C. Et-optimisations-chapitre-8, . Autres, . Outils, and . Dans, Nous allons maintenant aborder la description d'un outil qui a été développé tout au long de cette thèse Ce développement a été motivé dans l'idée de simplifier la description des géométries dans les codes Feel++.T o u t e sl e sf o n c t i o n n a l i t é sd é c r i t e sd a n sc e t t e partie reposent sur l'implémentation d'une classe C++ nommée GeoTool. Elle propose la définition de plusieurs géométries de base qui sont caractérisées par quelques paramètres pratiques. Nous pouvons aussi interagir entre ces objets pour créer des formes plus complexes . Les opérations disponibles sont l'union et la différence. Nous montrerons également l'implémentation d'une géométrie de base. Cette description a pour but de montrer l'effort de développement qui a été fait dans la classe GeoTool pour permettre l, Celle-ci nous permet ensuite de générer le maillage associé à la géométrie

. Formes-de-base-un, r o n sl e sf o r m e sc l a s s i q u e st e l l e sq u el e st r i a n g l e s ,q u a d r a n g l e s ,d i vers autres polygones, cercles, hexaèdres, sphères, cylindres, etc. D'autres figures plus spécifiques sont aussi présentes. Pour illustrer cet environnement, nous commençons par présenter le code correspondant à la définition d

C. Simulation, . Des, and . Sanguins, Nous avons ensuite la figure 10.5 qui représente la même simulation, mais avec les conditions aux limites de sortie basées sur le modèle de Windkessel. Ces résultats utilisent la configuration (1) Nous constatons que le comportement de la simulation est assez similaire pour le début de la propagation de l'onde de pression

S. Dans and . Géométries, SIMULATION DES ÉCOULEMENTS SANGUINS un comportement non physiologique apparaissant à l'entrée (figures 10.18(c) et 10, p.18

E. Effet, onde de pression est réfléchie par l'anévrisme et alors une grande partie de celle-ci revient vers l'entrée de l'écoulement. Il faut donc trouver une condition d'entrée plus élaborée pour éviter d'avoir ces perturbations. On peut également dire que le phénomène de masse ajoutée est très présent dans cette application

. Encyclopédie-familiale-de-la-santé, Comprendre, prévenir, soigner.Q u é b e cA m é rique, 2010.

Y. Achdou and J. Guermond, Convergence Analysis of a Finite Element Projection/Lagrange--Galerkin Method for the Incompressible Navier--Stokes Equations, SIAM Journal on Numerical Analysis, vol.37, issue.3
DOI : 10.1137/S0036142996313580

N. Acikgoz and C. L. Bottasso, A unified approach to the deformation of simplicial and non-simplicial meshes in two and three dimensions with guaranteed validity, < c e: t i t l e > F o u r t h {MIT} Conference on Computational Fluid and Solid Mechanics</ce :title>, pp.8-13
DOI : 10.1016/j.compstruc.2006.11.009

P. R. Amestoy, I. S. Duff, J. Y. Excellent, and J. Koster, A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM Journal on Matrix Analysis and Applications, vol.23, issue.1, pp.1-5
DOI : 10.1137/S0895479899358194

URL : https://hal.archives-ouvertes.fr/hal-00808293

P. R. Amestoy, A. Guermouche, J. Y. Excellent, and S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing, vol.32, issue.2, pp.136-156, 2006.
DOI : 10.1016/j.parco.2005.07.004

URL : https://hal.archives-ouvertes.fr/hal-00358623

H. Askes, E. Kuhl, and P. Steinmann, An ALE formulation based on spatial and material settings of continuum mechanics. Part 2: Classification and applications, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.39-41, pp.193-232, 2004.
DOI : 10.1016/j.cma.2003.09.031

G. Astarita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, Journal of Applied Mechanics, vol.42, issue.3, 1974.
DOI : 10.1115/1.3423693

M. Astorino and C. Grandmont, Convergence analysis of a projection semiimplicit coupling scheme for fluid?structure interaction problems, Numerische Mathematik
URL : https://hal.archives-ouvertes.fr/hal-00860416

