
HAL Id: tel-00923811
https://theses.hal.science/tel-00923811

Submitted on 5 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Driven Software Engineering for Virtual Machine
Images Provisioning in Cloud Computing

Tam Le Nhan

To cite this version:
Tam Le Nhan. Model-Driven Software Engineering for Virtual Machine Images Provisioning in Cloud
Computing. Software Engineering [cs.SE]. Université Rennes 1, 2013. English. �NNT : �. �tel-00923811�

https://theses.hal.science/tel-00923811
https://hal.archives-ouvertes.fr

ANNÉE 2013

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale Matisse

présentée par

Nhan Tam LE

préparée à l’INRIA

Institut National de Recherche en Informatique et Automatique
Centre Rennes Bretagne Atlantique

Model-Driven Software

Engineering for Virtual

Machine Images Provisioning

in Cloud Computing

Thèse soutenue à Rennes

le 10 Décembre 2013

devant le jury composé de :

Jean-Louis PAZAT
Professeur, INSA de Rennes

Président

Jean-Marc MENAUD
Maître de conférence, Ecole des Mines de Nantes

Rapporteur

Philippe COLLET
Professeur, Université de Nice

Rapporteur

Jean-Marc JÉZÉQUEL
Professeur, Université de Rennes 1

Directeur de thèse

Gerson SUNYÉ
Maître de conférence, Université de Nantes

Encadrant

Acknowledgments

First of all, I would like to sincerely thank to my advisors, Prof. Jean-Marc Jézéquel and Dr.

Gerson Sunyé for guiding and supporting me at every step throughout my Ph.D, for everything

I learned about research from them. I specially thank Prof. Jean-Marc Jézéquel for giving me

the opportunity to come to France for doing my Ph.D in INRIA, the excellent research institute

in computer science that I have known.

I would like to special thank to reviewers, Dr. Jean-Marc Menaud and Prof. Philippe Collet

for spending time to review my thesis and give me the valuable comments on it. I also would

like to thanks Prof. Jean-Louis Pazat for examining my thesis.

Many thanks to every members of Triskell team for the discussions, collaborations and for all

the good moments after work. Thanks to all my Vietnamese friends for sharing, and supporting

me during three years of my Ph.D in Rennes.

I also want to thank the French National Institute for Research in Computer Science and

Control (INRIA) and Vietnamese Government for the funding of my Ph.D work.

Finally, my deepest gratitude goes towards my parents, my wife, my sons and everyone in my

big family. They are the ones who always follow and support me unconditionally and in every

moment of my life.

Abstract

The Cloud Computing Infastructure-as-a-Service (IaaS) layer provides a service for on demand

virtual machine images (VMIs) deployment. This service provides a flexible platform for cloud

users to develop, deploy, and test their applications. The deployment of a VMI typically in-

volves booting the image, installing and configuring the software packages. In the traditional

approach, when a cloud user requests a new platform, the cloud provider selects an appropriate

template image for cloning and deploying on the cloud nodes. The template image contains

pre-installed software packages. If it does not fit the requirements, then it will be customized

or the new one will be created from scratch to fit the request.

In the context of cloud service management, the traditional approach faces the difficult issues of

handling the complexity of interdependency between software packages, scaling and maintain-

ing the deployed image at runtime. The cloud providers would like to automate this process to

improve the performance of the VMIs provisioning process, and to give the cloud users more

flexibility for selecting or creating the appropriate images while maximizing the benefits for

providers intern of time, resources and operational cost.

This thesis proposes an approach to manage the interdependency of the software packages, to

model and automate the VMIs deployment process, to support the VMIs reconfiguration at

runtime, called the Model-Driven approach. We particularly address the following challenges:

(1) modeling the variability of virtual machine image configurations; (2) reducing the amount of

data transfer through the network; (3) optimizing the power consumption of virtual machines;

(4) easy-to-use for cloud users; (5) automating the deployment of VMIs; (6) supporting the

scaling and reconfiguration of VMIs at runtime; (7) handling the complex deployment topology

of VMIs.

In our approach, we use Model-Driven Engineering techniques to model the abstraction rep-

resentations of the VMI configurations, the deployment and the reconfiguration processes of

virtual machine image. We consider the VMIs as a product line and use the feature models to

represent the VMIs configurations. We also define the deployment, re-configuration processes

and their factors (e.g. virtual machine images, software packages, platform, deployment topol-

ogy, etc.) as the models. On the other hand, the model-driven approach relies on the high-level

abstractions of the VMIs configuration and the VMIs deployment to make the management

of virtual images in the provisioning process to be more flexible and easier than traditional

approaches.

Keywords:

Cloud Computing, Virtual Machine Images Provisioning, Model-Driven Engineering, Product

Lines Engineering, Feature Model, Mode@Runtime.

Résumé en français

Le contexte et la problématique

De nos jours, le cloud computing est omniprésent dans la recherche et aussi dans l’industrie. Il

est considéré comme une nouvelle génération de l’informatique où les ressources informatiques

virtuelles à l’échelle dynamique sont fournies comme des services via l’internet. Les utilisateurs

peuvent accéder aux systèmes de cloud utilisant différentes interfaces sur leurs différents dis-

positifs. Ils ont seulement besoin de payer ce qu’ils utilisent, respectant le l’accord de service

(Service-Layer Agreement) établi entre eux et les fournisseurs de services de cloud.

Ini$er'

Chercher&une&VMI&

convenant&au®ard&de&

l’exigence

une&VMI&

existe

Dépôt&de&

VMIs

Déployer&la&VMI&

selec<onnée&aux&

nœuds&de&cloud

Sélec<onner&une&

VMI&existante&qui&

convient&le&mieux

Démarrer&la&VMI&

sélec<onné

Modifier&la&VMI

enregistrer&la&

VMI&mise&à&jour&

au&dépôt

Accéder&et&

u<liser&les&nœuds&

de&cloud

Terminer

MeEe&à&jour&ou&

modifier&les&VM&

exécutées

Non

Oui

Figure 1: Le processus de provisionnement VMI traditionnelle

Une des caractéristiques principales du cloud computing est la virtualisation grâce à laquelle

toutes les ressources deviennent transparentes aux utilisateurs. Les utilisateurs n’ont plus besoin

de contrôler et de maintenir les infrastructures informatiques. La virtualisation dans le cloud

computing combine des images de machines virtuelles (VMIs) et des machines physiques où ces

images seront déployées. Typiquement, le déploiement d’une telle VMI comprend le démarrage

de l’image, l’installation et la configuration des packages définis pas la VMI. Dans les approches

vi

traditionnelles, les VMIs sont crées par les experts techniques des fournisseurs de services cloud.

Il s’agit des VMIs pré-packagés qui viennent avec des composants pré-installés et pré-configurés.

Pour répondre à une requête d’un client, le fournisseur sélectionne une VMI appropriée pour

cloner et déployer sur un nœud de cloud. Si une telle VMI n’existe pas, une nouvelle VMI va

être créée pour cette requête. Cette VMI pourrait être générée à partir de la VMI existante la

plus proche ou être entièrement neuve. Le cycle de vie de l’approvisionnement d’une VMI dans

l’approche traditionnelle est décrite dans la Figure 1.

Une VMI standard contient normalement plusieurs packages parmi lesquels certains qui ne

seront jamais utilisés. Cela vient du fait que la VMI est créée au moment de conception pour

le but d’être clonée plus tard. Cette approche a des inconvénients tels que la demande de

ressources importantes pour stocker des VMIs ou pour les déployer. De plus, elle requiert le

démarrage de plusieurs composants, y compris ceux non utilisés. Particulièrement, à partir du

point de vue de gestion de services, il est difficile de gérer la complexité des interdépendances

entre les différents composants afin de maintenir les VMIs déployées et de les faire évoluer.

Pour résoudre les problèmes énumérés ci-dessus, les fournisseurs de services de cloud pourraient

automatiser le processus d’approvisionnement et permettre aux utilisateurs de choisir des VMIs

d’une manière flexible en gardant les profites des fournisseur en terme de temps, de ressources,

et de coût. Dans cette optique, les fournisseurs devraient considérer quelques préoccupations:

(1) Quels packages et dépendances seront déployés? (2) Comment optimiser une configuration

en terme de coût, de temps, et de consommation de ressources? (3) Comment trouver la VMI

la plus ressemblante et comment l’adapter pour obtenir une nouvelle VMI? (4) Comment éviter

les erreurs qui viennent souvent des opérations manuelles? (5) Comment gérer l’évolution de la

VMI déployée et l’adapter aux besoins de reconfigurer et de passer automatiquement à l’échelle?

A cause de ces exigences, la construction d’un systèmes de gestion de plateformes cloud (PaaS

– Platform as a Sevice) est difficile, particulièrement dans le processus d’approvisionnement

de VMIs. Cette difficulté requiert donc une approche appropriée pour gérer les VMIs dans les

systèmes de cloud computing. Cette méthode fournirait des solutions pour la reconfiguration

et le passage automatique à l’échelle.

Les défis et les problèmes clés

A partir de la problématique, nous avons identifié sept défis pour le développement d’un pro-

cessus d’approvisionnements dans cloud computing.

• C1: Modélisation de la variabilité des options de configuration des VMIs afin de gérer les

interdépendances entre les packages logiciels

Les différents composants logiciels pourraient requérir des packages spécifiques ou des

bibliothèques du système d’exploitation pour une configuration correcte. Ces dépen-

dances doivent être arrangées, sélectionnées, et résolues manuellement pour chaque copie

de la VMI standard. D’autre part, les VMIs sont créées pour répondre aux exigences

d’utilisateurs qui pourraient partager des sous-besoins en commun. La modélisation de

la similitude et de la variabilité des VMIs au regard de ces exigences est donc nécessaire.

• C2: Réduction des données transférées via les réseaux pendant le processus d’approvisionnement

Afin d’être prêt pour répondre aux requêtes de clients, plusieurs packages sont installés

sur la machine virtuelle standard , y compris les packages qui ne seront pas utilisé. Ces

vii

packages devront être limités afin de minimaliser la taille des VMIs.

• C3: Optimisation de la consommation de ressources pendant l’exécution

Dans l’approche traditionnelle, les activités de création et de mise à jour des VMIs re-

quièrent des opérations manuelles qui prennent du temps. D’autre part, tous les packages

dans les VMIs, y compris ceux qui ne sont pas utilisés, sont démarrés et occupent donc

des ressources. Ces consommations de ressources devraient être optimisées.

• C4: Mise à disposition d’un outil interactif facilitant les choix de VMIs des utilisateurs

Les fournisseurs de services cloud voudraient normalement donner la flexibilité aux util-

isateurs clients dans leurs choix de VMIs. Cependant, les utilisateurs n’ont pas de con-

naissances techniques approfondies. Pour cette raison, des outils facilitant les choix sont

nécessaires.

• C5: Automatisation du déploiement des VMIs

Plusieurs opérations du processus d’approvisionnement sont très complexes. L’automatisation

de ces opérations peut réduire le temps de déploiement et les erreurs.

• C6: Support de la reconfiguration de VMIs pendant leurs exécutions

Un des caractéristiques importantes de cloud computing est de fournir des services à la

demande. Puisque les demandes évoluent pendant l’exécution des VMIs, les systèmes de

cloud devraient aussi s’adapter à ces évolutions des demandes.

• C7: Gestion de la topologie de déploiement de VMIs

Le déploiement de VMIs ne doit pas seulement tenir en compte multiple VMIs avec la

même configuration, mais aussi le cas de multiple VMIs ayant différentes configurations.

De plus, le déploiement de VMIs pourrait être réalisé sur différentes plateformes de cloud

quand le fournisseur de service accepte une infrastructure d’un autre fournisseur

Afin d’adresser ces défis, nous considérons trois problèmes clés pour le déploiement du processus

d’approvisionnement de VMIs:

1. Besoin d’un niveau d’abstraction pour la gestion de configurations de VMIs: Une approche

appropriée devrait fournir un haut niveau d’abstraction pour la modélisation et la gestion

des configurations des VMIs avec leurs packages et les dépendances entre ces packages.

Cette abstraction permet aux ingénieurs experts des fournisseurs de services de cloud à

spécifier la famille de produits de configurations de VMIs. Elle facilite aussi l’analyse et

la modélisation de la similitude et de la variabilité des configurations de VMIs, ainsi que

la création des VMIs valides et cohérentes.

2. Besoin d’un niveau d’abstraction pour le processus de déploiement de VMIs: Une ap-

proche appropriée pour l’approvisionnement de VMIs devrait fournir une abstraction du

processus de déploiement.

3. Besoin d’un processus de déploiement et de reconfiguration automatique: Une approche

appropriée devrait fournir une abstraction du processus de déploiement et de reconfigura-

tion automatique. Cette abstraction facilite la spécification, l’analyse, et la modélisation

la modularité du processus. De plus, l’approche devrait supporter l’automatisation afin

de réduire les tâches manuelles qui sont couteuses en terme de performance et contiennent

potentiellement des erreurs.

viii

Présentation de la solution

Cette thèse propose une approche de la gestion de VMI pour les environnements de Cloud

Computing, fournissant une façon de s’adapter aux besoins des images de machine virtuelle

de l’auto-mise à l’échelle et de l’auto-configuration, appelée approche pilotée par les modèles.

Dans cette approche, nous utilisons l’approche de l’Ingénierie Dirigée par les Modèles (IDM)

pour manipuler les configurations VMI et le processus de déploiement automatisé de VMIs

dans l’environnement de cloud computing. Nous considérons les VMIs comme une ligne de

produit et utilisons des modèles de caractéristiques à représenter les configurations de VMI

et des techniques basées sur des modèles pour manipuler le déploiement automatique VMI et

reconfiguration. Le modèle de caractéristiques est utilisé pour traiter les caractéristiques avec

des attributs (par exemple, le temps d’installation, de la taille du logiciel, etc.) et de renforcer

le processus de raisonnement pour trouver les configurations optimales de VMI. En ajoutant

les attributs des caractéristiques, nous pouvons évaluer et trouver la configuration optimale en

fonction de chaque critère, tels que le temps d’installation minimale ou la taille de VMI. En

outre, l’utilisation de l’approche pilotée par les modèles permet de réduire la consommation

d’énergie et de s’adapter aux besoins des images de machine virtuelle de l’auto-mise à l’échelle

et de la reconfiguration.

Modélisation de caractéristiques pour la gestion des configurations

VMI

Dans notre approche, les lignes de produits de configuration VMI sont décrites en utilisant des

modèles de caractéristiques (feature models). En termes de dérivation de configuration VMI,

un modèle de caractéristiques décrit:

• Les progiciels qui sont nécessaires pour composer une image de machine virtuelle, représen-

tée comme des options de configuration.

• Les règles dictant les exigences, telles que les paquets dépendants et les bibliothèques

requises par chaque composant de logiciel.

• Les contraintes, qui spécifient comment le choix d’un composant donné restreint le choix

des autres composants, dans la même image de machine virtuelle.

L’approche de modélisation de caractéristiques porte sur deux modèles: le modèle de carac-

téristiques VMI, le modèle résolu VMI et un processus de dérivation du produit (Figure 2)

• Le modèle de caractéristiques VMI : représente la ligne de produits entière avec toutes ses

caractéristiques comme les options de configuration, de leurs relations et des contraintes

qui pourraient être utilisées pour composer une VMI.

• Le modèle résolu VMI : est dérivé du processus de dérivation du produit en fonction des

sélections de l’utilisateur sur le modèle de la fonction VMI. Il inclut les caractéristiques

sélectionnées et leurs dépendances.

• Le processus de dérivation de produit: génère les configurations VMI de la combinaison

du modèle de caractéristiques VMI et les sélections de l ’utilisateur.

ix

Un#ensemble#de#caractéris0ques#

sélec0onnées#et#dépendances#

correspondent#à#une#VMI#

spécifique#!

Un#ensemble#de#choix#de#

l'u0lisateur#sur#les#op0ons#

disponibles#dans#le#

modèle#de#caractère#VMI#!

Le#modèle#de##

caractère#VMI##

Les#choix#de##

l'u0lisateur#

Dériva0on#du#

produit#

Le#modèle#résolu#VMI##

L'ensemble#de#la#ligne#de#

produit#VMI#avec#des#

caractéris0ques#et#de#leurs#

rela0ons#et#contraintes#

Figure 2: Une architecture globale de l’approche de modélisation de caractéristiques

Nous utilisons une bibliothèque de source libre pour le raisonnement automatisé sur les modèles

de caractéristiques (SPLAR). Il a été développé par Marcilio Mendoca dans son travail de

thèse. Cette bibliothèque propose des composants SAT et est basée sur BDD pour raisonner et

pour configurer des modèles de caractéristiques. Elle fournit un support de validation des les

sélections de caractéristiques, et à générer les configurations valides à partir des caractéristiques

et des dépendances sélectionnés. Il propose une contrainte spécifique au domaine solveur appelé

le système de contraintes d’ arbre de caractéristiques qui adapte les algorithmes de raisonnement

pour les arbres de caractéristiques.

Cependant, le moteur SPLAR fournit seulement un soutien pour le raisonnement sur les arbres

de caractéristiques; avec des caractéristiques contenant deux attributs de base: ID et nom tandis

que dans notre approche, un caractéristique sur l’arbre de caractéristiques représente une option

de configuration (un progiciel). Il contient des informations utilisées pour l’optimisation de la

configuration d’une image de machine virtuelle, tels que: le temps d’installation, le temps de

désinstallation, la taille du paquet, coût, etc. Par conséquence, afin d’utiliser SPLAR comme

un moteur de raisonnement pour les modèles de caractéristiques VMI, nous étendons le méta-

modèle original des modèles de caractéristiques prises en charge par le moteur SPLAR pour

représenter les modèles de caractéristiques VMI, et nous améliorons SPLAR pour permettre

la recherche de la configuration optimale des informations supplémentaires basées VMI sur les

caractéristiques.

L’ingénierie dirigée par les modèles pour le déploiement et la reconfig-

uration dynamique des VMIs

Les approches dirigées par les modèles favorisent la création et l’utilisation des modèles de do-

maines. Un tel modèle fournit une abstraction représentant les connaissances et les activités qui

gèrent un domaine d’application particulière. Dans le contexte du processus d’approvisionnement

x

des VMIs dans cloud computing, l’approche dirigée par les modèles fournit une utilisation

systématique des modèles en tant que des artefacts élémentaires au long du déploiement,

l’installation, et la reconfiguration des images et des packages.

Démarrer

Requirements
Concevoir-le-modèle-

de-déploiement-de-

VMI

Meta6modèle-de-

déploiement-de-

VMI

Requirements
Exigences

Modèle-de-

déploiemen

t-de-VMI

Déployer-le-

modèle

Les-étapes-

d’adapta>on

Modifier-le-

modèle

Comparer-deux-

modèles-de-

déploiement-de-VMI

Nouvelles--modèle-

de-déploiement-de-

VMI

MeBre-à-jour-le-

système-en-cours-

d’exécu>on

Système-en-

cours-

d’exécu>on

Arrêter

RequirementsRequirementsNouvelles-

exigences

Changer-les-

exigences

Légendes

Le-déploiement-en-

première-fois

Reconfigura>on

Processus-manuel

Processus-automa>que

1

2

3

4

5

6

Figure 3: Le déploiement et la reconfiguration pendant l’exécution des VMIs basés sur les

modèles

Dans l’approche traditionnelle, les composants logiciels sont assemblés en même temps que

la VMI est créée. En revanche, dans l’approche dirigée par les modèles, les composants sont

assemblés au démarrage. La Figure 3 montre le processus de déploiement et de reconfiguration.

Le processus contient deux types de sous-processus : manuel ((1), (3), et (4)) et automa-

tique ((2), (5), (6)). Dans le processus (1), après avoir analysé les exigences d’utilisateurs, le

fournisseur de services cloud crée une configuration appropriée et un modèle de déploiement

conforme au méta-modèle de déploiement de VMIs. La sortie de ce processus est un modèle de

déploiement de VMIs. Il contient une présentation du logiciel à installer sur une VMI et aussi

les connexions du logiciel installé sur différentes VMIs. Dans le processus (2), le modèle de dé-

ploiement de VMIs créé est déployé pour créer un système avec les machines virtuelles espérées.

Dans ce processus, les images de template initiales avec les systèmes opérations appropriées

(en fonction des configurations définies dans l’étape précédente) are démarrées aux nœuds de

cloud. Quand le démarrage est accompli, le modèle de déploiement de VMIs est déployé et

exécuté directement sur les VMIs en cours d’exécution. L’installation et la configuration des

composants logiciels ont aussi lieu dans ces VMIs en cours d’exécution.

Pendant l’exécution, la modification de ces VMIs est implémentée par le changement de la con-

xi

figuration de VMIs dans le modèle de déploiement de VMIs et le redéploiement du nouveau mod-

èle de déploiement aux VMIs en cours d’exécution. Le changement d’exigences d’utilisateurs

(le processus (3)) ramène à la création d’un nouveau modèle de déploiement (le processus (4)).

Le nouveau modèle est dérivé à partir de celui existant en fonction du changement d’exigences

et conforme au méta-modèle de déploiement. Le nouveau modèle est comparé à celui existant

pour déterminer les différences et proposer les étapes d’adaptation (le processus (5)). Finale-

ment, ces étapes sont appliquées au systèmes en cours d’exécution (le processus (6)) pour le

changer vers le nouveau système avec les machines virtuelles espérées.

Conclusion

Dans ce travail, nous avons proposé une approche dirigée par les modèles pour l’approvisionnement

d’images de machines virtuelles dans cloud computing. Nous avons utilisé la technique de mod-

élisation des caractéristiquess pour gérer les configurations des machines virtuelles, et puis, nous

avons utilisé les techniques basées sur les modèles pour modéliser et définir les processus de

déploiement et de reconfiguration des VMIs. Nous avons montré que notre approche améliore

la performance du processus de provisionnement et rend la gestion des VMIs plus flexible et

plus facile par rapport à l’approche traditionnelle. Nous avons aussi présenté l’originalité de

notre approche. Particulièrement, les différences entre notre approches et celle traditionnelle

sont est la suivante:

• L’approche traditionnelle: Une VMI standard contenant tous les packages possibles

peut être clonée et démarrée plusieurs fois.

• L’approche dirigée par les modèles: Les VMIs, les packages, et les topologies de

déploiement are considérés comme des modèles ; la configuration des VMIs sont créées

au moment de conception, tant dis que les VMIs concrètes sont créées dynamiquement

pendant l’exécution.

Nous avons aussi réalisé quelques travaux empiriques pour évaluer notre approche. Nous avons

expérimenté en utilisant deux environnement de virtualisation, y compris Amazon Elastic Com-

pute Cloud et Grid5000. L’objectif de ces expérimentations est d’évaluer l’avantage de notre

approche dirigée par les modèles et de montrer comment l’approche répond aux défis adressés.

Contents

I Introduction & State of The Art 1

1 Introduction 3

1.1 Problem statement . 3

1.2 Challenges and Key Issues . 5

1.2.1 Challenges . 5

1.2.2 Key Issues . 6

1.3 Overview of The Solution . 6

1.3.1 Feature Modeling for VMI Configuration Management 7

1.3.2 Model-Based Deployment Process . 7

1.3.3 Claims . 8

1.4 Contribution of The Thesis . 9

1.4.1 Contributions to the VMI configuration management 9

1.4.2 Contributions to the VMI deployment and reconfiguration at runtime . 9

1.5 Structure of The Thesis . 10

2 State of The Art 11

2.1 Chapter Overview . 11

2.2 Cloud Computing . 12

2.2.1 An overview of cloud computing . 12

2.2.2 Virtualization technology in cloud computing 15

2.2.3 Requesting and provisioning processes of cloud services 18

2.3 Model-Driven Engineering . 20

2.3.1 Model, Metamodel and Modeling, Metamodeling 20

2.3.2 Model-Driven Engineering and Model-Driven Architecture 21

2.3.3 Domain-Specific Modeling . 22

2.3.4 Model@Runtime . 22

2.4 Feature Modeling for VMI . 22

2.4.1 Software Product Lines and Feature Modeling 22

2.4.2 VMI Configurations as Product Lines 25

2.4.3 The Configuration Management of VMIs 30

2.5 The Deployment Process of VMIs . 33

2.6 State of The Art Summary . 33

II Contributions 37

3 Feature Modeling for Virtual Machine Image Configuration Management 39

3.1 Chapter Overview . 39

3.2 Feature Modeling for VMI Configuration Management 40

3.2.1 An overall architecture of feature modeling 40

3.2.2 The VMI Feature Model . 40

xiv Contents

3.2.3 VMI Product Derivation Process . 42

3.2.4 VMI Resolved Model . 43

3.3 Feature Model Reasoning Engine . 43

3.3.1 Overview of SPLAR . 43

3.3.2 Meta-model for VMI feature model . 45

3.3.3 Optimization in the VMI Product Derivation Process 46

3.4 Chapter summary . 52

4 Model-driven engineering for VMIs deployment and reconfiguration at run-

time 55

4.1 Overview of chapter . 55

4.2 The model-driven VMIs provisioning process 56

4.3 The VMIs deployment . 58

4.3.1 VMIs deployment metamodels . 58

4.3.2 VMI deployment models . 69

4.3.3 Model execution . 74

4.4 The VMIs reconfiguration at runtime process 75

4.4.1 The model@runtime approach for VMIs reconfiguration at runtime . . . 75

4.4.2 The reconfiguration steps . 76

4.5 Chapter summary . 78

III Experiment Evaluation & Conclusion 81

5 Experiment Evaluation 83

5.1 Chapter Overview . 83

5.2 Experiment Environments . 83

5.2.1 Amazon Elastic Compute Cloud . 83

5.2.2 Grid5000 Virtualization Platform . 84

5.3 Experiment Results . 86

5.3.1 Power consumption comparison . 86

5.3.2 VMI re-configuration at runtime . 90

5.4 Chapter Discussion and Summary . 96

6 Conclusion 99

6.1 Conclusion . 99

6.2 Limitations . 102

6.3 Perspectives . 103

Bibliography 105

List of Figures

1 Le processus de provisionnement VMI traditionnelle v

2 Une architecture globale de l’approche de modélisation de caractéristiques . . . ix

3 Le déploiement et la reconfiguration pendant l’exécution des VMIs basés sur les

modèles . x

1.1 Life cycle of the Traditional VMI provisioning process 4

1.2 Life-cycle of the model-based VMI provisioning process 8

2.1 Cloud Computing . 12

2.2 Service delivery models of cloud computing [25] 14

2.3 A cloud computing metamodel . 15

2.4 Deployment models of cloud computing . 16

2.5 Virtual machines running on a virtualized server 17

2.6 A scenario of a request for cloud service . 18

2.7 A traditional approach for VMI provisioning in cloud computing 19

2.8 Relationships between Model, Metamodel, Modeling and Metamodeling [46] . . 20

2.9 Two engineering process of SPL Engineering [40] 23

2.10 An example of mobile phone feature model [9] 25

2.11 An example of two virtual machines run on KVM hypervisor 26

2.12 An example of the VMI Configuration commonality 27

2.13 An example of the VMI configuration variability in the real world and in the

model of the real world . 28

2.14 An example of variability dependency . 29

2.15 An example of variability constraints . 29

2.16 Feature model for VMs auto-scaling in Dougherty ’s approach 30

2.17 An example of VM configuration selections in Dougherty ’s approach 31

3.1 An overall architecture of the feature modeling approach 41

3.2 A feature diagram representing a VMI feature model of the configuration options 42

3.3 VMI Product Derivation Scenario . 43

3.4 A VMI Resolved Model with the User ’s Selections and the Automated selections

by made the Product Derivation Process . 44

3.5 An extended meta-model for the VMI feature model 45

3.6 SPLART engine woks with VMI feature model 46

3.7 An example feature selection according to the user ’s requirement 46

3.8 An example of the VMI feature model with the selected features 52

4.1 A model-based VMIs deployment process . 56

4.2 The model-based VMIs deployment and reconfiguration at runtime 57

4.3 The VMIs deployment metamodel for a single cloud system 59

4.4 The VMIs deployment metamodel for a federated cloud system 60

4.5 Life cycle of a VMIDeployModel instance . 61

4.6 The abstract definition of the VMI deployment model 62

xvi List of Figures

4.7 Life cycle of a VMINode instance . 63

4.8 An example of the VMINode for a virtual machine in specific cloud platform . 65

4.9 Life cycle of a SoftwareComponent instance . 67

4.10 An example of the abstract definition of software packages 68

4.11 An example of a VMI deployment model of multiple VMs with the same config-

uration . 70

4.12 An example of a VMI deployment model of multiple VMs with the different

configurations . 71

4.13 An example of a VMI deployment model in EMF editor 72

4.14 Sequence Digram for all steps of the VMIs deployment model execution process 74

4.15 Overview of Model@Runtime for managing the changes of the running VMIs . 75

5.1 Cloud users use Amazon EC2 ’s services . 84

5.2 Example of the Amazon EC2 image configurations 85

5.3 Cloud users interact with Grid5000 platform . 85

5.4 The configuration of the parapluie cluster at the Rennes site of Grid5000 86

5.5 Data Transfer Through the Network of the VMI Deployment on Grid5000 . . . 88

5.6 Power Measurement from inside the VMIs . 88

5.7 Power Measurement of a VMI by the Traditional Approach 89

5.8 Power Measurement of a VMI by the Model-Driven Approach 90

5.9 VMI deployment model for two EC2 instances that contain Python and PostgreSQL 91

5.10 The new VMI deployment model for replacing the PostgreSQL database by

MySQL from Model1a . 92

5.11 Example of the installed software package list in two steps 92

5.12 CPU utilization of two Amazon EC2 nodes at runtime 93

5.13 Database connection from node1 points to node2 93

5.14 Database connection from node1 points to node3 94

5.15 CPU utilization of three nodes at runtime . 95

6.1 Traditional and Model-driven approaches for VMI provisioning in cloud computing100

List of Tables

2.1 Example of the modifying existing VMs in the queue to fits the requirement . . 32

2.2 Summary of the related approaches in the state of the art 34

5.1 The comparison of VMI reconfiguration operations of the Traditional approach

and Model-driven approach for the Scenario 1 96

5.2 How the experiments fulfils the challenges which are addressed in Chapter 1 . . 97

Part I

Introduction & State of The Art

Chapter 1

Introduction

Contents

1.1 Problem statement . 3

1.2 Challenges and Key Issues . 5

1.2.1 Challenges . 5

1.2.2 Key Issues . 6

1.3 Overview of The Solution . 6

1.3.1 Feature Modeling for VMI Configuration Management 7

1.3.2 Model-Based Deployment Process . 7

1.3.3 Claims . 8

1.4 Contribution of The Thesis . 9

1.4.1 Contributions to the VMI configuration management 9

1.4.2 Contributions to the VMI deployment and reconfiguration at runtime . . 9

1.5 Structure of The Thesis . 10

1.1 Problem statement

Cloud Computing [7, 32] has been recently a hot topic in both research and industry. It can be

described as a new kind of computing in which dynamically scalable and virtualized resources

are provided as services over the Internet. Cloud users can access cloud system and use the

service through different devices and interfaces. The users only have to pay what they use

according to Service Level Agreement contracts established between Cloud providers and Cloud

users [14]. One of the main features of Cloud computing is the virtualization in which all cloud

resources become transparent to the user. Users do not need any longer to control and maintain

the underlying cloud infrastructure. The virtualization in Cloud Computing combines a number

of virtual machine images (VMIs) on the top of physical machines. Each virtual image hosts a

complete software stack: it includes operating system, middleware, database, and development

applications. The deployment of a VMI typically involves booting the image, as well as the

installation and the configuration of software packages. In the traditional approach, the creation

of a VMI to fit user ’s requirements and its deployment in the Cloud environment are typically

carried out by the technical division of the Cloud service providers who provide a platform as a

service to the user according to SLA contracts signed between the service provider and the user.

