I. Anshel, M. Anshel, and D. Goldfeld, An algebraic method for public-key cryptography, Mathematical Research Letters, vol.6, issue.3, p.p. ? (cf
DOI : 10.4310/MRL.1999.v6.n3.a3

M. Leonard and . Adleman, « A subexponential algorithm for the discrete logarithm problem with applications to cryptography, Foundations of Computer Science IEEE Annual Symposium on. IEEE Computer Society, oct

M. Leonard and . Adleman, « The function field sieve, Algorithmic Number Theory Symposium ? ANTS-I. Éd. : Leonard M. Adleman et Ming-Deh A

M. Leonard, . Adleman, A. Ming-deh, and . Huang, « Function Field Sieve Method for Discrete Logarithms over Finite Fields

[. Adikari, M. Anwar-hasan-et-christophe-negre-lars, R. Knudsen, and H. Wu, Towards Faster and Greener Cryptoprocessor for Eta Pairing on Supersingular Elliptic Curve over $\mathbb{F}_{2^{1223}}$, In : Selected Areas in Cryptography ? SAC . Éd Lecture Notes in Computer Science, pp.10-1007
DOI : 10.1007/978-3-642-35999-6_12

M. «. Ajtai, Generating hard instances of lattice problems, Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. STOC '. ACM

R. Martin and . Albrecht, The MRIE library for dense linear algebra over small fields with even characteristic

D. F. Aranha, J. López, and D. R. Hankerson, High-Speed Parallel Software Implementation of the ?? T Pairing, Topics in Cryptology ? CT- RSA . Éd. : Josef Pieprzyk. Lecture Notes in Computer Science
DOI : 10.1007/978-3-642-11925-5_7

D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López, Faster Explicit Formulas for Computing Pairings over Ordinary Curves, Advances in Cryptology ? EUROCRYPT . Éd. : Kenneth G. Paterson. Lecture Notes in Computer Science
DOI : 10.1007/978-3-642-20465-4_5

D. F. Aranha, J. Beuchat, J. Detrey, and N. Estibals, Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves, Lecture Notes in Computer Science, vol.17, issue.4, pp.10-1007
DOI : 10.1007/s00145-004-0313-x

URL : https://hal.archives-ouvertes.fr/inria-00540002

D. F. Aranha, L. Fuentes-castañeda, E. Knapp, A. J. Menezes, and F. Rodríguez-henríquez, Implementing Pairings at the 192-Bit Security Level, International Conference on Pairing-Based Cryptography ? Pairing . Éd. : Michel Abdalla et Tanja Lange, pp.10-1007
DOI : 10.1007/978-3-642-36334-4_11

S. L. Paulo, H. Y. Barreto, B. Kim, M. Lynn, and . Scott, « Efficient algorithms for pairing-based cryptosystems », In : Advances in Cryptology ? CRYPTO . Éd. : M. Yung. Lecture Notes in Computer Science, pp.10-1007

S. L. Paulo, S. D. Barreto, . Galbraith, Ó. Colm, M. Héigeartaigh et al., « Efficient pairing computation on supersingular abelian varieties, pp.10-1007

A. Bar+, G. M. Barenghi, L. Bertoni, G. Breveglieri, and . Pelosi, « A FPGA Coprocessor for the Cryptographic Tate Pairing over F p », Proceedings of the Fifth International Conference on Information Technology : New Generations

. Bar+-]-razvan, J. Barbulescu, N. Detrey, P. Estibals, and . Zimmermann, « Finding optimal formulae for bilinear map ». In : International Workshop on the Arithmetic of Finite Fields ? WAIFI . Éd. : Ferruh Özbudak et Francisco Rodríguez-Henríquez, Lecture Notes in Computer Science, pp.10-1007

. Bar+b-]-razvan, P. Barbulescu, A. Gaudry, E. Joux, and . Thomé, A quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic, Cryptology ePrint Archive

M. Bcs-]-peter-bürgisser, M. A. Clausen, and . Shokrollahi, Algebraic Complexity Theory. Grundlehren Der Mathematischen Wissenschaften

[. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, and F. Rodríguez-henríquez, A Comparison between Hardware Accelerators for the Modified Tate Pairing over $\mathbb{F}_{2^m}$ and $\mathbb{F}_{3^m}$, Lecture Notes in Computer Science, pp.10-1007
DOI : 10.1007/978-3-540-85538-5_20

URL : https://hal.archives-ouvertes.fr/inria-00423977

J. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, M. Shirase et al., Algorithms and Arithmetic Operators for Computing the ηT Pairing in Characteristic Three, IEEE Transactions in Computers . (nov. )
DOI : 10.1109/TC.2008.103

[. Beuchat, J. Detrey, N. Estibals, E. Okamoto, and F. Rodríguez-henríquez, Hardware Accelerator for the Tate Pairing in Characteristic Three Based on Karatsuba-Ofman Multipliers, Cryptographic Hardware and Embedded Systems ? CHES . Éd. : Christophe Clavier et Kris Gaj, pp.10-1007
DOI : 10.1007/978-3-642-04138-9_17

URL : https://hal.archives-ouvertes.fr/inria-00424011

J. Beuchat, E. López-trejo, L. Martínez-ramos, S. Mitsunari, and F. Rodríguez-henríquez, Multi-core Implementation of the Tate Pairing over Supersingular Elliptic Curves, Lecture Notes in Computer Science, pp.10-1007
DOI : 10.1007/978-3-642-10433-6_28

J. Beuchat, J. E. González-díaz, S. Mitsunari, E. Okamoto, F. Rodríguez-henríquez et al., High-Speed Software Implementation of the Optimal Ate Pairing over Barreto???Naehrig Curves, International Conference on Pairing-Based Cryptography ? Pairing . Éd. : Marc Joye, Atsuko Miyaji et Akira Otsuka, pp.10-1007
DOI : 10.1007/978-3-642-17455-1_2

[. Beuchat, J. Detrey, N. Estibals, E. Okamoto, and F. Rodríguez-henríquez, Fast Architectures for the \eta_T Pairing over Small-Characteristic Supersingular Elliptic Curves, IEEE Transactions in Computers . (fév. )
DOI : 10.1109/TC.2010.163

URL : https://hal.archives-ouvertes.fr/inria-00424016

. Bf-]-dan, M. K. Boneh, and . Franklin, « Identity-based encryption from the Weil pairing Advances in Cryptology ? CRYPTO . Lecture Notes in Computer Science, pp.10-1007

. Bf-]-dan, M. K. Boneh, and . Franklin, « Identity-based encryption from the Weil pairing, In : SIAM Journal on Computing, pp.10-1137

R. L. Daniel, R. P. Brown, and . Gallant, The Static Diffie-Hellman Problem, Cryptology ePrint Archive

M. «. Bläser, On the complexity of the multiplication of matrices of small formats, Journal of Complexity, vol.19, issue.1, pp.7-9
DOI : 10.1016/S0885-064X(02)00007-9

S. L. Paulo, M. Barreto, . Naehrig, E. Stafford, and . Tavares, « Pairing-Friendly Elliptic Curves of Prime Order ». In : Selected Areas in Cryptography ? SAC . Éd, Lecture Notes in Computer Science, pp.10-1007

I. F. Blake, G. Seroussi, and N. P. Smart, Advances in elliptic curve cryptography
DOI : 10.1017/CBO9780511546570

[. Brezing and A. Weng, Elliptic Curves Suitable for Pairing Based Cryptography, Designs, Codes and Cryptography, vol.2248, issue.5, pp.10-1007
DOI : 10.1007/s10623-004-3808-4

G. David and . Cantor, « Computing in the Jacobian of a hyperelliptic curve, Mathematics of computation

T. Cbh-]-nicolas, G. V. Courtois, D. Bard, and . Hulme, A New General- Purpose Method to Multiply 3 × 3 Matrices Using Only 23 Multiplications

[. Canfield, P. Erd?s, and C. Pomerance, « On a problem of Oppenheim concerning, Journal of Number Theory, vol.83, pp.10-1016

