N
N

N

HAL

open science

Modeling of Secure Dependable (S&D) applications
based on patterns for Resource-Constrained Embedded
Systems (RCES)

Adel Ziani

» To cite this version:

Adel Ziani. Modeling of Secure Dependable (S&D) applications based on patterns for Resource-
Constrained Embedded Systems (RCES). Other [cs.OH]. Université Toulouse le Mirail - Toulouse II,

2013. English. NNT': 2013TOU20074 . tel-00929836

HAL Id: tel-00929836
https://theses.hal.science/tel-00929836

Submitted on 14 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00929836
https://hal.archives-ouvertes.fr

3
.

&
!

9% —

THESE

En vue de obtention du

Universite
de Toulouse

DOCTORAT DE L’UNIVERSITE DE TOULOUSE

Délivré par : I’Université Toulouse 2 Le Mirail (UT2 Le Mirail)

Présentée et soutenue le 19 Septembre 2013 par :

ADEL ZIANI

Modeling of Secure and Dependable (S&D) Applications based on a
Repository of Patterns for Resource-Constrained Embedded Systems

(RCES)
JURY
JEAN-MICHEL BRUEL Professeur, Université de Toulouse Directeur de these
BraniMm HAMID Maitre de Conférences, Université de Toulouse Co-Directeur de these
Franck BARBIER Professeur, Université de Pau Rapporteur
FEruaT KHENDEK Professeur, Université de Montréal - Concodia Rapporteur
VINCENT CHAPURLAT Professeur, Ecole des Mines d’Ales Examinateur
MouAaMED KAANICHE Directeur de Recherche, LAAS Examinateur

Ecole doctorale et spécialité :
MITT : Domaine STIC : Sureté de logiciel et calcul de haute performance

Unité de Recherche :

Institut de Recherche en Informatique de Toulouse (IRIT)
Directeur(s) de Theése :

Jean-Michel BRUEL et Brahim HAMID

Rapporteurs :
Franck BARBIER et Ferhat KHENDEK

Acknowledgements

When I was young, I always wanted to be a scientist and to invent something...
I can not say that I have invented something amazing, but I can say that I have
learned a lot.

I would like to thank my committee members Franck BARBIER, Ferhat KHEN-
DEK, Mohamed KAANICHE, Vincent CHAPURLAT, Jean-Michel BRUEL and
Brahim HAMID for their friendship and wisdom.

I am grateful to my supervisor, Prof Jean-Michel BRUEL for giving me the
opportunity to be a Ph.D. student and believing in me. He helped me a lot with
his detailed and precious comments. I want to thank my second assistant supervisor
Dr Brahim HAMID. He inspired my interest in embedded system modeling and
supported me in many ways during the becoming of this thesis. I do not want to
thank him only as a supervisor, but also as an invaluable friend that has always
been there for me, and has supported me many times.

Thanks also to colleagues for their characteristically sage comments, and for
guidance in the ways of leadership. I am indebted to all the members of the Macao.
It has been a privilege to enjoy your warm humor and insightful criticism alike.

Finally, for the love of my family, both old and new, near and far. I am grateful
to my family who provided the right environment for my studies and my work. My
brother and my sisters and persons who are near to my heart even though we are
always far away. To my friends for making me one of the family. Thanks go also
to all other people that contributed in any way to the success of this thesis. To my

circle of peers I offer special thanks...

Résumé

La complexité croissante du matériel et du logiciel dans le développement des
applications pour les systémes embarqués induit de nouveaux besoins et de nou-
velles contraintes en termes de fonctionnalités, de capacité de stockage, de calcul
et de consommation d’énergie. Un autre défi qui s’ajoute a cette complexité est
le développement des applications avec de fortes exigences de sécurité et de fiabil-
ité (S&D) pour des systémes embarqués contraints en ressources (RCES). Dans ce
travail, nous proposons une approche d’ingénierie a base de modéles pour la spéci-
fication, le packaging et la réutilisation d’un ensemble d’artifacts pour modéliser et
analyser ces systémes, ou le "patrons" constitue I'artifact de base pour représenter
des solutions S&D.

Le fondement de I'approche est un ensemble de langages de modélisation couplés
a un référentiel a base modéles et de moteurs de recherche et d’instantiation vers
des environnements de développement spécifiques. Ces langages de modélisation
permettent de spécifier les patrons, les resources et un ensemble de modéles de
propriétés. Ces derniers permettent de gouverner 'utilisation des patrons et leur
analyse pour d’éventuelle réutilisation. En outre, nous proposons un processus de
spécification et de génération de référentiels.

Dans le cadre de I'assistance pour le développement des applications S&D, nous
avons implémenté une suite d’outils structurée autour de la plateforme Eclipse pour
supporter les différentes activités autours du référentiel en passant par les activités
d’analyse. Les solutions proposées ont été évaluées dans le cadre du projet TERESA
a travers un cas d’étude d’une application ferroviaire.

Mots-clés: Systéemes Embarqués Contraints en Ressources, Ingénierie Dirigée
par les Modéles, Référentiel basé sur des Modéles, Patrons de sécurité et de fiabilité,
Suite d’outils IDM

i

Abstract

Non-functional requirements such as Security and Dependability (S&D) become
more and more important as well as more and more difficult to achieve, particularly
in embedded systems development. Such systems come with a large number of com-
mon characteristics, including real-time and temperature constraints, security and
dependability as well as efficiency requirements. In particular, the development of
Resource-Constrained Embedded Systems (RCES) has to address constraints regard-
ing memory, computational processing power and/or energy consumption. In this
work, we propose a modeling environment which associates model-driven paradigms
and a model-based repository, to support the design and the packaging of S&D
patterns, resource models and their property models.

The approach is based on a set of modeling languages coupled with a model-
repository, search and instantiation engines towards specific development environ-
ments. These modeling languages allow to specify patterns, resources and a set of
property models. These property models will allow to govern the use of patterns
and their analysis for reuse. In addition, we propose a specification and generation
process of repositories.

As part of the assistance for the development of S&D applications, we have
implemented a tool-chain based on the Eclipse platform to support the different
activities around the repository, including the analysis activities. The proposed
solutions were evaluated in the TERESA project through a case study from the
railway domain.

Keywords: Resource-Constrained Embedded Systems, Model-Driven Engineer-

ing, Model-based repository, Security and Dependability patterns, MDE tool-chain

iii

iv

Contents

1

3

Introduction 1
1.1 Context e 1
1.2 Problem Statement 2
1.3 Research Goals 3
1.4 Contributions 4
1.5 Publications e 5
1.6 Thesis Outline 7
Context 9
2.1 Introductiono 9
2.2 Resource-Constrained Embedded Systems (RCES) 9

2.2.1 The TERESA project 10

2.2.2 Resource-Aware System Engineering 10
2.3 Security and Dependability 0L 11
2.4 Model-Based Engineering (MBE) 13

2.4.1 Model Driven Engineering (MDE) 14

2.4.2 Domain Specific Modeling Language (DSML) 15
2.5 Security and Dependability Patterns 15
2.6 Eclipse Modeling Framework Tools 18
2.7 Development Environment: SEMCO 19

2.7.1 Definitionso 19

272 SEMCO e 21
2.8 Introduction to the Case Study: Railway Control System (Safe4Rail) 23
29 Conclusion L 26
Related Work 27
3.1 Introduction 27

3.2 Modeling Languages for Resources and Non-Functional Properties . . 28

Contents

vi

3.2.1 Standards Lo
3.2.2 Academic Work
3.3 Pattern Modeling and S&D Concern
3.4 Repository
3.4.1 Repository of models oo
3.4.2 Pattern Repositoryo Lo

3.5 Conclusion

Contribution to the Modeling of S&D Applications for RCES

4.1 Introduction

4.2 Repository-centric Resource-aware System and Software Engineering .

4.3 Artifacts Modeling Languages
4.3.1 A Metamodel for Non-Functional Properties (GPRM)
4.3.2 A Metamodel for Resource (SERM)
4.3.3 A Metamodel for S&D Patterns (SEPM)

4.4 Pattern System Configurations Management

4.5 Transformations for Analysis
4.5.1 Calculating Resources Consumption - M2M
4.5.2 Documenting the Resources Consumption Analysis - M2T

4.6 Conclusion

A Model-based Repository

5.1 Imtroduction Lo

5.2 A Model-based Repository Framework

5.3 A Language for the Specification of the Repository
5.3.1 Repository Structure Metamodel
5.3.2 Repository Interfaces Metamodel

5.4 A Model-based Repository for S&D Applications in RCES
5.4.1 Repository Structure Model
5.4.2 Repository Interfaces Model

5.5 'Transformation for the Instantiation

5.5.1 Repository Instantiation into UML Modeling Environment -

5.5.2 Implementation of Transformation

5.6 Conclusion

39

Contents

6 Architecture and Implementation of Tools 77
6.1 Introduction 7
6.2 Implementation Architecture 78

6.2.1 Tool-suite Architecture 78
6.2.2 Tool-suite Functionalities 79
6.3 CDO Repository Implementation: Gaya 80
6.3.1 CDO Repository Implementation Architecture 80
6.3.2 Repository Implementation Details 82
6.4 Design Tools for Repository Populating 83
6.4.1 Property Modeling : Tiqueo 84
6.4.2 Resources Modeling: Matho 86
6.4.3 S&D Pattern Modeling: Arabion 89
6.5 Repository Access-Tools L 91
6.5.1 Retrieval 92
6.5.2 Artifact Adaptationo 94
6.6 Repository Administration L 94
6.6.1 User Management 94
6.6.2 Artifact Management 97
6.7 Systems of Patterns Modeling 98
6.8 Conclusion e 100

7 Demonstration and Evaluation 103
7.1 Introduction 103
7.2 Description of the Demonstrator 104

7.2.1 Description of the Platform 105

7.2.2 Description of the Application 106

7.3 An Overview of the TERESA Repository Content 110

7.4 Modeling of SafedRail o 113

7.4.1 Safed4Rail Platform Modeling 113

7.4.2 Safed4Rail Application Modeling based on S&D Patterns . . . 115

7.5 Analysis of Safe4Rail application 118

7.6 Evaluation 121
7.6.1 Context and Description of the Methodology for Experimen-

tation 121

7.6.2 Results. 122

7.7 Synthesis and Discussion L. 125

vii

Contents

viil

7.7.1
7.7.2

8 Conclusion

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7

Recapitulation and Perspectives

Limits of the Approach

8.1 Summary and Contributions

8.2 Limitations and Future work
Annex A. Abbreviations

Annex B. Patterns Description

Watchdog
Black Channel - Safety Communication Layer
Secure Communication Layer
Triple Modular Redundancy (TMR)
Majority Voter oo
Reciprocal Monitoring

Data Agreement

129
129
131

143

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
2.3
5.4
3.5
2.6

Fault Propagation Model
Trust Model
S&D Properties
Example of some patterns to secure Internet applications
SEMCO DSL Building Process and Artifacts
Overview of the SEMCO tool suite architecture
Railway Control System
SafedRail Application

Railway demonstrator

Resource-aware System and Software Engineering
The (simplified) GPRM Metamodel
Property Library Development
Type and Category Libraries Definition Processes
The (simplified) SERM Metamodel
The (simplified) SEPM Metamodel
Pattern development process at DIPM
A metamodel of patter system,
Generation of pattern system configuration
Generation of pattern system configuration- IsSimilar

Generation of pattern system configuration- IsAnAlternative

The repository system
The proposed framework for the model-based repository system . .
SARM - Structure
SARM - Interfaces
The Repository Interfaces and Classes

SEPM to UML Component Transformation

X

List of Figures

5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26

7.1
7.2
7.3
7.4
7.5
7.6

Mapping rules from SEPM concepts to UML Component Concepts

using QVTO oo 75
The tool suite architecture 79
Repository implementation based on CDO 81
The Model-based repository building process 83
Designing a Category Library 85
Eclipse Load Resource Tool 85
Property Library Validation 86
Property Library Deposit 87
Matho Design Environment 88
Designing a Resource Category Library 88
Designing the Platform Resources 89
Resources Validation o L. 89
Secure Communication DI Pattern at Design level 91
Pattern Validation 91
Pattern Publication 92
Property Library Instantiation 93
Pattern Instantiation 95
Pattern Instantiation - Consistency 95
The Admin UI of the Repository 96
User Management Part 96
Repository Authentication 97
Repository Authentication Under Eclipse. 97
Repository organization 0oL L. 98
Property management part L. 99
Pattern management part 99
System of patterns modeling using Arabion tool 100
Definition of the system of patterns - Included patterns 101
ERTMS/ETCS Level 2 diagram 104
ERTMS/ETCS supervision limits and braking curves 105
Hardware Platform Design 106
Architecture of the Safe4Rail Hardware Platform 106
"Safe4Rail" System Components 107
"SafedRail" Safety use-case diagram 109

List of Figures

7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

7.15

7.16
7.17
7.18
7.19

8.1
8.2
8.3
8.4

Repository Content 111
Safe4Rail platform description using Matho tool 113
Architecture of complete pattern system 115
Pattern system base configuration 118
IsSimilar pattern system configuration 119
IsAlternative pattern system configuration 119
Specializes pattern system configuration 120

Calculation of the resource consumption - Scenario 2 (M2M trans-
formation) 120

Visualization of the resource consumption - Scenario 2 (M2T trans-

formation) 121
Analysis of the four scenarios - Graphic 122
Effectiveness Results 123
Productivity Results 0oL 123
Satisfaction Results from 1 (total disagreement) to 5 (total agree-

MENt). . . .o 124
Tool-flow of the MDE-tool suite 130
The (simplified) Black Channel Diagram 148
Secure communication layer schema 149
TMR, (2003) physical block diagram as described by TEC-61508-7

B8]« 150

X1

List of Figures

xii

List of Tables

2.1

3.1

0.1

7.1
7.2
7.3
7.4
7.5
7.6

The used patterns in Safe4Rail application 25
Comparative Table of Embedded Systems Modeling Standards 30
SEPM to UML Component Mapping 74
Railway Patternso Lo 112
Metrology Patterns 112
Hardawre architecture platform 114
Architecture of pattern system - Part 1. 116
Architecture of pattern system - Part 2. 117
Analysis of the four scenarios 121

xiii

Chapter 1

Introduction

1.1 Context

Recent times have seen a paradigm shift in terms of design by combining multiple
software engineering paradigms, namely, Model-Driven Engineering (MDE) [10, 64|
and Component Based Software Engineering (CBSE) [14, 15, 68]. Such a paradigm
shift is changing the way systems are developed nowadays, reducing development
time significantly. Embedded systems [88] are a case where a range of products
for assorted domains such as energy, transportation, automotive, and so on are
conceived as a family. However, most of the work so far has been focused on the

functional parts.

Embedded systems [35, 88| are not conventional software which can be built using
usual paradigms. In particular, the development of Resource-Constrained Embedded
Systems (RCES) addresses constraints regarding memory, computational processing
power and/or limited energy. To cope with the growing complexity of embedded
system design, several development approaches have been proposed. The most pop-
ular are those using models as main artifacts to be constructed and maintained. In

these processes, software development consists of model transformations.

Non-functional requirements such as Security and Dependability (S&D) [59] be-
come more important as well as more difficult to achieve. The integration of S&D
features requires the availability of both application domain specific knowledge and
S&D expertise at the same time. Currently, the integration of S&D mechanisms
is still new in many domains (i.e. smart metering or home control), hence embed-
ded system developers usually have limited S&D expertise. In fact, capturing and

providing this expertise by the way of S¢D patterns can support embedded system

Chapter 1. Introduction

development.

Unfortunately, most of S&D patterns are expressed as informal indications on
how to solve some security problems, using template like traditional patterns. These
patterns do not include sufficient semantic descriptions, including those of security
and dependability concepts, for automated processing within a tool-supported de-
velopment and to extend their use. Furthermore, due to manual pattern imple-
mentation, the problem of incorrect implementation (the most important source of
security problems) remains unsolved. For that, model driven software engineering
can provide a solid basis for formulating design patterns that can incorporate se-
curity and dependability aspects and for offering these patterns at several layers of
abstraction. We leverage on this idea to propose a new framework for the specifi-
cation and the management of a set of modeling artifacts, including S&D patterns,
resource models and property models, intended for systems with stringent S&D re-
quirements. Reaching this target requires to get a common representation of such a
modeling environment for several domains and the ability to customize them for a
specific domain.

The industrial context conducting our work is how to take into account several
constraints, mainly those related to security and dependability, that are not satis-
fied by the well-know and the widely used technology for building applications for
Resource-Constrained Embedded Systems. These requirements introduce conflicts
on the three main factors that determine the cost of ownership of applications: cost
of the production, cost of engineering and cost of maintenance. In other words,
systems with high dependability requirements for which the security level must be
demonstrated and certified use almost exclusively technical solutions strongly ori-
ented by the application domains. Applications based on these solutions are by
definition dedicated, hardly portable between different execution platforms and re-
quire specific engineering processes. These specificities greatly increase the cost of

the development in the phases of their lifecycle.

1.2 Problem Statement

Based on the previous section, we identify our general research problem coming
from the embedded systems practice as:
The need to address the problem of defining a tool-supported pro-

cess and deriving the necessary tools for the development of Resource-

1.1.3 Research Goals

Constrained Embedded System (RCES) applications with strong con-
straints on Security and Dependability (S€D).

This leads us to deal with the problem of enforcing S&D in RCES with Model-
Driven Engineering (MDE). MDE provides a useful contribution to the design of
RCES applications since it bridges the gap between design issues and implementa-
tion concerns. In addition, MDE can potentially maintain the separation of concerns
between application and S&D, by ensuring that S&D designs can be reused at dif-

ferent development levels by application designers and developers.

Significant research is being carried out concerning MDE for embedded systems,
at the level of system architecture, design techniques, testing, validation, proof of cor-
rectness, modeling, software reliability, operating systems and parallel and real-time
processing. More research is needed on the use of MDE to enforce the integration
of S&D requirements into the engineering process and to support the reuse of S&D

mechanisms.

1.3 Research Goals

Taking into account the previous discussion, we specify our research problem as

an overall research goal of this thesis:

Define, demonstrate and validate an engineering discipline for S€D

that 1s adapted to Resource-Constrained Embedded Systems.

Special emphasis will be devoted to promote the particularly challenging task
of efficiently integrating S&D solutions within the restricted available design space
for RCES. Furthermore, one important focus is on the potential benefits of the
combination of Model-Driven Engineering with a pattern-based representation of
security and dependability solutions. Decomposing the overall research goal, we

formulate three research goals that we address in this thesis.

Research goal 1.

Develop languages for modeling artifacts and tool support for modeling and anal-
ysis of RCES application based on S€D patterns. RG1

Chapter 1. Introduction

Research goal 2.

Develop a language for the specification and generation of a model-based reposi-

tory of modeling artifacts. RG2

Research goal 3.

Study the applicability of the proposed framework by modeling and analyzing a
case study from industry. RG3

1.4 Contributions

The proposed approach is to use a model-based repository of S&D patterns and
resource models augmented with property models. Some of the topics that we seek
to include in this work are related to the development of models and tools to support
the inclusion of security and dependability (S&D) issues into the RCES engineering
process. Here, we map the contributions of this thesis to the goals formulated earlier.

RG1 is addressed with the following contributions:

1. Artifacts modeling: we propose a modeling framework to specify properties,

resources and patterns. (Chapter 4)

2. Model transformation: we propose a model-to-model and a model-to-text
transformation to estimate the resource consumption of S&D applications

within a specific platform. (Chapter 4)

3. Tooling: we propose an MDE tool-chain as a set of integrated tools to support
the specification the analysis of S&D pattern-based applications for RCES.
(Chapter 6)

RG?2 is addressed with the following contributions:

1. Repository modeling: we propose a modeling framework to specify a model-
based repository independently from end-development applications and execu-

tion platforms. (Chapter 5)

2. Repository tooling: we propose a tool to support the specification of model-
based repositories as well as accessing and managing these repositories. (Chap-
ter 6)

1.1.5 Publications

RG3 is addressed with the following contribution:

1. Validation: we apply in practice to a resource-constrained embedded system
(RCES) in the context of the TERESA project |28]. (Chapter 7)

1.5 Publications

This section presents published papers related to the thesis. The publications
are divided into two categories: (i) papers that are fundamental for the thesis con-

tributions; and (ii) papers that are related to the thesis.

Fundamental publications

e Paper A. [86] A Model-based Repository of Security and Dependability Pat-
terns for Trusted RCES Adel Ziani, Brahim Hamid, Jean-Michel Bruel. 1/th
IEEE International Conference on Information Reuse and Integration, San
Francisco, CA. USA, IEEE Computer Society, August 2013.

Summary: In this paper, we target the development of a model-based repos-
itory of S&D patterns that follows the MDE paradigm. Our framework is
based on metamodeling techniques that allow to specify the S&D patterns at
different levels of abstraction and an operational architecture of the repository.
Furthermore, we walk through a prototype with EMF editors and a CDO-
based repository supporting the approach. Currently the tool suite named
semcomdt is provided as Eclipse plugins. The approach presented here has
been evaluated in the context of the TERESA project for a repository of S&D
patterns and property models targeting RCES applications. First evidences
indicate that users are satisfied with the notion of "model-based repository
of S&D patterns". The approach paves the way to let users define their own
road-maps upon the PBSE methodology. First evaluations are encouraging
with 85% of the subjects being able to complete the tasks. However, they also
point out two main challenges: pattern integration and automatic search for

appropriate patterns.

e Paper B. [33]| Towards Tool Support for Pattern-Based Secure and De-
pendable Systems Development. Brahim Hamid, Adel Ziani, Jacob Geisel.
Academics tooling with Eclipse (A joint ECMFA/ECSA/ECOOP workshop),
Montpellier, France, ACM DL, July 2013.

Chapter 1. Introduction

Summary: In this paper, we present the SEMCO MDE Tool Suite devel-
opment status conducted in the context of the FP7 TERESA project aiming
to support the automation of building, storing and processing reusable arti-
facts (S&D patterns and property models). This tool promotes the PBSE
methodology in the domain of assistance to the trusted embedded system en-
gineering. The approach presented here has been evaluated in the context of
the TERESA project for a repository of S&D patterns and property models.
For instance, a pattern designer defines patterns and store them in the repos-
itory. A system designer reuses existing patterns from the repository through
instantiation mechanisms which leads to simpler and seamless designs with

higher quality and costs savings.

e Paper C. |29| Model-Driven Engineering for Trusted Embedded Systems based
on Security and Dependability Patterns. Brahim Hamid, Jacob Geisel, Adel
Ziani, Jean-Michel Bruel, Jon Perez. System Design Languages Forum, Mon-
treal, Canada, Springer, LNCS, p. 73-91, June 2013.

Summary: In this paper, we propose a methodology and an MDE tool-chain
to support the specification and the packaging of a set of S&D patterns, in
order to assist the developers of trusted applications for resource-constrained

embedded systems.

e Paper D. [87] Towards a Unified Meta-model for Resources-Constrained Em-
bedded Systems. Adel Ziani, Brahim Hamid, Salvador Trujillo. Dans : Fu-
romicro conference on Software Engineering and Advanced Applications, Oulu,
Finland, 30/08/2011-02/09/2011 IEEE Computer Society, p. 485-492
September 2011.

Summary: In this paper, we introduce a model-driven approach for modeling
of non-functional properties in the context of resource-constrained embedded
systems. The RCES metamodel serves primarily to capture the basic concepts
constituting an embedded systems (resources, services and properties). Based
on these building blocks, the metamodel extends the concept of property to
express non-functional properties. Subsequently, the RCES properties model
is defined according to the metamodel comprising a set of properties types,
units of measure and predefined properties. To demonstrate the use of our
metamodel and model to define properties specific to a platform, a use case
illustrates the mechanisms available to do it. The benefits of this work is

twofold: first, RCES model serves for analysing the modeling of embedded

1.1.6 Thesis Outline

systems. Second, the properties provided by such models will be used as basis

for constructing constraints to build RCES applications.

Publications related to the thesis

e [30] Safety Lifecycle Development Process Modeling for Embedded Systems -
Erxample of Railway Domain . Brahim Hamid, Jacob Geisel, Adel Ziani,
David Gonzalez. Dans : Software Engineering for Resilient Systems (SERENE
2012), Pisa, Ttaly, 27/09/2012-28/09/2012, Vol. 7527, Springer, LNCS, p.
63-75, September 2012.

e [85] A Model-Driven Engineering Framework for Fault Tolerance in Dependable
Embedded Systems Design. Adel Ziani, Brahim Hamid, Jean-Michel Bruel.
Dans : FEuromicro conference on Software Engineering and Advanced Appli-
cations, Cesme, Izmir, Turkey, 05/09/2012-08/09/2012, IEEE, p. 166-169,
September 2012.

e 32| An Environment for Design Software and Hardware Aspects of Clock Syn-
chronization and Communication in DRTES. Brahim Hamid, Adel Ziani.
Dans : IEEFE International Conference on Embedded and Ubiquitous Com-
puting (EUC 2010), Hong Kong SAR, China, 11/12/2010-13/12/2010 IEEE
Computer Society - Conference Publishing Services, p. 60-67, Decem-
ber 2010.

e [84] Clock Synchronization Modeling in DRTES. Adel Ziani, Brahim Hamid.
Dans : Handson Platforms and tools for model-based engineering of Embed-
ded Systems (workshop at ECMFA 2010)(HoPES 2010), Paris, 15/06,/2010-
16/06/2010, CEA LIST, p. 51-56, 2010.

1.6 Thesis Outline

The outline of the dissertation is as follows. Chapter 2 presents the context of our
work. Chapter 3 is dedicated to relating the contributions in this thesis to relevant
research. Chapter 4 presents the modeling languages and available tools for analysis
to help the development of applications based on S&D patterns. Chapter 5 presents
the specification and the generation of repositories for the packaging of models and

S&D patterns. Chapter 6 presents the MDE tool-suite to support the design process,

Chapter 1. Introduction

the packaging and the analysis of S&D applications around a repository and methods
introduced to promote its use. An illustration of the use of our tool-chain and the
benefits of our proposed solutions within an industrial case study Safe/Rail, outcome
of the TERESA project, is presented in Chapter 7. Finally, Chapter 8 concludes

the dissertation and proposes some perspectives on the future works.

Chapter 2

Context

2.1 Introduction

The conception and design of RCES is an inherently complex endeavor. In
particular, non-functional requirements such as Security and Dependability (S&D)
are exacerbating this complexity. MDE is a promising approach for the design of
trusted systems, since it bridges the gap between design issues and implementation
concerns. MDE has the potential to greatly ease recurring activities of S&D experts.
MDE supports the designer to resolve in a separate way non-functional requirements
such as security and/or dependability issues at a greater abstraction level.

In this chapter we present the context of our work, including a set of concepts,
definitions and an introduction to the case study that might prove useful in under-

standing our approach.

2.2 Resource-Constrained Embedded Systems
(RCES)

Embedded systems come with a large number of common characteristics, includ-
ing real-time, temperature and energy constraints, dependability as well as efficiency
requirements |35]. Especially, Resource-Constrained Embedded Systems (RCES)
refer to systems which have memory, computational processing and/or energy con-
sumption constraints. They are commonly found in many application sectors such as
automotive, aerospace and home control. They are in many types of device like sen-
sors, automotive electronic control units, intelligent switches and home appliances.

In addition, they are heterogeneous, e.g. standalone systems, peripheral subsystems

Chapter 2. Context

10

and main computing systems. Embedded resources of RCES, e.g. memory, tasks
and buffers are generally statically determined. Therefore, the generation of RCES
involves specific software building processes. These processes are often error-prone
because not fully automated, even if some level of automatic code generation or even

Model-Driven Engineering support is used.

2.2.1 The TERESA project

In the context of the TERESA project |74], Resource-Constrained Embedded

Systems are characterized as follows:
e They belong to different application sectors.

e Computing resources are mostly statically determined and allocated through

a process consisting of a configuration phase and a build phase.

e They are generally high integrity systems with strong assurance requirements,
ranging from very strong levels involving certification (e.g. DO178 and TEC-
61508 for safety-relevant embedded systems development) to lighter levels

based on industry practices.
e They therefore use advanced engineering disciplines.

TERESA (Trusted Computing Engineering for Resource-Constrained Embedded
Systems Applications) planned to define, demonstrate and validate an engineering
discipline for trust that is adapted to resource-constrained embedded systems. In
TERESA, trust is defined as the degree with which security and dependability re-
quirements are met. TERESA has the following objectives: (1) Provide guidelines
for the specification of sector specific RCES trusted computing engineering. Software
process engineers in a given sector can then use the guidelines to define a trusted
computing engineering process that is integrated with the software engineering pro-
cess used in their RCES sector. (2) Define a trusted computing engineering approach
that is suited to the following sectors: Automotive, Home Control, Railway and Me-

tering.

2.2.2 Resource-Aware System Engineering

Embedded systems can be defined as information processing systems embedding

hardware and software into enclosing products to fulfill a specific function, often

2.2.3 Security and Dependability

under real-time computing constraints [47]. The resources that such systems use
(CPU, memory, energy, etc.) have a fixed nature, they are limited in capacity,
expensive and usually not extensible during the lifetime of the system [79]. In
contrast to this fixed nature, software can be subject to change. To ensure that the
combination of software fits on the selected hardware platform, we need to be able
to estimate the resources consumed by the application software. Prediction methods
for resource usage should be available at early stages of design to help designer to

prevent resource conflicts at run-time.

2.3 Security and Dependability

In this section, we present the TERESA S&D conceptual model. The goal of this
model is to illustrate the addressed problems and to have a common understanding
of all the concepts used in this thesis. In the following text, all concepts are typeset
in bold letters at the moment of their definition. The conceptual model is composed
of three models presented in the following sections.

A system is a combination of interacting elements organized to achieve one more
stated purposes [12|. In TERESA, we make use of this model to comprehend all the
factors that may lead to an error of an embedded system and hence to determine
the trust level of a system. Basically, the trust level of a system decreases if a fault

could damage the system.

The Fault Propagation Model. Typically, a fault can have a direct influence
on S&D. Generally, the AVI (Attack, Vulnerability, and Intrusion) fault model is
used to demonstrate the fault — > error — > failure paradigm (see the Figure 2.1)
[57]. Figure 2.1 explains how a fault could be propagated into the system and how

it could lead to a failure.

AccidentalFault > Fault Error Failure |1 Breakdown |
|]
+causes +leads ~}—/ DenialOfService
{=|
< atincion |
PhysicaIAt‘lack|| Intrusion ‘+assumatedTo M [1 .|, +associatedTo
(SnDMetamodetSystemiiode) | I (SnDetamodel::Systemifiode]
Malware Asset | T has System

Figure 2.1: Fault Propagation Model

11

Chapter 2. Context

12

As shown in Figure 2.1, a fault is the presumed or hypothesized cause of an
error. Faults may be classified according to several criterion. A fault is related to
an asset of the system. An asset could be hardware, software, people, etc. .. Here,
we classify faults as accidental or intentional. Accidental faults can arise during
either the system design and development process or during operation (through a
violation of an operating or maintenance procedure).

Intentional faults fall into three classes: malware, physical attacks and intrusions.
Typically an attack exploits a fault or vulnerability of an asset to make an intru-
sion. An attack may use physical means to cause faults, such as power fluctuations,
radiation or wire-tapping.

An error is detected if its presence in the system triggers an error message or
error signal that originates from within the system. The possibility to detect errors
contributes to improved security and trust in the system. Errors that are present
but not detected are called latent errors. In [7], Avizienis defines an error as the
part of the system state that may lead to a failure. A failure leads to the inability
of the system or some of its parts to meet their specifications (functional and non-
functional requirements). Possible failures could be: breakdown, denial of service

and malfunction.

The Trust Model. In order to limit the probability of occurrence as well as the
impact of a fault, TERESA uses a Trust Model, depicted in Figure 2.2, to visualize

the dependencies of a RCES’s trust that is built on a number of factors.

_ +truster 1l Trust
_&/I Trustor H’ +factor
[Stakeholder | 1.1 LA ————=1 S&DProperty |
— _ +tustee 0 M Y5
| Trustee i
n.* + trustor
M/ +guaranties [(SnDMetamod. | |(SnDMetamod...|
I:C_o_n_tﬂ_] Confidentiality Safety ‘
1 M\ +dependsOn
[+managed
+refersTo 1 TrustRisk Trust-l'-"ﬂlit:y] (SnDMetamodel
(SnDMeiamodel - Systemodel] | + refers + restricted *HastRoliey Heauiement
Asset =
| %] 1 i}
[1/\ + reduces
1| +implements
+ prevents
{SnDMeramodef'.'izx.llli:tPropagauonModeD | P I_DEQII?'—
]

Figure 2.2: Trust Model

As depicted in Figure 2.2, a trustor can trust a trustee if, and only if, at least one

2.2.4 Model-Based Engineering (MBE)

factor of S&D is guaranteed (these factors are called S&D Property in Figure 2.2).
For this reason, during the development process, requirement identification is a main
issue [40]. In order to fulfill the requirements, it is possible to define policies which
enforce the trust level. Then, during the system implementation, design selection

will implement the requirements and reduces the risk of fault.