Usually, it is a pre-packaged VMI with installed and configured software components. When a

cloud user requests a new platform, the service provider administrators select an appropriate

VMI for cloning and deploying on cloud nodes. If there is no match found, then a new one

4 Chapter 1. Introduction

is created and configured to match the request. It can be generated by modifying from the

closest-fit existing VMI or from scratch. The life-cycle of the traditional VMI provisioning

process is described the detail in figure 1.1.

Initialize

Look up a VMI

fits to the

requirement

exist a VMI

VMI

repository

Deploy the

selected VMI to

cloud nodes

select the best-fit

existing VMI

boot selected

VMI

modify VMI

save the updated

VMI to repository

Access and use

cloud nodes

Terminate

Update or modify

the runing VMs

No

Yes

Figure 1.1: Life cycle of the Traditional VMI provisioning process

The standard VMI contains many software packages, which rarely get used and thus the

image is typically larger than the necessary. Actually, It is created at design time and not used

for execution, but it is considered as an image source for the cloning. The standard VMI will

be replicated into new virtual images and deployed on the cloud nodes as one or more instances

of standard virtual image. This can lead to several disadvantages, such as waste of storage

space, memory, operating costs, CPU usage, and network bandwidth when cloning an image

and deploying it on the cloud nodes [3]. It also requires more power consumption at runtime

because the unneeded software start and run when the VMI is booted. Especially, from the

point of view of service management, It is difficult to handle the complexity of interdependency

between software components, to maintain the deployed VMIs at runtime, and scale service

manually.

Cloud service providers would like to automate this process and give users more flexibility

when choosing the appropriate VMI to satisfy their requirements [16], while ensuring benefits

for providers in terms of time, operating costs, and resources. For the above reasons, there are

several concerns would need to be addressed by the cloud providers in the building an automatic

VMI provisioning process, such as: (i) Which software packages and their dependencies should

1.2. Challenges and Key Issues 5

be installed? (ii) How to create an optimal configuration, in terms of saving operation cost,

time or power consumption? (iii) How to find the best-fit existing VMI and how to obtain

a new VMI by modifying this one? (iv) How to reduce the error-proneness from the manual

operations. (v) How to handle the change of the deployed VMIs and adapt it to the needs of

auto-scaling and re-configuring VMIs at run-time?

Because of these critical requirements, building an efficient PaaS cloud manager is challeng-

ing, particularly in the context of virtual machine image provisioning process. Therefore, it

needs an appropriate approach for managing VMI for Cloud Computing environments, provid-

ing a way to adapt to the needs of auto-scaling and self-configuring virtual machine images.

1.2 Challenges and Key Issues

1.2.1 Challenges

From the problem statement, we determined eight challenges for the development of an efficient

VMI provisioning process in cloud computing. The first four challenges are interrelated, they

concern the VMI configurations management process. The fifth one is related to the easiness

of the system. The last four challenges highlight different aspects needed to be considered for

building automatic deployment and reconfiguration of VMIs at runtime.

• C1 - Modeling the variability of VMI ’s configuration options to handle the interdependen-

cies of software packages: Different software components may require specific packages

or libraries in Operating System or other components in order to configure correctly.

These interdependencies must be arranged, selected and resolved manually for every copy

of the standard VMI. The VMIs are created to satisfy the requirement of cloud users.

These requirements can have some common parts, and sometimes the selecting the soft-

ware components can have more than one option. Therefore, it needs the modeling of

commonality and variability of VMI ’s configuration options.

• C2 - Reducing the amount of data transferred through the networking in the provisioning

processes: To be ready to fulfill different requirements from users, the standard virtual

machine is often installed many types of software depending on the purpose of using of

the virtual machine. This means that many software packages are unneeded to the users

will also have installed in the virtual machine, it leads to the size of the virtual machine

images can be larger than necessary.

• C3 - Optimizing the power consumption of VMIs at runtime: In the traditional approach,

every time a standard virtual image is created, or updated, it involves manual operations;

it takes time for process of installing, customizing and configuring software packages. In

addition, the standard virtual image could store too many unnecessary software packages.

These packages are booted and run when the virtual machine runs, they also occupy

memory, CPU and other resources. This leads the virtual machine to consume more

power than necessary.

• C4 - Providing the graphical interface and easy-to-use tools for user interactions: Cloud

providers want to give users more flexibility when choosing the appropriate VMI to satisfy

their requirements. However, the cloud user does not have the deep technical knowledge

6 Chapter 1. Introduction

about software components, and underlying systems. Hence, the VMI provisioning process

should be easy to use for cloud users.

• C5 - Automating the deployment of VMIs: Many operations of the VMI provisioning

process are highly complex. Automating these operations could help to reduce the de-

ployment time, cost and error-proneness.

• C6 - Supporting the reconfiguration of VMIs at runtime: One of the key features of

cloud computing is the providing "Services on demand" while user ’s requirements can be

changed at runtime, so that the system needs to adapt to these changes and scale-up or

scale-down and re-configure the running VMIs.

• C7 - Handling the complex and flexible deployment topology of VMIs: The deployment

of virtual machine images should handle not only the multiple VMIs with the same con-

figuration, but also handle the scenario that the virtual machine images have different

configurations, for example the N-tiers web application scenario. Additionally, the VMIs

deployment can be executed on the various cloud platforms when the service provider

leases the infrastructure from other third-party service providers.

1.2.2 Key Issues

To address the challenges, we consider three key issues for the development of VMI provisioning

process:

1. Need of an abstraction level for VMI Configuration management: The approach

should provide a high level abstraction for modeling and managing the VMI ’s configura-

tion options (software packages and dependencies). This abstraction helps IT experts of

cloud providers specify the product families of VMI configuration. It also helps analyzing,

modeling the commonality and variability of VMI configurations, and creating the valid

and consistent VMIs.

2. Need of an abstraction level for VMI Deployment process: An approach for

VMI provisioning in cloud computing should provide an abstraction representation of the

deployment process.

3. Need of an automated deployment and re-configuration process: The approach

should provide an abstraction of the automated deployment and reconfiguration process.

This abstraction helps for specifying, analyzing and modeling process modularity. More-

over, the approach should be highly-automated in order to reduce the manual tasks,

error-proneness and improve the performance of VMI provisioning process.

These issues equate to limitations of the state-of-the-art addressed in this thesis. They will be

used to analyze related work, describe the contribution and results.

1.3 Overview of The Solution

This thesis proposes an approach for managing VMI for Cloud Computing environments, pro-

viding a way to adapt to the needs of auto-scaling and self-configuring virtual machine images,

1.3. Overview of The Solution 7

called Model-Driven approach. In this approach, we use Model-Driven Engineering (MDE)

approach for managing VMI configurations and the automated deployment process of VMIs in

cloud environment. We consider VMIs as a product line and use feature models to represent

VMI configurations and model-based techniques to handle automatic VMI deployment and re-

configuration. Feature model is used to handle features with attributes (e.g., installation time,

size of software, etc.) and enhance the reasoning process for finding the optimal configura-

tions of VMI. By adding the attributes to the features, we can evaluate and find the optimal

configuration according to each criterion, such as minimum installation time or VMI size. More-

over, applying the model-driven approach helps to reduce the power consumption and virtual

machine image adaptation according to the needs of auto-scaling and self-configuration. The

approach will be described in Chapter 3 and 4.

1.3.1 Feature Modeling for VMI Configuration Management

Our approach uses feature modeling to manage the configuration of virtual machine images. In

terms of configuration derivation, a feature model describes:

• The software packages that are needed to compose a Virtual Machine Image, represented

as configuration options.

• The rules dictating the requirements, such as dependent packages and the libraries re-

quired by each software component.

• The constraining rules, which specify how the choice of a given component restricts the

choice of other components, in the same Virtual Machine Image.

Feature modeling approach deals with two models: Base Model and Resolved Model; and the

Product Derivation Process.

• VMI feature model: represents configuration options and constraints which would be

used for composing a VMI.

• VMI resolved model: is derived from product derivation process based on user ’s selec-

tions on the VMI feature model. It includes the selected features and their dependencies.

• Product derivation process: generates the VMI configurations from the combination

of VMI feature model and user ’s selections.

1.3.2 Model-Based Deployment Process

Unlike the traditional approach, where software packages are installed and configured together

when the VMI template is created, the model-driven deployment approach installs and config-

ures software packages at deployment time, when a template VMI is booted. The approach also

supports synchronization of maintenance of the deployed VMIs at runtime. In our approach,

we create models that drive the creation of VMIs instances on demand. Every time a new vir-

tual machine is created on a cloud node; the cloud provider selects features of VMI, generates

configurations and applies the model to it. Actually, the model-based approach focuses on the

modeling and systemizing the process of creating an virtual image. This approach abstracts the

process from the virtual image, so creating multiple virtual images from applying a systemized

8 Chapter 1. Introduction

Figure 1.2: Life-cycle of the model-based VMI provisioning process

process to an initial virtual image rather than the time-consuming copying of a standard virtual

image.

1.3.3 Claims

We claim that the MDE approach for developing a VMI provisioning in cloud computing enables

to solve the seven challenges identified in Section 1.2.1. First, the use of the feature model

for the representation of configuration options (software components) and their relationships

support to handle the complexity of interdependencies of software packages. It also supports

modeling the variability of VMI configurations (challenge C1). In our implementation, the

VMI feature models are built by IT experts of cloud providers, who have knowledge about

systems and software packages used to compose Virtual Machine Images; and many approaches

and tools were proposed to automate analysis of the feature models [45, 10, 36]. They offer to

validate, check satisfiability, detect the invalid features and analyze feature models. Second, the

product derivation process helps to find the optimal configurations of VMIs according to the

requirements. The created VMI configurations do not contain unneeded software. Therefore,

1.4. Contribution of The Thesis 9

the virtual machines will consume less power consumption (challenge C3). It also reduces the

size of the created VMIs, so the cloning the VMIs to the cloud node for deploying will consume

less network bandwidth than in the traditional approach (challenge C2). Third, model-based

deployment process supports to encapsulate of the deployment and management of the VMI

provisioning process into a series of procedural operations. It helps to automate the VMI

deployment process (challenge C5). Fourth, by dealing with the Resolved model (expected VMI

configuration) which is independently of the standard VMIs, it makes easier to maintain and

scaling deployed VMIs at the runtime (challenges C6 and C7). Finally, the VMI configuration

manager supports the visual representation of software package and relationships, and the

VMIs deployment manager which is developed based on Eclipse Modeling Framework provides

graphical user interfaces. Thus, the users can create the VMI configurations and design the

expected deployment scenario easily (challenge C4).

1.4 Contribution of The Thesis

The results of our work contributes to two key aspects of model-driven VMI provisioning process

in cloud computing with the comparison to related work. By the survey of a number of related

work in Chapter 2, we found that there are some different approaches that support some of the

identified challenges. However, to the best of our knowledge, there is no existing approach that

fulfills all the challenges which are identified in 1.2.1. We clarify our contribution of the thesis

on two domains:

1.4.1 Contributions to the VMI configuration management

The contributions of Model-Driven approach for VMI provisioning process to the domain of

VMI configuration management are:

• An abstract representation of software components and their relationships: This represen-

tation is called feature modeling for VMI configuration management. It helps to reduce

the complexity of configuration management, reduce the error-proneness during the ma-

nipulation, and make cloud users easy to use.

• A prototype that provides the feature model to represent VMI ’s configuration options

and the product derivation process to generating appropriate VMI configurations.

1.4.2 Contributions to the VMI deployment and reconfiguration at

runtime

The contributions of Model-Driven approach for VMI provisioning process to the domain of

VMI deployment are:

• An abstract modeling of the VMI deployment process in cloud environments: This helps

to encapsulate the deployment and management of the VMI provisioning process into a

series of procedural operations.

• A prototype that supports the model-based deployment of VMIs in cloud environments:

The prototype supports to automatic deploy, reconfigure and scaling VMIs at runtime.

10 Chapter 1. Introduction

1.5 Structure of The Thesis

The remainder of the thesis is organized as follows:

• Chapter 2 presents the state of the art in virtual machine image provisioning in cloud

computing.

• Chapter 3 presents the feature modeling appproach for managing the VMI ’s configura-

tion options and deriving the appropriate VMI configurations.

• Chapter 4 presents the model-based deployment and reconfiguration process of VMI

provisioning in cloud computing.

• Chapter 5 describes the experiments and evaluation of the approach.

• Chapter 6 concludes the thesis and discusses about the perspectives.

Chapter 2

State of The Art

Contents

2.1 Chapter Overview . 11

2.2 Cloud Computing . 12

2.2.1 An overview of cloud computing . 12

2.2.2 Virtualization technology in cloud computing 15

2.2.3 Requesting and provisioning processes of cloud services 18

2.3 Model-Driven Engineering . 20

2.3.1 Model, Metamodel and Modeling, Metamodeling 20

2.3.2 Model-Driven Engineering and Model-Driven Architecture 21

2.3.3 Domain-Specific Modeling . 22

2.3.4 Model@Runtime . 22

2.4 Feature Modeling for VMI . 22

2.4.1 Software Product Lines and Feature Modeling 22

2.4.2 VMI Configurations as Product Lines . 25

2.4.3 The Configuration Management of VMIs 30

2.5 The Deployment Process of VMIs . 33

2.6 State of The Art Summary . 33

2.1 Chapter Overview

This chapter describes background concepts and principles relevant to the thesis and some re-

lated work to our approach. The chapter is organized as follows:

Section 2.2 presents an overview of cloud computing and its concern concepts: Service delivery

model, deployment model, and virtualization. This section also describes the configuration

management of Virtual Machine Image (VMI) and the VMI provisioning process.

Sections 2.3 summarizes the fundamental concepts of automating software development, in-

cluding Model-Driven Engineering, Software Product Lines and Feature Modeling.

Section 2.4 presents the feature modeling approach for VMI configuration management. In this

section, we describe the fundamental concept of product line engineering, feature model and

how to represent the VMI configurations as the Product Lines. In addition, we discuss on the

state of the art of feature modeling for VMI configuration management and related work.

Section 2.5 discusses about the state of the art and related work on the deployment process of

VMIs in cloud computing.

Finally, Section 2.6 summarizes the chapter.

12 Chapter 2. State of The Art

2.2 Cloud Computing

2.2.1 An overview of cloud computing

Figure 2.1: Cloud Computing

The term "Cloud Computing" is currently a hot and highly discussed topic in both technical,

economic, and research world. It is used for describing what happens when applications and

services are moved into the "Cloud". Actually, cloud computing is not so new, in some cases it

may consider as a new form of computer systems, which are remotely time-shared computing

resources and applications. However, more currently though, cloud computing refers to many

different types of services and applications being delivered in the internet cloud, and the fact

that, in many cases, the devices used to access these services and applications do not require

any special platforms or infrastructures; see Figure 2.1. Many big companies within the IT

industry (e.g., Microsoft, IBM, Google, Amazon,..) are joining to the development of cloud

computing, and providing cloud computing services [7, 24, 41]. However, cloud computing

definition remains unclear. Many people within the industrial and academic community have

attempted to define what "Cloud Computing" really is, and what typical characteristics it

presents. Armbrust et al. [7] define a cloud as the"data center hardware and software that

provide services" and summarize the key characteristics of cloud computing as:(1) the illusion

of infinite computing resources; (2) the elimination of an up-front commitment by cloud users;

and (3) the ability to pay for use as needed " .

Buyya et al. [14] have defined cloud computing as follows:"Cloud is a parallel and distributed

computing system consisting of a collection of inter-connected and virtualized computers that

are dynamically provisioned and presented as one or more unified computing resources based on

service-level-agreemments (SLA) established through negotiation between the service provider

and consumers "

2.2. Cloud Computing 13

The National Institute of Standards and Technology (NIST)1 proposes the following definition of

cloud computing:"Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction." [32]. This cloud model is composed of five

essential characteristics, three service models, and four deployment models.

2.2.1.1 Essential characteristics of cloud computing

1. On-demand self-service: A consumer can unilaterally provision computing capabilities,

such as server time and network storage, as needed automatically without requiring human

interaction with each service provider.

2. Broad network access: Capabilities are available over the network and accessed through

standard mechanisms that promote the use by different types of client platforms (e.g.,

mobile phones, tablets, laptops, and workstations).

3. Resource pooling: The provider ’s computing resources are pooled to serve multiple con-

sumers using a multi-tenant model, with different physical and virtual resources dynami-

cally assigned and reassigned according to consumer demand. There is a sense of location

independence in that the customer generally has no control or knowledge over the exact

location of the provided resources but may be able to specify the location at a higher

level of abstraction (e.g., country, state, or datacenter). Examples of resources include

storage, processing, memory, and network bandwidth.

4. Rapid elasticity: Capabilities can be elastically provisioned and released, in some cases

automatically, to scale rapidly on demand. To the consumer, the capabilities available

for provisioning often appear to be unlimited and can be appropriated in any quantity at

any time.

5. Measured service: Cloud systems automatically control and optimize resource use by

leveraging a metering capability at some level of abstraction appropriate for the type of

service (e.g., storage, processing, bandwidth, and active user accounts). Resource usage

can be monitored, controlled, and reported, providing transparency for both the provider

and consumer of the utilized service.

2.2.1.2 Service delivery models of cloud computing

Figure 2.3 shows the general model of cloud computing service with the roles of services and

actors. The differences between the cloud computing services depend upon the capability of

cloud providers, and they are related with the type of service offered, such as: (1) storage and

computing capacity, (2) platform for own software development and testing, (3) online software

applications. According to these differences, NIST has already proposed three main service

delivery models of cloud computing services:

1. Infrastructure as a Service (IaaS): provides virtualized infrastructure to the user,

such as storage, network, processing and other computing resources. Cloud users are

1http://www.nist.gov/

14 Chapter 2. State of The Art

Figure 2.2: Service delivery models of cloud computing [25]

able to deploy and run software, which can include operating system and applications.

It enables on-demand provisioning of servers with different choices of operating systems

and software stacks. IaaS is considered as a bottom layer of cloud computing systems.

For example: Amazon Web Services or IBM Smart Cloud mainly offers IaaS.

2. Platform as a Service (PaaS): offers development platforms where the developers can

design, develop, deploy and test their applications and do not necessary need to know

about the infrastructure (e.g., processors, memory, storage). There are several IT vendors

have developed new PaaS systems such as Google App Engine2, Microsoft Azure3 and

Amazon Web Service4.

3. Software as a Service (SaaS): provides services or composition services to users. These

services run on a cloud infrastructure and are accessible by various client devices through

a client interface such as Web browsers (e.g. Web mail, Google Docs, etc.) or client

applications (e.g., iTunes, Picasa, etc.).

2.2.1.3 Deployment models of cloud computing

Cloud computing has emerged from the combination of public computing utilities. However,

depending upon the purpose of cloud services, and physical location or distribution of cloud

systems, a cloud can be classified as a public, private, community or hybrid cloud [32, 7].

1. Private cloud: A cloud system is operated solely for a single organization. In other words,

the proprietary network or the internal data center supplies hosted services to a certain

group of people, not made available for general public users. For example, Microsoft

Azure enables customers to build the foundation for a private cloud infrastructure using

Windows Server and System Center family of products with the Dynamic Data.

2http://code.google.com/appengine
3http://www.microsoft.com/windowsazure
4http://www.amazon.com/aws

2.2. Cloud Computing 15

Figure 2.3: A cloud computing metamodel

2. Public cloud: A cloud service provider makes resources (e.g., applications and storage)

available to the general public over the Internet on a pay-as-you-go basis. For example,

the Amazon Elastic Compute Cloud (EC2) allows users to rent virtual computers on

which they run their own applications. It provides network infrastructure, data centers

and allows customers to pay only for what they use with no minimum fee.

3. Community cloud: The cloud system is shared by several organizations with common

concerns (e.g., mission, security requirements, policy, and compliance considerations).

4. Hybrid cloud: The cloud infrastructure comprises 2 or more clouds (e.g., private, public, or

community). In this infrastructure, an organization provides and manages some resources

within its own cloud and has other resources provided externally from other clouds.

2.2.2 Virtualization technology in cloud computing

2.2.2.1 Virtualization

In cloud computing, virtualization is one of the key features to unlock values for a cloud sys-

tem. The different customers with disparate requirements require a flexible managing resource.

Virtualization can provide significant benefits for a computing system, including increased

utilization, energy saving, rapid deployment, improved maintenance capability, isolation, and

encapsulation. Moreover, virtualization enables applications to migrate from one server to an-

other while they are still running, without downtime, providing flexible workload management,

and high availability during planned maintenance or unplanned events [6].

The idea of virtualizing the computer ’s resources such as processors, memory, storage devices

16 Chapter 2. State of The Art

Private(

Cloud(

Public(

Cloud(

Community(

Cloud(

Hybrid(Cloud(

Organiza7on(Organiza7on(

General(Public(

Users(

Figure 2.4: Deployment models of cloud computing

have been established since last decades, aiming for improving sharing and utilization of com-

puter systems [22]. Virtualized resources (e.g., CPU, memory, etc.) scale with certain flexibility

and create a virtual infrastructure. Virtualization allows running multiple operating systems

and software on a single physical platform. Figure 2.5 shows a server using virtualization

technology for hosting different virtual machine (VM). Each of these VMs running a distinct

operating system and software stack. A hypervisor is a set of virtual platform interfaces; it is

a component that is responsible to manage virtual machines. It supports a mediate access to

the physical hardware available for each guest operating system of virtual machines. There is

some notable hypevisor platform, such as Xen5, KVM6, VMWare ESXI7, or VirtualBox8.

• Xen: Xen is an open-source hypervisor. It has pioneered the para-virtualization concept,

on which the guest operating system can interact with the hypervisor, thus significantly

improving performance [13]. Xen is used as the basis for a number of different commercial

and open source applications, such as: server virtualization, Infrastructure as a Service

(IaaS), desktop virtualization, security application, embedded and hardware appliances.

Xen enables users to increase server utilization, consolidate server farms, reduce com-

plexity, and decrease total cost of ownership. It currently forms the base of commercial

hypervisors of many cloud vendors (e.g, Citrix XenServer9, Oracle VM10).

5http://www.xen.org/
6http://www.linux-kvm.org/
7http://www.vmware.com/
8https://www.virtualbox.org/
9http://www.citrix.com/products/xenserver/overview.html

10http://www.oracle.com/us/technologies/virtualization/oraclevm/overview/index.html

2.2. Cloud Computing 17

Hardware'

Hypervisor'

SQL$

Server$
IIS$

Visual$Studio$.Net$

Virtual'Machine'1'

So4ware$

Java$
Apach

e$

Eclipse$

Virtual'Machine'2'

So4ware$

Opera=ng$

System$

App3 App4

App1

Virtual'Machine'N'

So4ware$

App2

Figure 2.5: Virtual machines running on a virtualized server

• KVM: The kernel-based virtual machine (KVM) is a full virtualization solution for Linux

on x86 hardware containing virtualization extensions (Intel VT or AMD-V). It consists

of a loadable kernel module, kvm.ko, that provides the core virtualization infrastructure

and a processor specific module, kvm-intel.ko or kvm-amd.ko. Using KVM, one can run

multiple virtual machines running unmodified Linux or Windows images. Each virtual

machine has its own private virtualized hardware: a network card, disk, graphics adapter,

etc.

• VMWare ESXI: VMWare is one of the leader on the virtualization market. VMWare

ESXI hypervisor is a commercial product of VMWare. It provides advanded virtualization

techniques of processor, memory, and I/O. It is a bare metal embedded hypervisors, which

means that they run directly on server hardware and do not require the installation of

an additional underlying operating system. This virtualization software creates and runs

its own kernel, which is run after a Linux kernel bootstrap the hardware. The resulting

service is a microkernel, which has three interfaces: Hardware, Guest system, Console

operating system (service console).

