L. Beauvais, Théma spécial Énergies Marines Renouvelables Article de presse, Libération, 2013.

A. Rabain and Y. D. Roeck, La viabilit?? ??conomique des ??nergies marines comme condition n??cessaire de leur d??veloppement en France et ?? l???international, XII??mes Journ??es, Cherbourg, pp.837-844
DOI : 10.5150/jngcgc.2012.091-R

C. Abonnel, Énergies renouvelables marines Étude de cas : l'hydrolien

E. Le-parc-hydrolien and E. De-paimpol-bréhat, Dossier de presse, p.5, 2011.

R. Black, India plans Asian tidal power first. News release, 2011.

A. Déporte, Study of a flexible membrane current energy converter, 10th European Wave and Tidal Energy Conference, 2013.

F. Maganga, « Caractérisation numérique et expérimentale des effets d'interaction entre une hydrolienne et le milieu marin, Thèse de doct, 2011.

W. Batten, The prediction of the hydrodynamic performance of marine current turbines, Renewable Energy 33, pp.1085-1096, 2008.
DOI : 10.1016/j.renene.2007.05.043

F. Maganga, Experimental characterisation of flow effects on marine current turbine behaviour and on its wake properties, IET Renewable Power Generation, pp.498-509, 2010.
DOI : 10.1049/iet-rpg.2009.0205

J. Baltazar, J. A. Falcão, and . Campos, « Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine With a Boundary Element Method, Proceedings of the ASME 27th Conference on Offshore Mechanics and Arctic Engineering (OMAE). Estoril, Portugal. ASME, pp.883-893, 2008.

T. Mccombes, C. Johnstone, A. G. Supergen-marine, and . Research, Modelling Wave Induced Flow Effects on Tidal Turbines, 10th European Wave and Tidal Energy Conference (EWTEC), 2013.

R. Malki, The influence on tidal stream turbine spacing on performance, 9th European Wave and Tidal Energy Conference, 2011.

D. O. Doherty, Interactions of marine turbines in close proximity, 9th European Wave and Tidal Energy Conference (EWTEC)

M. J. Churchfield, Y. Li, and P. J. Moriarty, A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.99, issue.2060, 1985.
DOI : 10.1098/rspa.2005.1494

L. Myers, Inter-device spacing issues within wave and tidal energy converter arrays, 3rd International Conference on Ocean Energy, 2010.

A. Bahaj, Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank, Renewable Energy, pp.407-426, 2007.
DOI : 10.1016/j.renene.2006.01.012

A. Bahaj, W. Batten, and G. Mccann, Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines, Renewable Energy 32, pp.2479-2490, 2007.
DOI : 10.1016/j.renene.2007.10.001

M. Harrison, Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines, IET Renewable Power Generation, pp.613-627, 2010.
DOI : 10.1049/iet-rpg.2009.0193

S. Rose, Investigating experimental techniques for measurement of downstream near wake of a tidal turbine, 9th European Wave and Tidal Energy Conference (EWTEC), 2011.

T. Stallard, Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.4, issue.2060, 1985.
DOI : 10.1098/rspa.2005.1494

S. Tedds, Experimental investigation of horizontal axis tidal stream turbines, 9th European Wave and Tidal Energy Conference (EWTEC), 2011.

I. Milne, Blade loads on tidal turbines in planar oscillatory flow, Ocean Engineering 60, pp.163-174, 2013.
DOI : 10.1016/j.oceaneng.2012.12.027

P. Davies, Evaluation of the durability of composite tidal turbine blades, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.24, issue.1985, 1985.
DOI : 10.1098/rsta.2012.0187

S. J. Couch and H. F. Jeffrey, « Tidal current energy : Further development of protocols for equitable testing of device performance, 3rd International Conference on Ocean Energy, 2010.

R. Rawlinson-smith, The PerAWaT project : Performance Assessment of Wave and Tidal Array Systems, 3rd International Conference on Ocean Energy, 2010.

C. Jo, Performance of multi-arrayed tidal current power rotors, 3rd International Conference on Ocean Energy (ICOE), 2010.