E. Cesena, Pairing with Supersingular Trace Zero Varieties Revisited, Cryptology ePrint Archive, Rapport / (cf. p. )

. H. Cfa, G. Cohen, R. Frey, and . Avanzi, Handbook of elliptic and hyperelliptic curve cryptography, pp.10-1201

D. R. Chm-]-sanjit-chatterjee, A. J. Hankerson, and . Menezes, « On the Efficiency and Security of Pairing-Based Protocols in the Type and Type Settings ». In : International Workshop on the Arithmetic of Finite Fields ? WAIFI, Lecture Notes in Computer Science, pp.10-1007

[. Cardona, E. Nart, and J. Pujolàs, Curves of genus two over fields of even characteristic, Mathematische Zeitschrift, vol.159, issue.1
DOI : 10.1007/s00209-004-0750-0

M. Cenk and F. Özbudak, « Efficient multiplication in F 3 ?m , m ? 1 and 5 ? ? ? 18 Advances in Cryptology -AFRICACRYPT . Éd. : Serge Vaudenay, Lecture Notes in Computer Science, pp.10-1007

M. Cenk and F. Özbudak, « Improved Polynomial Multiplication Formulas over F 2 Using Chinese Remainder Theorem, IEEE Transactions in Computers

M. Cenk and F. Özbudak, On multiplication in finite fields, Journal of Complexity, vol.26, issue.2
DOI : 10.1016/j.jco.2009.11.002

. Coo, A. Stephen, and . Cook, « On the Minimum Computation Time of Function, Thèse de doct, p.p. ? (cf

J. Couveignes, Algebraic groups and discrete logarithm, Public-Key Cryptography and Computational Number Theory. Éd. : Kazimierz lster, Jerzy Urbanowicz et Hugh C. Williams. De Gruyter Proceedings in Mathematics. de Gruyter, pp.10-1515
DOI : 10.1515/9783110881035.17

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.5372

R. [. Cocks and . Pinch, « Identity-based cryptosystems based on the Weil pairing

M. Iwan, P. Duursma, F. Gaudry, and . Morain, « Speeding up the Discrete Log Computation on Curves with Automorphisms Advances in Cryptology -ASIACRYPT'. Éd, Lecture Notes in Computer Science, pp.10-1007

[. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions on Information Theory, vol.22, issue.6
DOI : 10.1109/TIT.1976.1055638

C. «. Diem, On the discrete logarithm problem in class groups of curves Mathematics of computation

M. Iwan, H. Duursma, and . Lee, « Tate Pairing Implementation for Hyperelliptic Curves y 2 = x p ? x + d, Advances in Cryptology -ASIACRYPT . Éd. : Chi-Sung Laih. Lecture Notes in Computer Science, pp.10-1007

T. «. Elgamal, Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms Advances in, Lecture Notes in Computer Science, pp.10-1007

J. Fan+-]-haining-fan, M. Sun, . Gu, . Kwok-yan, and . Lam, Overlap-free Karatsuba-Ofman polynomial multiplication algorithm, Cryptology ePrint Archive

M. A. Fh-]-haining-fan and . Hasan, « Comments on Montgomery's " Five, Six, and Seven-Term Karatsuba-Like Formulae, IEEE Transactions in Computers . (mai )

G. Frey and H. Rück, « A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves, Mathematics of computation, pp.10-2307

G. Frey, Applications of Arithmetical Geometry to Cryptographic Constructions, Proceedings of the Fifth International Conference on Finite Fields and Applications, pp.10-1007
DOI : 10.1007/978-3-642-56755-1_13

[. Freeman, M. Scott, and E. Teske, A Taxonomy of Pairing-Friendly Elliptic Curves, Journal of Cryptology, vol.2, issue.5
DOI : 10.1007/s00145-009-9048-z

[. Fan, F. Vercauteren, and I. Verbauwhede, Efficient Hardware Implementation of Fp-Arithmetic for Pairing-Friendly Curves, IEEE Transactions in Computers . (mai )
DOI : 10.1109/TC.2011.78

S. D. Galbraith, J. Pujolàs, C. Ritzenthaler, and B. Smith, « Distortion Maps for Genus Two Curves, Journal of Mathematical Cryptology . (juin )