S. Badia, F. Nobile, and C. Vergara, Robin???Robin preconditioned Krylov methods for fluid???structure interaction problems, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.33-36
DOI : 10.1016/j.cma.2009.04.004

S. Badia, A. Quaini, and A. Quarteroni, Modular vs. non-modular preconditioners for fluid???structure systems with large added-mass effect, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.49-50, pp.4216-4232, 2008.
DOI : 10.1016/j.cma.2008.04.018

S. Balay, W. D. Gropp, L. C. Mcinnes, and B. F. Smith, Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries, Modern Software Tools in Scientific Computing, pp.163-202, 1997.
DOI : 10.1007/978-1-4612-1986-6_8

G. Baltgaile, Arterial wall dynamics, Perspectives in Medicine, vol.1, issue.1-12, pp.1-4, 2012.
DOI : 10.1016/j.permed.2012.02.049

M. Bathe and . Kamm, A Fluid-Structure Interaction Finite Element Analysis of Pulsatile Blood Flow Through a Compliant Stenotic Artery, Journal of Biomechanical Engineering, vol.121, issue.4
DOI : 10.1115/1.2798332

A. J. Bax and R. A. Schachar, Maximisation of the design of a scleral expansion band segment for the reversal of presbyopia, ANSYS Conference and Exhibition, 2000.

. Gustavg and . Belz, Elastic properties and windkessel function of the human aorta, Cardiovascular Drugs and Therapy, vol.9, pp.7-10

C. Bertoglio, Problèmes Directs et Inverses en Interaction Fluide-Structure. Application à l'hémodynamique, 2012.

S. Bertoluzza, M. Ismail, V. Chabannes, and C. , Prud'homme. Saddle point formulation for the fat boundary method : fluid structure interaction case, 2013.

S. Bertoluzza, M. Ismail, V. Chabannes, and C. , Prud'homme. Saddle point formulation for the fat boundary method : laplacian case, 2013.

S. Bertoluzza, M. Ismail, V. Chabannes, and C. , Prud'homme. Saddle point formulation for the fat boundary method : Stokes case, 2013.

S. Bertoluzza, M. Ismail, and B. Maury, The fat boundary method : Semi-discrete scheme and some numerical experiments In Domain Decomposition Methods in Science and Engineering, fLecture Notes in Computational Science and Engineering

S. Bertoluzza, M. Ismail, and B. Maury, Analysis of the fully discrete fat boundary method, Numerische Mathematik, vol.210, issue.1
DOI : 10.1007/s00211-010-0317-4

URL : https://hal.archives-ouvertes.fr/hal-00665644

J. Bonet and R. D. Wood, Nonlinear continuum mechanics for finite element analysis, 1997.
DOI : 10.1017/CBO9780511755446

C. L. Bottasso, D. Detomi, and R. Serra, The ball-vertex method : an e ws i m p l es p r i n ga n a l o g ym e t h o df o ru n s t r u c t u r e dd y n a m i cm e s h e s, Computer Methods in Applied Mechanics and Engineering, vol.1, pp.9-13

M. Breuer, G. De-nayer, M. Münsch, T. Gallinger, and R. Wüchner, Fluid???structure interaction using a partitioned semi-implicit predictor???corrector coupling scheme for the application of large-eddy simulation, Journal of Fluids and Structures, vol.29
DOI : 10.1016/j.jfluidstructs.2011.09.003

URL : https://hal.archives-ouvertes.fr/hal-01018330

F. Franco, M. Brezzi, and . Fortin, Mixed and hybrid finite element methods, 1991.

E. Burman and M. A. Fernández, Continuous interior penalty finite element method for the time-dependent Navier???Stokes equations: space discretization and convergence, Numerische Mathematik, vol.33, issue.1, pp.3-9
DOI : 10.1007/s00211-007-0070-5

URL : https://hal.archives-ouvertes.fr/hal-00715243

E. Burman and M. A. Fernández, Stabilization of explicit coupling in fluid???structure interaction involving fluid incompressibility, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.5-8
DOI : 10.1016/j.cma.2008.10.012