T. Stallard, Interactions between tidal turbine wakes: experimental study of a group of three-bladed rotors, 9th European Wave and Tidal Energy Conference (EWTEC), 2011.
DOI : 10.1098/rspa.2005.1494

T. Divett, R. Vennell, and C. Stevens, Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.18, issue.1985, 1985.
DOI : 10.1098/rsta.2012.0251

G. Trowse and R. Krasten, « Bay of Fundy tidal energy development -Opportunities and Challenges, Proceeding of the 3rd International Conference on Ocean Energy, 2010.

R. Karsten, A. Swan, and J. Culina, « Assessment of arrays of instream tidal turbines in the Bay of Fundy », ). [DOI] [URL], 1985.

T. Roc, D. C. Conley, and D. Greaves, Methodology for tidal turbine representation in ocean circulation model, Renewable Energy 51, pp.448-464, 2013.
DOI : 10.1016/j.renene.2012.09.039

I. A. Milne, Characteristics of the turbulence in the flow at a tidal stream power site, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.29, issue.1210, 1985.
DOI : 10.1098/rspa.1956.0188

I. Nezu and H. Nagakawa, Turbulence in open-channel flows. Rotterdam , The Netherlands : A.A. Balkema, 1993.

E. Osalusi, J. Side, and R. H. , Structure of turbulent flow in EMEC's tidal energy test site, International Communications in Heat and Mass Transfer, pp.422-431, 2009.
DOI : 10.1016/j.icheatmasstransfer.2009.02.010

E. Osalusi, J. Side, and R. H. , Reynolds stress and turbulence estimates in bottom boundary layer of Fall of Warness, International Communications in Heat and Mass Transfer, pp.412-421, 2009.
DOI : 10.1016/j.icheatmasstransfer.2009.02.004

J. Thomson, Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA, IEEE Journal of Oceanic Engineering, vol.37, issue.3, pp.363-374, 2012.
DOI : 10.1109/JOE.2012.2191656

J. Macenri, M. Reed, and T. Thiringer, Influence of tidal parameters on SeaGen flicker performance, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.371, issue.1985, 1985.
DOI : 10.1098/rsta.2012.0247

Y. Li, Inflow Measurement in a Tidal Strait for Deploying Tidal Current Turbines: Lessons, Opportunities and Challenges, 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 3, pp.569-576, 2010.
DOI : 10.1115/OMAE2010-20911

H. Burchard, Observational and numerical modeling methods for quantifying coastal ocean turbulence and mixing, Progress In Oceanography 76, pp.399-442, 2008.
DOI : 10.1016/j.pocean.2007.09.005

A. R. Kirincich, S. J. Lentz, and G. P. Gerbi, Calculating Reynolds Stresses from ADCP Measurements in the Presence of Surface Gravity Waves Using the Cospectra-Fit Method, Journal of Atmospheric and Oceanic Technology, pp.889-907, 2010.
DOI : 10.1175/2009JTECHO682.1

S. Gooch, Site characterization for tidal power, 2009.

G. Germain, « Marine current energy converter tank testing practices », 2nd International Conference on Ocean Energy (ICOE), 2008.

G. Germain, Facilities for marine current energy converter characterization, 7th European Wave and Tidal energy Conference, 2007.

G. Pinon, Numerical simulation of the wake of marine current turbines with a particle method, Renewable Energy 46, pp.111-126, 2012.
DOI : 10.1016/j.renene.2012.03.037

B. Gaurier, Flume tank characterization of marine current turbine blade behaviour under current and wave loading, Renewable Energy 59, pp.1-12, 2013.
DOI : 10.1016/j.renene.2013.02.026

S. Wussow, L. Sitzki, and T. Hahm, « 3D-simulation of the turbulent wake behind a wind turbine, Journal of Physics, p.12033, 2007.

P. Mycek, Numerical and experimental study of the interaction between two marine current turbines, International Journal of Marine Energy, vol.1, pp.70-83, 2013.
DOI : 10.1016/j.ijome.2013.05.007

URL : https://hal.archives-ouvertes.fr/hal-00874073

P. Mycek, Experimental Study of the Turbulence Intensity Effects on Marine Current Turbines Behaviour. Part I : one Single Turbine Accepté pour publication, Renewable Energy, 2014.

