K. Matsumoto, N. Takahashi, A. Suzuki, T. Morii, Y. Saito et al., 9, 7763. 6-chloro-8-(phenylethynyl)-9-(pyridin-2-ylmethyl)-9H-purine (28e) Light brown solid (19 mg76 (s, 2H) 13 C NMR (75 MHz, CDCl 3 ) ? 154 (ES+) m/z (%): 368.2 (100) [M+Na] + . 8-(phenylethynyl)-6-(phenylthio)-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (28f) Beige solid (49.3 mg, 24%) : 1 H NMR (300 MHz, CDCl 3 ) ? 8.78 (s, 1H), 8.57 (d, J = 4.6 Hz, 1H), 7.67 (t, J = 8.5 Hz, 1H), 7.55 (d, J = 6.8 Hz, 2H), 7.49-7.37 (m, 3H) 37%): 1 H NMR (300 MHz, CDCl 3 ) ? 1 H NMR (300 MHz, CDCl 3 ) ? 8), 3.77 (t, J = 11.8 Hz, 1H), 3.01 (qd, J = 12.3, 4.0 Hz, 1H), 2.14 (d, J = 11.0 Hz, 1H), 1.95-1.64 (m, 4H). 13 C NMR (75 MHz) [M-THP] + . HRMS (ESI) calcd for C 24 H 21 N 4 OS [(M+H) + ] 413.1436, found 413.1437. 9-benzyl-6-(benzylthio)-8-(phenylethynyl)-9H-purine, pp.127527-127534, 1428.

1. Hz, 13 C NMR (CDCl 3 , 75 MHz) ? 160.1, 156, HRMS (ESI) calcd for C 22 H 21 FN 5 OS [(M+H) + ] 422.1451, pp.85-88

. Mhz, 97 (s, 1H), 8.81 (d, J = 9, p.3184

1. Hz, 02 (m, 3H), 1.89-1.65 (m, 3H) 13 C NMR (75 MHz, CDCl 3 ) ? 162, HRMS (ESI)M+H) + ] 311.1508, pp.9085-9088

1. Hz, 90-1.67 (m, 3H) 13 C NMR (75 MHz, CDCl 3 ) ? 153, 9. MS (ES+) m/z (%): 349.1 (100) [M+H] + . HRMS (ESI)M+H) + ] 349.1276, pp.3-87

. Mhz, (ESI) calcd for C 13 H 17 N 4 O [(M+H) + ] 245.1402, found 245.1398. 8-chloro-6-(4-methoxyphenyl)-9-(tetrahydro-2H-pyran-2-yl)-9H-purine (47b) Reaction conditions : 80 °C, 15 min Brown solid (24.3 mg, 30%) : mp = 128-130 °C. 1 H NMR (300 MHz, J = 8.9 Hz, 2H), 5.81 (dd, J = 11.3, 2.2 Hz, 1H), 4.23 (d), 3.03 (qd, J = 12.5, 4.0 Hz, 1H), 2.15 (m, 1H), 1.93-1.66 (m, 4H). 13 C NMR (75 MHz MS (ES+) m/z (%): 345.3 (100) [M+H] + , 261, pp.245-246, 1994.

2. Hz, 89 (s, 1H)10 (d, J = 16, Hz, vol.8, issue.757, pp.68-75

. Hz, 17-2.14 (m, 1H), 1.98-1.65 (m, 4H) 13 C NMR (75 MHz, CDCl 3 ) ? 162, 3H), 3.80 (t, J = 11.7 Hz, 1H), 3.07 (qd, J = 12.6, 4.4 Hz, 1H) HRMS (ESI) calcdM+H) + ] 411.1821, pp.4-2890