S. Gal-]-raminder, D. Galbraith-steven, and R. , Using Equivalence Classes to Accelerate Solving the Discrete Logarithm Problem in a Short Interval, Cryptology ePrint Archive

D. Steven and . Galbraith, The Mathematics of Public Key Cryptography

. Gau+-]-pierrick, E. Gaudry, N. Thomé, C. Thériault, and . Diem, « A double large prime variation for small genus hyperelliptic index calculus, Mathematics of computation

P. «. Gaudry, Algorithmique des courbes algébriques pour la cryptologie ». Thèse d'hab. Université Henri Poincaré -Nancy I, oct

P. «. Gaudry, Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem, Journal of Symbolic Computation, vol.44, issue.12
DOI : 10.1016/j.jsc.2008.08.005

URL : https://hal.archives-ouvertes.fr/inria-00337631

D. Steven, C. Galbraith-et-nagarjun, and . Dwarakanath, Efficient sampling from discrete gaussians for lattice-based cryptography on a constrained device

C. Gen and . Gentry, « Fully homomorphic encryption using ideal lattices, Proceedings of the st annual ACM symposium on Theory of computing. STOC '. ACM

D. Steven, M. Galbraith, and . Holmes, « A non-uniform birthday problem with applications to discrete logarithms, Discrete Applied Mathematics .? (

[. Gaudry, F. Hess, and N. P. Smart, Constructive and destructive facets of Weil descent on elliptic curves, Journal of Cryptology, vol.44, issue.1
DOI : 10.1007/s00145-001-0011-x

URL : https://hal.archives-ouvertes.fr/inria-00512763

[. Goldwasser and J. Kilian, Almost all primes can be quickly certified, Proceedings of the eighteenth annual ACM symposium on Theory of computing , STOC '86
DOI : 10.1145/12130.12162

[. Güneysu, V. Lyubashevsky, and T. Pöppelmann, Practical Lattice-Based Cryptography: A Signature Scheme for Embedded Systems, Cryptographic Hardware and Embedded Systems ? CHES . Éd. : Emmanuel Prouff et Patrick Schaumont, pp.10-1007
DOI : 10.1007/978-3-642-33027-8_31

M. Daniel and . Gordon, « Discrete Logarithms in GF (p) Using the Number Field Sieve, In : SIAM Journal on Discrete Mathematics, pp.10-1137

T. Bibliographie-[-göt+-]-norman-göttert, M. Feller, J. Schneider, S. Buchmann, and . Huss, « On the Design of Hardware Building Blocks for Modern Lattice-Based Encryption Schemes, Cryptographic Hardware and Embedded Systems ? CHES . Éd. : Emmanuel Prouff et Patrick Schaumont, pp.10-1007

J. Guajardo and C. Paar, « Itoh-Tsujii inversion in standard basis and its application in cryptography and codes, pp.10-10231013860532636

S. D. Galbraith, J. M. Pollard-et-raminder, and S. Ruprai, Computing discrete logarithms in an interval, Mathematics of Computation, vol.82, issue.282
DOI : 10.1090/S0025-5718-2012-02641-X

[. Gorla, C. Puttmann-et-jamshid-shokrollahi-adams, A. Miri, and M. J. Wiener, « Explicit Formulas for Efficient Multiplication in F 3 6m ». In : Selected Areas in Cryptography ? SAC . Éd, Lecture Notes in Computer Science, pp.10-1007

R. Granger, F. Gologlu, G. Mcguire, and J. Zumbragel, Discrete Logarithms in GF, 1971.

R. Granger, F. Gologlu, G. Mcguire, and J. Zumbragel, Discrete Logarithms in GF (2 6120 ). https

R. Granger, On the Static Diffie-Hellman Problem on Elliptic Curves over Extension Fields Advances in Cryptology -ASIACRYPT . Éd. : Masayuki Abe. Lecture Notes in Computer Science, pp.10-1007

[. Ghosh, D. Roychowdhury, and A. Das, High Speed Cryptoprocessor for ?? T Pairing on 128-bit Secure Supersingular Elliptic Curves over Characteristic Two Fields, Cryptographic Hardware and Embedded Systems ? CHES . Éd. : Bart Preneel et Tsuyoshi Takagi, pp.10-1007
DOI : 10.1007/978-3-642-23951-9_29