P. Mycek, Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines, Renewable Energy, 2014.
DOI : 10.1016/j.renene.2013.12.048

W. Batten, Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines, Ocean Engineering, vol.34, issue.7, pp.1013-1020, 2007.
DOI : 10.1016/j.oceaneng.2006.04.008

L. Myers, The effect of boundary proximity upon the wake structure of horinzontal marine current turbines, Proceeding of the ASME 27th International Conference on Offshore Mechanics and Artics Engineering, 2008.

X. Sun, J. Chick, and I. Bryden, Laboratory-scale simulation of energy extraction from tidal currents, Renewable Energy 33, pp.1267-1274, 2008.
DOI : 10.1016/j.renene.2007.06.018

S. Draper, Modelling tidal energy extraction in depth-avergaed coastal domain, IET Renew. Power Gener, pp.545-554, 2010.
DOI : 10.1049/iet-rpg.2009.0196

S. Antheaume, T. Maître, and J. Achard, Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions, Renewable Energy, 2008.
DOI : 10.1016/j.renene.2007.12.022

C. Consul and R. Willden, « Influence of flow confinement on the performance of a crossflow turbine, Proceeding of the 3rd International Conference on Ocean Energy, 2010.

C. Carlier, « 2D flow simulation around an airfoil using a vortex method ». Mém.de mast, 2013.

G. S. Winckelmans and A. Leonard, Contributions to Vortex Particle Methods for the Computation of Three-Dimensional Incompressible Unsteady Flows, Journal of Computational Physics, vol.109, issue.2, pp.247-273, 1993.
DOI : 10.1006/jcph.1993.1216

J. L. Hess, Calculation of potential flow about arbitrary three-dimensional lifting bodies. Rapp. tech. MDC J5679-01, 1972.

G. Coulmy, Formulation des effets de singularités ? Première partie : Singularités en domaine bidimensionnel. Notes et documents LIMSI 85- 5. LIMSI, 1988.

G. Coulmy, Formulation des effets de singularités ? Seconde partie : Singularités en domaine tridimensionnel. Notes et documents LIMSI 85- 6. LIMSI, 1988.

J. Bousquet, Aérodynamique : Méthode des singularités. Collection La chevêche, Cépaduès Editions, 1990.

G. Batchelor, An Introduction to Fluid Dynamics. Cambridge Mathematical Library, 2000.

B. Cantaloube and C. Rehbach, « Calcul des intégrales de la méthode des singularités, La Recherche aérospatiale, pp.15-22, 1986.

H. Van-der and V. Bi-cgstab, Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.13, issue.2, pp.631-644, 1992.
DOI : 10.1137/0913035

F. Rouffi, « Résolution numérique de problèmes non linéaires de l'hydrodynamique navale : manoeuvrabilité et tenue à la mer de navires, Thèse de doct. LIMSI, 1992.

P. Saffman, Vortex Dynamics. Cambridge Monographs on Mechanics, 1995.

F. Hauville, « Optimisation des méthodes de calculs d'écoulements tourbillonnaires instationnaires ». Français, Thèse de doct, 1996.

S. Mas-gallic, « Contribution à l'analyse numérique des méthodes particulaires, Thèse de doct, 1987.

P. Degond and S. Mas-gallic, The Weighted Particle Method for Convection-Diffusion Equations. Part 1: The Case of an Isotropic Viscosity, Math. Comp. 53, pp.485-507, 1989.
DOI : 10.2307/2008716

J. Choquin and S. Huberson, Particles simulation of viscous flow, Computers & Fluids 17, pp.397-410, 1989.
DOI : 10.1016/0045-7930(89)90049-2

J. Fronteau and P. Combis, « A lie Admissible Method of integration of Folkler-Plank Equations with non linear coefficients (Exact and numerical solutions) », In Hadronic J, vol.7, pp.911-930, 1984.

S. Voutsinas and V. A. Riziotis, Vortex particle modelling of stall ? Dynamic stall and 3D effects. Final Report JOU2-CT93-0345. National Technical University of Athens, Department of mechanical engineering, fluids section, 1996.

