G. A. Olah, J. S. Mcintyre, I. J. Bastien, W. S. Tolgyesi, E. B. Baker et al., Alkylcarbonium Hexafluoroantimonates, Journal of the American Chemical Society, vol.86, issue.7, pp.1360-1373, 1964.
DOI : 10.1021/ja01061a019

J. Hz, CDCl 3 ) ? 137.4, 133.2, 132, C NMR (125 MHz, pp.85-85

R. , =. Heptanedd, and 1. , 76 (s, 3H, -C2-OCH 3 ), 3.76 (at, 1H, H NMR (800 MHz6a = 4.9 Hz, J 6a,6b = 10.6 Hz, H-6a), 3.89 (d, 1H, J = 9.8 Hz 1H, J = 10.4 Hz, H-6b), 3.65 (s, 3H, -C3-OCH 3 ), 3.62 (at, 1H, J = 9.3 Hz 1H, J = 8.9 Hz, pp.31-36, 0200.

J. Hz, 71 (m, 1H, H-6b), 3.62 (at, 1H, J = 8.3 Hz59 (s, 3H, C3-OCH 3 ), 3.54 (at, 1H, J = 8.4 Hz, p.5041

C. Nmr, OCH 3 ) CDCl 3 ) ? 140, MHz, vol.132, issue.12822C

R. , =. , /. Heptane, and H. Nmr, 65 (s, 1H, Benzyliden-H), 4.91 and 4.77 (AB, J = 12, 4.73 (d, J = 1.3 Hz, 1H, H-10a), 4.59 (s, 1H, H-10b), 4.53 (br s, pp.4-16

1. Mhz, H. , and H. , 63 (s, 1H, 4.98-4.99 (m, 1H, H-10a), 4.88 and 4.73 (AB, J AB = 12.4 Hz 4.70 (m, 1H, H-10b), pp.27-34

1. Hz, 68-3.70 (m, 1H, H-2 and H-3), 3.59 (at, J = 6.7 Hz, J AX =, vol.3, issue.73

. Acoet, Heptane: 0/100 + 1% CH 2 Cl 2 to AcOEt/Heptane: 40/60), to give the title compound as a white solid (1,1115 g, 59%): mp 133-134 ?C, lit: 107 120.5-121.5 °C (Diethyl ether / Hexane), pp.107-148

/. Acoet and . Heptane, 1 H NMR (500 MHz, CDCl 3 ): ? 7.28-7.55 (m, 15H, Ar-H), 5.57 (s, 1H, Benzylidene-H), 4.95 and 4.79 (AB, J AB = 11.7 Hz, pp.4-63

J. Pougny and P. Sinaÿ, Reaction d'imidates de glucopyranosyle avec l'acetonitrile. Applications synthetiques, Tetrahedron Letters, vol.17, issue.45, pp.4073-4076, 1976.
DOI : 10.1016/S0040-4039(00)92578-4

. Si, CH 3 ) 3 ) HRMS (ESI): [M+Na] + calcd for C 33 H 40 O 6 NaSiS: 615, pp.615-2216, 2213.

J. Ab, 92-3.99 (m, 2H, H-5 and H-1'), 3.75 (at, J = 10.1 Hz, 4.04 (at, J = 9.3 Hz 1.22 (d, J 2',1' = 6.2 Hz, 3H, H-2'); 13 C NMR (75 MHz, pp.62-65

. Min, 15 mL, 9.62 mmol) was added into the reaction mixture. The reaction mixture was stirred at room temperature overnight. Methanol (1 mL) was then added into the mixture (a white suspension)

H. Nmr, CDCl 3 ): ? 7.27-7.54 (m, 15H, Ar-H), 5.95-6.02 (m, 1H, H-8), 5.57 (s, 1H, 5.30 and 5.19 (ABX, J AB = 1.5 Hz, J AX = 17.2 Hz (trans)

. Phenyl, 6-O-benzylidene-2-O-propanol-?-D-glucopyranosyl sulfoxide 3.50: To a stirred solution of thioglycoside Phenyl 3-O-benzyl-4,6-O-benzylidene-2-O- propanol-1-thio-?-D-glucopyranoside 3

/. Acoet and 2. Heptane, 50 (s, 1H, H NMR (500 MHz 4.97 and 4.79 (AB, J AB = 11.5 Hz, 2H, Benzylic-H), 4.16-4.20 (m, 1H-8a and H-8b), pp.32-39

/. Acoet and . Heptane, 53 (s, 1H, H NMR (500 MHz, pp.99-103

J. Hz, 62 (t, J = 6.0 Hz, 1H, -OH), 1.61-1.68 (m, 2H, H-8a and H- 8b), Ar-C IV )

H. Gabius, C. Wu, C. Wong, P. H. Seeberger, T. J. Boltje et al., The Sugar Code, Bibliographie Chem. Commun. Nat. Chem. Bio l. J.; Boons, G.-J. Nat. Chem, vol.1, issue.2, pp.6201-6207, 2009.