The S&D Properties Model. While the Trust Model in Figure 2.2 figures out
that trust is related to several factors or dimensions [4], the model in Figure 2.3
summarizes possible criteria in S&D. It shows, for instance, that a user could trust
a system because it is confidentiality-aware and will protect his personal data. Of
course, it is needed that design selections implement mechanisms which ensure this

quality of service (e.g. confidentiality, authenticity, replication, etc).

+ confidentiality [l

I Sacurity |
——————& Security 4

[+integrity +availability\|y 7]

[integrity | [Availability |

FT AN + integrity + availabilit\;W g

ei_[: pend Lility]b

+ reliability |, [+ safetyy|; [I + maintainability
| Reliability |i Safety | [Maintainability|

Figure 2.3: S&D Properties

2.4 Model-Based Engineering (MBE)

Models are used to denote abstract representation of computing systems. Es-
pecially, we need models to represent software architecture and software platforms
to test, to simulate and to validate the proposed solutions. Model-Based Engineer-
ing (MBE) based solutions seem very promising to meet the needs of S&D RCES
applications development. The idea promoted by MBE is to use models at differ-

ent levels of abstraction for developing systems. In other words, models provide

13

Chapter 2. Context

14

input and output at all stages of system development until the final system itself is

generated.

2.4.1 Model Driven Engineering (MDE)

The concept of model is becoming a major paradigm in software engineering.
Its use represents a significant advance in terms of level of abstraction, continuity,
generality, scalability, etc. Model-Driven Engineering (MDE) is a form of generative
engineering |64|, in which all or a part of an application is generated from models.
MDE is a promising approach since it offers tools to deal with the development of
complex systems improving their quality and reducing their development cycles. The
development is based on model approaches, metamodeling, model transformation,
development process and execution platforms. The advantage of having an MDE
process is that it clearly define each step to be taken, forcing the developers to follow
a defined methodology. MDE allows to increase software quality and to reduce the
software systems development life cycle. That is, a same model is used for all
businesses and, thus, the consistency is ensured by construction. Moreover, from a
model it is possible to automatize steps by model refinements and generate code for
all or parts of the application.

MDE provides a useful contribution for the design of trusted systems, since it
bridges the gap between design issues and implementation concerns. It helps the
designer to specify in a separate way non-functional requirements such as security
and/or dependability needs at a higher level of abstraction. This allows imple-
mentation independent validation of models, generally considered as an important
assurance step.

The development process cycles are mainly iterative, resulting in different levels
of refining models of analysis and design. There are implementation platforms that
address these issues in specific context (e.g. the MDA standard [10]), but in many
other contexts, the links between models refined or processed to solve references
(to non-existent elements, elements not referenced, created elements,...) are still
solved in ad-hoc manner, without adequate support from generic technologies. The
required solutions involve generally more reliable process, which essentially ensure
consistency and traceability of produced models. We are still waiting for widely-
applicable technologies that solve these problems in RCES environment.

A model transformation specifies mechanisms to automatically create target

models from source models. The Object Management Group (OMG) defines a model

2.2.5 Security and Dependability Patterns

transformation as: the process of converting a model into another model of the same
system |46]. Similarly, |43] defines model transformation as the automatic generation
of a target model from a source model, according to a transformation description.
The Meta-Object Facility (MOF) [52] is a standard defined by the OMG to
describe modeling languages such as the Unified Modeling Language (UML) [55].
Query View Transformation (QVT) [50], based on the Object Constraint Language
(OCL) [56], is an OMG standard to specify model transformations in a formal way,

between metamodels conforming to MOF.

2.4.2 Domain Specific Modeling Language (DSML)

A language is defined by an abstract syntax, a concrete syntax and the descrip-
tion of semantics [22, 34, 42]. The abstract syntax defines the concepts and their
relationships which is often expressed by a metamodel. On the one hand, the con-
crete syntax defines the appearance of the language. In this way, a grammar or
regular expressions is most of the time used to design this one. On the other hand,
semantics define the sense and meaning of the structure by defining sets of rules.

Domain Specific Modeling (DSM) in software engineering is used as a method-
ology using models as first class citizens to specify applications within a particular
domain. The purpose of DSM is to raise the level of abstraction by only using the
concepts of the domain and hiding low level implementation details [26]. A Do-
main Specific Language (DSL) typically defines concepts and rules of the domain
using a metamodel for the abstract syntax, and a concrete syntax (graphical or tex-
tual). DSLs allow to specify systems in a domain-friendly manner. As we shall see,
processes in Domain Specific Modeling reuse a lot of practices from Model-Driven

Engineering, for instance, metamodeling and transformation techniques.

2.5 Security and Dependability Patterns

A pattern deals with a specific, recurring problem in the design or implementa-
tion of a software system. It captures expertise in the form of reusable architecture
design themes and styles, which can be reused even when algorithms, components
implementations, or frameworks cannot. Today, design patterns are considered as
fundamental technique to build software by capitalizing knowledge to solve occurring
problems (in many specific domains). The design patterns for software building is

derived from the Alexander’s notion of patterns for Architecture [5] and a definition

15

Chapter 2. Context

16

has been proposed by Buschmann in [13]: A pattern for software architecture de-
scribes a particular recurring design problem that arises in specific design contexts,
and presents a well-proven generic scheme for its solution. That is, patterns support
the construction of software with defined functional and non-functional properties.
Design patterns are medium-scale patterns comparing to architectural patterns, but
they are at a higher level than the programming language. The application of a
design pattern has no effect on the fundamental structure of a software system, but
may have a strong influence on the architecture of a subsystem (components).

In this thesis we focus on the security aspects. Security is an important non-
functional requirement in software. In 1997, Yoder and Barcalow [81] were the first
to work on security pattern documentation. A security pattern is a well-understood
solution to a recurring information security problem. The typical structure of a

security pattern is as follow [65]:
e Name: name of the security pattern.

e Context: the security context describes the conditions where the security prob-

lem occurs.
e Problem: description of the problem.
e Solution: techniques, structures and mechanisms to solve the problem.

e Forces: define the types of trade-offs that must be considered in the presence

of conflicts they might create.
e Related patterns.

The concept of security pattern as a well-understood solution to a recurring infor-
mation security problem was introduced to support the system engineer in selecting
appropriate security or dependability solutions. However, most security patterns
are expressed in a textual form, as informal indications on how to solve some (usu-
ally organizational) security problems. Some of them use more precise representa-
tions based on UML diagrams, but these patterns do not include sufficient semantic
descriptions in order to automate their processing and to extend their use. Fur-
thermore, there is no guarantee of the correct application of a pattern because the
description does not consider the effects of interactions, adaptation and combination.
This makes them not appropriate for automated processing within a tool-supported

development process. Finally, because this type of patterns is not designed to be

2.2.5 Security and Dependability Patterns

integrated into the user systems but to be implemented manually, the problem of
incorrect implementation (the most important source of security problems) remains
unsolved.

In software engineering, patterns are considered as an efficient tool to reuse
specific knowledge. For security and dependability we can encapsulate knowledge
in the design of such systems through the definition of specific design patterns. For
instance, communication patterns are well suited to be used in embedded real-time
systems. Then, the implementation may be achieved using UML profiles.

The recurring appearance and the use of some of these patterns led to building a
catalog of patterns to encode the best practices of each field. An interesting challenge
is to address the problem of automation of the application of these design solutions.
The difficulty is that the design solutions proposed by design patterns even differ
in their details, while remaining similar in their principles. In addition, a design
pattern is by construction not "complete", since it is devoted to allow many uses

according to small variations around the same field.

Patterns for dependability. An hybrid set of patterns to be used in the devel-
opment of fault-tolerant software applications is described in [18]. These patterns
are based on classical fault tolerant strategies such as N-Version programming and
recovery block, consensus, voting, etc. In addition, the hybrid pattern structure
can be constructed through recursive combination of N-Version programming. This
work addressed also the power of the technique through the support of the advanced
software voting techniques. [76] proposed a framework for the development of de-
pendable software systems based on a pattern approach. They reused proven fault
tolerance techniques in form of Fault Tolerance Patterns. The pattern specification
consists of a service-based architectural design and deployment restrictions in form
of UML deployment diagrams for the different architectural services. The work is il-
lustrated with an application to guide the self-repair of the system after the detection

of a node crash.

Patterns for security. A collection of patterns to be used when dealing with
application security is studied in [81]. The proposed catalog includes secure access
layer, single access point, check point, etc. The work of [24] reports an empirical ex-
perience, about adopting and eliciting S&D patterns in the Air Traffic Management
(ATM) domain, and showing the power of using patterns as a guidance to structure

the analysis of operational aspects when they are used at the design stage. A survey

17

Chapter 2. Context

of approaches to security patterns is proposed in [82].

The following figure (Figure 2.4) depicts a set of most used patterns to secure
Internet applications:

Information | establishes server side Protection
obscurity ™ reverse proxy

sapinold

Secure Demilitarized | located Integration
channels zone reverse proxy

Lal
Jepeds -[etoads

salinbal

Known establishes

partners <

Figure 2.4: Example of some patterns to secure Internet applications

2.6 Eclipse Modeling Framework Tools

There are several DSM environments, one of them being the open-source Eclipse
Modeling Framework (EMF) [67]. EMF provides an implementation of EMOF (Es-
sential MOF), a subset of MOF, called Ecore'. EMF offers a set of tools to specify
metamodels in Ecore and to generate other representations of them, for instance
Java.

In our context, we use the Eclipse Modeling Framework (EMF). Note, however,
that our vision is not limited to the EMF platform. Here, we outline the different
Eclipse tools used in the development of the DSLs to support the modeling of the
S&D artifacts, the repository and its APIs. Among the tools used here are cited:

e Fclipse is an open-source software project providing a highly integrated tool
platform. The applications in Eclipse are implemented in Java and target

many operating systems including Windows, Mac OSX, and Linux [67].

IEcore is a meta-metamodel

18

2.2.7 Development Environment: SEMCO

e EMF is a modeling framework and code generation facility for building appli-
cations based on a structured data model. In addition, EMF provides the foun-

dation for interoperability with other EMF-based tools and applications [67].

e QVT-O (QVT Operational) [2] allows the implementation of model-to-model

transformation in Eclipse.

e Acceleo [49] allows the implementation of model-to-text transformation in

Eclipse.

e CDO (Connected Data Objects) Model Repository is a 3-tier distributed

shared model framework for EMF models and metamodels [1].

e RCP plugin allows developers to use the Eclipse platform to create flexible and

extensible desktop applications upon a plug-in architecture |20, 45].

2.7 Development Environment: SEMCO

The development of SEMCO [27] (System and software Engineering for embed-
ded systems applications with Multi-COncerns) was started in 2010 by Dr. Brahim
Hamid. The SEMCO foundation is a model-based repository of models and patterns
and thereby a pattern-based development methodology. In SEMCO, a pattern is a
subsystem dedicated to non-functional aspects, to be specified by a non-functional
aspects experts, and reused by domain engineers to improve systems/software engi-
neering facing non-functional requirements. It is a good application and promotion
of model-driven engineering. The core of SEMCO is a set of DSMLs, search en-
gines and transformations. The DSMLs are devoted to specify patterns, a system
of patterns as a set of models to govern their use, and thereby to organize, analyze,
evaluate and finally validate the potential for reuse. Engines allow to find/select
these artifacts from a repository and then transform the results towards specific

domain development environments such as UML.
2.7.1 Definitions
We define the following:

Definition 1 (Domain) We define a domain as a field or a scope of knowledge or

activity that is characterized by the concerns, methods, mechanisms,. .. employed in

19

Chapter 2. Context

20

the development of a system. The actual clustering into domains depends on the

given group/community implementing the target methodology.

Definition 2 (Modeling artifact) We define a modeling artifact as a formalized
piece of knowledge for understanding and communicating ideas produced and/or con-
sumed during certain activities of the system engineering processes. The modeling

artifact may be classified in accordance with engineering process levels.

Definition 3 (Modeling artifact system) A modeling artifact system is a col-
lection of modeling artifacts forming a vocabulary. Such a collection may be skill-
fully woven together into a cohesive "whole" that reveals the inherent structures and

relationships of its constituent parts toward fulfilling a shared objective.
Adapting the definition of [65], we propose the following:

Definition 4 (S&D Pattern) A security and dependability pattern describes a
particular recurring security and/or dependability problem that arises in specific con-

texts and presents a well-proven generic scheme for its solution.

Definition 5 (S&D Pattern System) We define a security and dependability
pattern system as a modeling artifact system where its constituent parts are security

and dependability patterns, its referenced property models and their relationships.

Definition 6 (Pattern System Configuration) A Pattern system configuration
18 one of the possible configurations derived from the pattern system. It represents
the structure of an application based on SED patterns which will be deployed on the
platform.

Based on [53], we define the following:

Definition 7 (Property) A property is a basic attribute shared by all members of

an artifact (Pattern, Resource, etc).

Definition 8 (Resource) We define a Resource as a modeling artifact which rep-
resents a piece of the platform. It defines a set of parameters that will be later used

to automate the analysis of applications based on S€D patterns.

Definition 9 (Platform) The platform is defined as a set of interconnected hard-

ware resources on which the software elements can be deployed.

2.2.7 Development Environment: SEMCO

According to Bernstein and Dayal [9],

Definition 10 (Repository) A repository is a shared knowledge base of informa-
tion on engineered artifacts. They introduce the fact that a repository has (1) a
Manager for modeling, retrieving, and managing the objects in a repository, (2) a

Database to store the data and (8) Functionalities to interact with the repository.
In the context of TERESA, we propose the following:

Definition 11 (Instantiation.) An instantiation activity takes a pattern and its
related artifacts from the repository and adds it to the end-developer environment.

This task enables the pattern to be used while modeling.

The Instantiation activity is composed of the following steps:

1. Define needs in terms of properties and/or keywords,

2. Search a pattern in the repository,

3. Select the appropriate pattern from those proposed by the repository,

4. Tmport the selection into the development environment using model transfor-

mation techniques.

Definition 12 (Integration.) An integration activity happens within the develop-
ment environment when a pattern and its related artifacts are introduced into an
application design. Some development environments may come with native support

for the integration.

2.7.2 SEMCO

The SEMCO approach is a federated modeling framework built on an integrated
repository of metamodels to deal with system engineering. The end-user part of such
a framework is an integrated repository of modeling artifacts to be used in order
(i) to model several concerns of embedded systems engineering: extra functional
properties; (i) to model systems parts: logical software, hardware components and
infrastructure. The main goal of SEMCO is to deal with multi-concerns embedded
system engineering for several domains.

We build on a theory and novel methods based on a repository of models which

(1) promote engineering separation of concerns, (2) supports multi-concerns, (3)

21

Chapter 2. Context

use model libraries to embed solutions of engineering concerns and (4) supports
multi-domain specific process. This framework is threefold: providing repository of

modeling artifacts, tools to manage these artifacts and guidelines to build method-

ologies for system engineering.

As shown in Figure 2.5, SEMCO foundation is a federated DSL processes working
as a group on how relevant each one is to the key concern. A DSL building process 2
is divided into several kinds of activities: DSL definition, transformation, consistency
and relationships rules, design with DSL and Qualification. The three first activities
are achieved by the DSL designer and the two last activities are used by the final

DSL user.

S8|n1 AOUBISISUO) pue sdiysuone|ay
‘suoljeulIojSUBL | ‘SUOIULEP S1SA

1S 8u} Jo uonEdHEND 1S YIM UBISEQ ‘ [z

Figure 2.6 illustrates the use of the Eclipse Modeling Framework (EMF) to sup-

‘ DSL meta-model n

‘ DSL meta-model

DSL meta-model 1

(ecore)

E «import»
1

DSL Editor 1
L

Generalor
model

H
i «isConformTo»
1
1

|
1«isConformTo»
|

«importy.”

T .

1 «edity ’
I

E «edity
|

¥

1 .
] ! - «use»

DSL model (ecore model) }‘- """""""" { DSL model (ecore model)

'
|«rearrange»
v

1
| «rearrange»

DSL diagram model 1

Eea—

DSL diagram model n

E——

;
[::] M2T
'

'
Y

;
[:] M2T

'
1

file.{xml, html}
<xmi../>

<phase
<activity.

java code

Figure 2.5: SEMCO DSL Building Process and Artifacts

port the SEMCO process to create our tool suite.

[oPOW-EI8I : ZIN

18PON = LIN

2DSL building process defines how development projects based on DSL are achieved.

22

2.2.8 Introduction to the Case Study: Railway Control System (Safe4Rail)

Model
Checker enerator

Target

Modeler
> graphical editor > textual editor

‘ Eclipse Modeling Frameworks (EMF, GMF, Xtext) ‘

‘ Model transformation ‘

‘ Eclipse ‘

Figure 2.6: Overview of the SEMCO tool suite architecture

2.8 Introduction to the Case Study: Railway Con-
trol System (Safe4Rail)

Safe4Rail is in charge of the emergency brake of a railway system. Its mission is
to check whether the brake needs to be activated. Most important, the emergency
brake must be activated when something goes wrong. The conceptual view of the
application is presented in Figure 2.7.

There is a family of products in the railway sector, namely, regional trains,
tramways, high speed trains, etc. They share common and variable parts. For in-
stance, consider the calculation of the actual speed and position by Safe4Rail. Their
implementation vary among each product type. This mainly depends on the safety
level to meet, but also on the type and the number of sensors and actuators involved.
These considerations greatly influence how each product is to be implemented, since
several issues shall be considered: the number of channel redundancy, the diversity
of the channels, the monitoring of the channels, and the interaction with assorted
data (type, weight, etc.).

A specialized embedded system was designed to meet stricter safety regulations.
In this case, SIL43 level is targeted. A number of design techniques from S&D are
used, namely redundancies, voting, diagnostics, secure and safe communications. A
very strict engineering process was followed, where specific activities were performed
in order to achieve certification using the presented approach. For instance, the
design of a set of patterns, libraries of S&D and resource properties in order to
populate the repository and then to integrate the repository in the aforementioned
engineering process.

As depicted in Figure 2.7, the entire system is composed of:

3Safety Integrity Level 4

23

Chapter 2. Context

aaaaaaaaa

Figure 2.7: Railway Control System

Safe4Rail

Read the inputs Write the outputs

Figure 2.8: Safe4Rail Application

(1) brake system. Stops or decelerates the train. There are several types of

brakes: mechanical, electrical and emergency.

(2) the system. Collects inputs from sensors, performs a number of calculations

to make decisions, which are typically propagated as outputs.

(3) sensor. Provides inputs in diverse forms, so that decisions can be taken.

For instance, there are track tags and radars.

(4) railtrack. The railway convoy moves along the railtrack and the system

monitors a number of parameters from assorted sensors.

The fundamental functionality of the system is based on a set of inputs from the
railtrack, assorted sensors, balises and so on. Starting from them, it performs some
calculations and decides whether the emergency brake needs to be activated. An
output signal is sent accordingly.

The Safe4Rail system (see Figure 2.8) realizes the following functionalities:
e (1) reads the inputs (collects the inputs)

e (2) realizes calculations and makes decision (functional code)

e (3) activates break (writes outputs)

24

2.2.8 Introduction to the Case Study: Railway Control System (Safe4Rail)

Pattern Origin

TMR IEC-61508-2, EN-50129

Secure Communication | SSL or its update named TLS proposed in RFC 2246
Majority Voter IEC-61508-2

Data Agreement Book "Real-Time Systems: Design Principles for
Distributed Embedded Applications"

Safety communication | IEC-61508-2

Watchdog EN-50126, TEC-61508-3

Reciprocal Monitoring | IEC-61508-2,

EN-51028 (Fault Detection & Diagnosis)

Table 2.1: The used patterns in Safe4Rail application

Figure 2.9: Railway demonstrator

The following table shows the list of patterns that are going to be used in the

railway demonstrator. Appendix B provides the full description of these patterns.

The hardware platform associated to the Safedrail application is shown in Fig-
ure 2.9. The platform is composed of a carried board on which is installed a conga-
CA board with a microprocessor (Intel Atom Z530), a RAM (DDR2 RAM) and a set
of interfaces for the connections. The conga-CA is accompanied with an additional

programmable resource calculation unit (FPGA-Spartran).

25

Chapter 2. Context

26

2.9 Conclusion

MDE promotes models as a first class elements. A model can be represented at
different levels of abstraction and the MDE vision is based on (1) the metamodeling
techniques to describe these models and (2) the mechanisms to specify the relations
between them. Model exchange is within the heart of the MDE methodology as well
as the transformation /refinement relation between models. MDE frameworks may
help software engineering specialists in their tasks, but indeed it would be interesting
to provide (partial) solutions and to guide them fulfilling recurring requirements. In
software engineering, Pattern meets this need. We leverage on this idea to propose
a novel common pattern modeling language.

In our work, we promote a new discipline for system engineering using a pattern
as its first class citizen: Pattern-Based System Engineering (PBSE). PBSE addresses
challenges similar to those studied in software engineering focusing on patterns and
from this viewpoint addresses two kind of processes: the process of pattern develop-
ment and system development with patterns.

In this thesis, we propose to model and to analyze S&D applications for RCES
using pattern as its first class citizen. The integration of S&D features requires the
availability of both application domain specific knowledge and S&D expertise at
the same time. Currently, the integration of S&D mechanisms is still new in many
domains (e.g. smart metering or home control), hence embedded system developers
usually have limited S&D expertise. We propose an integrated, MDE based tool-
supported approach for capturing and providing this expertise by the mean of S&D
patterns.

The proposed approach is based on (i) a model-based repository of S&D patterns,
(ii) resource models, and (iii) property models. The modeling framework allows to
specify properties, resources, patterns and a model-based repository independently
from target development applications and execution platforms. It has been applied
to an industrial resource-constrained embedded system (RCES) in the context of
the TERESA project.

Chapter 3

Related Work

3.1 Introduction

The requirement for higher quality and seamless development of systems is con-
tinuously increasing, even in domains traditionally not deeply involved in such issues.
Nowadays, many practitioners express their worries about current software engineer-
ing practices. New recommendations should be considered to ground this discipline
on two pillars: solid theory and proven principles. We took the second pillar towards
software engineering for embedded system applications, focusing on the problem of

the specification and the packaging of software modeling artefacts to foster reuse.

In our study, we promote the use of S&D patterns as sub-systems for building
the software architecture of the application (Sw) on the one hand, and the use of
resource models for building the hardware architecture of the platform (Hw) on the
other hand. In order to select the appropriate set of patterns for a given platform,
non-functional properties may be used to point out the link between a pattern and
its required resources. Repositories of modeling artefacts have gained more attention
recently to enforce reuse in software engineering. In fact, repository-centric develop-
ment processes are more and more adopted in software/system development, such

as architecture-centric or pattern centric development processes.

In this chapter, we review exiting work related to the use of modeling techniques
for the representation of resources during the specification of hardware platforms,
the design of properties on these resources, and how analysis techniques may help
to take into account these descriptions during the design of the software part of an
embedded system. Moreover, we study pattern modeling in the context of S&D and

RCES. Finally, we consider the packaging of the modeling artifacts to enforce reuse

27

Chapter 3. Related Work

28

by design.

3.2 Modeling Languages for Resources and Non-

Functional Properties

In order to specify platform resources and non-functional properties, the relevant

proposals consist of works, from standards and academics work.

3.2.1 Standards

First, we outline some of the most important standards that rely on the modeling
and analysis of resources and their properties in embedded systems. Some of the
most important works in this direction are those proposed in the context of the three
standards : MARTE [53], SysML [54] and AADL [62]. These standards allow the
modeling of real time embedded systems by the specification of both the software

and the hardware parts and the description of different processes of systems.

MARTE. The recent profile, MARTE (Modeling and Analysis of Real-Time and
Embedded systems) [53], which emerged from the UML/SPT profile [51] is a dedi-
cated framework for modeling and analysis concurrency, resources, timing concepts
and non-functional properties of embedded real-time systems. The UML MARTE
profile provides a set of stereotypes and tag values that can be used for annotating
the model elements and for performing analysis. It provides the Generic Resource
Modeling (GRM) sub-profile for platform-based modeling and a high level concepts
for specifying resource usage. GRM is refined in Software Resource Model (SRM)
and Hardware Resource Model (HRM) dedicated to describe software and hardware
computing platforms, respectively.

SRM [75] is dedicated to characterize Real-Time multitasking execution plat-
forms by providing modeling artifacts to describe software execution platform cover-
ing main multitasking capabilities such as real-time language libraries and real-time
operating systems. This is to allow the specialisation of generic resource concepts
to software domain, to describe concurrency support (e.g. tasks, interrupts and
alarms), to detail interactions between concurrent resources (e.g. messaging, syn-
chronization and mutual exclusion mechanisms) and to depict the software resource

brokers (e.g. driver and scheduler).

3.3.2 Modeling Languages for Resources and Non-Functional Properties

HRM [69] is a sub-profile for detailed hardware modeling which is composed
of two views, a logical view that classifies hardware resources depending on their
functional properties, and a physical view that concentrates on their physical nature.

In order the model non-functional properties, MARTE provides the NFP sub-
profile for the specification of non-functional properties. NFP provides the capability
to describe various kind of values related to physical quantities, such as Time, Mass,

Energy. These values are used to describe the non-functional properties of a system.

SysML. SysML (System Modeling Language) [54] is a UML profile "for specify-
ing, analyzing, designing, and verifying complex systems that may include hard-
ware, software, information, personnel, procedures, and facilities". The so-called
Block concept is the common conceptual entity that factorizes many different kinds
of system elements such as electronic or software components, mechanical parts,
information units and the description of different processes of systems. Blocks artic-
ulate a set of modeling perspectives enabling separation of concerns during systems
design. However, SysML does not allow the strict modeling of temporal constraints

and the resources management.

AADL. Another approach is AADL (Architecture Analysis and Design Language)
[62]. Tt defines an interface for each component and it allows the separation between
the implementation of a component and the description of its properties. Note,
however, that most AADL properties can find their equivalences in MARTE. AADL
describes both the software and the hardware parts of a system and allows the
developer to concentrate only on the application level. For example, the developer
presents only the threads, processes, and sub-programs of his application. He is not
interested on the processing of threads or the communication of components. In
addition, AADL addresses platform parameterization and code generation.

The goal of these standards is to propose a common modeling framework to
design embedded systems. However, they do not offer same constructs for model-
ing (because of the varying nature of the disciplines involved in embedded systems
design) and especially do not completely satisfied our needs for modeling resources
and non-functional properties and helping engineers to model their system without
getting bogged down in the details of the proposed standards. To get the best of
each standard we made a synthesis of several criteria. The next table summarizes
the comparison made on the studied standards. The X axis contains the different

criteria taken into account for the comparison, while the first column shows the three

29

Chapter 3. Related Work

standards : MARTE, SysML and AADL. The sign v/ means that the chosen crite-
rion is satisfied by the selected standard, while the sign Xmeans that the criterion

is not satisfied.

.Q)Q% ,&
& .Q)%\ %0\/ &
&L \‘f;\’
SIS .
Q}/O Q) \Q,Q’ '\/O
N R A N
& %Q’ S & ¥
& o Q& P
-o & SRCEIESEN
Q/\& 6 > @ \Cp @@)Q)&b
AV
Standards %0 Q&Q %Q "2‘ @ Q ¥
MARTE/XX/.//./X
SysML ||[v | X | X |V | X |/ V| X
AADL VIVIVIVIV VXY
Level
of ab-)
Concern Representation
strac-
tion

Table 3.1: Comparative Table of Embedded Systems Modeling Standards

Comparison. We selected the comparison criteria under three views: Concern,

Level of abstraction and Representation.

1. Our concern in this work is to provide a language for them modeling of plat-
form resources and non-functional properties. The properties may be used to

annotate the platform resources in order to specify and analyze them.

2. We are interested in two levels of abstraction, system modeling (i.e. without
taking into account the software and hardware specifications) and the detailed
modeling of both software (application and software execution platform) and

hardware (hardware execution platform).

3. The aim of this work is to provide languages for RCES modeling as reusable
and composable models conforming to the meta-model. With the latter, sev-
eral implementations can be proposed for different technologies, for example
we could define a new UML profile which could be used with both MARTE
and SysML profiles, or we can define our own DSL based on XML, Eclipse

Ecore or other technologies.

30

3.3.2 Modeling Languages for Resources and Non-Functional Properties

3.2.2 Academic Work

Ammar et al. present in [6] a tool extension for resource modeling within UML-
based simulative environments. For this, UML notation is extended with new stereo-
types that allow the representation of resource related items (such as CPUs, disks,
etc.). The software architecture and the resources that the software components re-
quire are both represented in the same capsule diagram, which is split in two parts:
the software side and the resource side. Capsules are in both sides, but while the ones
in the software side represent software components, the resource side capsules repre-
sent the resources that the considered architecture may need. This approach aims at
migrating the resource representation into the software model notation. This keeps
the modeling process unchanged, and also avoids a (probably heavy) transformation

procedure to generate the performance model.

In [61], the authors extend UML through a UML profile for modeling non-
functional requirements and their dependencies to enable performing trade-off anal-
ysis among them. The proposed profile may be used to annotate model elements
(UML Classes, UML Components, etc) with necessary information and then calcu-
late satisfaction values of non-functional requirements using model transformation

technique.

Based on the study conducted in [79], the authors propose in [78], a language for
resource modeling and analysis of embedded systems. The model, called REMES
(REsource Model for Embedded Systems), is based on a notion of resources that
are characterized by their discrete or continuous nature, the way they are consumed
and /or allocated and released, and whether they can be referred to, or not. A number
of generic resources can be modeled using this framework, including memory, ports,
energy, CPU and buses. The REMES model focuses on component-based behavioral
modeling. For that it provides a graphical behavioral language, timed and hybrid
automata and Statecharts to express resource usage in a system. REMES provides
a rich and powerful framework for formal analysis to address the lack of formal

description in some UML-based frameworks.

In 8], Baum et al. present a structured approach to describing resource-usage
scenarios. As prerequisite, they classify resource types in two classes: timed-shared
and space-shared. Authors argue that a technique for modeling resource-usage sce-
narios generally has to consider three description aspects: service requirements,
service provision and resource interaction. Service provision captures the character-

istics of the services offered by the resource, whereas service requirements describe

31

Chapter 3. Related Work

32

the resource’s demands. Finally, resource interaction links service requirements with
provisions. Both a graphical and a textual notation were developed to describe
resource-usage scenarios in a structured way. However, such a modeling is limited
in terms of resource types and does not take into account other ones like energy

resources or communication resources which cannot be clearly characterized.

3.3 Pattern Modeling and S&D Concern

The concept of pattern was first introduced by Alexander [5]. In software en-
gineering, a pattern deals with a specific, recurring problem in the design or im-
plementation of a software system. It captures expertise in the form of reusable
architecture design themes and styles, which can be reused even when algorithms,
component implementations, or frameworks cannot. With regard to S&D aspects,
Yoder and Barcalow [81] were the first to work on security pattern documentation.
Many contributions on S&D patterns can be found in literature [18, 24, 76, 81, 82|.

Design patterns are a solution model to generic design problems, applicable in
specific contexts. Since their appearance, and mainly through the work of Gamma
et al [23], they have attracted much interest. Supporting research includes domain

patterns, pattern languages and their application in practice.

Pattern Modeling Languages

To give a flavor of the improvement achievable by using specific languages, we
look at the pattern formalization problem. UMLAUT was proposed by [3] as an
approach that aims to formally model design patterns by proposing extensions to the
UML metamodel 1.3. They used the OCL language to describe constraints (struc-
tural and behavioral). These constraints are defined on metamodels of specified UML
elements in the form of meta-collaboration diagrams. Mechanisms of association of
these meta level diagrams to their instance level (instances of design patterns) are
then defined. This allows to model design patterns accurately in UML. This work
is illustrated through two examples of design patterns: visitor and observer.

In the same way, Kim et al. [16] presented RBML (Role-Based Metamodeling
Language). RBML is able to capture various design perspectives of patterns such as
static structure, interactions, and state-based behavior. This language is based on
metamodeling of design patterns and offer three specifications: Structural, Behav-

ioral and Interactive. Each one is characterized by a kind of RBML metamodel: (1)

3.3.3 Pattern Modeling and S&D Concern

SPS (Static Pattern Specifications) is a specification of structural design patterns
which allows to express the static view, (2) IPS (Interaction Pattern Specification)
represents the design pattern in terms of possible interactions between different roles,
(3) SIMP (StateMachine Pattern Specifications) can add a behavioral view point to
describe the various states in which it may lie in its execution.

Another issue raised in [19] and [17] is visualization. Eden et al. [19] presented a
formal and visual language for specifying design patterns called LePUS. It defines a
pattern in an accurate and complete form of formula with a graphical representation.
A diagram in LePUS is a graph whose nodes correspond to variables and whose arcs
are labeled with binary relations. With regard to the integration of patterns in
software systems, the DPML (Design Pattern Modeling Language) 17| allows the

incorporation of patterns in UML class models.