URL : https://hal.archives-ouvertes.fr/inria-00247409

C. Caldini-queiros, V. Chabannes, M. Ismail, G. Pena, C. Prud-'homme et al., Towards large-scale three-dimensional blood flow simulations in realistic geometries, ESAIM: Proceedings, vol.43, issue.2012, pp.2012-2024
DOI : 10.1051/proc/201343013

URL : https://hal.archives-ouvertes.fr/hal-00786556

C. Canuto, A. Hussaini, T. Quarteroni, and . Zang, Spectral methods.S p r i n g e r, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01296839

C. J. Carmody, G. Burriesci, I. C. Howard, and E. A. Patterson, An approach to the simulation of fluid???structure interaction in the aortic valve, Journal of Biomechanics, vol.39, issue.1, pp.158-169, 2006.
DOI : 10.1016/j.jbiomech.2004.10.038

P. Causin, J. F. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid???structure problems, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.42-44
DOI : 10.1016/j.cma.2004.12.005

URL : https://hal.archives-ouvertes.fr/hal-00695954

V. Chabannes, G. Pena, and C. Prud-'homme, High-order fluidestructure interaction in 2d and 3d application to blood flow in arteries, Journal of Computational and Applied Mathematics, vol.2, issue.0, pp.4-6

P. G. Ciarlet, The finite element method for elliptic problems, pp.2-4, 2002.

R. Codina, G. Houzeaux, H. Coppola-owen, and J. Baiges, The fixed-mesh ALE approach for the numerical approximation of flows in moving domains, Journal of Computational Physics, vol.228, issue.5
DOI : 10.1016/j.jcp.2008.11.004

G. Cottet and E. Maitre, A level set method for fluid-structure interactions with immersed surfaces. Mathematical models and methods in applied sciences
URL : https://hal.archives-ouvertes.fr/hal-00103198

P. Crosetto, P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos et al., Fluid???structure interaction simulation of aortic blood flow, Computers & Fluids, vol.43, issue.1, pp.4-6
DOI : 10.1016/j.compfluid.2010.11.032

A. Curnier, Méthodes numériques en mécanique des solides. PPUR presses polytechniques, 1993.

C. Daversin, S. Veys, C. Trophime, and C. Prud-'homme, A Reduced Basis Framework: Application to large scale non-linear multi-physics problems, ESAIM: Proceedings, vol.43, 2012.
DOI : 10.1051/proc/201343015

URL : https://hal.archives-ouvertes.fr/hal-00786557

V. Doyeux, Y. Guyot, V. Chabannes, C. Prud-'homme, and M. Ismail, Simulation of two-fluid flows using a finite element/level set method. application to bubbles and BIBLIOGRAPHIE vesicle dynamics, Journal of Computational and Applied Mathematics, vol.2, issue.0, pp.4-6
URL : https://hal.archives-ouvertes.fr/hal-01345573

V. Doyeux, V. Chabannes, C. Prud-'homme, and M. Ismail, Simulation of vesicle using level set method solved by high order finite element, ESAIM : Proceedings
DOI : 10.1051/proc/201238018

URL : https://hal.archives-ouvertes.fr/hal-00665007

A. Drochon and R. Chotard-ghodsnia, Le sang et les cellules circulantes : de la rhéologie aux enjeux cliniques : L'eau et le monde vivant

T. Dunne and R. Rannacher, Adaptive finite element approximation of fluidstructure interaction based on an eulerian variational formulation. Fluid-structure interaction

G. Duvaut and H. Dumontet, Mécanique des milieux continus, 1990.

N. Khatib, Modélisation mathématique de l'athérosclérose, 2009.

H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block Preconditioners Based on Approximate Commutators, SIAM Journal on Scientific Computing, vol.27, issue.5
DOI : 10.1137/040608817

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.9267

H. C. Elman, MULTIGRID AND KRYLOV SUBSPACE METHODS FOR THE DISCRETE STOKES EQUATIONS, International Journal for Numerical Methods in Fluids, vol.35, issue.8, 1998.
DOI : 10.1002/(SICI)1097-0363(19960430)22:8<755::AID-FLD377>3.0.CO;2-1