1. Hz, 13 C NMR (75 MHz, CDCl 3 ) ? 161, pp.8-10

. Mhz, 93 (s, 1H), pp.97-104

2. Hz and J. =. , 13 C NMR (75 MHz, CDCl 3 ) ? 154 MS (ES+) m/z (%): 400.4 (100) [M+H] + . HRMS (ESI) calcd for C 24 H 26 N 5 O [(M+H) + ] 400.2137, found 400.2140. 8-phenyl-9-(tetrahydro-2H-pyran-2-yl)-6-(4-(trifluoromethyl)phenyl)-9H-purine (50c) Reaction conditions : 80 °C, 30 min, dd, J = 11.3, 2.1 Hz, 1H), 4.27 (d, J = 9.6 Hz, 1H), 9.00 (d, J = 8.4 Hz, 2H), 7.96-7.93 (m, 2H), 7.80 (d, J = 8.1 Hz, 2H) Hz, 1H), 3.22-3.11 (m, 1H), 2.08 (s, 1H), 1.89-1.63 (m, 4H). 13 C NMR (75 MHzM+H] + , 341.2 (70) [M-THP] + . HRMS (ESI) calcd for C 23 H 20 F 3 N 4 O [(M+H) + ] 425.1589, pp.70-73

. Il-faut-mesurer, pour la référence et l'échantillon, l'absorbance et le spectre de fluorescence à la longueur d'onde d'excitation choisie de 4 solutions de concentration croissante

. Il-faut-tracer-la-coube-f=f, A) où F est l'intensité de fluorescence intégrée. La courbe obtenue doit être une droite passant par l'origine. ? F est alors calculé par la formule

W. H. 164-melhuish, 65, 229. ? X ? QS Grad X ?² X Grad QS ?² QS (271 mg, 75%): 1 H NMR (300 MHz, CDCl 3 ) ? 7.58 (t, J = 7.7 Hz, 4H), 7.47?7.36 (m, 5H), p.81, 1961.

1. Hz, 50 (d, J = 6.9 Hz, 2H), 7.34?7, pp.7-09

1. Hz, 55 (s, 2H), 4.70 (s, 2H), 3.91 (s, 3H), 3.90 (s, 3H); 13 C NMR (75 MHz, CDCl 3 ) ? 158, pp.96-495

J. =. and 2. Nmr, 13 C NMR (75 MHz, CDCl 3 ) ? 159 (E)-9-Benzyl-6-(benzylthio)-8-(3-bromostyryl)-9H-purine (3g) A yellow solid (107 mg, 57%): mp = 182?184 °C (ES+) m/z (%) 513 (ESI) calcd for C 27 H 22, 63?7.55 (ESI) C 28 H 22 F 3 N 4 S calcd for [(M + H) + ] 503.1517, found 503.1497 (E)-4-(2-(9-Benzyl-6-(benzylthio)-9H-purin-8-yl)vinyl)- benzonitrile (3h). A yellow solid (105 mg, 63%): mp = 206?208 °C; 1 H NMR (300 MHz, CDCl 3 ) ? 8.75 (s, 1H)), 7.03 (d, J = 15.8 Hz, 1H), 5.57 (s, 2H), 4.70 (s, 2H); 13 C NMR (75 MHz, pp.7-35, 1994.

1. Hz, CDCl 3 ) ? 159 (ES+) m/z (%) 480.2 (100))styryl)-9H- purine (3j). A yellow oil (86 mg, 44%): 1 H NMR (300 MHz, C NMR (75 MHz CDCl 3 ) ? 8.72 (s, 1H), 8.03 (d, J = 15.8 Hz, 1H) Hz, 1H), 5.55 (s, 2H), 5.50 (s, 1H), 4.70 (s, 2H), 3.64?3.51 (m, 4H), 1.28?1.18 (m, 6H), p.597075

. Mhz, HRMS (ESI) calcd for C 32 H 33 N 42324, found 537.2305. 9-Benzyl-6-(benzylthio)-8-(1-phenylvinyl)-9H-purine (3k). ?- Bromostyrene was distilled before use. A yellow solid (79 mg, 50%): mp = 128?130 °C75 (s, 1H), 5.08 (s, 2H), 4.70 (s, 2H); 13 C NMR (75 MHz, CDCl 3 ) ? 159 A yellow oil obtained as an inseparable mixture A brown solid, H NMR (300 MHz, CDCl 3 ) ? 8.78 (s, 1H), 7.50 (d, J = 7.0 Hz, 2H), 7.33?7.18 (m, 11H), 6.95?6.92 (m, 2H), 5.93 (s, 1H)70) [M + Na] + . HRMS (ESI) calcd for C 27 H 23 N 4 S [(M + H) + ] 435.1643, found 435.1627. (Z)-9-Benzyl-6-(benzylthio)-8-(4-methylstyryl)-9H-purine (3l)m, 9H), 7.08?7.05 (m, 4H), 6.93 (d, J = 12.6 Hz, 1H), 6.35 (d, J = 12.6 Hz, 1H), 5.16 (s, 2H), 4.69 (s, 2H), 2.30 (s, 3H); 13 C NMR (75 MHz MS (ES+) m/z (%): 449.5 (100) [M + H] + . HRMS (ESI) and 10 49 showed satisfactory spectroscopic data in agreement with those reported in the literature. (E)-2-Phenyl-5-styryl-1, p.334