W. Barresi, F. Hindsgaul, and O. , Chemically Synthesized Oligosaccharides, 1994. A Searchable Table of Glycosidic Linkages., Journal of Carbohydrate Chemistry, vol.68, issue.8, pp.1043-1087, 1995.
DOI : 10.1021/ja00094a067

. Le-centre-anomérique-est-un, nouveau centre stéréogène généré par la fermeture du cycle de la forme hydroxyaldéhyde en hémiacétal ou acétal 7 L'atome de référence est un atome de numéro atomique le plus élevé lié à un carbon asymérique le plus proche du centre anomérique

B. Capon, Mechanism in carbohydrate chemistry, Chemical Reviews, vol.69, issue.4, pp.407-498, 1969.
DOI : 10.1021/cr60260a001

J. Pougny, P. Sinaÿ, R. R. Schmidt, and M. Behrendt, Reaction d'imidates de glucopyranosyle avec l'acetonitrile. Applications synthetiques, Tetrahedron Letters, vol.17, issue.45, pp.4073-4076, 1976.
DOI : 10.1016/S0040-4039(00)92578-4

S. A. Stalford, C. A. Kilner, A. G. Leach, and W. B. Turnbull, Neighbouring group participation vs. addition to oxacarbenium ions: studies on the synthesis of mycobacterial oligosaccharides, Organic & Biomolecular Chemistry, vol.131, issue.23, pp.4842-4852, 2009.
DOI : 10.1039/b913308a

R. J. 20-ferrier, R. W. Hay, and . N. Vethaviy, ]A potentially versatile synthesis of glycosides, Carbohydrate Research, vol.27, issue.1, pp.55-61, 1973.
DOI : 10.1016/S0008-6215(00)82424-6

H. Lonn and J. Lonngren, Synthesis of a disaccharide component of the capsular polysaccharide antigen of Streptococcus pneumoniae type 1, Carbohydrate Research, vol.132, issue.1, pp.39-44, 1984.
DOI : 10.1016/0008-6215(84)85062-4

P. Fugedi and P. Garegg, A novel promoter for the efficient construction of 1,2-trans linkages in glycoside synthesis, using thioglycosides as glycosyl donors, Carbohydrate Research, vol.149, issue.1, pp.9-12, 1986.
DOI : 10.1016/S0008-6215(00)90385-9

F. 23-dasgupta and P. J. Garegg, Alkyl sulfenyl triflate as activator in the thioglycoside-mediated formation of ??-glycosidic linkages during oligosaccharide synthesis, Carbohydrate Research, vol.177, pp.13-17, 1988.
DOI : 10.1016/0008-6215(88)85071-7

Y. Ito and T. Ogawa, Benzeneselenenyl triflate as a promoter of thioglycosides : A new method for O-glycosylation using thioglycosides, Tetrahedron Letters, vol.29, issue.9, pp.1061-1064, 1988.
DOI : 10.1016/0040-4039(88)85335-8

D. 27-crich, . Smith, D. Crich, and S. Sun, 1-Benzenesulfinyl Piperidine/Trifluoromethanesulfonic Anhydride:?? A Potent Combination of Shelf-Stable Reagents for the Low-Temperature Conversion of Thioglycosides to Glycosyl Triflates and for the Formation of Diverse Glycosidic Linkages, (b) Crich, D.; Sun, S. X. J. Am. Chem, pp.9015-9020, 1998.
DOI : 10.1021/ja0111481

D. Kahne, S. Walker, Y. Cheng, and D. Van-engen, Glycosylation of unreactive substrates, Journal of the American Chemical Society, vol.111, issue.17, pp.6881-6882, 1989.
DOI : 10.1021/ja00199a081

R. Weingart and R. R. Schmidt, Can preferential ??-mannopyranoside formation with 4,6-O-benzylidene protected mannopyranosyl sulfoxides be reached with trichloroacetimidates?, Tetrahedron Letters, vol.41, issue.45, pp.8753-8758, 2000.
DOI : 10.1016/S0040-4039(00)01497-0

B. Fraser-reid, Z. Wu, U. E. Udodong, H. Ottosson, G. A. Olah et al., Armed/disarmed effects in glycosyl donors: rationalization and sidetracking, The Journal of Organic Chemistry, vol.55, issue.25, pp.6068-6070, 1964.
DOI : 10.1021/jo00312a004

G. A. Olah, G. K. Prakash, A. Molnar, and J. Sommer, Superacid Chemistry, E. B.; Evans, J. C. J. Am. Chem, 2009.
DOI : 10.1002/9780470421604

