R. Aloni, K. Pradel, and C. Ullrich, The three-dimensional structure of vascular tissues in Agrobacterium tumefaciens-induced crown galls and in the host stems of Ricinus communis L., Planta, vol.196, issue.3, 1995.
DOI : 10.1007/BF00203661

C. H. Baek, S. K. Farrand, D. K. Park, K. E. Lee, W. Hwang et al., Genes for utilization of deoxyfructosyl glutamine (DFG), an amadori compound, are widely dispersed in the family Rhizobiaceae, FEMS Microbiology Ecology, vol.53, issue.2, pp.221-254, 2005.
DOI : 10.1016/j.femsec.2004.12.008

S. Beck-von-bodman, G. T. Hayman, and S. K. Farrand, Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor., Proceedings of the National Academy of Sciences, vol.89, issue.2, pp.643-650, 1992.
DOI : 10.1073/pnas.89.2.643

C. Belanger, M. L. Canfield, L. W. Moore, and P. Dion, Genetic analysis of nonpathogenic Agrobacterium tumefaciens mutants arising in crown gall tumors., Journal of Bacteriology, vol.177, issue.13, pp.3752-3759, 1995.
DOI : 10.1128/jb.177.13.3752-3757.1995

M. T. Britton, M. A. Escobar, and A. M. Dandekar, The oncogenes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. Pages 183-220 in Agrobacterium from, Biology to Biotechnology. T. Tzfira, V. Citovsky, p.750, 2008.

A. Carlier, R. Chevrot, Y. Dessaux, and D. Faure, -Acyl-Homoserine Lactone Signal, Molecular Plant-Microbe Interactions, vol.17, issue.9, pp.951-958, 2004.
DOI : 10.1094/MPMI.2004.17.9.951

URL : https://hal.archives-ouvertes.fr/hal-00807884

Y. Chai, C. S. Tsai, H. Cho, and S. C. Winans, Reconstitution of the Biochemical Activities of the AttJ Repressor and the AttK, AttL, and AttM Catabolic Enzymes of Agrobacterium tumefaciens, Journal of Bacteriology, vol.189, issue.9, pp.3674-3683, 2007.
DOI : 10.1128/JB.01274-06

Y. Chai and S. C. Winans, Site-directed mutagenesis of a LuxR-type quorum-sensing transcription factor: alteration of autoinducer specificity, Molecular Microbiology, vol.180, issue.3, pp.765-76, 2004.
DOI : 10.1046/j.1365-2958.2003.03857.x

Y. Chai and S. C. Winans, The Chaperone GroESL Enhances the Accumulation of Soluble, Active TraR Protein, a Quorum-Sensing Transcription Factor from Agrobacterium tumefaciens, Journal of Bacteriology, vol.191, issue.11, pp.3706-3717, 2009.
DOI : 10.1128/JB.01434-08

Y. Chai, J. Zhu, and S. C. Winans, TrlR, a defective TraR-like protein of Agrobacterium tumefaciens, blocks TraR function in vitro by forming inactive TrlR:TraR dimers, Molecular Microbiology, vol.185, issue.2, pp.414-435, 2001.
DOI : 10.1128/JB.182.14.3885-3895.2000

G. Chen, J. W. Malenkos, M. R. Cha, C. Fuqua, and L. Chen, Quorum-sensing antiactivator TraM forms a dimer that dissociates to inhibit TraR, Molecular Microbiology, vol.98, issue.6, pp.1641-51, 2004.
DOI : 10.1111/j.1365-2958.2004.04110.x

C. Fortin, C. Marquis, E. W. Nester, and P. Dion, Dynamic structure of Agrobacterium tumefaciens Ti plasmids., Journal of Bacteriology, vol.175, issue.15, pp.4790-4799, 1993.
DOI : 10.1128/jb.175.15.4790-4799.1993

M. Frederix and A. J. Downie, Quorum Sensing, Adv Microb Physiol, vol.58, pp.23-80, 2011.
DOI : 10.1016/B978-0-12-381043-4.00002-7

URL : https://hal.archives-ouvertes.fr/halsde-00525739

C. Fuqua and S. C. Winans, Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes., Journal of Bacteriology, vol.178, issue.2, pp.435-475, 1996.
DOI : 10.1128/jb.178.2.435-440.1996

C. Fuqua and S. C. Winans, Localization of OccR-activated and TraR-activated promoters that express two ABC-type permeases and the traR gene of Ti plasmid pTiR10, Molecular Microbiology, vol.174, issue.6, pp.1199-210, 1996.
DOI : 10.1038/362446a0

C. Fuqua, S. C. Winans, and E. P. Greenberg, CENSUS AND CONSENSUS IN BACTERIAL ECOSYSTEMS: The LuxR-LuxI Family of Quorum-Sensing Transcriptional Regulators, Annual Review of Microbiology, vol.50, issue.1, pp.727-51, 1996.
DOI : 10.1146/annurev.micro.50.1.727

W. C. Fuqua and S. C. Winans, A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite., Journal of Bacteriology, vol.176, issue.10, pp.2796-806, 1994.
DOI : 10.1128/jb.176.10.2796-2806.1994

W. C. Fuqua, S. C. Winans, and E. P. Greenberg, Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators., Journal of Bacteriology, vol.176, issue.2, pp.269-75, 1994.
DOI : 10.1128/jb.176.2.269-275.1994

Z. Gelencser, K. S. Choudhary, B. G. Coutinho, S. Hudaiberdiev, B. Galbats et al., Classifying the Topology of AHL-Driven Quorum Sensing Circuits in Proteobacterial Genomes, Sensors, vol.12, issue.12, pp.5432-5476, 2012.
DOI : 10.3390/s120505432

S. B. Gelvin, Traversing the Cell: Agrobacterium T-DNA???s Journey to the Host Genome, Frontiers in Plant Science, vol.3, p.26, 2012.
DOI : 10.3389/fpls.2012.00052

B. Goodner, G. Hinkle, S. Gattung, N. Miller, M. Blanchard et al., Genome Sequence of the Plant Pathogen and Biotechnology Agent Agrobacterium tumefaciens C58, Science, vol.294, issue.5550, pp.2323-2331, 2001.
DOI : 10.1126/science.1066803

A. B. Goryachev, D. J. Toh, K. B. Wee, T. Lee, H. B. Zhang et al., Transition to quorum sensing in an Agrobacterium population: A stochastic model, PLoS Comput Biol, vol.1, p.16, 2005.

T. A. Gould, H. P. Schweizer, and M. E. Churchill, Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI, Molecular Microbiology, vol.9, issue.4, pp.1135-1181, 2004.
DOI : 10.1111/j.1365-2958.2004.04211.x

K. M. Gray and J. R. Garey, The evolution of bacterial LuxI and LuxR quorum sensing regulators, Microbiology, vol.147, issue.8, pp.2379-87, 2001.
DOI : 10.1099/00221287-147-8-2379

L. F. Habeeb, L. Wang, and S. C. Winans, Tumor-Inducing Plasmid pTiA6 Is Activated by a LysR-Type Regulatory Protein, Molecular Plant-Microbe Interactions, vol.4, issue.4, pp.379-85, 1991.
DOI : 10.1094/MPMI-4-379

A. Hartmann and A. Schikora, Quorum Sensing of Bacteria and Trans-Kingdom Interactions of N-Acyl Homoserine Lactones with Eukaryotes, Journal of Chemical Ecology, vol.74, issue.6, pp.704-717, 2012.
DOI : 10.1007/s10886-012-0141-7

E. Haudecoeur, S. Planamente, A. Cirou, M. Tannieres, B. J. Shelp et al., Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens, Proceedings of the National Academy of Sciences, vol.106, issue.34, pp.14587-92, 2009.
DOI : 10.1073/pnas.0808005106