A. Ern and J. L. Guermond, Theory and practice of finite elements, 2004.
DOI : 10.1007/978-1-4757-4355-5

C. R. Ethier and D. Steinman, Exact fully 3D Navier-Stokes solutions for benchmarking, International Journal for Numerical Methods in Fluids, vol.21, issue.5, pp.9-12, 1994.
DOI : 10.1002/fld.1650190502

M. Faivre, Gouttes, Vésicules Et Globules Rouges, 2006.

M. Fernández, J. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, International Journal for Numerical Methods in Engineering, vol.9, issue.4
DOI : 10.1002/nme.1792

M. Á. Fernández and M. Moubachir, A Newton method using exact jacobians for solving fluid???structure coupling, Computers & Structures, vol.83, issue.2-3
DOI : 10.1016/j.compstruc.2004.04.021

H. Finney, Finite element analysis Engineering with Rubber : How to Design Rubber Components, Hanser Gardner

L. Formaggia, A. Quarteroni, and A. Veneziani, Cardiovascular Mathematics : Modeling and simulation of the circulatory system.S p r i n g e rV e r l a g
DOI : 10.1007/978-88-470-1152-6

L. Formaggia, J. Gerbeau, F. Nobile, and A. Quarteroni, On the coupling of 3D and 1D Navier???Stokes equations for flow problems in compliant vessels, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.6-7, pp.561-582, 2001.
DOI : 10.1016/S0045-7825(01)00302-4

URL : https://hal.archives-ouvertes.fr/hal-00691928

L. Formaggia and F. Nobile, A stability analysis for the arbitrary lagrangian eulerian formulation with finite elements, East West Journal of Numerical Mathematics, issue.1

L. Formaggia and F. Nobile, Stability analysis of second-order time accurate schemes for ale?fem. Computer methods in applied mechanics and engineering, pp.4097-4116, 2004.

L. Formaggia and C. Vergara, Prescription of General Defective Boundary Conditions in Fluid-Dynamics, Milan Journal of Mathematics, vol.198, issue.37-40, p.0
DOI : 10.1007/s00032-012-0185-8

T. G. Gallinger, Effiziente Algorithmen zur partitionierten Lösung stark gekoppelter Probleme der Fluid-Struktur-Wechselwirkung.S h a k e r

W. Ganong, Physiologie médicale.D eB o e c kS u p é r i e u r

J. F. Gerbeau and M. Vidrascu, A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, 2003.
DOI : 10.1051/m2an:2003049

URL : https://hal.archives-ouvertes.fr/hal-00694625

C. Geuzaine and J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.69, issue.4
DOI : 10.1002/nme.2579

F. Gieseke, G. Moruz, and J. Vahrenhold, Resilient kd trees : K-means in space revisited, Data Mining (ICDM), 2010 IEEE 10th International Conference on, pp.815-820, 2010.

F. J. Gijsen, E. Allanic, F. N. Van-de-vosse, and J. D. Janssen, The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90?? curved tube, Journal of Biomechanics, vol.32, issue.7
DOI : 10.1016/S0021-9290(99)00014-7

R. Glowinski, T. Pan, I. Todd, . Hesla, D. Daniel et al., A distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.25, issue.5, pp.7-12
DOI : 10.1016/S0301-9322(98)00048-2

R. Glowinski, T. Pan, and J. Periaux, A fictitious domain method for Dirichlet problem and applications, Computer Methods in Applied Mechanics and Engineering, vol.111, issue.3-4
DOI : 10.1016/0045-7825(94)90135-X

R. Glowinski, T. Pan, and J. Periaux, A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.112, issue.1-4, pp.1-3
DOI : 10.1016/0045-7825(94)90022-1

W. J. Gordon and C. A. Hall, Construction of curvilinear coordinate systems and their applications, Int. J. Numer. Meth. Eng, vol.7, pp.4-6, 1973.

