A. Bibliographie and H. , A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, pp.716-723, 1974.

A. , P. Li, X. , W. , and O. , Prediction of time series by statistical learning: General losses and fast rates, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00749729

B. , Y. Giraud, C. , H. , and S. , Estimator selection in the Gaussian setting, Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, p.72, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00502156

B. , A. R. Birgé, L. , M. , and P. , Risk bounds for model selection via penalization. Probability Theory and Related Fields, pp.301-413, 1999.

B. , P. L. Jordan, M. I. , M. , and J. D. , Convexity, classification, and risk bounds, Journal of the American Statistical Association, vol.101, pp.138-156, 2006.

B. , P. L. Mendelson, S. , P. , and P. Berkeley, Local complexities for empirical risk minimization, p.12, 2004.

A. D. Bazykin, Hypothetical Mechanism of Speciaton, Evolution, vol.23, issue.4, pp.685-687, 1969.
DOI : 10.2307/2406862

B. , A. Chernozhukov, V. , W. , and L. , Square-root Lasso: Pivotal recovery of sparse signals via conic programming, Biometrika, vol.98, pp.791-806, 2011.

B. , G. Devroye, L. , L. , and G. , Consistency of random forests and other averaging classifiers, Journal of Machine Learning Research, vol.9, pp.2015-2033, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00355368

B. , G. Fischer, A. Guedj, B. , M. et al., COBRA: A Nonlinear Aggregation Strategy, p.31, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01361789

B. , P. J. Ritov, Y. , T. , and A. B. , Simultaneous analysis of Lasso and Dantzig selector. The Annals of Statistics, pp.1705-1732, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00401585

G. Blanchard, G. Lugosi, V. , and N. , On the rate of convergence of regularized boosting classifiers, Journal of Machine Learning Research, vol.4, pp.861-894, 2003.

B. , S. Bousquet, O. , L. , and G. , Theory of classification: a survey of some recent advances. ESAIM: Probability and Statistics, p.59, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00017923

B. , O. Boucheron, S. , L. , and G. , Advanced lectures on Machine Learning, chap. Introduction to Statistical Learning Theory, pp.169-207, 2004.

B. , J. R. Baird, S. J. , B. , and R. K. , Spatial structure and habitat variation in a grasshopper hybrid zone, Evolution, vol.55, pp.1832-1843, 2001.

B. , F. Tsybakov, A. B. , W. , and M. H. , Aggregation and sparsity via ? 1 -penalized least squares, Proceedings of the 19th annual conference on Computational Learning Theory, pp.379-391, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00084553

B. , F. Tsybakov, A. B. , W. , and M. H. , Aggregation for gaussian regression. The Annals of Statistics, pp.1674-1697, 2007.

B. , F. Tsybakov, A. B. , W. , and M. H. , Sparsity oracle inequalities for the Lasso, Electronic Journal of Statistics, vol.35, issue.72, pp.169-194, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00160646

B. , P. , V. De-geer, and S. A. , Statistics for High-Dimensional Data, p.60, 2011.

C. , C. Durand, E. Forbes, F. , F. et al., Bayesian clustering algorithms ascertaining spatial population structure: A new computer program and a comparison study, Molecular Ecology Notes, vol.7, pp.747-756, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00370267

C. , P. Cerdeira, A. Almeida, F. Matos, T. et al., Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, pp.547-553, 2009.

D. , A. S. Hebiri, M. Meziani, K. , S. et al., Learning heteroscedastic models by convex programming under group sparsity, Journal of Machine Learning Research -W & CP, pp.379-387, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00813908

D. Castro and Y. , Constructions déterministes pour la régression parcimonieuse, 2011.

D. , L. Györfi, L. , L. , and G. , A probabilistic theory of pattern recognition, p.75, 1996.

D. , D. L. Johnston, I. M. Kerkyacharian, G. , P. et al., Wavelet shrinkage: Asymptopia?, Journal of the Royal Statistical Society, Series B, vol.57, pp.301-369, 1995.

D. , E. Jay, F. Gaggiotti, O. , F. et al., Spatial inference of admixture proportions and secondary contact zones, Molecular Biology and Evolution, vol.26, issue.105, pp.1963-1973, 2009.

E. , B. Hastie, T. Johnston, I. M. , T. et al., Least angle regression . The Annals of Statistics, pp.407-499, 2004.

F. , D. Stephens, M. , P. , and J. K. , Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies, Genetics, vol.164, pp.1567-1587, 2003.

F. , J. Hastie, T. , T. , and R. , Additive logistic regression: a statistical view of boosting. The Annals of Statistics With discussion, pp.337-407, 2000.