E. Haudecoeur, M. Tannieres, A. Cirou, A. Raffoux, Y. Dessaux et al., C58, Molecular Plant-Microbe Interactions, vol.22, issue.5, pp.529-566, 2009.
DOI : 10.1094/MPMI-22-5-0529

M. E. Hibbing and C. Fuqua, Inhibition and dispersal of Agrobacterium tumefaciens biofilms by a small diffusible Pseudomonas aeruginosa exoproduct(s), Archives of Microbiology, vol.295, issue.6, pp.391-403, 2012.
DOI : 10.1007/s00203-011-0767-9

I. Hwang, D. M. Cook, and S. K. Farrand, A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer., Journal of Bacteriology, vol.177, issue.2, pp.449-58, 1995.
DOI : 10.1128/jb.177.2.449-458.1995

I. Hwang, P. L. Li, L. Zhang, K. R. Piper, D. M. Cook et al., TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer., Proceedings of the National Academy of Sciences, vol.91, issue.11, pp.4639-4682, 1994.
DOI : 10.1073/pnas.91.11.4639

I. Hwang, A. J. Smyth, Z. Q. Luo, and S. K. Farrand, Modulating quorum sensing by antiactivation: TraM interacts with TraR to inhibit activation of Ti plasmid conjugal transfer genes, Molecular Microbiology, vol.173, issue.2, 1999.
DOI : 10.1038/362446a0

A. Kerr, P. Manigault, and J. Tempe, Transfer of virulence in vivo and in vitro in Agrobacterium, Nature, vol.265, issue.5594, 1977.
DOI : 10.1038/265560a0

S. R. Khan and S. K. Farrand, The BlcC (AttM) Lactonase of Agrobacterium tumefaciens Does Not Quench the Quorum-Sensing System That Regulates Ti Plasmid Conjugative Transfer, Journal of Bacteriology, vol.191, issue.4, pp.1320-1329, 2009.
DOI : 10.1128/JB.01304-08

H. Kim and S. K. Farrand, Characterization of the acc operon from the nopaline-type Ti plasmid pTiC58, which encodes utilization of agrocinopines A and B and susceptibility to agrocin 84., Journal of Bacteriology, vol.179, issue.23, pp.7559-72, 1997.
DOI : 10.1128/jb.179.23.7559-7572.1997

I. Klein, V. Rad, U. Durner, and J. , Homoserine lactones, Plant Signaling & Behavior, vol.33, issue.1, pp.50-51, 2009.
DOI : 10.4161/psb.4.1.7300

J. Pavlovkin, H. Okamoto, R. Wachter, A. Lauchli, and C. I. Ullrich, Evidence for high activity of xylem parenchyma and ray cells in the interface of host stem and Agrobacterium tumefaciens-induced tumours of Ricinus communis, Journal of Experimental Botany, vol.53, issue.371, pp.1143-54, 2002.
DOI : 10.1093/jexbot/53.371.1143

C. S. Pereira, J. A. Thompson, and K. B. Xavier, AI-2-mediated signalling in bacteria, FEMS Microbiology Reviews, vol.37, issue.2, pp.156-81, 2013.
DOI : 10.1111/j.1574-6976.2012.00345.x

A. Petit, J. Tempe, A. Kerr, M. Holsters, M. Van-montagu et al., Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids, Nature, vol.129, issue.5645, pp.570-572, 1978.
DOI : 10.1007/BF00269591

U. M. Pinto and S. C. Winans, Dimerization of the quorum-sensing transcription factor TraR enhances resistance to cytoplasmic proteolysis, Molecular Microbiology, vol.98, issue.1, pp.32-42, 2009.
DOI : 10.1111/j.1365-2958.2009.06730.x

S. Pionnat, H. Keller, D. Hericher, A. Bettachini, Y. Dessaux et al., Ti plasmids from Agrobacterium characterize rootstock clones that initiated a spread of crown gall disease in Mediterranean countries, Appl Environ Microbiol, vol.65, pp.4197-206, 1999.

K. R. Piper, S. Beck-von-bodman, and S. K. Farrand, Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction, Nature, vol.362, issue.6419, pp.448-50, 1993.
DOI : 10.1038/362448a0

K. R. Piper, S. Beck-von-bodman, I. Hwang, and S. K. Farrand, Hierarchical gene regulatory systems arising from fortuitous gene associations: controlling quorum sensing by the opine regulon in Agrobacterium, Molecular Microbiology, vol.173, issue.5, pp.1077-89, 1999.
DOI : 10.1038/362446a0

K. R. Piper and S. K. Farrand, Quorum Sensing but Not Autoinduction of Ti Plasmid Conjugal Transfer Requires Control by the Opine Regulon and the Antiactivator TraM, Journal of Bacteriology, vol.182, issue.4, pp.1080-1088, 2000.
DOI : 10.1128/JB.182.4.1080-1088.2000

A. Pitzschke and H. Hirt, New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation, The EMBO Journal, vol.93, issue.6, pp.1021-1053, 2010.
DOI : 10.1038/emboj.2010.8

S. Planamente, S. Mondy, F. Hommais, A. Vigouroux, S. Morera et al., Structural basis for selective GABA binding in bacterial pathogens, Molecular Microbiology, vol.22, issue.Pt 1, pp.1085-99, 2012.
DOI : 10.1111/mmi.12043

S. Planamente, S. Morera, and D. Faure, In planta fitness-cost of the Atu4232-regulon encoding for a selective GABA-binding sensor in Agrobacterium, Communicative & Integrative Biology, vol.6, issue.3, p.23692, 2013.
DOI : 10.1128/JB.01274-06

S. Planamente, A. Vigouroux, S. Mondy, M. Nicaise, D. Faure et al., A Conserved Mechanism of GABA Binding and Antagonism Is Revealed by Structure-Function Analysis of the Periplasmic Binding Protein Atu2422 in Agrobacterium tumefaciens, Journal of Biological Chemistry, vol.285, issue.39, pp.30294-303, 2010.
DOI : 10.1074/jbc.M110.140715

T. G. Platt, J. D. Bever, and C. Fuqua, A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis, Proceedings of the Royal Society B: Biological Sciences, vol.187, issue.8, pp.1691-1700, 2012.
DOI : 10.1128/JB.187.8.2768-2773.2005

C. Wang, H. B. Zhang, G. Chen, L. Chen, and L. H. Zhang, Dual Control of Quorum Sensing by Two TraM-Type Antiactivators in Agrobacterium tumefaciens Octopine Strain A6, Journal of Bacteriology, vol.188, issue.7, pp.2435-2480, 2006.
DOI : 10.1128/JB.188.7.2435-2445.2006

C. Wang, H. B. Zhang, L. H. Wang, and L. H. Zhang, Succinic semialdehyde couples stress response to quorum-sensing signal decay in Agrobacterium tumefaciens, Molecular Microbiology, vol.169, issue.1, pp.45-56, 2006.
DOI : 10.1128/JB.182.14.3885-3895.2000

W. T. Watson, F. V. Murphy, T. A. Gould, P. Jambeck, D. L. Val et al., Crystallization and rhenium MAD phasing of the acyl-homoserinelactone synthase EsaI, Acta Crystallographica Section D Biological Crystallography, vol.57, issue.12, pp.1945-1954, 2001.
DOI : 10.1107/S0907444901014512

C. E. White and S. C. Winans, Identification of amino acid residues of the Agrobacterium tumefaciens quorum-sensing regulator TraR that are critical for positive control of transcription, Molecular Microbiology, vol.180, issue.5, pp.1473-86, 2005.
DOI : 10.1111/j.1365-2958.2004.04482.x

C. E. White and S. C. Winans, The quorum-sensing transcription factor TraR decodes its DNA binding site by direct contacts with DNA bases and by detection of DNA flexibility, Molecular Microbiology, vol.180, issue.1, pp.245-56, 2007.
DOI : 10.1111/j.1365-2958.2007.05647.x

P. Williams, Quorum sensing, communication and cross-kingdom signalling in the bacterial world, Microbiology, pp.3923-3961, 2007.

