J. C. , G. , and C. Lemaréchal, Some numerical experiments with variablestorage quasi-Newton algorithms, Math. Programming, vol.45, issue.3, pp.407-435, 1989.

R. Greve, Application of a Polythermal Three-Dimensional Ice Sheet Model to the Greenland Ice Sheet: Response to Steady-State and Transient Climate Scenarios, Journal of Climate, vol.10, issue.5, pp.901-918, 1997.
DOI : 10.1175/1520-0442(1997)010<0901:AOAPTD>2.0.CO;2

A. Griewank and A. Walther, Evaluating derivatives : principles and techniques of algorithmic differentiation. Siam, 2008.
DOI : 10.1137/1.9780898717761

J. Griggs and J. Bamber, A new 1 km digital elevation model of antarctica derived from combined radar and laser data-part 2 : Validation and error estimates. The Cryosphere, pp.113-123, 2009.

M. Thomas, . Hamill, S. Jeffrey, C. Whitaker, and . Snyder, Distance-dependent filtering of background error covariance estimates in an ensemble kalman filter, Monthly Weather Review, vol.129, issue.11, pp.2776-2790, 2001.

E. Hanna, . Navarro, . Pattyn, . Domingues, E. Fettweis et al., Ice-sheet mass balance and climate change, Nature, vol.6, issue.6, 2013.
DOI : 10.1038/nature12238

URL : http://dro.dur.ac.uk/10898/1/10898.pdf?DDD14+dgl1pw

L. Hascoët and V. Pascual, The Tapenade automatic differentiation tool, ACM Transactions on Mathematical Software, vol.39, issue.3
DOI : 10.1145/2450153.2450158

L. Hascoet and V. Pascual, The Tapenade automatic differentiation tool, ACM Transactions on Mathematical Software, vol.39, issue.3, p.20, 2013.
DOI : 10.1145/2450153.2450158

URL : https://hal.archives-ouvertes.fr/hal-00913983

P. Heimbach and V. Bugnion, Greenland ice-sheet volume sensitivity to basal, surface and initial conditions derived from an adjoint model, Annals of Glaciology, vol.50, issue.52, pp.67-80, 2009.
DOI : 10.3189/172756409789624256

I. Herlin, E. Huot, J. Berroir, F. Dimet, and G. Korotaev, Estimation of a Motion Field on Satellite Images from a Simplified Ocean Circulation Model, 2006 International Conference on Image Processing, pp.1077-1080, 2006.
DOI : 10.1109/ICIP.2006.312742

URL : https://hal.archives-ouvertes.fr/inria-00604618

B. Horn and B. Schunck, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, p.185203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

L. Peter, . Houtekamer, L. Herschel, and . Mitchell, A sequential ensemble kalman filter for atmospheric data assimilation, Monthly Weather Review, vol.129, issue.1, pp.123-137, 2001.

M. Ian, I. Howat, T. A. Joughin, and . Scambos, Rapid changes in ice discharge from greenland outlet glaciers, Science, issue.5818, pp.3151559-1561, 2007.

B. R. Hunt, E. J. Kostelich, and I. Szunyogh, Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica D: Nonlinear Phenomena, vol.230, issue.1-2, pp.112-126, 2007.
DOI : 10.1016/j.physd.2006.11.008

E. Huot, I. Herlin, N. Mercier, and E. Plotnikov, Estimating Apparent Motion on Satellite Acquisitions with a Physical Dynamic Model, 2010 20th International Conference on Pattern Recognition, pp.41-44, 2010.
DOI : 10.1109/ICPR.2010.19

URL : https://hal.archives-ouvertes.fr/inria-00538317

K. Ide, L. Kuznetsov, and C. K. Jones, Lagrangian data assimilation for point vortex systems, Journal of Turbulence, vol.75, issue.53, p.3, 2002.
DOI : 10.1016/S0377-0265(97)00016-X

I. Joughin, E. Ben, . Smith, M. Ian, T. Howat et al., Greenland flow variability from ice-sheet-wide velocity mapping, Journal of Glaciology, vol.56, issue.197, pp.415-430, 2010.
DOI : 10.3189/002214310792447734