K. Saito, K. Ueoka, K. Matsumoto, S. Suga, T. Nokami et al., Indirect Cation-Flow Method: Flash Generation of Alkoxycarbenium Ions and Studies on the Stability of Glycosyl Cations, Angewandte Chemie International Edition, vol.6, issue.22, pp.5153-5156, 2011.
DOI : 10.1002/anie.201100854

S. 46-chamberland, J. W. Ziller, and K. A. Woerpel, Structural Evidence that Alkoxy Substituents Adopt Electronically Preferred Pseudoaxial Orientations in Six-Membered Ring Dioxocarbenium Ions, Journal of the American Chemical Society, vol.127, issue.15, pp.5322-5323, 2005.
DOI : 10.1021/ja050830i

M. T. Yang and K. A. Woerpel, The Effect of Electrostatic Interactions on Conformational Equilibria of Multiply Substituted Tetrahydropyran Oxocarbenium Ions, The Journal of Organic Chemistry, vol.74, issue.2, pp.545-553, 2009.
DOI : 10.1021/jo8017846

D. M. Smith and K. A. Woerpel, Electrostatic interactions in cations and their importance in biology and chemistry, Organic & Biomolecular Chemistry, vol.4, issue.590, pp.1195-1201, 2006.
DOI : 10.1021/jo0522963

T. J. Lucas and C. Schuerch, Methanolysis as a model reaction for oligosaccharide synthesis of some 6-substituted 2,3,4-tri-O-benzyl-D-galactopyranosyl derivatives, Carbohydrate Research, vol.39, issue.1, pp.39-45, 1975.
DOI : 10.1016/S0008-6215(00)82635-X

J. M. Wurst, G. Liu, and D. S. Tan, Hydrogen-Bonding Catalysis and Inhibition by Simple Solvents in the Stereoselective Kinetic Epoxide-Opening Spirocyclization of Glycal Epoxides to Form Spiroketals, Journal of the American Chemical Society, vol.133, issue.20, pp.7916-7925, 2011.
DOI : 10.1021/ja201249c

C. 53-gouliaras, D. Lee, L. Chan, and M. S. Taylor, Regioselective Activation of Glycosyl Acceptors by a Diarylborinic Acid-Derived Catalyst, Journal of the American Chemical Society, vol.133, issue.35, pp.13926-13929, 2011.
DOI : 10.1021/ja2062715

D. 54-crich and N. S. Chandrasekera, Mechanism of 4,6-O-Benzylidene-Directed??-Mannosylation as Determined by??-Deuterium Kinetic Isotope Effects, Angewandte Chemie International Edition, vol.43, issue.40, pp.5386-5389, 2004.
DOI : 10.1002/anie.200453688

D. A. Singleton and A. A. Thomas, High-Precision Simultaneous Determination of Multiple Small Kinetic Isotope Effects at Natural Abundance, Journal of the American Chemical Society, vol.117, issue.36, pp.9357-9358, 1995.
DOI : 10.1021/ja00141a030

J. K. Lee, A. D. Bain, and P. J. Berti, C Kinetic Isotope Effects Measured at Natural Abundance by NMR Spectroscopy, Journal of the American Chemical Society, vol.126, issue.12, pp.3769-3776, 2004.
DOI : 10.1021/ja0394028

E. V. Anslyn and D. A. Dougherty, Modern Physical Organic Chemistry; University Science Books: Sausalito, California Spectrometric Identification of Organic Compunds, 2005.

M. Huang, G. E. Garrett, N. Birlirakis, L. Bohé, D. A. Pratt et al., Dissecting the mechanisms of a class of chemical glycosylation using primary 13C kinetic isotope effects, Nature Chemistry, vol.75, issue.8, pp.663-667, 2012.
DOI : 10.1038/nchem.1404

K. P. 63-kartha and R. A. Field, Iodine: A versatile reagent in carbohydrate chemistry IV. Per-O-acetylation, regioselective acylation and acetolysis, Tetrahedron, vol.53, issue.34, pp.11753-11766, 1997.
DOI : 10.1016/S0040-4020(97)00742-4

T. Oshitari, M. Shibasaki, T. Yoshizawa, M. Tomita, K. Takao et al., Synthesis of : Sugar moiety of antitumor antibiotic bleomycin, Tetrahedron, vol.53, issue.32, pp.10993-11006, 1997.
DOI : 10.1016/S0040-4020(97)00360-8

M. Huang, H. Tran, D. R. Bundle, L. Bohé, D. Crich et al., Carbohydrate Chemistry: Proven Synthetic Methods Stereoelectronic Effects, Can. J. Chem, vol.2, issue.88, pp.1154-1174, 1996.