A. Guillevic and D. Vergnaud, Genus 2 Hyperelliptic Curve Families with Explicit Jacobian Order Evaluation and Pairing-Friendly Constructions, Cryptology ePrint Archive
DOI : 10.1007/978-3-642-36334-4_16

URL : https://hal.archives-ouvertes.fr/hal-00871327

[. Ghosh, I. Verbauwhede, and D. Roychowdhury, Core Based Architecture to Speed Up Optimal Ate Pairing on FPGA Platform, International Conference on Pairing-Based Cryptography ? Pairing
DOI : 10.1007/978-3-642-36334-4_9

. Éd, T. Abdalla, and . Lange, Lecture Notes in Computer Science

J. «. Håstad, Tensor rank is NP-complete, Journal of Algorithms, issue.90, pp.10-1016

[. Hayashi, N. Shinohara, L. Wang, M. Shin-'ichiro-matsuo, T. Shirase et al., « Solving a -Bit Discrete Logarithm Problem in GF (3 6n ), Public Key Cryptography ? PKC . Éd. : Phong Nguyen et David Pointcheval, pp.10-1007

[. Hayashi, T. Shimoyama, N. Shinohara, and T. Takagi, Breaking pairing-based cryptosystems using ? T pairing over GF (3 97 ). . Cryptology ePrint Archive

F. Hess, A note on the Tate pairing of curves over finite fields, Archiv der Mathematik, vol.82, issue.1, pp.10-1007
DOI : 10.1007/s00013-003-4773-2

F. Hess, Computing relations in divisor class groups of algebraic curves over finite fields ». preprint

[. Hoffstein, J. Pipher, and J. H. Silverman, « NTRU : A ringbased public key cryptosystem, Algorithmic Number Theory Symposium ? ANTS-III. Éd. : Joe P. Buhler. Lecture Notes in Computer Science

G. Hanrot and P. Zimmermann, A long note on Mulders??? short product, Journal of Symbolic Computation, vol.37, issue.3
DOI : 10.1016/j.jsc.2003.03.001

URL : https://hal.archives-ouvertes.fr/inria-00100069

[. Bibliographie, J. Izu, T. Kogure, . «. Shimoyama, and . Cairn, An FPGA Implementation of the Sieving Step in the Number Field Sieve Method, Cryptographic Hardware and Embedded Systems ? CHES . Éd. : Pascal Paillier et Ingrid Verbauwhede. Lecture Notes in Computer Science

T. Itoh and S. Tsujii, A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases, Information and Computation, vol.78, issue.3, pp.10-1016
DOI : 10.1016/0890-5401(88)90024-7

A. Joux and R. Lercier, Discrete logarithms in GF (2 607 ) and GF (2 613 ). https

A. Joux, R. Lercier, D. Naccache, and E. Thomé, Oracle-Assisted Static Diffie-Hellman Is Easier Than Discrete Logarithms, Éd. : Matthew G. Parker. Lecture Notes in Computer Science, pp.10-1007
DOI : 10.1007/978-3-642-10868-6_21

URL : https://hal.archives-ouvertes.fr/inria-00337753

A. Joux and L. =. , Discrete logarithms in a 1175-bit finite field

A. Joux, Discrete logarithms in a 1425-bit finite field

A. Joux, Discrete Logarithms in GF (2 1778 ). https

A. Joux, Discrete Logarithms in GF (2 4080 ). https

A. Joux, Discrete Logarithms in GF (2 6168 )[= GF ((2 257 ) 24 )]. https

A. Joux and V. Vitse, Elliptic Curve Discrete Logarithm Problem over Small Degree Extension Fields, Journal of Cryptology, vol.12, issue.3
DOI : 10.1007/s00145-011-9116-z

D. Kammler, D. Zhang, P. Schwabe, H. Scharwaechter, M. Langenberg et al., Designing an ASIP for Cryptographic Pairings over Barreto-Naehrig Curves, Cryptographic Hardware and Embedded Systems ? CHES . Éd. : C. Clavier et K. Gaj. Lecture Notes in Computer Science, pp.10-1007
DOI : 10.1007/978-3-642-04138-9_19