S&D Patterns

Several approaches exist in literature targeting S&D design patterns [18, 24,
76, 81, 82|. They allow to solve very general problems that appear frequently as
sub-tasks in the design of systems with security and dependability requirements.
These elementary tasks include secure communication, fault tolerance, etc. The
recently completed FP6 SERENITY project has introduced a new notion of S&D
patterns. SERENITY’s S&D patterns are precise specifications of validated S&D
mechanisms, including a precise behavioral description, references to the provided
S&D properties, constraints on the context required for deployment, information
describing how to adapt and monitor the mechanism and trust mechanisms. The
S&D SERENITY pattern is specified following several levels of abstraction to bridge
the gap between abstract solution and implementation — S&D classes, S&D patterns
and S&D implementation. Such validated S&D patterns, along with the formal
characterization of their behavior and semantics, can also be basic building blocks
for S&D engineering for embedded systems. [66] explains how this can be achieved by
using a library of precisely described and formally verified security and dependability
solutions, i.e., S&D classes, S&D patterns, and S&D integration schemes. The
work of [24] reports an empirical experience, about the adopting and eliciting S&D
patterns in the Air Traffic Management (ATM) domain, and show the power of using
patterns as a guidance to structure the analysis of operational aspects when they

are used at design stage. A survey of approaches to security patterns is proposed in
[82].

33

Chapter 3. Related Work

34

To summarize, in software engineering, design patterns are considered effective
tools for the reuse of specific knowledge. However, a gap between the development of
systems using patterns and the pattern information still exists. This becomes even
more visible when dealing with specific concerns namely security and dependability
for several application sectors in RCES. From the pattern-based software engineering
methodological point of view, few works are devoted to this concern. They are in line
for the promotion of the use of patterns in each system/software development stage.
However, existing approaches using patterns often target one stage of development
(architecture, design or implementation) due to the lack of formalisms ensuring
both (1) the specification of these artifacts at different levels of abstraction, (2)
the specification of relationships that govern their interactions and complementarity
and (3) the specification of the relationship between patterns and other artifacts
manipulated during the development lifecycle and those related to the assessment

of critical systems.

3.4 Repository

This section aims to present related work on the repository concept in order to
determine the most appropriate structure for the TERESA repository. The repos-
itory concept is used in different research fields. Among them we can distinguish:
model repository, pattern repository, software repository, repository of software com-
ponents, ontology repository for the semantic web, web services repository, etc. In
our context, we focus on the review of the most relevant works: model repository

and pattern repository.

3.4.1 Repository of models

In Model-Driven Development (MDD), model repositories |9, 21, 44] are used to
facilitate the exchange of models through tools by managing modeling artifacts. For
instance, as presented in the ebXML specifications [48] and the ebXML Repository
Reference Implementation?®, a service repository can be seen as a metadata repository
that contains metadata on location information to find a service. In [44], the authors
propose a reusable architecture decision model for setting-up model and metadata

repositories. In addition, some helpers are included in the product for selecting a

'http://ebxmlrr.sourceforge.net/

http://ebxmlrr.sourceforge.net/

3.3.4 Repository

basic repository technology, choosing appropriate repository metadata and selecting
suitable modeling levels for the model information stored in the repository.

The ReMoDD (Repository for Model Driven Development) project [21] focuses
on MDD for reducing the effort of developing complex software by raising the level
of abstraction at which software systems are developed. This approach is based
on a repository containing artifacts (e.g. documented MDD case studies, modeling
exercises and problems) that support research and education in MDD. Another is-
sue is graphical modeling tool generation as studied in the GraMMi project [63].
GraMMi’s Kernel allows to manage persistent objects. The kernel aims at convert-
ing the objects (models) in an understandable form for the user via the graphical
interface. Recently, the MORSE project [36] proposes a Model-Aware Service Envi-
ronment repository addressing two common problems in MDD systems: traceability

and collaboration.

3.4.2 Pattern Repository

Patterns are stored in repositories to comprehensibly explain their classification.
The organization of patterns in a repository allows to discover the relationships
among them and to facilitate the selection of the most appropriate ones. The repos-
itory should have a structure in order to optimize the accesses (selecting patterns
with criterion’s and publishing new patterns into it). Finding the appropriate pat-
tern to solve a particular security or/and dependability problem is difficult because
of the lack of a scientific classification scheme for S&D patterns. In the following
we discuss some work related to such a problem: classification schemes to help in
finding the appropriate pattern.

Some classifications are based on security concepts. For example, ISO/IEC 13335
[39] provides a definition of the five key concepts: security, confidentiality, integrity,
availability and accountability. A pattern classification scheme based on these do-
main level concepts, will facilitate pattern mining and pattern navigation. An im-
plicit culture approach for supporting developers in choosing patterns suitable for a
given problem is described in [11|. In this vision, the repository contains patterns
that are selected depending on the history of their use regarding decisions made by
other developers to deal with related problems. In [60], a mathematical structure
is proposed for organizing patterns depending on several categories. An ontological
approach for selecting design patterns is proposed in [25] to facilitate the understand-

ing and reuse during software development. In their paper, the authors present an

35

Chapter 3. Related Work

36

ontology which describes the design pattern format and their relationships. They
use a pattern system/language in order to facilitate the design, integration, selection
and reuse of design patterns.

Most existing classifications in the literature [41] are based on:

e Applicability is used to protect resources against unauthorized use, disclosure
or modification. In addition, applicability is used to make predictable and

uninterrupted access to resources or services.
e Product and process (structural and procedural)

e Logical tiers (a) web: this tier takes into account the external requests, au-
thentication and authorization (b) business: this tier takes into account the
security services in the business like RBAC (c) integration: this tier facilitates

secure integration with external data sources

e Security concept (confidentiality, integrity, availability and accountability) —
see [SO/IEC 13335-1 and ISO 7498-2 |37, 38|.

Another aspect that has been considered is system viewpoints. Based on the
idea of the Zachman Framework [83| (classification based on system viewpoints and
interrogatives) the Microsoft Patterns and Practices group Classification [77] dis-
tinguishes the following elements: (a) Merits (clearly identifies the context of each
pattern, help to identify missing patterns), (b) Flaws (more dedicated to functional
patterns — non-functional patterns tend to cover many levels of system develop-
ment and also many interrogatives), (¢) Improvement (add icons in each pattern to
provides classifications).

[80] presents a survey of business process model repositories and their related
frameworks. This work deals with the management of a large collections of business
processes using repository structures and providing common repository functions
such as storage, search and version management. It targets the process model de-
signer allowing the reuse of process model artefacts. A comparison of process model
repositories is presented to highlight the degree of reusability of artifacts. The meta-
model described in our work may be used to specify the management and the use of
this kind of process models. In fact, a process model aspect or the process model as
a whole can be seen as artifacts supported by our metamodel. In return, the vision
of the business process model repositories may be used in our work to manage the

process element type libraries.

3.3.5 Conclusion

3.5 Conclusion

In this chapter we studied the relevant works and practices related to our con-
tributions. We subdivided this study into three sections dealing with the resources
and non-functional properties modeling, S&D patterns modeling and model-based
repository modeling, receptively.

We identified certain gaps in the previous works, especially, those dealing with
the adaptation of S&D patterns for RCES application modeling, taking into account
the strong link between the S&D patterns-based applications and the platform re-
sources consumption. In addition, we identified lacks on the reusing techniques of
the modeling blocs, although, the previous works concentrate mainly on the mod-
eling phase. Furthermore, the repository of models proposed previously are almost
dedicated while there is no approach for model-based repository, in other words,
there is no methodology for repository generation for different domains and uses.

In our work, different levels of abstraction are used to get a common represen-
tation of patterns for several domains. In the TERESA concern, systems include a
combination of hardware and software components. This may add some difficulties
to build a simple modeling framework. A high level of abstraction is proposed to
represent S&D patterns to capture several aspects of security and dependability in
the different domains of RCES, not an implementation of a specific solution. Other

issues are:

e In order to integrate a pattern in a system (application), some significant
additional information about the pattern is required. For instance, the resource
consumption, interfaces and their requirements. The goal is to capture how
the system interacts with the patterns, and how the structure of the pattern

interacts with other patterns in the case of system of patterns.

e What kind of information should be used? Especially when dealing with soft-

ware and hardware components ?

The main goal of a repository is to store data and to offer a set of actions
to interact with it. Most of the time a repository has to provide the following
actions: store files, authentication and access control, check-out/check-in files, file
versioning, file metadata storage and data search. Some of the classical formats used
are XML, XMI and XSD. Then the graphical view of artifacts can be made by using
some format transformations. This one can be realized thanks to XSLT (eXtensible

Stylesheet Language Transformation) transformations to ease the reuse of XML

37

Chapter 3. Related Work

solutions. On another hand, XBRL (eXtensible Business Reporting Language), an
XML format, also allows the interoperability of information. Thus, an XBRL file
can be converted to a standard format such as HTML ASCII and also PDF, which
will provide an ergonomic aspect.

In the TERESA approach, the following questions arise about the specification
of the repository:

e What kind of visualization interfaces to use?

e What kind of interaction interfaces to use? (some information about how
artifacts are published and how artifacts are queried must be provided by the

repository)

e How to organize the data ?

what kind of metadata to use to ease the selection of data?

what kind of data structure to use?

what kind of use is supported? (static and/or dynamic). How to store
the data 7

what kind of format to use in order to store the data?

38

Chapter 4

Contribution to the Modeling of
S&D Applications for RCES

4.1 Introduction

The proposed approach promotes model-based development coupled with a
repository of modeling artifacts, including S&D property models, resource models
and S&D patterns. This approach aims to define an engineering discipline for S&D
application that is adapted to resource-constrained embedded systems. The main
goal of this chapter is to define a modeling framework to support the specifications
and the definitions of these modeling artifacts (RG1).

We begin with the presentation of the development framework to elucidate the
purpose and the use of the metamodel. Hence, we clarify the development context
where this metamodels fit by articulating a methodological view for a development
process emphasizing models and transformations. Then, we present in detail the
concepts as the basis for the definition of the modeling languages. Finally, we high-
light the associated pattern system configuration management, analysis framework
and how they will be used in an MDE approach. Moreover, we provide a set of
transformations that can be useful in the analysis of software architecture based
on patterns. The next chapter details the specification models for the model-based

repository and its APIs.

39

Chapter 4. Contribution to the Modeling of S&D Applications for RCES

4.2 Repository-centric Resource-aware System and

Software Engineering

Security and Dependability are not building blocks added to an application at

the end of the life cycle. It is necessary to take into account these concerns from

the requirement to the integration phases. We promote a new discipline for system

engineering using a pattern as its first class citizen, towards meeting our wider

objective: Pattern-Based System Engineering (PBSE). PBSE addresses challenges

similar to those studied in software engineering. Closely related to our vision is
the Component Based Software Engineering (CBSE)[14, 15, 68]. Therefore, PBSE

focuses on patterns and from this viewpoint addresses two kind of processes: the

process of pattern development and the process of system development with patterns.

The main concern of the first process is designing patterns for reuse and the second

one is finding the adequate patterns and evaluating them with regard the system-

under-development’s requirements.

In the process model visualized in Figure 4.1, the developer starts by the system

specification fulfilling the requirements. In a traditional approach (non pattern-

based approach) the developer would continue with the architecture design, module

design, implementation and test. In our vision, instead of following this phases and

defining new modeling artifacts, that usually are time and efforts consuming as well

as errors prone, the system developer merely needs to select appropriate patterns

from the repository and integrate them in the system under development.

Once the repository! is available, it serves an underlying engineering process

for S&D application development. Figure 4.1 sketches the roles of the repository,

models and transformations. Each model layer corresponds to a distinct level of ab-

straction. The usage of this framework proceeds as follow. The developer creates a

model representing the target platform importing appropriate resource models from

the repository. For the software part, the system developer executes the search/select

actions from the repository to import patterns building a pattern system configu-

ration. For each of these configurations, a mapping through an allocation process

is executed. The allocation supports the links between a pattern and its required

resources from the platform model. The result of the allocation, as the platform

model and a configuration for a model of a system of patterns, is then used for ana-

lyzing the resource consumption of the patterns with regard to the resources defined

IThe repository system populated with S&D patterns and models

40

4.4.3 Artifacts Modeling Languages

in the platform model (e.g. memory, processing power). The result of the analysis
is then delivered for evaluation. The developer can then use MDE techniques, such
as refinement, for implementing the system using the appropriate pattern system

configuration.

Repository

....... g Resource
e models

[Access Tools]

Allocation
Evaluation

Analysis />

Development Process

REIEG

Figure 4.1: Resource-aware System and Software Engineering

4.3 Artifacts Modeling Languages

To foster reuse of patterns in the development of critical systems with S&D
requirements, we are building on a metamodel for representing S&D patterns in the
form of subsystems providing appropriate interfaces and targeting S&D properties
to enforce the S&D system requirements. Interfaces will be used to exhibit the
pattern’s functionality in order to manage its application. In addition, interfaces
supports interactions with security primitives and protocols, such as encryption, and
specialization for specific underlying software and/or hardware platforms, mainly
during the deployment activity. As we shall see, S&D and resource models are used

as model libraries to define the S&D and resource properties of the pattern.

4.3.1 A Metamodel for Non-Functional Properties (GPRM)

GPRM is a metamodel defining a new formalism (i.e. language) for describing

property libraries including units, types and property categories. The following

41

Chapter 4. Contribution to the Modeling of S&D Applications for RCES

paragraph details the meanings of the principal classes of the GPRM Metamodel,

which is depicted with Ecore notations in Figure 4.2.

1 SeDescribablé?] B GprmElement

(from core)

S

inherits
0.*

resourceCategory |5 GprmResourceCategory
0.*

0.%, propertyCategories

t 1. *
E GprmProperty category 1 | [GprmPropertyCategory ypPes B GprmType <—2"
= computable : EBoolean defaultType 1 types

0.1 ! gprmProperty

0.1 | valueSepcification simpleType B GprmsimpleType | simpleType [H GprmCompositeType T

compositeType

inherits l

composedValues H GprmValueSpecification 1 1
B Trt
compositeValueg o 1 ’

H GprmMultipleValueSepcification| |E GprmSingleValueSpecification
| = value : EString | [|

L\ baseNumericType
1
)Q GprmNonNumericPrimitiveType E GprmNumericPrimitiveType

© size : GprmPrimitiveTypeSize | acceptedUnits, 1.*
H Gprmunit

T symbol : EString R
baseUnit 2.

1 ; ; composedUnits

H GprmsingleDerivedUnit H GprmCompositeDerivedUnit \
T factor : EDouble }

[
[]

[E GprmprimitiveTypel [B GprmMeasurementType| [B GprmMultiplicityType |
[|| | |
[

1 defaultUnit

simpleUnit 1

Figure 4.2: The (simplified) GPRM Metamodel

e GprmElement is an abstract concept that represents an element of GPRM
model. Tt combines the attributes needed to identify (ID) and to describe

(name and description) all elements of a GPRM model.

e GprmProperty A property is a basic attribute shared by all members of an
artifact (Component, Pattern, Resource, etc). The property is defined by its
category, its type and its value. According to the describable artifact, the
value of the property may be set by the designer during the design activity
or calculated during the analysis activity. In the first case, the property is
used to describe a characteristic of the artifact in a certain design, which does
not change depending on the environment. In the second case, the property
is mainly used to describe a computable characteristic depending on the envi-
ronment.

Example: CPU execution time for encryption andenergy consumption for en-

cryption are two properties (resource-related) of the pattern SecureCommSSL.

42

4.4.3 Artifacts Modeling Languages

GprmPropertyCategory A property category is a classification for properties.
Its role is to regroup all the properties sharing common characteristics. These
characteristics may depend on the user or application domain viewpoint. A
category supports a set of types that define the nature of the property, it can
also be defined based on other categories by specialization. A category is de-
fined with at least one default type.

Example: CPUTime is a category that includes properties such as CPU ez-
ecution time for encryption and CPU ezecution time for authentication. Pow-
erConsumption regroups energy consumption for encryption and energy for

authentication in the same category.

GprmType A type is an abstract concept that supplies the definition of a typed
element such as a pattern property. It defines the range of values represented by
a typed element. Types may be used to type properties, operation parameters,

or other elements of the model.

GprmValueSpecification A value specification is an abstract element that spec-

ifies the instances of a typed element according to its definition.
GprmSimple Type is a specialization of GprmType to define an atomic type.

GprmComposite Type is a specialization of GprmType to define a composite

type.

GprmMeasurement Type is a specialization of GprmSimpleType to define the
nature of a physical measurement.

Example: Duration is a type that is used to measure time, and which is used
to type properties owned by the category CPUTime, DataSize meanwhile is

used to measure the amount of memory (e.g. Ramsize’s type is DataSize)

GprmUnit is basic element which is used to measure the magnitude of the

quantity (e.g. timing properties are measured by sec, min and hr units).

GprmSingleDerivedUnit is a specification of GprmUnit which is used to mea-
sure the same nature of quantity than its basic unit (e.g. Min is derived from

Sec which is used for time measurement).

GprmCompositeDerivedUnit is a specification of GprmUnit which is used to

measure another nature of quantity than its composite units (e.g. kilometer is

43

Chapter 4. Contribution to the Modeling of S&D Applications for RCES

used to measure length, hour measures time, while kilometer per hour is for

velocity measurement).

Properties Modeling. The main process for building property library is visual-

ized in Figure 4.3, pointing three principal activities:

e Create a Unit Library,
e Create a Type Library,

e Create a Category Library.

act PAC Library Dewvelopment /

Drefine Unit Library (Define Type Library C,_ca (Define Category Library D_CD

Store in the repository

«datastores
Repository of ®
Models

Figure 4.3: Property Library Development

Once the appropriate activity is selected, the left and right part of Figure 4.4
show the process for building a Type Library and a Category Library, respectively.

4.3.2 A Metamodel for Resource (SERM)

In the development context defined in our approach, embedded platforms are
seen as a composition of (hardware) resources. Resources are pieces of the platform

and can be combined and linked together without having an external observable

44

4.4.3 Artifacts Modeling Languages

act Define Type Library

Craate new Type Library

Instantiate Unit Library oo

wdatastores
Repository of
Models

Types]

Assign Units to Types

[Measurement

Define new Types

without Uni

[Other Types

act Define Category Library /

Instantiate Type Library
7

1]

Create new Category
Library

Assign Types to
Categories

Define new Categaries

Figure 4.4: Type and Category Libraries Definition Processes

H SermModel

resourceCategories

H GprmProperty (2]

(from gprm)

H SermProperty

0.* | properties

resoy

0.*

H SermConstraint

category

0.*

H SermResourceCategory

rces constraints 0.*

) SeResource (2]

H SermR

esource

(from core)

1

Figure 4.5: The (simplified) SERM Metamodel

& GprmResourceCategory 2]
(from gprm)

state. The SERM Metamodel is described with Ecore notations in Figure 4.5 and

the meanings of the principal classes are more detailed in the following paragraph.

o SermResource is a modeling artifact which represents a piece of the platform.

It define a set of parameters that will be later used by the framework to

automate the analysis of applications based on S&D patterns.

Example. IntelAtom Z530 and DDR2 RAM are two hardware resources for

computing and data storage, respectively.

o SermResourceCategory A resource category is a classification for resources.

Its role is to regroup all the resources sharing common characteristics. These

45

Chapter 4. Contribution to the Modeling of S&D Applications for RCES

46

characteristics may depend on the user or application domain viewpoint. The
main categories are those related to computing, data storage and to energy
consumption. However other categories may be defined such as peripheral,
sensor, actuator, etc. A category may also be built based on existing categories

by specialization.

Example. As computing resource categories we can define CPU, FPGA, DSP,
etc. Therefore, the IntelAtom Z530 belongs on CPU resource category and
the DDR2 RAM belongs on RAM resource category.

e SermProperty is a particular characteristic of a resource. So, each property of
a resource will be validated at the time of the resource validating process and
the result will be compiled as a set of constraints which have to be satisfied

by the platform.

4.3.3 A Metamodel for S&D Patterns (SEPM)

The goal of the current section is to propose model-based S&D patterns to get
a common representation of patterns for several domains in the context of trusted
embedded system applications. The solution envisaged here is based on metamod-
eling techniques to encode S&D patterns at an even greater level of abstraction.
Therefore, a pattern can be stored in a repository and can be loaded according to
the desired S&D properties. As a result, S&D patterns will be used as bricks to
build trusted applications through a model driven engineering approach.

SEPM is a metamodel defining a new formalism (i.e. language) for describing
S&D patterns, and constitutes the base of our pattern modeling language. SEPM
describes all the artifacts (and their relations) needed to represent S&D patterns in
the context of trusted embedded system applications. Here we consider patterns as
building blocks that expose services (via interfaces) and manage S&D and Resource
properties (via features) yielding a unified way to capture meta-information related
to a pattern and its context of use. Such a pattern is specified by means of a
domain-independent generic and a domain-specific representation.

The following paragraph details the principal concepts of the SEPM metamodel
to specify an S&D pattern, as described with Ecore notations in Figure 4.6.

o SepmPattern represents a modular part of a system that encapsulates a so-
lution of a recurrent problem. An SepmPattern is modeled throughout the

development life cycle and successively refined into deployment and run-time.

4.4.3 Artifacts Modeling Languages

H SepmKeyWord
= name : EString

1~-'T keywords

£l SeArtefact (2]
(from core)

H SepmProperty | 0.*

]

H SepmPattern

properties

H SepmConstraint| 0.*

= publisher_identity : EString
= origin : EString

= also_known_as : EString
= consequences : EString

constraints

= problem : EString
= context : EString
= examples : EString

externallnterfaces

H SepmExternalinterface

0.* solutions

H SepminternalStructure

£ SeDomainindependent (2]
(from core)

o Sepmlinterface SepmPattern interacts with its environment with Interfaces

L

I

0.*

v

H Sepminterface

= kind : SepminterfaceKind

£ SeDomainSpecific (2]

(from core)

L

H SepmbDIPattern

E SepmDSPattern

technicallnterfaces

H SepmTechnicallnterface

0.*

Figure 4.6: The (simplified) SEPM Metamodel

An SepmPattern may be manifested by one or more artifacts, and in turn,
these artifacts may be deployed to their execution environment. A deploy-
ment specification may define values that parametrize the pattern’s execution.
The SepmPattern has some fields that define its identity. These fields are

based on the GoF [23] information and are defined as follows:

— 4d. is unique identifier of the pattern

— name. is the name of the pattern,

— problem. describes the problem solved by the pattern,

— also known as.

known,

— wversion. the version of the pattern,

gives a list of names under which the pattern is also

— date. date of creation,

— publisher identity. is the identity of the publisher(s),

— origin. corresponds to the origin of the pattern — Industrial, Academic

aey

— consequences. corresponds to the set of consequences which occur once

the pattern is integrated,

which are composed of Operations.

ity may be assembled by reusing patterns as parts in an encompassing pattern

Larger pieces of a system’s functional-

47

Chapter 4. Contribution to the Modeling of S&D Applications for RCES

or a composition of patterns, and wiring together their required and provided
interfaces. More precisely, an SepmPattern owns provided and has required
interfaces. A provided interface is implemented by the SepmPattern and high-
lights the services exposed to the environment. A required interface corre-
sponds to services needed by the pattern to work properly. Finally, two kinds

of interfaces are considered:

— SepmEuxternallnterface allows implementing interaction with regard to:

x integrating an SepmPattern into an application model. These inter-

faces are realized by the SepmPattern.

x composing SepmPattern together.

— SepmTechnicallnterface allows implementing interaction with the plat-
form. For instance, at a low level, it is possible to define links with a

software or hardware module for the cryptographic key management.

e SepmProperty is a particular characteristic of a pattern. A Property is either
an SDProperty or a RProperty. So, each property of a pattern will be validated
at the time of the pattern validating process and the result will be compiled as
a set of constraints which have to be satisfied by the platform. This artifact will
simplify and enhance the selection/search activities during the pattern-based

engineering process.

o SepmlinternalStructure constitutes the implementation of the solution pro-
posed by the pattern. Thus the SepmlinternalStructure can be considered as
a white box which shows the details of the SepmPattern. In order to capture
all the key elements of the solution, the SepmiInternalStructure is composed
of two kinds of Structure: static and dynamsic. Please, note that a same

pattern could have several possible implementations.

o SepmDSPattern inherits from SepmPattern. It is used to build a pattern at
DSPM. A SepmDSPattern has SepmTechnicallnterface in order to interact
with the platform.

Example: We illustrate the usage of the SEPM for specifying a pattern at domain
independent and at domain specific level with the example of secure communication

pattern. For the sake of simplicity, we only specify the interfaces and the properties.

48

4.4.3 Artifacts Modeling Languages

For the DIPM, the internal structure representing the pattern solution may be
modeled as static diagrams using UML structure diagrams. A subset of the functions

provided by the external interfaces are:
e send(P,ch,m) : P sends message m to () on the channel ch,

o receive(P,ch,m) : P receives and accepts message m from) on the channel
ch,

with P,Q € {C, S}, ch(C,S) = ch(S, C) denoting the communication channel of
client (C) and server (S), and m a message. The properties definitions require the
availability of the required property libraries. Here, we specify an S&D property:
“authenticity of sender and receiver”. To type the category of this property we use
a category from the earlier defined in the S&D category library: “Authenticity”.

The DSPM modeling level is a refinement of the DIPM that considers the specific
characteristics and dependencies of the application domain. Different DSPM can re-
fine the same DIPM for different domains. In our example, we use HMAC? protocol
as a mechanism related to the application domain to refine the secure communica-
tion pattern. The internal structure, external interfaces and properties refine the
ones defined at DIPM introducing domain specific concepts related to the HMAC
mechanism. For example, a function send(P,ch, m, mac) refines the DIPM function
send(P,ch,m) adding the mac as the generated message authentication code. A

subset of the functions provided by the external interfaces are:
e send(P,ch,m) : P sends m to @) on the channel ch,

e send(P,ch,m,mac) : P sends m and the corresponding MAC to @) on the

channel ch,
o receive(P,ch,m) : P receives m on the channel ch,

e receive(P, ch,m,mac) : P receives m and corresponding MAC on the channel
ch,

with P,Q € {C, S}, ch(C,S) = ch(S,C) denoting the communication channel of
client (C') and server (S), m a message and mac the generated message authentica-
tion code.

In addition to the refinement of the concepts used at DIPM, the DSPM involves

developing technical internal interfaces as a set of functions related to the use of

2Keyed-Hash Message Authentication Code

49

Chapter 4. Contribution to the Modeling of S&D Applications for RCES

HMAUC to refine the secure communication pattern. A subset of the functions pro-

vided by the technical interfaces are:

e generate AH (P, keymac, m, mac) to prepare an appropriate authentication
header (MAC) for the message m.

e checkAH (P, keymac, m, mac) verifies that the message authentication code for

m is correct and originates from Q).

with P,Q € {C, S}, ch(C,S) = ch(S,C) denoting the communication channel of
client (C') and server (S), m a message and mac the generated message authentica-
tion code.

The interfaces (external and technical) with the required libraries of properties
are then used for developing the pattern properties. Here, in addition to the refine-
ment of the S&D properties identified in the DIPM, at this level we identify some

related resource properties, e.g. the size of the cryptographic key.

Pattern Modeling Process. The process’root, as shown in Figure 4.7, indicates
the start of the creation of a DIPM pattern interacting with Pattern Repository, a
data base of informal definitions of patterns. It contains some initialization actions
to define the pattern’s attributes (e.g, name, author, date, ...). The next activities

are the following ones:
o Keyword. Tt defines a set of keywords to ease the search of the pattern.

o Define internal structure. It implements the static and the dynamic repre-
sentation of the solution. The activity is achieved using external tools (e.g.

Papyrus tool for UML modeling).

o Develop external interfaces. It defines the exposed interfaces as a set of oper-

ations.

The next concern of the process is the definition of the pattern properties. The
supporting activities require the interaction with the repository in order to instan-

tiate the property libraries. The invoked activities are the following ones:
e Search
o Select

o Import

a0

4.4.3 Artifacts Modeling Languages

After the instantiation of the appropriate libraries, one resource is created for
each library. This resource remains active for the complete duration of the process.
The imported model libraries will be used during the definition of the properties to
type their category.

The next activity deals with the pattern validation. It supports the formal
validation of a pattern using an external process. The result is a set of validation
artifacts. At this point, the pattern designer may generate documentation. If the
pattern has been correctly defined, i.e. conforms the pattern metamodel, the pattern

is ready for the publication to the repository.

act DiPatternProcess

[without & dynamic
solution]

[with dynamic solution]

Develop a sequence diagram
for a Dynamic Structure aspect

wdatastores
F——=>{ Model-Based
Repository

cdatastores (e { wstructuredy “
Pattern Repository — 1 Instanate Resource | instantiate 8D [~ __i
| Libraries 1 Libraries)

ool

|

|

I

|

I Define Resource Define S&D Properfies
| Properties

|

|

|

1

Define Resource
Constraints

Define S&0 Constraints

Ivalidation ke}

= ion is required]
Validate a DI pattern

[validation is not required]

[wstructuredn
Refine and Generate |
Pvalidstion o] .
<

' structureds !
} Store in the i
|model-based Repogifry |

’

Figure 4.7: Pattern development process at DIPM

A Metamodel of system of patterns. S&D Pattern system is a modeling ar-

tifact system where its constituent parts are S&D patterns, its referenced property

ol

Chapter 4. Contribution to the Modeling of S&D Applications for RCES

models and their relationships. in the following we detail the meanings of the princi-
pal classes of the Pattern system metamodel, which is depicted with Ecore notations

in Figure 4.8.

references

.- |

=] SepmSystem OfPatterns

=] SepmMadel |

0.+ references
= [l seReference 7]}
patterns | 0.* p.* | patemns {from core) |
H SepmPattern T referenceKind : SeReferencekind | 1
T i 2 e ; | =<anumeration>
lj‘ publlsher_lt%enllly EString Gl
= origin : EString S :
= also_known_as : EString source target |—liromcore) |
= consequences : EString i = 2 : uses
= problem : EString Ll SeAnefact [2]) isUsedBy
= context : EString {> {fram core) | : dependsOn
= examples : EString conflicts With
= composedOf
= specializes

]

= generalizes
= refines

= realizes
0:2 properties 0.+ constraints = isRealizedBy
I=F =F = isSimilar

| E sepmProperty | |El sepmConstraint
1 !

= isAnAlternative

Figure 4.8: A metamodel of patter system

o SepmSystemOfPatterns. A system of S&D patterns represents a system of
modeling artifacts where artifacts are S&D patterns and links between these

artifacts (SeReference).

e SeReferenceKind. We use an enumeration to define a set of types of links
between S&D patterns. In the context of this thesis, we will use the following

relationships:

— refines. This link is used to represent the refinement relationship between

two patterns.

— specializes. This link is used to represent the specialization relationship
(detail).

— wuses. This link is used to represent the functional dependency relationship

between two patterns.

— 18Similar. This link allows to link two patterns that perform the same
functionality. This link is often used to link software patterns to their

equivalent hardware patterns.

52

4.4.4 Pattern System Configurations Management

4.4 Pattern System Configurations Management

In this section we show how we integrate a pattern from the input pattern system
in pattern system configuration. We do this using relationships between patterns.
A system of pattern is composed of a set of patterns and their relationships (see
Definition 5 in Section 2.7.1). Let S be a pattern system. We denote by P(S) and
R(S) the set of patterns and the set of the relationships of the pattern system .S,
respectively As shown in Figure 4.9, we have the "complete system of patterns"
in the top of the Figure and we have the "basic configuration of the system of
pattern" on the lower part. Let Sc and Sb denote the complete system of pat-
terns and the basic configuration of the system of pattern, respectively. Then,
P(Sc) = {P1,P1', P2, P2 P3,P3, P4}; R(Sc) = {IsSimilar,[sAnAlternative}
and P(Sb) = {P1,P2,P3, P4}; where P1 and P2 are similar to P1’ and P2’
respectively and P3 is an alternative to P3’. To integrate a pattern in under-
building system of pattern configuration, we propose a simple algorithm called

con figurationGen.

_________ is an alternative

. ww\

Figure 4.9: Generation of pattern system configuration

This algorithm takes as input Sc and Sb and a referenceKind from R(Sc) to
find further configurations which are equal to Sb with respect to the relationship

(i.e. referenceKind). The base of the pattern system (Sb) is parsed and for each

23

Chapter 4. Contribution to the Modeling of S&D Applications for RCES

54

© 0 N O o s W N =

10
11
12
13

pattern in this system equal patterns (with respect to the referenceKind) are looked
up in the complete system of patterns. If a pattern is found, a new configuration is
generated from the base system and the pattern from Sb is replaced by the equal
pattern from Sec. If multiple patterns are equal to a patterns in the base system,
multiple configurations (one for each equal pattern) are generated. This algorithm
allows to generate equal (e.g. similar, alternative) pattern system configurations

and, later on, to analyze these different configurations.

Algorithm configurationGen
Input: Sc model, Sb model, referenceKind.

Output: A set of system configurations

for each Pattern in the Sb model, do
for each SeReference in Pattern.references, do
if SeReference.ReferenceKind = referenceKind , then
duplicateModel (newConfig model, Sb model)
replace Pattern by SeReference.referencedPattern from Sc model in newConfig
model
save (newConfig model)
endif
endfor

endfor

IsSimilar Configuration

Applying the previous algorithm as configurationGen(Sc, Sb, [sSimilar) we
get two possible configurations of systems of pattern S; and S,, where P(S;) =
{PY1', P2, P3, P4} and P(S;) = {P1, P2, P3, P4}, such as visualized in Figure 4.10.