• VirtualBox: VirtualBox or Oracle VM VirtualBox is a cross-platform virtualization

software for x86-based systems. "Cross-platform" means that it installs on Windows,

Linux, Mac OS X and Solaris x86 computers. VirtualBox is installed on an existing host

operating system as an application; this host application allows additional guest operating

systems, each known as a Guest OS, to be loaded and run, each one with its own virtual

environment.

2.2.2.2 Virtual Machine and Virtual Machine Image (Virtual Appliance)

To deliver highly available and flexible services by using virtualization technology, Virtual

Machines (VMs) are used as a standard for object deployment in the cloud. VMs decouple

the computing infrastructure from the physical infrastructure. In addition, VMs allow the

18 Chapter 2. State of The Art

customization of the platform to fit the needs of the end-user [6]. For example, in the Amazon

Elastic Compute Cloud (EC2), the customer selects his/her preferred VM image (VMI) from a

list of various versions of Linux and Windows servers configured with different web servers and

databases. The difference between a virtual machine and a virtual machine image (also called

a virtual appliance) is:

• Virtual Machine (VM): A VM is a software implementation of a machine (i.e., a computer)

that executes programs like a physical machine. It offers many advantages over physical

PCs and can encapsulate an entire PC environment, including the OS, applications and

all data inside a single file. However, users must still configure the virtual hardware, guest

operating system and guest application before putting a virtual machine into operation.

• Virtual Machine Image (VMI): is an application combined with the environment needed to

run it (operating system, libraries, compilers, databases, application containers, etc.) [13].

Virtual machine images differ from virtual machines in that they are delivered to cus-

tomers as preconfigured solutions, which helps to simplify the deployment for customers

by eliminating the need for manual configuration of the virtual machines and operating

systems used to run the image.

2.2.3 Requesting and provisioning processes of cloud services

2.2.3.1 A request for service
Scenario:*Request*for*cloud*resource*

Cloud&user& 1&

Logs*into*cloud*

frontend*

List of offerings:

!  Create new Request

!  Add new selections to existing
request

Cloud*service*dashboard*
2&

Create/Update*

Request*
Request

!  Name

!  Description

!  Duration, etc.

Server

! Resource pool

! OS image

! Server config

! CPU number

! Memory size

! Disk size

! Server number

3&

Specifies*

request*details*

List of software

!  Tivoli monitor agent

!  Tomcat Apache

!  DB2

! …

4&

Specifies*Server**

Details*
6&

Submit*

Request*

Cloud&

administrator&

Request overview

5&

Specifies*

So?ware*Details*

Request wait for

approval

7&

Approves*

Request*
Resource&provisioning&is&

started&

Figure 2.6: A scenario of a request for cloud service

Consumers of cloud computing expect to use on-demand services. Therefore, cloud providers

have to support self-service access so that customers can request, customize and use services

without intervention of human operators [32]. In thesis, we consider the requesting and provi-

sioning processes of cloud services - virtual machine images for IaaS environments.

Figure 2.6 presents a scenario of requesting a VMI in cloud computing. Cloud user accesses

2.2. Cloud Computing 19

the cloud system by login into the cloud frontend. Basing on offering service from the cloud

providers, he will create a request or modify an existing one. In the request, he can define

detailed requirements on the service, such as information of server (e.g., CPU, memory, stor-

age, etc.) and software stacks. Cloud administrators are responsible to review and process the

requests. When the request is approved, then the cloud service with corresponding resources is

provisioned.

2.2.3.2 A service provisioning process

IDE$

Applica+on$

Server$

Opera+ng$System$

DB$

IDE$

Applica+on$

Server$

Opera+ng$System$

DB$

IDE$

Applica+on$

Server$

Opera+ng$System$

DB$

IDE$

Applica+on$

Server$

Opera+ng$System$

DB$

Clone&&&Boot&image&

Clone&&&Boot&image&

Clone&&&Boot&image&

Virtual$machine$1$

Virtual$machine$2$

Virtual$machine$N$

StandardVMImage$

Figure 2.7: A traditional approach for VMI provisioning in cloud computing

In the above scenario, cloud providers created different VMIs with distinct software stacks

installed inside. After reviewing the request from a cloud user, cloud administrators select an

appropriate existing VMI (template VMIs or Golden Images) and deploy it on cloud nodes

by using the virtual infrastructure manager. If there is no existing VMI that matches the

requirements, then a new one is created and configured to match the request. It can be generated

by modifying from the closest-fit existing VMI or from scratch. This method is called traditional

approach of VMI provisioning in cloud comptuting [2, 1], see Figure 2.7. Once created, the

template VMI is not executed. Instead, it is the source of copies or clones that are replicated

to create one or many instances of the template VMI.

2.2.3.3 Discussion

The template virtual image contains all possible software and can be cloned and booted as

many times as the deployment model requires. Therefore, it exposes the disadvantages to the

approach. In the context of an enterprise data center using file systems or storage systems with

built-in, space-efficient cloning mechanisms, the template VMI can be copied almost instantly

because actual data blocks are replicated only when they are changed by a running instance.

20 Chapter 2. State of The Art

However, in cloud computing environments, cloud providers must maintain the ability to trans-

fer a VMI to any storage system or deploy to cloud nodes regardless of the location of the

template VMI. While adapting for various requirements from distinct customer, the template

VMIs may contain many kinds of software stacks inside. It makes the size of template VMIs

bigger than needed. So in a cloud environment, actual copies of the template VMI must be

created and potentially moved across the network. As cloud data physics indicate, this takes

time and bandwidth, limiting the responsiveness of the approach [48, 3].

2.3 Model-Driven Engineering

2.3.1 Model, Metamodel and Modeling, Metamodeling

• What is a model and metamodel?

"We use models when we think about problems, and when we talk to each other, and

when we construct mechanisms, and when we try to understand phenomena, and when

we teach. In short, we use models all the time" [30].

"A model is a simplified representation of an aspect of the world for a specific purpose.

Complex systems typically give rise to more than one model because many aspects are to

be handled." [26]

A model is usually considered as an abstraction, a description, or a specification of (some

aspect of) a system [19, 21].

While a model is an abstraction of phenomena in the real world; a metamodel is yet

another abstraction, highlighting properties of the model itself. A model conforms to

its metamodel in the way that a computer program conforms to the grammar of the

programming language in which it is written.

• What is modeling and metamodeling?

Develops

Develops

Represents

Instantiates to

Represents

Metamodeling

Modeling

An object system to

be modeled

Model of an object

system

Model of a method,

metamodel

Perceives

Perceives

Figure 2.8: Relationships between Model, Metamodel, Modeling and Metamodeling [46]

Modeling not only represents a solution at a higher abstraction level than code, but also

is a specificity of engineering that engineers build models of artefacts that usually do

not exist yet [26]. It is indeed one of the standards of any scientific activity along with

validating models with respect to experiments carried out in the real world.

2.3. Model-Driven Engineering 21

Metalmodeling is the analysis, construction and development of the frames, rules, con-

straints, models and theories applicable and useful for modeling a predefined class of

problems. As its name implies, this concept applies the notions of meta- and modeling.

In short, "Metamodeling" is the construction of a collection of "concepts" (things, terms,

etc.) within a certain domain. The relationships between model, metamodel, modeling

and metamodeling are illustrated in Figure 2.8.

2.3.2 Model-Driven Engineering and Model-Driven Architecture

• Model-Driven Engineering

Model-Driven Engineering (MDE) refers to the systematic use of models as primary en-

gineering artifacts throughout the engineering lifecycle. Models are considered as first

class entities, they are better than implementing code for describing about software sys-

tem and its parts for the stakeholders. MDE can be applied to software, system, and

data engineering. It offers a promising approach to address the inability of third gen-

eration languages to reduce the complexity of platforms and express domain concepts

effectively [42]. Applying MDE approach for the deployment process helps to encapsulate

the deployment and management of a cloud system into a series of procedural opera-

tions. Schmidt et al. [42] summarized that a promising approach to address the system

complexity is to develop MDE technologies that combine 1) domain-specific modeling

languages (DSML) whose type systems formalize the application structure, behavior, and

requirements within particular domains; and 2) transformation engines and generators

that analyze certain aspects of models and then synthesize various types of artifacts, such

as source code or alternative model representations.

• Model-Driven Architecture

Model-Driven Architecture (MDA) is an MDE approach proposed by the Object Man-

agement Group (OMG)11. As defined by the OMG, MDA encourages the efficient use of

system models in the software-development process, and it supports reuse of best prac-

tices when creating families of systems. MDA is a way to organize and manage enterprise

architectures supported by automated tools and services for both defining the models and

facilitating transformations between different model types [12].

The main goal of MDA is to support engineers to model applications, or systems in-

dependently of specific platforms. MDA defines system functionality using a platform-

independent model (PIM) using an appropriate domain-specific language (DSL). Then,

the PIM model is translated into one or more platform-specific model (PSM) that com-

puters can run. This requires mappings and transformations. One of the particular

importance to model-driven architecture are the notions of metamodel and model trans-

formation. Metamodels are defined at the OMG using the MOF (Meta Object Facility)

standard. A specific standard language for model transformation called QVT has been

defined by OMG. The OMG has also defined a model interchange mechanism based on

XML called XMI.

11http://www.omg.org/mda/

22 Chapter 2. State of The Art

2.3.3 Domain-Specific Modeling

Domain-specific modeling (DSM) is a specific software engineering method for designing and de-

veloping systems based on the systematic use of a domain-specific modeling language (DSML).

DSMLs tend to support higher-level abstractions than general-purpose modeling languages,

therefore they require less effort and fewer low-level details to specify a given system.

DSMLs are described using metamodels, which define the relationships among concepts in a

domain and precisely specify the key semantics and constraints associated with these domain

concepts. Developers use DSMLs to build applications using elements of the type system cap-

tured by metamodels and express design intent declaratively rather than imperatively [42].

2.3.4 Model@Runtime

G. Blair and R.France [11] define:" A model@run.time is a causally connected self-representation

of the associated system that emphasizes the structure, behavior, or goals within the system from

a problem space perspective " .

The model@runtime techniques provide a high abstraction level for solving the adaptation issues

of the running system by reasoning with relevant abstractions (as models) of the system [38].

It aims to handle the complexity of dynamic adaptation of the systems at runtime [39]. When

changes that apply to the running system occur in a new model (a target model), the model is

checked and validated to ensure the consistency of the system configuration. Then, it is com-

pared to the current model which is the representation of the running system. This comparison

finds the changes and produces an adaptation model which represents a mechanism to reach a

target model from the current one. It supports the roll-back mechanism for any actions failed

to ensure the consistency to the system.

2.4 Feature Modeling for VMI

2.4.1 Software Product Lines and Feature Modeling

2.4.1.1 Software Product Lines

In software engineering, the traditional focus is to develop individual software systems, i.e,

one software system at a time. The result obtained is a single software product. In contrast,

Software Product Line (SPL) engineering focuses to develop multiple similar software systems

from the common assets [18, 40]. Clements et al. [18] define SPL as:"a set of software-intensive

systems sharing a common, managed set of features that satisfy the specific needs of a par-

ticular market segment or mission and that are developed from a common set of core assets

in a prescribed way.". It captures "commonality" and "variability" between a set of software

products in the same domain. Commonality refers to elements that are common to all products

while variability refers to elements that may vary from a product to another one. Using SPL

helps to improve productivity and reduce realization times by gathering the anlysis, design,

and implementation activities of a family of products [49, 27].

The process of SPL engineering [19, 40] includes two steps: (1) Domain Engineering focuses

on core assets development; (2) Application Engineering addresses the development of the final

products based on core assets and user requirements. This process is illustrated in Figure 2.9.

2.4. Feature Modeling for VMI 23

D
o

m
a

in
 E

n
g

in
ee

ri
n

g
A

p
p

li
ca

ti
o

n
E

n
g

in
ee

r
in

g

Domain

Requirements

Engineering

Domain

Realisation

Domain

Testing

Domain

Design

Application

Requirements

Engineering

Application

Realisation

Application

Testing

Application 1 – Artefacts incl. Variability Model

Architecture Components TestsRequirements

Domain Artefacts incl. Variability Model

Product

Management

Application N – Artefacts incl. Variability Model

Application

Design

Requirements Architecture Components Tests

Fig. 2-1: The software product line engineering frameworkFigure 2.9: Two engineering process of SPL Engineering [40]

• Domain Engineering (development for reuse): includes the collecting, organizing and

storing past experiences in building systems in the form of reusable assets in particular

domain; and providing means for reusing these assets when building new systems [19].

It starts with domain analysis phase to capture, analyze and organize information as

a model (define the commonalities and variability of products). Then, domain design is

responsible for establishing the product line architecture in terms of software components,

and the last phase is responsible for implementation [27].

• Application Engineering (development with reuse): also known as product derivation.

This process consists of developing a new product, reusing the reusable assets from domain

engineering, and adapting the new product to specific requirements. Therefore, the new

product is built from existing common and variable parts of the SPL [49].

There are some major concepts of SPL that help the representation of product lines: the

commonality, the variability, the variability dependencies, and the variability constraints.

1. The commonality

The commonality of product lines allows to specify the same features between products

of a certain group (a product line or a product family). It provides the common platform

for building a set of similar products. The common platform provides the structure of

basic components for constructing the core characteristic of a product.

2. The variability

The variability of product lines provides the pre-definition of what components could be

assembled into a product. It supports to define exactly the places where the products can

differ from the others. A variability model is the modeling of the variability of objects in

the real world.

24 Chapter 2. State of The Art

In the real world, the term variability subject means a variable item of the real world or

variable property such an item (e.g. Database, Operating System, or Web Server, etc.),

and a variability object specifies a particular instance of a variability subject (e.g. MySQL,

Windows 7, or Apache Tomcat, etc.).

In the context of product line engineering, two terms, a variation point and a variant, are

used for representing the variability of the real world ’s problems in the variability models.

A variation point is a representation of a variability subject within domain artefacts

enriched by contextual information; and a variant is a representation of a variability

object within domain artefacts.

3. The variability dependencies

The variability dependencies specify the relation between variation points to their vari-

ants. The variability dependencies can be classified as two types: Optional and Manda-

tory.

• An optional dependency: states that a variant can be selected or not for being a part

of the product.

• A mandatory dependency: states that a variant must be selected when the variation

point is part of the product.

4. The variability constraints

The variability constraints describe the relationship between a variant and another variant

or a variation point. It can be a requires or excludes constraints.

• A requires constraint: defines that the selection of a variant requires the selection of

another variant.

• An excludes constraint: defines that the selection of a variant excludes the selection

of another variant.

2.4.1.2 Feature Modeling

Feature modeling is a variability modeling technique, originally introduced as a part of Feature-

Oriented Domain Analysis (FODA) by Kang [28]. Then, it has been developed and used

in automotive industry, telecom or embedded systems. By using this technique, engineers

can capture, analyse and manage the commonalities and variabilities of product families. In

software development, feature models [28] represent all products of a Software Product Line

(SPL). They are currently the standards for representing variability. A feature model has a

tree structure, with features forming the nodes of the tree and groups of features representing

feature variability. It defines a set of valid feature configurations. The validity of the feature

model and its derived configurations relies on the semantics of the feature model. For example,

the model must follow a set of rules, such as:

• All its mandatory child features must also be contained;

• Any number of optional child features can be included;

• Exactly one feature must be selected from an alternative group;

• At least one feature must be selected from an or group.

2.4. Feature Modeling for VMI 25

Figure 2.10: An example of mobile phone feature model [9]

In addition, the semantics of a feature model also supports the specification and reasoning

about the commonality and variability of a product line [4].

Feature models support two cross-tree constraints: Requires, and Excludes; and four types of

feature groups: Mandatory ; Optional ; Alternative; and Or.. For example: Given two features,

fa and fb: if fa requires fb, then the selection of fa implies the selection of fb; if fa excludes fb,

then the selection of fa prevents the selection of fb. Many approaches and tools were proposed

to automate analysis of feature models for checking and validating the correctness of feature

models [45, 10, 36].

2.4.1.3 Feature modeling tools

There are many tool support to the variability management by using the feature model, such as

FeatureIDE 12 [17], pure::Variant 13, FAMILIAR 14[5], etc. Because our work does not focus on

feature model development, we used feature model as a tool for managing the VMI configuration

options. Therefore, in this thesis, we re-used and extended the SPLAR (A Software Product

Line Automated Reasoning) engine for the reasoning process of feature modeling. It is an

open-source library developed by M.Mendoca in his PhD work. This library offers SAT and

BDD-based components to reason on and to configure feature models [37, 34]. SPLAR allows us

to validate the feature selections, and to generate the valid configurations from selected features

and dependencies. Detail of how we use and extend the SPLAR engine will be described in

Chapter 3 and Chapter 5.

2.4.2 VMI Configurations as Product Lines

2.4.2.1 VMI Configurations

A virtual machine (VM) is a software implementation of a machine (i.e., a computer) that exe-

cutes programs like a physical machine [22, 44]. It offers many advantages over physical PCs and

can encapsulate an entire PC environment, including the OS, applications and all data, inside

12http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
13http://www.pure-systems.com/pure_variants.49.0.html
14http://familiar-project.github.com/

26 Chapter 2. State of The Art

a single file. However, users must still configure the virtual hardware, guest operating system

and guest application before putting a virtual machine into operation. A virtual machine image

(VMI) is an application combined with the environment needed to run it (operating system,

libraries, compilers, databases, application containers, etc.). VMIs are delivered to customers

as pre-configured solutions, that include operating systems with pre-built, pre-configured and

ready-to-run applications. This approach simplifies the deployment for customers by eliminat-

ing the need for manual configuration of the virtual machines and operating systems used to

run the image.

Because there is no single image that can fit all possible combinations of requirements, cloud

providers must prepare different VMI configurations. For example, some users want to use

Windows operating system, while others like Linux; some people need a database while some

other need integrated development environment, etc. It leads to wasted time, and cost. The

KVM$Hypervisor$

SQL$

Server$
IIS7

Visual$Studio$2010$

Virtual$Machine$1$

2Gb$RAM,$1$core$

MySQL$

5.6$

Tomcat$

6$

Eclipse3.7

Virtual$Machine$2$

1Gb$RAM,$1$core$

Ubuntu12.10Windows8

OS:$ $Windows$8$

Memory:$ 2Gb$

Processor:$ 1core$

Packages:$

KVisual$Studio$2010$

KSQL$Server$2008$

KIIS7

K.Net$Framework$3.5$(*)$$

OS:$ $Ubuntu$12.10$

Memory:$ 1Gb$

Processor:$ 1core$

Packages:$

KEclipse3.7

KTomcat6

KMySQL5.6

KJRE1.6(*)$

VM1$ConfiguraVon$ VM2$ConfiguraVon$

(*)$Dependent$packages$

Figure 2.11: An example of two virtual machines run on KVM hypervisor

configuration of a VMI represents the basic information of an image (e.g. RAM, Processor, etc.)

and packed software components. Depending on the requirements from users, cloud providers

create the appropriate images which contain the requested software and the dependencies. The

VMI configurations must handle the dependent packages, and satisfy the constraints of the

requested software. Figures 2.11 shows the example of two virtual machines with different

configurations run on the KVM hypervisor. The first VMI configuration includes IIS 7, Visual

Studio 2010, MS SQL 2008, and .Net Framework 3.5 run on Windows 8 operating system

2.4. Feature Modeling for VMI 27

with 2Gb RAM and 1 core processor. While the second VMI configuration contains Tomcat 6,

Eclipse 3.7, MySQL 6.5, JRE 1.6 and Linux Ubuntu 12.10 operating system with 1Gb RAM, 1

core processor. .Net Framework 3.5, JRE 1.6 are dependent packages that are required by IIS

7, SQL Server 2008 and Eclipse 3.7, Tomcat 6 respectively. In addition, with 2Gb memory, the

VM1 configuration also satisfies the constraint "Visual Studio 2010 needs at least 1Gb RAM".

2.4.2.2 VMI Configuration Commonality

OS:$ $Ubuntu&12.10&

Memory:& &1&Gb&

Processor:& &1&core&

Packages:$

&0&Eclipse&3.7&

&0&Tomcat&6&

&0&JRE&1.6&

&0&MySQL&5.6&

VMI&1&

OS:$ $Ubuntu&12.10&

Memory:& &1&Gb&

Processor:& &1&core&

Packages:$

&0&Eclipse&3.7&

&0&Tomcat&6&

&0&JRE&1.6&

&0&PostgreSQL&9.2.3&

VMI&2&

OS:$ $Ubuntu&12.10&

Memory:& &1&Gb&

Processor:& &1&core&

Packages:$

&0&Eclipse&3.7&

&0&Tomcat&6&

&0&JRE&1.6&

Common&PlaJorm&

Figure 2.12: An example of the VMI Configuration commonality

The commonality of VMIs used to specify the same features between images of a certain

group of VMIs (a VMI product line or a VMI product family) [20]. It supports to share the

common platform for building and customizing a line of VMIs that have similar characteristics.

The common platform provides a structure of base components determining the major char-

acteristics of a virtual machine, such as VMIs for hosting database servers or web application

servers. By determining the common platforms of the existing VMI configurations and the

expected VMI configurations, cloud providers can easily find the best-fit VMIs for re-using and

customizing.

The use of the common platform for different VMIs typically leads to a reduction in the pro-

duction cost, time and error-prone of a particular VMI, and it improves the performance of

the provisioning process. Figure 2.12 shows an example of the similarities between two VMIs

and the common platform of these images. Therefore, it is easy to generate the VMI 2 by

customizing the VMI 1 (e.g. remove MySQL 5.6 and install PostgreSQL 9.2.3) or vice versa.

2.4.2.3 VMI Configuration Variability

Different VMI configurations of the same product line may contain different packed software

components. The VMI configurations are designed in a way that allows the cloud providers

fulfill the different user ’s requirements, such as the number of processors, memory, etc. Such

flexibility comes with many constraints. For example, if a user wants to use Visual Studio with

.Net Framework for programming, then the operating system of the VMI must be Windows,

and the selection of other components, such as databases that run on Linux are restricted,

therefore they are disabled when the Windows operating system is selected. The flexibility of

VMI configurations described here is called variability in the context of software product line

engineering. The variability of VMI configurations provides the pre-definition of what possible

software shall be installed into a VMI. In addition, it supports to define exactly the places

where the VMI can differ from others, so that they can have as much in common as possible.

28 Chapter 2. State of The Art

Figure 2.13 shows an example of the variability of database systems for a VMI, as well as the

DB2$
(Variability$object)$

…$

PostgreSQL$
(Variability$object)$

MySQL$
(Variability$object)$

MSSQLServer$
(Variability$object)$

MySQLDB
(Variant)$

MSSQLServer$

DB$
(Variant)$

TypesofDatabase$
(Variability$Subject)$

DatabaseofaVMI
(VariaBon$Point)$

Real%world% Model%

MySQL5.6for$

Windows$
(Variant)$

MySQL5.6for$

Linux$
(Variant)$

Versionofa$Database$
(VariaBon$Point)$

Model%

Figure 2.13: An example of the VMI configuration variability in the real world and in the model

of the real world

relation between variability in the real world and in the model of the real world. From example,

there are many types of database systems, when the cloud provider installs a database system

into a VMI, it could be MySQL, or SQL Server, etc., and each type of them is also classified

into different versions. The left side of Figure 2.13 presents the database system variabilities

in the real world with variability subjects and their variability objects. The right side the figure

presents the database system variabilities in the model of the real world with variant points

{Types of Database, etc.} and their variants {DB2, MS SQL Server, MySQL, PostgreSQL}.

Mapping to the context of software product line engineering, the terms variability subject,

variability object, variant point, and variant can be applied as follows [40]:

• The variability subjects are Operating Systems, Databases, or Programming Languages,

etc.

• The variability objects are Ubuntu 12.10, Windows 7, etc., or MySQL, SQL Server, etc.

• The variant points are RAM of a VMI, Number of processor, etc.

• The variants are 1 GB, 1 core, etc.

2.4.2.4 VMI Variability Dependencies and Constraints

A VMI configuration can be specified by the selection of software options (variants) in the VMI

base model. A legal product configuration of a VMI contains all selected software options and

their dependencies which satisfy the corresponding constraints. For instance, a configuration

of a VMI that contains Ubuntu 12.04 TS, JRE 1.6 Linux, and Eclipse 3.7 Linux is a valid

configuration. However, another configuration Ubuntu 12.04 TS, Java Runtime, and Visual-

Studio 2010 is an illegal configuration since features Ubuntu 12.04 TS and VisualStudio 2010

2.4. Feature Modeling for VMI 29

Opera&ng)System)
(Variant))

Database)Server)
(Variant))

So3ware)for)a)VMI)
(Varia*on)Point))

Op#onal(Mandatory(

Figure 2.14: An example of variability dependency

are mutually-exclusive but appear together in a configuration. Figure 2.14 represents the vari-

ation point "Software for a VMI" and two variants Operating System, and Database Server.

It specifies that Operating System must be a part of a virtual machine image while Database

Server can (but does not need to) be installed in the image. .

Variability Constraint

JRE1.5

(Variant))

JRE1.7

(Variant))

(Varia*on)Point))

Excludes(

VersionofJRE$

(a) A variant excludes another variant

JRE$
(Variant))

.Net$Framework$
(Variant))

Run2me$Framework$foraVMI$
(Varia*on)Point))

Eclipse3.7
(Variant))

Visual$Studio$

2010$
(Variant))

IDEforaVMI
(Varia*on)Point))

Requires(

Requires(

(b) A variant requires another variant

Figure 2.15: An example of variability constraints

Figure 2.15 presents an example of variability constraints. The excludes constraint in Fig-

ure 2.15a describes that if the variant JRE 1.5 is selected, then the selection of variant JRE

30 Chapter 2. State of The Art

1.7 is restricted, and vice versa. Figure 2.15b shows that if Eclipse 3.7 or Visual Studio 2010

is selected, then the variant JRE or .Net Framework must be selected respectively.

2.4.3 The Configuration Management of VMIs

In the investigation the state of the art, we found that there are some research efforts use feature

models to capture configuration options of complex systems and helps to simplify the selection

of configuration options. The use of feature models and cross cutting constraints for managing

the configuration can reduce requirement elicitation errors and support automated choice prop-

agation. Some other researches used the model of probabilistic analysis for generating different

virtual image configurations that are contain a set of frequently used software packages. This

approach helps to minimize the transformation time from an existing virtual appliance to a

new one that fits the request. Especially, Dougherty et al. [20] present a technique to minimize

VMN$

VM1$

VMk$

IdleVMsqueue$ A$selected$VM$instance$

Host1$

VMk$

Host2$

VMk$

HostM$

VMk$

Feature$Model$

(1)$

(2)$

(3)$

Cloud$Nodes$

Figure 2.16: Feature model for VMs auto-scaling in Dougherty ’s approach

the number of idle VMs in an auto-scaling queue. It helps to reduce the energy consumption

and the operating cost and satisfies response time constraints. Their work defines a method

to represent VMI configuration options by using feature models with constraints in the form

of Constraint Solving Problems (CSP). It uses an auto-scaling queue to store created images

in idle status. This leads to an improvement of response time when the request matches the

available image in the queue. The overview of this approach is illustrated in Figure 2.16, where

the feature model used to manage configuration options, and the idle VMs queue used to host

pre-booted VMIs to provides faster response time. This approach is organized in three stages:

(1) Transforming the VM configuration from the user ’s selections on the feature model into a

CSP for querying a suitable idle VM in the queue; (2) Selecting an idle VM from the queue

that is exactly matches the user ’s selections or modifying an idle VM that is closest to the

requirements; (3) Deploying the selected idle VM to cloud nodes.