B. Kamb, C. Raymond, H. Harrison, K. Engelhardt, . Echelmeyer et al., Glacier Surge Mechanism: 1982-1983 Surge of Variegated Glacier, Alaska, Science, vol.227, issue.4686, pp.227469-479, 1985.
DOI : 10.1126/science.227.4686.469

L. Kuznetsov, K. Ide, and C. K. Jones, A Method for Assimilation of Lagrangian Data, Monthly Weather Review, vol.131, issue.10, pp.2247-2260, 2003.
DOI : 10.1175/1520-0493(2003)131<2247:AMFAOL>2.0.CO;2

F. Dimet, A general formalism of variational analysis, CIMMS, 1982.

F. Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, vol.109, issue.2, p.97, 1986.
DOI : 10.1111/j.1600-0870.1986.tb00459.x

B. Lemieux-dudon, F. Parrenin, and E. Blayo, A probabilistic method to construct a common and optimal chronology for an ice core, Physics of Ice Core Records. Hokkaido University Collection of Scholarly and Academic Papers, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00344659

B. Lemieux-dudon, E. Blayo, J. Petit, C. Waelbroeck, A. Svensson et al., Consistent dating for Antarctic and Greenland ice cores, Quaternary Science Reviews, vol.29, issue.1-2, pp.8-20, 2010.
DOI : 10.1016/j.quascirev.2009.11.010

URL : https://hal.archives-ouvertes.fr/insu-00562239

J. T. Lenaerts, M. R. Van-den-broeke, W. J. Van-de-berg, E. Van-meijgaard, and P. K. Munneke, A new, high-resolution surface mass balance map of antarctica (19792010) based on regional atmospheric climate modeling, Geophysical Research Letters, vol.39, issue.4, 2011050713.

J. Lions, Contrôle optimal de systèmes gouvernés par deséquationsdeséquations aux dérivées partielles, 1968.

L. Lliboutry, Anisotropic, transversely isotropic nonlinear viscosity of rock ice and rheological parameters inferred from homogenization, International Journal of Plasticity, vol.9, issue.5, pp.619-632, 1993.
DOI : 10.1016/0749-6419(93)90023-J

G. Madec, NEMO ocean engine Note du Pole de modélisation, 2008.

G. Madec, P. Delecluse, M. Imbard, and C. Lévy, OPA 8.1 ocean general circulation model reference manual. Note du Pôle de modélisation, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00154217

S. Mallat, A wavelet tour of signal processing, 1998.

Y. Michel and F. Bouttier, Automated tracking of dry intrusions on satellite water vapour imagery and model output, Quarterly Journal of the Royal Meteorological Society, vol.78, issue.620, pp.2257-2276, 2006.
DOI : 10.1256/qj.05.179

Y. Michel, Displacing Potential Vorticity Structures by the Assimilation of Pseudo-Observations, Monthly Weather Review, vol.139, issue.2, pp.549-565, 2011.
DOI : 10.1175/2010MWR3395.1

K. Mogensen, M. Balmaseda, . Weaver, A. Martin, and . Vidard, Nemovar : A variational data assimilation system for the nemo ocean model, ECMWF newsletter, vol.120, pp.17-22, 2009.

A. Molcard, A. C. Poje, and T. M. Ozgökmen, Directed drifter launch strategies for Lagrangian data assimilation using hyperbolic trajectories, Ocean Modelling, vol.12, issue.3-4, pp.268-289, 2006.
DOI : 10.1016/j.ocemod.2005.06.004

M. Morlighem, E. Rignot, H. Seroussi, E. Larour, H. B. Dhia et al., Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica, Geophysical Research Letters, vol.36, issue.2, 2010.
DOI : 10.1029/2010GL043853

URL : https://hal.archives-ouvertes.fr/hal-00751442

J. Nilsson, S. Dobricic, N. Pinardi, V. Taillandier, and P. M. Poulain, On the assessment of Argo float trajectory assimilation in the Mediterranean Forecasting System, Ocean Dynamics, vol.4, issue.10, 2011.
DOI : 10.1007/s10236-011-0437-0