IsAnAlternative Configuration

Applying the previous algorithm as con figurationGen(Sc, Sb, I s Alternative) we
get the system of pattern configuration S3 where P(S3) = {P1, P2, P3', P4}, such

as visualized in Figure 4.11.

4.5 Transformations for Analysis

The analysis in this work implies analyzing the resource consumption and then
the impacts of using a certain pattern system configuration in a certain platform.
This will help during the pattern selection activity regarding the target platform and

assists system designers with awareness about the resource consumption satisfaction

4.4.5 Transformations for Analysis

-

-

1
. P38
<

2
<

-

.;
> &

|
o

ww\

.
N

NI _/

Figure 4.10: Generation of pattern system configuration- IsSimilar

of the patterns. For that, we propose to use model transformations techniques (such
as refined model generation and documentation generation) to calculate resource

consumption values and to incorporate these information into system models.

The model-to-model transformation for analyzing the platform takes as input
the platform model and a configuration for a model of a system of patterns. This
transformation parses the used patterns for their consumption of different resources
defined in the platform model (e.g. memory, processing power) and adds these up.
The result is then injected into the platform model as the computable value of the

resource.

The resulted model is then transformed by a model-to-text transformation to
visualize the consumption of the pattern system configuration of the different re-
sources of this platform. This transformation takes as input the platform model
which was enriched by the resource consumption of the patterns by the aforemen-
tioned model-to-model transformation.

We developed transformations using QV'T Operational language and Acceleo
for model-to-model (M2M) transformation and for model-to-text (M2T) transfor-
mation, respectively. To traverse the model of the platform, the pattern system

configuration and to perform calculations of resource consumption we developed a

%)

Chapter 4. Contribution to the Modeling of S&D Applications for RCES

96

isanAlternative

Figure 4.11: Generation of pattern system configuration- IsAnAlternative

M2M transformation. In addition, to enhance the readability of the analysis, we pro-
posed to generate documentation using M2T transformation. The implementation

of these two transformations is described in the following.

4.5.1 Calculating Resources Consumption - M2M

The model-to-model transformation, as depicted in the following Listing, cal-
culates the resource usage of a pattern system configuration for a platform. The
used metamodels (CORFE, the common SEMCO metamodel, GPRM the properties
metamodel, SEPM, the pattern metamodel and SERM, the resource metamodel) are
declared (lines 1-4). The transformation is declared with input and output parame-
ters typed by metamodels (line 6). The execution of the transformation is triggered
by the main function (lines 8-10), calling the mapping AnalyzeProperties on each
SermProperty of the Platform.

The mapping AnalyzeProperties (lines 12-18) parses the properties to calculate
and fills in the used resources for the "computable" platform properties (line 13).
The value of the attribute wvalueSpecification is calculated (line 15) by the helper
Calculate Value.

For each computable property, the helper loops over all the patterns composing

— w [N

ot

10

11

13
14
15

16

17
18
19
20

21

23
24
25
26
27

29
30

31

32
33
34
35
36
37
38

4.4.5 Transformations for Analysis

the pattern system configuration (PatternSystemConfiguration). For each pattern
(line 23), all its properties’ categories (line 24) are compared the category of the
Platform resource property, and if matching the values are summed up (line 30).
The result (line 36) is then stored as the value of the walueSpecification of the

"computable" platform resource property (line 15).

modeltype CORE uses "http://www.semcomdt.org/semco/core/2012/07";
modeltype GPRM uses "http://www.semcomdt.org/semco/tiqueo /gprm/2012/07";
modeltype SEPM uses "http://www.semcomdt.org/semco/arabion/sepm/2012/07";
modeltype SERM uses "http://www.semcomdt.org/semco/matho/serm /2012/07";

transformation CalculateResourceUsage(in PatternSystemConfiguration: SEPM, inout
Platform: SERM);

main() {

Platform.objectsOfType(SermProperty) —> map AnalyzeProperties();

mapping inout SermProperty:: AnalyzeProperties() {
if (self.computable) then {
if (self.valueSepcification.oclIsKindOf(GprmSingleValueSpecification)) then {

self.valueSepcification .oclAsType(GprmSingleValueSpecification).value := self
.CalculateValue () ;
} endif;
} endif;
}
helper SermProperty:: CalculateValue() : String {
var patterns := PatternSystemConfiguration.rootObjects()[SepmSystemOfPatterns].
patterns;
var value : Real := 0.0;

patterns —> forEach(pattern) {
pattern.properties —> forEach(prop) {
if (self.category.=(prop.category)) then {
if (prop.valueSepcification.oclAsType(GprmSingleValueSpecification).value.
oclIsUndefined ()) then {

return ’ERROR in pattern ’.concat(pattern.name);
}
else {
value := value.+(prop.valueSepcification.oclAsType(
GprmSingleValueSpecification).value.toReal());
} endif;
} endif;
b
}s
return value.toString();

o7

Chapter 4. Contribution to the Modeling of S&D Applications for RCES

98

~ W

© 0w N o »

10

11

13
14
15
16
17

22

23

24

25

26

4.5.2 Documenting the Resources Consumption Analysis -
M2T

The model-to-text transformation used for visualizing the results of the model
to model transformation is based on Acceleo. The target is an HTML5 document
showing the resource usage of the pattern system configuration by different resources,
such as depicted in the following Listing.

The features of HTML page are augmented by the bootstrap® web front-end
framework (e.g. line 12 for the css, lines 80-81 for the javascript). The page is
structured with a menu for the different resources (lines 17-28) and a set of rows,
one for each resource (lines 30-75).

The visual aids for determining if a resource’s load exceeds the allowed limit, is
a bar graph, which is colored following the traffic light rating system. Up to 75% of
usage, it is green, from 75% to 100% it is amber and 100% or more it is red (lines
44-63).

[module generatePlatformDoc (http://www. irit . fr/semco/model/arabion/sepm/1.0.0°, ~’
http://www.semcomdt.org/semco/core /2012/07’, ’http://www.semcomdt.org/semco/
matho/serm /2012/07°, ’http://www.semcomdt.org/semco/tiqueo/gprm/2012/07°, ’http
1/ /www.eclipse .org/emf/2002/Ecore’) |

[template public generatePlatformDoc(aSermModel : SermModel)]
[comment @main /|
[file (’index.html’, false, 'UTF—8°)]

<!DOCTYPE html>

<html>

<head>

<title ></title >

<meta name="viewport" content="width=device—width, initial —scale=1.0">
<link href="css/bootstrap.min.css" rel="stylesheet" media="screen'">
</head>

<body data—spy="scroll" data—target=".bs—docs—sidebar">

<div class="container">
<div class="row">
<div class="span3 bs—docs—sidebar">
<ul class="nav nav—list bs—docs—sidenav affix">
[for (resource : SermResource | aSermModel.resources)]|
<i class="icon—chevron—right"></i>[resource
.name/|</1i >
[/ for]

</div>
<div class="span9">
<div class="page—header">

3www.getbootstrap.com

32
33
34
35
36
37
38
39
40

41

42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

4.4.5 Transformations for Analysis

<hl>[aSermModel.name /] <small >[aSermModel. description /]</small></h1>

</div>

[for (resource SermResource | aSermModel.resources) |
<section

<h2>[resource.name/|</h2>

id="[resource .name/]|" >

<div class="row">

<div class="span2"><h4>Name</h4></div>

<div class="span2"><h4>Max Value</h4></div>

<div class="spanb"><h4>Usage in %</h4></div>
[for (property SermProperty | resource.properties)
[if (not property.computable)]

[for (propertyComp SermProperty |

J

resource.properties) |

[if (propertyComp.computable and property.category .name.matches(propertyComp.

category .name))]
[let percentage

GprmSingleValueSpecification).value.toReal()

Real = (propertyComp.valueSepcification.oclAsType(

/ property.

valueSepcification.oclAsType(GprmSingleValueSpecification).value.toReal()

% 10000) .round () /100.0 |
<div class="span2">[property.name/|</div>

<div class="span2">[property.valueSepcification.oclAsType(

GprmSingleValueSpecification).value.toReal

<div class="spanb5">

<div class="row">

<div class="spanl">[percentage/]</div>
<div class="span4">

[if (percentage >= 100.0)]

<div class="progress progress—danger">
[elseif (percentage > 75.0)]

<div class="progress progress—warning">
[else]

<div class="progress progress—success'">

[/if]

[if (percentage >= 100.0)]
<div class="bar" style="width: 100%;"></div>
[else]
<div class="bar"
[/ if]
</div>
</div>
</div>
</div>
[/ 1et]
[/ if]
[/ tor]
[/ if]
</tr>
[/ for |
<tbody>
</table>
</div>
</section >
[/ tor]

style="width:

(O)/]</div>

[percentage. floor () /]%;"></div>

29

Chapter 4. Contribution to the Modeling of S&D Applications for RCES

76

77 </div>

78

79 </div>

80 <script src="http://code.jquery.com/jquery.js"></script>
81 <script src="js/bootstrap.min.js"></script>
g2 </body>

83 </html>

84

g5 [/ file]

86 [/ template]

4.6 Conclusion

In this chapter, we have dealt with part 1 and part 2 of the RG1. We have

proposed languages for the specification of a set of modeling artifacts for the devel-

opment of S&D pattern-based applications. These specification languages are based

on metamodeling techniques that allow to specify property models, resources models

and S&D pattern models.

The wanted role of pattern-use is to ease, systematize and standardize the ap-

proach to the construction of software-based systems. However, the problem consists

in identifying them explicitly and then selecting them for reuse. This means that a

careful balance and trade-off analysis among S&D requirements, patterns and avail-

able platform resources is necessary. In doing so, we propose to integrate a pattern

in a system pattern configuration and to use model transformation techniques to cal-

culate resource consumption values and to incorporate these information into system

models.

In order to enforce reuse and to interconnect the process of the specification of

modeling artifacts and the system development with these artifacts, we study in the

next chapter a structured model-based repository of S&D patterns, property models

and resource models. Therefore, instead of defining new modeling artifacts, that

usually are time and efforts consuming as well as errors prone, the system developer

merely needs to select appropriate patterns from the repository and integrate them

in the system under development.

60

Chapter 5

A Model-based Repository

5.1 Introduction

In this chapter we present results related to the research goal 2 (RG2).

With regard to the definition of [9], here we go one step further: a model-
based repository to support the specifications, the definitions and the packaging of
a set of modeling artifacts to assist developers of trusted applications for resource-
constrained embedded systems. Concretely, the repository system is a structure that
stores specification languages, models and relationships among them, coupled with
a set of tools to manage, visualize, export and instantiate these artifacts in order to
use them in engineering processes (see Figure 5.1).

The remainder of the chapter is organized as follows. In Section 5.2 we give
an overview of the proposed framework and identify the challenges for model-based
repository coming from the TERESA project requirements and how they influenced
the design decision made for our repository specification languages. In Section 5.3
we present the specification languages of the repository structure and its interfaces
(APIs). In section 5.4 we illustrate the instantiation of the metamodel throw an
example of the TERESA repository dedicated to S&D applications for RCES.

5.2 A Model-based Repository Framework

The repository presented here is a model-based repository of modeling artifacts.
It constitutes one of the most important key elements in the engineering process for
resource-constrained embedded systems. Now, we introduce our repository system

framework tackling challenges that we present in the following.

Chapter 5. A Model-based Repository

62

Repository Specification Modeling Artifact System
Manager Language Engineer Engineer Engineer

' ' ' '

1 1 1 1

1 | I

App Client 1 : App Client2 1 App Client 3 | App Client4

Repository
Management
I 1
L "
Repository Admlrutratur Modeling Artlfact Modeling Artifact Application
Client Developer API

Developer API Developer API

<
~ -

g ~ - -

~ -7
~ -
N -
N o
~ -
~ -

Repository H

Server Pattern and Model
Repository
- .

\
\
\

3 .
. ,
Il -
Rep Rep
Users Config Rep DB

Figure 5.1: The repository system

Specification of the Repository Structure and Interfaces

The core of the framework is the definition of the specification languages to
design the repository structure and the modeling artifacts, mainly S&D pattern,
S&D property and resource property models. These languages are obtained by

using metamodeling approaches as illustrated in the next sections. Here, we address

the following challenge:

CHALLENGE 1: What kind of artifacts, how they will be organized and what kind

of interfaces are needed for external tools?

This challenge may be declined on the the following concerns:

e Flexible structure: flexible structure supporting evolution (new kind of arti-

facts)
e Artifacts organization:

— support specification languages and instances
— system engineering lifecycle stage classification

— support other end-user classification
e Interfaces specification:

— extendable interfaces for multiple artifact design tools

5.5.2 A Model-based Repository Framework

Specification Languages for Repository
and modeling artefacts

Design tools for
populating

!

Meta-Modeling Tools

Repository generation process

Validation tools

expertise,
standard

Populating environment

tools

Management

tools

Reorganization

process, standard,
rule and algorithm

Management environment

@ store in

@ manage/reorganize

I metamodels
(Ecore, UML)

Repository of Modeling artefacts and Instances

mode: ore
models (Ecore,
UML, UML libraries)

Eclipse CDO

Validation
artifacts

ﬁ retrieve from

Retrieval tools

Adaptation tools

Instantiation tools

Accessing environment

instantiate/
adapt

Domain
Specific
Modeling

System development
environment based on

1
|
1
I
|
1
I
1
|
1
I
|
1
|
1
|
\ Tools
1
|
1
I
|
1
|
1
I
|
1
I
1
|
1
I
|

Conceptual model of a
system (Ecore, UML,
UML profiles)

TR

Architecture model of a
system (Ecore, UML,
UML profiles)

1

Design model of a
system (Ecore, UML,

UML profiles)

...............................

Figure 5.2: The proposed framework for the model-based repository system

— extendable interfaces for multiple system development IDEs

Implementing the Repository Infrastructure

Once these specification languages have been defined, it is possible to develop a

repository in which the modeling artifacts and their related specification languages

are stored. The development of such a repository is based on transformation tech-

niques and the availability of MDE tools.

As we shall see in Section 6.3, MDE

transformation techniques are use for the automatic generation of the repository

structure. This part targets:

CHALLENGE 2: What is the appropriate architecture style and what kind of tech-

nologies we will use ?

63

Chapter 5. A Model-based Repository

This challenge leads to the following concerns:
e Architecture and deployment style: client server, three-tiered architecture,. ..

e Components: storage, index, API, ...

Supported format: XMI, UML, code, ...

Technology used: Eclipse CDO, EMF Store, Java, ...

External tools: Targets IDEs, design tools, ...

Populating the Repository

The development environment associated to the repository is based on the spec-
ification languages for defining modeling artifacts. It is composed of tools for the
design, the instantiation and the validation of modeling artifacts. These tools sup-

port basic features including the storage in the repository. Here, we deal with:

CHALLENGE 3: Who among practitioners, researchers and industry is interested to

contributed and how can we support them 7

CHALLENGE 3 deals with the following:

e (Collection of artifacts

— domain independent and domain specific S&D patterns
— property models (S&D and resource)
— validation models

— domain independent and domain specific process models
e Sources

— industrial applications domains
— academic
— standards
e Accompanying applications
— design tools: domain specific design tools, UML design tool, ...

— IDEs (Eclipse, ...)

64

5.5.2 A Model-based Repository Framework

Managing the Repository

In this part, we focus on the management of the repository content. We provide
software to manage relationships among artifact model specifications and instances,
and between artifacts and their related models. Moreover, we support basic features

such as artifact management and user management. This part is related to:

CHALLENGE 4: How do we manage the repository content, the repository infras-

tructure, and the targets?

CHALLENGE 4 deals with the following:
o Artefact management

— artefacts domain

— reorganization of the repository to support specifying relationships across

artefacts

— indexing
e User management

— user access control

— user resources

e Domain management

Accessing the Repository

Here we focus on the repository accessing techniques providing simple interfaces
one for each artifact kind (modeling language). By accessing the repository, some
facilitators are provided guiding the end-user choices on modeling artifacts which
can be used to satisfy the system-under-development’s requirements. We will cover

the following:

CHALLENGE 5: How the repository interact with domain specific development en-

vironment in different platforms ?

CHALLENGE 5 deals with the following:

65

Chapter 5. A Model-based Repository

66

Accessing the repository through simple interfaces one for each artefact kind

(modeling language)

Search /browsing

— keyword search

— context search (application domain, ...)

Artefacts retrieval

— selection

— instantiation

Implemented as

— FEclipse plugin application targeting Eclipse IDE
— Standalone application targeting domain specific IDEs

— Web-based access targeting web browsers

5.3 A Language for the Specification of the Repos-
itory

The specification of the structure of the repository is based on the organization
of its content, mainly the modeling artifacts and the specification languages. More-
over, we identified an API as a specification of the repository interaction system
architecture. That is, we propose a metamodel to capture these two main parts: the
first one is dedicated to store and manage data in the form of Compartments, the
second one is about the Interfaces in order to publish and to retrieve patterns and

models and to manage interactions between users and the repository.

5.3.1 Repository Structure Metamodel

The principal classes of the metamodel are described with Ecore notations in
Figure 5.3. The following part depicts in more details the meaning of principal

concepts used to structure the repository:

e SarmRepository. Is the core element used to define a repository.

5.5.3 A Language for the Specification of the Repository

H Sarmindex 0.x H SarmRepository H SarmUser
indices = nom : EString . ; = name : EString

g 0..% o host : EString userList| H SarmUserList users | © email : EString

Sarminterractioninterfacele—-— = port : Elnt - * < login : EString
- : 1 |@ 0.%| * '

T name : EString interfaces = creationDate : EDate EOperation0() T password : EString
= owner : EString = organism : EString
= public : EBoolean ;

) H SarmAccesRight _* rights 1
= type : SarmAccessRight user
compartments| 0..*
H SarmCompartment 1
compartment
logs H SarmRepositoryLo
P y=od H SarmRepositoryManage
0..*)
H SarmSpecLangCompartment H SarmArtefactCompartmen
y] entries |B SarmRepositoryLogEntry
0..%| = action : SarmAction
0. entries g SebDomaid = date : EDate
H SarmArtefactkeyEntry domain |_{from core)
0..1] <<enumeration>>
£ SarmAccessRightKind
1 | stores = Read
1 artifactKind - i
& SeSpeclLang2] [SeArtefactz] Write
(from core) 0..1 (from core) <<enumeration>>
conformsTo £ SarmAction
= create
stores |1 - read
0..x | entries - update
H SarmStorable delete
= artefactURI : EString<]—1
H SarmSpecLangKeyEntry [—> = storageDate : EDate

= sizeByte : ELong item
= owner : EString

Figure 5.3: SARM - Structure

o SarmCompartment. Deals with the data and the data structure for processing

the data. We have identified two principles kinds of compartments:

— SarmSpecLangCompartment. Is used to store the specification languages

of the modeling artifacts.

— SarmArtefactCompartment. Is used to store the modeling artifacts spec-

ifications.

e SarmStorable. Is used to define a set of characteristic of the modeling artifacts,
mainly those related to their storage. We can define: artefactURI storageDate,

sizeByte, etc. ..

e SarmSpecLangKeyFEntry. Is the key entry to point towards a specification

language model in the repository.

o SarmArtefactKeyFEntry. Is the key entry to point towards a modeling artifact

67

Chapter 5. A Model-based Repository

specification in the repository.

e SarmRepositoryLog. Is used to store the repository log. The log will be used for

repository access analysis in order to improve its structure and/or protection.

o SarmAccesRight. Is used to define the characteristics regarding the access right

to the repository and its its content.
o SarmUser. Is used to define the user profile.

e SarmUserList. Is used to store the list of users in the repository.

5.3.2 Repository Interfaces Metamodel

Regarding interaction, the repository exposes its content through a set of inter-
faces, as depicted in Figure 5.4. The meaning of the proposed concepts are presented

in the following:

&£ SarmAdministrationinterface | E Sarminterractioninterface operations
" - — 3
T name : EString

parameters | H SarmParameter|
% name : EString
T type : EString |

H SarmOperation
1.* | £ name : EString 0.%
= returnType : EString|

|

<<enumeration>>
¥ SarmOperationKind

H SarmSpecLangOperation
[= Create

[SarmSpecLanglnterface | H SarmArtefactinterface T type : SarmOperat\onKmdi - Read
] - Update
E SarmArtefactOperation | - Delete
E] SarmSpecLangDesignerinterface E SarmArtefactDesignerinterface T type : SarmOperat\onKind:

|
I artefactType I SeSpectang 0]

H SarmArtefactUserinterface (from core)
1

[SarmSpecLangUserlnterface

Figure 5.4: SARM - Interfaces

e SarmliInteractionInterface. In addition to the repository structure, we proposed
a specification of the interfaces (APIs) to exhibit the content of the repository
and for repository management. The API exposes the following interfaces as

shown in Figure 5.4:

— SarmAdministrationInterface. Manages the repository.

— SarmSpecLangDesignerInterface. Offers a set of operations including the
connection /disconnection to the repository and to populate the repository

with metamodels.

— SarmSpecLangUserInterface. Offers a set of operations mainly connec-
tion /disconnection to the repository, search/selection of the specification

languages.

68

5.5.4 A Model-based Repository for S&D Applications in RCES

— SarmArtifactDesignerInterface. Offers a set of operations including the
connection /disconnection to the repository and to populate the repository

with artifacts.

— SarmArtefactUserInterface. Offers a set of operations mainly connec-
tion/disconnection to the repository, search /selection of the modeling ar-

tifacts.

5.4 A Model-based Repository for S&D Applica-
tions in RCES

The main goal of the repository in our context is to share expertise, interacting
with existing engineering process, in order to build S&D applications for resource-
constrained embedded systems. As stated in the previous sections, we have identified

three kinds of artifacts: Patterns, Properties and Resources.

5.4.1 Repository Structure Model

The approach was evaluated in the context of the TERESA project! for several
application domains including Railway, Metrology, Home Control and Automotive.
Here we focus on the Railway domain. We propose to specify a repository called

TeresaRepository for the modeling artifacts and dedicated to Railway domain.

e Repository. We define TeresaRepository as an instance of the SarmRepository.

o Compartment for languages. we define MetamodelCompartment as an instance
of the SarmCompartment to store the metamodels studied in chapter 4, mainly

pattern, resource and property metamodels.
o Compartment for artifact. We define 11 compartments to store the artifacts:
— DIPCompartmentSystem. Is used to store Domain Independent System

Patterns.

— DIPCompartmentArchitecture. Is used to store Domain Independent Ar-

chitectural Patterns.

— DIPCompartmentDesign. Is used to store Domain Independent Design

Patterns.

Thttp://www.teresa-project.org/

69

Chapter 5. A Model-based Repository

70

DIPCompartmentImplementation. Is used to store Domain Independent

Implementation Patterns.

DSPCompartmentSystemRailway. Is used to store Railway Domain Spe-

cific System Patterns.

DSPCompartmentArchitectureRailway. Is used to store Railway Domain

Specific Architectural Patterns.

DSPCompartmentDesignRailway. Is used to store Railway Domain Spe-

cific Design Patterns.

DSPCompartmentImplementationRailway. Is used to store Railway Do-

main Specific Implementation Patterns.

RPCCompartment. Is used to store Resource Property libraries of units,

types, categories.

SDPCCompartment. Is used to store S&D Property libraries of units,

types, categories.

RCCompartment. Is used to store libraries of Resource categories .

An implementation as an Eclipse plugin using CDO is described in Section 6.3.

5.4.2 Repository Interfaces Model

In addition to the repository structure, we present in the following an example of
a model of interfaces (APIs) to exhibit the content of the repository of S&D patterns

and its management.

e Management. we define AdministrationAPI as an instance of SarmAdminis-
trationInterface for the management of the repository. The interface provides

the following operations:

— addUser(): adds a user with login/password and access rights to com-

partments (UserCompartmentAccess),

— createRepository(): creates a Repository on a certain machine, with

Repository Name, using login and password as credentials,

— deleteArtifactFromCompartment(): deletes an artifact from a compart-

ment,

— deleteUser(): deletes the user with login,

5.5.4 A Model-based Repository for S&D Applications in RCES

class Gaya API Class Model /

winterfaces sinterfaces
CommonAPI API4Admin

+ + addUser]) : void

+ FF———+ ocesat=Repository(} : void

+ hasUserAcoessToCompartment) : boolean + deleteArtifacdtFromCompartment() : void

+ isconnectedy) : boolean + deleteUser) : void

+ openSession() + getUsers() : void
sinterfaces interfacea
AP14LangUser APl4LangDesigner

+ getSpeclangf): void
+ searchSpeclang() : void

+ publishSpecLang() : void

developmentStage

RepositoryResponsePropertyConstraint

System
Architecture
Design
i

- id: int
- kind: RepositoryResponsePropertyConstraintKind
- name: char

RepositoryResponsePattern Pattern SearchQuery
- also_know_ss: char SIEEE sinterfaces
SHEM P eyl o API4PatternDesigner
+ getPatteminst{) : void + publishPatterninst) : void
+ sear chQuery) : Rep p
- onlyValidsted: boolean
- «interfaces
ainterfaces
API4PropertyDesigner
API4PropertyUser <l
+ publishPCLibrarylnst() : void
+ searchPCLibrarylnst() : RepositoryResponsePropertyConstraint

«enumerations
Repositor operty

Categery
Type
Unit
Cperater

Figure 5.5: The Repository Interfaces and Classes

— emptyCompartment(): deletes all the entries from a compartment

— getUsers(): retrieves a list of all users.

In order to manipulate the modeling artifacts the following APIs are defined :

e PatternDesignerAPI. Is an instance of SarmArtifactDesignerInterface used to
manage the lifecycle of pattern artifacts. The interface provides the following

operations:
— publishPatternInst(): publishes a Pattern to the right Compartment.

e PatternUserAPI Is an instance of SarmArtifact UserInterface used to search /s-

elect pattern artifacts. The interface provides the following operations:

— searchPatternInst(): searches for Patterns in the repository following the
query given as parameter and returns a List of RepositoryResponsePattern

which gives an overview of the patterns which fit the query,

— getPatternlnst(): gets the Pattern with ID uid from the repository and

stores it as a file with filename.

71

Chapter 5. A Model-based Repository

e PropertyDesignerAPIL s an instance of SarmArtifactDesignerInterface used
to manage the lifecycle of property library artifacts, including unit, type and

category libraries.

— publishPCLibraryInst(): publishes a P&C Library to the right Compart-

ment.

o PropertyUserAPI. Is an instance of SarmArtifactUserInterface used to
search /select property library artifacts, including unit, type and category li-

braries. The interface provides the following operations:

— searchPCLibrarylnst(): searches for P&C Libraries in the repository fol-
lowing the querygiven as parameter and returns a List of RepositoryRe-
sponsePropertyConstraint which give an overview of the P&C Libraries

which fit the query,

— getLibraryInst(): gets the P&C Library with ID uid from the repository

and stores as a file with filename.

e ResourceDesignerAPI. Is an instance of SarmArtifactDesignerInterface used

to manage the lifecycle of resource category library artifacts.

— publishRCategoryLibraryInst(): publishes a Resource category library to
the right Compartment.

e ResourceUserAPI. Is an instance of SarmArtifactUserInterface used to
search/select resource category library artifacts. The interface provides the

following operations:

— searchRCategoryLibraryInst(): searches for Resource category Libraries
in the repository following the querygiven as parameter and returns a
List of RepositoryResponseResourceCategory which give an overview of

the Resource category Libraries which fit the query,

— getRCategoryLibrarylnst(): gets the Resource category Library with ID

uid from the repository and stores as a file with filename.

An implementation of the APIs as Eclipse plugin is described in Section 6.3. Note

that, the APIs are provided as open source software: extensible and customizable.

72

5.5.5 Transformation for the Instantiation

5.5 Transformation for the Instantiation

The resulted software repository tool needs to export patterns so they are un-
derstandable by the tools of the target process. This would reduce the disruption
of workflow caused by the need to switch to another tool in order to apply the
model-based repository approach in the pattern-based S&D application develop-
ment process.

Because of the variety of tools used during the development of an application,
such as requirement tracking software, modeling tools or IDEs, the tool also needs
to know the current phase in order to adapt its output to the correct tool according
to the domain process model. In the case of the integration with Rhapsody as
described in Chapter Study of Railway Domain. The repository tool should be able,
for example, to adjust the level of detail in the pattern according to the reported

phase to reflect refinements.

5.5.1 Repository Instantiation into UML Modeling Environ-
ment - M2M

This work leverages the model-to-model transformation engine in order to ensure
the translation of the pattern from its repository storage format (conform to the
SEPM metamodel) to the expected target format (e.g. General Purpose Modeling
and Domain Specific Languages). For instance, if the target is UML tool Rhapsody
then the resulted transformation output is a subset of UML which can be imported
by Rational Rhapsody.

In our context, we define a one-to-one mapping between the SEPM concepts and
the UML component concepts as shown in Figure 5.6. The implementation of this

transformation using QV'T Operational language is presented in Section 5.5.2.

5.5.2 Implementation of Transformation

For the pattern’s instantiation, from the repository to the developer’s modeling
environment, we developed M2M transformations. Table. 5.1 presents the mapping
we propose.

Here we further clarify the principal pattern artifacts.

A Pattern is represented by a complex component (i.e. composite). The mapping
between a Pattern and a Component is a logical choice because our pattern vision

is already done on the component concept. The diagram of representation is the

73

Chapter 5. A Model-based Repository

74

Definition MM
SERM l UML Component 2.1.2
A Define: Operational QVT transformation rules A
. for object
conforms to Econforms to
ol d -
M Run - M
SEMCO Pattern UML Component 2.1.2

Apply: Operational QVT transformation rules
for object

Figure 5.6: SEPM to UML Component Transformation

SEPM Concepts UML Component Concepts
Pattern Complex Component

Interfaces of a Pattern Ports/Interfaces

Constraint OCL Constraint

Property DataType

Static Internal Structure of a Pattern Internal Structure of a Complex Component
Dynamic Internal Structure of a Pattern Sequence Diagram

Table 5.1: SEPM to UML Component Mapping

Component diagram / Composite structure. In the UML superstructure v2.1.2 the
Basic Components package defines the concept of a component as a specialized class
that has an external specification in the form of one or more provided and required
interfaces, and an internal implementation consisting of one or more classifiers.

Interfaces of a pattern are represented by Ports/Interfaces (provided/required).
In UML superstructure v2.1.2 a Port may specify the services a classifier provides
(offers) to its environment as well as the services a classifier expects (requires) of its
environment. We can use two ports: the first one to gather all the external interfaces
and the second one to gather all the internal (technical) interfaces.

Properties of a pattern are represented by DataTypes. In UML superstructure
v2.1.2 when a property is owned by a classifier other than an association via owne-
dAttribute, it represents an attribute of the class or data type.

The Static Internal Structure of a pattern is represented by the Internal Structure
of a complex component (i.e. assembly of Basic Component). The diagram of

representation is the Component diagram / Composite structure.

5.5.6 Conclusion

Figure 5.7 shows an overview of a set of transformation rules using QVT under
EMF. SEPM and UML COMPONENT? are specified using Ecore and act, as source

and target metamodel for the transformation rules respectively.

il ® H-0-Q- HE- ES@O 5 AR IR R SR
[£ Package Explorer & = O|[[sepm-to-object.qvto | [sepm-to-component.quta 52
OE| e ~ modeltype SEPM uses p4sdm('http://www.irit.fr/semco/model/arabion/cpdsdm/1.0.8');

modeltype UML_COMPONENT uses uml('http://www.eclipse.org/uml2/2.1.8/UML");
» 35 Other Projects -

ol Qv transformation SepmToComponentTransformation{in source:SEPM, out target:UML_COMPONENT);
a [5h qui-test
= META-INF main() {source.rootObjects()[Pattern]->SEPM2UML_COMPONENT();}

 tramef
4 & Tanstorms mapping Pattern :: SEPM2UML_COMPONENT(){

L& sepm-to-component.qvto if(self.ocLIsTypeOf(DIPattern)) then {this[DIPattern]->map DIPattern2Component();} endif;
[# sepm-to-object.qvto if(self.oclIsTypeOf(DSPattern)) then {this[DSPattern]->map DSPattern2Component();} endif;
|ob build.properties
4 1% SEMCO metamedels +mapp::mg DIPattern :: DIPatter‘nZCuvrponentég : Component %E
g @ mapping DSPattern :: DSPattern2Component() : Component
jJ ﬁ'!r!t‘Sem(D'deEI'amhmn'Ephdm @ mapping Pattern :: Pattern() : Component{[]
5= fririt.semco.model.common.escm
52 fririt.semco.model tiqueo.epem @mapping Interface :: ProvExtItfzInterface() : Interface {[]
4 15 UML metamodel #mapping Interface :: ProvIntItf2Interface() : Interface {[]
=y I;Epping PatternsDProperty :: PattSDProp2DataType() : DataType {

mapping Internalstructure::InternalStructure{}{
self.staticStructure [StaticStructure]->map StaticStructure();
self.dynamicStructure [DynamicStructure]-»map DynamicStructure();

mapping StaticStructure::StaticStructure(){
}

mapping DynamicStructure::DynamicStructure(){

Figure 5.7: Mapping rules from SEPM concepts to UML Component Concepts using
QVTO

5.6 Conclusion

To systemically model a repository of modeling artifacts for S&D applications,
this chapter presents a specification language, which fulfill the first part of RG2 that
uses metamodeling and model transformation techniques. The resulting repository
system, as a data structure storing artifacts and allowing users to publish and retrieve
them, with its documentation and a number of guidelines, will facilitate 1) the
population of the repository with further security and dependability patterns, and
2) the transformation of the S&D patterns into platform dependent specifications.