When a cloud user requests a virtual machine, the cloud provider analyzes the requirements

2.4. Feature Modeling for VMI 31

and generates a solution (a suitable configuration) by selecting the configuration options from

the feature model, and then transforms this configuration into a CSP where a solution is a set

of valid configurations for the VM instances in the auto-scaling queue. The valid configurations

here is the configuration that exactly matches the target configuration, or the best-fit one that

can be used for modifying while ensuring the minimization the energy consumption, cost of

maintaining the auto-scaling queue and satisfying time constraints.

VM#

OS#

Ubuntu#9.10# Windows#7# RedHat#9#

Applica>on#Server#

JBOSS# Tomcat# JeEy#

Database#

MySQL# PostgreSQL#

VM#

###L#OS:#Ubuntu#9.10#

###L#Applica>on#Server:#JBOSS#

###L#Database:#PostgreSQL#

VM#1#
Configura)on*

VM#

###L#OS:#Ubuntu#9.10#

###L#Applica>on#Server:#JeEy#

###L#Database:#MySQL#

VM#2#
Configura)on*

VM#

###L#OS:#Ubuntu#9.10#

###L#Database:#MySQL#

VM#3#
Configura)on*

VM#

###L#OS:#Ubuntu#9.10#

###L#Applica>on#Server:#Tomcat#

###L#Database:#MySQL#

Expected#VM#
Configura)on*

Idle%VMs%queue%

Best/fit*VM*
Seeking*a*suitable*VM*

from*the*queue*

Selected*feature*

Figure 2.17: An example of VM configuration selections in Dougherty ’s approach

Figure 2.17 is an example of feature selections from the feature model in Dougherty ’s ap-

proach. The expected VM configuration is derived by these selections, and then matched to

the idle VMs in the queue. It contains the following features: {VM, OS, Ubuntu 9.10, Appli-

cation Server, Tomcat, Database, MySQL}. It means the expected VM will include a Linux

Ubuntu 9.10 operating system, a Tomcat application server, and a MySQL database server.

However, in the auto-scaling queue with pre-booted VMs, there are only three idle VMs: VM

1{VM, OS, Ubuntu 9.10, Application Server, JBOSS, Database, PostgreSQL}; VM 2{VM,

OS, Ubuntu 9.10, Application Server, Jetty, Database, MySQL}; and VM 3{VM, OS, Ubuntu

9.10, Database, MySQL}, and there is no one that exactly matches the expected VM configu-

ration. Therefore, by using CSP objective functions, the cloud provider can select the best-fit

VM whose modification minimizes the power consumption and operating costs of the queue.

In the above example, the modification of idle VMs in the queue to be the expected VM is de-

scribed in Table 2.1. Because every software take time for both installation and uninstallation,

32 Chapter 2. State of The Art

Virtual Machine Modifying steps Estimation Time of Modifying

VM 1 - uninstall JBOSS

- uninstall PostgreSQL

- install Tomcat

Time = uTime(JBOSS) +

uTime(PostgreSQL) +

iTime(Tomcat)

VM 2 - uninstall Jetty

- install Tomcat

Time = uTime(Jetty) +

iTime(Tomcat)

VM 3 - install Tomcat Time = iTime(Tomcat)

iTime(X): installation time of software X

uTime(X): uninstallation time of software X

Table 2.1: Example of the modifying existing VMs in the queue to fits the requirement

therefore the adjustment of virtual machine VM 1 takes longer time than VM 2, and VM 2

needs more time than VM 3. Therefore, the virtual machine VM 3{VM, OS, Ubuntu 9.10,

Database, MySQL}is the best-fit VM in the queue because it takes shortest time for modifying

and cloud provider just needs to install the Tomcat application server instead of modifying VM

2 or VM 1.

Two approaches have been introduced to solve optimization requirements of the creation of

a new VMI based on the existent VMIs (Dougherty et al.) or from the probabilistic analysis

of virtual appliance frequently used (T. Zhang et al.) to minimize the power consumption,

operating costs of auto-scaling queue and transformation time of an existing VM to an expected

VM, but they still have certain limitations:

• The probabilistic analysis of the virtual appliance frequently used in T. Zhang ’s approach

can meet the common requirements from the users with many similar interests as well as

the habit of using the software (e.g. operating system, programming language, database,

etc.) but lacks the flexibility to provide services on demand when those cloud users are

diverse and require the use of services that are also different.

• In the approach of Dougherty et al., the selections of users on the feature model should be

concrete even when users do not care much about the details of the selection. Therefore,

the search for the optimal solution will be difficult when the user requests the generic

requirements (e.g. " - I need a database " instead of "- I want to use MySQL database",

etc.). In addition, the maintenance of the auto-scaling queue with the idle VMs needs a

certain amount of resources. In this case, user ’s requirements do not fit any idle VM in

the queue, thus the expected VM must be built from scratch, and leading to resources

available in the queue that are not utilized.

• In both approaches, the composition of virtual images occurs at design time and at the

administrator side, before the system copies and deploys them into cloud nodes. This

makes it difficult to synchronize the maintenance and modification of the running images

as needed when the amount of running cloud nodes is large. For example, upgrading the

software version, or installing a new software package on the running virtual machines is

going to be extremely costly.

2.5. The Deployment Process of VMIs 33

2.5 The Deployment Process of VMIs

For the deployment process of virtual images in cloud computing environment, Konstantinou et

al. [29] describe a model-driven engineering approach for virtual image deployment in virtual-

ized environments. They focus on reusable virtual images and their composition. The authors

introduce the concept of virtual solution models. This concept defines the solution as a com-

position of multiple configurable virtual images. The virtual solution model is an abstract

deployment plan and it is platform-independent. According to the specific cloud platform, the

model can be transformed into an executable deployment plan [23]. Chieu et al. [15, 16] and

Arnold et al. [8] propose the use of virtual image templates. Their approaches describe a provi-

sioning system that provide pre-installed virtual images according to the deployment scenario.

M. Sethi et al. [43] present an approach for automated modification of dependency configu-

ration in SOA deployment. In their work, the software stacks are installed and configured at

deployment time, transferring smaller VMIs through the cloud network. Sun Microsystems [3]

proposes an approach to deploy applications in cloud computing environment. Similarly to our

approach, their approach uses shell-script files to execute on running cloud nodes at runtime.

However, both approaches need experts on virtual image provisioning, who have knowledge

about systems and software packages used to compose virtual machine images. While, by using

feature models to represent the configuration options, our approach can support both experts

and non-experts, who lack knowledge about virtual image provisioning and underlying software

systems and dependencies. It can reduce errors and improve the consistency of configurations

during the composing of VMIs.

2.6 State of The Art Summary

In this chapter, we have presented background concepts in the domain of cloud computing and

how a cloud service is requested or provisioned in the context of providing a virtual machine

image as a service.

Then we introduced the fundamental concepts of model-driven engineering that are used through-

out the thesis, such as model, modeling, model-transformation, and some relevant tools.

We have presented a background of software product lines, feature modeling, which are methods

that are starting to be used to manage the configuration of VMI in cloud computing; and then

we described the state of the art of VMIs configuration management and VMIs deployment

process. Finally, we summarized the related work in Table 2.2.

In summary, the related approaches demonstrate advantages in some cases. However, in the

context of VMI provisioning in cloud computing, they still have certain drawbacks:

• Most of the approaches in VMIs configuration management create the appropriate config-

urations for VMIs and compose the expected VMIs at design time and at the administrator

side, before copying and deploying into cloud nodes. It makes it difficult to synchronize

the maintenance and modification of the running images as needed when the amount of

running cloud nodes is large. In addition, the process of finding the optimal configurations

still limited when the user’s requirements are diverse and nonspecific.

• Some of the approaches relate to VMIs deployment process support for creating and

modifying VMIs at runtime. However, all approaches need experts on virtual image

34 Chapter 2. State of The Art

Image

Specification

Image

Deployment

Update and

Re-

configuration

at Runtime

Support

Optimization

Dougherty et al. [20] Yes1 Create idle VMIs in

auto-scaling queue

No Yes4

T. Zhang et al. [48] No Create typical virtual

appliances

No Yes5

Konstantinou et al. [29] Yes2 Model-driven ap-

proach, abstract

deployment plan to

defines a composition

of configurable VMIs

No No

Chieu et al. [15, 16];

Arnold et al. [8]

Yes3 Pre-installed VMIs ac-

cording to the deploy-

ment scenarios

No No

Sethi et al. [43] No using shell scripts to

install, configure soft-

ware into VMIs at de-

ployment time

Yes6 No

Sun Microsystem et

al. [3]

Yes7 using minimum pre-

packaged VMIs called

"Gold Images"

Yes8 No

1 using feature models
2 virtual images templates
3 virtual image templates
4 using CSPs for energy consumption
5 by analyzing the probabilistic of virtual appliances frequently used
6 support a partial update by using shell scripts
7 using shell scripts
8 using shell scripts

Table 2.2: Summary of the related approaches in the state of the art

provisioning, who have knowledge about systems and software packages used to compose

virtual machine images. Also, the use of static shell-scripts for creating and editing

configuration VMIs makes it difficult to re-configure at runtime when the deployment

topology of the VMI is complex instead of individual VMI. For example: the deployment

topology of VMIs for 3-tiers web applications with VMI is separated for different tiers.

In this thesis, we propose a mechanism for managing VMI configuration in Cloud Computing

environments, providing a way to adapt to the needs of auto-scaling and self-configuring virtual

machine images, called Model-Driven approach. We use Model-Driven Engineering (MDE)

approach for managing VMI configurations and the automated deployment process of VMIs

in cloud environment. Following Dougherty et al. [20], we consider VMIs as a product line

2.6. State of The Art Summary 35

and use feature models to represent VMI configurations and model-based techniques to handle

automatic VMI deployment and reconfiguration. We extend the feature model reasoning engine

- SPLAR to handle features with attributes (e.g., installation time, size of software, etc.) and

enhance the reasoning process for finding the optimal configurations of VMI according to the

user ’s selections (both of specific or non-specific selections) from the feature models. Moreover,

we will show that applying the model-driven approach helps to reduce the power consumption

and adapt to the needs of auto-scaling and self-configuring virtual machine images.

Part II

Contributions

Chapter 3

Feature Modeling for Virtual

Machine Image Configuration

Management

Contents

3.1 Chapter Overview . 39

3.2 Feature Modeling for VMI Configuration Management 40

3.2.1 An overall architecture of feature modeling 40

3.2.2 The VMI Feature Model . 40

3.2.3 VMI Product Derivation Process . 42

3.2.4 VMI Resolved Model . 43

3.3 Feature Model Reasoning Engine . 43

3.3.1 Overview of SPLAR . 43

3.3.2 Meta-model for VMI feature model . 45

3.3.3 Optimization in the VMI Product Derivation Process 46

3.4 Chapter summary . 52

3.1 Chapter Overview

This chapter introduces our feature modeling approach for managing the configuration of virtual

machine images (VMIs). This approach supports the creation of specific VMI configurations

according to the user requirements. As discussed in Chapter 1, one of three key issues for the

development of VMI provisioning process in cloud computing is defining "an abstraction level

for virtual image configuration management" . This abstraction should help IT experts of cloud

providers to analyse and model the commonalities and the variabilities of VMIs, to specify the

product families of VMIs, as well as to create the valid and consistent VMI configurations.

Most of the feature model reasoning engines are built to support the reasoning process on the

standard feature model. They have the ability to handle the interdependencies and to represent

the variability of features. However, in the context of managing the VMI configuration, the

features in the feature tree not only contain the id and name attributes, but also contain

additional information, such as: installation time, size of the package, etc. Therefore, the

existing reasoning engines have not been able to solve the problem that the cloud users require to

generate the VMI with optimal configuration according to feature ’s attributes (e.g. installation

40
Chapter 3. Feature Modeling for Virtual Machine Image Configuration

Management

time, or size of the package, etc.).

This chapter gives the solution for improving the existing feature reasoning engine for searching

the optimal VMI configuration with respect to the attributes, for example installation time or

size of software, and then explains why the feature modeling approach is suitable for managing

the configuration of VMIs in the provisioning process.

Section 3.2 presents an overview of the virtual machine image configuration with software

component install, and the presentation of the VMI configurations as product lines. Section 3.3

describes the feature model reasoning engine that we use for managing VMI configurations.

In this section, we give a brief overview of the SPLAR (Software Product Line Automated

Reasoning) engine with its limitations (Section 3.3.1) and our improvement SPLAR for the

creating the optimal VMI configurations (Section 3.3.3). Finally, Section 3.4 summarizes and

discusses the approach.

3.2 Feature Modeling for VMI Configuration Management

3.2.1 An overall architecture of feature modeling

In our approach, VMI configuration product lines are described using feature models. In terms

of VMI configuration derivation, a feature model describes:

• The software packages that are needed to compose a Virtual Machine Image, represented

as configuration options.

• The rules dictating the requirements, such as dependent packages and the libraries re-

quired by each software component.

• The constraining rules, which specify how the choice of a given component restricts the

choice of other components, in the same Virtual Machine Image.

The feature modeling approach deals with two models: The VMI feature model, The VMI

resolved model; and a Product derivation process.

• The VMI feature model: represents the whole product line with all its features as con-

figuration options, their relationships, and constraints which would be used for composing

a VMI.

• The VMI resolved model: is derived from product derivation process based on user ’s

selections on the VMI feature model. It includes the selected features and their depen-

dencies.

• The product derivation process: generates the VMI configurations from the combi-

nation of the VMI feature model and the user ’s selections.

3.2.2 The VMI Feature Model

A VMI feature model represents configurations that can be used for composing a VMI. The

elements of the VMI feature model are configuration options of a VMI (as features of a feature

model), they represent software packages and their dependencies. These elements become

3.2. Feature Modeling for VMI Configuration Management 41

A"set"of"user’s"choices"

on"available"op4ons"

in"VMI"Feature"Model"

VMI$Feature$Model$

User’s$choices$

Product$Deriva7on$

VMI$Resolved$Model$

A"set"of"selected"features"

and"dependencies"

correspond"to"a"specific"

VMI"

The"whole"VMI"product"

line"with"features"and"

their"rela4onships"&"

constraints"

Figure 3.1: An overall architecture of the feature modeling approach

elements of the VMI resolved models, according to the resolutions of the corresponding selection

models. The VMI feature model includes the feature tree and the extra constraints. The feature

tree represents hierarchical arrangement of configuration options, and the extra constraints are

the conjunction arbitrary Boolean formulas for describing the relationship between the feature

tree ’s elements. The validity of the combination of the extra constraints with the feature tree

must be satisfiable. It is validated by a feature model reasoning engine - SPLAR. The detail

how we extended the SPLAR engine is explained in later sections.

Figure 3.2 is an example of a VMI feature model. In this model, features and their rela-

tionships represent software packages and dependencies. For instance:

• Operating System is a mandatory child feature of Virtual Machine Image, which must be

selected when Virtual Machine Image is selected.

• Operating System includes two alternative child features: Windows and Linux.

• When the Operating System feature is selected, then either Windows 7 or Ubuntu 12.04

LTS must be selected.

• If the feature Ubuntu 12.04 LTS is selected, then features that require Windows 7 cannot

be selected, for instance: VisualStudio2010, JRE 1.6 Windows, etc.

We can classify the features in a VMI feature model into two types: category feature and package

feature. A category feature classifies features, similarly to a folder in file systems. A package

feature corresponds to a software package which is used for installation, similarly to a file in

file systems. It keeps detailed information of a software package, such as: installation time,

size of packages, etc. For example in Figure 3.2, Operating System, IDE, Database are category

features, while Eclipse 3.7 Linux, VisualStudio2010, JRE 1.6 Win are package features.

VMI feature models are built by IT experts of cloud providers, who have knowledge about

42
Chapter 3. Feature Modeling for Virtual Machine Image Configuration

Management

Figure 3.2: A feature diagram representing a VMI feature model of the configuration options

systems and software packages used to compose Virtual Machine Images. The correctness of the

VMI feature models relies on the correctness of the feature model that represents them. Many

approaches and tools were proposed to automate the analysis of feature models [45, 10, 36].

They offer to validate, check satisfiability, detect "dead" features and analyze feature models.

In our implementation, we use the SPLAR engine to validate and to analyse the correctness of

the feature model, and to check that the configurations that are derived from a valid feature

model are always satisfiable. Details of the mechanism for checking the satisfiability of the

feature model are described in Mendonça ’s PhD thesis [33].

3.2.3 VMI Product Derivation Process

Product Derivation is the process that is responsible for the creation of the final configuration.

It supports the derivation of VMI configurations from the VMI feature model. Figure 3.3

illustrates an interactive scenario of deriving the VMI configuration. In this scenario, cloud

customers provide the requirements to the cloud provider, who in turn transforms them into

configuration selections. A VMI feature model is provided as input to the derivation process

and the VMI resolved model is a result as a complete and valid product specification of a VMI.

An automated reasoning process is designed to assist the cloud provider with the reasoning on

his selections, and with the propagation of the feature selections throughout the VMI feature

model. The selection of each feature is checked and validated by the product derivation process.

In each feature selection step, the features connected to the selected feature by a mutually

exclusive relationship become unavailable on the VMI feature model for next selections. All of

the features that are required by the selected feature are also selected automatically.

Sometimes, a cloud user does not have any specific requirement with respect to a given feature.

In these cases, the product derivation process needs a mechanism to generate an optimal solution

according to some criteria, such as VMI size, installation time, etc. Generally, the product

3.3. Feature Model Reasoning Engine 43

Customers) Cloud)Provider)

VMI)Base)Model)

(Feature(model)(

VMI)Product)Deriva6on)

(Product(Configura4on)(

VMI)Resolved)Model))

(Product(specifica4on)(

Requirements)

(1))Check)the)validity)of)feature)selec6on)

(2))Assign)value)to)the)feature’s)status)

(selected/deselected))

(3))Propagate)the)feature)selec6on)to)its)

dependencies)

Configura4on(selec4ons(

Figure 3.3: VMI Product Derivation Scenario

derivation process is executed in three major steps: (1) Check the validity of the feature selection

to ensure that there is no conflict with any previous selections; (2) Assign value to the feature ’s

value; and (3) Automatically propagate the feature selection throughout the VMI feature model.

3.2.4 VMI Resolved Model

A VMI resolved model stores user’s feature choices of the VMI feature model and their de-

pendencies. It is derived from the product derivation process based on user ’s selection on the

VMI feature model. The product derivation process is responsible to validate user selections

and auto-select dependencies based on the feature representation in the VMI feature model. A

VMI resolved model corresponds to a specific configuration of a Virtual Machine Image.

Figure 3.4 presents an example of a VMI resolved model that is derived from the VMI feature

model. It represents the user ’s selections: operating system is Ubuntu 12.04 LTS, integrated

development environment is Eclipse 3.7, and Apache Tomcat 5.5 for application server. Accord-

ing to the VMI feature model, the dependent features of the user ’s selections are also selected

by the product derivation process (e.g. JRE 1.6 Linux, IDE, Monitoring, etc.)

3.3 Feature Model Reasoning Engine

3.3.1 Overview of SPLAR

The SPLAR (Software Product Line Automated Reasoning) engine is an open-source library

for automated reasoning on feature models. It was developed by Marcilio Mendoca in his PhD

work. This library offers SAT and BDD-based components to reason on and to configure feature

44
Chapter 3. Feature Modeling for Virtual Machine Image Configuration

Management

Automated
selection

User’s selection

Figure 3.4: A VMI Resolved Model with the User ’s Selections and the Automated selections

by made the Product Derivation Process

models [37, 34]. It provides a support to validate feature selections, and to generate the valid

configurations from selected features and dependencies.

The SPLAR engine proposes a domain-specific constraint solver called feature tree con-

straint system that tailors reasoning algorithms for feature trees [35, 33].

The operations implemented by the feature tree constraint system can be summarized

as follows:

• Assigning and resetting the feature values: These operations help a user to perform

the configuration actions on a feature tree such as selecting, deselecting or reseting the

status of a feature to available (or uninstantiated).

• Saving and recovering system states of a feature tree: These operations are used to

save and restore the state of the feature tree. For each instantiated feature in the feature

tree, its name and value are saved and linked with a unique identifier. The identifier can

be used to restore the feature to a particular saved sate.

• Propagating the feature value assignment: This is an important operation to rec-

ognize and assign values to the features related to the feature assigned.

• Checking satisfiability: This operation checks the satisfiability of a feature tree.

In summary, the SPLAR engine only provide support for reasoning on feature trees; with

features containing two basic attributes: id and name. However, in our approach, a feature on

the feature tree represents a configuration option (a software package). It contains information

used for optimizing the configuration of a virtual machine image, such as: installation time,

un-installation time, package size, cost, etc. Therefore, to use SPLAR as a reasoning engine for

the VMI feature models, we extend the original meta-model of feature models supported by the

SPLAR engine for representing VMI feature models. The extended meta-model is described in

Figure 3.5, Section 3.3.2. Furthermore, we improve SPLAR to allow searching for the optimal

configuration of a VMI based upon additional information on the features.

3.3. Feature Model Reasoning Engine 45

3.3.2 Meta-model for VMI feature model

Figure 3.5: An extended meta-model for the VMI feature model

Figure 3.5 shows the extended meta-model for feature models from the original one which

is supported by the SPLAR enginer. The red rectangles are extended parts with respect to

the original meta-model. In the extended meta-model, the FeatureModel element shows that a

feature model has a single feature tree (FeatureTree) and it may have an extra constraint (Con-

straint). The extra constraint contains one or more Boolean formulas (PropositionalFormulas).

The FeatureTree element represents a feature tree with a single feature root node (RootFeature),

the root node is a special type of a feature node (FeatureTreeNode). It is a parent node of other

node, and it does not have a parent. The FeatureTreeNode element shows that every node of a

feature tree are identified by an id and a name. It is extended to represent extra attributes (Ex-

traAttribute) of features of the feature tree, and support to users can add any kind of attribute

to features, for example: time, cost or energy consumptions, etc. The SolitaireFeature indi-

cates the type of a feature is mandatory or optional. The inclusive-or and exclusive-or groups

are presented by the GroupedFeature element; and the FeatureGroup element with attributes

min and max refer to the minimum and maximum cardinality of the group, respectively. The

relation between GroupedFeature and FeatureGroup, parent means only feature groups can be

parent nodes of grouped features. The relation between ParentNode and ChildNode elements

indicate that the root feature as well as grouped features, mandatory or optional features,

and all descendants of ParentNode, can be parent nodes of ChildNode elements (e.g. feature

groups, mandatory or optional features). We also added an operation named ToSXFM() to the

FeatureModel for exporting the VMI feature model to SXFM1 format and a XML file that is

storing the extra attributes of features. SXFM (Simple XML Feature Model) format is used

by SPLAR to store the feature model. The advantage of this format is that users can create

1http://gdansk.uwaterloo.ca:8088/SPLOT/sxfm.html

46
Chapter 3. Feature Modeling for Virtual Machine Image Configuration

Management

Extra&informa,on&

of&features&

(inXMLformat)$

Feature&Model&

(in$SXFM$format)$

Extended&SPLAR&

Engine&

Extended&&

meta:model&

conformTo$

VMI&Feature&Model&

Figure 3.6: SPLART engine woks with VMI feature model

feature model easily and quickly by using a simple text editor.

3.3.3 Optimization in the VMI Product Derivation Process

3.3.3.1 Feature Selection Problem

When cloud users request new VMIs, sometime users do not care much about the details of fea-

ture selection. They request VMIs with some generic requirements. For example "- I use Linux

Ubuntu, Java programming language, and I need a database" instead of "- I select Linux Ubuntu

9.10, Java JRE 1.6, and I want to use MySQL database", etc. Therefore, cloud providers must

have a flexible mechanism in the product derivation process to find an optimal configuration

of VMIs that fulfills the user ’s requirements and maximizes the benefits. Figure 3.7 presents

MySQL& PostgreSQL+

Database+

selected&feature&

(a) A feature selection with a specific require-

ment

MySQL& PostgreSQL&

Database+

Installa8on&8me:&

100.562&seconds&

&&

Installa8on&Time:&

48.135&seconds&

&&

selected&feature&

(b) A feature selection with a specific re-

quirement

Figure 3.7: An example feature selection according to the user ’s requirement

two examples of feature selection of the feature tree. Consider a cloud user needing a database

3.3. Feature Model Reasoning Engine 47

server in the VMI. In Figure 3.7a, the user requests exactly PostgreSQL database server, so it

is easy for the feature selection. However, in Figure 3.7b, the user does not have any specific

requirement of which type of database he wants to use. He just requires a database server while

the cloud provider has more than one option for a database server (MySQL, and PostgreSQL),

so which one is the best selection for fastest response time? Considering the installation time

of these two databases, we can see that the option PostgreSQL should be selected because it

takes less time for installation than the option MySQL.

In another case, suppose that the feature PostgreSQL requires another features (e.g. the instal-

lation of PostgreSQL needs add-on libraries), so the selection of feature PostgreSQL leads to the

selection of other libraries. It means the total time for installation of these software would prob-

ably be much longer than MySQL ’s installation time, and the selection of feature PostgreSQL

would then not be optimal. Therefore, the product derivation process of feature reasoning

engine needs a mechanism to make the optimal selection in any non-specific requirement like

in the above example.

3.3.3.2 Proposed Solution

For improving the optimization of the product derivation process, we proposed algorithms sup-

port the automatic complete the feature selection on the feature tree. Especially, when the user

does not have the specific requirement that is described in the above example in Figure 3.7.

The process to auto-complete the feature selection consist in two steps: determine the incom-

plete features in the feature tree and apply the auto-complete process to each of the incomplete

selected feature.

? Checking the incomplete features

Algorithm 1: An algorithm for checking a feature is incompleted or not

Input: f : is a feature

Output: true if f is an incomplete feature

1 Function isInCompleted(f :feature):boolean

2 foreach childFeature is child of f do

3 if childFeature is selected then

4 return false

5 end

6 end

7 return true

8 end

An incomplete feature is a feature in the feature tree which is selected by the user or the

propagated actions, with at least one-child feature, but none of the children feature is selected.

For example, the feature Database in Figure 3.7b is an incomplete feature, and in Figure 3.7a,

Database is a complete feature. Algorithm 1 describes how to check whether a feature is an

incomplete feature or not. The lines 2 to 5 describe that if the feature f has any child feature,

which is selected, then it is not an incomplete selected feature, otherwise it is an incomplete

selected feature.

? Completing the VMI configuration selections

48
Chapter 3. Feature Modeling for Virtual Machine Image Configuration

Management

Algorithm 2: An algorithm for completing the selection of VMI configuration

Input: inFeatureSet : is a set of incomplete features

Input: conf : is a set of selected features (a current configuration)

Output: A set of selected features (a complete configuration)

1 Function completeConf(inFeatureSet:feature{};conf :feature{}) :feature{}

2 foreach inFeature in inFeatureSet do

3 fillUnCompleteFeature(inFeature, conf)

4 end

5 return conf

6 end

7

Basing on the user ’s choices, the Product Derivation engine detects incomplete features and

applies the automatic complete selection process to each of them. The procedure described in

Algorithm 2 shows that the VMI configuration is filled by applying the automatic complete

selection process for every incomplete feature in inFeatureSet, and returning the result is a set

of selected features for a VMI configuration - conf . Detail of how to automatic select a child

of the incomplete feature is described in the Algorithm 3.