I. Wilms, B. Voss, W. R. Hess, L. I. Leichert, and F. Narberhaus, Small RNA-mediated control of the Agrobacterium tumefaciens GABA binding protein, Molecular Microbiology, vol.23, issue.2, pp.492-506, 2011.
DOI : 10.1111/j.1365-2958.2011.07589.x

D. W. Wood, J. C. Setubal, R. Kaul, D. E. Monks, J. P. Kitajima et al., The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58, Science, vol.294, issue.5550, pp.2317-2340, 2001.
DOI : 10.1126/science.1066804

Y. S. You, H. Marella, R. Zentella, Y. Zhou, T. Ulmasov et al., Use of Bacterial Quorum-Sensing Components to Regulate Gene Expression in Plants, PLANT PHYSIOLOGY, vol.140, issue.4, pp.1205-1217, 2006.
DOI : 10.1104/pp.105.074666

J. M. Young, Agrobacterium-Taxonomy of plant-pathogenic Rhizobium species. Pages 183-220 in Agrobacterium from, Biology to Biotechnology. T. Tzfira, V. Citovsky, p.750, 2008.

Z. C. Yuan, E. Haudecoeur, D. Faure, K. F. Kerr, and E. W. Nester, Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and gamma-amino butyric acid reveals signalling cross-talk and Agrobacterium--plant co-evolution, 2008.

A. A. Zarkani, E. Stein, C. R. Rohrich, M. Schikora, E. Evguenieva-hackenberg et al., Homoserine Lactones Influence the Reaction of Plants to Rhizobia, International Journal of Molecular Sciences, vol.14, issue.8, pp.17122-17168, 2013.
DOI : 10.3390/ijms140817122

E. L. Zechner, S. Lang, and J. F. Schildbach, Assembly and mechanisms of bacterial type IV secretion machines, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.60, issue.1, pp.1073-87, 2012.
DOI : 10.1016/j.plasmid.2008.03.004

H. B. Zhang, L. H. Wang, and L. H. Zhang, Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens, Proceedings of the National Academy of Sciences, vol.99, issue.7, pp.4638-4681, 2002.
DOI : 10.1073/pnas.022056699

L. Zhang, P. J. Murphy, A. Kerr, and M. E. Tate, Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones, Nature, vol.362, issue.6419, pp.446-454, 1993.
DOI : 10.1038/362446a0

R. G. Zhang, K. M. Pappas, J. L. Brace, P. C. Miller, T. Oulmassov et al., Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA, Nature, vol.208, issue.6892, pp.971-975, 2002.
DOI : 10.1038/8263

J. Zhu, J. W. Beaber, M. I. More, C. Fuqua, A. Eberhard et al., Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens, J Bacteriol, vol.180, pp.5398-405, 1998.

J. Zhu and S. C. Winans, Activity of the quorum-sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR-like protein, Molecular Microbiology, vol.27, issue.2, pp.289-97, 1998.
DOI : 10.1105/tpc.8.10.1699

J. Zhu and S. C. Winans, Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells, Proceedings of the National Academy of Sciences, vol.96, issue.9, pp.4832-4839, 1999.
DOI : 10.1073/pnas.96.9.4832

J. Zhu and S. C. Winans, The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization, Proceedings of the National Academy of Sciences, vol.98, issue.4, pp.1507-1519, 2001.
DOI : 10.1073/pnas.98.4.1507

C. Zipfel, G. Kunze, D. Chinchilla, A. Caniard, J. D. Jones et al., Perception of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated Transformation, Cell, vol.125, issue.4, pp.749-60, 2006.
DOI : 10.1016/j.cell.2006.03.037

C. H. Baek, S. K. Farrand, D. K. Park, K. E. Lee, W. Hwang et al., Genes for utilization of deoxyfructosyl glutamine (DFG), an amadori compound, are widely dispersed in the family Dessaux, 2005.

Y. Dessaux, A. Petit, and J. Tempe, Opines in Agrobacterium biology Molecular signals in plant-microbe communications, pp.109-136, 1992.

S. K. Farrand and Y. Dessaux, Proline biosynthesis encoded by the noc and occ loci of Agrobacterium Ti plasmids., Journal of Bacteriology, vol.167, issue.2, pp.732-736, 1986.
DOI : 10.1128/jb.167.2.732-734.1986

C. Fuqua and S. C. Winans, Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes., Journal of Bacteriology, vol.178, issue.2, pp.435-475, 1996.
DOI : 10.1128/jb.178.2.435-440.1996

S. B. Gelvin, <i>Agrobacterium</i> Virulence Gene Induction, Methods Mol Biol, vol.343, pp.77-84, 2006.
DOI : 10.1385/1-59745-130-4:77

B. Goodner, G. Hinkle, S. Gattung, N. Miller, M. Blanchard et al., Genome Sequence of the Plant Pathogen and Biotechnology Agent Agrobacterium tumefaciens C58, Science, vol.294, issue.5550, pp.2323-2331, 2001.
DOI : 10.1126/science.1066803

E. Haudecoeur, M. Tannieres, A. Cirou, A. Raffoux, Y. Dessaux et al., C58, Molecular Plant-Microbe Interactions, vol.22, issue.5, pp.529-566, 2009.
DOI : 10.1094/MPMI-22-5-0529

G. T. Hayman and S. K. Farrand, Characterization and mapping of the agrocinopine-agrocin 84 locus on the nopaline Ti plasmid pTiC58., Journal of Bacteriology, vol.170, issue.4, pp.1759-67, 1988.
DOI : 10.1128/jb.170.4.1759-1767.1988

I. Hwang, D. M. Cook, and S. K. Farrand, A new regulatory element modulates homoserine lactone-mediated autoinduction of Ti plasmid conjugal transfer., Journal of Bacteriology, vol.177, issue.2, pp.449-58, 1995.
DOI : 10.1128/jb.177.2.449-458.1995

H. Joos, D. Inze, A. Caplan, M. Sormann, M. Van-montagu et al., Genetic analysis of T-DNA transcripts in nopaline crown galls, Cell, vol.32, issue.4, pp.1057-67, 1983.
DOI : 10.1016/0092-8674(83)90290-8

S. R. Khan and S. K. Farrand, The BlcC (AttM) Lactonase of Agrobacterium tumefaciens Does Not Quench the Quorum-Sensing System That Regulates Ti Plasmid Conjugative Transfer, Journal of Bacteriology, vol.191, issue.4, pp.1320-1329, 2009.
DOI : 10.1128/JB.01304-08

H. Kim and S. K. Farrand, Characterization of the acc operon from the nopaline-type Ti plasmid pTiC58, which encodes utilization of agrocinopines A and B and susceptibility to agrocin 84., Journal of Bacteriology, vol.179, issue.23, 1997.
DOI : 10.1128/jb.179.23.7559-7572.1997

K. M. Pappas and S. C. Winans, A LuxR-type regulator from Agrobacterium tumefaciens elevates Ti plasmid copy number by activating transcription of plasmid replication genes, Molecular Microbiology, vol.18, issue.4, pp.1059-73, 2003.
DOI : 10.1046/j.1365-2958.2003.03488.x

D. Perez-mendoza, E. Sepulveda, V. Pando, S. Munoz, J. Nogales et al., Identification of the rctA Gene, Which Is Required for Repression of Conjugative Transfer of Rhizobial Symbiotic Megaplasmids, Journal of Bacteriology, vol.187, issue.21, pp.7341-50, 2005.
DOI : 10.1128/JB.187.21.7341-7350.2005