J. Nocedal and S. J. Wright, Numerical optimization, 1999.
DOI : 10.1007/b98874

E. Ott, R. Brian, I. Hunt, . Szunyogh, V. Aleksey et al., A local ensemble Kalman filter for atmospheric data assimilation, Tellus A: Dynamic Meteorology and Oceanography, vol.56, issue.131, pp.415-428, 2004.
DOI : 10.3402/tellusa.v56i5.14462

T. M. Ozgökmen, A. Griffa, L. I. Piterbarg, and A. J. Mariano, On the Predictability of Lagrangian Trajectories in the Ocean, Journal of Atmospheric and Oceanic Technology, vol.17, issue.3, pp.366-383, 2000.
DOI : 10.1175/1520-0426(2000)017<0366:OTPOLT>2.0.CO;2

D. Paillard and F. Parrenin, The Antarctic ice sheet and the triggering of deglaciations, Earth and Planetary Science Letters, vol.227, issue.3-4, pp.263-271, 2004.
DOI : 10.1016/j.epsl.2004.08.023

N. Papadakis and . Mémin, A Variational Technique for Time Consistent Tracking of Curves and Motion, Journal of Mathematical Imaging and Vision, vol.28, issue.1, pp.81-103, 2008.
DOI : 10.1007/s10851-008-0069-2

URL : https://hal.archives-ouvertes.fr/hal-00596154

V. Peyaud, Role de la dynamique des calottes glaciaires dans les grands changements climatiques des periodes glaciaires-interglaciaires, 2006.
URL : https://hal.archives-ouvertes.fr/tel-00310259

D. Pham, A singular evolutive interpolated Kalman filter for data assimilation in oceanography, 1996.

D. Pham, Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems, Monthly Weather Review, vol.129, issue.5, pp.1194-1207, 2001.
DOI : 10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/inria-00073082

D. Pham, J. Verron, and M. Roubaud, A singular evolutive extended Kalman filter for data assimilation in oceanography, 1996.

D. Pham, J. Verron, and L. Gourdeau, Filtres de Kalman singuliersévolutif singuliersévolutif pour l'assimilation de données en océnographie, C. R. Acad. Sci., Paris, Sci. terre planètes, vol.326, issue.4, pp.255-260, 1998.

H. D. Pritchard, R. J. Arthern, D. G. Vaughan, and L. A. Edwards, Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets, Nature, vol.302, issue.7266, pp.971-975, 2009.
DOI : 10.1038/nature08471

M. E. Raymo, The timing of major climate terminations, Paleoceanography, vol.77, issue.17, pp.577-585, 1997.
DOI : 10.1029/97PA01169

C. F. Raymond, How do glaciers surge? A review, Journal of Geophysical Research, vol.5, issue.39, p.91219134, 1987.
DOI : 10.1029/JB092iB09p09121

C. F. Raymond and W. D. Harrison, Abstract, Journal of Glaciology, vol.34, issue.117, pp.154-169, 1988.
DOI : 10.1017/S0022143000032184

URL : https://hal.archives-ouvertes.fr/hal-00199168

M. Raymond-pralong and G. Gudmundsson, Bayesian estimation of basal conditions on Rutford Ice Stream, West Antarctica, from surface data, Jounral of Glaciology, vol.57, issue.202, 2011.

E. Rignot and . Mouginot, Ice Flow of the Antarctic Ice Sheet, Science, vol.333, issue.6048, pp.1427-1430, 2011.
DOI : 10.1126/science.1208336

C. Ritz, V. Rommelaere, and C. Dumas, Modeling the evolution of Antarctic ice sheet over the last 420, 000 years-Implications for altitude changes in the Vostok region, Journal of Geophysical Research, vol.106, p.31, 2001.

C. Ritz, Un modèle thermo-mécanique d'´ evolution pour le bassin glaciaire Antarctique Vostok-Glacier Byrd : Sensibilité aux valeurs des paramètres mal connus, 1992.