? Updating the incomplete feature

Algorithm 3: An algorithm for updating the incomplete feature

Input: inFeature : is an incomplete feature

Output: new selected features, includes a child of f and its requires features

1 Procedure fillInCompleteFeature(inFeature:features;conf :feature{})
2 selectedFeature 1st child of inFeature

3 foreach childFeature is a child of inFeature do

4 if estimateMinCost(childFeature)<estimateMinCost(selectedFeture) then

5 selectedFeature childFeature

6 end

7 end

8 Add selectedFeature to conf

9 Set the status of selectedFeature into selected

10 Add the "selected" propagated features from the selection of selectedFeature to conf

11 if isInCompleted(selectedFeature) then

12 fillInCompleteFeature(selectedFeature, conf)

13 end

14 foreach rf is a feature required by selectedFeature do

15 if isInCompleted(rf) then

16 fillInCompleteFeature(rf , conf)

17 end

18 end

19 end

Algorithm 3 implements the process of automatic completion of the selection of incomplete

features in the feature tree. Because the incomplete feature could be a parent feature of another

incomplete feature, we use a recursive method for the automatic completion of feature selection

for incomplete features. The algorithm is stopped when the input feature is a package feature

3.3. Feature Model Reasoning Engine 49

(or a leaf of the feature tree). The parameters inFeature and conf are passed as input data

of the algorithm. Variable inFeature is an incomplete feature which needs to be considered,

and conf is a set of the selected features (by the user ’s choices or propagation actions) at

the current step. The variable selectedFeature represents a child of the feature inFeature

which should be selected. Firstly, selectedFeature is assigned by the first child of inFeature

(line 2). Secondly, we consider all child features of inFeature, if a feature is found, which

is satisfies the optimization constraint, then it is assigned to the selectedFeature (lines 3-5).

The optimization constraint of the estimation of minimum costs is used to guarantee that the

selectedFeature is the best choice at the moment. The detail of the estimation of minimum

cost (estimateMinCost) is described in the Algorithm 4. When the feature selectedFeature is

determined, it is selected and added to the current configuration - conf . The features that are

required by the selection of selectionFeature also added to conf (lines 8-10). The recursive

calls are made to examine each of the new selected features (selectedFeature, and its required

features) if they are incomplete features(lines 11-18).

? Estimating the minimum cost of a feature

Algorithm 4: An algorithm for estimating the minimum cost if a feature f is selected

Input: f : is feature which is need to estimate the minimum cost

Input: conf : a set of selected features (a current configuration)

Output: the minimum cost if the feature f is selected

1 Function estimateMinCost(f :feature, conf :feature{}):double
2 cost f .cost

3 foreach r is a required feature by f do

4 if r is not in conf then /* selected by user or a propagated action */

5 cost cost + estimateMinCost(r)

6 end

7 end

8 if f has child features then

9 if f has mandatory child features then

10 foreach childFeature is a mandatory child feature of f do

11 cost cost + estimateMinCost(childFeature)

12 end

13 else

14 minFeature 1st child of f

15 foreach childFeature is a child feature of f do

16 if estimateMinCost(childFeature) < estimateMinCost(minFeature)

then

17 minFeature childFeature

18 end

19 end

20 cost cost + estimateMinCost(minFeature)

21 end

22 end

23 return cost

24 end

50
Chapter 3. Feature Modeling for Virtual Machine Image Configuration

Management

Estimating the installation time, package size or operational cost of each feature selection

is very important to create an optimal VMI configuration. It helps to select a child of an

incomplete feature which has the minimum time, size or operational cost. We provide a recursive

algorithm (see Algorithm 4) named estimateMinCost for estimating the minimum cost of a

feature if it is selected. Depending on the optimization requirements of a VMI configuration,

the cost could be the installation time, package size or operational cost. For example, if the

cloud provider wants to focus on the response time, then the Product Derivation process has

to find the best solution based on the installation time of software packages. Therefore, the

optimal function estimateMinCost works with the installation time attribute of the feature.

Line 2 of the Algorithm 4 can be re-written as: cost f .installT ime.

The Algorithm 4 helps the Product Derivation process to automatic select the best solution in

terms of minimum cost. It examines the total cost of the candidate feature and its dependencies

(lines 3-7). In addition, if the feature has more than one child features, which are the candidates

for the selection, then the algorithm is called recursively to examine the child feature that has a

minimum cost in two cases. Firstly, if the feature f has any mandatory child features, then they

are automatically selected, and the total estimation minimum cost of f - cost will be added the

estimation minimum cost of its mandatory child features (lines 9-12). Secondly, all child features

of f are examined to find a feature with the smallest cost. The local variable minFeature is

temporary assigned by the first child feature of f (line 14). The loop through all child features of

f allows to compare each value of estimateMinCost function to the estimateMinCost value of

minFeature. If there is any feature with the value of estimateMinCost function that is smaller

than the minFeature ’s estimateMinCost then that feature is assigned to the minFeature.

Thus, the feature minFeature which is obtained at the end of the loop is the best choice (lines

15-19), and the estimation minimum cost of f - cost accumulates the estimation minimum cost

of minFeature (line 20). At the end of algorithm, the value of cost is returned as the value of

estimateMinCost of the feature f . This is an estimation minimum cost of the feature f if it

is selected.

? The correctness of the algorithms

Algorithms 3 and 4 are recursive procedures. They are implemented on the feature tree with

a finite number of feature nodes. To verify the correctness of the algorithms, we need to prove

that with any given feature in the valid feature tree, the algorithms will be terminated after a

finite number of recursive calls. This proof will use a common technique for proofs in recursive

programs called an inductive proof. Because the Algorithm 4 is called in the Algorithm 3,

therefore, for easy tracking, we present the proofs of the correctness of the algorithms in order

Algorithm 4 and then Algorithm 3.

Proof 1:Verifying that for any given feature in a feature, and corresponding current config-

uration, the Algorithm 4 will terminate and return a minimum estimation cost.

◦ Assumptions

In the proofs, we refer to the four recursion points of the program as R1 (line 5), R2 (line

11), R3 (line 16), and R4 (line 20) respectively. The program will carry the implicit

assumption that the feature tree is valid and with a finite number of features. It does

not contain any inclusive cycle relationship (e.g. A require B, C; C requires D, and D

requires A) and conflict inclusive or exclusive relationship (e.g. A requires B; B requires

C, and C excludes A) between the features.

3.3. Feature Model Reasoning Engine 51

◦ Base case proof

The algorithm is terminated when f is a leaf and an independent feature. The estimation

of minimum cost is the cost of feature f (estimateMinCost = f.cost)

◦ Inductive step proof

– Each iteration of the program, the recursive is called by either R1, R2, R3, or R4.

– R1 will only occur when the feature f has some require features. The number of

features that are required by f is finite, and the valid feature tree does not contain

any inclusive cycle relationship between the features(e.g A require B, C; C requires

D, and D requires A). Thus, the number of the iteration calls R1 is finite, and the

cost increments by the sum of estimate cost of the require features of f.

– R2 or R3 will only occur when the feature f has children. R2 occurs when f has

mandatory features, and the number of mandatory feature is finite. In this case, the

recursive called for these mandatory features, and the estimate cost of f increments

by the sum of estimate cost of the mandatory child features of f . Otherwise; R3 will

occur when f has children, and the number of child feature is finite, and it is not too

big, but no one of them is a mandatory feature. The first child of f is considered as

a pivot-feature, the loop makes the comparisons between the estimate cost of this

pivot-feature to other child features of f . Therefore, the pivot-feature at the and of

the loop is a child feature of f that is led to the minimum cost if it is selected (R4).

Because of hierarchy structure of the tree then the recursive calls will reach to the

termination when the input feature is a leaf feature.

We have now proven that with the given assumptions, the Algorithm 4 will terminate and

return the estimation of minimum cost of a feature if it is selected.

Proof 2:Verifying that for any given incomplete feature in a feature tree, the Algorithm 3

will terminate.

◦ Assumptions

We refer to the two recursion points of the program as R1 (line 12) and R2 (line 16)

respectively. Like the assumption of the Proof 1, the program will carry the implicit

assumption that the feature tree is valid with a finite number of features. It does not

contain any inclusive cycle relationship (e.g. A require B, C; C requires D, and D requires

A) and conflict inclusive or exclusive relationship (e.g. A requires B; B requires C, and

C excludes A) between the features.

◦ Base case proof

The algorithm is terminated when the selected child feature (selectedFeature) of inFeature

is a leaf and an independent feature, and the new selected features are added to conf .

◦ Inductive step proof

– Each iteration of the program, the recursive is called by either R1 or R2.

– R1 will only occur when the selected child feature of inFeature (selectedFeature)

is an incomplete feature. Because the number of features of the feature tree is finite,

then the length of the path from the current feature (inFeature) to the leaf feature

is finite. Therefore, the number of the iteration calls R1 is finite.

52
Chapter 3. Feature Modeling for Virtual Machine Image Configuration

Management

– R2 will only occur when the selected child feature of inFeature (selectedFeature)

has required features. In this case, the recursive called for these required fea-

tures of selectedFeature. Because the number of features that are required by

selectedFeature is finite, and the valid feature tree does not contain any inclusive

cycle relationship between the features(e.g A require B, C; C requires D, and D

requires A). Thus, the number of the iteration calls R2 is finite.

From the above explanation, we have now proven that with the given assumptions, the Algo-

rithm 3 will terminate with any incomplete feature. Figure 3.8 is an example of the Product

VMI$

OS$

Ubuntu$

12.04$$LTS$
Windows7

IDE$

Eclipse3.7

Win$

Eclipse$

Visual$

Studio2010

Database$

MySQL$ PostgreSQL$

RunHme$

Framework$

.Net$

Framework$

Java$

RunHme$

JRE1.6

Linux$

JRE1.6

Win$

Eclipse3.7

Linux$

MySQL$

5.5Win

MySQL5.5

Linux$

PostgreSQL$

5.5Win

PostgreSQL$

5.5$Linux$

Legend&

Selected&feature&

User’s&choice&

De6selected&feature&

Requires&

Excludes&

Mandatory&feature&

Op?onal&feature&

Installa?on&?me:&

100.562&seconds&

&&

Installa?on&Time:&

48.135&seconds&

&&

XOR&group& OR&group&

Figure 3.8: An example of the VMI feature model with the selected features

Derivation process applied for finding the optimal VMI configuration according to the installa-

tion time of software packages. In this example, user selects three features Ubuntu 12.04 LTS,

Eclipse, and Database. According to the selection rules of the feature model, the features Ubuntu

12.04 LTS and Windows 7 are mutually exclusive, so that when the feature Ubuntu 12.04 LTS

is selected then Windows 7 and its dependent features (e.g. .Net Framework, Eclipse 3.7 Win,

etc.) are de-selected. The development environment Eclipse needs Java’s runtime framework,

so when the feature Eclipse is selected then Java Runtime is also selected. Because the features

Java Runtim, Eclipse, and Database are incomplete features, then the Algorithm 3 is applied

for these features. Especially, in the case of Database feature, it has two child features MySQL

and PostgreSQL. However, by applying the Algorithm 4, the feature PostgreSQL is selected

because its estimating minimum cost is smaller than MySQL ’s estimating the minimum costs.

3.4 Chapter summary

In this chapter, we have presented our approach of using feature modeling for managing the

VMI configurations. By using feature modeling methodology, the VMI configurations are con-

3.4. Chapter summary 53

sidered as the VMI Product Lines. It helps cloud providers in analyzing, and modeling the

commonalities and variabilities of VMIs. The feature modeling methodology also supports the

construction of an abstraction level for virtual machine image configuration management.

We have also introduced the use of a feature reasoning engine - SPLAR and its limitations in

the derivation of VMI product. Hence, we have presented the way that we extended SPLAR

engine to adapt to the requirements of the product derivation process in terms of the VMI

configuration management. We have described the extension of the feature tree ’s metamodel

to handle the VMI Feature Model, and adding the algorithms for finding the optional configu-

ration of a virtual image. In summary, this chapter details the use of feature modeling in the

VMI configuration management and give solutions for solving the challenges which were listed

in Chapter 1:

◦ Handling the interdependencies of software packages

◦ Modeling the commonalities and variabilities of VMI ’s configuration options

◦ Finding the optimal configuration of a VMI and guaranteeing the validity and consistency

of the derived VMI configurations

Chapter 4

Model-driven engineering for VMIs

deployment and reconfiguration at

runtime

Contents

4.1 Overview of chapter . 55

4.2 The model-driven VMIs provisioning process 56

4.3 The VMIs deployment . 58

4.3.1 VMIs deployment metamodels . 58

4.3.2 VMI deployment models . 69

4.3.3 Model execution . 74

4.4 The VMIs reconfiguration at runtime process 75

4.4.1 The model@runtime approach for VMIs reconfiguration at runtime 75

4.4.2 The reconfiguration steps . 76

4.5 Chapter summary . 78

4.1 Overview of chapter

In this chapter, we present the approach of using model-driven engineering for the VMIs de-

ployment in the provisioning process and the reconfiguration of the images at the runtime.

The approach focuses on the process of creating the images and installing the needed software

package from an initial template image rather than copying a virtual disk image as does the

traditional approach. It uses models to encapsulate the series of procedural operations of the

deployment and reconfiguration of VMIs provisioning process.

The chapter is organized as follows. Section 4.2 introduces an overview of the model-based

VMIs provisioning process. Section 4.3 presents about the deployment of VMIs. Section 4.4

describes how model@runtime is used for the reconfiguration of VMIs at runtime and addition-

ally, how the feature modeling approach (described in Chapter 3) is used in the reconfiguration

of VMIs. Finally, Section 4.5 gives a discussion and summarizes the chapter.

56
Chapter 4. Model-driven engineering for VMIs deployment and reconfiguration

at runtime

4.2 The model-driven VMIs provisioning process

Moded-driven approach is a software technique that focuses on creating and using domain

models rather than on the computing concepts. A domain model provides an abstraction rep-

resentation of the knowledge and activities that manage a particular application domain. In the

context of VMIs provisioning process in cloud computing, the model-driven approach provides

a systematic use of models as primary artifacts throughout the deployment, installation and

reconfiguration of images and software packages.

Start

RequirementsDesign the VMI

deployment

model

VMI

deployment

metamodel

Requirements
Requirements

VMI

deployment

model

Deploy the model

Running

system

Stop

Manual process

Automatic process

Legend

1

2

Figure 4.1: A model-based VMIs deployment process

While the traditional approach binds software components together at the time that the

template image is created, the model-driven approach binds components together at boot time.

Figure 4.1 shows the life-cycle of the model-based VMIs provisioning process. It includes two

processes: (1) Design the VMIs deployment model is a manual process that is handled by the

users and (2) Deploy the VMIs deployment model is an automatic process that is performed by

the pre-define procedural operations.

In the process 1, after analyzing the user ’s requirements, the cloud providers create the appro-

priate configuration of the images and design the deployment model of VMIs with respect to

the VMIs deployment metamodel. The outcome of this process is a VMIs deployment model.

It contains the presentation of the software to be installed in a VMI, and also shows the con-

nections of the software installed in the different VMIs. In the process 2, the created VMIs

4.2. The model-driven VMIs provisioning process 57

deployment model is deployed to create a system with the desired virtual machines. In this

process, the initial template images with the well-suited operating systems (according to the

configurations that were defined in the previous step) are booted to the cloud nodes. When

the booting is complete, the VMIs deployment model is deployed and executed direct on the

running VMIs. The installation and configuration of software components occur inside the

running VMIs.

Start

RequirementsDesign the VMI

deployment

model

VMI

deployment

metamodel

Requirements
Requirements

VMI

deployment

model

Deploy the model

Adaptation

Steps

Modify the model

Compare two VMI

deployment models

New VMI

deployment

model

Update the

running system

Running

system

Stop

RequirementsRequirementsNew

requirements

Change the

requirements

Legends

First time deployment

Re-configuration

Manual process

Automatic process

1

2

3

4

5

6

Figure 4.2: The model-based VMIs deployment and reconfiguration at runtime

At runtime, the modification of these VMIs is implemented by changing the configuration

of VMIs in the VMIs deployment model and re-deploying the new deployment model to the

running VMIs. Figure 4.2 shows the model-based VMIs deployment and reconfiguration at

runtime process. The solid lines represent the process flows of the first time deployment of

the model (equivalent to the representation in Figure 4.1), and the dashed lines represent the

process flows of the reconfiguration of VMIs at runtime. At runtime, the change of user ’s

requirements (process 3) leads to the creation of a new VMIs deployment model (process 4)

the new VMIs deployment model is derived from the existing one according to the change of

requirements and it also conforms to the VMI deployment metamodel. The new VMIs deploy-

ment model is compared to the current model to determine the differences between them and

propose the adaptation steps (process 5). Finally, these adaptation steps are applied to the

running system (process 6) to change it into a new system with the desired virtual machines.

In the model-driven approach, the cloud providers must define and record the steps needed

58
Chapter 4. Model-driven engineering for VMIs deployment and reconfiguration

at runtime

to create the VMI in such a way that they can reuse to perform an unattended install and

configuration of the desired virtual images for every instance that is created in the future, and

we call it the model. Once a model is created, the model itself can be manipulated to create

different types of VMIs. In the context of VMIs provisioning in cloud computing, a model is

a specification of the VMIs deployment. It specifies a VMIs deployment topology, VMIs that

include the software components, and the connections between the software of different VMIs.

It represents the desired VMI configurations and how the VMIs work together at runtime. The

detail of the VMIs deployment and reconfiguration is explained in next sections.

4.3 The VMIs deployment

By using model-driven engineering approach, we aim at the creation of the deployment models

of VMIs in cloud computing as the platform-independent model (PIM) that are independent

of the specific technological of the cloud platform used to implement them. With the use of

a VMIs deployment metamodel, our approach supports to create the flexible and valid VMIs

deployment models that are independent from the cloud platforms. In the later sections, we

present two metamodels for the VMIs deployment in: (i) a single cloud system, and (ii) a

federated cloud system; and the key elements of the metamodels with their abstract definitions

and implementations. For more clarity, we explain the terms of single cloud and a federated

cloud in our approach as following:

• A single cloud: is a cloud system provided by a service provider with a specific tech-

nological platform. It could be a private cloud, a public cloud or a hybrid cloud. Users

can access, interact and monitor the virtual machine in the cloud by using specific APIs

that are provided by the provider. Examples of a single cloud system are: Amazon EC2,

Grid5000, IBM SmartCloud, OpenNebula, etc.

• A federated cloud: is also called multiple clouds system or inter-cloud system. It is

a system that contains various cloud systems with different technological platforms. For

example, a federated cloud system could be the union of the common parts (e.g VMIs

provisoning at IaaS level) of three different cloud platforms: Amazon EC2, OpenNebula,

IBM SmartCloud. In the other words, in our approach, a federated cloud is the deployment

and management of multiple cloud computing services to fit business needs.

4.3.1 VMIs deployment metamodels

4.3.1.1 A metamodel for the VMIs deployment in a single cloud system

Figure 4.3 presents an example of the VMI deployment metamodel for the VMIs deployment

in single cloud systems. This metamodel is a precise definition of the construction and rules for

the creation of semantic models of the VMIs deployment. It is designed with the Eclipse Mod-

eling Framework (EMF)1. The VMIDeployModel entiy is a root element of the metamodel. It is

comprising all the other entities. Each VMIDeployModel instance specifies a VMI deployment

model. A VMIs deployment model contains the number of virtual machines and connections

1http://www.eclipse.org/modeling/

4.3. The VMIs deployment 59

Figure 4.3: The VMIs deployment metamodel for a single cloud system

between their installed software. The VMIDeployModel element shows that a VMI deployment

model contains at least one virtual machine (VMINode) and it may have some connections

(Connection) that define the links between them (through software installed in machines).

The VMINode element is an abstract representation of a concrete virtual machine that runs in

the cloud system. It supports users to define the expected configuration of the virtual machine

(e.g. username, password, imageId, etc.). The VMINode can be encountered in different types

of operating systems, as enumerated in OSType, indicating the VMINode is a cloud of Amazon

EC2, Grid5000 or IBM cloud; and runs a specific operating system (Windows, or Linux Debian

or Linux RedHat). It also provides two operations: startNode for starting the virtual machine,

and stopNode for terminating the virtual machine. The virtual machine (VMINode) can contain

several software packages. A software package is denoted by the SoftwareComponents element.

The SoftwareComponent element contains three operations: start for installing the software

package, updatePort for updating the needed configuration data that it provides to or requires

from the others, and stop for removing the software packages.

The InputPort and OutputPort entities are the abstract representations of the components that

encapsulate the needed configuration information of software. The information is stored by the

InputPort.value or OutputPort.value attribute. A port is a part of a software component model,

and a software component model may have many ports. An input port (InputPort) contains the

information required by its owner (a software package) from another software while an output

port (OutputPort) contains the information that its owner (a software package) provides to the

other software.

The Connection element is the abstract representation of a component that defines the connec-

tion between two software. It associated with two ports (a InputPort port and a OutputPort

port). It assigns the value of its OutputPort port to the corresponding InputPort port. A VMIs

deployment model may have many connections.

60
Chapter 4. Model-driven engineering for VMIs deployment and reconfiguration

at runtime

4.3.1.2 A metamodel for the VMIs deployment in a federated-cloud system

Figure 4.4: The VMIs deployment metamodel for a federated cloud system

The major issue of the VMIs deployment in a federated cloud system is the ability to work

with various cloud systems that have different technological platforms. Therefore, it is needed to

build a provisioning framework at high level abstraction to be able to interact with these various

platforms.

Thanks to the advantage of model-driven engineering, we create a metamodel for the VMIs

deployment in a federated cloud by extending the VMIs deployment metamodel for a single

cloud. Because the abstract representation of the specific technological issues of a cloud is de-

fined by the VMINode element, so that the new metamodel inherits almost all elements from the

metamodel in the case of a single cloud VMIs deployment. We focus on extending the VMINode

element to be able to define the abstract representation of different clouds in the federated cloud

system.

Figure 4.4 shows an example of a metamodel for a federated cloud. In this federated cloud, the

system includes three different cloud platform: Amazon EC2, Grid5000 and IBM SmartCloud.

By extending the VMINode element, we distinguish three different children of it: EC2Node

for Amazon EC2, G5KNode for Grid5000, and IBMNode for IBM cloud. These element are

pre-defined in the protocols for interacting to the corresponding cloud platforms to manage the

virtual machines, such as: lauch the VMIs, access to the VMs or terminated the VMs.

In general, the VMIs deployment in a single cloud can be seen as a specific case of the VMIs

deployment in a federated cloud when there is only one cloud platform or the clouds use the

same technological, APIs for interacting and managing the virtual machines. For more detail, in

the later sections, we presents how the VMIs deployment model, VMI node and software com-

ponent are represented at the abstraction level by the elements: VMIDeployModel, VMINode

and SoftwareComponent.

4.3. The VMIs deployment 61

4.3.1.3 VMIDeployModel

Start

started
start start all

nodes (VMs)

Stop

stopped

stop all nodes (VMs)

stop

update

Figure 4.5: Life cycle of a VMIDeployModel instance

The VMIDeployModel entity of the VMIs deployment metamodel represents an abstraction

level of a VMIs deployment model. It is a pre-definition of the configuration of VMIs and the

deployment topology of these images. The instance of this metamodel is a concrete deployment

model of VMIs in the specific cloud platforms.

Figure 4.5 represents the life-cycle of the VMIs deployment model execution. It models the

behaviour of a VMIs deployment model, specifying the events that a model goes through during

its lifetime. The VMIs deployment model can be in one of two states: started or stopped. It can

respond to the events: "start all nodes", "update" and "stop all nodes". Not all events are valid

in all states; for example, if the model is not started or the model is stopped then we cannot

update until we start it. If the model is in started state, the applying of the "stop all the nodes"

event will transit the state of model into stopped. Notice that the VMIDeployModel instance

is started or stopped successful when all virtual machines are started or stopped successful

accordingly.

Figure 4.6 represents the abstract definition of the VMIDeployModel entity. It defines the

attributes and the behaviors (start and stop operations) of the VMI deployment models at

the abstraction level. The implementation of the VMIDeployModel is represented in List-

ings 4.1, 4.2.

As described above, when the VMIs deployment model is started then all the virtual machines

(represented by VMINode entities) are started. Because the executions of the virtual machines

are independent together, they can be done simultaneously. We use multiple thread technique

in Java to perform these executions. Listing 4.1 is the sample Java code to create a thread

to handle the start or stop actions of a virtual machine image according to the input action

request. The implementation of the start and stop events are defined by the startModel and

stopModel procedures in the Listings 4.2. In these procedures, we look for all VMINode in-

stances in the model and call their start or stop events and wait until the execution of all these

instances are finished.

62
Chapter 4. Model-driven engineering for VMIs deployment and reconfiguration

at runtime

Figure 4.6: The abstract definition of the VMI deployment model

Listing 4.1: Executing multiple VMINode in parallel

1 public static class MyRunnable implements Runnable {

2 private final VMINode node;

3 private final String action;

4 MyRunnable(VMINode node, String action) {

5 this.node = node;

6 this.action = action;

7 }

8 @Override

9 public void run() {

10

11 try {

12 if (action.equals("start")){

13 System.out.println("\nStart node: "+node.getName());

14 node.startNode();

15 }else

16 if (action.equals("stop")){

17 System.out.println("\nStop node: "+node.getName());

18 node.stopNode();

19 }else{

20 System.out.println("\nInvalid action command (start / stop)!");

21 }

22 } catch (Exception e) {

23 }

24 }

25 }

Listing 4.2: The startModel and stopModel procedures of a VMI deployment model

1 @Override

4.3. The VMIs deployment 63

2 public void startModel() {

3 EList <VMINode> vmiNodes = this.getContains();

4 ExecutorService executor = Executors.newFixedThreadPool(vmiNodes.size());

5 for (int i =0; i< vmiNodes.size();i++){

6 VMINode node = vmiNodes.get(i);

7 Runnable runner = new MyRunnable(node, "start");

8 executor.execute(runner);

9 }

10 executor.shutdown();

11 while (!executor.isTerminated()) {

12 }

13 }

14 @Override

15 public void stopModel() {

16 EList <VMINode> vmiNodes = this.getContains();

17 ExecutorService executor = Executors.newFixedThreadPool(vmiNodes.size());

18 for (int i =0; i< vmiNodes.size();i++){

19 VMINode node = vmiNodes.get(i);

20 Runnable runner = new MyRunnable(node, "stop");

21 executor.execute(runner);

22 }

23 executor.shutdown();

24 while (!executor.isTerminated()) {

25 }

26 }

4.3.1.4 VMINode

Start

vmi
booted

software
started

ports
updated

start boot

image

start all software

components

update

re-configure

re-update

vmi started

Stop

vmi stopped

terminate image

stop

Figure 4.7: Life cycle of a VMINode instance

The VMINode is an abstract representation of the virtual machines in the cloud system.

64
Chapter 4. Model-driven engineering for VMIs deployment and reconfiguration

at runtime

It carries out the tasks: reserving the resources and booting the images, installing software

packages into the images and terminating images to release the resources. Figure 4.7 shows

the life-cycle of a VMI node (as a VMINode instance). It models the behaviour of a virtual

machine, specifying the sequence of events that a VM goes through its lifetime.

According to the Figure 4.7, a virtual machine can be in one of the following states: "vmi

booted", vmi started, "software started", "ports updated" and "vmi stopped". It can respond to

the events: "boot image", "start all software components", "re-configure", "update ports" and

"terminate image". Not all events are valid in all states, they have to follow the order that

defined in the figure, for example: the events "start all software components", "re-configure" and

"update ports" cannot be applied before the event "boot image" and after the event "terminate

image".

The states and events of the VMINode ’s life-cycle are occurred in two operations: start and

stop.