K. R. Piper, S. Beck-von-bodman, I. Hwang, and S. K. Farrand, Hierarchical gene regulatory systems arising from fortuitous gene associations: controlling quorum sensing by the opine regulon in Agrobacterium, Molecular Microbiology, vol.173, issue.5, pp.1077-89, 1999.
DOI : 10.1038/362446a0

K. R. Piper and S. K. Farrand, Quorum Sensing but Not Autoinduction of Ti Plasmid Conjugal Transfer Requires Control by the Opine Regulon and the Antiactivator TraM, Journal of Bacteriology, vol.182, issue.4, pp.1080-1088, 2000.
DOI : 10.1128/JB.182.4.1080-1088.2000

A. Pitzschke and H. Hirt, New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation, The EMBO Journal, vol.93, issue.6, pp.1021-1053, 2010.
DOI : 10.1038/emboj.2010.8

S. Planamente, S. Mondy, F. Hommais, A. Vigouroux, S. Morera et al., Structural basis for selective GABA binding in bacterial pathogens, Molecular Microbiology, vol.22, issue.Pt 1, pp.1085-99, 2012.
DOI : 10.1111/mmi.12043

M. H. Ryder, M. E. Tate, and G. P. Jones, Agrocinopine A, a tumor-inducing plasmid-coded enzyme product, is a phosphodiester of sucrose and L-arabinose, J Biol Chem, vol.259, pp.9704-9714, 1984.

N. Sans, G. Schroder, and J. Schroder, The Noc region of Ti plasmid C58 codes for arginase and ornithine cyclodeaminase, European Journal of Biochemistry, vol.167, issue.1, pp.81-88, 1987.
DOI : 10.1016/0003-2697(75)90408-X

C. L. Schardl and C. I. Kado, A functional map of the nopaline catabolism genes on the Ti plasmid of Agrobacterium tumefaciens C58, MGG Molecular & General Genetics, vol.123, issue.1, pp.10-16, 1983.
DOI : 10.1007/BF00330882

C. I. Ullrich and R. Aloni, Vascularization is a general requirement for growth of plant and animal tumours, Journal of Experimental Botany, vol.51, issue.353, pp.1951-60, 2000.
DOI : 10.1093/jexbot/51.353.1951

V. R. Vaudequin-dransart, A. Petit, W. S. Chilton, and Y. Dessaux, Cointegrates with the Ti Plasmid and Cooperates for Opine Degradation, Molecular Plant-Microbe Interactions, vol.11, issue.7, pp.583-591, 1998.
DOI : 10.1094/MPMI.1998.11.7.583

D. Veselov, M. Langhans, W. Hartung, R. Aloni, I. Feussner et al., Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid, Planta, vol.216, pp.512-534, 2003.

V. Lintig, J. Zanker, H. Schroder, and J. , Positive Regulators of Opine-Inducible Promoters in the Nopaline and Octopine Catabolism Regions of Ti Plasmids, Molecular Plant-Microbe Interactions, vol.4, issue.4, pp.370-378, 1991.
DOI : 10.1094/MPMI-4-370

S. Beck-von-bodman, G. T. Hayman, and S. K. Farrand, Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor., Proceedings of the National Academy of Sciences, vol.89, issue.2, pp.643-650, 1992.
DOI : 10.1073/pnas.89.2.643

R. P. Berntsson, S. H. Smits, L. Schmitt, D. J. Slotboom, and B. Poolman, A structural classification of substrate-binding proteins, FEBS Letters, vol.104, issue.12, pp.2606-2623, 2010.
DOI : 10.1016/j.febslet.2010.04.043

B. G. Clare, A. Kerr, and D. A. Jones, Characteristics of the nopaline catabolic plasmid in Agrobacterium strains K84 and K1026 used for biological control of crown gall disease, Plasmid, vol.23, issue.2, pp.126-163, 1990.
DOI : 10.1016/0147-619X(90)90031-7

A. Depicker, S. Stachel, P. Dhaese, P. Zambryski, and H. M. Goodman, Nopaline synthase: transcript mapping and DNA sequence, J Mol Appl Genet, vol.1, pp.561-73, 1982.

Y. Dessaux, A. Petit, J. Tempe, M. Demarez, C. Legrain et al., Arginine catabolism in Agrobacterium strains: role of the Ti plasmid., Journal of Bacteriology, vol.166, issue.1, pp.44-50, 1986.
DOI : 10.1128/jb.166.1.44-50.1986

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2158, 2004.
DOI : 10.1107/S0907444904019158

S. K. Farrand and Y. Dessaux, Proline biosynthesis encoded by the noc and occ loci of Agrobacterium Ti plasmids., Journal of Bacteriology, vol.167, issue.2, pp.732-736, 1986.
DOI : 10.1128/jb.167.2.732-734.1986

P. Guyon, A. Petit, J. Tempé, and Y. Dessaux, Transformed Plants Producing Opines Specifically Promote Growth of Opine-Degrading Agrobacteria, Molecular Plant-Microbe Interactions, vol.6, issue.1, pp.92-98, 1993.
DOI : 10.1094/MPMI-6-092

E. Haudecoeur, M. Tannieres, A. Cirou, A. Raffoux, Y. Dessaux et al., C58, Molecular Plant-Microbe Interactions, vol.22, issue.5, pp.529-566, 2009.
DOI : 10.1094/MPMI-22-5-0529

D. Kreusch, V. Lintig, J. Schroder, and J. , Ti plasmid-encoded octopine and nopaline catabolism in Agrobacterium: specificities of the LysR-type regulators OccR and NocR, and protein-induced DNA bending, Molecular and General Genetics MGG, vol.176, issue.1, pp.102-112, 1995.
DOI : 10.1007/BF00290241

E. Krissinel and K. Henrick, Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2256-68, 2004.
DOI : 10.1107/S0907444904026460

J. A. Lippincott, R. Beiderbeck, and B. B. Lippincott, Utilization of octopine and nopaline by Agrobacterium, J Bacteriol, vol.116, pp.378-83, 1973.

F. Marincs and D. W. White, Nopaline causes a conformational change in the NocR regulatory protein-nocR promoter complex of Agrobacterium tumefaciens Ti plasmid pTiT37, Mol Gen Genet, vol.241, pp.65-72, 1993.

F. Marincs and D. W. White, Divergent transcription and a remote operator play a role in control of expression of a nopaline catabolism promoter in Agrobacterium tumefaciens, J Biol Chem, vol.270, pp.12339-12381, 1995.

C. S. Nautiyal and P. Dion, Characterization of the Opine-Utilizing Microflora Associated with Samples of Soil and Plants, Appl Environ Microbiol, vol.56, pp.2576-2579, 1990.

P. M. Oger, H. Mansouri, X. Nesme, and Y. Dessaux, Engineering Root Exudation of Lotus toward the Production of Two Novel Carbon Compounds Leads to the Selection of Distinct Microbial Populations in the Rhizosphere, Microbial Ecology, vol.47, issue.1, pp.96-103, 2004.
DOI : 10.1007/s00248-003-2012-9

B. H. Oh, G. F. Ames, and S. H. Kim, Structural basis for multiple ligand specificity of the periplasmic lysine-, arginine-, ornithine-binding protein, J Biol Chem, vol.269, pp.26323-26353, 1994.