V. Rommelaere and D. R. , Large-scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method, Annals of Glaciology, vol.24, 1997.
DOI : 10.1017/S0260305500011915

V. Rommelaere, Trois Problemes Inverses En Glaciologie, 1997.
URL : https://hal.archives-ouvertes.fr/tel-00701278

H. Salman, L. Kuznetsov, C. K. Jones, and K. Ide, A Method for Assimilating Lagrangian Data into a Shallow-Water-Equation Ocean Model, Monthly Weather Review, vol.134, issue.4, pp.1081-1101, 2006.
DOI : 10.1175/MWR3104.1

J. Schmetz, K. Holmlund, J. Hoffman, B. Strauss, B. Mason et al., Operational Cloud-Motion Winds from Meteosat Infrared Images, Journal of Applied Meteorology, vol.32, issue.7, pp.1206-1225, 1993.
DOI : 10.1175/1520-0450(1993)032<1206:OCMWFM>2.0.CO;2

C. Schoof and R. Hindmarsh, Thin-Film Flows with Wall Slip: An Asymptotic Analysis of Higher Order Glacier Flow Models, The Quarterly Journal of Mechanics and Applied Mathematics, vol.63, issue.1, pp.73-114, 2010.
DOI : 10.1093/qjmam/hbp025

J. Sheinbaum, L. David, and . Anderson, Variational Assimilation of XBT Data. Part II. Sensitivity Studies and Use of Smoothing Constraints, Journal of Physical Oceanography, vol.20, issue.5, pp.689-704, 1990.
DOI : 10.1175/1520-0485(1990)020<0689:VAOXDP>2.0.CO;2

I. Souopgui, Assimilation d'images pour les fluides géophysiques, 2010.

V. Taillandier, A. Griffa, and A. Molcard, A variational approach for the reconstruction of regional scale eulerian velocity fields from lagrangian data. Ocean Modelling, pp.1-24, 2006.

V. Taillandier, A. Griffa, P. M. Poulain, R. Signell, J. Chiggiato et al., On the assessment of argo float trajectory assimilation in the mediterranean forecasting system, Journal of Geophysical Research, issue.113, 2008.

W. C. Thacker and R. B. Long, Fitting dynamics to data, Journal of Geophysical Research, vol.16, issue.C2, pp.1227-1240, 1988.
DOI : 10.1029/JC093iC02p01227

C. Thomas, T. Corpetti, and . Memin, Data Assimilation for Convective-Cell Tracking on Meteorological Image Sequences, IEEE Transactions on Geoscience and Remote Sensing, vol.48, issue.8, pp.3162-3177, 2010.
DOI : 10.1109/TGRS.2010.2045504

URL : https://hal.archives-ouvertes.fr/inria-00619101

O. Titaud, A. Vidard, I. Souopgui, and F. Dimet, Assimilation of image sequences in numerical models. Tellus Series A : Dynamic Meteorology and Oceanography, pp.30-47, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00332815

O. Titaud, J. Brankart, and J. Verron, On the use of finite-time lyapunov exponents and vectors for direct assimilation of tracer images into ocean models. Tellus Series A : Dynamic Meteorology and Oceanography, pp.1038-1051, 2011.

W. Van-pelt, J. Oerlemans, and C. Reijmer, An iterative inverse method to estimate basal topography and initialize ice flow models. The Cryosphere, 2013.

A. Vidard, E. Blayo, F. Dimet, and A. Piacentini, 4D variational data analysis with imperfect model. Flow, Turbulence and Combustion, pp.3-4489, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00325356

A. Vidard, A. Piacentini, and F. Dimet, Variational data analysis with control of the forecast bias, Tellus A: Dynamic Meteorology and Oceanography, vol.118, issue.3, pp.177-188, 2004.
DOI : 10.3402/tellusa.v56i3.14414

URL : https://hal.archives-ouvertes.fr/inria-00325592

A. Vidard and .. , Méthodes pour lesprobì emes inverses et l'analyse de sensibilité Plan du chapitre 2.1 Réduction de dimension, p.89, 2012.

.. Indices-de-sensibilité-globale-de-sobol, 102 Estimation par méthode de, p.102

M. Asch and G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation - a numerical study, ESAIM: Control, Optimisation and Calculus of Variations, vol.3, pp.163-212, 1998.
DOI : 10.1051/cocv:1998106

D. Auroux, ´ Etude de différentes méthodes d'assimilation de données pour l'environnement

D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems, Comptes Rendus Mathematique, vol.340, issue.12, pp.873-878, 2005.
DOI : 10.1016/j.crma.2005.05.006

URL : https://hal.archives-ouvertes.fr/inria-00189644

D. Auroux and J. Blum, A nudging-based data assimilation method for oceanographic problems : the back and forth nudging (bfn) algorithm. Nonlin, Proc. Geophys, pp.305-319, 2008.