The pattern, property and resource modeling languages used in this thesis have
evolved compared to ones presented in the TERESA deliverables (D4.2 [71]| and
D4.4 [72]). The successful evaluation by the TERESA partners, mainly for the
railway domain, not only resulted in a set of refinements and improvements, but it
also points out the major industrial requirements that the framework now meets.
One of them is the repository storage and the support for interactions with the
artifact and the system development lifecycles. A repository of S&D patterns allows

reusing validated patterns. A pattern designer defines patterns and stores them

2The part of UML responsible for the representation of Component-Oriented Design

I6)

Chapter 5. A Model-based Repository

76

in the repository. A system designer reuses existing patterns from the repository
through instantiation mechanisms which lead to simpler and almost seamless designs
with quality improvements and cost savings. Another one is the materialization of
links and references among patterns with regard to the domain, development lifecycle

stage and the ones related to the pattern language itself.

Chapter 6

Architecture and Implementation of
Tools

6.1 Introduction

In this chapter, we propose an Model-Driven Engineering tool-chain supporting
the PBSE (Pattern-Based System Engineering) methodology, and hence to assist
the developers of secure and dependable systems. With regard to our contributions,
here we deal with part 3 of RG1 and part 2 of RG2. The framework is centered
around a model-based repository of S&D patterns and models providing an oper-
ational repository, tools for managing, tools for populating and tools for accessing
the repository. At the core of the framework is a set of Domain Specific Model-
ing Languages (DSML)[22, 26, 34, 42| that allow modeling S&D patterns, property
models, resource models and the repository structure. Using the proposed metamod-
els and the Eclipse Modeling Framework (EMF) [67], ongoing experimental work is
done with SEMCOMDT! (SEMCO Model Development Tools, IRIT’s editor and
platform plugins).

The rest of this chapter is organized as follows. We start with the presentation
of the architecture and the functionalities of the tool-chain. Then, we present in
detail the implementation of the tools composing this tool-chain. We present the
repository implementation, the back office part of the repository including the set
of tools for the management of the repository. The next parts present the tool suite
for populating the repository and accessing the repository for reuse. Further, we

discuss how to enable a set of transformations features, presented in Section 4.5

lhttp://www.semcomdt .org

77

http://www.semcomdt.org

Chapter 6. Architecture and Implementation of Tools

and Section 5.5, in the editors. In the domain of assistance to the developement of
S&D-based applications for RCES, we developed an editor for the specification of

the pattern system.

6.2 Implementation Architecture

To tackle secure and dependable system engineering challenges, in the context
of the PBSE methodology, we are developing an integrated set of software tools
to enable S&D embedded system applications development by design. These tools
improve the design, implementation, configuration and deployment of S&D RCES
applications. In fact, capturing and providing this expertise by means of a repository
of S&D patterns can support and improve embedded systems development. The
following details this software system from the installation, over modeling artifacts
development and reuse, evolution and maintenance for acquiring organizations, end-

users and front-end support provider.

6.2.1 Tool-suite Architecture

SEMCOMDT provides three integrated sets of software tools: (i) Tool set A
for populating the repository, (ii) Tool set B for retrieval and transform from the
repository and (iii) Tool set C' for managing the repository. As shown in Figure 6.1,

thanks to UML component diagram the tool-suite is composed of:

e Gaya (G). for the repository structure and interfaces conforming to SARM,

Tiqueo (T). for specifying models of S&D properties conforming to GPRM,

Arabion (A). for specifying patterns conforming to SEPM,

GayaAdministrator (Admin). for the repository management,

AccesTool (Access). for the repository access.

In addition, we provide Matho (M)., a design tool for specifying resources con-
forming to SERM. The functionality and the detail of the implementation of the

resource designer Matho are similar to the Arabion tool.

78

6.6.2 Implementation Architecture

(TeresaRepository) (TeresaRepository) (TeresaRepository)
wcomponenk» «component» «component»
GayaAdministrator LanguageDesigne|
/L MtldelinLanguageDesignerAP J\
PatternDesignerAPl | PropertyDesignerAPll ap PatternUserAPR|
AdministratorAPl
(TeresaRepository) (TeresaRepository) (TeresaRepository) (TeresaRepository) | | (TeresaRepository) (TeresaRepository)
«componenth «componenk» «componenk» «componenk» «component» «component»
Gayad4Admin GayadlLanguage Gaya4Pattern Gaya4Property Gaya4.... Gaya4SystemDeveloper
"
CommonGayaAPI
(TeresaRepository)
s «component»
gayastorage GayaMARS

Figure 6.1: The tool suite architecture

6.2.2 Tool-suite Functionalities

In this section we present the design tools proposed for the repository populating,

repository management and the repository accessing.

Repository Setup. GAvA is a repository platform to store the modeling arti-
fact specifications and instances through the APIs. The server part is responsible
for managing and storing the data, and provides a set of features to interact with
the repository content. As shown in Figure 6.1, the server part is composed of
two components: (1) GayaServer providing the implementation of the common
APT and (2) GayaMARS providing the storage mechanisms. The client part is
responsible for populating the repository and for using its content-providing APIs
interfaces for applications, such as depicted in Figure 6.1, in order to populate,
access and to manage the repository. For instance, GayajPattern (implements
the API4PatternDesigner), Gaya4Property (implements the API4PropDesigner),
Gaya4Resource (implements the API4resourceDesigner), GayajAdmin (implements
API4Admin) and GayajSystemDeveloper (implements the API4PatternUser).

Repository Populating - Design Tools. The property designer (Tiqueo), to be
used by a property designer, provides features for specifying models of properties.
In addition, Tiqueo provides some features to create a library for reusable objects,
like the types and units which allows property designer to use the libraries in a

domain independent manner. Furthermore, Tiqueo includes mechanisms to validate

79

Chapter 6. Architecture and Implementation of Tools

80

the conformity of the property libraries with GPRM metamodels and to publish the
results to the Gaya repository using the GayajProperty APL.

The pattern designer (Arabion), to be used by a pattern designer provides a
set of features for specifying domain independent and domain specific patterns. In
addition, Arabion includes mechanisms to validate the conformity of the pattern
with SEPM metamodel, the generation of documentation and to publish the results

to the repository with the repository interfaces (Gaya4Pattern API).

Repository Management. For the repository management, to be used by repos-
itory manager, we provide a set of facilities for the repository organization allowing
the enhancement of its usage using the Gaya4Admin API. We provide also basic
features such as user, domain and artifact management. Moreover, we provide fea-
tures to support the management of the relationships among artifacts specifications

and between artifacts specifications and their complementary models.

Repository Accessing. For accessing the repository, to be used by a system
engineer, the tool provides a set of facilities to help selecting appropriate patterns
including keyword search, lifecycle stage search, domain independent vs. domain
specific search and property categories search. The results are displayed in search
result tree as System, Architecture, Design and Implementation patterns. The Tool
includes features for exportation and instantiation as dialogues targeting domain
specific development environment. Moreover, the tool includes dependency checking
mechanisms. For example, a pattern can’t be instantiated when a property library

is missing: an error message will be thrown.

6.3 CDO Repository Implementation: Gaya

Our approach, relying on an MDE-based techniques to build a set of DSLs and
thus in our context supporting automated model-based repository building, such as
visualized in Figure 6.3. We provide the environment for the use of the resulted

repository through APIs.

6.3.1 CDO Repository Implementation Architecture

We used the Eclipse EMF/CDO based Ecore technology architecture to create
our repository system as shown in Figure 6.2. The light gray blocks are the tools that

6.6.3 CDO Repository Implementation: Gaya

constitute the architecture of the CDO repository and ensure the entire functioning
of the server and clients. The dark gray block represents the models to be stored in
the repository. The brown colored block represents the API defined to interact with
the repository. It is implemented using the generated code skeleton from the API
model which is enriched with calls to CDO libraries.

Communication --------

EMF CDO Client Net4j Core

Eclipse

—_eececeeeeeeahe----

f 1
! CDO Server API |
1 1
| 1
:--=-=- CDO Store Communication ~ ------=--+---!

CDO Server Core Net4j Core

Figure 6.2: Repository implementation based on CDO

Server

The server part is responsible for managing and storing the data, and provides
a set of functionalities to interact with the repository content. As shown in UML
Components in Figure 6.1 (red components), the server part is composed of the

following:
e GayaServer: provides the implementation of the common API,
e GayaMARS: provides the storage mechanisms

The server part of the repository is provided as an Eclipse plugin that will handle
the launch of a CDO server defined by a configuration file. This configuration file

indicates that a CDO server will be active on a given port and it will make available

81

Chapter 6. Architecture and Implementation of Tools

82

a CDO repository identified by its name. In addition, the configuration file is used
to select which type of database will be used for the proper functioning of the CDO

model repository.

Clients

The client part is responsible for populating the repository and for accessing its
content. For this, we identify a set of CDO-based clients as depicted in Figure 6.1.
These clients (turquoise components) provide APIs to applications in order to create
the modeling artifacts and in order to use them. For instance, Gaya4Pattern and
Gaya4SystemDeveloper provide a set of APIs for the Arabion pattern editor and for

the AccessTool, respectively.

6.3.2 Repository Implementation Details

The models specifying the structure of the repository and the APIs are built
through an EMF tree-based editor implementing the SARM metamodel, as shown
in the top part of Figure 6.3. The resulting Ecore model is then used as input for the
model-to-text transformations in order to generate the repository and APIs software
implementation artifacts targeting the CDO platform [1]| (as seen in the middle part
of Figure 6.3).

The structure of the repository is derived from the repository structure model,
proposed in Section 5.4, and implemented using Java and the Eclipse CDO Server
technology. The server part of the repository is provided as an Eclipse plugin that
will handle the launch of a CDO server defined by a configuration file. The repository
client APIs are derived from the repository APIs model, presented in Section 5.4,
and then implemented as CDO clients. In our example, the repository interface
models are visualized in Figure 5.5. We specified a set of functions and the data
structure of their parameters in the form of UML class diagram. The implementation
is based on the automatic code generation from the APIs model. In our development
environment, the generated Java code defines the different interfaces and functions
provided by the repository APIs. The skeleton of the API’s implementations are
then completed manually based on CDO technology. As the CDO server, the CDO

clients are provided as Eclipse plugins (as shown in the lower part of Figure 6.3).

6.6.4 Design Tools for Repository Populating

repository
«mergen
A — — L=l e & =
L N
o e
m L
B . «imports §
% e SEPM.ecore v
= GPRM.ecore g
e GCSM.ecore a
=~ D
H
1 wedits
v L \/
MZT Transformation
— (Code generation) . Fag M2T Transformation
i ”‘\ﬁ (Code generation)
Generated e : - Generated
Java Code _.--~ ™ Java Code
=
__________ =
= =
o « s 9]
QO g =%
T2T (Code generation LJ, :] [: :] :
S to in(cluda gno API) T2T (Code generation ? @
o to include CDO API1)
3 |
&
=1 |
|
 «isConformTo»
N
v E «run» «interacts» ' MySaL \/
t DataBase =
) o
9 e
5 2
z @
w @
o© 3
Nt N

Figure 6.3: The Model-based repository building process

6.4 Design Tools for Repository Populating

As shown in Figure 2.6, we have used the Eclipse Modeling Framework (EMF) to
support such a process and to develop our tool-suite: (1) we have defined our meta-
models (MM) using the Eclipse Ecore and then (2) we have used the code generation
techniques (EMF Generator Model - genmodel) provided by EMF to build our DSL
editors. For each DSL, using the corresponding generator model we have generated
the model, the edit and the editor code source. The generated editor code was mod-
ified to limit the user actions on the ones needed and to enhance user experience
(e.g. modifying the name of some concepts). The tool provides facilities for editing
modeling artifacts instances in a domain independent manner (DIM). Then the user
can refine the guidelines for domain-specific application (DSM). Further, using EMF

features, we added the metamodel conformance-checking functionality to the editor

83

Chapter 6. Architecture and Implementation of Tools

84

(Static Model Checker) and code/documentation generation (Generator).

The second part of the design tools implementation was to create the HT'ML code
generator based on Acceleo, a M2T component of the Eclipse Modeling Framework.
We created two plugins, one for the HI'ML code generation and another as a user-
interface plugin. The code generation plugin is based on the metamodel (Ecore file)
to parse the model. We developed modularized code transformation templates, with
every module template generating one HTML file per selected model element, and
managing the links among them.

In the following we describe how the DSL process shown in Figure 2.5 is applied

to build the property designer, resource designer and the pattern designer.

6.4.1 Property Modeling : Tiqueo

The Tiqueo tool is provided as an Eclipse Plugin, based on the Eclipse Modeling
Framework Technology (EMFT). We provide an installation based on the Eclipse
standards of the p2-repository (update-site). The current version is installable via
the installation routines of the Eclipse Platform and our update-site?. To create a
property model, Tiqueo implements several facilities conforming to the GPRM meta-
model to manage property libraries including units, types and categories. Tiqueo
supports a number of features such as the modeling of a property library, validation,

deposit and retrieval to and from the repository.

Tiqueo. The Tiqueo design environment is presented in Figure 6.4. There is a
design palette on the right3, a tree view of the project on the left and the main design
view in the middle. Category library is built using type library instances. In our
example, an instance of the sd TypeLibrary called sd TypeLibrary.tm is imported from
the repository to the workspace using the Retrieve tool (see Section 6.5.1). Then,
the user has to create a reference to this library as a resource, such as illustrated in
Figure 6.5.

These libraries are used as external model libraries to type the properties of pat-
terns and resources. Especially during the editing of the pattern (see Section 6.4.3)

we define the properties using these libraries.

Property Library Validation. The property validation tool is used to guarantee

design validity conforming to the property metamodel as visualized in Figure 6.6.

2http://wuw.semcomdt .org/semco/tools/updates/1.2
3(1) for unit, (2) for type and (3) for category.

http://www.semcomdt.org/semco/tools/updates/1.2

6.6.4 Design Tools for Repository Populating

[Praject Explorer B3 S Railway_sdCategoryLi [?11 Railway_sdUnitLibrar | T resourceTypelibrary. _’e
B % | & ™ ||E5 Resource Set
2 teresa a T platform:/resource/teresa/pclibrary/model/sdCategoryLibrary.tm (3)
= pattern 4| AT = T
[pelibrary gory Mew Child 3 'LBDU PCategory
(&= doc-gen JD[I PCatEgoryAuth.entlnt?t. Undo CtelaZ (!)
(&= model o0 PCategory Confidentaility 88 property Type
% Railway_resourceTypelibrary.tm filn PCategory Integrity Redo s *i | Gin
%1 Raitway_resourceUnitLibrary.tm 000 PCategory Availability Gt i
%] Railway_sdCategoryLibrary.tm 000 PCategory Safety c % Integes
< o 2
% Raitway_sdUnitLibrary.tm 00 PCategory Privacy i "'2{ Char
% resourceCategoryLibrary.tm {00 PCategory Reliability Paste *§ String
& i i
JoF) resourceTypelibrary.tm \fU[I PCategory NonRepudiation Delite % Float
¥ resourceUnitLibrary.tm 000 PCategory Precede P
sdCategoryLibrary.tm 00 PCategory NotHappens Validate £ ek
% sdTypelibrary.tm {00 PCategory Maintenability Conteali H:
%1 sdUnitLibrary.tm o0 PCategory MTEF & Unit
(= process 000 PCategory MTTF Run As & Single Derived Unit
(& teresatautomotive Debug As ﬁ Composed Derived Unit
12 teresathomeControl Profile As -
= teresadmetrology
- Team {3
= teresadrailway
Compare With 12
Replace With 3
Load Resource...
Refresh
Show Properties View
SEMCO Model to Doc 2
| Selection | Paren | ~
- Remove from Context Ctrl+ Alt+Shift+ Down
| = Properties 2
Property Value
Auther
Date
Description
Domain
Id vQgAUG2yEeGiyfdwNRLrj
[N Ak el e
Figure 6.4: Designing a Category Library
25 Project Explorer 5 _ = 5| & ¥ 7 O|[% BlackChannel®Module. %1 Railwey_sdUnitlibrar [%] resourceTypeibrary. (%] sdCategoryLibrarytm 52 7 =g
S teresa Resource Set
?B' pat.tern a %1 platform:/resource/teresaspelibrary/model/sdCategorylibrary.tm
& pelibrary 4 B PCategory Library sdCategoryLibrary
= doc-gen o0 PCats Trust
= modl i pc:tzgzgnﬂmmq ot = &=
% z g2 L
’r_ Ra\lway_rasourcETy[..;elerarytm 000 PCategory Confidentaility Resource URIs: | Browse File System..‘l ‘ BmwseWorkspace...|
% Raitway_resourceUnitLibrary.tm 0 PCategory Integrity
% Railway_sdCategaryLibrary.tm 000 PCategory Availability
% Raitway_sdUnitLibrary.tm 100 PCateqory Safety
% resourceCategorylLibrary.tm 000 PCategory Privacy
5
fr) resourceTypelibrary trm 000 PCategory Reliability
%! resourceUnitLibrarytm 100 PCategory NonRepudiation
:T sdCategoryLibrary.tm B0 PCategory Precede
1, sdTypelibrary.tm 000 PCategory NotHappens “File Selection
T sdunitLibrary.tm 00 pcm:og Mainteizbi\ity =
wb‘ P’Z‘E“ . 100 PCategory MTBF
teresal automotive
[0 PCategory MTTF
@ teresalhomeControl s 1 resourceTypelibrary.tm ‘
@ teresadmetrology %1 resourceUnitLibrary.tm

sdCategoryLi brary‘tm

1 teresadrailway

#r sdUnitLibrary.tm

b (& process

21 _nroiect

Selection | Parent | List| Tree Table| Tree with Columns|

Figure 6.5: Eclipse Load Resource Tool

Property model validation starts by right clicking on the property model and select-
ing the Validation tool.

85

Chapter 6. Architecture and Implementation of Tools

86

Pr "sdCategonyLibrarytm £3

[Resource Set
af platfnrm:f’resuur:e.f’tEresa.f‘p:Ilhrar}rfmnde_-’sd‘(at&gnr',rLlhrary.tm
a B PCategory Library sdCategoryLibrary
00 PCategory Trust
Il PCategory Authenticity
Category Confidentaility
00 PCategory Integrity
100 PCategory Availability
000 PCategory Safety
000 PCategory Privacy
100 PCategory Reliability
00 PCategory NonRepudia Progress Information
00 PCategory Precede
00 PCategory MotHappen {0' Validating PCategory Library sdCategoryLibrary
i) PCategory Maintenabil] S
000 PCategory MTEF
I00 PCategory MTTF
1 platform:/resourcefteresa/pli
1 platform:/resource/teresa/pli '6‘ Validation completed successfully

= Validation Information @

Selection| Parent| List| Tree| Table| 7] oK

| = Properties 22
Property Value

Author =

Date =

Description =

Dornain =

Id 'S _vQgAUG2yEeGiyfAwNRLrjw
MNarne '= sdCategoryLibrary

Version

Figure 6.6: Property Library Validation

Property Library Deposit. Property library publication is triggered by running
the Publication tool by right clicking on property model and selecting the Publication
tool. The deposit tool requires the execution of the validation tool to guarantee
design validity. When executed, as shown in Figure 6.7, the library will be stored
in the repository. The tool uses the GayajProperty API (see Section 5.4.2) for the

deposit into the repository.

6.4.2 Resources Modeling: Matho

The resource designer called Matho includes features supporting the design of
resource category libraries, the design of platform resources, validation, interaction
with a verification framework, deposit to and retrieval from the repository. The
Matho tool is provided as an Eclipse Plugin, based on the Eclipse Modeling Frame-
work Technologies (EMFT).

Matho. The Matho design environment is presented in Figure 6.8. It contains
a tree view of the project on the left and the main design view in the middle.
When right clicking on the root element in the model, the design palette will appear

allowing to add a resource category and/or a resource to model. Although the tool

6.6.4 Design Tools for Repository Populating

L7 Project Explorer £5 =k
4 12 teresa
> |- pattern
4 [= pclibrary
b [= doc-gen
4 = model
3

Tr, Railway_resourceTypelibrany.tm

'}

B . BlackChannel@Module_ 1. Railway_sdUnitLibrar

L7} Resource Set
% platform:_a'resourcE,fteresa_-"pc|ibrar_\f:a'model_a'stategoryI
=i, PCategory Library sdCategoryLibrary
bl PCategory Trust
00 PCategory Authenticity
il PCategory Confidentaility

:u Railway_resourcellnitLibrary.tm 100 PCategory Integrity
1, Railway_sdCategoryLibrary.tm 000 PCategory Availability
% Railway_sdUnitLibrary.tm 1l PCategory Safety
) i it
: resourceCateg.or)ulerary.tm W0 PCategory Privacy
1, resourceTypelLibrary.tm 100 PCategory Reliability
%1 resourceUnitlibrany.tm LBt s MR i AT
¥ sdCategorylLibrary.t MNew |
%1, sdTypelLibrary.tm b
ins
1 sdUnitLibrary.tm Open F3 Siliey
= process Open With 4
1 terecalautomotive
1 teresathorneControl = Copy Ctri+C
. 1® teresadmetrology Paste Ctrl=V
12 teresadrailway ¥ Delete Delete
Remove f Context Ctrl+ Alt+Shift+ Down
Mark as Landmark Cirf+
Move...
Rename.., F2
t¥g Import..
% Export..
& Refresh F5

Tree with Columns
Publish PCLibrary ! sbait b

Run As 3]

Figure 6.7: Property Library Deposit

allow to mix resource categories and resources in the same model (conforming to the
definition of SERM metamodel), we recommend to separate these artifacts in two
different models. The first, is used to define the libraries of resource categories; in our
example the model is called resourceCategoryLib.mm; this is to foster the reuse of
the same library with different resource models. The second, is used to describe the
platform resources by importing and using the previous resource category libraries

to type the resources.

Resource Library Validation. The resource validation tool is used to guarantee
design validity conforming with resource metamodel as visualized in Figure 6.11.
Resource model validation starts by right clicking on Resource model and selecting
the Validation tool.

Resource Library Deposit. Resource publication is triggered by running the
Publication tool. The tool starts by right clicking on resource model and selecting
the Publication tool. When executed, the resource model will be stored in the
repository following the resource designer’s profile (compartment). The tool uses the

Gaya4Resource (see Section 5.4.2) for publishing to the repository. Note, however

87

Chapter 6. Architecture and Implementation of Tools

[Project Explorer &3 A3 SR

4 =% SafedRailway
(= patterns
i (= pclibrary
4 [resource
4 (= model
‘;_)‘ Railway_platfomDescription.mm

j:'_/g Railway_ResourceCategoryLib.mm I3

Resource Set

4 14 platform:/resource/SafedRailway/resource/model/Railway_ResourceCategorylib.mm

a 4 Serm Model Railway_resourceCategorylib

Serm Resource Category CPU
&5 Serm Resource Category RAM
& Serm Resource Category PowerSupply

f;/“ Béi\way_ﬁRe;our ACabommnd ih
:_z‘ Railway_Resour New L
» 13 sirsec
s [=F teresa
== terezadautomotive
=% teresadhomeControl
+ 1o teresadmetrology
1= teresadrailway

Open F3
Open With

-

Copy Ctrl+C

Paste Ctrl+V
¥ Delete Delete

Remove from Context

Down

Mark as Landmark

Alt+Shift+Up
o T Move...

Rename... F2

5= Outline 52

5 Impart...
» b platform:/resource/SafedR|

Export...

L. E

Refresh F3

£

Run As F
Debug As 3
Profile As 2
Team 3
Compare With 3
Replace With r

Properties Alt+Enter

tegory FlashMemory
tegory TPM

itegory Watchdog
itegory Voter

itegory FPGA

le| Tree with Columns |

ryLib.mm - SafedRailway/resource/model

Value

false
true

ed 18 juillet 2013 11:44:57
false

Railway_ResourceCategoryLib.mm

Figure 6.8: Matho

% Railway_ResourceCategorylib.mm 52

r[\j Resource Set

Design Environment

a 1 platform:/resource/SafedRailway/resource/model/Railway_ResourceCategorylib.mm
4 4 Serm Model Railway_resourceCategorylib

erm Resource Category CPU
erm Resource Category RAM

erm Resource Category FlashMem
Serm Resource Category TPM

2 Serm Resource Category Watchdog
& Serm Resource Category Voter

& Serm Resource Category FPGA

erm Resource Category PowerSupply

ony

» %4 platformi/resource/SafedRailway/resource/model/Railway_ResourceGenericCategorylib.mm

3

>] platform:/resource/SafedRailway/pclibrary/model/Railway_ResourcePropertyCategorylib.tm

Selection | Parent | List| Tree | Table| Tree with Columns

| Tasks |] Properties 53

Property
Description
Id
Inherits

Name

Property Categories

Figure 6.9: Designing a Resource Category Library

e]

>

m

Ch\Users\ADEL"Workspaces\runtime-SEMCOAINSafedRailway\resour...

/5afedRailway/resource/model/Railway_RescurceCategorylib.mm

that the deposit tool requires the execution of the validation tool to guarantee design

validity.

88

6.6.4 Design Tools for Repository Populating

L Project Explorer 22 = 8

i Railway_ResourceCategoryLib.mm I = 8
BES|le ~ [T Resource Set
4 [SafedRailway = a 1 platform:fresource/SafedRailway/resource/model/Railway_ResourceCategoryLib.mm
> [= patterns 4 < Serm Model Railway_resourceCategorylib
» [= pclibrary &8 Serm Resource Category CPU
el bl Progress Information
4 {= model
i Railway platfq @O Validating Serm Modsl Reilway. resourceCategoryLib
% Railway_Reso LP
% Railway_Reso
1= st & yalidation Information
= tef
= tef "0‘ Validation completed successfully ricCategoryLib.mm
= te| A ————— priyCategorylib.tm
=57 |&]
P
ok |
BE Outlin
o
- , - .
. = Selection | Parent | List Tree| Table| Tree with Columns
4 platform:/resource/SafedRailway/reso
o A T /i S . -
o platform:/resource/SafedRailway/reso =1 Properties 32 oy m 3;) Ta g
T platform:/resource/SafedRailway/pclil
Property Value =
Author '= Adel Ziani =
Conforms To
Date =
" o ; Description '% Ll
Figure 6.10: Designing the Platform Resources
15 Project Explorer &2 = 0 i Railway ResourceCategoryLib.mm 3 = g
ESG| e ~
4 [SafedRailway = L4 platform:/resource/SafedRailway/ resource/model/Railway_ResourceCategoryLib.mm
> [= patterns 4 < Serm Model Railway_resourceCategorylib
» [pclibrary &8 Serm Resource Category CPU
b =4 fesource Progress Information
4 7 model
fl_'.‘; Railway_platf 1 03 1 Validating Serm Model Railway_resourceCategorylib
4 Railway Reso L
% Railway Reso
+ 1 sil £ Validation Information
= tef
= tef '0‘ Validation completed successfully ricCategoryLib.mm
= te| ————— ertyCategorylib.tm
s mencnin]
e
-
B= Outlin
o
= z = -
" - Selection | Parent | List| Tree| Table | Tree with Columns
Wi platform:/resource/SafedRailway/reso
> B 4 /! {i . =
gz‘ platform:/resource/ SEfB‘iREHWEy.HES.D = Properties X = (B % = g
1. platform:/resource/SafedRailway/pclil ==
Property Value =
Author = Adel Ziani =]
Conforms To

Date
Description

Figure 6.11: Resources Validation

6.4.3 S&D Pattern Modeling: Arabion

The pattern designer called Arabion supports a number of features including pat-
tern design at DI (Domain Independent) and DS (Domain Specific) level, validation,

interaction with a verification framework, deposit and retrieval into and from the

repository, respectively. The Arabion tool is provided as an Eclipse Plugin, based

on the Eclipse Modeling Framework Technologies (EMFT). We provide an installa-

89

Chapter 6. Architecture and Implementation of Tools

90

tion based on the Eclipse standards of the p2-repository (update-site). The current
,version is installable via the installation routines of the Eclipse Platform and our

update-site®.

Arabion. For an DI pattern, the design environment is presented in Figure 6.12.
In this instance a DI pattern called SecureCommunication@Module was designed.
The main view shows that SecureCommunication@Module is a DI pattern built by
specifying a set of properties, interfaces and an internal structure. Each property has
a category typed with a property library as shown in the properties box. The pattern
designer has to provide the necessary information to define a property, mainly the
name and the description as textual fields. The internal structure was specified
using UML diagrams created by an external UML editor. Interfaces are defined
with respect to the pattern metamodel. The pattern has interfaces containing the
provided service. In our case sender and receiver with a set of operations: send and
receive, which takes a set of inputs and produce a set of outputs. The data sender
Channel Authentication has its own authentication Key that identifies itself in the
communication. The data receiver knows this key and uses it to authenticate each
message coming from the communication layer. When the authentication process
successfully completed, it will let the message pass over to the receiver application.
The key of the sender will be correctly codified in order to avoid an external attacker

to know it and impersonate the sender, sending malicious information to the receiver.

Pattern Model Validation. The pattern validation tool is used to guarantee
design validity conforming to the pattern metamodel. Pattern model validation
starts by right clicking on pattern model and selecting the Validation tool. In our
example, Secure communication pattern model can be validated, where a violation

of a metamodel construct will yield an error message (see Figure 6.13).

Patterns Model Deposit. Pattern publication is triggered by running the Publi-
cation tool, as visualized in Figure 6.14. The tool starts by right clicking on pattern
model and selecting the Publication tool. When executed, the pattern will be stored
in the repository following the pattern designer’s profile (compartment). The tool
uses the GayajPattern for publishing to the repository. Note, however that the de-

posit tool requires the execution of the validation tool to guarantee design validity.

‘http://www.semcomdt .org/semco/tools/updates/1.2

http://www.semcomdt.org/semco/tools/updates/1.2

6.6.5 Repository Access-Tools

|7 Project Explorer &2 - <f;> = = O|% SecureCommunication@Meadule.am 22 =0
= teresa 1T Resource Set
= pattern 4 '_\‘ platform:/resource/teresa/pattern/Dl/model/SecureCommunication@Module.am
= a I DIPattern SecureCommunication@Meodule

(= doc-gen 4 “g Interface ServerExtltf

(= model © Operation send
|5 blackChannel.validation . @ Operation receive
;E\ BlackChannel@Module_StaticStructun . /,,@ Interface ClientExtitf

o BlackChannel@Module.am © Operation send

© Operation receive

BlackChannel2 @System_StaticStructur

i BlackChannel2@System.am 4 Internal Structure DI_Module_Design_SecureCommunicationlnternalStructure
B DLTMR SysT7z

=7 Static Structure SecureCommunication@Module_StaticStructure
at: Key Word secure channel
(& Pattern SD Property authenticity_of_client_and_server
(& Pattern SD Property confidentiality_of_data
(% Pattern SD Property integrity_of_data

i

SecureCommunication@Module_Stati
.| SecureCommunication@Module.am

=i

3| semcoDlpng

3¢ semcoDI2.png

.—" TMR@Arch.am . %1 /teresa/pelibrary/model/sdCategoryLibrary.trm
s TMR@System.am
= D5 Selection | Parent | List| Tree | Table | Tree with Columns
& doc-gen = Properties &2 ¥ =0
= model
¢: Homogeneous TMR@Arch.am Property Value
%:) Homogeneous TMR@System.am Author =
= pclibrary Category Il pCategory Confidentaility
= process Concerned Actions
= teresalautomotive Concerned Entities
1 teresathomeControl Date =
= teresadmetrology Description =
= teresadrailway Domain =
Id =
MName '= confidentiality_of_data
Version =
“ I K 1

Figure 6.12: Secure Communication DI Pattern at Design level

Progress Information

B Validating DS Pattern SecurityCommunicationLayer@DetailedDesign

= Validation Problems 5

@

Problems encountered during validation

Reason:
Diagnosis of DS Pattern SecurityCommunicationLayer@DetailedDesign

@ The required feature 'category' of 'Pattern SD Property Authenticity of Sender and Receiver' must be set

Figure 6.13: Pattern Validation

6.5 Repository Access-Tools

In this part, we present the repository tools for the assistance of the system
development process. The access-tool supports the modeling artifact instantiation

from the repository. By definition (see Section 2.7.1), the access-tool provides the

following set of features:

91

Chapter 6. Architecture and Implementation of Tools

92

L[Project Explorer &3 0 & - =5
4 1D teresa
4 (= pattern
a =Dl
(= doc-gen
(= model
4 [= DS
= doc-gen
4 (= model
*%.] Homogeneous TMR@Arch.am
%4 Homogeneous TMR@Systern.am
%.] SecureCommunicaticn@Medule_S5L.am New »
%4 SecurityCommunicationLayer@DetailedDesign.am
Open B

, (= process Open With »
= Copy Ctrl+C
2 teresadmetrology Paste Ctrl+V
& teresadrailway 3 Delete Delete
Remove from Context Ctrl+Alt+Shift+ Down
Mark as Landmark Ctrl+Alt+Shift+Up

Rename... F2

fo O
o
]
ES

Refresh F5

Publich Pattern
Run As

Debug As
Profile As
Team
Compare With
Replace With

Figure 6.14: Pattern Publication

1. Support the definition of needs in terms of properties and/or keywords,
2. Support the search of modeling artifacts in the repository,

3. Support the selection of the appropriate modeling artifact from those proposed

by the repository,

4. Support the adaptation of the selection into the development environment

using model transformation techniques.

