de� ne as period60ms, i.e., the periodic clocks tick once each60ms. We also de� ne the

instant that the periodic clocks tick. We name this instant o� set. To specify the instant

when the T1 action starts, we represent this instant by a periodic clock that ticks in

the � fth occurrence of appCtrP hysClk_ ms, i.e., at 5ms. This periodic clock repeats

this occurrence each60ms, i.e., at 65ms, 125ms, etc. In ccsl , we specifyexeT1 clock

as follows:

exeT1 isPeriodicOn appCtrP hysClk_ ms period 60 o� set 5 (6.1)

Chapter 6. PRISMSYS Power-Aware Model Analysis 118

these speci� cation are read asexeT1 occurs in the� fth tick of appCtrP hysClk_ ms each

60ms. Once the exeT1 ticks, exeAction and cpuOp1 are generated. The relationships

between these clocks are speci� ed by:

exeT1 = exeAction (6.2)

exeT1 = cpuOp1 (6.3)

These two ccsl relations mean that once exeT1 occurs, an event in exeAction and

cpuOp1 ticks simultaneously.

In the same wayexeT1 is speci� ed, we state the instants whenT1 stops:

stopT1 isPeriodicOn appCtrP hysClk_ ms period 60 o� set 35 (6.4)

The relationship betweenstopAction and stopT1 is speci� ed as well asexeT1:

stopAction = stopT1 (6.5)

Once T1 stops, the time continues running. After 10ms (at 45ms), appCtr sends an

exeT2 to starts the T2 action. To de� ne when T2 starts its execution, we state the

following ccsl speci� cation:

exeT2 isPeriodicOn appCtrP hysClk_ ms period 60 o� set 45 (6.6)

which means that exeT2 occurs in the 45th tick of appCtrP hysClk_ ms each60ms.

As soon asexeT2 is sent, appCtr commands toHardwareView to change the operation

point sending acpuOp2 event. AppCtr also informs that an new action starts. Therefore,

appCtr sends anexeAction to hwCtr. Similarly to the ccsl speci� cation of the t1Start

relationships, the t2Start relations are de� ned by:

exeT2 = exeAction (6.7)

exeT2 = cpuOp2 (6.8)

Chapter 6. PRISMSYS Power-Aware Model Analysis 119

To specify the end ofT2, which occurs at 60ms, we de� ne the following periodic clock:

f irstappCtrP hysClk _ ms isPeriodicOn appCtrP hysClk_ ms period 60 o� set 0

(6.9)

and then, we � lter this clock deleting the � rst tick:

stopT2 = f irstappCtrP hysClk _ ms � 2(1)w (6.10)

where � is the ccsl operator that � lters appCtrP hysClk_ ms and the word 2(1)w

means that the � st occurrence off irstPhysClk _ ms is � ltered, i.e., this clock starts to

tick at 60ms.

Finally, once stopT2 occurs, a stopAction is sent to hwCtr. the relationship between

these clocks is speci� ed in ccsl as:

stopAction = stopT2 (6.11)

Figure 6.4 depicts the simulation of the ApplicationView speci� ed in ccsl by using

TimeSquare . In this � gure, we presents the state machine behavior reacting to the

control events from controlSubView. Each action state is represented by a start and

� nish event, e.g., t1StopStat and t1StopFinish. At the begin of the simulation, the T1

and T2 are in Stop state. Once the controlSubView commands to execute anaction,

the states of T1 and/or T2 change. In this simulation, the sequenceT1, T2 and T1

is executed. The relationship between events are depicted by blue arrows (precedence)

and red lines (coincidence).

C
hapter

6.
P

R
IS

M
S

Y
S

P
ow

er-A
w

are
M

odel
A

nalysis
120

Figure 6.4: ApplicationView simulation in TimeSquare .

Chapter 6. PRISMSYS Power-Aware Model Analysis 121

6.2.2.2. Hardware View

Once ApplicationView is in execution, HardwareView receives control events to coordi-

nate its subViewElementsand to synchronize thePowerView and ClockView execution.

Figure 6.5 presents the sequence diagram of the interaction amongHardwareView, Ap-

plicationView, ClockView and PowerView from the HardwareView point of view. At the

beginning of the execution sequence,hwCtr, which is the controlSubView of Hardware-

View, receives two events:cpuOp1 and exeAction. The former commands tohwCtr to

con� gure Operation Point 1. Usually, the cpu manufacturers give the possible operation

points where their cpus could works. Therefore, in this example,hwCtr sends anactV1

event to PowerView and an actF1 event to ClockView to con� gure the operation point.

These events activeV1 and F1 states in the corresponding views, if they are not al-

ready in these states.ExeAction causes thathwCtr changes thecpu state to Busy, i.e.,

cpu is executing anaction, and it sends pwExeAction and clkExeAction to PowerView

and ClockView, respectively, to change the abstractedcpu states. Thanks to the alloca-

tion correspondence,HardwareView can know which action (T1 or T2) is in execution

according to the action active state.

We specify in ccsl that actV1 and actV2 are caused bycpuOp1 as:

cpuOp1 = actV1 (6.12)

cpuOp1 = actF 1 (6.13)

these ccsl relations mean that once cpuOp1 ticks, actV1 and actV2 occur. Similar

speci� cation is de� ned to the relationship among exeAction, pwExeAction and clkExe-

Action :

exeAction = pwExeAction (6.14)

exeAction = clkExeAction (6.15)