W. J. Gordon and C. A. Hall, Transfinite element methods: Blending-function interpolation over arbitrary curved element domains, Numerische Mathematik, vol.1, issue.2, pp.109-129, 1973.
DOI : 10.1007/BF01436298

V. Grevy and E. Escuret, Le retour veineux sanguin cérébral Annales Françaises d'Anesthésie et de Réanimation

J. Guermond and J. Shen, A new class of truly consistent splitting schemes for incompressible flows, Journal of Computational Physics, vol.192, issue.1
DOI : 10.1016/j.jcp.2003.07.009

J. Hart, G. W. Peters, P. J. Schreurs, and F. P. Baaijens, A threedimensional computational analysis of fluid-structure interaction in the aortic valve, Journal of Biomechanics, vol.6, issue.1

F. Hecht, O. Pironneau, J. Morice, A. L. Hyaric, and K. Ohtsuka, Freefem++ documentation, version 3, 2012.

B. Hendrickson and R. Leland, The chaco user's guide version 2.0, 1995.
DOI : 10.2172/10106339

URL : http://www.osti.gov/scitech/servlets/purl/10106339

C. O. Horgan and G. Saccomandi, Constitutive Models for Compressible Nonlinearly Elastic Materials with Limiting Chain Extensibility, Journal of Elasticity, vol.46, issue.2, pp.1-2, 2004.
DOI : 10.1007/s10659-005-4408-x

J. Hron and S. Turek, A monolithic FEM solver for an ALE formulation of fluid? structure interaction with configuration for numerical benchmarking. Computational Methods for Coupled Problems in Science and Engineering, volume First Edition, p.148, 2005.

J. Hron and S. Turek, A monolithic FEM/multigrid solver for an ALE formulation of fluid-structure interaction with applications in biomechanics. Fluid-Structure Interaction

J. Thomas, A. Hughes, and . Brooks, A multidimensional upwind scheme with no crosswind diffusion. Finite element methods for convection dominated flows, AMD, pp.19-35, 1979.

J. Thomas, . Hughes, P. Leopoldo, . Franca, M. Gregory et al., A new finite element formulation for computational fluid dynamics : Viii. the galerkin/leastsquares method for advective-diffusive equations, Computer Methods in Applied Mechanics and Engineering, vol.3, issue.2, pp.1-7

M. Ismail, Méthode de la frontière élargie pour la résolution de problèmes elliptiques dans des domaines perforés. Application aux écoulements fuides tridimensionnels, 2004.

V. John and G. Matthies, Higher-order finite element discretizations in a benchmark problem for incompressible flows, International Journal for Numerical Methods in Fluids, vol.73, issue.8, p.7
DOI : 10.1002/fld.195

P. Kalita and R. Schaefer, Mechanical Models of Artery Walls, Archives of Computational Methods in Engineering, vol.287, issue.3, pp.1-3
DOI : 10.1007/s11831-007-9015-5

H. Kanchi and A. Masud, A 3D adaptive mesh moving scheme, International Journal for Numerical Methods in Fluids, vol.194, issue.6-8
DOI : 10.1002/fld.1512

S. L. Karman, Virtual Control Volumes for Two-Dimensional Unstructured Elliptic Smoothing, Proceedings of the 19th International Meshing Roundtable, pp.1-2, 2010.
DOI : 10.1007/978-3-642-15414-0_8

G. Karniadakis and S. J. Sherwin, Spectral/hp element methods for CFD, 1999.

V. Karvonen and P. Mensonides, The boost preprocessor library, 2001.

G. Karypis and V. Kumar, A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices

C. Kassiotis, A. Ibrahimbegovic, R. Niekamp, and H. G. Matthies, Nonlinear fluid???structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples, Computational Mechanics, vol.77, issue.1, pp.3-3, 2011.
DOI : 10.1007/s00466-010-0545-6

URL : https://hal.archives-ouvertes.fr/hal-00601366

H. J. Kim, I. E. Vignon-clementel, C. A. Figueroa, K. E. Jansen, and C. A. Taylor, Developing computational methods for three-dimensional finite element simulations of coronary blood flow. Finite Elements in Analysis and Design, pp.514-525, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00542770

A. Bhaskar-chandra-konala, R. K. Das, and . Banerjee, Influence of arterial wall-stenosis compliance on the coronary diagnostic parameters, Journal of Biomechanics,4, vol.4, issue.5