1. Hz, MS (ES +) m/z (%) 271.1 (100) [M + Na] + . HRMS (ESI) calcd for C General Procedure for the Amination As Illustrated for the Preparation of (E)-N,9-Dibenzyl-8-styryl-9H-purin-6-amine (12a). A solution of m-CPBA, C NMR (75 MHz, p.1

+. Hrms, (E)-9-Benzyl-N-propyl-8-styryl-9H-purin-6-amine (12b) Propylamine was distilled before use Reaction time: 1 h. A yellow oil (125.2 mg, 79%): 1 H NMR (300 MHz, CDCl 3 ) ? 8.40 (s, 1H), 7.77 (d, J = 15.9 Hz, 1H), 7.46 (d, J = 7.6 Hz, 2H), 7.37?7.23 (m, 8H), 6.96 (d, J = 15.9 Hz, 1H), 5.99 (bs, 1H), p.5066

. Mhz, CDCl 3 ) ? 8.37 (s, 1H), p.47

. Hz, 96 (d, J = 1506 (bs, 4H); 13 C NMR (75 MHz, CDCl 3 ) ? 152, 5.51 (s, 2H), 4.29 (bs, 2H), 3.81 (bs, 2H)) [M + H] + . HRMS (ESI) calcd, pp.7-38

. Mhz, CDCl 3 ) ? 8.41 (s, 1H), p.47

. Mhz, (ES+) m/z (%): 427, HRMS (ESI)

?. Associated, Supporting Information Copies of 1 H and 13 C for all compounds 1, 2c, 2j, 3a?l, 4?10, and 12a?g. This material is available free of charge via the Internet at http://pubs

?. Acknowledgments, R. V. , and F. C. , thank the Ministe? re de l?Enseignement Supe?rieurSupe?rieur et de la Recherche for doctoral fellowships

?. References-)-legraverend, M. Grierson, D. S. Bioorg, . Med, R. W. Chem-sinkeldam et al., and references cited therein, 658 and references cited therein. (9) and references cited therein. (12) Hocek, M.; Pohl, R. Synthesis and references cited therein. (13) Collier, A.; Wagner14) Vra?belVra?bel, M.; Pohl, R.; Klepeta?r?Klepeta?r? ova?,ova?, B.; Votruba, I.; Hocek, M, pp.3987-361, 1999.

C. Mosrin, M. Knochel, and P. , 488 and references cited therein, Org. Lett. Zimdars, S.; Mollat du Jourdin, X.; Crestey, F, vol.89, issue.18 11, 1837.

. Chem, 4271 and references cited therein, 2009.

R. Pohl, B. Klepeta?r?klepeta?r?-ova?,-ova?, M. Hocek, B. Liu, X. Qin et al., 2302 and references cited therein (26) Van? kova?,kova?, B.; Krchn? a?ka?k, Chem. Commun. J. Org. Chem. J. Chem.? Eur. J. J. ACS Comb. Sci. J.-D, vol.46, issue.16, pp.11836-11849, 2010.

V. Brun, M. Legraverend, D. S. Grierson, . Lu, S. Sengupta et al., (30) Indeed, the substitution of the chloro atom by the t-BuOLi was predominant, meaning that this reaction is much faster than the direct alkenylation, Tetrahedron Lett. Tetrahedron J. L, vol.49, issue.58 791132, p.7279, 2002.