In the following, we refer to the first three features as Retrieval and the last
feature as adaptation. In our case, the retrieval steps are applied to each of the
modeling artifacts composing the repository and the adaptation steps are only re-

lated to patterns.

6.5.1 Retrieval

Property Library Retrieval. As mentioned before, when building a pattern
we use property libraries to type its properties. The tool provides dialogues for
selecting and instantiating libraries. The library search /selection dialogue is shown

in the right part of Figure 6.15. The tool uses the Gaya4Property API for the

6.6.5 Repository Access-Tools

library development processes.
The results are displayed in
Category Library. For example,

= Save As

Save As

Save file to another location,

Enter or select the parent folder:

teresa/pclibrary/model

4 = teresa
» [pattern
4 = pelibrary
(= doc-gen
(= model
» [process
teresadautomotive
teresadhomeControl
: [teresadmetrology
s 2 teresadrailway

File name: sdCategorylibrary.tm

search /selection of the property library which is used during a pattern and a property

search result tree as Unit Library, Type Library and
the right part of Figures 6.15 shows that there is one

category library called sdCategoryLibrary published in the repository with keyword
confidentiality. In addition, the tool includes features for exportation and instantia-
tion as dialogues. So once selected, we need to provide the necessary details, which

are project path and instance name, as visualized in the left part of Figures 6.15.

B |F| EE Outline ’ Gaya Artifact Designer S@ e g

|.Arabion Searcl'l.i Maravas Search | Tiqueo Search |
Tiqueo Search Form

* Search

Keywords confidentiality
| Search |
Advanced Search

Result

=i Unit Libraries

B Type Libraries

=i Category Libraries
L]

1 sdCategorylibrary
=i Operator Libraries

® [

2L

Cancel | | Import ‘ ‘ Save as

Figure 6.15

Pattern Model Retrieval.
DI patterns. The tool uses the Gaya4Pattern API for the search/selection of the

instance, as shown in the right

e key words,

: Property Library Instantiation

As mentioned before, DS patterns are built from

patterns which is used during the pattern and the system development process. For

part of Figure 6.16, the tool provides the following

facilities to help the selection of appropriate patterns regarding:

e domain independent vs. domain specific,

93

Chapter 6. Architecture and Implementation of Tools

94

e lifecycle stage,
e S&D categories,

e resources categories.

The results are displayed in search results tree as System, Architecture, Design
and Implementation patterns. For example, the right part of Figures 6.16 shows that
there is a DI pattern at design level targeting the Confidentiality S&D property®,
named communication and has a keyword secure. The Tool includes also features for
exportation and instantiation as dialogues. In our case, we select the Secure Com-
munication pattern for instantiation providing the necessary information, including
the project path and instance name (see the left part of Figures 6.16). The result
can be used to design a DSPM pattern, as presented above. In addition, the tool
includes a dependency checking mechanism. For example, a pattern can be instan-
tiated, where a missing of a resource (property library) will yield an error message
(see Figure 6.17).

6.5.2 Artifact Adaptation

In this thesis, we focus on the adaptation of pattern model. We developed in
Section 5.5.2 an implementation of a transformation allowing to adapt an SEPM

pattern to the UML Component using QVT Operational language.

6.6 Repository Administration

Repository management is implemented via the GayaAdmin tool. GayaAdmin
offers repository management with facilities such as user management, artifact man-
agement and system of artifacts management. We offer these facilities through a
set of dialogues triggered in the GayaAdmin tool. The main dialogue is shown in
Figure 6.18.

6.6.1 User Management

The user management supports a set of features such as user lookup, add, re-

move, sorting and categorization as shown in the left part of Figure 6.19. The right

In our modeling, this means that the pattern has a property with a confidentiality category
type.

6.6.6 Repository Administration

[SEMCO | L7 Resc ™
: & coveAs ?IE‘ 5% Outline | J) Gaya Artifact Designer &2 : et

Arabion Search | MNaravas Search i Tiqueo Searchl

Save As
Save file to another location, E Arabion Search Form
~ Search
Enter or select the parent folder
teresa/pattern/Dlmodel Keywords gecure
{5t Search
4 [teresa
1=l Advanced Search
4 (= pattern
4 & | DI Pattern |71 DS Pattern

I (= doc-gen

| Only validated

= model |
= DS Mame communication
N G pelibmy Also known as
b (&> process
12 teresadautomotive H_fecycle Stoge
2 teresathomeControl 2l System "] Architecture
» 2 teresadmetrology ‘_lffDesign) Implementation
> & teresadrailway SnD Categary Confidentaility =
Resource Category -
Result
£ System
f= Architecture
= Design

@ DI Pattern
'_ SecureCommunication@Maedule
@& DS Pattern

: S Er f= Implementation
File name: SecureCommunicationDI@Module.am

(1 patterns found)

l/?:' [0K J | Cancel | Import ‘ ‘ Saveas

Figure 6.16: Pattern Instantiation

= Repository Error @

% fririt.semco.rc3p.gaya.emare.commonapi.RepositoryDependencyException:
org.eclipse.emf.ecereresource.impl.ResourcebetimplS1DiagnosticWrappedException:
org.eclipse.coreinternal.resources.ResourceException: Resource
‘/teresa/pclibrary/model/sdCategoryLibrary.tm' does not exist.

Figure 6.17: Pattern Instantiation - Consistency

part shows the necessary information for adding a new user. We need to provide
the necessary details, which are the username, password, affiliation, email and orga-
nization to create user instances. Then, we specify the user access mode (RW) per
compartment.

The user authentication dialogue is visualized in Figure 6.20. The authentication
allows the user to access to the repository resources regarding its credentials. The
user has to provide its name and password, the repository name and the repository

location.

95

Chapter 6. Architecture and Implementation of Tools

96

File

& Administrator View 7

~ Connection
Server URL:
Port:

Repositery name:

| 183:55375.75

2036

teresavl

User name: |

Password :

root

i Disconnect |

User Managment | Property Managment | Pattern Managment | Process Managment I Repository Managment

Repaository User Section

User Name
root
trialog
ikerlan
siegen
escrypt

sit

Email

User Detail Section

User name *:

Password *:
Email :
First name:

Last name:

Organisation :

Access:

[7] show characters

Compartments

[] DS Metrology Pattern Compartment

[DS Railway Pattern Compartment

[DS Home Control Pattern Compartment
[] DS Automotive Pattern Cornpartment

Access Mode
READ
READ
READ
READ

1
[»

-

User Managment

Figure 6.18: The Admin UI of the Repository

Property Managment

Pattern Managment

Process Managment

Repository Managment

Repaository User Section

User Name
root
trialog

irit

ikerlan

Email

User Detail Section

User name *:
Password *:

Email :

First name:

Last name:

Organisation :

Access:

[show characters

Compartments

[] DS Metrology Pattern Compartment

[] DS Railway Pattern Compartment

[7] DS Home Control Pattern Compartment
[7] DS Automotive Pattern Compartment

Access Mode
READ
READ
READ
READ

1
[m | »

Figure 6.19: User Management Part

e In the host field, the address (URI) of the host should be entered. In our case

www.semcomdt.org is used which is hosted by the University of Toulouse

2.

e In the Repository name field, the name of the repository should be entered

6.6.6 Repository Administration

(for TERESA we used teresavl).

e In the User field, the username under which you want to connect to the repos-

itory must be entered.

e In the Password field, the password for the above username should be entered.

~ Connection

Server URL: il93.55.1?5.?5 User name: irit

Port: 2036 Password: sesssssss Connect

Repository name: teresavl

Figure 6.20: Repository Authentication

As the tool-suite is provided as Eclipse plugins, we also provide an authentication

facility as an Eclipse preferences set as shown in Figure 6.21.

= Preferences = @
iy pe filter texd] SEMCO Repository MR ¢
G |
A:::|’:D SEMCO Reposiroty Preferences
Ant Server URL: www.semcomdt.org
coo Port: 2036
Ecore Tools Diagram
EMF Compare Repository name: teresavl
Help Usemame: ikerlan
Install/Update
Password: e
Java
Model Validation
Mylyn
Plug-in Development
Run/Debug

SEMCO Repository
Team
Usage Data Collector

| Restore Qefaults‘ | Apply |

'C?] [QK] | Cancel |

Figure 6.21: Repository Authentication Under Eclipse

6.6.2 Artifact Management

We provide a tool, as a Java based GUI application named GayaAdmin to man-
age relationships among S&D pattern specifications, to support the management of

pattern system configuration, and between S&D patterns and their related property

97

Chapter 6. Architecture and Implementation of Tools

models. For instance, as visualized in Figure 6.22, a pattern may be linked with
other patterns and associated with property models using a predefined set of refer-
ence kinds such as those proposed in the SARM metamodel. Moreover, we support

basic features such as artifact management. GayaAdmin uses the GayajAdmin APL.

| RCP Application E=n =R <=
File
£3 Administrator View 53 =0

~ Connection
Server URL : www.semcomidt.org User name: | roct

Port: Password: | sssssssss Disconnect

Repository name: | teresa

i-a-s;r-l.\.-"ianagment t Property Managment | Pattern Managment ‘ Process Managment i Compartment Managment 1 Repositoryi

Pattern Section
Mame Demain Level *| Pattern references:
DataAgreement@Arch Railway ARCHITECTURE Artefact Reference kind
DataAgreement@MDD Railway DESIGM SafetyCommLayer®Module_R... Uses =
Datafgreement@SWhrch Railway ARCHITECTURE RHP_HomogeneousTMR@Arch refines -
: DataAgreement@System Raitway SYSTEM Voter@Design JomainRefines -
: MajorityVoter@DetailedDesign Railway DESIGM i sdCategoryLibrary Lses »
MajorityVoter@5WArchitecture Railway ARCHITECTURE resourceCategoryLibrary uses -
MeooMReciprocalMonitoring@Det... Railway DESIGM L
MooMNReciprocalMonitoring@5W... Railway ARCHITECTURE]
SecurityCommunicationLayer@Ar... Railway ARCHITECTURE
SecurityCommunicationLayer@5.. Railway ARCHITECTURE
RHP_DataAgreement@DetailedDe... Railway DESIGM
RHP_DataAgreement@SWArch Railway ARCHITECTURE 18
@ B EXE

Figure 6.22: Repository organization

The GayaAdmin tool provides a set of dialogues to facilitate the management of
the modeling artifacts available in the repository. The pattern management supports
a set of features such as pattern lookup, removal, sorting, exporting and categoriza-
tion as shown in Figure 6.24. The property management supports a set of features
such as property library lookup, removal, sorting, exporting and categorization as

shown in Figure 6.23.

6.7 Systems of Patterns Modeling

To model the system of patterns, Arabion tool provides a tree editor shown
in Figure 6.25. In the left side, we distinguish three folders dedicated for: (1)
Patterns modeling, (2) Systems of pattern modeling and (3) Configurations derived
from systems of patterns. First, we use the access tool presented in 6.5 to search and

import patterns in our workspace. Then, using Arabion tool, we create a new system

98

6.6.7 Systems of Patterns Modeling

User Managment | Property Managment | Pattern Managment | Process Managment | Repository Managment

PC Library Section
MName Kind -
sdUnitLibrary UNIT ‘E‘
sdTypelibrary TYPE -
sdCategoryLibrary CATEGORY
resourcelnitLibrary UNIT
resourceTypelibrary TYPE
resourceCategoryLibrary CATEGORY
Railway_primitiveTypelibrary TYPE
primitiveQperatorLibrary OPERATOR
arithmeticOperatorLibrary OPERATOR
AT_IKERLAN_Category CATEGORY
AT_IKERLAN_Dependability_Categ... CATEGORY
AT_IKERLAN_Operator OPERATOR i
o

Figure 6.23: Property management part

User Managment I Property Managmenté Pattern Managment | Process Managment | Repository Managmentl

Pattern Section
Name Dormain Level A
Homogeneous TMR@System Railway SYSTEM
SecurityCommunicationLayer@D... Railway DESIGN
Watchdog@DetailedDesign Railway DESIGN
Hypervisor@Arch Railway ARCHITECTURE
RHP_DataAgreement@System Railway SYSTEM
DataAgreement@Systern_new Railway SYSTEM
Hypervisor@Arch_new Railway ARCHITECTURE
ReciprocalMonitoring@DetailedD... Railway DESIGN
SER_Metrology_USiegen Metrology DESIGM
KeyManager DS _USiegen Metrology SYSTEM [|
SecureCommunication_D5_5SL_U... Metrology DESIGM ;E|
SecureCommunication@Module_... Academic DESIGHN ":I
L () (=) [%¢] (2]

Figure 6.24: Pattern management part

of pattern model including the imported patterns those located in patterns folder
(see Figure 6.26). Finally, we complete the model by adding the references between
patterns; for each one we specified the name, kind, source pattern and target pattern

as shown in the bottom of Figure 6.25.

The modeled system of patterns cannot be used, the way it is, as input for the
analysis. This is because it includes some patterns that perform the same func-
tionalities. For example, SwMajorityVoter and HwMajority Voter are respectively
the software variant and the hardware variant of the MajorityVoter pattern. The
link between these two patterns is bidirectional and is of "isSimilar" kind. Based

on this, we can imagine two different configurations with in each, a variant of the

99

Chapter 6. Architecture and Implementation of Tools

100

{5 Project Explorer £ Him| e ¥ 7 O %4 SystemOfPatternsam 53 =
4 = SafedRailway -

|

1 Resource Set
4 (= ;_Jatterns 4 < System Of Patterns =

4 = model

._ < 5Se Reference SecureComm55L_SecureCommHMAC
4 DataAgrementHW.am 4 Se Reference SecureCommHMAC_SecureComm5SL
Dat.aAg.rem entSW.am <4 Se Reference NVersionProgramming_SafetyCommiCRC
a _h’.ersmn_Programlng_TMRS\M.am 4 Se Reference NVersionProgramming_VoterSw E
.;“.' RecipracalManitoring.am 4 SeReference DataAgrement Voter
=) SafetyCommCRC.am 4 Se Reference DatafAgrement_RiciprocalMonitoring
':1) SecureCommHMAC.am 4 Se Reference NVersionProgramming_TMR
a ecureCommHMACTRM.am 2 4 Se Reference TMR_MVersionProgramming
.;“.' SecureCommSSL.am 4 SeReference VoterSw_VoterHw
= SecureCommSSLTPM.am 4 SeReference VoterHw_VoterSw
TMRHW.am 4 Se Reference DataAgrementSw_DatafAgrementHw
- oterHw.am <4 Se Reference DataAgrementHw_DataAgrementSw
.;“.' Votersw.am 4 Se Reference WatchdogSw_WatchdogHw
..'.".1 W:atchdchw.am 4 Se Reference WatchdogHw_WatchdogSw
la| WatchdogSw.am <4 SeReference SecureCommSSLTPM_SecureCommS5SL
4 (= systemOfPatterns 4 SeReference SecureCommHMACTPM_SecureCommHMAC -
(2) | SystemOfPatterns.am it . b

4 (= systemOfPatternsConfigurations Selection | Parent| List| Tree| Table| Tree with Calumns|

%4 SystemOfPatternsConfig_Base.am
stemOfPatternsConfig_IsAlternative.am = 3 e = 1, e - =
(3) 4 O 5 f:gISA_l s ! 2 Properties 53 | 5| 5 jm}
) SysternOfPatternsConfig_IsSimilar.am
':.-.; SystemOfPatternsConfig_Specializes.am Property Value
= pclibrary - Description =
Id i=
oz - il T = = =
o= Outline &3 o 8 Marme ‘= DataAgrement_Voter
‘| platform:/resource/Safed Railway/ patterns/systemOfPatte) Reference Kind '= uses
"] platform:/resource/SafedRailway/patterns/systemOfPatter Source % D5 Pattern DataAgrementSW
.:‘-_. platform:/resource/5afed Railway/ patterns/systerm Of Patte Target % DS Pattern VoterSw

1 | *

Figure 6.25: System of patterns modeling using Arabion tool

Majority Voter is used. In the same way, the other kinds of links except "uses" allow
to produce multiple pattern system configurations. Using the algorithm proposed in
4.4 with the system of all the patterns as input, we generate a set of configurations
that will be simulated with the platform in order to select the ones that give the

best resources consumption trade-off.

6.8 Conclusion

The proposed approach promotes a model-based developement coupled with a
repository of models for embedded system applications, focusing on the problem of
integrating non-functional properties by design to foster reuse. To fulfill part 3 of
RG1 and part 2 of RG2, we have developed an MDE tool-chain based on Eclipse
technology, mainly on Eclipse Modeling Framework Technologies (EMFT®) and a
CDO-based repository. Currently, the tool suite named SEMCOMDT is provided

as Eclipse plugins.

We build a new design environment supporting repository-centric PBSE ap-

Shttp://www.eclipse.org/modeling/emft /

6.6.8 Conclusion

< Patterns -- System Of Patterns ?’E

Filter Available Choices
Choice Pattern (*or 7)

Choices Feature
<+ DS Pattern DataAgrementHW Add | 4 DS Pattern SecureCommHMAC
< DS Pattern DataAgrementSW < DS Pattern SecureCommS55L
<+ D5 Pattern N_Version_Programing_TMRSW Remave <+ DS Pattern DataAgrementHW
<+ DS Pattern Reciprocal Monitoring < D5 Pattern Datafgrement5W

< D5 Pattern SafetyCommCRC
< DS Pattern SecureCommHMAC

DS Patte_r_n N_‘u’_ersiqn_Prograrrjing_TMRS_W
< D5 Pattern Reciprocal Manitoring

Up

q

<+ DS Pattern SecureCommHMACTPM Down ’> DS Pattern SafetyCommCRC
< DS Pattern SecureComm5S5L 4 DS Pattern TMRHW .
<+ DS Pattern SecureCommSSLTPM 4 DS Pattern VoterHw
< D5 Pattern TMRHW < D5 Pattern VoterSw
<+ D5 Pattern VoterHw 4% DS Pattern _'\.';.atcl'{t.:iagHw
< DS Pattern VoterSw <= DS Pattern Watch.dogSw
< DS Pattern WatchdogHw |4 DS Pattern S_ect_Jr_eC_oifnm_HMAC_TPM
<+ DS Pattern WatchdogSw |4 DS Pattern ;‘.ecureCDmrﬁ;‘-SLTPM
| OK] | Cancel |

Figure 6.26: Definition of the system of patterns - Included patterns

proach for S&D applications development in RCES. The resulting repository system
with its associated design environment, documentation and a number of guidelines,
will facilitate 1) the population of the repository with further security and depend-
ability patterns, and 2) the access to the repository and transformation of the S&D

patterns into platform dependent specifications.

101

Chapter 6. Architecture and Implementation of Tools

102

Chapter 7

Demonstration and Evaluation

7.1 Introduction

In this chapter, we demonstrate the applicability of our proposed framework
(RG3) throw the SafefRail demonstrator developed in the context of TERESA
project. The selection of an application to evaluate the proposed approach has to
be considered as a very important decision for our work. It has a direct impact on
the selection of patterns, and thus on the whole evaluation. The main characteristic
that was considered to select the Safe4Rail application was the need to develop an
S&D-related system that can meet a SIL! 4 level. This characteristic requires a
number of design techniques as redundancy, diversity and monitoring to be taken

into account while implementing the application.

The remainder of this chapter is organized as follows. In Section 7.2, we describe
the demonstrator including the Safe4Rail platform and the Safe4Rail application
requirements. Then, Section 7.3 gives an overview of the current TERESA repository
content. In Section 7.4, we model the SafedRail application using the SEMCOMDT
tool-chain while in Section 7.5, we provide a set of experimentations to analyze the
resource consumption of the selected pattern system configurations. In Section 7.6,
we evaluate the applicability of our pattern-based modeling approach. Finally, we

discuss the power and the potential of our approach in Section 7.7.

1Safety Integrity Level

103

Chapter 7. Demonstration and Evaluation

104

7.2 Description of the Demonstrator

The railway case study (called Safe4Rail) is a simplified version of a real ETCS
(European Train Control System) (see Figure 7.1). ETCS is a signalling, control and
train protection system designed to replace the many incompatible safety systems
currently used by European railways, especially on high-speed lines. The main func-
tionality of this demonstrator is to supervise that travelled speed and distance does
not exceed authorised maximum values provided by the railway infrastructure. This
limit is represented with a braking curve constructed from a movement authority
and maximum speed profiles. In order to implement this functionality, the system
is composed of multiple subsystems including the European Vital Computer (EVC)
that executes the safety application, a set of odometry sensors and actuators. The
odometry sensors provide the speed and acceleration of the train. With these values,

the system must be able to calculate accurate speed and position values (odometry).

Radio
Block — .
Center o
=
GSM.H e
Traen FPosiion Repot
— i
— v
—\Wia Area Nebaok —— bovomert Authanby with
Woaghbsuar Stulic Spood Prolile

RBCs Base Transmcahor Station
-— ! - TRACK CIRGLAT . -
) | Baisg Tolegram with
Eurpbales |Baliss Group dantifser
I =
) "
AL 1XLEK

Figure 7.1: ERTMS/ETCS Level 2 diagram
[70]

The braking curve provides at every position three speed limits, which are used

to make decisions about when to activate the brakes (see Figure 7.2):

1. When the current speed overcomes the warning speed limit, the system must
activate a warning signal to advise the driver that the railway is getting close

to a dangerous speed.

7.7.2 Description of the Demonstrator

2. If the driver does not take any action and the railway overcomes the service

speed limit, the system must activate the service brake.

3. If the train continues accelerating and overcomes the last limit, the system will
deactivate the acceleration and activate the emergency brake to stop the train

completely.

00 Warning activation

i
(]
|

5,11
5,62
6,13
6,64
7,15
7,66
817
868
9,19

a,7

2
=

0,01
0,52
1,03
1,54
2,05
2,56
3,07
3,58
4,09

Distance (km)

Figure 7.2: ERTMS/ETCS supervision limits and braking curves
[70]

In the following sub-sections, we present the railway domain Safe4Rail plat-
form and the application requirements, as described in the TERESA deliverables
(D6.1 [73] and D6.3 [70]).

7.2.1 Description of the Platform

The following figures provide an overview on the platform’s hardware compo-
nents and their ports and interfaces. As shown in Figure 7.3 the hardware platform
is composed of a carried board on which is installed a conga-CA board with a mi-
croprocessor (Intel Atom Z530), a RAM (DDR2 RAM) and a set of interfaces for
the connections. The conga-CA is accompanied with an additional programmable
resource calculation unit (FPGA-Spartran). For safety requirements, this platform
is replicated thrice as shown in Figure 7.4. The three platforms are connected in
star-topology to two Ethernet switches that execute the same application software.
An additional platform executes a simplified model of the train (including sensors

and actuators interface), majority voter and a simplified Driver Machine Interface.

=S ryvice Brake activation

= F mergency Brake activation

105

Chapter 7. Demonstration and Evaluation

tL\

e Conector (FMC)

anin

5l
N
]

=

<<
it}

a

-

Connector Rows A& B
Connector Rows C & D ;

Xilinx Flash | EE

Me m-’.wryr

Modulo Com Express 95 mm x 95 mm

Power supply Carrier Board 3U 160 mm X 100 mm
FPGA

Figure 7.3: Hardware Platform Design

Figure 7.4: Architecture of the Safe4Rail Hardware Platform

7.2.2 Description of the Application

Figure 7.5 gives an overview on the whole system architecture before a description
for each subsystem that contributes to the overlaying system is given. Furthermore

the list provides the requirements which these components will fulfil.

e (lock. Generates a periodic event which triggers the system to estimate the
current position and speed and to supervise that the train complies with the

current track restrictions.

106

7.7.2 Description of the Demonstrator

<<actor>>
Balise

=<aclor>>
Sensors Supervision Safe Train Interface (Brakes)

Ene Brak:
4 'g <<actor>>
merg Braki Emergency
—Emerg Brake L

Ballse
Reader
Balise Data

{} (]
S | Supervision [
Sensors (1) Sensor Data 0 N (),
O—0—0
sye SMC |
L} {}
(. —
Sensors (2) Sensor Data|—|-g Supervision
Node (2)
O—0—] I'VICEIEraka waclors
Sync a'\rlee B:ak Sarvice
s ' I SGrvlceBrake Brake
3 = upervision
Sensors (3) ansor Data e el N ‘
TSR

|

('1 ||

User Interface User Interface
Safety No Safety

User Interface

i

Figure 7.5: "SafedRail" System Components

Environmental Conditions. Represent the physical interaction between envi-

ronment (train, track, others) with the sensors of the system.

Balise. Represents a Balise installed on the track which supplies to the train
supervision system with new information regarding the current position and

the track conditions.
Safe Train Interface. Represents the actuators for the application.
Supervision System.

— BaliseReader. Detect and read the information provided by the balise on

the rail.

— Supervision. The main component of the system responsible of carrying

out the functionality of the system.

— Sensors. Provide the actual position and speed of the train and the track

conditions to the system.

— User Interface. The driver interacts with the system through this inter-

face.

107

Chapter 7. Demonstration and Evaluation

Non-Functional Requirements

In the Safe4Rail system there are three main use cases, which are described below.
Figure 7.6 provides a diagram of selected use cases, showing their classification as

safety-relevant and non-safety-relevant and their relationships.

1. Activate emergency brake and realize diagnostics (when the system is in

Standby mode).

2. Supervise train speed and position (when the system is in Supervision mode).

(a) Estimate current position and speed.

i. Get sensor data.
ii. Get balise data.
iii. Calculate current position and speed.

(b) Supervise the current position and speed and activate warnings and

brakes accordingly.
i. Process release emergency brake command.

(c) Provide Information to the User.

3. Change between Standby and Supervision modes.
Based on the previous analysis, the following safety requirements are specified:

e (SIL4) Supervise train travelling speed and distance: The system shall super-
vise that train travelling distance and travelling speed does not exceed max-
imum safe authorized values, Movement Authority (MA) and speed profiles

respectively.

— (SIL4) Odometry: The system shall estimate traveling speed and
distance with bounded absolute errors (ABS DIST ERR_MAX and
ABS_SPEED_ ERR_MAX for a maximum distance between eurobalises
of DIST MAX _ BALISE and maximum speed of 500km /h).

— (SIL4) Mode: The system shall safely manage modes and their transi-
tions:
* NO POWER: The system shall stay in safe state
x STANDBY: The system shall stay in safe state

108

7.7.2 Description of the Demonstrator

uz [Fackag] F1-2 Safety Requirement Specifications [F1-201 Ssfety R eguirement Specification])

Mot safety relevant use cases
Provide iffor metionto the
. user

Drive

Supervis ethe cument position andspeed
and adivate warnings and theservice
brake scoordinghy

/ Safetrsin interface

/ o

/JKW:IRH

/ - data q
Es timsate current mosition _ Provide elise -

Time "E’m‘ Balise

-
/ o~
£ dnsldei, Calculate 0O
cludes] current position
and speed ﬁl

Supervisethe current position
and spesd and ad vate the
emergency brakes accordingly

X sincludes

Supenvicetrain spesd and
position for emergency
braking

wincludes Safe train ine face

Frocess relese
emargency brake
command

Change between
Standby ard
SUpenis ion mode
Driver

Driver

Figure 7.6: "Safe4Rail" Safety use-case diagram

x SUPERVISION: The system shall supervise that train travelling dis-
tance and travelling speed does not exceed maximum safe authorized
values, Movement Authority (MA) and speed profiles respectively.
(This implies the execution of multiple sub-safety functions such as

‘communicate with control centers’, "limit supervision’, etc.)

— (SIL4) Limit supervision: The system shall update maximum distance
and maximum speed profiles with received commands, and compare esti-
mated traveling distance and speed (odometry) with these limits. If any
’safe authorized limit’ is exceeded (distance and/or speed) the safe state

shall be activated.

— (SIL4) Rearm: Once the safe state is activated by ’limit supervision’
safety function, the system can only be rearmed (release emergency brake)

when the 'train is stopped’ and the 'driver commands rearm’.

e The safe state is emergency brake activated (this will lead the overall system

109

Chapter 7. Demonstration and Evaluation

110

to safe state, that is, train stopped).

e The fault-hypothesis is single fault support (non-byzantine).

The Architects analyze system safety requirements and mentally identify possi-
ble architectures and safety techniques to be used. They start defining the European
Vital Computer (EVC). They identify Triple Modular Redundancy (TMR) as a de-
sign pattern of interest in order to reach a SIL4 by means of "composite fail-safety"
technique. The TMR requires an external safety hardware majority voter imple-
mented with two independent majority voters. Majority voters require six digital
outputs of the TMR (three per majority voter and each digital output controlled
by a different computation channel) to generate two independent emergency brake
majority commands to the train-interface. Regarding the internal structure of the
TMR, a black channel is selected to enable the communication among computation
channels. Therefore a Safety Communication Layer pattern is already integrated.
A data agreement protocol can be used in order to reach an agreement on the input
values to be used by computation channels (input sensors are connected end-to-end
to a single computation channel). This enables bit-exact execution of software that
simplifies diagnosis. In order to avoid malicious intrusions a Secure Communica-
tion Layer pattern is integrated. Appendix B provides the full description of these

patterns.

7.3 An Overview of the TERESA Repository Con-

tent

The TERESA repository contains so far (as of January 2013):
e Property Libraries. 69 property model libraries (see the left part of Figure 7.7):

— 16 Unit Libraries
— 23 Type Libraries

— 20 Property Category Libraries
e Pattern Libraries. 59 pattern models (see the right part of Figure 7.7):

— 20 System Level patterns (12 DI, 8 DS)

— 25 Architecture Level patterns (9 DI, 16 DS)

7.7.3 An Overview of the TERESA Repository Content

— 14 Design Level patterns (3 DI, 11 DS)

— 0 Implementation Level patterns (0 DI, 0 DS)

P Gaya Artifact Designer i3 ¥ =0
| Arabion Search I Maravas Search | Tiqueo Search

Tiqueo Search Form

~ Search

Keywords

Advanced Search

Result

- |2 Unit Libraries
- =i Type Libraries ‘

| »

m

a =), Category Libraries
#1) sdCategorylibrary
1) resourceCategorylibrary
#r) AT_IKERLAMN_Category
1) AT_IKERLAN_Dependability_Categor
#r) AT_IKERLAMN_Security Category
1) CategoryLibrary_CJ
P} Securitylibray_C)

® NECatennnd thran:
4| [l | 3

(68 found libraries)

[1mport | | Save as]

Arabion Search | Maravas Search | Tigueo Search

B Gaya Artifact Designer I3 ¥ =0

Arabion Search Form

w Search

Keywords

Advanced Search

Result

s | f= System
> £+ Architecture
4 £= Design
a4 9 DI Pattern
2 BlackChannel@Module
"E" SecureCommunication@Module
$5) SRR_DI
4 g5 DS Pattern
2 BlackChannel@Module_Railway

#1 Natafarccment@RAND
4 | 1 | 2

m

2 RHP_Watchdog@DetailedDesigr

(59 found patterns)

[Import] ’ Save as

Figure 7.7: Repository Content

The following tables depict the subset of the railway pattern language for the
Safe4Rail application and the subset of metrology pattern language for the Metering

Gateway application, respectively.

111

Chapter 7. Demonstration and Evaluation

Railway Domain

Security / Domain
Pattern Dependability Supported Development Stage
System Concept
Domain System Architecture
Independent Software Architecture
- Detailed Design
SafetyCommLayer Dependability System Concept
Railway DoHisin System Architecture
Y Software Architecture
Detailed Design
; o Domain Independent System Concept
Hypervisor Dependability Railway Domain System Architecture
Domain ndependent | — SIS Corcept
MajorityVoter Dependability Y.