S. Planamente, S. Mondy, F. Hommais, A. Vigouroux, S. Morera et al., Structural basis for selective GABA binding in bacterial pathogens, Molecular Microbiology, vol.22, issue.Pt 1, pp.1085-99, 2012.
DOI : 10.1111/mmi.12043

T. G. Platt, J. D. Bever, and C. Fuqua, A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis, Proceedings of the Royal Society B: Biological Sciences, vol.187, issue.8, pp.1691-1700, 2012.
DOI : 10.1128/JB.187.8.2768-2773.2005

T. G. Platt, C. Fuqua, and J. D. Bever, RESOURCE AND COMPETITIVE DYNAMICS SHAPE THE BENEFITS OF PUBLIC GOODS COOPERATION IN A PLANT PATHOGEN, Evolution, vol.6, issue.6, pp.1953-65, 2012.
DOI : 10.1111/j.1558-5646.2011.01571.x

M. H. Ryder, M. E. Tate, and G. P. Jones, Agrocinopine A, a tumor-inducing plasmid-coded enzyme product, is a phosphodiester of sucrose and L-arabinose, J Biol Chem, vol.259, pp.9704-9714, 1984.

N. Sans, G. Schroder, and J. Schroder, The Noc region of Ti plasmid C58 codes for arginase and ornithine cyclodeaminase, European Journal of Biochemistry, vol.167, issue.1, pp.81-88, 1987.
DOI : 10.1016/0003-2697(75)90408-X

M. A. Savka, F. , and S. K. , Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource, Nature Biotechnology, vol.259, issue.4, pp.363-68, 1997.
DOI : 10.1016/S0008-6215(00)82224-7

C. L. Schardl and C. I. Kado, A functional map of the nopaline catabolism genes on the Ti plasmid of Agrobacterium tumefaciens C58, MGG Molecular & General Genetics, vol.123, issue.1, pp.10-16, 1983.
DOI : 10.1007/BF00330882

V. Lintig, J. Kreusch, D. Schroder, and J. , Opine-regulated promoters and LysR-type regulators in the nopaline (noc) and octopine (occ) catabolic regions of Ti plasmids of Agrobacterium tumefaciens., Journal of Bacteriology, vol.176, issue.2, pp.495-503, 1994.
DOI : 10.1128/jb.176.2.495-503.1994

V. Lintig, J. Zanker, H. Schroder, and J. , Positive Regulators of Opine-Inducible Promoters in the Nopaline and Octopine Catabolism Regions of Ti Plasmids, Molecular Plant-Microbe Interactions, vol.4, issue.4, pp.370-378, 1991.
DOI : 10.1094/MPMI-4-370

N. Yao, S. Trakhanov, and F. A. Quiocho, Refined 1.89-.ANG. Structure of the Histidine-Binding Protein Complexed with Histidine and Its Relationship with Many Other Active Transport/Chemosensory Proteins, Biochemistry, vol.33, issue.16, pp.4769-4779, 1994.
DOI : 10.1021/bi00182a004

H. Zanker, G. Lurz, U. Langridge, P. Langridge, D. Kreusch et al., Octopine and nopaline oxidases from Ti plasmids of Agrobacterium tumefaciens: molecular analysis, relationship, and functional characterization., Journal of Bacteriology, vol.176, issue.15, pp.4511-4518, 1994.
DOI : 10.1128/jb.176.15.4511-4517.1994

H. Zanker, V. Lintig, J. Schroder, and J. , Opine transport genes in the octopine (occ) and nopaline (noc) catabolic regions in Ti plasmids of Agrobacterium tumefaciens., Journal of Bacteriology, vol.174, issue.3, pp.841-850, 1992.
DOI : 10.1128/jb.174.3.841-849.1992

J. Bergeron, R. A. Macleod, and P. Dion, Specificity of octopine uptake by Rhizobium and pseudomonas strains, Appl Environ Microbiol, vol.56, pp.1453-1461, 1990.

S. K. Farrand and Y. Dessaux, Proline biosynthesis encoded by the noc and occ loci of Agrobacterium Ti plasmids., Journal of Bacteriology, vol.167, issue.2, pp.732-736, 1986.
DOI : 10.1128/jb.167.2.732-734.1986

E. Haudecoeur, M. Tannieres, A. Cirou, A. Raffoux, Y. Dessaux et al., C58, Molecular Plant-Microbe Interactions, vol.22, issue.5, pp.529-566, 2009.
DOI : 10.1094/MPMI-22-5-0529

G. B. Kiss, E. Vincze, Z. Kalman, T. Forrai, and A. Kondorosi, Genetic and Biochemical Analysis of Mutants Affected in Nitrate Reduction in Rhizobium meliloti, Journal of General Microbiology, vol.113, issue.1, pp.105-118, 1979.
DOI : 10.1099/00221287-113-1-105

D. Kreusch, V. Lintig, J. Schroder, and J. , Ti plasmid-encoded octopine and nopaline catabolism in Agrobacterium: specificities of the LysR-type regulators OccR and NocR, and protein-induced DNA bending, Molecular and General Genetics MGG, vol.176, issue.1, pp.102-112, 1995.
DOI : 10.1007/BF00290241

F. Lassalle, T. Campillo, L. Vial, J. Baude, D. Costechareyre et al., Genomic Species Are Ecological Species as Revealed by Comparative Genomics in Agrobacterium tumefaciens, Genome Biology and Evolution, vol.3, issue.0, pp.762-81, 2011.
DOI : 10.1093/gbe/evr070

URL : https://hal.archives-ouvertes.fr/hal-00698000

J. A. Lippincott, R. Beiderbeck, and B. B. Lippincott, Utilization of octopine and nopaline by Agrobacterium, J Bacteriol, vol.116, pp.378-83, 1973.

V. Lintig, J. Kreusch, D. Schroder, and J. , Opine-regulated promoters and LysR-type regulators in the nopaline (noc) and octopine (occ) catabolic regions of Ti plasmids of Agrobacterium tumefaciens., Journal of Bacteriology, vol.176, issue.2, pp.495-503, 1994.
DOI : 10.1128/jb.176.2.495-503.1994

H. Zanker, V. Lintig, J. Schroder, and J. , Opine transport genes in the octopine (occ) and nopaline (noc) catabolic regions in Ti plasmids of Agrobacterium tumefaciens., Journal of Bacteriology, vol.174, issue.3, pp.841-850, 1992.
DOI : 10.1128/jb.174.3.841-849.1992

N. Bouche, A. Fait, D. Bouchez, S. G. Moller, and H. Fromm, Mitochondrial succinic-semialdehyde dehydrogenase of the ??-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants, Proceedings of the National Academy of Sciences, vol.100, issue.11, pp.6843-6851, 2003.
DOI : 10.1073/pnas.1037532100

N. Bouche, A. Fait, M. Zik, and H. Fromm, The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis, Plant Molecular Biology, vol.37, issue.3, pp.315-340, 2004.
DOI : 10.1007/s11103-004-0650-z

N. Bouche and H. Fromm, GABA in plants: just a metabolite?, Trends in Plant Science, vol.9, issue.3, pp.110-115, 2004.
DOI : 10.1016/j.tplants.2004.01.006

N. Bouche, B. Lacombe, and H. Fromm, GABA signaling: a conserved and ubiquitous mechanism, Trends in Cell Biology, vol.13, issue.12, pp.607-617, 2003.
DOI : 10.1016/j.tcb.2003.10.001

A. Carlier, R. Chevrot, Y. Dessaux, and D. Faure, -Acyl-Homoserine Lactone Signal, Molecular Plant-Microbe Interactions, vol.17, issue.9, pp.951-958, 2004.
DOI : 10.1094/MPMI.2004.17.9.951

URL : https://hal.archives-ouvertes.fr/hal-00807884

Y. Chai, C. S. Tsai, H. Cho, and S. C. Winans, Reconstitution of the Biochemical Activities of the AttJ Repressor and the AttK, AttL, and AttM Catabolic Enzymes of Agrobacterium tumefaciens, Journal of Bacteriology, vol.189, issue.9, pp.3674-3683, 2007.
DOI : 10.1128/JB.01274-06