D. 69-crich, J. Mataka, L. N. Zakharov, A. L. Rheingold, and D. J. Wink, Stereoselective Formation of Glycosyl Sulfoxides and Their Subsequent Equilibration:?? Ring Inversion of an ??-Xylopyranosyl Sulfoxide Dependent on the Configuration at Sulfur, Journal of the American Chemical Society, vol.124, issue.21, pp.6028-6036, 2002.
DOI : 10.1021/ja0122694

P. Dagnelie, Statistique Théorique et Appliquée, 2007.

D. 77-crich and W. L. Cai, -glycopyranosyl Triflates:?? Contrasting Behavior between the Gluco and Manno Series, The Journal of Organic Chemistry, vol.64, issue.13, pp.4926-4930, 1999.
DOI : 10.1021/jo990243d

J. I. 79-seeman, Effect of conformational change on reactivity in organic chemistry. Evaluations, applications, and extensions of Curtin-Hammett Winstein-Holness kinetics, Chemical Reviews, vol.83, issue.2, pp.83-134, 1983.
DOI : 10.1021/cr00054a001

D. Griller and K. U. Ingold, Free-radical clocks, Accounts of Chemical Research, vol.13, issue.9, pp.317-323, 1980.
DOI : 10.1021/ar50153a004

M. Julia and . Acc, Free-radical cyclizations, Accounts of Chemical Research, vol.4, issue.11, pp.386-392, 1971.
DOI : 10.1021/ar50047a005

D. 86-crich, W. Cai, Z. Dai, O. Hindsgaul, G. Synlett-stork et al., Highly Diastereoselective ??-Mannopyranosylation in the Absence of Participating Protecting Groups, The Journal of Organic Chemistry, vol.65, issue.5, pp.1291-1297, 1992.
DOI : 10.1021/jo9910482

S. David and S. Hanessian, Regioselective manipulation of hydroxyl groups via organotin derivatives, Tetrahedron, vol.41, issue.4, pp.643-663, 1985.
DOI : 10.1016/S0040-4020(01)96443-9

M. Karplus, Contact Electron???Spin Coupling of Nuclear Magnetic Moments, The Journal of Chemical Physics, vol.30, issue.1, pp.11-15, 1959.
DOI : 10.1063/1.1729860

T. 94-nukada, A. Bérces, and D. M. Whitfield, Can the stereochemical outcome of glycosylation reactions be controlled by the conformational preferences of the glycosyl donor?, Carbohydrate Research, vol.337, issue.8, pp.765-774, 2002.
DOI : 10.1016/S0008-6215(02)00043-5

M. Huang, P. Retailleau, L. Bohé, and D. Crich, Cation Clock Permits Distinction Between the Mechanisms of ??- and ??-O- and ??-C-Glycosylation in the Mannopyranose Series: Evidence for the Existence of a Mannopyranosyl Oxocarbenium Ion, Journal of the American Chemical Society, vol.134, issue.36, pp.14746-14749, 2012.
DOI : 10.1021/ja307266n

URL : https://hal.archives-ouvertes.fr/hal-00745057

J. Kim, H. Yang, J. Park, and G. Boons, A General Strategy for Stereoselective Glycosylations, Journal of the American Chemical Society, vol.127, issue.34, pp.12090-12097, 2005.
DOI : 10.1021/ja052548h

S. K. Maity, S. K. Dutta, A. K. Banerjee, B. Achari, and M. Singh, Design and synthesis of mannose analogues as inhibitors of ??-mannosidase, Tetrahedron, vol.50, issue.23, pp.6965-6974, 1994.
DOI : 10.1016/S0040-4020(01)81349-1

S. 102-cherif, J. M. Clavel, and C. Monneret, A Synthetic Approach to the Glycan Chain of High Mannose Type N-Glycoprotein, Journal of Carbohydrate Chemistry, vol.2883, issue.8, pp.1203-1218, 1998.
DOI : 10.1016/0008-6215(94)84264-7

M. S. Motawia, C. E. Olsen, K. Enevoldsen, J. Marcussen, and B. L. Møller, Chemical synthesis of 6???-??-maltosyl-maltotriose, a branched oligosaccharide representing the branch point of starch, Carbohydrate Research, vol.277, issue.1, pp.109-123, 1995.
DOI : 10.1016/0008-6215(95)00203-6

P. Blom and B. Ruttens, Van Hoof, S.; Hubrecht, I.; Van der Eycken, J.; Sas, B

Z. Szurmai, L. Balatoni, and A. Lipták, Synthesis of some partially substituted methyl ??-d- and phenyl 1-thio-??-d-mannopyranosides for the preparation of manno-oligosaccharides, Carbohydrate Research, vol.254, pp.301-309, 1994.
DOI : 10.1016/0008-6215(94)84264-7

J. Pougny and P. Sinaÿ, Reaction d'imidates de glucopyranosyle avec l'acetonitrile. Applications synthetiques, Tetrahedron Letters, vol.17, issue.45, pp.4073-4076, 1976.
DOI : 10.1016/S0040-4039(00)92578-4