Software Architecture

Detailed Design

ReciprocalMonitori

Dependability

Domain Independent

Software Architecture

Software Architecture

ng Railway Domain Detailed Désian
i System Concept
i Pomaln Indepenaent System Architecture
TMR Dependability System Concept
Rallwai: Bomdin System Architecture
Domain Independent gystem gor;_::_ept
SecurityCommLaye) ystem Archibecture
r Security System Architecture
Railway Domain Software Architecture
Detailed Design
. System Architecture
Watchdog Security Domaliy Independant Software Architecture
Railway Domain System Architecture
System Concept
si " : System Architecture
DataAgreement Dependability Railway Domain Eaftirs AreRIGEiIFS
Detailed Design
Table 7.1: Railway Patterns
Security / ;
Pattern Dependability Domain Supported Development Stage
Secure Remote » Detailed Design
Readout e Metrology: Bomaln Implementation
Wakeup Service Security Metrology Domain Detailed Design
Secure ; Domain Independent : .
Communication . Metrology Domain Petalled Deslgn
Secure Logger Security Metrology Domain Detailed Design
Key Manager Security Metrolegy Dormain Detailed Design
RNG Test Security Metrology Domain Unit Test
Smart Meter
Gateway Security Metrology Domain Software Architecture
Skeleton

112

Table 7.2: Metrology Patterns

7.7.4 Modeling of Safe4Rail

7.4 Modeling of Safe4Rail

This section deals with the modeling of the Safe4Rail platform and application
using the tool-chain presented in chapter 6. First, we model the platform resources
using the predefined libraries of resource categories. Then, the resulting platform

model, is used as input to model the application based on the selected S&D patterns.

7.4.1 Safe4Rail Platform Modeling

In order to ease the definition of the platform model used along this study, we
have used Matho which provides a tree editor for resources modeling as shown in
Figure 7.8. The Matho allows to define the available platform by creating and
incorporating the resources corresponding to each of the platform elements. These
resources are tagged and configured using the resource category libraries and the
property category libraries imported from the repository, so that the platform model
can be built subsequently as a set of configured resources. The following table 7.3

gives a idea on how this platform is defined using the Matho tool.

- =

[Project Explorer 5 =5 % B8 L] Railway_platfomDescription.rmm 52 S
4 = SafedRailway 1) Resource Set
& patterms a§y platform:/resource/SafedRailway/ resource/model/Railway_platfomDescription.mm
& pelibrary 4 4 Serm Model Railway_platformDescription
4 = {esourca &# Serm Resource InteldtomZ530
4 [model Serm Resource Spartran_6_LX150T
7 Railway_platfomDescription.mm 4 3 Serm Resource DDR2RAM

% Raitway_ResourceCategoryLib.mm W=

1l Rallwey ResourceGenericCategorylib.mm ® Single Value Specification 1000
b T sitsec < Serm Property memory consumption
& teresa
> B# Serm Resource PowerSupplyFPGA

1= teresalautomative [&# Serm Resource CompactFlash

= teresathomeControl B Serm Resource TPM
» I teresabmetrology Serm Resource Voter
= teresadrailway > Serm Resource Watchdog

platform:/resource/Safed Raitway/polibrary/model/Railway_ResourceTypelibtm
platform:/resource/SafedRailway/pclibrary/maedel/Railway_ResourceUnitLib.tm
platform:/resource/Safed Railway/pclibrary/model/Railway_ResourcePropertyCategornyLib.tm

Selection | Parent| List| Tree| Table| Tree with Columns

E Properties 22 =& & =g
Property Value

= o Category Il Property Category RAMSize
o - =
EERiie = Computable 5 false

> platform:/reseurce/SafedRailway/resource/model/ » Description =

% platform:/resource/Sated Railway/pclibrary/model| = 1 =

%} platform:/resource/Safed Railway/pelibrary/model; o = total memory

%

ti_platform:/resource/SafedRailway/ pclibrary/madel;
'

Figure 7.8: Safe4Rail platform description using Matho tool

113

Chapter 7. Demonstration and Evaluation

114

Resource Resource Property category | Resource property
category
IntelAtom CPU CPUTime Execution time reference
7530
CPU CPUTime Total CPU Time consumption
Spartran 6 | FPGA FPGATime FPGA execution time refer-
LX150T ence
FPGA FPGATime FPGA time consumption
PowerSupply PowerSupply powerConsumption Available powerSupply con-
FPGA sumption
PowerSupply powerConsumption powerConsumption
DDR2 RAM | RAM ramsize total memory
RAM ramsize memory consumption
CompactFlash | AuxilaryMemory memorysize total of auxilary memory
AuxilaryMemory memorysize auxilary memory consump-
tion
TPM TPM TPMsize Total of TPM memory
TPM TPMsize TPM memory usage
TPM TPMtime TPM execution time reference
TPM TPMtime TPM time consumption
Voter Voter Votertime Voter execution time reference
Voter Votertime Voter time consumption
WatchdogHW | Watchdog WatchdogTime watchdog execution time ref-
erence
Watchdog WatchdogTime watchdog execution time for

timer management

Table 7.3: Hardawre architecture platform

7.7.4 Modeling of Safe4Rail

7.4.2 Safe4Rail Application Modeling based on S&D Pat-

terns

To fulfill the non-functional requirements identified previously in section 7.2.2 a
set of patterns are selected and imported from the TERESA repository. Figure 7.9
show how this patterns are interconnect to form the whole pattern system. In the
following, Table 7.4 and Table 7.5 give a description of the patterns. Note however,
that we kept only the resource properties of the patterns for simplicity and because

this part (i.e. resource properties) will be used for resource consumption analysis.

SecureComSSL
TPM I
I
<<specializes>> 1
1
1
SecureComSSL %: 1 P
<<isSimilar>>
N-version 1
SecureCom programming 1 ik
<<isAnAiternative>> |
<<refines>> I
y / <<yses>> <<USEsS>> 1
SecureComHMAC 1 Similars
SafetyC CRC Vi : e
afetyComm oter I Voter
<<specializes>> 1
<<refines>> 1
<<uses>> 1
SecureComHMAC I
TPM SafetyComm |
1
App— 1 <<isSimilar>>
reciprocal } DataAgrement
Monitoring Rataarment 1
1
| <<isSimilar>>
Watchdog 1 Watchdog
1
1
Software patterns Hardware patterns

Figure 7.9: Architecture of complete pattern system

In order to model the application based on the selected patterns, we have used
Arabion following modeling steps as explained in Section 6.7. This means that we
have started by modeling the whole pattern system including all the patterns and
the relationships between them as shown in Figure 7.9. Then, using the configura-
tion generation algorithm introduced in Section 4.4, we get a set of pattern system
configurations. Next, we will see how some of these configurations will be used for

the resource consumption analysis.

115

Chapter 7. Demonstration and Evaluation

Pattern Resource cate- | Property category | Resource property
gory
SecureCommSSL | CPU CPUTime CPU resource time for encryption
RAM ramsize memory resource for encryption
PowerSupply powerConsumption extra energy cost for encryption
CPU CPUTime CPU resource for keyExchange
RAM ramsize memory resource for keyExchange
PowerSupply powerConsumption extra energy cost for keyExchange
AuxilaryMemory | memorysize memory resource for keyStorage
CPU CPUTime CPU resource time for authentication
RAM ramsize memory resource for authentication
AuxilaryMemory | memorysize memory resource for authentication
keyStorage
PowerSupply powerConsumption extra energy cost for authentication
SecureCommSSL | CPU CPUTime CPU resource time for encryption
TPM
RAM ramsize memory resource for encryption
PowerSupply powerConsumption extra energy cost for encryption
TPM TPMsize TPM capacity usage for keyMangament
TPM TPMtime TPM execution time for keyMangament
PowerSupply powerConsumption TPM extra enery cost for keyMangament
TPM TPMsize TPM capacity usage for authentication
TPM TPMtime TPM execution time for authentication
PowerSupply powerConsumption TPM extra energy cost for authentication
SecureComm CPU CPUTime CPU resource time for HMAC computa-
HMAC tion
RAM ramsize memory resource for HMAC computaton
AuxilaryMemory | memorysize memory resource for HMAC storage
PowerSupply powerConsumption extra enery cost for HMAC managment
SecureComm TPM TPMsize TPM capacity usage for HMAC manag-
HMAC TPM ment
TPM TPMtime TPM execution time for HMAC manag-
ment
PowerSupply powerConsumption extra enery cost for HMAC managment
SafetyCommCRC | CPU CPUTime CPU resource time for CRC computation
RAM ramsize memory resource for CRC computation
PowerSupply powerConsumption extra enery cost for CRC computation

Table 7.4: Architecture of pattern system - Part 1

7.7.4 Modeling of Safe4Rail

Pattern Resource cate- | Property category | Resource property
gory
VoterSW CPU CPUTime CPU resource time for voting
RAM ramsize memory resource for voting
PowerSupply powerConsumption extra energy cost for voting
VoterHW Voter Votertime voter execution time for voting
PowerSupply powerConsumption extra energy cost for voting
WatchdogSW CPU CPUTime CPU resource time for timer management
RAM ramsize memory resource for timer management
PowerSupply powerConsumption extra energy cost for timer management
WatchdogHW Watchdog WatchdogTime watchdog capacity usage for timer man-
agement
PowerSupply powerConsumption extra energy consumption for timer man-
agement
N-version pro- | CPU CPUTime CPU resource time for execution N soft-
gramming ware versions
(TMRSW)
RAM ramsize memory resource for execution N software
versions
PowerSupply powerConsumption extra energy cost for execution N software
versions
TMRHW PowerSupply powerConsumption extra energy cost
Reciprocal Moni- | CPU CPUTime CPU resource time for node checking
toring
RAM ramsize memory resource for node checking
PowerSupply powerConsumption extra energy cost for node checking
DataAgrementSW | CPU CPUTime CPU resource time for acquiring inputs
RAM ramsize memory resource for acquiring inputs
PowerSupply powerConsumption extra energy cost for acquiring inputs
CPU CPUTime CPU resource time for agreement process-
ing
RAM ramsize memory resource for agreement processing
PowerSupply powerConsumption extra energy cost for agreement processing
DataAgrementHW| FPGA FPGAtime FPGA execution time for agreement pro-
cessing
PowerSupply powerConsumption extra energy cost for agreement processing

Table 7.5: Architecture of pattern system - Part 2

117

Chapter 7. Demonstration and Evaluation

7.5 Analysis of Safe4Rail application

Among the generated configurations of our pattern system, we have selected

only four to be analyzed. The idea is to give each time a different scenario with a

configuration. Thus, the selected one are as following:

<<isAnAlternative>>
<<refines>>

N-version

Scenario 1: "Base" configuration (Figure 7.10).
Scenario 2: "isSimilar" Configuration (Figure 7.11).
Scenario 3: "isAlternative" Configuration (Figure 7.12).

Scenario 4: "Specializes" Configuration (Figure 7.13).

<<isSimilar>=

reciprocal

Monitoring

Software patterns

1
|
1
1
1
1
1
programming 1 LR
L
1
<<yses>> I
1 .
1 <<igSimilar>> paasssssssasassas :
Voter I Notar

T T,
1

<<yses>> l
|
1
1
1 cissimiaess e

DataAgrement 4 DataAgrement
S aaaa
1
I <<igSimilar>> e
Watchdog f Watchdog

|
1

Hardware patterns

Figure 7.10: Pattern system base configuration

To describe the conduct of a scenario, we have selected the "isSimilar" configu-

ration. As shown in Figure 7.11, in this configuration we have replaced the software

voter by a hardware voter and calculate the impact on the resource consumption of

this system of patterns. Both the system of patterns and the platform are modeled

as shown previously. To calculate the whole resource consumption of the pattern

system, first, we perform the model-to-model transformation. This takes as an in-

put the pattern system model and the platform model and produces new platform

118

7.7.5 Analysis of Safe4Rail application

 SecureComsSL
TPM !
.................. I
<<specializes>> 1
1
1
ComSSL 1
S ; i <<isSimilar>>
-version 1
programming 1 TMR
<<isAnAlternative>>| r
1
RTINS RPN : <cuses>> |
i SecureCombmac ¥ /Y. 1
: : 3 | <<isSimilar>>
Voter I Voter
<<specializes>> oo TN 1
1
o R . <<uses>> 1
. SecureComHMAC : 1
: TPM . |
1
- I S— 1 <<isSimilar>> IR
reciproca 1 . DataAgrement
Monitorng O N B
1
1 <<isSimilar>> S
Watchdog f Watchdog
.
1
Software patterns Hardware patterns
Figure 7.11: IsSimilar pattern system configuration
: SecureComsSSL ;
TPM I
.................. "
<<specializes>> 1
1
.................... i
SecureComSSL 1
___________________ N s 1 <<isSimilar>> efetetbatatatatebotatebatatatel
-version
programming 1 TMR
T o s
<<refines>> 1
<<Uses>> 1
SecureComHMAC 1)
| <<isSimilar>> it =
Voter I Molar
<<specializes>> 5
1
------------------- <<uses>> 1
SecureComHMAC 1
TPM |
1
- I S 1 <<isSimilar>> R
reciproca I : DataAgrement
Monitoring P [e e
1
1 <<igSimilar>>
Watchdog t Watchdog
e
I
Software patterns Hardware patterns

Figure 7.12: IsAlternative pattern system configuration

model annotated with the calculated values of the resource consumption (see Fig-

ure 7.14). Then, we perform the model-to-text transformation to produce HTML

file for visualizing the result of the previous calculation (see Figure 7.15).

Table 7.6 and Figure 7.16, give a comparative view of the resource consumption

of the four pattern system configurations.

119

Chapter 7. Demonstration and Evaluation

120

SecureComSSL
TPM

<<specializes>>

<<jgSimilar>> fatibebetibatitibetetitebetibetot

reciprocal
Monitoring

I
I
1
1
1
1
N-version 1
programming 1 TMR
e
1
<<uses=> 1
: <<igSimilar>> Aaba b ded e dd b s "
Voter I Noter
T .
1
<<yses>>]
1
1
1
S —_— 1 <<isSimilar>> I
DataAgrement 4 DataAgrement
5 S o
1
Watchdog : <<isSimilar>>
|
1
Software patterns Hardware patterns

Figure 7.13: Specializes pattern system configuration

[} *Railway_platfomDescriptionSpecializemm 3

= 0

a4 || platform:/resource/testmodels/resource/model/Railway_platfomDescriptionSpecializer «

a4 < Serm Model Railway_platformDescription
4 <4 Serm Resource IntelAtomZ530

4 < Serm Property Execution time reference
<4 Single Value Specification 3600

4 < Serm Property Total CPU Time consumption
<+ Single Value Specification 533.0

<+ Serm Resource Spartran_6_LX150T

4 Serm Resource DDR2_RAM

<+ Serm Resource PowerSupplyFPGA

<+ Serm Resource CompactFlash

< Serm Resource TPM

< Serm Resource Voter

> 4 Serm Resource Watchdog

> |Z| platform:/resource/testmodels/pclibrary/model/Railway_ResourcePropertyCategoryLib.

4 m

m

1

+

= Properties 22

Property Value
Description =
Simple Type % Measurement Type Duration
Simple Unit “ Unit Second
Value '=533.0

Figure 7.14: Calculation of the resource consumption - Scenario 2 (M2M transfor-

mation)

7.7.6

Evaluation

¥ IntelAtomZ530

> Spartran_6,

2 DDRZ_RAL

_LX150T

2 PowerSupplyFPGA

» CompactFlash

>TPM
¥ \oter

» Watchdog

Railway_platformDescription

IntelAtomZ530

Name Max Value Usage in %
Execution time 3600.0 1218 | |
reference

Spartran_6_LX150T

Name Max Value Usage in %
FPGA execution time 2000.0 0.0

reference

DDR2_RAM

Name Max Value Usage in %
total memory 1000.0 57.0]
PowerSupplyFPGA

Name Max Value Usage in %
available powerSupply 50.0 84.0

consumption

CompactFlash

Name Max Value Usage in %
total of flash memory 320 625 | |
TPM

Name Max Value Usage in %

Total of TPM memory 2.0 0.0

TPM execution time 1000.0 0.0

reference

Figure 7.15: Visualization of the resource consumption - Scenario 2 (M2T transfor-

mation)
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Resource Property category |Max value|Usage|Usage in %|Usage|Usage in %|Usage| Usage in %|Usage|Usage in %
IntelAtomZ530 CPU Time (s) 3600 | 439 12,19% 379 | 10,53% | 339 | 942% 533 | 1481%
Spartran_6_LX150T|FPGA Time (s) 2000 0 0,00% 0 0,00% 0 0,00% 0 0,00%
DDR2_RAM RAM Size (MB) 1000 570 | 57.00% 522 | 5220% | 398 | 39,80% | 398 | 39,80%
PowerSupplyFPGA|Power consumption| 50 42 84,00% 44 | 8800% [36 | 72.00% | 50 | 100,00%
CompactFlash Memory Size (MB) 32 2 6.25% 2 6,25% 4 12,50% 0 0,00%
TPM TPM Size 2 0 0,00% 0 0,00% 0 0,00% 1 £0,00%

TPM Time 1000 0 0.00% 0 0,00% 0 0,00% 50 5,00%
\oter \oter Time 500 0 0,00% 50 10,00% 0 0,00% 0 0,00%
Watchdog Watchdog Time 200 0 0.00% 0 0,00% 0 0,00% 0 0,00%

Table 7.6: Analysis of the four scenarios

7.6 Evaluation

7.6.1 Context and Description of the Methodology for Ex-

perimentation

This section provides a preliminary evaluation of the approach along ISO-9126’s

quality-in-use dimensions, i.e.

effectiveness, productivity, safety and satisfaction.

121

Chapter 7. Demonstration and Evaluation

122

Watchdog Time
Voter Time —

M Time

TPM Size Scenario 1

Memory Size (MB) [H— W Scenario 2
) W Scenario 3
Power consumption | o oo s
cenario
RAM Sze (D) ——

FPGA Time (s)
CPU Time (5) [

0,00% 20,00% 40,00% 60,00% 80,00% 100,00% 120,00%

Figure 7.16: Analysis of the four scenarios - Graphic

Eleven TERESA members participated. They were handed out a sheet with instruc-
tions for each task (e.g. what properties to specify and what patterns to develop,
when to take note of the time).

The study was divided into three tasks. Before they started, a general description
of the aim of the study was given. Some running examples were introduced to them.
After these two tasks, achieved during the TERESA MDE workshop in Toulouse
(April 2012), a 6-months evaluation was conducted.

All the subjects were already familiarized with MDE, S&D patterns and Eclipse,
though some did not know some of the companion plugins (e.g. Acceleo). Hence, the
generation of documentation was not part of the evaluation. The procedure includes
five tasks: SEMCO plug-in installation, property models development, pattern de-

velopment, patterns instantiation and patterns integration.

7.6.2 Results
Effectiveness

Figure 7.17 shows a table providing the fulfilment for the five tasks. One subject
had problems in using UML editors (Rhapsody or Papyrus) for pattern integration,

and hence, he was excluded from the rest of the experiment.

Productivity

Productivity is measured as the number of minutes required for each task (only
for those that successfully completed the first task): SEMCO plugin installation
took between 10 and 15 minutes, with a mean of 12; property model development

took between 20 and 60 minutes, with a mean of 42.5 minutes; pattern development

7.7.6 Evaluation

| Item Frequency | % |
Task 1. Plugin installation 3.5 100
Task 2. Property Model development | 5.5 100
Task 3. Pattern development 10 100
Task 4. Pattern instantiation 11.2 100
Task 5. Integration with other tools | 11.2 90

Figure 7.17: Effectiveness Results

took between 40 and 60 minutes, with a mean of 53 minutes; pattern instantiation
took between 10 and 30 minutes, with a mean of 19 minutes and finally, pattern

integration took between 30 and 120 minutes, with a mean of 61 minutes.

| Ttem | Mean (minutes) | St. Dev. |
Task 1. Plugin installation 12 2.8
Task 2. Property Model development | 42.5 11.5
Task 3. Pattern development 53 8.4
Task 4. Pattern instantiation 19 8.8
Task 5. Integration with other tools | 61 35.4

Figure 7.18: Productivity Results

User Satisfaction

Satisfaction is the capability of the software product to satisfy its users. In this
case, the product is the repository of S&D patterns engine, and its ability to develop
a trusted RCES application. We asked participants to give scores from 1 to 5 (5 is
the best) and comments. We first evaluated the perceived usefulness of the solution
itself (items 1-5). Next, we focus on the tool-suite as a mean to build the modeling
artifacts. We separately collected the satisfaction along the four tasks (items 6-14).
Finally, we want also to measure the willingness to use repository of modeling of
S&D patterns in the future in the related activities (items 15-20). The following
table depicts an overview of the results of our experiment.

These scores indicates the degree of satisfaction of the users and provides a

feedback to us in order to enhance our specification languages and the tool suite.

Analysis of Results

A 6-month evaluation identified the following advantageous features:

e For Design:

123

Chapter 7. Demonstration and Evaluation

‘ Item ‘ Mean ‘ St. Dev.
1. I think 'model based repository’ is a good idea 4.90 0.18
2. I think 'model based repository’ helps to keep focus without | 4.40 0.48
being distracted by other aspect of software engineering 4.40 0.48
3. I think 'model based repository’ are useful for defining 4.50 0.48
meaningful "units of solution’

4. 1 think 'model based repository’ save me time to develop 4.40 0.50
S&D Embedded Systems

5. I think 'model based repository’ avoids re-inventing 4.60 0.48
existing solutions

6. I think the installation of the SEMCO plug-in is easy 4.10 0.48
7. I think repository populating tools are easy to use 3.80 0.54
8. T think repository access tools are easy to use 4.10 0.68
9. I think it is easy for me to develop new S&D patterns 3.50 0.36
10. I think it is easy for me to develop new property models 3.80 0.70
11. I think S&D patterns instantiation is easy to use 3.80 0.64
12. T think properties models instantiation is easy to use 3.50 0.64
13. T think S&D patterns integration is easy to use 3.40 0.60
14. T think property models integration is easy to use 4.60 0.60
15. T would like to develop S&D patterns in the future 3.80 0.56
16. T would like to develop properties models in the future 4.10 0.68
17. I would like to install other SEMCO plugins in the future 3.50 0.54
18. I would like to exchange SEMCO in the future 3.60 0.56
19. I would like to customize some SEMCO plugin in the future | 3.60 0.76
20. T would like to extend some SEMCO features in the future | 3.70 0.83

Figure 7.19: Satisfaction Results from 1 (total disagreement) to 5 (total agreement).

— Pattern language support

Helpers for pattern selection

— Combined textual /graphical input

— Data/Property typing : libraries

— Multiple design environment support

e For V&V:

— Validation at design time
— Model validation

— Guidelines for pattern and model integration

These results suggest that subjects like the notion of model-based repository as

a way to speed the development of S&D applications by design (e.g. reuse existing

124

7.7.7 Synthesis and Discussion

solution through pattern), and in so doing, improving focus on tough tasks (e.g.
implementation). However, pattern integration stands up as the main stumbling
block for pattern-based system development adoption. More to the point, if we
consider that the subjects were programmer natives (i.e. accustom to use program-
ming language for security engineering). Specifically, users tend to overlook the four
rules that govern pattern-based system development (i.e. (1) each pattern must be
specified domain-application independently, (2) more than one pattern is required
to fulfill one S&D property, (3) every pattern should be instantiated in the target
domain-development environment, and (4) every pattern should be integrated in the
context of the under development system).

Our future work includes envisaging mechanisms that assist users in obtaining
scenarios along these four rules. This is far from trivial as we have to deal with

pattern integration, which are often a domain-development environment specific.

7.7 Synthesis and Discussion

The pattern, properties and resources modeling languages used in this thesis
have evolved compared to ones presented in [31] and [87], respectively. In fact,
the successful evaluation by the TERESA partners, mainly for the railway domain
not only resulted in a set of refinements and improvements, but it also pointed out
the major industrial requirements that the framework now meets. One of them
is the repository storage and interactions support in the artifact and the system
development lifecycles. For instance, a repository of S&D patterns allows reusing
validated patterns. A pattern designer defines patterns and stores them in the
repository. A system designer reuses existing patterns from the repository through
the instantiation mechanisms which leads to simpler and almost seamless designs
with quality improvement and cost saving. Another one is the materialization of
links and references among patterns with regard to the domain, development lifecycle

stage and the ones related to the pattern language itself.

7.7.1 Recapitulation and Perspectives

The approach empowers the embedded systems engineer to reuse solutions for
resource, security and dependability, without specific knowledge on how the solution
is designed and implemented. This enables to work at a higher level of abstraction,

which may significantly reduce the cost of engineering the system.

125

Chapter 7. Demonstration and Evaluation

126

The resulting repository prototype, as a data structure that stores artifacts and
that allows users to publish and retrieve them, with its documentation and a number
of guidelines, will facilitate 1) the population of the repository with further security
and dependability patterns, and 2) the transformation of the S&D patterns into
platform dependent specifications. Further on, the framework will be completed

targeting a set of additional concerns, including:

1. S&D pattern modeling to get a common representation of patterns for several
domains in the context of RCES (1) to capture the essence of the pattern,
(2) to provide enough detail to improve the usability of the pattern by a non-
specialist, (3) to provide sufficient information to be validated, (4) to provide
sufficient explanation to improve the usability of the pattern in other domains

as well as the domain in which the pattern was defined.

2. Patterns validation to enhance the pattern quality using formal validation ap-
proaches before publishing them in the repository. The resulting validation
artifacts will be used during the pattern integration, guaranteeing the correct-
ness of this step, as well as for the implementations with automatic derived

guidelines for platform dependent implementations.

The expected goal is to highlight the content of the repository in the form of
a map representing pattern dependencies. The proposed pattern and properties
specification languages supports the specification of S&D patterns and their related
properties, mainly S&D and resource properties. In addition to that, the languages
may be used to specify other kind of patterns. For instance, memory, concurrency
and distributed patterns [58].

In a wider scope, new specification languages may be designed and stored with
their related artifacts in the repository. For instance, components, resources, analysis
and simulation are important kinds of artifacts that we can consider in our framework
to serve systematic construction of large complex systems with multiple concerns.
As a result, specification languages, roles and compartments related to each of them
can be clearly defined and applied in system development for more flexibility and
efficiency.

In addition, the tool suite promotes the separation of concerns during the devel-
opment process by distinguishing the roles of the stakeholders. Mainly, the accessing
to the repository is customized regarding the development phases and the stakehold-

ers domain and system knowledge.

7.7.7 Synthesis and Discussion

7.7.2 Limits of the Approach

In the presented approach, different levels of abstraction are used to get a com-
mon representation of patterns for several domains. In RCES concerns, systems
include a combination of hardware and software components. This add some diffi-
culties to build a simple modeling framework. A high level of abstraction is proposed
to represent S&D patterns to capture aspects of security and dependability in the
different domains of RCES, not an implementation of a specific solution. Other

issues are:

e The repository is generated from existing metamodels. The question raised is
whether the proposed structure can support evolution and dynamic specifica-

tion languages.

e Access control policy is delegated to the underlying platform implementation.
In our case, this policy is organized around compartment not around the arti-
fact.

e The instantiation uses model transformation techniques. We have investigated
a UML based IDE. The question raised is whether our proposed framework
can support new development environments not yet covered by the repository

Access Tool and the existing model transformations.

e In order to integrate a pattern in a system (application), some significant ad-
ditional information about the pattern is required. For instance, the interfaces
and their requirements. The goal is to capture how the system interacts with
the patterns, and how the internal structure of the pattern interacts with other
patterns in the case of composite patterns. Especially, when dealing with soft-

ware and hardware components.

127

Chapter 7. Demonstration and Evaluation

128

Chapter 8
Conclusion

Security and dependability requirements are incorporated to an increasing num-
ber of systems. These newer restrictions make the development of those systems
more complicated than conventional systems [59]. The research community is seek-
ing approaches to ease the design of these systems through reuse techniques that
empower the designer to generate a system or part of it from a set of common and
reusable artifacts.

The integration of S&D features requires the availability of both application
domain specific knowledge and S&D expertise at the same time. An integrated tool-
supported approach for capturing and providing this expertise by the means of S&D
patterns is proposed in this thesis. Special emphasis will be devoted to promote
the particularly challenging task of efficiently integrating security and dependability
solutions within the restricted available design space for embedded system. Fur-
thermore, one important focus is on the potential benefits of the combination of
Model-Driven Engineering with a pattern-based representation of security and de-

pendability solutions.

8.1 Summary and Contributions

Model-Driven Engineering (MDE) provides a very useful contribution to the
design of RCES applications since it bridges the gap between design issues and
implementation concerns. MDE can potentially maintain the separation of concerns
between application and S&D, by ensuring that S&D designs can be reused at a later
stage by application designers. Significant research is being carried out concerning

MDE for embedded systems, at the level of system architecture, design techniques,

129

Chapter 8. Conclusion

130

testing, validation, proof of correctness, modeling, software reliability, operating
systems, parallel and real-time processing. But still research is needed on the use of
MDE to enforce the integration of S&D requirements into the engineering process
and to support the reuse of S&D mechanisms. One important focus in this field is on
the potential benefits of the combination of Model-Driven Engineering with pattern-
based representation of security and dependability solutions. Particular interest is
given to the development of models and tools to support the inclusion of S&D issues

into the RCES engineering process.

[Maaeung Artifact Design Framework]

SEMCO4TERESA

Property
Designer

"

B

Pattern
Designer

Resource
Designer

System
Engineer

eg. Rhapsody Access tools

Figure 8.1: Tool-flow of the MDE-tool suite

The proposed approach promotes a model-based development coupled with a
model-based repository (part 1 of RG2) for RCES applications, focusing on the
problem of integrating non-functional properties by design to foster reuse. The
main goal of the repository is to share expertise, interacting with existing engi-
neering processes in order to build trusted applications for Resource-Constrained
Embedded Systems. The development of a model-based repository of modeling ar-
tifacts that follows the MDE paradigm is targeted in this thesis. Our framework
is based on metamodeling techniques that allow to specify these modeling artifacts
(part 1 of RG1) at different levels of abstraction and an operational architecture of
the repository.

Furthermore, we walk through a prototype with EMF editors and a CDO-based
repository supporting the approach. Currently the tool suite named SEMCOMDT is

provided as Eclipse plugins. An example of scenario of using the proposed integrated

8.8.2 Limitations and Future work

set of tools is visualized in Figure 8.1. The developed tool suite aims to support
the development, the management and the use of the modeling artifacts discussed
in this work through (part 3 of RG1 and part 2 of RG2):

1) a framework to specify the modeling artifacts using Eclipse technologies (EMF,
GMF, CDO, Papyrus) to populate the model-based repository (part 3 of RG1), and

2) a repository of integrated models (patterns, S&D models, ..) and a repository
access tool to allow application designers to capitalize on the MDE even if they are
not experts in modeling (part 2 of RG2), and

3) a set of transformation engines to adapt the representation of S&D patterns
into platform dependent specifications. Moreover, we provide a set of transformation
that can be useful in the analysis of software architecture based on patterns ((part
3of RG1).

The approach presented here has been evaluated with the Safe4Rail application
in the context of the TERESA project for RCES application based on S&D patterns
(RG3). For instance, a pattern designer defines patterns and stores them in the
repository. A system designer reuses existing patterns from the repository through
instantiation mechanisms which leads to simpler and seamless designs with higher
quality and costs savings. By this illustration, we can validate the feasibility and

effectiveness of the proposed specification and design frameworks.

8.2 Limitations and Future work

As a side remark, note that the goal is to obtain an even higher level abstraction
to represent S&D patterns to capture several facets of security and dependability in
the domain of embedded system applications, not an implementation of a specific
solution. The key is then to show that the major sectors of trusted embedded system
applications dealing with security and dependability are covered by our approach.
This result leads to some anticipated issues about general techniques to model S&D
patterns. It is of particular interest to build a trusted computing engineering dis-
cipline that is suited to a number of sectors in embedded systems. An important
point concerns the completeness of the DSLs to support the evolution of the already
stored artifacts and to support the representation of new modeling artifacts. Thus, if
a domain specific artifact is missing, the repository supports extension mechanisms

which allows the user to add the needed artifact.

First evidences indicate that users are satisfied with the notion of 'model-based

131

Chapter 8. Conclusion

132

repository of S&D patterns’. The approach paves the way to let users define their
own road-maps upon the PBSE methodology. First evaluations are encouraging
with 85% of the subjects being able to complete the tasks. However, they also point
out one of the main challenges: automatic search for the user to derive those ’S&D
patterns’ from the requirements analysis. We plan to perform additional case studies
to evaluate both the expressiveness and usability of the methodology, the DSLs and
the tools. Our vision is for ’S&D patterns’ to be inferred from the browsing history
of users built from a set of already developed applications. The next steps of this

work consist of:

e Pattern System. The expected goal is to highlight the content of the reposi-
tory in the form of a map representing pattern dependencies. In contrast, the
proposed pattern and properties specification languages supports the specifi-
cation of S&D patterns and their related properties, mainly S&D and resource
properties. We are studying more sophisticated techniques for pattern system
building. In addition to that, the languages may be used to specify other kind

of patterns. For instance, memory, concurrency and distributed patterns [58|.

e Modeling artifacts. New specification languages may be designed and stored
with their related artifacts in the repository. For instance, components are
important kind of artifacts that we can consider in our framework to serve
for systematic construction of large complex systems with multiple concerns.
Moreover, test, analysis and simulation artifacts may be generated for the as-
sistance of safety development processes. As a result, specification languages,
roles and compartments related to each of them can be clearly defined and ap-
plied in system development for more flexibility and efficiency. In addition, our
tool suite promotes the separation of concerns during the development process
by distinguishing the roles of the stakeholders. Mainly, accessing the repos-
itory is customized regarding the development phases and the stakeholder’s

domain and system knowledge.

e Repository. All patterns are stored in a repository and organized to support
horizontal and vertical relationships between patterns. Thanks to this, it is
possible to find a pattern with an S&D criteria and previous design decisions.
Moreover, we plan to study the automation of the search and instantiation of
models and patterns and a framework for simpler specification of constraints

would be beneficial.