S. G. Voutsinas, Vortex methods in aeronautics: how to make things work, International Journal of Computational Fluid Dynamics, vol.53, issue.1, pp.3-18, 2006.
DOI : 10.1016/0307-904X(90)90021-V

V. A. Riziotis and S. G. Voutsinas, Dynamic stall modelling on airfoils based on strong viscous???inviscid interaction coupling, International Journal for Numerical Methods in Fluids, vol.118, issue.2, pp.185-208, 2008.
DOI : 10.1002/fld.1525

D. Fischenberg and R. V. Jategaonkar, « Identification of Aircraft Stall Behavior from Flight Test Data, RTO Meeting Proceedings 11 "System Identification for Intergrated Aircraft Development and Flight Testing, pp.17-18, 1999.

P. Mycek, Étude numérique du comportement d'une hydrolienne à axe horizontal : vers une modélisation des interactions entre deux hydroliennes, XIIémes Journées Nationales Génie Côtier -Génie Civil, 2012.

P. Mycek, Numerical and Experimental Characterisation of Interactions Between two Marine Current Turbines, Paralia 6, pp.2-13, 2013.

L. Rosenhead, The Formation of Vortices from a Surface of Discontinuity, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.134, issue.823, pp.170-192, 1931.
DOI : 10.1098/rspa.1931.0189

A. J. Chorin, Numerical study of slightly viscous flow, Journal of Fluid Mechanics, vol.23, issue.04, pp.4-785, 1973.
DOI : 10.1017/S0022112073002016

A. Leonard, Numerical simulation of interacting three-dimensional vortex filaments, Proceedings of the Fourth International Conference on Numerical Methods in Fluid Dynamics, pp.245-250, 1975.
DOI : 10.1007/BFb0019758

C. Rehbach, « Calcul numérique d'écoulements tridimensionnels instationnaires avec nappes tourbillonaires », In La Recherche Aérospatiale, vol.5, pp.289-298, 1977.

C. Rehbach, Numerical calculation of three-dimensional unsteady flows with vortex sheets, 16th Aerospace Sciences Meeting, pp.289-298, 1977.
DOI : 10.2514/6.1978-111

G. Cottet and P. Koumoutsakos, Vortex methods : theory and practice, 2000.
DOI : 10.1017/CBO9780511526442

J. T. Beale and A. Majda, High order accurate vortex methods with explicit velocity kernels, Journal of Computational Physics, vol.58, issue.2, pp.188-208, 1985.
DOI : 10.1016/0021-9991(85)90176-7

J. Choquin and G. Cottet, « Sur l'analyse d'une classe de méthodes de vortex tridimensionnelles, C. R. Acad. Sci, vol.306, p.17, 1988.

J. T. Beale and A. M. Vortex-methods, II : Higher Order Accuracy in Two and Three Dimensions ». English, Mathematics of Computation 39, pp.29-52, 1982.

J. Christiansen, « Numerical Simulation of Hydrodynamics by the Method of Point Vortices, Journal of Computational Physics, vol.1352, pp.189-197, 1997.

G. Cottet and P. Poncet, Advances in direct numerical simulations of 3D wall-bounded flows by Vortex-in-Cell methods, Journal of Computational Physics, vol.193, issue.1, pp.136-158, 2004.
DOI : 10.1016/j.jcp.2003.08.025

D. Rossinelli, GPU accelerated simulations of bluff body flows using vortex particle methods, Journal of Computational Physics, vol.229, issue.9, pp.3316-3333, 2010.
DOI : 10.1016/j.jcp.2010.01.004

URL : https://hal.archives-ouvertes.fr/hal-00748016

O. P. Maître and O. M. Knio, « A stochastic particle-mesh scheme for uncertainty propagation in vortical flows, Journal of Computational Physics, vol.2261, pp.645-671, 2007.

R. Gingold and J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, vol.181, issue.3, pp.181-375, 1977.
DOI : 10.1093/mnras/181.3.375

J. Cherfils, « Développements et applications de la méthode SPH aux écoulements visqueux à surface libre, Thèse de doct, 2011.