R. Chevrot, R. Rosen, E. Haudecoeur, A. Cirou, B. J. Shelp et al., GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens, Proceedings of the National Academy of Sciences, vol.103, issue.19, pp.7460-7464, 2006.
DOI : 10.1073/pnas.0600313103

URL : https://hal.archives-ouvertes.fr/hal-00119068

F. Conti, A. Minelli, and M. Melone, GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications, Brain Research Reviews, vol.45, issue.3, pp.196-212, 2004.
DOI : 10.1016/j.brainresrev.2004.03.003

A. Dagorn, M. Hillion, A. Chapalain, O. Lesouhaitier, C. Duclairoir-poc et al., Gamma-aminobutyric acid acts as a specific virulence regulator in Pseudomonas aeruginosa, Microbiology, vol.159, issue.Pt_2, pp.339-51, 2013.
DOI : 10.1099/mic.0.061267-0

URL : https://hal.archives-ouvertes.fr/hal-00992059

R. Deeken, J. C. Engelmann, M. Efetova, T. Czirjak, T. Muller et al., An Integrated View of Gene Expression and Solute Profiles of Arabidopsis Tumors: A Genome-Wide Approach, THE PLANT CELL ONLINE, vol.18, issue.12, pp.3617-3651, 2006.
DOI : 10.1105/tpc.106.044743

C. Feehily and K. A. Karatzas, Role of glutamate metabolism in bacterial responses towards acid and other stresses, Journal of Applied Microbiology, vol.192, issue.1, pp.11-24, 2013.
DOI : 10.1111/j.1365-2672.2012.05434.x

S. Gagnot, J. P. Tamby, M. L. Martin-magniette, F. Bitton, L. Taconnat et al., CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform, Nucleic Acids Research, vol.36, issue.Database, p.16, 2008.
DOI : 10.1093/nar/gkm757

URL : https://hal.archives-ouvertes.fr/hal-01203869

S. Grallath, T. Weimar, A. Meyer, C. Gumy, M. Suter-grotemeyer et al., The AtProT Family. Compatible Solute Transporters with Similar Substrate Specificity But Differential Expression Patterns, PLANT PHYSIOLOGY, vol.137, issue.1, pp.117-143, 2005.
DOI : 10.1104/pp.104.055079

E. Haudecoeur, S. Planamente, A. Cirou, M. Tannieres, B. J. Shelp et al., Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens, Proceedings of the National Academy of Sciences, vol.106, issue.34, pp.14587-92, 2009.
DOI : 10.1073/pnas.0808005106

E. Haudecoeur, M. Tannieres, A. Cirou, A. Raffoux, Y. Dessaux et al., C58, Molecular Plant-Microbe Interactions, vol.22, issue.5, pp.529-566, 2009.
DOI : 10.1094/MPMI-22-5-0529

S. R. Khan and S. K. Farrand, The BlcC (AttM) Lactonase of Agrobacterium tumefaciens Does Not Quench the Quorum-Sensing System That Regulates Ti Plasmid Conjugative Transfer, Journal of Bacteriology, vol.191, issue.4, pp.1320-1329, 2009.
DOI : 10.1128/JB.01304-08

P. Laporte, B. Satiat-jeunemaître, I. Velasco, T. Csorba, W. Van-de-velde et al., A novel RNA-binding peptide regulates the establishment of the Medicago truncatula?Sinorhizobium meliloti nitrogen-fixing symbiosis, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00856230

C. W. Lee, M. Efetova, J. C. Engelmann, R. Kramell, C. Wasternack et al., Agrobacterium tumefaciens Promotes Tumor Induction by Modulating Pathogen Defense in Arabidopsis thaliana, THE PLANT CELL ONLINE, vol.21, issue.9, pp.2948-62, 2009.
DOI : 10.1105/tpc.108.064576

C. Lurin, C. Andres, S. Aubourg, M. Bellaoui, F. Bitton et al., Genome-Wide Analysis of Arabidopsis Pentatricopeptide Repeat Proteins Reveals Their Essential Role in Organelle Biogenesis, THE PLANT CELL ONLINE, vol.16, issue.8, pp.2089-103, 2004.
DOI : 10.1105/tpc.104.022236

S. Michaeli, A. Fait, K. Lagor, A. Nunes-nesi, N. Grillich et al., A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism, The Plant Journal, vol.37, issue.10, pp.485-98, 2011.
DOI : 10.1111/j.1365-313X.2011.04612.x

R. Mirabella, H. Rauwerda, E. A. Struys, C. Jakobs, C. Triantaphylides et al., The Arabidopsis her1 mutant implicates GABA in E-2-hexenal responsiveness, The Plant Journal, vol.111, issue.2, pp.197-213, 2008.
DOI : 10.1111/j.1365-313X.2007.03323.x

Y. Miyashita and A. G. Good, Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana, Plant and Cell Physiology, vol.49, issue.1, pp.92-102, 2008.
DOI : 10.1093/pcp/pcm171

R. Palanivelu, L. Brass, A. F. Edlund, and D. Preuss, Pollen Tube Growth and Guidance Is Regulated by POP2, an Arabidopsis Gene that Controls GABA Levels, Cell, vol.114, issue.1, pp.47-59, 2003.
DOI : 10.1016/S0092-8674(03)00479-3

D. H. Park, R. Mirabella, P. A. Bronstein, G. M. Preston, M. A. Haring et al., Mutations in ??-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence, The Plant Journal, vol.10, issue.2, pp.318-348, 2010.
DOI : 10.1111/j.1365-313X.2010.04327.x

S. Planamente, S. Mondy, F. Hommais, A. Vigouroux, S. Morera et al., Structural basis for selective GABA binding in bacterial pathogens, Molecular Microbiology, vol.22, issue.Pt 1, pp.1085-99, 2012.
DOI : 10.1111/mmi.12043

S. Planamente, A. Vigouroux, S. Mondy, M. Nicaise, D. Faure et al., A Conserved Mechanism of GABA Binding and Antagonism Is Revealed by Structure-Function Analysis of the Periplasmic Binding Protein Atu2422 in Agrobacterium tumefaciens, Journal of Biological Chemistry, vol.285, issue.39, pp.30294-303, 2010.
DOI : 10.1074/jbc.M110.140715

H. Renault, Fiat lux!, Plant Signaling & Behavior, vol.2003, issue.6, 2013.
DOI : 10.1074/jbc.M407380200

URL : https://hal.archives-ouvertes.fr/hal-00823194

H. Renault, A. Amrani, R. Palanivelu, E. P. Updegraff, A. Yu et al., GABA Accumulation Causes Cell Elongation Defects and a Decrease in Expression of Genes Encoding Secreted and Cell Wall-Related Proteins in Arabidopsis thaliana, Plant and Cell Physiology, vol.52, issue.5, pp.894-908, 2011.
DOI : 10.1093/pcp/pcr041

URL : https://hal.archives-ouvertes.fr/hal-00625410

B. J. Shelp, A. W. Bown, and D. Faure, Extracellular ??-Aminobutyrate Mediates Communication between Plants and Other Organisms, PLANT PHYSIOLOGY, vol.142, issue.4, pp.1350-1352, 2006.
DOI : 10.1104/pp.106.088955

B. J. Shelp, G. G. Bozzo, C. P. Trobacher, A. Zarei, K. L. Deyman et al., Hypothesis/review: Contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress, Plant Science, vol.193, issue.194, pp.130-135, 2012.
DOI : 10.1016/j.plantsci.2012.06.001

S. Sulieman, fixation in legumes?, Plant Signaling & Behavior, vol.165, issue.1, pp.32-38, 2011.
DOI : 10.1111/j.1399-3054.2008.01092.x