S. Krenk, Energy conservation in Newmark based time integration algorithms, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.44-47, pp.44-476110, 2006.
DOI : 10.1016/j.cma.2005.12.001

E. Kuhl, H. Askes, and P. Steinmann, An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: Generic hyperelastic formulation, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.39-41, pp.4207-4211
DOI : 10.1016/j.cma.2003.09.030

U. Kuttler and W. A. Wall, Fixed-point fluid???structure interaction solvers with dynamic relaxation, Computational Mechanics, vol.35, issue.6???8, pp.6-7
DOI : 10.1007/s00466-008-0255-5

M. R. Labrosse, Structure and Mechanics of the Artery

P. Lacolley, Biologie et pathologie du coeur et des vaisseaux.J o h n L i b b e y Eurotext, 2007.

J. Patrick-le-tallec, P. Gerbeau, M. Hauret, and . Vidrascu, Fluid structure interaction problems in large deformation, Comptes Rendus Mecanique

P. Le, T. , and J. Mouro, Fluid structure interaction with large structural displacements, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.24, pp.3039-3067, 2001.

S. Lejeunes, Modélisation de structures lamifiées élastomère-métal à l'aide d'une méthode de réduction de modèles, 2006.

G. Lenormand, Élasticité du squelette du globule rouge humain-une étude par pinces optiques, 2001.

J. H. Leung, A. R. Wright, N. Cheshire, J. Crane, S. A. Thom et al., Fluid structure interaction of patient specific abdominal aortic aneurysms : a comparison with solid stress models, BioMedical Engineering OnLine, vol.5, issue.1, pp.3-3, 2006.

B. Li, Q. Meng, and H. Holstein, Similarity K-d tree method for sparse point pattern matching with underlying non-rigidity, Pattern Recognition, vol.38, issue.12, pp.2391-2399, 2005.
DOI : 10.1016/j.patcog.2005.03.004

. Vd-lise?-ikin, Grid generation methods,v o l u m e1 4 3 4 . S p r i n g e rV e r l a g, pp.9-9

E. Marchandise, C. Geuzaine, and J. F. Remacle, Cardiovascular and lung mesh generation based on centerlines, International Journal for Numerical Methods in Biomedical Engineering, vol.21, issue.11
DOI : 10.1002/cnm.2549

K. Martin and B. Hoffman, An Open Source Approach to Developing Software in a Small Organization, Software, IEEE, pp.4-6
DOI : 10.1109/MS.2007.5

K. Martin and B. Hoffman, Mastering CMake 4th Edition, 2008.

I. Masson, Contribution à la modélisation mécanique du comportement dynamique, hyperélastique et anisotrope de la paroi artérielle, 2008.

B. Maury, A fat boundary method for the poisson problem in a domain with holes, Journal of Scientific Computing

D. A. May and L. Moresi, Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics, Physics of the Earth and Planetary Interiors, vol.171, issue.1-4, pp.33-47, 2008.
DOI : 10.1016/j.pepi.2008.07.036

I. E. Mahdi-esmaily-moghadam, R. Vignon-clementel, A. L. Figliola, and . Marsden, A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations, Journal of Computational Physics, vol.244, issue.0, pp.63-79, 2013.
DOI : 10.1016/j.jcp.2012.07.035

P. Moireau, N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle et al., External tissue support and fluid???structure simulation in blood flows, Biomechanics and Modeling in Mechanobiology, vol.31, issue.3, pp.1-1
DOI : 10.1007/s10237-011-0289-z

URL : https://hal.archives-ouvertes.fr/hal-00701801

D. Mok and W. Wall, Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures. Trends in computational structural mechanics

D. S. Molony, A. Callanan, E. G. Kavanagh, M. T. Walsh, and T. M. Mcgloughlin, Fluid-structure interaction of a patient-specific abdominal aortic aneurysm treated with an endovascular stent-graft, BioMedical Engineering OnLine, vol.8, issue.1
DOI : 10.1186/1475-925X-8-24

A. Moura, The Geometrical Multiscale Modelling of the Cardiovascular System : Coupling 3D and 1D FSI models, 2007.

M. Münsch and M. Breuer, Numerical simulation of fluid?structure interaction using eddy?resolving schemes. Fluid Structure Interaction II

F. Nobile, Numerical approximation of fluid-structure interaction problems with application to haemodynamics

G. Pena, Spectral element approximation of the incompressible Navier-Stokes equations evolving in a moving domain and applications, 2009.