8.8.2 Limitations and Future work

e PBSE. We will seek integrating all the presented results in a more global
process within the pattern lifecycle (i.e. create, update, store patterns) and
the integration of a pattern in the whole application development lifecycle
stages. Finally, guidelines will be provided and stored in the repository (during
the pattern development) and reused (during the application development)
(i.e. help to select a suitable pattern with respect to the constraint and the

specificity of the target application and/or platform).

e Tool suite. With regard to the tool suite, we plan the development of a graph-
ical and/or textual DSL editor on the one hand and the use of the QVT
transformation rules as part of its functionalities. In addition, we will study
the integration of our tooling with other MDE tools, mainly those used in
RCES system development. For that, code generators need to implemented to
generate a restrictive set of code complying to the domains standards. With
regard to the tool-suite dissemination, currently the repository and the design
environment are provided as an Eclipse plugin and for the near future we in-
vestigate an additional implementation exposing web services for development
environments. We will also seek new opportunities to apply the framework to

other domains.

e Validation. We plan to perform additional case studies to evaluate both the
expressiveness and usability of the methodology, the DSLs and the tools. We
will seek new techniques for the automation of the proposed methodology and

the related tool suite.

133

Chapter 8. Conclusion

134

Bibliographie

1]

|2] . Qvt operational language. https://projects.eclipse.org/projects/modeling.mmt.qvt-

131

4]

5]

[6]

7]

18]

19]

. CDO Model Repository Overview. http://www.eclipse.org/cdo/. 19, 82

oml. 19

J-M. Jézéquel A. L. Guennec, G.n Sunyé. Precise modeling of design patterns.
In In Proceedings of UML?00. Springer-Verlag, 2000. 32

M. Hansen A. Pfitzmann. A terminology for talking about privacy by
data minimization: Anonymity, unlinkability, undetectability, unobservability,

pseudonymity, and identity management. 33, 2010. 13

C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language, volume 2
of Center for Environmental Structure Series. Oxford University Press, New
York, NY, 1977. 15, 32

Hany H. Ammar, Vittorio Cortellessa, and Alaa Ibrahim. Modeling resources

in a uml-based simulative environment, 2001. 31

A. Avizienis, J-C Laprie, B. Randell, and C. Landwehr. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 1:11-33, 2004. 12

Lothar Baum and Thorsten Kramp. Towards a uniform modeling technique for
resource-usage scenarios. In PDPTA, pages 1324-1329, 1999. 31

Philip A. Bernstein and Umeshwar Dayal. An Overview of Repository Technol-
ogy. In Proceedings of the 20th International Conference on Very Large Data
Bases, VLDB 94, pages 705-713. Morgan Kaufmann Publishers Inc., 1994. 21,
34, 61

135

Bibliographie

[10] J. Bézivin. Towards a precise definition of the omg/mda framework. In Pro-
ceedings of ASE’01, pages 273-280. IEEE Computer Society Press, 2001. 1,
14

[11] R Birukou, E. Blanzieri, P. Giorgini, and M. Weiss. Facilitating pattern repos-
itory access with the implicit culture framework. In Proceedings of "EuroPLoP
2007", 2007. 35

[12] F. Buschmann, K. Henney, and D. Schmidt. Pattern-Oriented Software Ar-
chitecture, Volume j: A Pattern Language for Distributed Computing. Wiley,
2007. 11

[13] G. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture: a system of patterns, volume 1. John Wiley
and Sons, 1996. 16

[14] I. Crnkovic. Component-based software engineering—new challenges in software
development. Software Focus, December 2001. 1, 40

[15] I. Crnkovic, Michel R. V. Chaudron, and S. Larsson. Component-based devel-
opment process and component lifecycle. In Proceedings of the International
Conference on Software Engineering Advances (ICSEA 2006), page 44. IEEE
Computer Society, 2006. 1, 40

[16] S. Ghosh D-K Kim, R. France and E. Song. A UML-based meta-modeling
language to specify design patterns. In Patterns, Proc. Workshop Software
Model Eng. (WiSME) with Unified Modeling Languages, 2004. 32

[17] J. Grundy D. Mapelsden, J. Hosking. Design pattern modelling and instanti-
ation using DPML. In CRPIT ’02: Proceedings of the Fortieth International
Conference on Tools Pacific, pages 3—11. Australian Computer Society, Inc.,
2002. 33

[18] F. Daniels. The reliable hybrid pattern: A generalized software fault tolerant
design pattern. In Proc. of the Pattern Language of Programs (PLoP’97), 1997.
17, 32, 33

[19] A. H. Eden E. Gasparis, J. Nicholson. LePUS3: An Object-Oriented Design
Description Language. In In: Gem Stapleton et al. (eds.) DIAGRAMS, LNAI
5223, page 3647367, 2008. 33

136

Bibliographie

[20]

21

[22]

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

Eclipse RCP. http://www.vogella.de/articles/EclipseRCP/. 19

R. B. France, J. M. Bieman, and B. H. C. Cheng. Repository for Model Driven
Development (ReMoDD). In MoDELS Workshops’06, pages 311-317, 2006. 34,
35

Robert B. France and Bernhard Rumpe. Domain specific modeling. Software
and System Modeling, 4(1):1-3, 2005. 15, 77

E. Gamma, R. Helm, R. E. Johnson, and J.Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995. 32, 47

V. Di Giacomo, M. Felici, V. Meduri, D. Presenza, C. Riccucci, and A. Tedeschi.
Using security and dependability patterns for reaction processes. In Proceedings
of the 2008 19th International Conference on Database and Expert Systems Ap-
plication, pages 315-319, Washington, DC, USA, 2008. IEEE Computer Society.
17, 32, 33

R. Girardi and A. Neres Lindoso. An ontology-based knowledge base for the
representation and reuse of software patterns. ACM SIGSOFT Software Engi-
neering Notes, 31(1):1-6, 2006. 35

J. Gray, J-P. Tolvanen, S. Kelly, A. Gokhale, S. Neema, and J. Sprinkle.
Domain-Specific Modeling. Chapman & Hall/CRC, 2007. 15, 77

B. Hamid. SEMCO Project (System and software Engineering
for embedded systems applications with Multi-COncerns support).
http://www.semcomdt.org. 19

B. Hamid, N. Desnos, C. Grepet, and C. Jouvray. Model-based security and
dependability patterns in RCES: the TERESA approach. In st International
Workshop on Security and Dependability for Resource Constrained Embedded
Systems (SD4RCES), 2010. 5

B. Hamid, J. Geisel, A. Ziani, JM. Bruel, and J. Perez. Model-driven engineer-
ing for trusted embedded systems based on security and dependability patterns.
In SDL Forum, pages 72-90, 2013. 6

B. Hamid, J. Geisel, A. Ziani, and D. Gonzalez. Safety Lifecycle Develop-
ment Process Modeling for Embedded Systems - Example of Railway Domain

(regular paper). In Software Engineering for Resilient Systems (SERENE),

137

Bibliographie

Pisa, Italy, 27/09/2012-28/09/2012, volume 7527 of LNCS, pages 63-75,
http://www.springerlink.com, septembre 2012. Springer. 7

[31] B. Hamid, S.Gurgens, C. Jouvray, and N. Desnos. Enforcing S&D Pattern
Design in RCES with Modeling and Formal Approaches. In Jon Whittle, editor,
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems (MODELS), volume 6981, pages 319-333. Springer, octobre 2011.
125

[32] B. Hamid and A. Ziani. An Environment for Design Software and Hardware As-
pects of Clock Synchronization and Communication in DRTES. In IEEE/IFIP
8th International Conference on Embedded and Ubiquitous Computing, EUC
2010, pages 60-67. IEEE, 2010. 7

[33] B. Hamid, A. Ziani, and J. Geisel. Towards Tool Support for Pattern-Based
Secure and Dependable Systems Development (regular paper). In ACadeMics
Tooling with Eclipse (ACME), Montpellier, France, 02/07/2015-02/07/20183,
http://portal.acm.org/dl.cfm, 2013. ACM DL. 5

[34] David Harel and Bernhard Rumpe. Modeling languages: Syntax, semantics and
all that stuff part i: The basic stuff. Technical report, 2000. 15, 77

[35] T. Henzinger and J. Sifakis. The embedded systems design challenge. In Pro-
ceedings of the 14th International Symposium on Formal Methods (FM), Lec-
ture Notes in Computer Science, pages 1-15, Ontario, Canada, August 2006.
Springer. 1, 9

[36] T. Holmes, U. Zdun, and S. Dustdar. MORSE: A Model-Aware Service Envi-
ronment, 2009. 35

[37] ISO. ISO 7498-2. . Information processing system - Open systems interconnec-
tions - Basic reference model - Part 2: Security architecture. Technical Report,
1989. 36

[38] ISO/IEC. ISO/IEC 13335-1. Information technology - Guidelines for the man-
agement of IT security - Part 1: Concepts and models for IT security . Technical
Report, 1996. 36

39] ISO/IEC. Standard: ISO/IEC 13335, 2004. 35

138

Bibliographie

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]
[49]
[50]

[51]

[52]

[53]

. Gomez C. Jouvray Y. Rouxel A. Perez J. L. Fernadez, R. Alonzo. Require-
ments engineering of trusted embedded systems. INCOSE, 2010. 13

R.E. Johnson and M. Hfiz. Security patterns and their classification schemes.
Technical Report, 2006. 36

A. G. Kleppe. A language description is more than a metamodel. In Fourth
International Workshop on Software Language Engineering, Nashville, USA,
Grenoble, France, 2007. megaplanet.org. 15, 77

Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA FEzxplained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2003. 15

C. Mayr, U. Zdun, and S. Dustdar. Reusable Architectural Decision Model for
Model and Metadata Repositories. In FMCO, pages 1-20, 2008. 34

J. McAffer, J-M. Lemieux, and C. Aniszczyk. Fclipse Rich Client Platform.
Addison-Wesley Professional, 2nd edition, 2010. 19

J. Miller and J. Mukerji. Mda guide version 1.0.1. Technical report, Object
Management Group (OMG), 2003. 15

Tammy Noergaard. Embedded Systems Architecture: A Comprehensive Guide

for Engineers and Programmers. Newnes, 2005. 11

OASIS. EbXML: Oasis Registry Services Specification v2.5, 2003. 34

OBEO. Acceleo. http://www.eclipse.org/acceleo/. 19

OMG. MOF QVT Final Adopted Specification, 2005. 15

OMG. UML Profile for Schedulability, Performance, and Time Specifica-
tion. http://www.omg.org/technology/documents/formal /schedulability.htm,
January 2005. 28

OMG. Meta Object Facility (MOF) Core Specification Version 2.0.
http://www.omg.org/cgi-bin /doc?formal /2006-01-01, 2006. 15

OMG. A UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded systems,Beta 2.
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf, June
2008. 20, 28

139

Bibliographie

[54] OMG. OMG Systems Modeling Language (OMG SysML).
http://www.omg.org/spec/SysML/1.1/, November 2008. 28, 29

[55] OMG. OMG Unified Modeling Language (OMG UML), Superstructure.
http://www.omg.org/spec/UML/2.2/Superstructure, February 2009. 15

[56] OMG. OCL 2.2 Specification, February 2010. 15

[57] N. F. Neves P. E. Verissimo and M. P. Correia. Intrusion-tolerant architectures:
Concepts and design. Architecting Dependable Systems, 2:33-36, 2003. 11

[58] D. Bruce Powel. Real-time design patterns : robust scalable architecture for real-
time systems. The Addison-Wesley object technology series. Addison-Wesley,
Boston, San Francisco, Paris, 2003. 126, 132

[59] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady. Security in embedded
systems: Design challenges. ACM Trans. Embed. Comput. Syst., 3(3):461-491,
2004. 1, 129

[60] Saluka R. S. R. Kodituwakku and P. Bertok. Pattern categories: A mathemat-
ical approach for organizing design patterns. In James Noble, editor, Pattern
Languages of Programs 2002. Revised papers from the Third Asia-Pacific Con-
ference on Pattern Languages of Programs, (KoalaPLoP 2002), volume 13 of
CRPIT, page 63, Melbourne, Australia, 2003. ACS. 35

[61] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjodin. Toward model-
based trade-off analysis of non-functional requirements. 2010 36th EUROMI-

CRO Conference on Software Engineering and Advanced Applications, pages
142-149, 2012. 31

[62] SAE. Architecture Analysis & Design Language (AADL).
http://www.sae.org/technical /standards/AS5506A, January 2009. 28,
29

[63] C. Sapia, M. Blaschka, and G. Hofling. GraMMi: Using a Standard Repository
Management System to Build a Generic Graphical Modeling Tool. In Proceed-

ings of the 33rd Hawaii International Conference on System Sciences-Volume
8 - Volume 8, HICSS "00, pages 8058—. IEEE Computer Society, 2000. 35

[64] D. Schmidt. Model-driven engineering. in IEEE computer, 39(2):41-47, 2006.
1, 14

140

Bibliographie

[65] M. Schumacher. Security Engineering with Patterns - Origins, Theoretical Mod-
els, and New Applications, volume 2754 of Lecture Notes in Computer Science.
Springer, 2003. 16, 20

[66] D. Serrano, A. Mana, and A-D Sotirious. Towards Precise and Certified Security
Patterns. In Proceedings of 2nd International Workshop on Secure systems
methodologies using patterns (Spattern 2008), pages 287-291. IEEE Computer
Society, September 2008. 33

[67] D. Steinberg, F. Budinsky, M. Paternostro, and Ed Merks. EMF: Eclipse Mod-
eling Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009. 18, 19,
7

[68] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley / ACM Press, Wesley, New York, 2002. 1, 40

[69] S. Taha, A. Radermacher, S. Gérard, and J-L. Dekeyser. An open framework
for detailed hardware modeling. In STES, pages 118-125, 2007. 29

|70] TERESA. Demonstration of teresa contributions to examples. Deliverable D6.3
— TERESA/WP6/D6.3, IST project ist-248410, January 2013. 104, 105

[71] TERESA. Repository structure specification. Deliverable D4.2 — TERE-
SA/WP4/D4.2, IST project ist-248410, January 2013. 75

[72] TERESA. Repository v2. Deliverable D4.4 - TERESA /WP4/D4.4, IST project
ist-248410, January 2013. 75

[73] TERESA. Specification of platform. Deliverable D6.1 - TERESA/WP6/D6.1,
IST project ist-248410, January 2013. 105

[74] TERESA Consortium. TERESA Project (Trusted Computing Engineering for
Resource Constrained Embedded Systems Applications). http://www.teresa-
project.org/. 10

[75] F. Thomas, S. Gérard, J. Delatour, and F. Terrier. Software real-time resource
modeling. In FDL, pages 231-236, 2007. 28

[76] Matthias Tichy, Daniela Schilling, and Holger Giese. Design of self-managing
dependable systems with uml and fault tolerance patterns. In Proceedings of
the 1st ACM SIGSOFT workshop on Self-managed systems, WOSS ’04, pages
105-109, New York, NY, USA, 2004. ACM. 17, 32, 33

141

Bibliographie

[77] D Trowbridge, W Cunningham, M Evans, L. Brader, and P Slater. Describing
the enterprise architectural space. MSDN, 2004. 36

[78] Aneta Vulgarakis. Towards a resource-aware component model for embedded
systems. In Doctoral Symposium of 33rd Annual IEEE International Computer
Software and Applications Conference (COMPSAC 2009). IEEE Computer So-
ciety Press, July 2009. 31

[79] Aneta Vulgarakis and Cristina Seceleanu. Embedded systems resources: Views
on modeling and analysis. In 1st IEEFE International Workshop On Component-
Based Design Of Resource-Constrained Systems (CORCS 2008). IEEE CS, July
2008. 11, 31

. Yan, R. M. Dijkman, and P. Grefen. Business process model repositories

80| Z. Yan, R. M. Dijk d P. Gref Busi del itori
- framework and survey. Information € Software Technology, 54(4):380-395,
2012. 36

[81] J. Yoder and J. Barcalow. Architectural patterns for enabling application secu-
rity. In Conference on Pattern Languages of Programs (PLoP 1997), 1998. 16,
17, 32, 33

[82] N. Yoshioka, H. Washizaki, and K. Maruyama. A survey of security patterns.
Progress in Informatics, (5):35-47, 2008. 18, 32, 33

[83] John A. Zachman. A framework for information systems architecture. IBM
Syst. J., 26:276-292, September 1987. 36

[84] A. Ziani and B. Hamid. Clock Synchronization Modeling in DRTES (regu-
lar paper). In Hands-on Platforms and tools for model-based engineering of
Embedded Systems (workshop at ECMFA 2010) (HoPES), Paris, 15/06/2010-
16/06/2010, pages 51-56, http: //www-list.cea.fr, 2010. CEA LIST. 7

[85] A. Ziani, B. Hamid, and JM. Bruel. A model-driven engineering framework
for fault tolerance in dependable embedded systems design. In EUROMICRO-
SEAA, pages 166-169, 2012. 7

[86] A. Ziani, B. Hamid, J. Geisel, and JM. Bruel. A Model-based Repository of Se-
curity and Dependability Patterns for Trusted RCES (regular paper). In IEEE
International Conference on Information Reuse and Integration (IRI), San
Francisco, CA. USA, 14/08/2013-16/08/2013, http://www.ieee.org/, 2013.
IEEE. 5

142

Bibliographie

[87] A. Ziani, B. Hamid, and S. Trujillo. Towards a Unified Meta-model for
Resources-Constrained Embedded Systems. In $7th FEUROMICRO Confer-
ence on Software Engineering and Advanced Applications, pages 485-492. IEEE,
2011. 6, 125

[88] R. Zurawski. Embedded Systems. CRC Press Inc, 2005. 1

143

Bibliographie

144

Appendix A. Abbreviations

e ARABION: Pattern Editor

e DIPM : Domain Independent Pattern Model

e DSPM : Domain Specific Pattern Model

e GAYA : CDO-based Repository infrastructure

e GPRM : Generic Property Metamodel

e MATHO : Resource Editor

e NFP : Non Functional Properties

e PBSE: Pattern-based System and software Engineering

e RCES : Resource Constrained Embedded Systems

e SARM : System and software Artifacts Repository Model

e SEMCO : System & Software Engineering with Multi-COncerns
e SEMCOML : SEMCO Modeling Language

e SEMCOMDT : SEMCO Model Development Tools

e SEPM : System and software Pattern Metamodel

e SERM : System & Software Engineering Resource Metamodel
e S&D : Security and Dependability

e TERESA : Trusted computing Engineering for Resource constrained Embed-
ded Systems Applications

e TIQUEOQO : Property Editor

145

Bibliographie

146

Appendix B. Patterns Description

8.2.1 Watchdog

The Watchdog is a lightweight and inexpensive Safety Related pattern [54]. The
watchdog checks whether the monitored application or a particular (safety) process
of the application is running into its time base or executed in the correct order. The
Watchdog is commonly used in real-time and dependable applications, in order to
ensure that one or more critical time requirements are met by the application. It can
also be combined with additional monitoring patterns in order to increase diagnostic
coverage of the safety system.

The Watchdog pattern based on IEC-61508 safety standard is a temporal and

logical program sequence executing monitor with the following template:
e Type: Hardware / software / VHDL

e Aim: To detect time-out, a wrong program sequence executing or a fault in

the process’ clock.

e Context: Development of a fail-safe embedded system (IEC-61508, EN-5012X,
etc.)

e Problem: How to detect a time-out, wrong program sequence executing or a

fault in the process clock

e Solution: The watchdog is refreshed by the safety application (indicating cor-
rect program sequence) and the watchdog triggers a hardware reset if timing

constraints are not met.

e Safety recommendation: IEC-61508 [SIL1 (HR), SIL2 (HR), SIL3 (HR), SIL4
(HR)]

147

Bibliographie

8.2.2 Black Channel - Safety Communication Layer

Distributed safety systems require (safe) data communication among distributed
safety functions. Data communication is required to be safe and this leads to two

possible approaches [28]:

e "White channel”: Usage of a safety communication channel designed, imple-
mented and validated according to IEC-61508 series and IEC-61784-3 [50] or
IEC-62280 [55] series. That means usage of a certified safety communication
channel such as TTEthernet (TTE) [56].

e "Black channel": Usage of a communication channel not designed or validated
according to TEC-61508 series where safety measures shall be implemented
either in the safety functions or in interfaces with the communication layer in
accordance with IEC-61784-3 or IEC-62280 series. Where the latter is called
a Safety Communication Layer (SCL).

As shown in the following figure, the Safety Communication Layer (SCL) TEC-
61784 / TEC-62280 is an application level service on top of a non-safety related
communication stack (‘’comms’) that enables "safe" data exchange between safety
functions. It must be developed with a life cycle equivalent to the highest safety level
(SIL) in the application and it requires the detection of all possible communication
errors as described by IEC-61784 / TEC-62280: corruption, message incorrect order,

message outside temporal requirements, message lost, message duplicated, etc.

SAFETY SAFETY
FUNCTION (A) FUNCTION (B}

SCL 5CL
MMS | COMMS I

INON-SAFETY

RELATED COMM
STACK AND
CHANNEL

Figure 8.2: The (simplified) Black Channel Diagram

The black channel - safety communication layer pattern profile is described below:
e Type: Hardware / software / VHDL

e Aim: To provide safe data communication among distributed functions com-

municating with a ’black channel’

148

Bibliographie

Context: Development of a safety distributed embedded system interconnected
with a ’black channel’ communication (IEC-61508, EN-5012X, etc.)

Problem: How to detect all possible error modes of a "black channel’ commu-

nication

Solution: Usage of a Safety Communication Layer (SCL) that meets IEC-61784
(generic) and / or IEC-62280 (railway) and developed according to IEC-61508

Safety recommendation: N/A

8.2.3 Secure Communication Layer

Distributed components of a distributed system share their information and data
through wired or wireless connections that can be the objective of an external at-
tacker, which can disturb the operation of the system and even compromise system
availability and safety [57]. The secure communication layer enables a secure data
exchange between components over a non-secure communication channel (e.g. Eth-
ernet), assuring the data integrity and authenticity of the sender.

Figure 8.2 shows a brief schema of what is expected from this secure communica-
tion layer pattern. Messages sent among distributed system functions (components)
shall arrive from authorized sender(s) and without data modification. If any attacker
sends a message or modifies an existing one, this message should be discarded by the
receiver security communication layer and destination function might be informed

about this action.

Function 1 Function 2
K__ /‘
Security @i’ /ﬂ
,—/

Communication

Layer /\

Figure 8.3: Secure communication layer schema

The Secure Communication Layer (SeCL) pattern profile is described below:

e Type: Software / VHDL

149

Bibliographie

150

e Aim: To provide secure data communication among distributed functions com-

municating through a non-secure channel.
e Context: Development of a safety distributed embedded system.

e Problem: An external attacker can impersonate a system component and com-

promise the safety by sending erroneous information.

e Solution: Using a secure communication that codifies and authenticates the

sender of the information as a valid system component.

e Safety recommendation: N/A

8.2.4 Triple Modular Redundancy (TMR)

The Triple Modular Redundancy (TMR) is a fault-tolerant redundant architec-
ture in which three computational channels perform a safety computation and the
result is voted to produce a single safe output. Based on the TEC-61508-2 safety
standard (Table 3) a TMR architecture is a reasonable solution to reach SIL4 levels
with a single hardware fault tolerance (HFT=1). This means that in case one com-
putation channel fails due to the presence of a random hardware fault (no systematic
fault), the remaining two computation channels and voting system can still safely

execute the safety system.

o }-

. \‘ .
Dlaqncstlcs
O L

e

Figure 8.4: TMR. (2003) physical block diagram as described by IEC-61508-7 [58]

IEC 32272000

The Triple Module Redundancy (TMR) Pattern template is described below.
e Type: System hardware level
e Aim: Support at least single random hardware fault-tolerance

e Context:

Bibliographie

— Generic: Development of an IEC-61508 based fail-safe embedded system
that shall provide a single random hardware fault-tolerance (HFT=1,
[EC-61508-2 Table 3).

— Railway: Development of a EN-50126 based fail-safe embedded system,
with a "composite fail-safety" technique (EN-50129 B.3.1 Effects of single
faults, Table E.4)

e Problem: How to deal with random faults and single-point of failure (HFT=1,
TEC-61508) in order to increase the safety of the system to required SIL level

e Solution: Triple Modular Redundancy (TMR) that meets IEC-61508-2
(HFT=1, IEC-61508-2 Table 3); for the railway domain it should also be com-
pliant with "composite fail-safety" technique (EN-50129 B.3.1 Effects of single
faults, Table E.4)

e Recommendation: Reasonable solution to reach SIL4 levels with HF'T=1 while
supporting an achievable Diagnostic Coverage (>=99%). Exceptionally if ap-
propriate measures are taken, an HFT=2 can be achieved with Diagnostic

Coverage > 90%.

e Related: At later design stages, this system level pattern leads to software
type patterns such as data agreement, majority voter, reciprocal monitoring,

etc.

8.2.5 Majority Voter

A majority voter according to IEC-61508-2/-7 [59, 60| is a safety technique that
provides a safe output based on the majority principle (M out of N. e.g. 2003),
masking failures in one of at least three hardware channels (TMR, see Figure 109).
The voter itself might be diagnosed using self-monitoring technology or externally
tested.

The majority voter pattern template is described below.

e Type: Software / Hardware / VHDL

e Origin: Redundancy patterns (e.g. TMR) that must reach an agreement based

on majority voter

e Context:

151

Bibliographie

— Generic: Development of an IEC-61508 based fault-tolerant software for

a highly safety-critical system where redundant software is executed.

— Railway: Development of an EN-50128 based fault-tolerant software for
a highly safety-critical system where redundant software is executed (e.g.

"composite fail-safety" technique based system)

Problem: How to reach a safe agreement among data used / produced by

replicated safety software

Solution: Majority voting that provides a safe output based on the majority
principle (M out of N. e.g. 2003), masking failures in one of at least three
hardware channels (TMR)

Recommendation: Majority voter provides a high diagnostic coverage for elec-
tronic components, electrical components and processing units (IEC-61508-2

Table A-2, Table A.3 and Table A.4). It is also required in TMR based safety

applications.

Related: TMR

8.2.6 Reciprocal Monitoring

The Reciprocal Monitoring pattern is a monitoring and checking pattern between
N data providers, also known as "monitored redundancy" (IEC-61508-7 [60]). If one

of the providers is sending an erroneous data stream the other entities will detect

and accuse it of having a fault.

152

Type: Software / Hardware / VHDL
Origin: Redundancy patterns (e.g. TMR)

Requires: Majority voter pattern or equivalent (compare redundant data and

detect failure)

Aim: TEC-61508-7 (Monitored redundancy) "To detect failure, by providing
several functional units, by monitoring the behaviour of each of these to detect
failures, and by initiating a transition to a safe condition if any discrepancy in

behaviour is detected”

Context:

Bibliographie

— Generic: Development of an IEC-61508-7 based fault-tolerant software
for a highly safety-critical system where the interchanged data among

redundant software is monitored in order to detect errors / failures

— Railway: Development of an EN-50128 based fault-tolerant software for
a highly safety-critical system where the interchanged data among re-
dundant software is monitored in order to detect errors / failures (e.g.

"composite fail-safety" technique based system)
e Problem: How to detect a failure among replicated software

e Solution: Periodical information interchange among redundant software is

monitored by each replica in order to detect errors / failures

e Related: TMR at earlier design stages, safety concept and system architecture.

Majority voter at software architecture and software detailed design phase.

8.2.7 Data Agreement

The Data Agreement Pattern [57] is a conjunction of the Majority Voter and
Reciprocal Monitoring Pattern. This domain specific pattern includes both of them
in order to obtain a unique safe output and the diagnosis of the three computation

units that compound the pattern.

e Type: Software / Hardware / VHDL

Origin: Redundancy patterns (e.g. TMR)

Requires: Majority voter and reciprocal monitoring pattern or equivalent

Aim: Reach a system level agreement on input / output data used by redun-

dant software

Context:

— Generic: Development of an IEC-61508 based fault-tolerant software for
a highly safety-critical system where data (input / output) is managed
and used by redundant software must be agreed in order to provide safe

outputs and in order to detect failures

— Railway: Development of an EN-50128 based fault-tolerant software for a
highly safety-critical system where data (input / output) is managed and

153

Bibliographie

154

used by redundant software must be agreed in order to provide safe out-
puts and in order to detect failures (e.g. "composite fail-safety" technique

based system)

Problem: How to reach an agreement among replicated software of the data

to be used (input / output) and to detect a failure if no agreement is reached

Solution: Data agreement among replicated software of the data to be used by

means of information interchange, majority voting and reciprocal monitoring.

Related: TMR at earlier design stages, safety concept and system architecture.
Majority voter and reciprocal monitoring at software architecture and software

detailed design phase.

	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Research Goals
	1.4 Contributions
	1.5 Publications
	1.6 Thesis Outline

	2 Context
	2.1 Introduction
	2.2 Resource-Constrained Embedded Systems (RCES)
	2.2.1 The TERESA project
	2.2.2 Resource-Aware System Engineering

	2.3 Security and Dependability
	2.4 Model-Based Engineering (MBE)
	2.4.1 Model Driven Engineering (MDE)
	2.4.2 Domain Specific Modeling Language (DSML)

	2.5 Security and Dependability Patterns
	2.6 Eclipse Modeling Framework Tools
	2.7 Development Environment: SEMCO
	2.7.1 Definitions
	2.7.2 SEMCO

	2.8 Introduction to the Case Study: Railway Control System (Safe4Rail)
	2.9 Conclusion

	3 Related Work
	3.1 Introduction
	3.2 Modeling Languages for Resources and Non-Functional Properties
	3.2.1 Standards
	3.2.2 Academic Work

	3.3 Pattern Modeling and S&D Concern
	3.4 Repository
	3.4.1 Repository of models
	3.4.2 Pattern Repository

	3.5 Conclusion

	4 Contribution to the Modeling of S&D Applications for RCES
	4.1 Introduction
	4.2 Repository-centric Resource-aware System and Software Engineering
	4.3 Artifacts Modeling Languages
	4.3.1 A Metamodel for Non-Functional Properties (GPRM)
	4.3.2 A Metamodel for Resource (SERM)
	4.3.3 A Metamodel for S&D Patterns (SEPM)

	4.4 Pattern System Configurations Management
	4.5 Transformations for Analysis
	4.5.1 Calculating Resources Consumption - M2M
	4.5.2 Documenting the Resources Consumption Analysis - M2T

	4.6 Conclusion

	5 A Model-based Repository
	5.1 Introduction
	5.2 A Model-based Repository Framework
	5.3 A Language for the Specification of the Repository
	5.3.1 Repository Structure Metamodel
	5.3.2 Repository Interfaces Metamodel

	5.4 A Model-based Repository for S&D Applications in RCES
	5.4.1 Repository Structure Model
	5.4.2 Repository Interfaces Model

	5.5 Transformation for the Instantiation
	5.5.1 Repository Instantiation into UML Modeling Environment - M2M
	5.5.2 Implementation of Transformation

	5.6 Conclusion

	6 Architecture and Implementation of Tools
	6.1 Introduction
	6.2 Implementation Architecture
	6.2.1 Tool-suite Architecture
	6.2.2 Tool-suite Functionalities

	6.3 CDO Repository Implementation: Gaya
	6.3.1 CDO Repository Implementation Architecture
	6.3.2 Repository Implementation Details

	6.4 Design Tools for Repository Populating
	6.4.1 Property Modeling : Tiqueo
	6.4.2 Resources Modeling: Matho
	6.4.3 S&D Pattern Modeling: Arabion

	6.5 Repository Access-Tools
	6.5.1 Retrieval
	6.5.2 Artifact Adaptation

	6.6 Repository Administration
	6.6.1 User Management
	6.6.2 Artifact Management

	6.7 Systems of Patterns Modeling
	6.8 Conclusion

	7 Demonstration and Evaluation
	7.1 Introduction
	7.2 Description of the Demonstrator
	7.2.1 Description of the Platform
	7.2.2 Description of the Application

	7.3 An Overview of the TERESA Repository Content
	7.4 Modeling of Safe4Rail
	7.4.1 Safe4Rail Platform Modeling
	7.4.2 Safe4Rail Application Modeling based on S&D Patterns

	7.5 Analysis of Safe4Rail application
	7.6 Evaluation
	7.6.1 Context and Description of the Methodology for Experimentation
	7.6.2 Results

	7.7 Synthesis and Discussion
	7.7.1 Recapitulation and Perspectives
	7.7.2 Limits of the Approach

	8 Conclusion
	8.1 Summary and Contributions
	8.2 Limitations and Future work

	Annex A. Abbreviations
	Annex B. Patterns Description
	8.2.1 Watchdog
	8.2.2 Black Channel - Safety Communication Layer
	8.2.3 Secure Communication Layer
	8.2.4 Triple Modular Redundancy (TMR)
	8.2.5 Majority Voter
	8.2.6 Reciprocal Monitoring
	8.2.7 Data Agreement