K. Toyokura, M. Hayashi, M. Nishimura, and K. Okada, Adaxial-abaxial patterning, Plant Signaling & Behavior, vol.126, issue.7, pp.705-712, 2012.
DOI : 10.1139/b11-083

C. Wang, H. B. Zhang, L. H. Wang, and L. H. Zhang, Succinic semialdehyde couples stress response to quorum-sensing signal decay in Agrobacterium tumefaciens, Molecular Microbiology, vol.169, issue.1, pp.45-56, 2006.
DOI : 10.1128/JB.182.14.3885-3895.2000

M. Watanabe, K. Maemura, K. Kanbara, T. Tamayama, and H. Hayasaki, GABA and GABA Receptors in the Central Nervous System and Other Organs, Int Rev Cytol, vol.213, pp.1-47, 2002.
DOI : 10.1016/S0074-7696(02)13011-7

C. E. White and T. M. Finan, Quorum Quenching in Agrobacterium tumefaciens: Chance or Necessity?, Journal of Bacteriology, vol.191, issue.4, pp.1123-1128, 2009.
DOI : 10.1128/JB.01681-08

C. E. White and S. C. Winans, Cell-cell communication in the plant pathogen Agrobacterium tumefaciens, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.182, issue.14, pp.1135-1183, 2007.
DOI : 10.1128/JB.182.14.3885-3895.2000

Z. C. Yuan, E. Haudecoeur, D. Faure, K. F. Kerr, and E. W. Nester, -plant co-evolution, Cellular Microbiology, vol.58, issue.11, pp.2339-54, 2008.
DOI : 10.1111/j.1462-5822.2008.01215.x

URL : https://hal.archives-ouvertes.fr/hal-01058829

H. B. Zhang, L. H. Wang, and L. H. Zhang, Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens, Proceedings of the National Academy of Sciences, vol.99, issue.7, pp.4638-4681, 2002.
DOI : 10.1073/pnas.022056699

M. Abe, R. Kawamura, S. Higashi, S. Mori, M. Shibata et al., Transfer of the symbiotic plasmid from Rhizobium leguminosarum biovar trifolii to Agrobacterium tumefaciens., The Journal of General and Applied Microbiology, vol.44, issue.1, pp.65-74, 1998.
DOI : 10.2323/jgam.44.65

C. H. Baek, S. K. Farrand, D. K. Park, K. E. Lee, W. Hwang et al., Genes for utilization of deoxyfructosyl glutamine (DFG), an amadori compound, are widely dispersed in the family Rhizobiaceae, FEMS Microbiology Ecology, vol.53, issue.2, pp.221-254, 2005.
DOI : 10.1016/j.femsec.2004.12.008

J. Bergeron, R. A. Macleod, and P. Dion, Specificity of octopine uptake by Rhizobium and pseudomonas strains, Appl Environ Microbiol, vol.56, pp.1453-1461, 1990.

J. Y. Bouet, K. Nordstrom, and D. Lane, Plasmid partition and incompatibility ? the focus shifts, Molecular Microbiology, vol.176, issue.6, pp.1405-1419, 2007.
DOI : 10.1006/jmbi.1999.2909

G. Brader, M. D. Mikkelsen, B. A. Halkier, and E. Tapio-palva, Altering glucosinolate profiles modulates disease resistance in plants, The Plant Journal, vol.38, issue.5, pp.758-67, 2006.
DOI : 10.1111/j.1365-313X.2006.02743.x

A. Brown-kav, G. Sasson, E. Jami, A. Doron-faigenboim, I. Benhar et al., Insights into the bovine rumen plasmidome, Proc Natl Acad Sci U S A, vol.109, pp.5452-5459, 2012.

Y. Chai, J. Zhu, and S. C. Winans, TrlR, a defective TraR-like protein of Agrobacterium tumefaciens, blocks TraR function in vitro by forming inactive TrlR:TraR dimers, Molecular Microbiology, vol.185, issue.2, pp.414-435, 2001.
DOI : 10.1128/JB.182.14.3885-3895.2000

L. Chen, Y. Chen, D. W. Wood, and E. W. Nester, A New Type IV Secretion System Promotes Conjugal Transfer in Agrobacterium tumefaciens, Journal of Bacteriology, vol.184, issue.17, pp.4838-4883, 2002.
DOI : 10.1128/JB.184.17.4838-4845.2002

H. Cho and S. C. Winans, TraA, TraC and TraD autorepress two divergent quorum-regulated promoters near the transfer origin of the Ti plasmid of Agrobacterium tumefaciens, Molecular Microbiology, vol.267, issue.Part 11, pp.1769-82, 2007.
DOI : 10.1111/j.1365-2958.2007.05624.x

A. Crepin, C. Barbey, A. Beury-cirou, V. Helias, L. Taupin et al., Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya and Pectobacterium spp.), PLoS ONE, vol.150, issue.4, p.23, 2012.
DOI : 10.1371/journal.pone.0035176.s001

URL : https://hal.archives-ouvertes.fr/hal-00857430

R. Deeken, J. C. Engelmann, M. Efetova, T. Czirjak, T. Muller et al., An Integrated View of Gene Expression and Solute Profiles of Arabidopsis Tumors: A Genome-Wide Approach, THE PLANT CELL ONLINE, vol.18, issue.12, pp.3617-3651, 2006.
DOI : 10.1105/tpc.106.044743

P. Dunoyer, C. Himber, and O. Voinnet, Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections, Nature Genetics, vol.168, issue.2, pp.258-63, 2006.
DOI : 10.1038/ng1722

URL : https://hal.archives-ouvertes.fr/hal-00092879

J. Gollhofer, C. Schlawicke, N. Jungnick, W. Schmidt, and T. J. Buckhout, Members of a small family of nodulin-like genes are regulated under iron deficiency in roots of Arabidopsis thaliana, Plant Physiology and Biochemistry, vol.49, issue.5, pp.557-64, 2011.
DOI : 10.1016/j.plaphy.2011.02.011

B. Goodner, G. Hinkle, S. Gattung, N. Miller, M. Blanchard et al., Genome Sequence of the Plant Pathogen and Biotechnology Agent Agrobacterium tumefaciens C58, Science, vol.294, issue.5550, pp.2323-2331, 2001.
DOI : 10.1126/science.1066803

A. F. Haag, M. Baloban, M. Sani, B. Kerscher, O. Pierre et al., Protection of Sinorhizobium against Host Cysteine-Rich Antimicrobial Peptides Is Critical for Symbiosis, PLoS Biology, vol.43, issue.10, 2011.
DOI : 10.1371/journal.pbio.1001169.s009

E. Haudecoeur, M. Tannieres, A. Cirou, A. Raffoux, Y. Dessaux et al., C58, Molecular Plant-Microbe Interactions, vol.22, issue.5, pp.529-566, 2009.
DOI : 10.1094/MPMI-22-5-0529

C. I. Kado, Origin and evolution of plasmids, Antonie van Leeuwenhoek, vol.73, issue.1, pp.117-143, 1998.
DOI : 10.1023/A:1000652513822

J. A. Khan, Q. Wang, R. D. Sjolund, A. Schulz, and G. A. Thompson, An Early Nodulin-Like Protein Accumulates in the Sieve Element Plasma Membrane of Arabidopsis, PLANT PHYSIOLOGY, vol.143, issue.4, pp.1576-89, 2007.
DOI : 10.1104/pp.106.092296

H. Kim and S. K. Farrand, Characterization of the acc operon from the nopaline-type Ti plasmid pTiC58, which encodes utilization of agrocinopines A and B and susceptibility to agrocin 84., Journal of Bacteriology, vol.179, issue.23, pp.7559-72, 1997.
DOI : 10.1128/jb.179.23.7559-7572.1997