D. Auroux, Algorithmes rapides pour le traitement d'images et l'assimilation de données. Mémoire de l'HabilitationàHabilitationà Diriger la Recherche, 2008.

D. Auroux, The back and forth nudging algorithm applied to a shallow water model, comparison and hybridization with the 4D-VAR, International Journal for Numerical Methods in Fluids, vol.45, issue.1, pp.61911-929, 2009.
DOI : 10.1002/fld.1980

URL : https://hal.archives-ouvertes.fr/hal-01275639

D. Auroux, P. Bansart, and J. Blum, An evolution of the back and forth nudging for geophysical data assimilation: application to Burgers equation and comparisons, Inverse Problems in Science and Engineering, vol.147, issue.1, pp.399-419, 2013.
DOI : 10.1175/1520-0493(2000)128<0864:AOTQIM>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/hal-00904821

C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation, control and stabilisation of waves from the boundary, SIAM J.Control Optim, vol.305, pp.1024-1065, 1992.

E. Blayo, J. Verron, and J. M. Molines, Assimilation of TOPEX/POSEIDON altimeter data into a circulation model of the North Atlantic, Journal of Geophysical Research, vol.81, issue.C12, pp.24691-24706, 1994.
DOI : 10.1029/94JC01644

A. Buffa, Y. Maday, A. T. Patera, C. Prud-'homme, and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis. Mathematical Modelling and Numerical Analysis, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00659314

T. Bui-thanh, K. Willcox, O. Ghattas, and B. Van-bloemen-waanders, Goal-oriented, model-constrained optimization for reduction of large-scale systems, Journal of Computational Physics, vol.224, issue.2, pp.880-896, 2007.
DOI : 10.1016/j.jcp.2006.10.026

Y. Chen, J. S. Hesthaven, Y. Maday, and J. Rodríguez, Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2d maxwell's problem, ESAIM : Mathematical Modelling and Numerical Analysis, issue.06, pp.431099-1116, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00976057

K. Nguyen-ngoc-cuong, . Veroy, T. Anthony, and . Patera, Certified Real-Time Solution of Parametrized Partial Differential Equations, Handbook of Materials Modeling, pp.1529-1564, 2005.
DOI : 10.1007/978-1-4020-3286-8_76

B. Dehman and G. Lebeau, Analysis of the HUM Control Operator and Exact Controllability for Semilinear Waves in Uniform Time, SIAM Journal on Control and Optimization, vol.48, issue.2, 2009.
DOI : 10.1137/070712067

B. Efron, Bootstrap methods : another look at the jackknife. The annals of Statistics, pp.1-26, 1979.

R. G. Ghanem and P. D. Spanos, Stochastic finite elements : a spectral approach, 2003.
DOI : 10.1007/978-1-4612-3094-6

R. Glowinski, C. H. Li, and J. L. Lions, A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods, Japan Journal of Applied Mathematics, vol.19, issue.2, pp.1-76, 1990.
DOI : 10.1007/BF03167891

R. Glowinski, J. Lions, and J. He, Exact and approximate controllability for distributed parameter systems, volume 117 of Encyclopedia of Mathematics and its Applications, 2008.

M. A. Grepl and A. T. Patera, error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.1, pp.157-181, 2005.
DOI : 10.1051/m2an:2005006

A. Martin, Y. Grepl, . Maday, C. Ngoc, . Nguyen et al., Efficient reducedbasis treatment of nonaffine and nonlinear partial differential equations, ESAIM : Mathematical Modelling and Numerical Analysis, issue.03, pp.41575-605, 2007.