G. Pena and C. Prud-'homme, Construction of a high order fluidstructure interaction solver, J. Comput. Appl. Math, vol.2, issue.7, pp.3-4, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00319978

K. Perktold and G. Rappitsch, Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model, Journal of Biomechanics, vol.28, issue.7, pp.845-856, 1995.
DOI : 10.1016/0021-9290(95)95273-8

N. Poussineau, Réduction variationnel le d'un couplage fluide-structure : application à l'hémodynamique, 2007.

C. Prud-'homme, A domain specific embedded language in C++ for automatic differentiation, projection, integration and variational formulations, Scientific Programming
URL : https://hal.archives-ouvertes.fr/hal-00319980

C. Prud-'homme, V. Chabannes, and G. Pena, Feel++ : Finite Element Embedded Language in C++. Free Software available at http ://www.feelpp.org. Contributions from A

C. Prud-'homme, A domain specific embedded language in C++ for automatic differentiation, projection, integration and variational formulations, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00319980

C. Prud-'homme, V. Chabannes, V. Doyeux, M. Ismail, A. Samake et al., Feel++ : A Computational Framework for Galerkin Methods and Advanced Numerical Methods, ESAIM : Proc.,3 8: 4 2, pp.9-455, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00662868

C. Prud-'homme, V. Chabannes, V. Doyeux, M. Ismail, A. Samake et al., Advances in Feel++ : a domain specific embedded language in C++ for partial differential equations, Eccomas'12 -European Congress on Computational Methods in Applied Sciences and Engineering
URL : https://hal.archives-ouvertes.fr/hal-00762442

C. Prud-'homme, G. Pena, and V. Chabannes, High order fluid structure interaction in 2D and 3D : Application to blood flow in arteries, ACOMEN 11 -5th International Conference on Advanced COmputational Methods in ENgineering, pp.1-1
URL : https://hal.archives-ouvertes.fr/hal-00657622

C. Prud-'homme, G. Pena, and A. Quarteroni, High order methods for the approximation of the incompressible Navier-Stokes equations in a moving domain, Comput. Meth. Appl. Mech. Eng, vol.2
URL : https://hal.archives-ouvertes.fr/hal-00748062

C. Prud-'homme, Life : Overview of a unified c++ implementation of the finite and spectral element methods in 1d, 2d and 3d, Applied Parallel Computing. State of the Art in Scientific Computing,volume4699ofLecture Notes in Computer Science, pp.712-721, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00319983

T. Richter, Numerical methods for fluid-structure interaction problems, Course of lectures

. Th, . Richter, . Th, and . Wick, Finite elements for fluidâ? " structure interaction in ale and fully eulerian coordinates, Computer Methods in Applied Mechanics and Engineering, vol.1, issue.9 4 44, pp.2633-2642, 2010.

Y. Saad, Iterative methods for sparse linear systems.S o c i e t y f o r I n d u s t r i a l a, 2003.

M. Safar, Paroi artérielle et vieillissement vasculaire, Éditions scientifiques et médicales Elsevier SAS

. Salmon, . Stéphanie, . Sy, . Soyibou, and M. Szopos, Cerebral blood flow simulations in realistic geometries, ESAIM: Proceedings, vol.35
DOI : 10.1051/proc/201235028

A. Samake, V. Chabannes, C. Picard, and C. Prud-'homme, Domain Decomposition Methods in Feel++, 2012.
DOI : 10.1007/978-3-319-05789-7_37

URL : https://hal.archives-ouvertes.fr/hal-00762321

R. Sandboge, Fluid-structure interaction with openfsitm and md nastrantm structural solver, Ann Arbor

M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher, Benchmark computations of laminar flow around a cylinder. Notes on numerical fluid mechanics, pp.547-566, 1996.