J. Monaghan, Extrapolating B splines for interpolation, Journal of Computational Physics, vol.60, issue.2, pp.253-262, 1985.
DOI : 10.1016/0021-9991(85)90006-3

S. E. Hieber and P. Koumoutsakos, A Lagrangian particle level set method, Journal of Computational Physics, vol.210, issue.1, pp.342-367, 2005.
DOI : 10.1016/j.jcp.2005.04.013

G. Cottet, M. Ould, M. Salihi, . El, and . Hamraoui, « Multipurpose regridding in vortex methods ». In Vortex flows and related numerical methods III, Sous la dir. d'A. GIOVANNINI et al. T. 7. ESAIM Proceedings, pp.94-103, 1998.

G. Cottet, P. Koumoutsakos, and M. L. Salihi, Vortex Methods with Spatially Varying Cores, Journal of Computational Physics, vol.162, issue.1, pp.164-185, 2000.
DOI : 10.1006/jcph.2000.6531

A. Magni, « Méthodes particulaires avec remaillage : analyse numérique nouveaux schémas et applications pour la simulation d'équations de transport, Thèse de doct. Laboratoire Jean Kuntzmann, 2011.

M. Bergdorf, « Multiresolution particle methods for the simulation of growth and flow, Thèse de doct. ETH Zürich, 2007.

P. Koumoutsakos, Inviscid Axisymmetrization of an Elliptical Vortex, Journal of Computational Physics, vol.138, issue.2, pp.821-857, 1997.
DOI : 10.1006/jcph.1997.5749

W. M. Van and R. , « A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers, Journal of Computational Physics, vol.2308, pp.2794-2805, 2011.

W. K. Liu, S. Jun, and Y. F. Zhang, Reproducing kernel particle methods, International Journal for Numerical Methods in Fluids, vol.45, issue.8-9, pp.1081-1106, 1995.
DOI : 10.1002/fld.1650200824

W. K. Liu, Generalized multiple scale reproducing kernel particle methods, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, pp.1-4, 1996.
DOI : 10.1016/S0045-7825(96)01081-X

J. D. Eldredge, A. Leonard, and T. Colonius, A General Deterministic Treatment of Derivatives in Particle Methods, Journal of Computational Physics, vol.180, issue.2, pp.686-709, 2002.
DOI : 10.1006/jcph.2002.7112

B. Schrader, S. Reboux, and I. F. Sbalzarini, Discretization correction of general integral PSE Operators for particle methods, Journal of Computational Physics, vol.229, issue.11, pp.4159-4182, 2010.
DOI : 10.1016/j.jcp.2010.02.004

A. Leonard, Vortex methods for flow simulation, Journal of Computational Physics, vol.37, issue.3, pp.289-335, 1980.
DOI : 10.1016/0021-9991(80)90040-6

C. Greengard, The core spreading vortex method approximates the wrong equation, Journal of Computational Physics, vol.61, issue.2, pp.345-348, 1985.
DOI : 10.1016/0021-9991(85)90091-9

G. H. Cottet and S. Mas-gallic, A particle method to solve the Navier-Stokes system, Numerische Mathematik, pp.805-827, 1990.
DOI : 10.1007/BF01386445

S. Huberson, O. Le-maitre, and E. Rivoalen, Particle simulation of diffusion with non uniform viscosity, ESAIM : Proc. 7, pp.195-204, 1999.
DOI : 10.1051/proc:1999018

F. Mustieles, « L'équation de Boltzmann des semiconducteurs. Étude mathématique et simulation numérique, Thèse de doct. École Polytechnique, 1990.

P. Degond and F. Mustieles, A Deterministic Approximation of Diffusion Equations Using Particles, SIAM Journal on Scientific and Statistical Computing, vol.11, issue.2, pp.293-310, 1990.
DOI : 10.1137/0911018

Y. Ogami and T. Akamatsu, Viscous flow simulation using the discrete vortex model???the diffusion velocity method, Computers & Fluids, vol.19, issue.3-4, pp.3-4, 1991.
DOI : 10.1016/0045-7930(91)90068-S

S. Kempka and J. Strickland, A method to simulate viscous diffusion of vorticity by convective transport of vortices at a non-solenoidal velocity, 1993.
DOI : 10.2172/10190654

J. H. Strickland, S. N. Kempka, and W. P. Wolfe, Viscous diffusion of vorticity using the diffusion velocity concept, ESAIM : Proc. 1, pp.135-151, 1996.
DOI : 10.1051/proc:1996033

S. Mas-gallic, « A presentation of the diffusion velocity method Plasmas and Gravitation Lecture Notes in Physics, Dynamical Systems, pp.74-81, 1999.