• start: If the VMINode instance is requested to start then the "boot image" event is

executed. The resources (e.g. memory, storage, processor, etc.) are reserved according

to the input parameters and a selected VMI is booted. When the VMI boot finishes, the

virtual machine state is vmi booted. The execution of the model will continue in one of

two possibilities:

– If there are some SoftwareComponent entities assigned to the VMINode in the VMIs

deployment model then the event "start all software components" is executed and

the execution continues to install the software packages that are represented by Soft-

wareComponent entities. When the installation of the software packages is finished

the state of the VMI node is transited to "software started" and the event "update

ports" is applied automatically, and then the state of the virtual machine moves to

"port updated". Within the execution of the event "update ports", the ports (In-

putPort and OutputPort) of software packages are looked up and processed for the

connections between them. When all these processes are finished, the virtual ma-

chine is successfully started with the state of the VMI node is "vmi started" and the

virtual machine is ready to use.

– If there is no SoftwareComponent entities assigned to the VMINode in the VMIs

deployment model, then the state of the VMI node is transited into "vmi started"

automatically, and it is ready to use. In this case, the virtual machine starts with a

clean VMI. It contains an operating system and default software packages.

• stop: If the VMINode instance is requested to stop then the event "terminate vmi" is

applied to the running virtual machine. It will shutdown the virtual machine and delete

the image. When the termination is finished then the virtual machine is stopped and the

state of the VMI node is transited to "vmi stopped" and all resources are released.

In Figure 4.8, we define the abstract definition of the VMINode entity with the properties

used to interact with the specific cloud platforms and two operations (startNode and stopNode)

for starting and stopping the virtual machine. A concrete VMINode instance specifies a virtual

machine running in a specific cloud platform. Therefore, it requires the specific APIs to interact

with the cloud platform to handle the VMs operations. For the prototype implementation of

this thesis, we classify the VMINode instances into different types according to the supported

4.3. The VMIs deployment 65

Figure 4.8: An example of the VMINode for a virtual machine in specific cloud platform

cloud platforms. Figure 4.8 shows an example of the VMINode instances classification. The

EC2Node, G5KNode, and IBMNode classes are children of VMINode class. The instances of

these classes are abstract representations of the VMs in specific cloud platforms: Amazon EC2,

Grid5000 and IBM Smart Cloud accordingly.

Listing 4.3 is an example of the start operation implementation of a VMI node for starting a

virtual machine in Amazon EC2 cloud platform. We have to define the additional tools (named

AmazonEc2Utils in Line 2) that use the specific APIs to handle the operations in the Amazon

EC2 cloud platform. The operations start and stop are represented in the procedures startNode

and stopNode. In the startNode procedure, we define how to create and boot a virtual machine

(also called an EC2 instance) in Amazon EC2 (Line 9 to Line 18). When the machine is

successfully booted (Line 20), we can update or re-configure the virtual machine to ensure that

the machine is working well and is ready to use, such as software installation, etc (Line 21 to

Line 29). After that, if there are some SoftwareComponent entities presented for this machine,

the equivalent software packages will be installed by the calling start method (Line 33 to Line

36). When the installations of the needed software packages are complete, a method named

updatePorts() is called to update the InputPort, OutputPort and the connections between these

software (Line 37).

Listing 4.3: The startNode procedure for starting a VMI in the case of Amazon EC2 cloud

platform

1 public class EC2NodeImpl extends VMINodeImpl implements EC2Node {

2 private AmazonEC2Utils appUtils;

3 private Instance instanceEC2;

4 protected EC2NodeImpl() {

5 super();

6 }

7 @Override

8 public void startNode(){

9 Properties prop = new PropertiesFile().loadProFile(this.getConfigFilePath());

66
Chapter 4. Model-driven engineering for VMIs deployment and reconfiguration

at runtime

10 String endpointRUL = prop.getProperty("endpointURL");

11 String credentialsFile = prop.getProperty("credentialsFilePath");

12 appUtils = new AmazonEC2Utils(credentialsFile, endpointRUL,this.getName());

13 try {

14 appUtils.init();

15 } catch (Exception e) {

16 e.printStackTrace();

17 }

18 instanceEC2 = appUtils.createInstance(this.getImageId(), this.getName(),

"t1.micro", "ubuntu", "quicklaunch-1");

19 setHostAddress(instanceEC2.getPublicDnsName());

20 appUtils.waitforInstanceCheck(instanceEC2.getInstanceId(), 200);

21 try {

22 SSHUtils sshHandler = new SSHUtils();

23 Session sshSession = sshHandler.createSSHSession("ubuntu",

prop.getProperty("privateKey"),hostAddress);

24 System.out.println("SSH tunnel is openned for "+this.getName()+" at the remote

host "+hostAddress);

25 sshHandler.sshRemoteCommand(sshSession, "hostname");

26 sshHandler.sshRemoteCommand(sshSession, "sudo hostname " + hostAddress);

27

28

29 sshSession.disconnect();

30 } catch (IOException e) {

31 e.printStackTrace();

32 }

33 EList<SoftwareComponent> listSoftwareComps = this.getRuns();

34 for (int i=0; i< listSoftwareComps.size();i++){

35 listSoftwareComps.get(i).start();

36 }

37 updatePorts();

38 }

39 @Override

40 public void stopNode(){

41 appUtils.terminateEc2InstanceByID(instanceEC2.getInstanceId());

42 }

43 } //EC2NodeImpl

The stop operation of a VMI node is represented by the stopNode procedure in Listing 4.4.

In the stopNode procedure, we just call another procedure (named terminateEc2InstanceByID)

which is defined by the specific APIs in the additional tool - AmazonEC2Utils to terminate the

running virtual machine.

Listing 4.4: The stopNode implementation of the VMINode in case of Amazon EC2

1 @Override

2 public void stopNode(){

3 appUtils.terminateEc2InstanceByID(instanceEC2.getInstanceId());

4 }

4.3. The VMIs deployment 67

4.3.1.5 SoftwareComponent

Start

installed configured

ports
updated

start install configure

update

re-configure

re-update

started

Stop

uninstalled

uninstall

stop

Figure 4.9: Life cycle of a SoftwareComponent instance

The SoftwareComponent entity is an abstract presentation of the software package. A Soft-

wareComponent entity defines and encapsulates the instructions of how a software package will

be installed or uninstalled. Like the VMIDeployModel and VMINode entities, it also has two

actions: Start and Stop equivalent to the installing and uninstalling a software package in a vir-

tual machine. The life-cycle of a SoftwareComponent instance is represented in the Figure 4.9.

It shows the behaviour of a software component. From the figure, we see that a software

component can be one of the states: "installed", "configured", "ports updated", "started" and

"uninstalled". It can respond to the events: "install", "configure", "re-configure", "update"

and "uninstall". These events are executed sequentially in the order shown in the figure, for

example, the events "configure", "update" or "uninstall" cannot be executed before the event

"install".

A software component is started by the "install" event. Depending to the specific software, the

execution of the software component with the "install" event will install the software packages

to the running VM. When the installation is finished the state of the software component is

transited to "installed". If the software does not to configure the parameters then the state

will automatically switch to the "started" state. Otherwise, the event "configure", "update"

will be applied and then the state of the software component will be "configured" and "ports

updated" accordingly. Finally, the state of the software component is transited to "started"

automatically, and the installed software is ready to use.

The abstract definition of the software component is represented in Listing ??. It defines the

attributes of a software such as name, version, etc., and two actions (start and stop procedures):

Start and Stop.

Beacause each software package has specific instructions for the installation, therefore, the

SoftwareComponent has to have ability to generate different instances that specify different

software packages. Figure 4.10 is an example of the SoftwareComponent with its children for

68
Chapter 4. Model-driven engineering for VMIs deployment and reconfiguration

at runtime

Figure 4.10: An example of the abstract definition of software packages

representing the specific software packages (such as software: JDK, Tomcat, MySQL, etc., or a

Java program JavaAdditionChain, Java web page JavaWebPage). According to the installation

and uninstallation instructions of the software, we define the suitable implementation of the

corresponding software component to handle its behaviours. Listing 4.5 presents the implemen-

tation of a software component for Java Development Kit (JDK) installer. In the listing, we

define two procedures: start and stop for handling the installation and uninstallation of JDK.

Listing 4.5: The abstract representation of the SoftwareComponent

1 public class JDKImpl extends SoftwareComponentImpl implements JDK {

2 protected JDKImpl() {

3 super();

4 }

5 @Override

6 public void start(){

7 VMINode hostedNode = this.getRunsOn();

8 String osType = hostedNode.getOsType();

9 SSHUtils sshHandler = new SSHUtils();

10 Properties prop = new

PropertiesFile().loadProFile(hostedNode.getConfigFilePath());

11 try {

12 Session ssh = sshHandler.createSSHSession("ubuntu",

prop.getProperty("privateKey"), hostedNode.getHostAddress());

13 if (osType.equals("Linux Ubuntu")){

14 sshHandler.sshRemoteCommand(ssh, "sudo add-apt-repository

ppa:webupd8team/java");

15 sshHandler.sshRemoteCommand(ssh, "sudo apt-get -y update");

16 sshHandler.sshRemoteCommand(ssh, "sudo apt-get -y install

oracle-jdk7-installer");

17 sshHandler.sshRemoteCommand(ssh, "update-alternatives display java");

18 sshHandler.sshRemoteCommand(ssh, "java -version");

19 }

20 else if (osType.equals("Linux RedHat")){ ... }

21 ...

22 } catch (IOException e) { e.printStackTrace();}

23 }

24 @Override

4.3. The VMIs deployment 69

25 public void stop(){

26 VMINode hostedNode = this.getRunsOn();

27 SSHUtils sshHandler = new SSHUtils();

28 String osType = hostedNode.getOsType();

29 Properties prop = new

PropertiesFile().loadProFile(hostedNode.getConfigFilePath());

30 try {

31 Session ssh = sshHandler.createSSHSession("ubuntu",

prop.getProperty("privateKey"), hostedNode.getHostAddress());

32 if (osType.equals("Linux Ubuntu")){

33 sshHandler.sshRemoteCommand(ssh, "sudo apt-get -y remove

oracle-jdk7-installer");

34 }

35 else if (osType.equals("Linux RedHat")){

36 ...

37 }

38 ...

39 } catch (IOException e) { e.printStackTrace();}

40 }

41 } //JDKImpl

4.3.2 VMI deployment models

By using the VMIs deployment metamodel, the cloud providers can create the VMIs deploy-

ment model on-demand easily. The deployment model of the VMIs in cloud computing can be

classified into two types: (i) the deployment model for multiple virtual machines that have the

same configuration, and (ii) the deployment model for multiple virtual machines that have the

different configurations.

Figure 4.11 is an example of a model for the deployment of three virtual machine with the

same configuration. In this example, the model named Model1 is an instance of the VMIDe-

ployModel entity. It has three VMI nodes, that are instances of the VMINode entity that

represent three machines named: node 1, node 2, and node 3. These machines have the same

configuration:

• imageId is ami-6d532204, this is an ID of a Amazon EC2 image

• osType is LinuxUbuntu, it specify that the machines run with the Linux Ubung oper-

ating system

• userName and password for all three machine are the same (admin/admin)

• configFilePath is con.properties, this file provides additional configuration information

for monitoring virtual machines in the specific cloud platform

One thing to note here is that the value of the hostAddress attribute is null. Because many

cloud systems (e.g. Amazon EC2, IBM SmartCloud, OpenNebula, etc.) assign the dynamic

IP addresses to the virtual machines. Therefore, in the initial time, the value of hostAddress

attribute of a VMI model is null, this value will be updated by the IP address or public domain

70
Chapter 4. Model-driven engineering for VMIs deployment and reconfiguration

at runtime

name: Model1

description: WebApp deployment

VMIDeployModel :: Model1
name: node 1

description: node1

imageId: ami-6d532204

osType: Linux Ubuntu

userName: admin

password: admin

configFilePath: conf.properties

hostAddress: null

VMINode :: node 1

name: node 3

description: node3

imageId: ami-6d532204

osType: Linux Ubuntu

userName: admin

password: admin

configFilePath: conf.properties

hostAddress: null

VMINode :: node 3

name: MySQLServer

version: 5.5

MySQL :: MySQLServer

name: Java 1.7

version: 1.7

JDK :: Java 1.7

name: Apache Tomcat

version: 6.5

Tomcat :: Apache Tomcat

name: Eclipse

version: 3.7

Eclipse :: Eclipse

name: MySQLServer

version: 5.5

MySQL :: MySQLServer

name: Java 1.7

version: 1.7

JDK :: Java 1.7

name: Apache Tomcat

version: 6.5

Tomcat :: Apache Tomcat

name: Eclipse

version: 3.7

Eclipse :: Eclipse

name: node 2

description: node2

imageId: ami-6d532204

osType: Linux Ubuntu

userName: admin

password: admin

configFilePath: conf.properties

hostAddress: null

VMINode :: node 2

name: MySQLServer

version: 5.5

MySQL :: MySQLServer

name: Java 1.7

version: 1.7

JDK :: Java 1.7

name: Apache Tomcat

version: 6.5

Tomcat :: Apache Tomcat

name: Eclipse

version: 3.7

Eclipse :: Eclipse

Figure 4.11: An example of a VMI deployment model of multiple VMs with the same configu-

ration

name server (DNS) of the machine when it is deployed successful. For example, the hostAddress

value can be ec2-23-23-7-100.compute-1.amazonaws.com

From the figure, we also see the model specifies that each virtual machine will run the following

software packages: Java 1.7, Eclipse, Apace Tomcat, and MySQL Server. These software are

represented by the elements: JDK, Eclipse, Tomcat and MySQL accordingly.

In Figure 4.12, we see an example of the deployment model for multiple machine that

have different configurations. The model also defines a complex deployment topology of the

VMIs with the connections between the software run on different machines. The model Model2

shows a model for two virtual machines in a web application deployment scenario. It defines

the configuration of two machines named node 1 and node 2, and it specifies how the software

in these machines interact together. Like the previous example, the basis configurations of two

machines are the same:

• imageId is ami-6d532204, this is an ID of a Amazon EC2 image

• osType is LinuxUbuntu, it specifies that the machines run with the Linux Ubuntu

operating system

• userName and password for all three machine are the same (admin/admin)

• configFilePath is con.properties, this file provides additional configuration information

for monitoring virtual machines in the specific cloud platform

4.3. The VMIs deployment 71

name: Model2

description: WebApp deployment

VMIDeployModel :: Model2
name: node 1

description: for a DB server

imageId: ami-6d532204

osType: LinuxUbuntu

userName: ubuntu

password: ubuntu

configFilePath: conf.properties

hostAddress: null

VMINode :: node 1

name: node 2

description: for a App server

imageId: ami-6d532204

osType: LinuxUbuntu

userName: ubuntu

password: ubuntu

configFilePath: conf.properties

hostAddress: null

VMINode :: node 2

name: MySQLServer

version: 5.5

MySQL :: MySQLServer

name: dbConn

description: DB connection

value: null

OutputPort :: dbConnOut

name: Java 1.7

version: 1.7

JDK :: Java 1.7

name: Apache

Tomcat

version: 6.5

Tomcat ::

Apache Tomcat
name: webAppPath

description: Web App server path

value: null

OutputPort :: webAppPathOut

name: JAddChain

version: 1.0

JavaAdditionChain ::

JAddChain

name: JWebPage

version: 1.0

JavaWebPage ::

JWebPage

name: dbConn

description: JAddchain to MySL db

value: null

Connection :: dbConn-1

name: dbConn

description: Tomcat to JWebPage

value: null

Connection :: webAppConn

name: dbConn

description: MySL db to JWebPage

value: null

Connection :: dbConn-2

name: dbConn

description: target DB

value: null

InputPort :: dbConnIn-1

name: dbConn

description: source DB

value: null

InputPort :: dbConnIn-2

name: dbConn

description: source DB

value: null

InputPort :: webAppPathIn

Figure 4.12: An example of a VMI deployment model of multiple VMs with the different

configurations

However, the software components running on each machine are different. The virtual machine

node 1 is a database server and contains a software component named MySQL Server. This

software component is an instance of the MySQL entity which represents a MySQL database

server software, and it defines how this database is installed or uninstalled. This software

component has an output port (OutputPort) named dbConnOut.

The virtual machine node 2 is an application server. It has four software components that

represent the packages that will be installed when the model is deployed:

• Java 1.7 represents Java Development Kit version 1.7. It provides Java runtime environ-

ment for the Tomcat application server and other Java applications

• JAddChain is an instance of JavaAdditionChain software component model which is a

representation of a Java program for calculation the shortest addition chain numbers.

This programm calculates the chain of numbers and write the results to the database

in the MySQL database server. Therefore, it needs information of the target database,

such as hostname, port number, name of dabatabase, account to access the database, etc.

These information will be received by an input port (InputPort) named dbConnIn-1

• Apache Tomcat represents the Apache Tomcat application server software. It has an out-

put port (OutputPort) named webAppPathOut. This port used to provide the information

of the web application directory path to the other applications

• JWedPage is representation of a Java web page what queries the data from a database

72
Chapter 4. Model-driven engineering for VMIs deployment and reconfiguration

at runtime

in MySQl database server, and displays it on the web page. It needs the information of

the source database like the JAddChain component, and it also needs the information

of the web application directory path to put the web page into the web application

server. Therefore, the JWebPage software component model has two input ports named

webAppPathIn and dbConn-2

Additionally, we see that the model Model2 also contains three instances of the Connection

entity (dbConn-1, dbConn-2, and webAppConn) . These instances represent for the connections

between the software components in machines node 1 and node 2.

• dbConn-1 represents the connection between JAddChain program and MySQLServer

database server by the association of dbConnOut port and dbConnIn-1

• dbConn-2 represents the connection between JWebPage program and MySQLServer database

server by the association of dbConnOut port and dbConnIn-2

• webAppConn represents the connection between JWebPage program and Apache Tomcat

application server by the association of webAppPathIn port and webAppPathOut

Figure 4.13: An example of a VMI deployment model in EMF editor

The VMIs deployment metamodels are created by the Eclipse Modeling Framework (EMF).

It makes easy to generate Java code from the metamodel for the implementing, editing and

testing the models. The EMF also provides a graphical user interface environment for creating

the VMIs deployment models easily and quickly. Figure 4.13 shows an example of the VMIs

deployment model creation in Eclipse treeview editor. The EMF tools also provide the ability

to check the validity of the created models based on the constraints defined in the metamodel.

Cloud providers can keep the expected VMIs deployment models rather than keeping all virtual

machine images that were created for the user ’s requests. The Eclipse Modeling Framework

allows to store the created VMI deployment model via EMF persistence framework. By defaut,

EMF uses XMI (XML Metadata Interchange) format. It is a standard for exchanging metadata

4.3. The VMIs deployment 73

information by XML (Extensible Markup Language). Listing 4.6 is an example of a VMIs

deployment model in the XMI format.

Listing 4.6: The abstract representation of the SoftwareComponent

1 <?xml version="1.0" encoding="UTF-8"?>

2 <MDECloudDeployModel:VMIDeployModel xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:MDECloudDeployModel="http://www.kermeta.org/MDECloudDeployModel"

name="DeploymentMode 1" description="The deployment model contain all EC2 nodes">

3 <contains xsi:type="MDECloudDeployModel:EC2Node" name="node1" imageId="ami-6d532204"

userName="admin" password="admin"

configFilePath="inria.triskell.mdecloud.vmideploymentmodel/ec2ConfigFile.properties">

4 <runs xsi:type="MDECloudDeployModel:MySQL" name="MySQL Server" version="5.5"

description="A database server">

5 <outputPort connection="//@connections.0" name="dbConnPort"/>

6 </runs>

7 </contains>

8 <contains xsi:type="MDECloudDeployModel:EC2Node" name="node2" imageId="ami-6d532204"

userName="admin" password="admin"

configFilePath="inria.triskell.mdecloud.vmideploymentmodel/ec2ConfigFile.properties">

9 <runs xsi:type="MDECloudDeployModel:JDK" name="JDK7" version="1.7"

description="Java Development Kit"/>

10 <runs xsi:type="MDECloudDeployModel:Tomcat" name="Apache Tomcat" version="6"

description="Apache Tomcat application server">

11 <outputPort connection="//@connections.1" name="outWebAppPath" value=""

description="directory path for web applications"/>

12 </runs>

13 <runs xsi:type="MDECloudDeployModel:JavaAdditionChain" name="Addition Chain"

version="1.0" description="A java programm for calculating the addition chain">

14 <inputPort name="dbConnPort" connection="//@connections.0"/>

15 </runs>

16 <runs xsi:type="MDECloudDeployModel:JavaWebPage" name="AdditionChain Webpage">

17 <inputPort name="inWebAppPath" value="" connection="//@connections.1"

description=""/>

18 </runs>

19 </contains>

20 <connections name="dbConnection" inPort="//@contains.1/@runs.2/@inputPort.0"

outPort="//@contains.0/@runs.0/@outputPort.0" description="The connection

defines the link between database MySQL and AdditionChain program"/>

21 <connections name="webappConnection" inPort="//@contains.1/@runs.3/@inputPort.0"

outPort="//@contains.1/@runs.1/@outputPort.0" description="the connection

defines the link between a Java web page and Application Server"/>

22 </MDECloudDeployModel:VMIDeployModel>

74
Chapter 4. Model-driven engineering for VMIs deployment and reconfiguration

at runtime

Figure 4.14: Sequence Digram for all steps of the VMIs deployment model execution process

4.3.3 Model execution

The execution of the VMIs deployment model is a sequence of executions of its elements

(VMIDeployModel, VMINode, SoftwareComponent, and Connection). Figure 4.14 shows a se-

quence diagram representing how a VMIs deployment model is executed for the VMs provision-

ing process. The model execution can be considered in two distinct parts: starting the model

and stopping the model.

First, the model starts when the user calls the startModel() operation, and all the VMI nodes

will be considered and executed by the startNode() operations, and these processes are executed

in parallel. In the execution of startNode(), all software components that assigned to the cur-

rent VMI node will be executed by calling the start() operation for the installation and ports

configuration. When all the software installations are finished, and VMIs models are started

then the execution of the deployment model continues to update the connections. The ports

that are linked to the connections will update their values. Sometimes, the updating ports

processes also need to reboot their virtual machines. When all connections are updated, the

VMIs deployment model is successfully started.

Second, the stopping of the VMIs deployment model happens when the user calls the stop-

Model() operation and then the model will stop by calling the stopNode() operation of all

virtual machines. The stopNode() operation helps to terminate the running machines. When

the running machines are successfully terminated, the VMIs deployment model is successfully

4.4. The VMIs reconfiguration at runtime process 75

stopped.

4.4 The VMIs reconfiguration at runtime process

Another important contribution of using model-driven approach for the VMIs deployment pro-

cess is providing the ability to reconfigure virtual machine images at runtime. It allows cloud

providers to modify the configuration of the running machines to fulfil the change of user ’s

requirements without creating any new VMIs and re-deploy for replacing the running VMIs.

Providers just need to apply the new VMIs deployment model to the current model and the

VMIs deployment manager will modify the running system according to the new deployment

model. To accomplish these tasks, we have used model@runtime, which is a promising ap-

proach for building the adaptive systems. In the next sections, we present more details about

how model@runtime is used for the reconfiguration of virtual machine images at runtime.

4.4.1 The model@runtime approach for VMIs reconfiguration at run-

time

Current'

Model'

Target'

Model'

check%

Adapta+on%Engine%

compare%

Cloud'Nodes'

So2ware'A'

So2ware'C'

VMI1

So2ware'B'

So2ware'A'

So2ware'C'

VMI2

So2ware'D'

Running$VMIs$

Ac/ons:$$ remove%B%%%!%%%add%D%

Figure 4.15: Overview of Model@Runtime for managing the changes of the running VMIs

Model@runtime is a promising approach to manage the complexity in the runtime envi-

ronment by building the adaptation mechanism that leverage the software models [11]. It

provides a higher level of abstraction that solves the issue of the system change by reasoning

with relevant abstractions of the running system [38]. In the context of VMI provisioning, the

Model@runtime technique provides an abstract representation that processes the changes of

the running virtual machine images (see Figure 4.15). When the changes appear in the form of

a new model (a target model) to apply on the system, this new model is checked and validated

to malformed configuration for the running VMIs. Then it will be compared with the current

model which represents the running VMIs. The comparison is processed by a reasoning engine.

76
Chapter 4. Model-driven engineering for VMIs deployment and reconfiguration

at runtime

This engine determines the changes between models and execute the adaptation steps that

bring the current model to the target model.

In Figure 4.15, the current model of the running virtual image VMI 1 contains software pack-

ages A, B, and C, the target model of the image VMI 2 contains packages A, D, and C. The

running virtual image VMI 1 is expected to be the image VMI 2 by some modifications. The

reasoning engine compares the target model and the current model to find the difference of two

models and then implement the adaptation steps to change the machine VM 1 into machine

VM 2. In the above example, two adaptation steps should be applied to the virtual machine

VM 1 : (i) remove software A, and then (ii) add software D.

4.4.2 The reconfiguration steps

Algorithm 5: An algorithm for updating the configuration of a virtual machine

Input: AdaptationSteps : is a set of the adaptation steps

1 Procedure UpdateVM(currentV M : VMINode, targetV M : VMINode)

2 foreach sci is a software component of currentV M do

3 found = false

4 foreach snj is a software component of targetV M do

5 if sci is snj then

6 found = true

7 Break

8 end

9 end

10 if found = false then

11 Remove sci and its propagated components that found by the

removePropagated(sci) operation from the current virtual machine

12 end

13 end

14 foreach sni is a software component of targetV M do

15 found = false

16 foreach scj is a software component of currentV M do

17 if sni is scj then

18 found = true

19 Break

20 end

21 end

22 if found = false then

23 Add sni and its propagated components that found by the

addPropagated(sni) operation to the current machine

24 end

25 end

26 end

The reconfiguration process of the VMIs starts with the comparison between the current

model and the target model and continues with the update of the current model according to the

4.4. The VMIs reconfiguration at runtime process 77

differences between two models. The Algorithms 5 and 6 present the reconfiguration execution

within a virtual machine and a VMI deployment model. The details of these algorithms are

described later. We assume the existence of the following functions:

• removePropagated(S :SoftwareComponent): returns a set of software components

that depend on software S, and the removal of these components does not conflict with

other software component in the target model

• addPropagated(S :SoftwareComponent): returns a set of software components that

depend on software S, and the addition of these components does not conflict with other

software component in the current model

The dependence relationships between software components are represented by using the fea-

ture models described in Chapter 3.

The Algorithm 5 presents how to reconfigure the software components of a virutal machine.

The reconfiguration process is executed in two steps: (i) removing unneeded software compo-

nents from the running virtual machine, (ii) adding new software components to the running

virtual machine.

Firstly, we examine the software components of the currentVM node. If a software appears

in both currentVM and targetVM then we skip it and do nothing (Lines 6-9). The condition

in Line 6 check if the software components sci of the currentVM and snj of the targetVM

are the same (e.g. same name, same version, etc.). Otherwise, if a software component sci of

the currentVM does not appear in the targetVM then sci and its dependent software which

are determined by the function removePropagated(sci:SoftwareComponent) will be re-

moved from the running virtual machine. Secondly, we consider the software components of

the targetVM node. If a software component sni of the targetVM node does not appear in the

currentVM node then sni and its dependent software which are determined by the function

addPropagated(sci:SoftwareComponent) will be added to the running virtual machine.

The Algorithm 6 presents the reconfiguration of the virtual machines at runtime by updating

the tartget model to the running system. The algorithm will update the running system in three

steps: (i) removing the virtual machines from current system, (ii) adding new virtual machines

to the current system, and (ii) updating the connections between software components.

Firstly, we compare the current model with the target model to find the VMI nodes that need

to be removed from the current model. If a VMI node in the current model also appears in

the target model then it will be compared to the node in the target model to recognize any

changes of its software components by using the Algorithm 5 (Lines 6-9). If the VMI node in

the current model does not appear in the target model then it needs to be removed, that VMI

node will be removed from the current model. It means that the corresponding virtual machine

which is running in the system will be terminated (Lines 11-14).