C. W. Lee, M. Efetova, J. C. Engelmann, R. Kramell, C. Wasternack et al., Agrobacterium tumefaciens Promotes Tumor Induction by Modulating Pathogen Defense in Arabidopsis thaliana, THE PLANT CELL ONLINE, vol.21, issue.9, pp.2948-62, 2009.
DOI : 10.1105/tpc.108.064576

P. L. Li and S. K. Farrand, The Replicator of the Nopaline-Type Ti Plasmid pTiC58 Is a Member of the repABC Family and Is Influenced by the TraR-Dependent Quorum-Sensing Regulatory System, Journal of Bacteriology, vol.182, issue.1, pp.179-88, 2000.
DOI : 10.1128/JB.182.1.179-188.2000

K. Mashiguchi, T. Asami, and Y. Suzuki, Genome-Wide Identification, Structure and Expression Studies, and Mutant Collection of 22 Early Nodulin-Like Protein Genes in Arabidopsis, Bioscience, Biotechnology, and Biochemistry, vol.51, issue.11, pp.2452-2461, 2009.
DOI : 10.1104/pp.105.067314

A. G. Matthysse, P. Jaeckel, and C. Jeter, are dominant negative mutations that block attachment and virulence, Canadian Journal of Microbiology, vol.54, issue.4, pp.241-248, 2008.
DOI : 10.1139/W08-005

P. Mergaert, K. Nikovics, Z. Kelemen, N. Maunoury, D. Vaubert et al., A Novel Family in Medicago truncatula Consisting of More Than 300 Nodule-Specific Genes Coding for Small, Secreted Polypeptides with Conserved Cysteine Motifs, PLANT PHYSIOLOGY, vol.132, issue.1, pp.161-73, 2003.
DOI : 10.1104/pp.102.018192

URL : https://hal.archives-ouvertes.fr/hal-00134878

M. D. Mikkelsen, B. L. Petersen, E. Glawischnig, A. B. Jensen, E. Andreasson et al., Modulation of CYP79 Genes and Glucosinolate Profiles in Arabidopsis by Defense Signaling Pathways, PLANT PHYSIOLOGY, vol.131, issue.1, pp.298-308, 2003.
DOI : 10.1104/pp.011015

E. R. Morton, P. M. Merritt, J. D. Bever, and C. Fuqua, Large Deletions in the pAtC58 Megaplasmid of Agrobacterium tumefaciens Can Confer Reduced Carriage Cost and Increased Expression of Virulence Genes, Genome Biology and Evolution, vol.5, issue.7, pp.1353-64, 2013.
DOI : 10.1093/gbe/evt095

J. Nap and T. Bisseling, The roots of nodulins, Physiologia Plantarum, vol.2, issue.2, pp.407-414, 1990.
DOI : 10.1007/BF00021330

C. S. Nautiyal and P. Dion, Characterization of the Opine-Utilizing Microflora Associated with Samples of Soil and Plants, Appl Environ Microbiol, vol.56, pp.2576-2579, 1990.

J. Nogales, H. Blanca-ordonez, J. Olivares, and J. Sanjuan, 1021 symbiotic plasmid is governed through the concerted action of one- and two-component signal transduction regulators, Environmental Microbiology, vol.33, issue.3, pp.811-832, 2013.
DOI : 10.1111/1462-2920.12073

P. M. Oger, H. Mansouri, X. Nesme, and Y. Dessaux, Engineering Root Exudation of Lotus toward the Production of Two Novel Carbon Compounds Leads to the Selection of Distinct Microbial Populations in the Rhizosphere, Microbial Ecology, vol.47, issue.1, pp.96-103, 2004.
DOI : 10.1007/s00248-003-2012-9

K. M. Pappas and S. C. Winans, A LuxR-type regulator from Agrobacterium tumefaciens elevates Ti plasmid copy number by activating transcription of plasmid replication genes, Molecular Microbiology, vol.18, issue.4, pp.1059-73, 2003.
DOI : 10.1046/j.1365-2958.2003.03488.x

U. M. Pinto, K. M. Pappas, and S. C. Winans, The ABCs of plasmid replication and segregation, Nature Reviews Microbiology, vol.40, issue.11, pp.755-65, 2012.
DOI : 10.1038/nrmicro2882

K. R. Piper, S. Beck-von-bodman, I. Hwang, and S. K. Farrand, Hierarchical gene regulatory systems arising from fortuitous gene associations: controlling quorum sensing by the opine regulon in Agrobacterium, Molecular Microbiology, vol.173, issue.5, pp.1077-89, 1999.
DOI : 10.1038/362446a0

T. G. Platt, J. D. Bever, and C. Fuqua, A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis, Proceedings of the Royal Society B: Biological Sciences, vol.187, issue.8, pp.1691-1700, 2012.
DOI : 10.1128/JB.187.8.2768-2773.2005

T. G. Platt, C. Fuqua, and J. D. Bever, RESOURCE AND COMPETITIVE DYNAMICS SHAPE THE BENEFITS OF PUBLIC GOODS COOPERATION IN A PLANT PATHOGEN, Evolution, vol.6, issue.6, pp.1953-65, 2012.
DOI : 10.1111/j.1558-5646.2011.01571.x

C. R. Roa-rodriguez, F. Vergara, A. Muck, A. Svatos, and J. Gershenzon, Promoters used to regulate gene expression. Cambia, http://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDwQFjAC&url=http%3 A%2F%2Fcougarlaw.com%2Flinked_files%2Fpromoters_for_gene_regulation Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense, Proc Natl Acad Sci, vol.105, pp.6196-201, 2003.

S. Teyssier-cuvelle, P. Oger, C. Mougel, K. Groud, S. K. Farrand et al., A Highly Selectable and Highly Transferable Ti Plasmid to Study Conjugal Host Range and Ti Plasmid Dissemination in Complex Ecosystems, Microbial Ecology, vol.141, issue.1, pp.10-18, 2004.
DOI : 10.1007/s00248-003-2023-6

B. P. Thomma, B. P. Cammue, and K. Thevissen, Plant defensins, Planta, vol.216, issue.2, pp.193-202, 2002.
DOI : 10.1007/s00425-002-0902-6

D. P. Verma, M. G. Fortin, J. Stanley, V. P. Mauro, S. Purohit et al., Nodulins and nodulin genes of Glycine max, Plant Molecular Biology, vol.311, issue.1, pp.51-61, 1986.
DOI : 10.1007/BF00020131

A. Walker, Welcome to the plasmidome, Nature Reviews Microbiology, vol.331, issue.6, 2012.
DOI : 10.1038/nrmicro2804

M. M. Watve, N. Dahanukar, and M. G. Watve, Sociobiological Control of Plasmid Copy Number in Bacteria, PLoS ONE, vol.41, issue.2, p.9328, 2010.
DOI : 10.1371/journal.pone.0009328.t003

D. Wibberg, J. Blom, S. Jaenicke, F. Kollin, O. Rupp et al., Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid, Journal of Biotechnology, vol.155, issue.1, pp.50-62, 2011.
DOI : 10.1016/j.jbiotec.2011.01.010

I. Wilms, B. Voss, W. R. Hess, L. I. Leichert, and F. Narberhaus, Small RNA-mediated control of the Agrobacterium tumefaciens GABA binding protein, Molecular Microbiology, vol.23, issue.2, pp.492-506, 2011.
DOI : 10.1111/j.1365-2958.2011.07589.x

D. W. Wood, J. C. Setubal, R. Kaul, D. E. Monks, J. P. Kitajima et al., The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58, Science, vol.294, issue.5550, pp.2317-2340, 2001.
DOI : 10.1126/science.1066804