G. Lacombe and S. Mas-gallic, « Presentation and analysis of a diffusionvelocity method, ESAIM : Proc. 7, pp.225-233, 1999.

G. Lacombe, Analyse d???une ??quation de vitesse de diffusion, Comptes Rendus de l'Académie des Sciences -Series I -Mathematics 329, pp.383-386, 1999.
DOI : 10.1016/S0764-4442(00)88610-3

P. Lions and S. «. Mas-gallic, Une m??thode particulaire d??terministe pour des ??quations diffusives non lin??aires, Comptes Rendus de l'Académie des Sciences -Series I -Mathematics 332, pp.369-376, 2001.
DOI : 10.1016/S0764-4442(00)01795-X

A. Chertock and D. L. , Particle Methods for Dispersive Equations, Journal of Computational Physics, vol.171, issue.2, pp.708-730, 2001.
DOI : 10.1006/jcph.2001.6803

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Chertock and D. L. , « A Particle Method for the KdV Equation, J. Sci. Comput, vol.17, pp.1-4, 2002.

R. E. Milane, Large eddy simulation(2D) using diffusion???velocity method and vortex-in-cell, International Journal for Numerical Methods in Fluids, vol.44, issue.8, pp.837-860, 2004.
DOI : 10.1002/fld.673

E. Rivoalen, S. Huberson, and F. Hauville, Simulation num??rique des ??quations de Navier-Stokes 3D par une m??thode particulaire, Comptes Rendus de l'Académie des Sciences -Series IIB -Mechanics- Physics-Chemistry-Astronomy, pp.543-549, 1997.
DOI : 10.1016/S1251-8069(97)83187-9

J. Grant and J. Marshall, Diffusion velocity for a three-dimensional vorticity field, Theoretical and Computational Fluid Dynamics, pp.377-390, 2005.
DOI : 10.1007/s00162-005-0004-8

E. Rivoalen and S. Huberson, Numerical Simulation of Axisymmetric Viscous Flows by Means of a Particle Method, Journal of Computational Physics, vol.152, issue.1, pp.1-31, 1999.
DOI : 10.1006/jcph.1999.6210

A. Beaudoin, S. Huberson, and E. Rivoalen, Simulation of anisotropic diffusion by means of a diffusion velocity method, Journal of Computational Physics, vol.186, issue.1, pp.122-135, 2003.
DOI : 10.1016/S0021-9991(03)00024-X

Y. Ogami, Simulation of heat-vortex interaction by the diffusion velocity method, ESAIM : Proc. 7, pp.313-324, 1999.
DOI : 10.1051/proc:1999029

S. Guvernyuk and G. Dynnikova, Modeling the flow past an oscillating airfoil by the method of viscous vortex domains, Fluid Dynamics, vol.42, issue.1, pp.1-11, 2007.
DOI : 10.1134/S0015462807010012

Y. Dynnikov and G. Dynnikova, Numerical stability and numerical viscosity in certain meshless vortex methods as applied to the Navier-Stokes and heat equations, Computational Mathematics and Mathematical Physics 51, pp.1792-1804, 2011.
DOI : 10.1134/S096554251110006X

G. Gambino, M. Lombardo, and M. Sammartino, « A velocitydiffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion », In Applied Numerical Mathematics, vol.595, pp.1059-1074, 2009.

J. Bonet and T. Lok, Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations, Computer Methods in Applied Mechanics and Engineering, vol.180, issue.1-2, pp.97-115, 1999.
DOI : 10.1016/S0045-7825(99)00051-1

G. Oger, An improved SPH method: Towards higher order convergence, Journal of Computational Physics, vol.225, issue.2, pp.1472-1492, 2007.
DOI : 10.1016/j.jcp.2007.01.039

A. Colagrossi and M. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics, Journal of Computational Physics, vol.191, issue.2, pp.448-475, 2003.
DOI : 10.1016/S0021-9991(03)00324-3

P. Mycek, A self-regularising DVM???PSE method for the modelling of diffusion in particle methods, Comptes Rendus Mécanique, pp.709-714, 2013.
DOI : 10.1016/j.crme.2013.08.002

J. R. Mansfield, « A Dynamic Lagrangian Large Eddy Simulation Scheme for the vorticity transport equation, Thèse de doct, 1997.