E. Schenone, S. Veys, and C. Prud-'homme, High Performance Computing for the Reduced Basis Method. Application to Natural Convection, ESAIM: Proceedings, vol.43, 2012.
DOI : 10.1051/proc/201343016

URL : https://hal.archives-ouvertes.fr/hal-00786560

B. Smith, Petsc introductory tutorial, 2006.

B. Smith, W. Bjorstad, and . Gropp, Domain Decomposition, 2004.
DOI : 10.1007/978-3-540-70529-1_411

S. Y. Soyibou, Algorithmes semi-implicites pour des problèmes d'interaction fluidestructure : approches procédures partagées et monolithiques, 2009.

R. Tarabay, Simulation d écoulements sanguins dans des modeles vasculaires complexes, 2015.

M. A. Taylor, R. Wingate, and . Vincent, An Algorithm for Computing Fekete Points in the Triangle, SIAM Journal on Numerical Analysis, vol.38, issue.5, 0707.
DOI : 10.1137/S0036142998337247

E. Tayfun and . Tezduyar, Stabilized finite element formulations for incompressible flow computations Advances in applied mechanics, pp.1-4

R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. , Tezduyar . Fluid?structure interaction modeling of a patient-specific cerebral aneurysm : influence of structural modeling, Computational Mechanics

M. Toungara, Contribution à la Prédiction de la Rupture des Anévrismes de l'Aorte Abdominale (AAA), 2011.

S. Turek and J. Hron, Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow, Lecture Notes in Computational Science and Engineering
DOI : 10.1007/3-540-34596-5_15

S. Turek, J. Hron, M. Madlik, M. Razzaq, H. Wobker et al., Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics. Fluid Structure Interaction II

A. Valencia, D. Ledermann, R. Rivera, E. Bravo, and M. Galvez, Blood flow dynamics and fluid-structure interaction in patient-specific bifurcating cerebral aneurysms, International Journal for Numerical Methods in Fluids, vol.129, issue.10, 2008.
DOI : 10.1016/j.medengphy.2007.04.011

J. Marc, . Van-kreveld, H. Mark, and . Overmars, Divided kd trees, Algorithmica, vol.6, issue.1, pp.840-858, 1991.

R. Van-loon, . Pd-anderson, S. Van-de-vosse, and . Sherwin, Comparison of various fluid???structure interaction methods for deformable bodies, Computers & Structures, vol.85, issue.11-14
DOI : 10.1016/j.compstruc.2007.01.010

E. Verron, Contribution expérimentale et numérique aux procédés de moulage par soufflage et de thermoformage, 1997.

X. Wang and X. Li, Fluid-structure interaction based study on the physiological factors affecting the behaviors of stented and non-stented thoracic aortic aneurysms, Journal of Biomechanics, vol.44, issue.12
DOI : 10.1016/j.jbiomech.2011.06.020

T. Warburton, An explicit construction of interpolation nodes on the simplex, Journal of Engineering Mathematics, vol.137, issue.3
DOI : 10.1007/s10665-006-9086-6

T. Wick, Fluid-structure interactions using different mesh motion techniques, Computers & Structures, vol.89, issue.13-14
DOI : 10.1016/j.compstruc.2011.02.019

A. Winslow, Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh, Journal of Computational Physics, vol.1, issue.2, pp.1-4
DOI : 10.1016/0021-9991(66)90001-5

B. J. Wolters, M. C. Rutten, G. W. Schurink, U. Kose, J. De-hart et al., A patient-specific computational model of fluid???structure interaction in abdominal aortic aneurysms, Medical Engineering & Physics, vol.27, issue.10, pp.8-15, 2005.
DOI : 10.1016/j.medengphy.2005.06.008

P. Zunino, C. Angelo, L. Petrini, C. Vergara, C. Capelli et al., Numerical simulation of drug eluting coronary stents: Mechanics, fluid dynamics and drug release, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.45-46, pp.45-463633, 2009.
DOI : 10.1016/j.cma.2008.07.019