Secondly, we compare the target model with the current model to determine the VMI nodes

that need to be added to the current model. If a VMI node in the target model target model

does not appear in the current model then it will be added to the current model, and then the

new virtual machine will be started in the system.

Finally, the reconfiguration process continues with the updating all the connections to establish

the new connections or update the value of the ports of connections. When the target model

is applied successfully to the running system, it is stored as the current model of the running

system.

78
Chapter 4. Model-driven engineering for VMIs deployment and reconfiguration

at runtime

Algorithm 6: An algorithm for the reconfiguration of the VMI deployment model

1 Procedure UpdateModel(currentModel : VMIDeployModel, targetModel :

VMIDeployMode)

2 foreach currentV Mi is a VMINode of currentModel do

3 found = false

4 foreach targetV Mj is a VMINode of targetModel do

5 if currentV Mi is targetV Mj then

6 found = true

7 UpdateVM(currentV Mi, targetV Mj) Break

8 end

9 end

10 if found = false then

11 Remove the virtual machine sci from the current system

12 end

13 end

14 foreach targetV Mi is a VMINode of targetModel do

15 found = false

16 foreach currentV Mj is a VMINode of currentModel do

17 if targetV Mi is currentV Mj then

18 found = true

19 Break

20 end

21 end

22 if found = false then

23 Add the virtual machine currentV Mj) to the current system

24 end

25 end

26 UpdateConnection(currentModel, targetModel)

27 currentModel targetModel

28 end

4.5 Chapter summary

In this chapter, we presented our approach of using model-driven engineering for modeling

the deployment and reconfiguration of virtual machine images at runtime. We formalized the

software packages, the virtual machine images, the deployment topology of the VMIs as models,

and encapsulated the deployment and reconfiguration operations of the virtual machine image

into the models. This approach supports the cloud providers to systemize the process of creating

and deploying VMIs, and then applying the codified process to manage the deployment and

reconfiguration of the images rather than the time-consuming copying of a virtual disk image

in the provisioning process. It also provides the ability to design the on-demand deployment

scenarios of VMIs on the different cloud platforms.

Additionally, we presented the use of model@runtime technique to support the reconfiguration

of the images at runtime. This technique makes more flexible the VMIs provisioning process in

4.5. Chapter summary 79

cloud computing.

In summary, this chapter gives solutions for solving the challenges which were addressed in

Chapter 1:

• Automating the deployment of VMIs to reduce the deployment time, resources and error-

prone

• Supporting the reconfiguration of VMIs and auto-scaling the images at runtime

• Providing a flexible way to hanle the complex tasks of the VMI provisioning process in

cloud computing

Part III

Experiment Evaluation &

Conclusion

Chapter 5

Experiment Evaluation

Contents

5.1 Chapter Overview . 83

5.2 Experiment Environments . 83

5.2.1 Amazon Elastic Compute Cloud . 83

5.2.2 Grid5000 Virtualization Platform . 84

5.3 Experiment Results . 86

5.3.1 Power consumption comparison . 86

5.3.2 VMI re-configuration at runtime . 90

5.4 Chapter Discussion and Summary . 96

5.1 Chapter Overview

In this chapter we present the results of empirical experiments conducted to evaluate the ap-

proach proposed in this thesis. Our experiments are deployed on two virtualization environ-

ments: Amazon Elastic Compute Cloud and Grid5000. The goal of the experiments is to

evaluate the advantage of using model-driven approach for VMI provisioning in cloud comput-

ing, and to show how the approach fulfils the addressed challenges.

In Section 5.2, we present a short introduction of two environments that we used for running

the experiments.

Section 5.3 describes the experiment results in the context of: Energy consumption (Sec-

tion 5.3.1) and VMIs deployment and re-configuration at runtime (Section 5.3.2).

Finally, Section 5.4 discusses about how the experiment evaluation reflexes the challenges and

open issues that are addressed in the Chapter 1; and then summarizes the chapter.

5.2 Experiment Environments

For evaluating the proposed approach, we run the evaluation scenarios on two virtualization

platforms: Amazon Elastic Compute Cloud (EC2) and Grid5000.

5.2.1 Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (EC2) is the core of Amazon ’s cloud computing platform. It

allows users to rent virtual computers to run their own applications. It provides the scalable

deployment of applications by using a Web service which users can use to access and boot an

84 Chapter 5. Experiment Evaluation

Instance(#1(
Instance(#2(

Instance(#N(

Amazon(Elas3c(Compute(Cloud((EC2)(

Cloud(Users(

Interact(with(Amazon(EC2(

1.#Create#instances#

2.#Launch#instances#

3.#Access#to#instances#

4.#Terminate#instances#

Opera3on(steps(

Figure 5.1: Cloud users use Amazon EC2 ’s services

Amazon Machine Image (AMI), and then install their desired software. Users can create, launch,

and terminate the instance on demand, and pay for the usage of running instances (shown

in Figure 5.1). Amazon EC2 also allows users to control instances on different geographical

locations.

The key features of Amazon EC2 are:

• Providing on-demand computing power. It allows to create and boot new server instances

in minutes, and quickly scale capacity up or down;

• Providing different kinds of operating systems (Windows, Linux, FreeBSD, and OpenSo-

laris);

• Supporting deployment across available zones for reliability;

• Providing the monitoring on status of instances and usage.

Amazon EC2 uses Xen virtualization. Each Amazon EC2 instance is considered as a virtual

private server. The size of an instance is based on "Elastic Compute Unit". One EC2 Compute

Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Xeon processor. The cost of

renting Amazon instances depends on the instance types which provides the different compu-

tational capacity. Figure 5.2 shows the comparison of some Amazon EC2 instances with the

computational capacity and cost per hour. In our experiments, we use a basic instance type

named as m1.small, shaped by the red rectangle.

5.2.2 Grid5000 Virtualization Platform

Grid50001 is a virtualization infrastructure for research in France. It includes 9 sites with 19

laboratories involved in France. Grid5000 is designed to support experiment-driven research

in all areas of computer science related to parallel, large-scale or distributed computing and

networking. It aims at providing a highly reconfigurable, controlable and monitorable experi-

mental platform to its users, and providing the community a testbed allowing experiments in

1https://www.grid5000.fr/mediawiki/index.php

5.2. Experiment Environments 85

Figure 5.2: Example of the Amazon EC2 image configurations

all the software layers between the network protocols up to the applications.

The Grid5000 sites communicate through a private network. Except for some limited proto-

SSH#/#API# SSH/OARSUB#

SSH/OARSUB#

SSH/OARSUB#

GRID5000#Network#1.#Access#to#Grid5000#by#SSH/API#

2.#Create#a#job#to#reserve#nodes#

3.#Deploy/launch#image#template#to#nodes#

4.#Access#nodes#to#use#

Opera9on#steps#

Interact(with(Grid5000(

4.#Terminate#a#job#

Figure 5.3: Cloud users interact with Grid5000 platform

cols, for instance Ethernet broadcast, there is no limitation in inter site communications. Users

can interact with Grid5000 by using SSH protocol or APIs (see Figure 5.3). The users follow

some steps to work on Grid5000:

1. Access Grid5000 with the authentication and create a job to reserve the resources (nodes)

in a limited time;

2. Launch or deploy template images (provided by Grid5000 or customized by users) into

the reserved nodes;

86 Chapter 5. Experiment Evaluation

3. Access the nodes and use them (e.g. install software on demand);

4. Terminate the job and release resources

Figure 5.4: The configuration of the parapluie cluster at the Rennes site of Grid5000

All virtual machine images supported in Grid5000 run Linux operating system. The hardware

configuration depends on the site of Grid5000. For example, at Rennes, there are 3 clusters

with different configurations: parapluie, parapide, and paradent. Figure 5.4 is an example of the

hardware configuration of the parapluie cluster. It has 40 nodes with 2 CPUs per node and 12

cores per CPU, and 48GB memory. Grid5000 also provides tools for users to reserve resources,

deploy images, monitor resources, etc.

5.3 Experiment Results

5.3.1 Power consumption comparison

In this section, we present some comparisons between the traditional approach and the model-

driven approach in the context of power consumption of VMIs. We consider some key factors

that affect the power consumption of VMIs (see Sections 5.3.1.1), and then we show the com-

parisons of the power consumption of the VMIs by using power consumption meter tools (see

Section 5.3.1.2).

5.3.1.1 Data transfer through the network

In terms of power consumption, the amount of data transfer through the network is not as

important as I/O or CPU usage. However, it is a factor that needs to be considered for

reducing power consumption, since transferring more data implies consuming more network

bandwidth [47]. This means that the network equipments (e.g. switches, routers.) consume

5.3. Experiment Results 87

more power. Reducing the VMI size helps to reduce the amount of data transfer through

the network, so that it reduces the energy consumption of virtual machine transfers. The

scenario describes the generation of a VMI that includes selected software stacks in the preceding

example (Java, Tomcat, MySQL), and the deployment of this VMI on the Grid5000 reserved

nodes. We compare our approach to the traditional approach in terms of amount of data

transfer through the network, and power consumption of virtual machine images. We evaluate

the traditional approach in two cases:

• Case 1: There is no existing VMI that fits the requirements. The cloud provider needs

to create a new VMI containing Java, Tomcat and MySQL.

• Case 2: There is an existing VMI that fits the requirements. It is used as a standard

VMI for deploying on the cloud nodes. However, for meeting different user requirements,

it also contains software that may not be used: Java, Tomcat, MySQL, Apache2, Jetty,

PHP5, Emacs, PostgreSQL, DB2-Express C, Jetty, LibreOffice, etc.

For estimating the amount of data transferred through the network in deployment process, we

assume that:

VMIT1 : is the size of the clean VMI of case 1 in the traditional approach.

VMIT1 0 : is the size of the clean VMI of case 1 after the installation of the needed software

(i.e., Java, Tomcat, MySQL).

VMIT2 : is the size of the existing VMI found of case 2 in the traditional approach.

VMIM : is the size of the standard VMI of model-driven approach.

S : is the size of the needed software installed a VMI in archive format

N : is the number of cloud nodes to deploy

Therefore, the amount of data transfer through the network of both approaches is calculated

with the following formulas:

• Model-driven approach:

DataTransfer = (VMIM + S) ⇤N

• Traditional approach - case 1:

DataTransfer = VMIT1 + S + VMIT1 0 + VMIT1 0 ⇤N

• Traditional approach - case 2:

DataTransfer = VMIT2 ⇤N

?Experiment on the Grid5000

In this experiment, we use a clean image Squeeze-x64-nsf2 (333.587 MB), which is available

on the Grid5000 ’s repository. This is also the standard VMI for the case 1 of the traditional

approach. In our approach, we use minimal configuration images, only containing an installation

software and its dependencies (e.g. Chef, Ganglia, etc.). After the installation of the minimal

software, the image size is 339.955 MB. In the case 2, unused software is installed for adapting

different requirements from users. This makes the size of a standard VMI is much bigger, 803.60

MB.

Figure 5.5 shows that in both cases, the model-driven approach transfers less data than the

2https://www.grid5000.fr/mediawiki/index.php/Squeeze-x64-nfs-1.1

88 Chapter 5. Experiment Evaluation

3.26%

6.52%

9.78%

13.04%

16.30%

19.55%

22.81%

26.07%

29.33%

32.59%

4.70%
8.68%

12.65%

16.63%

20.61%

24.58%

28.56%

32.54%

36.51%

40.49%

7.85%

15.70%

23.54%

31.39%

39.24%

47.09%

54.93%

62.78%

70.63%

78.48%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
a
ta
$T
ra
n
sf
e
r$
(G
B
)$

NumberofCloud$nodes$

Model2Driven%Approach%

Tradi>onal%Approach%2%case%1%

Tradi>onal%Approach%2%case%2%

Figure 5.5: Data Transfer Through the Network of the VMI Deployment on Grid5000

traditional approach. Especially when the pre-packaged VMI contains more software installed,

and deploys to a large number of cloud nodes. In this example, when we deploy 100 cloud

nodes, the traditional approach transfers 40.49GB of data for case 1, and 78.48GB of data for

case 2, while the model-driven approach only transfers 32.59GB of data. This result shows that

the model-driven approach transfers less data than the traditional approach. It means that the

power consumption of network equipment (e.g. switches, routers, etc.) can be reduced.

5.3.1.2 Power consumption

Figure 5.6: Power Measurement from inside the VMIs

We consider the power consumption of the model-driven approach and the traditional ap-

proach in two ways: the power measurement from inside the running VMs and the power

5.3. Experiment Results 89

consumption of the cloud nodes which host the running VMIs. In our approach, we create

and deploy specific VMIs, as in the above example, while the images used for the traditional

approach contain the unneeded software. This software is also booted and executed when the

VMI is running, meaning that the unneeded software use computing resources (e.g. CPU,

RAM.). We simulate programmers doing Java web application programming, showing how the

computing resources are used at runtime. In this simulation, we use a script to auto re-compile

a Java program and update it to the Tomcat web server. The small Java program emulates

some complex deterministic computation by generating the shortest addition chains3 of a num-

ber N by a recursive method and writes the results to a MySQL database; the results can be

displayed on a JSP web page which is executed by Apache Tomcat web server. We run this

program several times with different values for N .

? Power measurement from inside the running VMIs

To estimate the power consumption from inside the running VMIs, we deploy these virtual

images on the same node of Graphene cluster on the Nancy site of Grid5000. In this exper-

iment, we consider two aspects: First, we access the power monitoring hardware installed on

this cluster to get information on PDUs (Power Distribution Unit). According to the SNMP

MIB4, description the outletWatts give a unique value (in Watts) for the active power sensor

attached to the outlet 5. We consider the power consumption of the running VMIs in 1h with

the interval request of 10 seconds. We run this scenario five times and get the mean values

of power consumption. After that, we measure the average power consumption of the virtual

image in the traditional approach is of 87.43 Watts and this value in the MDE approach is

78.25 Watts. It shows that the image which is created by model-driven approach used less

power than the image created by traditional approach.

? Power measurement of cloud nodes

We deploy virtual images on the same node sagittaire-53.lyon.grid5000.fr of the cluster sagit-

7/30/12 Electrical Consumption on Grid'5000 Lyon site

1/1https://helpdesk.grid5000.fr/supervision/lyon/wattmetre/traitement.php

Electrical Consumption on Grid'5000 Lyon site

This research activity is part of the ARC Green-
Net supported by INRIA.

Home
Live Monitoring
Logs Access
Links
Contact

Logs Request
You have asked for the logs between 30 July 2012 09h 35mn 00s and 30 July 2012 10h 35mn 00s
with an increment equals to 10 seconds.

The concerned nodes are: sagittaire-53

Total Consumption = 670773.85 Joules for the 1 machines during the requested period (3600 seconds).

Logs Data
Direct access to the logs.

sagittaire-53
Data file.

© 2010 Last modified: 30/07/2012Figure 5.7: Power Measurement of a VMI by the Traditional Approach

taire on the Lyon site of the Grid5000. To estimate the power consumption of the cloud nodes,

we use a live monitoring tool developed by the Green-Net6 research team. This tool uses watt-

meters provided by the SM Omegawatt7 and it helps to measure the electrical consumption of

3http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
4http://www.net-snmp.org/
5http://www.grid5000.fr/mediawiki/index.php/PowerMeasurementsinNancy
6http://www.ens-lyon.fr/LIP/RESO/Projects/green-net/
7http://omegawatt.fr/gb/index.php

http://www.net-snmp.org/

90 Chapter 5. Experiment Evaluation

7/30/12 Electrical Consumption on Grid'5000 Lyon site

1/1https://helpdesk.grid5000.fr/supervision/lyon/wattmetre/traitement.php

Electrical Consumption on Grid'5000 Lyon site

This research activity is part of the ARC Green-
Net supported by INRIA.

Home
Live Monitoring
Logs Access
Links
Contact

Logs Request
You have asked for the logs between 30 July 2012 11h 08mn 00s and 30 July 2012 12h 03mn 00s
with an increment equals to 10 seconds.

The concerned nodes are: sagittaire-53

Total Consumption = 602749.54 Joules for the 1 machines during the requested period (3300 seconds).

Logs Data
Direct access to the logs.

sagittaire-53
Data file.

© 2010 Last modified: 30/07/2012Figure 5.8: Power Measurement of a VMI by the Model-Driven Approach

all nodes on Grid5000 ’s Lyon site in a real-time manner [31]. Figure 5.8 and Figure 5.7 show

the visualization of power consumption of both approaches model-driven and traditional. The

experiment results show that the virtual image created by the traditional approach consumes

187.3 Watt-hours, while the image deployed by the model-driven approach consumes 179.6

Watt-hours. We can see that the difference of power consumption of two approaches is not

much when we consider only one cloud node within 1h. However, it is much different when we

consider on the private cloud system with a large number of nodes running during a long time.

Let us think about an example of software companies, they have their own private clouds and

provide a platform as a service for hundreds developers working for several months according

to their projects. If they have 50 developers working during six months in the above scenario,

the model-driven approach helps to reduce from 1.66 to 1.98 Megawatts comparing to the

traditional approach. Therefore, the companies can save a considerable amount of electrical

expense.

The above two comparisons give different results. This, because the first one is a measurement

the power consumption of software running from inside the VMI, while the second one is a

measurement of a cluster node that hosts the running VMI. Therefore, it is also influenced by

other software used to monitor the running VMI.

5.3.2 VMI re-configuration at runtime

In this section, we present the experiments to show the advantage of using the model-driven

approach in the reconfiguration of VMIs at runtime. We consider some typical scenarios of

re-configuring the running VMIs. Details of the scenarios are described in Sections 5.3.2.1 and

5.3.2.2.

5.3.2.1 Scenario 1: Changing the software components of the VMIs at runtime

In this scenario, we assume that a cloud provider needs to set up a cloud environment with N

nodes for a software-development team. All images run on these nodes have the same software

configuration. Software developers use these images for testing how a Python program works

with different databases MySQL, PostgreSQL, etc. At the runtime, users want to change the

MySQL database in the running images by another database (PostgreSQL) for testing.The ex-

periment will show how our approach supports the change of the running VMI configurations

according to the user ’s demands and the synchronization of the changing to all VMIs easily.

The implementation of the scenario is described by the following steps.

5.3. Experiment Results 91

? Step 1: Creating VMs with the specific configurations

In this step, we define a VMI deployment model (named Model1a) for two virtual machine

name: Model1a

description: Scenario 1

VMIDeployModel :: Model1a
name: node 1

description: node1

imageId: ami-6d532204

osType: LinuxUbuntu

userName: ubuntu

password: ubuntu

configFilePath: conf.properties

hostAddress: null

EC2Node :: node 1

name: MySQLServer

version: 5.5

MySQL :: MySQLServer

name: Python

version: 2.7

Python :: Python

name: node 2

description: node2

imageId: ami-6d532204

osType: Linux Ubuntu

userName: admin

password: admin

configFilePath: conf.properties

hostAddress: null

EC2Node :: node 2

name: MySQLServer

version: 5.5

MySQL :: MySQLServer

name: Python

version: 2.7

Python :: Python

Figure 5.9: VMI deployment model for two EC2 instances that contain Python and PostgreSQL

images running on the Amazon EC2 cloud platform (shown in Figure 5.9). It contains two VMI

models (EC2Node) that represents for two nodes (node 1, and node 2). These VMI models

represent for Amazon EC2 instances. We assume that at the beginning, users run machines

that contain a Python programming language compiler and a MySQL database server. We use

a template image with the Ubuntu 12.04 LTS 64 bits operating system.

After executing the VMI deployment model, we have 2 machines running on Amazon EC2

which are corresponding to 2 EC2 instances with instance IDs: i-53695b3b and i-51695b39.

For validating the installations of software packages, we access manually to these machines and

export the list of installed software packages into a file named step1.txt by using the following

command:

$ dpkg −−get−selections » step1.txt

We will use step1.txt file for the comparison between the current configuration and the new

configuration of images when we change the software inside the images.

? Step 2: Removing and adding software packages of the running VMs

In this step, we change the configuration of running images by removing MySQL database and

replace it by another database server - PostgreSQL. From the current VMI deployment model

Model1a(shown in Figure 5.9), we delete MySQLServer components and add PostgresDB com-

ponents to the nodes. The new VMI deployment model (named Model1b) of running images is

described in Figure 5.10. We update this new VMI deployment model to the running system, the

VMI Deployment Manager engine recognizes the change between the current model (Model1a)

and the target model (Model1b) and calls the corresponding methods which are defined in the

components (start() operation for MySQLServer and stop() operation for PostgresDB). After

the submission of the target model, the components MySQLServer are removed from node 1

and node2P ; and then the new components PostgresDB are added to the nodes. Therefore,

the uninstallation operation of MySQLServer and the installation operation of PostgresDB are

executed from the nodes. When the execution of the new VMI deployment model is complete,

like the Step 1, we access manually to the running machine and export the list of installed

software of images into a file name step2.txt by using the command:

92 Chapter 5. Experiment Evaluation

name: Model1b

description: Scenario 1

VMIDeployModel :: Model1b
name: node 1

description: node1

imageId: ami-6d532204

osType: LinuxUbuntu

userName: ubuntu

password: ubuntu

configFilePath: conf.properties

hostAddress: null

EC2Node :: node 1

name: PostgresDB

version: 9.2

PostgreSQL :: PostgresDB

name: Python

version: 2.7

Python :: Python

name: node 2

description: node2

imageId: ami-6d532204

osType: Linux Ubuntu

userName: admin

password: admin

configFilePath: conf.properties

hostAddress: null

EC2Node :: node 2

name: PostgresDB

version: 9.2

PostgreSQL :: PostgresDB

name: Python

version: 2.7

Python :: Python

Figure 5.10: The new VMI deployment model for replacing the PostgreSQL database by MySQL

from Model1a

$ dpkg −−get−selections » step2.txt

(a) A partial list of the installed MySQL packages

in step 1

(b) A partial list of the removed MySQL packages

and installed Postgres packages in step 2

Figure 5.11: Example of the installed software package list in two steps

Now, we compare two files step1.txt and step2.txt from both machines to see the different

results between the two steps. From the Figure 5.11, we can see the difference of two files.

Figure 5.11a shows the list of MySQL packages, which are installed after the execution in step

1 (in the red rectangle). However, in Figure 5.11b, we can see that the MySQL packages

are changed to deinstall (in the yellow rectangle), and the Postgres packages are installed (in

the red rectangle). It means that the MySQL database is removed from the images, and the

PostgreSQL database is installed to the images. By comparing step1.txt and step2.txt files from

both two machines, we also see that the configurations of these machines are the same. It says

that the change at runtime occurs with both two VMs, and it guarantees the consistency of

VMIs at runtime.

Figure 5.12 is a visual graph of the monitoring on the CPU Utilization of two machines at

runtime. The graph is exported by CloudWatch Monitoring tool which is provided by Amazon

5.3. Experiment Results 93

Figure 5.12: CPU utilization of two Amazon EC2 nodes at runtime

EC2. The EC2 instances i-53695b3b, i-51695b39 are equivalent to node 1 and node 2 in the

VMI deployment model, respectively. From the graph, we can see three working stages of VMs.

The first stage is booting the machines (creating and launching EC2 instaces). The second stage

is the installation of Python and MySQL to the machines, and the changing the running VMIs

occurs at the third stage. We also see that two lines of the graph according to the execution

of EC2 instances: i-53695b3b and i-51695b39 are similar, it shown that the executions of these

instances are the same.

5.3.2.2 Scenario 2: Changing the deployment topology of the VMIs at runtime

JDK1.7

JAddi+onChain$

OS$

MySQLDB$

OS$

OS$

MySQLDB$

node1

node3

node2

Figure 5.13: Database connection from node1 points to node2

This scenario shows that model-based approach allows the deployment of a complex topology

of virtual machine with different configurations. We examine an example of three images to

94 Chapter 5. Experiment Evaluation

demonstrate the shortest addition chain which is used in Section 5.3.1.2. In this example, we

use a machine running the Java program for calculating the shortest addition chain of a number

N by using a recursive method and writes the result to a MySQL database. Two other machines

run the same MySQL database servers. At the runtime, users want to change the database

server machine. Then, the experiment shows how model-based approach supports to change

the deployment of these VMI easily.

We create a VMI deployment model equivalent to three machines as in Figure 5.13.

Figure 5.13 shows that the database connection from the JAdditionChain component on

the machine node 1 is connect to the MySQLDB component of the machine node 2. When

observing the node 1 component, we notice that there is a component named JDK 1.7, which is

also added to node 1 because the VMI Configuration Manager recognizes that it is a dependent

software of JAdditionChain. A Java program needs Java runtime environment for its execution

and JDK 1.7 is a representative component for the Java runtime environment.

When we execute the VMI deployment model in Figure 5.13, there are three machines (EC2

JDK1.7

JAddi+onChain$

OS$

MySQLDB$

OS$

OS$

MySQLDB$

node1

node3

node2

Figure 5.14: Database connection from node1 points to node3

instances) are created and booted on the Amazon EC2 cloud platform. These EC2 instances

with the instance IDs: i-f25be691, i-f05be693, and i-ae6f66c4 correspond to the three machines:

node 1, node 2, node 3 respectively. The MySQL database servers are installed in two ma-

chines: node 2 and node 3. The JAdditionChain component from the machine node 1 creates

the shortest addition chain of the number N, with a number N is automatic created by using

randomize function in a range from 200 to 500. For each number N, the result is inserted to

the MySQL database that is running on the machine node 2.

After the running of the current VMI deployment model in several minutes, we change the

database connection of JAdditionChain to the MySQL database that is running on the machine

node 3 as in Figure 5.14 and execute the new VMI deployment model. The output results of

JAdditionChain are inserted into the MySQL database that is running on the machine node 3

instead of the machine node 2. Figure 5.15 shows a visual graph of the monitoring on the CPU

utilization of three machines node 1 (instance id: i-f25be691), node 2 (instance id:i-f05be693),

and node 3 (instance id: i-ae6f66c4).

5.3. Experiment Results 95

From Figure 5.15, we consider the graph as two stages. In the first stage, node 1 and 2 are

Figure 5.15: CPU utilization of three nodes at runtime

working because the database connection of JAdditionChain links to the database on node 2.

They use a lot of CPU resources while the machine node 3 is just running with no workload so

it uses very few CPU resources.

However, in the second stage, when we change the database connection of AdditionChain points

to the database on node 3 ; we see that two machines node 1, and node 3 are working and use

a lot of CPU resources while the machine node 2 continues the running with no workload so it

uses very few CPU resources.

5.3.2.3 Discussion

From the experiments in the Scenarios 1 and 2, we see that users can benefit from the use

of model-driven approach for saving time, reducing the complexity of the VMI provisioning

process in cloud computing. By using a graphical user interface, cloud users can create virtual

images with on demand configurations and reconfigure them at runtime easily. While in the

traditional approach the manipulations of changing the VMI configurations are taken by the

experts of the cloud providers, because they require the knowledge of underlying systems and

software dependencies.

Table 5.1 is an example of the comparison operations of the VMI reconfiguration at runtime

of both approaches: Traditional and Model-driven with using Kevoree framework in the Sce-

narios 1. In this comparison, the operations of the traditional approach were carried out by IT

experts who have the experience and understanding of the virtualization systems and software

dependencies.