N. Mansour, J. Ferziger, and W. Reynolds, « Large-eddy simulation of a turbulent mixing layer, 1978.

K. Lindsay and R. Krasny, A Particle Method and Adaptive Treecode for Vortex Sheet Motion in Three-Dimensional Flow, Journal of Computational Physics, vol.172, issue.2, pp.879-907, 2001.
DOI : 10.1006/jcph.2001.6862

Y. M. Marzouk and A. F. Ghoniem, K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations, Journal of Computational Physics, vol.207, issue.2, pp.493-528, 2005.
DOI : 10.1016/j.jcp.2005.01.021

J. Barnes and P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature 324 (déc, pp.446-449, 1986.
DOI : 10.1038/324446a0

L. Greengard and V. Rokhlin, « A Fast Algorithm for Particle Simulations, » in Journal of Computational Physics, vol.1352, pp.280-292, 1997.

J. E. Barnes, A modified tree code: Don't laugh; It runs, Journal of Computational Physics, vol.87, issue.1, pp.161-170, 1990.
DOI : 10.1016/0021-9991(90)90232-P

D. Wee, Convergence Characteristics and Computational Cost of Two Algebraic Kernels in Vortex Methods with a Tree-Code Algorithm, SIAM Journal on Scientific Computing, vol.31, issue.4, pp.2510-2527, 2009.
DOI : 10.1137/080726872

M. J. Flynn, Some Computer Organizations and Their Effectiveness, IEEE Transactions on Computers, vol.21, issue.9, pp.948-960
DOI : 10.1109/TC.1972.5009071

M. S. Warren and J. K. Salmon, Astrophysical N-body simulations using hierarchical tree data structures, Proceedings Supercomputing '92, 1992.
DOI : 10.1109/SUPERC.1992.236647

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. S. Warren and J. K. Salmon, A parallel hashed Oct-Tree N-body algorithm, Proceedings of the 1993 ACM/IEEE conference on Supercomputing , Supercomputing '93, pp.12-21, 1993.
DOI : 10.1145/169627.169640

M. S. Warren and J. K. Salmon, « A parallel, portable and versatile treecode, Seventh SIAM Conference on Parallel Processing for Scientific Computing. SIAM, 1995.

M. S. Warren and J. K. Salmon, A portable parallel particle program, Computer Physics Communications, pp.266-290, 1995.
DOI : 10.1016/0010-4655(94)00177-4

C. O. Ahn and S. H. Lee, A New Treecode with Variable Branching Ratio, Journal of the Korean Physical Society, vol.51, issue.4, p.1437
DOI : 10.3938/jkps.51.1437

D. Pelleg and A. Moore, « X-means : Extending K-means with Efficient Estimation of the Number of Clusters, Proceedings of the Seventeenth International Conference on Machine Learning, pp.727-734, 2000.

J. Monaghan, Particle methods for hydrodynamics, Computer Physics Reports, vol.3, issue.2, pp.71-95, 1985.
DOI : 10.1016/0167-7977(85)90010-3

C. Lothodé, Développements et adaptations de méthodes numériques pour un code de simulation d'écoulements tourbillonaires, 2011.

A. Dezotti, « Méthodes numériques appliquées à la simulation de sillages d'hydroliennes », 2013.

J. T. Rasmussen, Discrete vortex method simulations of the aerodynamic admittance in bridge aerodynamics, Journal of Wind Engineering and Industrial Aerodynamics 98, pp.754-766, 2010.
DOI : 10.1016/j.jweia.2010.06.011

M. Shinozuka and C. Jan, Digital simulation of random processes and its applications, Journal of Sound and Vibration, vol.25, issue.1, pp.111-128, 1972.
DOI : 10.1016/0022-460X(72)90600-1