E. Donald and . Knuth, The art of computer programming, Seminumerical algorithms rd ed. Addison-Wesley Series in Computer Science et Information Processing

I. Neal and . Koblitz, Mathematics of computation (), p. ?. doi : 10, Elliptic curve cryptosystems, 2307.

[. Kachisa, E. Schaefer, and M. Scott, Constructing Brezing-Weng Pairing-Friendly Elliptic Curves Using Elements in the Cyclotomic Field, International Conference on Pairing-Based Cryptography ? Pairing
DOI : 10.1007/978-3-540-85538-5_9

É. Steven, D. Galbraith, and K. G. Paterson, Lecture Notes in Computer Science

L. Jr and W. «. Hendrik, Factoring Integers with Elliptic Curves, Annals of Mathematics. Second Series, pp.10-2307, 1971363.

]. P. Ley and . Leyland, Cunningham numbers

D. Lorenzini, An Invitation to Arithmetic Geometry. Graduate Studies in Mathematics Series

[. Lercier and C. Ritzenthaler, Hyperelliptic curves and their invariants: Geometric, arithmetic and algorithmic aspects, Journal of Algebra, vol.372
DOI : 10.1016/j.jalgebra.2012.07.054

URL : https://hal.archives-ouvertes.fr/hal-00694121

R. J. Mceliece, « A Public-Key Cryptosystem Based On Algebraic Coding Theory, Deep Space Network Progress Report, p.p. ? (cf

. [. Bibliographie, M. E. Merkle, and . Hellman, « Hiding information and signatures in trapdoor knapsacks, IEEE Transactions on Information Theory

S. Victor and . Miller, « The Weil Pairing, and Its Efficient Calculation, Journal of Cryptology

S. Victor and . Miller, Use of elliptic curves in cryptography Advances in Cryptology ? CRYPTO . Éd. : Hugh Williams, Lecture Notes in Computer Science, pp.10-1007

[. Miyaji, M. Nakabayashi, and S. Takano, « New Explicit Conditions of Elliptic Curve Traces for FR-Reduction, IEICE TRAN- SACTIONS on Fundamentals of Electronics, Communications and Computer Sciences E-A. (mai ), p.p. ? (cf. p. )

L. Peter and . Montgomery, « Five, Six, and Seven-Term Karatsuba-Like Formulae, IEEE Transactions in Computers

A. J. Menezes, T. Okamoto, and S. A. Vanstone, « Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Transactions on Information Theory, pp.10-1109

I. «. Oseledets, Optimal Karatsuba-like formulae for certain bilinear forms in GF(2), Linear Algebra and its Applications, vol.429, issue.8-9
DOI : 10.1016/j.laa.2008.06.004

C. Paul, M. J. Van-oorschot, and . Wiener, « Parallel Collision Search with Cryptanalytic Applications, Journal of Cryptology, pp.10-1007

J. «. Patarin, Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms, Advances in Cryptology ? EUROCRYPT'. Éd. : Ueli Maurer. Lecture Notes in Computer Science, pp.10-1007
DOI : 10.1007/3-540-68339-9_4

A. David, J. L. Patterson, and . Hennessy, Computer Organization and Design : The Hardware/Software Interface. e éd

M. [. Pohlig and . Hellman, « An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) » In, IEEE Transactions on Information Theory

J. M. Pollard, « Monte Carlo methods for index computation (mod p), Mathematics of computation (, pp.10-2307, 2006496.

O. Regev, « On lattices, learning with errors, random linear codes, and cryptography, Journal of the ACM . (sept. )

G. Rml-]-francisco-rodríguez-henríquez, J. Morales-luna, and . López, « Low-Complexity Bit-Parallel Square Root Computation over GF(2 m ) for All Trinomials, IEEE Transactions in Computers

[. Ronan, Ó. Colm, C. Murphy, M. Scott, and T. Kerins, Hardware acceleration of the Tate pairing on a genus 2 hyperelliptic curve, Journal of Systems Architecture
DOI : 10.1016/j.sysarc.2006.09.003