In the Table 5.1, we see that with each change in the configuration of the running VMIs, the

traditional approach takes more time than the model-driven approach. In the above example, it

needs 628.423 seconds to change the database from the MySQL to change the Postgres but the

MDE approach just needs 197.067 seconds. The main reason leading to this difference stems

96 Chapter 5. Experiment Evaluation

Traditional Approach

Step Operation Time

(second)

1 Deploy a template VMI to

a temporary node

75.082s

2 Install Python 6.854s

3 Install MySQL 48.609s

4 Save running VMI into an

image A (AMI)

112.968s

5 Deploy image A to two

nodes

81.305s

Replace MySQL by Post-

gres

6 Deploy image A to a tem-

porary node

76.037s

7 Remove MySQL 14.586s

8 Install Postgres 29.663s

9 Save running VMI into an

image B (AMI)

105.104s

10 Deploy image B to two

nodes

78.215s

Total time 628.423s

MDE Approach

Step Operation Time

(second)

1 Deploy a template VMI to

two nodes

79.173s

2 Install Python in the run-

ning nodes

7.429s

3 Install MySQL in the run-

ning nodes

58.038s

Replace MySQL by Post-

gres

4 Remove MySQL in two

nodes

17.748s

5 Install Postgres in the run-

ning nodes

34.679s

Total time 197.067s

Table 5.1: The comparison of VMI reconfiguration operations of the Traditional approach and

Model-driven approach for the Scenario 1

from the traditional approach needs more work to be able to change the configuration of the

running VMIs. First of all, it is necessary to build a VMI fits the user’s requirements from a

certain template VMI (Step 1-3); and then to save the modified VMI into a new VMI (Step 4)

for deploying into the nodes (two nodes) as on demand (Step 5). For changing the configuration

for the virtual machine is running, the VMI which is modified in the Step 4 will be re-deployed

as a temporary virtual machine for changing the configuration accordingly (Step 6-8) and to

be saved as a newer VMI for re-deploying to the nodes (Step 9-10).

Additionally, the traditional approach consumes more resources than the model-driven ap-

proach, such as: (i) storage resources for keeping as archives the images that are created in

the steps 4 and 9; (ii) network resources for transferring the images through the network in

the steps 1, 4, 5, 6, 9 and 10 (the estimation of the amount of the data transfer through the

network is explained in Section 5.3.1.1).

5.4 Chapter Discussion and Summary

From the experiments in this chapter, we see that the model-driven VMI provisioning process

helps to reduce the amount of data transferred through the network, and the power consumption

of virtual machines. It provides a mechanism for managing the inter-dependencies of software

5.4. Chapter Discussion and Summary 97

Experiment C11 C22 C33 C44 C55 C66 C77

Data transfer through the network

(Session 5.3.1.1)

p

Power consumption (Session 5.3.1.2)
p

VMIs reconfiguration in Scenario 1

(Session 5.3.2.1)

p p p p

VMIs deployment topology re-

configuration in Scenario 2 (Ses-

sion 5.3.2.2)

p p p p

Table 5.2: How the experiments fulfils the challenges which are addressed in

Chapter 1

1 C1 - Modeling the variability of VMI ’s configuration options to handle the

interdependencies of software packages
2 C2 - Reducing the amount of data transferred through the networking in

the provisioning processes
3 C3 - Optimizing the power consumption of VMIs at runtime
4 C4 - Providing the graphical interface and easy-to-use tools for user inter-

actions
5 C5 - Automating the deployment of VMIs
6 C6 - Supporting the reconfiguration of VMIs at runtime
7 C7 - Handling the complex and flexible deployment topology of VMIs

packages, and deploying the VMIs with the specific deployment topologies. It also supports

for VMIs reconfiguration at runtime to adapt to the user ’s requirements. For more details, we

examine the comparison on the Table 5.2 to see how the above experiments fulfill the challenges

that are addressed in Chapter 1.

In summary, the experiments in this chapter show that the model-driven approach for the VMIs

provisioning process in cloud computing provides:

• an abstraction level for managing the configurations of virtual machine images at design

time and runtime;

• an abstraction level for handling the deployment process and topology of virtual machine

images at design time and runtime.

Chapter 6

Conclusion

Contents

6.1 Conclusion . 99

6.2 Limitations . 102

6.3 Perspectives . 103

6.1 Conclusion

In this thesis, we proposed a Model-Driven approach for virtual machine images provisioning in

cloud computing. We used feature modeling technique to manage the configurations of virtual

machines, and then we used model-based methodology to model and define the processes of

virtual machine image deployments and reconfigurations at runtime. We have shown that the

model-driven approach improves the performance of the provisioning process and makes the

management of virtual machine images to be more flexible and easier than the traditional

approach. We also have presented how our approach differs from the traditional approach. A

visual comparison of the approaches shown in Figure 6.1. The key difference of our approach

compared to the traditional approach can be summarized as the following:

• Traditional approach: A standard virtual image, containing all possible software, can

be cloned and booted many times

• Model-driven approach: Considering the virtual machine images, the software pack-

ages and the deployment topology of VMIs as the models; creating the configuration of

VMIs and the deployment model at design time while creating the concrete VMIs at

runtime

To conclude the thesis, let us recall our contributions that positioning with respect to the

challenges addressed in the introduction chapter (Session 1.3, Chapter 1):

• C1 - Modeling the variability of the VMI configurations and handling the software package

dependencies?

We represented a software package as a future element in a feature model. Thanks to the

benefit of using feature models for representing the complex dependencies of elements,

we can define a software package with its required packages or its mutual exclusive soft-

ware package. By using the selection algorithms, the feature model helps to select the

software packages with their dependencies easily and efficiently. We considered the VMI

100 Chapter 6. Conclusion

Template(

VMI(Clone(and(boot(

images(

Template(

VMI(
Template(

VMI(

Virtual(

Machine(1(

Virtual(

Machine(2(

Virtual(

Machine(N(

(a) Traditional approach

VMI$

Configura-on$

Manager!

VMI$

Deployment$

Manager!

Template$

VMI$
So7ware$

repository$

VMI$deployment$

model$execu-on$

Template$

VMI$
Template$

VMI$ Virtual$

Machine1

Virtual$

Machine2

Virtual$

MachineN

(b) Model-driven approach

Figure 6.1: Traditional and Model-driven approaches for VMI provisioning in cloud computing

configurations as Product Lines, and used feature models to represent the VMI configu-

ration options. The VMI Product Lines provided the ability of analyzing and modeling

the commonalities and variabilities of VMIs. The commonality of the VMIs provides the

common platforms that contain the base components for determining the characteristics

of the VMIs. While the variability represents the flexibility of VMI configurations, it

provides the pre-definitions of what possible software shall be installed into a virtual ma-

chine, and defines exactly the places where the VMI can differ from the others. We also

extended the standard feature model to have ability to represent software and its informa-

tion (e.g installation time, uninstallation time, size of package, etc.) as the features of the

feature model. We used a feature reasoning engine - SPLAR for managing the product

derivation process. Like other standard feature reasoning engine, it supports to derive the

valid VMI configuration from the user ’s selection. We also extended SPLAR by adding

the algorithms to adapt to the requirements of the product derivation, for example finding

the optimal VMI configuration in the term of minimum installation time.

• C2 - Reducing the amount of data transferred through the network in the provisioning

process

In our approach, we create the expected virtual images at runtime, when the template

VMI already deployed on the cloud nodes. The template VMIs are the images with

6.1. Conclusion 101

minimum configuration, and their sizes are smaller than the images that contain many

kinds of software packages, so the amount of data transferred through the network of

these template images is less than the amount of data transferred to the case of images

contain unneeded software.

• C3 - Optimizing the power consumption of VMIs at runtime

By using the VMI feature models, our approach creates the expected VMs that contain

only the needed software packages and their dependencies. They do not have unnecessary

software to run during the operation, so they will save the computing resources (CPU,

memory, storage, etc.) and the power consumption of the virtual machines.

• C4 - Providing the graphical interface and easy-to-use tools for user interactions

We developed a prototype framework with graphical user interfaces for the management

of VMI configuration and deployment processes.

We used the feature model reasoning engine and developed a graphical user interface

for the interaction between users and the reasoning engine. Therefore, the users can

create VMI configurations on demand by selecting the needed software packages while

they do not need to care about the required or the mutual exclusive packages because

these packages are selected or de-selected automatically by the reasoning engine.

We built a metamodel to pre-define the constructions and rules for the creation of the

VMI deployment model by using Eclipse Modeling Framework, so the users can create

the VMI deployment models easily and avoid errors occurred during the operating.

• C5 - Automating the deployment of VMIs

We represented the deployment scenarios, the virtual machines and software packages

as the models, and the models encapsulated the pre-definitions and the behaviours of

these things work. We define the models with two key operations: start and stop. The

start operation defines how a model is executed, for example, how a virtual machine start

and install the needed software packages, while the stop operation defines the way to

terminate the running model, for example, it defines how to remove a specific software

from a virtual machine image and how to shut-down the running machine, etc. We

develop a component to handle the execution of the models (VMI deployment models,

VMI models and software component models). It help to manage the image deployment

with the expected configuration automatically.

• C6 - Supporting the reconfiguration of VMIs at runtime

We used a model@runtime approach for implementing the deployment and reconfiguration

of the virtual machine images. We manage the deployment and reconfiguration of the

image and software packages through the model that encapsulate the pre-definitions and

the behaviour of the models. A VMI deployment model represents a topology of a VMI

deployment scenario. It also defines the virtual machine images with the corresponding

software packages. When the VMI deployment model is executed, the virtual machine

images are booted and the corresponding software packages are installed into the virtual

machines. For scaling (add new or remove) the images or reconfiguring the running

images, the new deployment model that represents for the new deployment scenario will be

compared to the current model which is represent the running system to find the difference

between two models. After that, the reconfiguration steps are applied to the running

102 Chapter 6. Conclusion

system to change it into the new one that corresponding to the new VMI deployment

model.

• Handling the complex and flexible deployment topology of VMIs

We manage the deployment of the virtual machine images through the VMI models. These

models provide the abstract representations of the cloud nodes in cloud computing. Ac-

cording to the specific technological of the cloud platforms, the VMI models define the

corresponding abstractions and representations for executing the virtual machine images.

The deployment of virtual machine images relies on the VMI deployment metamodel

which contains the pre-definitions of the constructions and the rules for the model cre-

ations. The VMI model is an entity of the VMI deployment metamodel, and when a VMI

deployment model is created, it contains the VMI model instances which are represent

for cloud nodes in the specific cloud platforms. It ensures that the deployment of virtual

machine image can be executed on the federated cloud system.

The partial results of this thesis were presented in international peer-reviewed conferences

and published in:

1. Tam Le Nhan, Gerson Sunyé, Jean-Marc Jézéquel. A Model-Driven Approach for Virtual

Machine Image Provisioning in Cloud Computing. European Conference on Service-

Oriented and Cloud Computing, ESOCC 2012. Bertinoro, Italy. Springer ISBN 978-3-

642-33426-9

2. Tam Le Nhan, Gerson Sunyé, Jean-Marc Jézéquel. A Model-Based Approach for Optimiz-

ing Power Consumption of IaaS. IEEE Second Symposium on Network Cloud Computing

and Applications, NCCA 2012, London, UK. IEEE Computer Society 2012 ISBN 978-1-

4673-5581-0

6.2 Limitations

Although our approach has brought improvements compared to the traditional approach, it

still has some limitations. First, it requires to create the VMI feature model for representing

the VMI configuration options (software packages). Second, it needs to adjust the algorithms

of the feature reasoning engine for finding the optimal configuration with respect to the ex-

pected factors. Third, it requires to define the implementations of all software components that

represent the software packages and different types of VMI models that represent the virtual

machines in the specific cloud platform.

• Creating the VMI feature model

One of the most important steps of representing the variability of the VMI configurations

is creating the VMI feature model which is used to represent all the VMI configuration

options (w.r.t software packages) and their relationships. The validity of the created VMI

configuration relies on the VMI feature model, therefore the creation of VMI feature model

must fulfil the constraints for the feature model constructions and software packages.

Therefore, the creation of the VMI feature model should be done by experts who have

experience and understanding of software and underlying systems.

6.3. Perspectives 103

• Adjusting the algorithms for the feature reasoning engine

The standard feature reasoning engine can support to validate the user ’s choices and

select the dependent features or deselect the mutual exclusive features. However, the

optimal VMI configuration relies on the search factors, such as minimum installation time,

operational cost, etc. Therefore, it needs to adjust the search algorithms of the feature

model reasoning engine according to the search factors. Additionally, the searching the

optimal VMI configuration on multiple search factors is much more complex than the

searching on the single search factor. Our approach supports to find the optimal VMI

configuration on the single search factor only.

• Creating VMI models and software component models

In our approach, we define the abstract definitions and execution behaviours of virtual

machines in different cloud platforms and software packages in the models. Therefore,

one needs to create all the VMI models and software component models with respect to

the software package that represented in the VMI feature models and the virtual machine

in the specific cloud platforms. Because the software packages are diverse and have many

kinds, while each software needs corresponding software component model to demonstrate

its execution through the two operations: start and stop. Therefore, it is challenge to

develop all software components for the large number of software packages.

6.3 Perspectives

Nowadays, cloud computing is an emerging technology. There are many vendors developing

and providing cloud services and infrastructures with different technological platforms. Model-

driven engineering have the advantage of providing the high-level abstractions of the systems

is a promising approach for cloud computing. Not only solving the problems addressed in this

thesis, it also opens up some other research challenges as the following:

• Managing the variability of cloud services

One of the key characteristics of cloud computing is the ability to provide services on

demand. The services offered may be the platforms (the virtual machines) as mentioned

in this thesis, may also be other computing utilities, such as software, databases, or

storages as services. The requirements from users are diverse, but they also have some

common features as well as the individual characteristics. Thus recognizing the services

offered by cloud computing as a family of products with the analysis of the common

platform and the variability of the products will be an effective approach. It will enable

the cloud service providers to manage, prepare the services more efficiently, and to save

the costs and resources while still fulfill the user’s requirements.

• Managing the cloud service level agreements (SLAs)

Cloud users use services and pay for what they used. Therefore, SLA contracts are very

important in cloud computing business. A SLA contract defines the rights and respon-

sibilities of both parties: Service providers and service users. The individual customers

or groups of customers using the service will have different SLA contracts. However, in

the classification of these contracts, we see that the contracts may have similar terms or

characteristics if they are used for the customers in the same groups (e.g Silver, Gold,

or Titanium groups), or for the groups of similar services (e.g. Network, Storage, CRM,

104 Chapter 6. Conclusion

or ERP services). This suggests that the Product Line engineering is a potential ap-

proach for the management of SLA contracts. It allows the cloud providers can create

and manage the SLA contracts easily and flexibility.

• Building adaptive SLA contracts

Another promising research direction of the use of model@runtime for the reconfiguration

at runtime is building adaptive SLA contracts which are applied to monitor the quality

of services (QoS) and then reflect to the SLA contracts. If the actual quality of services

conflicts with the terms that mentioned in the contract then the SLA contracts can be

adjusted to ensure the rights of the parties. Conversely, if the process is carried and SLA

contracts are changed as required, it will reflect the running system to corresponding

changes.

• Transferring, migrating services between different cloud providers

Extending out from the model-based applications for deployment and reconfiguration at

run-time services that were mentioned in Chapter 4, the model-based approach could be

well adapted for the migrating or transferring services between different cloud systems.

In this context, the cloud services can be considered as the models which are platform-

independent service models. These service models represent the pre-definitions, execution

methods of the services at the high-level of abstractions. Thus the migration or transfer

of services between different cloud system will be easier and more flexible.

Bibliography

[1] Amazon elastic compute cloud. http://aws.amazon.com/ec2/. (Cited on page 19.)

[2] Ibm smartcloud. http://www-935.ibm.com/services/us/en/cloud-enterprise/. (Cited on

page 19.)

[3] Model-driven application deployment for cloud computing environments. White Paper,

Sun Microsystem Inc., January 2010. Available online (18 pages). (Cited on pages 4, 20,

33 and 34.)

[4] M. Acher. Managing Multiple Feature Models: Foundations, Language and Applications.

PhD thesis, Université de Nice–Sophia Antipolis, 2011. (Cited on page 25.)

[5] M. Acher, P. Collet, P. Lahire, and R. B. France. Familiar: A domain-specific language

for large scale management of feature models. Science of Computer Programming, 2012.

(Cited on page 25.)

[6] N. Antonopoulos and L. Gillam. Cloud Computing: Principles, Systems and Applications.

Springer Publishing Company, Incorporated, 1st edition, 2010. (Cited on pages 15 and 18.)

[7] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A.

Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A Berkeley view of

cloud computing. Technical Report UCB/EECS-2009-28, EECS Department, University

of California, Berkeley, 2009. (Cited on pages 3, 12 and 14.)

[8] W. Arnold, T. Eilam, M.H. Kalantar, A.V. Konstantinou, and A. Totok. Automatic

realization of SOA deployment patterns in distributed environments. In Service-Oriented

Computing - ICSOC 2008, 6th International Conference, Sydney, Australia, December 1-5,

2008. Proceedings, pages 162–179, 2008. (Cited on pages 33 and 34.)

[9] D. Benavides, S. Segura, and R.C Antonio. Automated analysis of feature models 20 years

later: a literature review. Information Systems, 35(6), 2010. (Cited on pages xv and 25.)

[10] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated reasoning on feature models.

Lecture Notes in Computer Science, 3520:381–390, 2005. (Cited on pages 8, 25 and 42.)

[11] G. Blair, N. Bencomo, and R.B. France. Models@run.time. IEEE Computer, 42(10):22–27,

2009. (Cited on pages 22 and 75.)

[12] A. Brown. An introduction to model driven architecture. IBM developerWorks, 2004.

http://www.ibm.com/developerworks/rational/library/3100.html. (Cited on page 21.)

[13] R. Buyya, J. Broberg, and A.M. Goscinski. Cloud Computing Principles and Paradigms.

Wiley Publishing, 2011. (Cited on pages 16 and 18.)

[14] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and

emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility.

Future Generation Computer Systems, 25(6):599 – 616, 2009. (Cited on pages 3 and 12.)

106 Bibliography

[15] T.C. Chieu, A. Mohindra, A. Karve, and A. Segal. Solution-based deployment of com-

plex application services on a cloud. In Service Operations and Logistics and Informatics

(SOLI), 2010 IEEE International Conference on, pages 282 –287, july 2010. (Cited on

pages 33 and 34.)

[16] T.C. Chieu, A. Mohindra, A.A. Karve, and A. Segal. Dynamic scaling of web applications

in a virtualized cloud computing environment. In e-Business Engineering, 2009. ICEBE

’09. IEEE International Conference on, pages 281 –286, oct. 2009. (Cited on pages 4, 33

and 34.)

[17] K. Christian, T. Thomas, S. Gunter, F. Janet, L. Thomas, W. Fabian, and A. Sven.

Featureide: A tool framework for feature-oriented software development. In Proceedings

of the 31st International Conference on Software Engineering, ICSE ’09, pages 611–614,

Washington, DC, USA, 2009. IEEE Computer Society. (Cited on page 25.)

[18] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison-

Wesley Professional, 3rd edition, 2001. (Cited on page 22.)

[19] K. Czarnecki and U.W Eisenecker. Generative programming: methods, tools, and applica-

tions. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000. (Cited on

pages 20, 22 and 23.)

[20] B. Dougherty, J. White, and D.C. Schmidt. Model-driven auto-scaling of green cloud

computing infrastructure. Future Generation Computer Systems, 28(2):371 – 378, 2012.

(Cited on pages 27, 30 and 34.)

[21] R. France and B. Rumpe. Model-driven development of complex software: A research

roadmap. In 2007 Future of Software Engineering, FOSE ’07, pages 37–54, Washington,

DC, USA, 2007. IEEE Computer Society. (Cited on page 20.)

[22] R.P. Goldberg. Survey of Virtual Machine Research. IEEE Computer Magazine, pages

34–45, June 1974. (Cited on pages 16 and 25.)

[23] R. Han, L. Guo, Y. Guo, and S. He. A deployment platform for dynamically scaling

applications in the cloud. In Cloud Computing Technology and Science (CloudCom), 2011

IEEE Third International Conference on, pages 506 –510, 29 2011-dec. 1 2011. (Cited on

page 33.)

[24] David Hilley and David Hilley. Cloud computing: A taxonomy of platform and

infrastructure-level offerings, 2009. (Cited on page 12.)

[25] C.N. Hfer and G. Karagiannis. Cloud computing services: taxonomy and comparison.

Journal of Internet Services and Applications, 2:81–94, 2011. (Cited on pages xv and 14.)

[26] J.M. Jézéquel. Modeling and aspect weaving. In MMOSS, 2006. (Cited on page 20.)

[27] J.M. Jézéquel. Model-Driven Engineering for Software Product Lines. ISRN Software

Engineering, 2012, 2012. (Cited on pages 22 and 23.)

[28] K. C. Kang, S.G. Cohen, J.A Hess, W.E Novak, and A.S Peterson. Feature-oriented

domain analysis (FODA) feasibility study. Technical report, Carnegie-Mellon University

Software Engineering Institute, November 1990. (Cited on page 24.)

Bibliography 107

[29] A. Konstantinou, T. Eilam, M. Kalantar, A. Totok, W. Arnold, and E. Snible. An ar-

chitecture for virtual solution composition and deployment in infrastructure clouds. In

Proceedings of the 3rd international workshop on Virtualization technologies in distributed

computing, VTDC ’09, pages 9–18, New York, NY, USA, 2009. ACM. (Cited on pages 33

and 34.)

[30] J. Ludewig. Models in software engineering - an introduction. Software and Systems

Modeling, 2(1):5–14, March 2003. (Cited on page 20.)

[31] D.A. Marcos, J.P Gelas, L. Laurent, and O. Anne-Cécile. The Green Grid5000: Instru-

menting a Grid with Energy Sensors. In INGRID’2010 : 5th International Workshop on

Distributed Cooperative Laboratories: Instrumenting the Grid, pages 25–42. Springer, 2012.

(Cited on page 90.)

[32] P. Mell and T. Grance. The nist definition of cloud computing. Technical report, National

Institute of Standard and Technology - NIST, 2011. (Cited on pages 3, 13, 14 and 18.)

[33] M. Mendonça. Ecient Reasoning Techniques for Large Scale Feature Models. PhD thesis,

University of Waterloo, 2011. (Cited on pages 42 and 44.)

[34] M. Mendonça, M. Branco, and D.D. Cowan. S.p.l.o.t.: Software product lines online tools.

In OOPSLA Companion, pages 761–762, 2009. (Cited on pages 25 and 44.)

[35] M. Mendonça and D.D. Cowan. Decision-making coordination and efficient reasoning

techniques for feature-based configuration. Sci. Comput. Program., 75(5):311–332, 2010.

(Cited on page 44.)

[36] M. Mendonça, A. Wasowski, and K. Czarnecki. Sat-based analysis of feature models is easy.

In 13th International Conference on Software Product Lines (SPLC 2009), San Francisco,

CA, USA, 2009. (Cited on pages 8, 25 and 42.)

[37] M. Mendonça, A. Wasowski, and K. Czarnecki. Sat-based analysis of feature models is

easy. In SPLC, pages 231–240, 2009. (Cited on pages 25 and 44.)

[38] B. Morin, O. Barais, J.M. Jézéquel, F. Fleurey, and A. Solberg. Models@ run.time to

support dynamic adaptation. IEEE Computer, 42:44–51, 2009. (Cited on pages 22 and 75.)

[39] B. Morin, O. Barais, G. Nain, and J.M. Jézéquel. Taming dynamically adaptive systems

using models and aspects. In Proceedings of the 31st International Conference on Software

Engineering, ICSE ’09, pages 122–132, Washington, DC, USA, 2009. IEEE Computer

Society. (Cited on page 22.)

[40] K. Pohl, G. Böckle, and F.J. Linden. Software Product Line Engineering: Foundations,

Principles and Techniques. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

(Cited on pages xv, 22, 23 and 28.)

[41] L. Qian, Z. Luo, Y. Du, and L. Guo. Cloud computing: An overview. In Proceedings of the

1st International Conference on Cloud Computing, CloudCom ’09, pages 626–631, Berlin,

Heidelberg, 2009. Springer-Verlag. (Cited on page 12.)

108 Bibliography

[42] D.C. Schmidt. Guest editor’s introduction: Model-driven engineering. IEEE Computer,

39(2):25–31, 2006. (Cited on pages 21 and 22.)

[43] M. Sethi, K. Kannan, N. Sachindran, and M. Gupta. Rapid deployment of SOA solutions

via automated image replication and reconfiguration. In Services Computing, 2008. SCC

’08. IEEE International Conference on, volume 1, pages 155 –162, july 2008. (Cited on

pages 33 and 34.)

[44] J.E. Smith and N. Ravi. An Overview of Virtual Machine Architectures. Elsevier Science,

November, 2003. (Cited on page 25.)

[45] T. Thüm, D.S. Batory, and C. Kästner. Reasoning about edits to feature models. In ICSE,

pages 254–264, 2009. (Cited on pages 8, 25 and 42.)

[46] J.P. Tolvanen. Incremental Method Engineering with Modeling Tools: Theoretical Princi-

ples and Empirical Evidence. PhD thesis, University of Jyväskylä, 1998. (Cited on pages xv

and 20.)

[47] A.J. Younge, G. Laszewski, L. Wang, S. Lopez-Alarcon, and W. Carithers. Efficient re-

source management for cloud computing environments. International Conference on Green

Computing, 0:357–364, 2010. (Cited on page 86.)

[48] T. Zhang, Z. Du, Y. Chen, X. Ji, and X. Wang. Typical virtual appliances: An optimized

mechanism for virtual appliances provisioning and management. Journal of Systems and

Software, 84(3):377 – 387, 2011. (Cited on pages 20 and 34.)

[49] T. Ziadi, J.M. Jézéquel, and F. Fondement. Product Line Derivation with UML. In

Proceedings of 1st Workshop on Software Variability Management at 25th International

Conference on Software Engineering, 2003. (Cited on pages 22 and 23.)

	I Introduction & State of The Art
	Introduction
	Problem statement
	Challenges and Key Issues
	Challenges
	Key Issues

	Overview of The Solution
	Feature Modeling for VMI Configuration Management
	Model-Based Deployment Process
	Claims

	Contribution of The Thesis
	Contributions to the VMI configuration management
	Contributions to the VMI deployment and reconfiguration at runtime

	Structure of The Thesis

	State of The Art
	Chapter Overview
	Cloud Computing
	An overview of cloud computing
	Virtualization technology in cloud computing
	Requesting and provisioning processes of cloud services

	Model-Driven Engineering
	Model, Metamodel and Modeling, Metamodeling
	Model-Driven Engineering and Model-Driven Architecture
	Domain-Specific Modeling
	Model@Runtime

	Feature Modeling for VMI
	Software Product Lines and Feature Modeling
	VMI Configurations as Product Lines
	The Configuration Management of VMIs

	The Deployment Process of VMIs
	State of The Art Summary

	II Contributions
	Feature Modeling for Virtual Machine Image Configuration Management
	Chapter Overview
	Feature Modeling for VMI Configuration Management
	An overall architecture of feature modeling
	The VMI Feature Model
	VMI Product Derivation Process
	VMI Resolved Model

	Feature Model Reasoning Engine
	Overview of SPLAR
	Meta-model for VMI feature model
	Optimization in the VMI Product Derivation Process

	Chapter summary

	Model-driven engineering for VMIs deployment and reconfiguration at runtime
	Overview of chapter
	The model-driven VMIs provisioning process
	The VMIs deployment
	VMIs deployment metamodels
	VMI deployment models
	Model execution

	The VMIs reconfiguration at runtime process
	The model@runtime approach for VMIs reconfiguration at runtime
	The reconfiguration steps

	Chapter summary

	III Experiment Evaluation & Conclusion
	Experiment Evaluation
	Chapter Overview
	Experiment Environments
	Amazon Elastic Compute Cloud
	Grid5000 Virtualization Platform

	Experiment Results
	Power consumption comparison
	VMI re-configuration at runtime

	Chapter Discussion and Summary

	Conclusion
	Conclusion
	Limitations
	Perspectives

	Bibliography