M. Legraverend and D. S. Grierson, The purines: Potent and versatile small molecule inhibitors and modulators of key biological targets, Bioorganic & Medicinal Chemistry, vol.14, issue.12, pp.3987-4006, 2006.
DOI : 10.1016/j.bmc.2005.12.060

URL : https://hal.archives-ouvertes.fr/hal-00081257

E. Schoffers, P. D. Olsen, and J. C. Means, Synthesis of C8-Adenosine Adducts of Arylamines Using Palladium Catalysis, Organic Letters, vol.3, issue.26, pp.4221-4223, 2001.
DOI : 10.1021/ol016900h

N. Böge, M. I. Jacobsen, Z. Szombati, S. Baerns, F. D. Pasquale et al., Synthesis of DNA Strands Site-Specifically Damaged by C8-Arylamine Purine Adducts and Effects on Various DNA Polymerases, Chemistry - A European Journal, vol.43, issue.35, pp.11194-11208, 2008.
DOI : 10.1002/chem.200800979

M. R. Biscoe, B. P. Fors, and S. L. Buchwald, A New Class of Easily Activated Palladium Precatalysts for Facile C???N Cross-Coupling Reactions and the Low Temperature Oxidative Addition of Aryl Chlorides, Journal of the American Chemical Society, vol.130, issue.21, pp.6686-6687, 2008.
DOI : 10.1021/ja801137k

J. J. Yin and S. L. Buchwald, Palladium-Catalyzed Intermolecular Coupling of Aryl Halides and Amides, Organic Letters, vol.2, issue.8, pp.1101-1104, 2000.
DOI : 10.1021/ol005654r

J. J. Yin and S. L. Buchwald, Pd-Catalyzed Intermolecular Amidation of Aryl Halides:?? The Discovery that Xantphos Can Be Trans-Chelating in a Palladium Complex, Journal of the American Chemical Society, vol.124, issue.21, pp.6043-6048, 2002.
DOI : 10.1021/ja012610k

M. K. Lakshman, Palladium-catalyzed C???N and C???C cross-couplings as versatile, new avenues for modifications of purine 2???-deoxynucleosides, Journal of Organometallic Chemistry, vol.653, issue.1-2, pp.234-251, 2002.
DOI : 10.1016/S0022-328X(02)01267-6

M. K. Lakshman, J. C. Keeler, J. H. Hilmer, and J. Q. Martin, -Aryl 2???-Deoxyadenosine Analogues, Journal of the American Chemical Society, vol.121, issue.25, pp.6090-6091, 1999.
DOI : 10.1021/ja9908671

URL : https://hal.archives-ouvertes.fr/hal-00886264

P. F. Thomson, P. Lagisetty, J. Balzarini, E. D. Clercq, and M. K. Lakshman, Palladium-Catalyzed Aryl Amination Reactions of 6-Bromo- and 6-Chloropurine Nucleosides, Advanced Synthesis & Catalysis, vol.70, issue.10, pp.1728-1735, 2010.
DOI : 10.1002/adsc.200900728

L. A. Agrofoglio, I. Gillaizeau, and Y. Saito, Palladium-Assisted Routes to Nucleosides, Chemical Reviews, vol.103, issue.5, pp.1875-1916, 2003.
DOI : 10.1021/cr010374q

X. Li and R. Vince, Synthesis and biological evaluation of purine derivatives incorporating metal chelating ligands as HIV integrase inhibitors, Bioorganic & Medicinal Chemistry, vol.14, issue.16, pp.5742-5755, 2006.
DOI : 10.1016/j.bmc.2006.04.011

L. Vandromme, M. Legraverend, S. Kreimerman, O. Lozach, L. Meijer et al., A Pd(0) based cross-coupling approach to the synthesis of 2-amidopurines and their evaluation as CDK inhibitors, Bioorganic & Medicinal Chemistry, vol.15, issue.1, pp.130-141, 2007.
DOI : 10.1016/j.bmc.2006.10.003

URL : https://hal.archives-ouvertes.fr/hal-00151751

S. Piguel and M. Legraverend, Selective Amidation of 2,6-Dihalogenopurines:?? Application to the Synthesis of New 2,6,9-Trisubstituted Purines, The Journal of Organic Chemistry, vol.72, issue.18, pp.7026-7029, 2007.
DOI : 10.1021/jo071196p

URL : https://hal.archives-ouvertes.fr/hal-00168770

N. Ibrahim and M. Legraverend, High-Yielding Two-Step Synthesis of 6,8-Disubstituted N-9-Unprotected Purines, Journal of Combinatorial Chemistry, vol.11, issue.4, pp.658-666, 2009.
DOI : 10.1021/cc900066v