G. Deodatis, Simulation of Ergodic Multivariate Stochastic Processes, Journal of Engineering Mechanics, vol.122, issue.8, pp.778-787, 1996.
DOI : 10.1061/(ASCE)0733-9399(1996)122:8(778)

P. Sagaut, Large Eddy Simulation for Incompressible Flows: An Introduction. Scientific Computation Series, Applied Mechanics Reviews, vol.55, issue.6, 2006.
DOI : 10.1115/1.1508154

G. S. Winckelmans, A priori testing of subgrid-scale models for the velocity-pressure and velocity-vorticity formulations, Proceedings of the Summer Program. Center of Turbulence Research, pp.309-328, 1996.

P. Sagaut, Introduction à la simulation des grandes échelles pour les écoulements de fluide incompressible, Mathématiques et applications, 1998.

M. Germano, A dynamic subgrid???scale eddy viscosity model, Physics of Fluids A : Fluid Dynamics 3, pp.1760-1765, 1991.
DOI : 10.1063/1.857955

S. Ghosal, A dynamic localization model for large-eddy simulation of turbulent flows, Journal of Fluid Mechanics, vol.297, issue.-1, pp.402-402, 1995.
DOI : 10.1017/S0022112095003156

D. K. Lilly, A proposed modification of the Germano subgrid???scale closure method, Physics of Fluids A : Fluid Dynamics, pp.633-635, 1992.
DOI : 10.1063/1.858280

J. R. Mansfield, O. M. Knio, and C. Meneveau, « A Dynamic LES Scheme for the Vorticity Transport Equation : Formulation and a Priori Tests, Journal of Computational Physics, vol.1452, pp.693-730, 1998.

T. Luu and G. Coulmy, « Dévelopement de la Méthode Des Singularités à Répartition Discrétisée Pour L'Étude Des Écoulements Incompressibles et Compressibles, Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics. Sous la dir. de H, pp.184-190, 1973.

L. Malavard, Optimisation des systemes portants et propulsifs par la methode des singularites, Computing Methods in Applied Sciences and Engineering, pp.20-41, 1974.
DOI : 10.1007/BFb0015172

L. Morino, Helmholtz decomposition revisited: Vorticity generation and trailing edge condition, Computational Mechanics, vol.4, issue.3, pp.65-90, 1986.
DOI : 10.1007/BF00298638

B. Marichal and F. Hauville, Numerical calculation af an incompressible , inviscid three-dimensional flow about a wind turbine with partial span pitch control, Société Roumaine de Mathématique appliquées et Industrielles, 1994.

J. L. Hess, Calculation of Potential Flow about Arbitrary Three-Dimensional Lifting Bodies, 1969.

L. M. Milne-thomson, Theoretical Hydrodynamics. Fifth edition. Dover Books on Physics Series, 1968.

L. M. Milne-thomson, Theoretical Hydrodynamics. First edition, 1938.

L. M. Milne-thomson, Theoretical Aerodynamics. Dover Books on Aeronautical Engineering Series, 1966.

A. Hemon, « Contribution à la résolution de problèmes de l'hydrodynamique navale, Thèse de doct, 1990.

L. Figure and A. , 2 présente des profils de taux de turbulence aval à différentes distances dans le sillage, pour I 8 " 3% (Fig. A.2a) et I 8

A. Voir-acoustic-doppler-velocimetry-aliasing, .. Voir-repliement-de-spectre, and B. , voir Blade Element Momentum theory Bernoulli relation, p.251

C. Voir-computational-fluid-dynamics and C. , voir Condition de Courant-Friedrichs-Lewy Coefficient d'efficacité, pp.51-53

.. Ferme-d-'hydroliennes, voir Fast Multipole Method Fonction bêta, pp.48-313

.. Intégrale-curviligne, voir Abscisse curviligne Intégration sur un disque, p.110

.. Méthode-de-vitesse-de-diffusion, voir Diffusion Velocity Method Méthode des singularités, p.356

. Parc-d-'hydroliennes..... and .. Velocimetry, voir Ferme d'hydroliennes Particle Image, p.12

R. Kernel-particle-method and .. , 147 RKPM . . . . voir Reproducing Kernel Particle Method Rotationnel de vitesse, p.121