K. Rubin and A. Silverberg, « Supersingular Abelian Varieties in Cryptology Advances in Cryptology ? CRYPTO . Éd. : Moti Yung, Lecture Notes in Computer Science, pp.10-1007

K. Rubin and A. Silverberg, Using Abelian Varieties to Improve Pairing-Based Cryptography, Journal of Cryptology, vol.86, issue.4, pp.10-1007
DOI : 10.1007/s00145-008-9022-1

R. L. Rivest, A. Shamir, M. Leonard, and . Adleman, « A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM . (fév

O. «. Schirokauer, Discrete Logarithms and Local Units, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.345, issue.1676
DOI : 10.1098/rsta.1993.0139

. Sem, A. Igor, and . Semaev, « Evaluation of Discrete Logarithms in a Group of p-Torsion Points of an Elliptic Curve in Characteristic p », In : Mathematics of computation

A. Shamir, « Identity-based cryptosystems and signature schemes Advances in Cryptology ? CRYPTO . Éd. : George Blakley et David Chaum, Lecture Notes in Computer Science, pp.10-1007

V. Sho and . Shoup, « Lower bounds for discrete logarithms and related problems ». In : Lecture Notes in Computer Science, pp.10-1007

J. H. Silverman, The Arithmetic of Elliptic Curves

[. Shu, S. Kwon, and K. Gaj, « Reconfigurable Computing Approach for Tate Pairing Cryptosystems over Binary Fields, IEEE Transactions in Computers . (sept. )

N. P. Smart, The Discrete Logarithm Problem on Elliptic Curves of Trace One, Journal of Cryptology, vol.12, issue.3, pp.10-1007
DOI : 10.1007/s001459900052

P. Nigel, S. Smart, and . Siksek, « A Fast Diffie?Hellman Protocol in Genus, Journal of Cryptology, pp.10-1007

V. «. Strassen, Gaussian elimination is not optimal, Numerische Mathematik, vol.13, issue.4, pp.10-1007
DOI : 10.1007/BF02165411

J. T. Tate, Endomorphisms of abelian varieties over finite fields, Inventiones Mathematicae, vol.1, issue.No. 6, pp.10-1007
DOI : 10.1007/BF01404549

[. Thériault, « Index Calculus Attack for Hyperelliptic Curves of Small Genus Advances in Cryptology -ASIACRYPT . Éd. : Chi-Sung Laih. Lecture Notes in Computer Science, pp.10-1007

A. L. Toom, « The complexity of a scheme of functional elements realizing the multiplication of integers », In : Soviet Mathematics Doklady, p.p. ? (cf

E. R. Verheul, « Evidence that XTR Is More Secure than Supersingular Elliptic Curve Cryptosystems Advances in Cryptology ? EUROCRYPT . Éd. : Birgit Pfitzmann. Lecture Notes in Computer Science, pp.10-1007

E. R. Verheul, « Evidence that XTR is more secure than supersingular elliptic curve cryptosystems, Journal of Cryptology
DOI : 10.1007/3-540-44987-6_13

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.7702

V. «. Vitse, Attaques algébriques du problème du logarithme discret sur courbe elliptique Université Versailles Saint-Quentin en Yvelines , oct, Thèse de doct

]. S. Wag and . Wagstaff, The Cunningham Project

C. Lawrence and . Washington, Elliptic Curves : Number Theory and Cryptography

A. Weil, Sur les fonctions alg??briques ?? corps de constantes fini, Comptes-rendu de l'Académie des Sciences de Paris (, p.p. ? (cf
DOI : 10.1007/978-1-4757-1705-1_34

. Winograd, On multiplication of 2 ?? 2 matrices, Linear Algebra and its Applications, vol.4, issue.4, pp.10-1016
DOI : 10.1016/0024-3795(71)90009-7

J. Michael, R. Wiener, E. Stafford, H. Tavares, and . Meijer, « Faster Attacks on Elliptic Curve Cryptosystems » In : Selected Areas in Cryptography ? SAC . Éd, Lecture Notes in Computer Science, pp.10-1007