B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.42, issue.2, pp.277-302, 2008.
DOI : 10.1051/m2an:2008001

J. Hoke and R. A. Anthes, The Initialization of Numerical Models by a Dynamic-Initialization Technique, Monthly Weather Review, vol.104, issue.12, pp.1551-1556, 1976.
DOI : 10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2

E. Hopf, The partial differential equation ut + uux = ??xx, Communications on Pure and Applied Mathematics, vol.3, issue.3, pp.201-230, 1950.
DOI : 10.1002/cpa.3160030302

D. B. Huynh, G. Rozza, S. Sen, and A. T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf???sup stability constants, Comptes Rendus Mathematique, vol.345, issue.8, pp.345473-478, 2007.
DOI : 10.1016/j.crma.2007.09.019

D. B. Huynh, G. Rozza, S. Sen, and A. T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf???sup stability constants, Comptes Rendus Mathematique, vol.345, issue.8, pp.345473-478, 2007.
DOI : 10.1016/j.crma.2007.09.019

T. Ishigami and T. Homma, An importance quantification technique in uncertainty analysis for computer models, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis, pp.398-403, 1990.
DOI : 10.1109/ISUMA.1990.151285

A. Janon, Analyse de sensibilité et réduction de dimension. ApplicationàApplicationà l'océanographie, 2012.

D. J. Knezevic, N. C. Nguyen, and A. T. Patera, ERROR ESTIMATION FOR THE PARAMETRIZED UNSTEADY BOUSSINESQ EQUATIONS, Mathematical Models and Methods in Applied Sciences, 2010.
DOI : 10.1142/S0218202511005441

G. Lebeau, Contr???le analytique I: esstimations a priori, Duke Mathematical Journal, vol.68, issue.1, pp.1-30, 1992.
DOI : 10.1215/S0012-7094-92-06801-3

J. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, 1988.

A. Marrel, B. Iooss, B. Laurent, and O. Roustant, Calculations of Sobol indices for the Gaussian process metamodel, Reliability Engineering & System Safety, vol.94, issue.3, pp.742-751, 2009.
DOI : 10.1016/j.ress.2008.07.008

URL : https://hal.archives-ouvertes.fr/hal-00239494

N. C. Nguyen, K. Veroy, and A. T. Patera, Certified real-time solution of parametrized partial differential equations, Handbook of Materials Modeling, pp.1523-1558, 2005.

N. C. Nguyen, G. Rozza, and A. T. Patera, Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers??? equation, Calcolo, vol.337, issue.9, pp.157-185, 2009.
DOI : 10.1007/s10092-009-0005-x

C. Prud-'homme, T. Anthony, and . Patera, Reduced-basis output bounds for approximately parametrized elliptic coercive partial differential equations, Computing and Visualization in Science, vol.6, issue.2-3, pp.147-162, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01220801

C. Prud-'homme, D. V. Rovas, K. Veroy, T. Anthony, and . Patera, A Mathematical and Computational Framework for Reliable Real-Time Solution of Parametrized Partial Differential Equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.36, issue.5, pp.747-771, 2002.
DOI : 10.1051/m2an:2002035

URL : https://hal.archives-ouvertes.fr/hal-01220802

G. Rozza and P. A. , Venturi : Potential flow, 2008.

I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Math. Modeling Comput. Experiment, vol.1, issue.4, pp.407-414, 1993.

I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, vol.55, issue.1-3, pp.271-280, 2001.
DOI : 10.1016/S0378-4754(00)00270-6

C. B. Storlie, L. P. Swiler, J. C. Helton, and C. J. Sallaberry, Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models, Reliability Engineering & System Safety, vol.94, issue.11, pp.941735-1763, 2009.
DOI : 10.1016/j.ress.2009.05.007

J. Y. Tissot, Sur la décomposition ANOVA et l'estimation des indices de Sobol'. Applicationà Applicationà un modèle d'´ ecosystème marin, 2012.

K. Urban and A. T. Patera, A new error bound for reduced basis approximation of parabolic partial differential equations, Comptes Rendus Mathematique, vol.350, issue.3-4, 2012.
DOI : 10.1016/j.crma.2012.01.026

A. W. Van and . Vaart, Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics, 1998.

K. Veroy and A. T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basisa posteriori error bounds, International Journal for Numerical Methods in Fluids, vol.42, issue.8-9, pp.8-9773, 2005.
DOI : 10.1002/fld.867