M. Matloobi and C. O. Kappe, Microwave-Assisted Solution- and Solid-Phase Synthesis of 2-Amino-4-arylpyrimidine Derivatives, Journal of Combinatorial Chemistry, vol.9, issue.2, pp.275-284, 2007.
DOI : 10.1021/cc0601377

V. Brun, M. Legraverend, and D. S. Grierson, Traceless solid-phase synthesis of 2,6,9-trisubstituted purines from resin bound 6-thiopurines, Tetrahedron, vol.58, issue.39, pp.7911-7923, 2002.
DOI : 10.1016/S0040-4020(02)00905-5

N. Ibrahim and M. Legraverend, Synthesis of 6,7,8-Trisubstituted Purines via a Copper-Catalyzed Amidation Reaction, The Journal of Organic Chemistry, vol.74, issue.1, pp.463-465, 2009.
DOI : 10.1021/jo802248g

URL : https://hal.archives-ouvertes.fr/hal-00350130

S. Ding, N. S. Gray, Q. Ding, and P. G. Schultz, A Concise and Traceless Linker Strategy toward Combinatorial Libraries of 2,6,9-Substituted Purines, The Journal of Organic Chemistry, vol.66, issue.24, pp.8273-8276, 2001.
DOI : 10.1021/jo016010f

S. Ding, N. S. Gray, Q. Ding, X. Wu, and P. G. Schultz, Resin-Capture and Release Strategy toward Combinatorial Libraries of 2,6,9-Substituted Purines, Journal of Combinatorial Chemistry, vol.4, issue.2, pp.183-186, 2002.
DOI : 10.1021/cc010080i

R. Fu, X. Xu, Q. Dang, and X. Bai, ][1,4]benzothiazepines via Bischler???Napieralski-Type Reactions, The Journal of Organic Chemistry, vol.70, issue.26, pp.10810-10816, 2005.
DOI : 10.1021/jo051873k

R. Fu, X. Xu, Q. Dang, F. Chen, and X. Bai, ]isoquinolines via a Sulfur Monoxide Extrusion Reaction, Organic Letters, vol.9, issue.4, pp.571-574, 2007.
DOI : 10.1021/ol0627146

F. J. Rombouts, G. Fridkin, and W. D. , ]pyrimidine-6-carboxylates on Cross-Linked Polystyrene Bearing a Cysteamine Linker, Journal of Combinatorial Chemistry, vol.7, issue.4, pp.589-598, 2005.
DOI : 10.1021/cc050002l

R. Vabre, F. Chevot, M. Legraverend, and S. , Microwave-Assisted Pd/Cu-Catalyzed C-8 Direct Alkenylation of Purines and Related Azoles: An Alternative Access to 6,8,9-Trisubstituted Purines, The Journal of Organic Chemistry, vol.76, issue.22, pp.9542-9547, 2011.
DOI : 10.1021/jo201893h

URL : https://hal.archives-ouvertes.fr/hal-00703879

J. M. Nolsoe, L. Gundersen, and F. Rise, Regiochemistry in the Pd-Mediated Coupling between 6,8-Dihalopurines and Organometallic Reagents., Acta Chemica Scandinavica, vol.53, pp.366-372, 1999.
DOI : 10.3891/acta.chem.scand.53-0366

A. G. Beaman, W. Tautz, R. Duschinsky, and E. Grunberg, Purine Sulfonamides, Journal of Medicinal Chemistry, vol.9, issue.3, pp.373-378, 1966.
DOI : 10.1021/jm00321a027

C. Kusturin, L. S. Liebeskind, H. Rahman, K. Sample, B. Schweitzer et al., Switchable Catalysis:??? Modular Synthesis of Functionalized Pyrimidinones via Selective Sulfide and Halide Cross-Coupling Chemistry, Organic Letters, vol.5, issue.23, pp.4349-4352, 2003.
DOI : 10.1021/ol035649y

F. Alphonse, F. Suzenet, A. Keromnes, B. Lebret, and G. Guillaumet, -butylstannane with Heteroaromatic Thioether, Organic Letters, vol.5, issue.6, pp.803-805, 2003.
DOI : 10.1021/ol027453o

URL : https://hal.archives-ouvertes.fr/hal-00854790