F. , J. Hastie, T. , T. , and R. , Regularization paths for generalized linear models via coordinate descent, Journal of Statistical Software, p.17, 2010.

G. , A. Carlin, J. B. Stern, H. S. , R. et al., Bayesian Data Analysis, p.59, 2004.

G. , A. Lewis, D. D. , M. , and D. , Large-scale bayesian logistic regression for text categorization, Technometrics, vol.49, pp.291-304, 2007.

G. , C. Huet, S. , V. , and N. , High-dimensional regression with unknown variance, Statistical Science, vol.27, issue.22, pp.500-518, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00626630

G. , G. Estoup, A. Mortier, F. , C. et al., A spatial statistical model for landscape genetics, Genetics, vol.170, issue.33, pp.1261-1280, 2005.

G. , G. Leblois, R. Coulon, A. , F. et al., Statistical methods in spatial genetics, Molecular Ecology, vol.18, issue.33, pp.4734-4756, 2009.

G. , L. Kohler, M. Krzy-?-zak, A. , W. et al., A Distribution-Free Theory of Nonparametric Regression, pp.72-75, 2002.

H. , C. Dobra, A. , W. , and M. , Shotgun Stochastic Search for "Large p" Regression, Journal of the American Statistical Association, vol.102, issue.39, pp.507-516, 2007.

H. , T. Tibshirani, R. , F. , and J. , The Elements of Statistical Learning ? Data mining, Inference, and Prediction, p.37, 2009.

H. , M. , V. De-geer, and S. A. , The smooth Lasso and other ? 1 + ? 2 -penalized methods, Electronic Journal of Statistics, vol.5, issue.17, pp.1184-1226, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00462882

J. , A. Nazin, A. V. Tsybakov, A. B. , V. et al., Recursive aggregation of estimators by the mirror descent method with averaging. Problems of Information Transmission, pp.368-384, 2005.

J. , A. Rigollet, P. , T. , and A. B. , Learning by mirror averaging. The Annals of Statistics, pp.2183-2206, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00014097

K. , L. E. Baird, S. J. , B. , and N. H. , A comparison of multilocus clines maintained by environmental adaptation or by selection against hybrids, Genetics, vol.153, issue.101, pp.1959-1971, 1999.

K. , M. Lecué, and G. , Non-asymptotic oracle inequalities for the Lasso and Group Lasso in high dimensional logistic model. Preprint, URL http Méthodes d'agrégation : optimalité et méthodes rapides, p.16, 2007.

M. , C. J. Nurnberger, B. Barton, N. H. , S. et al., Habitat preference in the Bombina hybrid zone in Croatia, Evolution, vol.52, pp.227-239, 1998.

M. , M. Baird, S. J. Dufková, P. Munclinger, P. Bímová et al., Assessing multilocus introgression patterns: a case study on the mouse x chromosome in Central Europe, Evolution, vol.65, pp.1428-1446, 2011.

M. , M. Baird, S. J. Munclinger, P. Dufková, P. Bímová et al., Genetic conflict outweighs heterogametic incompatibility in the mouse hybrid zone?, BMC Evolutionary Biology, vol.8, p.102, 2008.

M. , J. D. Kruppa, J. Dasgupta, A. Malley, K. G. et al., Probability machines: Consistent probability estimation using nonparametric learning machines, Methods of Information in Medicine, vol.51, issue.79, pp.74-81, 2012.

M. , L. Van-de-geer, S. A. , B. , and P. , The group Lasso for logistic regression, Journal of the Royal Statistical Society, Series B, vol.70, issue.28, pp.53-71, 2008.

M. , L. Van-de-geer, S. A. , B. , and P. , High-dimensional additive modeling. The Annals of Statistics, pp.3779-3821, 2009.

P. , E. C. Van-der, M. J. Laan, and . Berkeley, Super learner in prediction, p.80, 2010.

P. , E. C. Van-der, and M. J. Laan, SuperLearner: Super Learner Prediction. R package version 2.0-9, URL http, p.80, 2012.

P. , J. K. Stephens, M. , D. , and P. , Inference of population structure using multilocus genotype data, Genetics, vol.155, issue.33, pp.945-959, 2000.

R. Core, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, p.74, 2013.

R. , G. Wainwright, M. J. , Y. , and B. , Minimax-optimal rates for sparse additive models over kernel classes via convex programming, Journal of Machine Learning Research, vol.13, issue.25, pp.389-427, 2012.

R. , P. Lafferty, J. Liu, H. , W. et al., Sparse additive models, Journal of the Royal Statistical Society, Series B, vol.71, issue.25, pp.1009-1030, 2009.

S. , T. Miller, M. P. Mcrae, B. Fortin, M. J. et al., Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics, International Journal of Molecular Sciences, vol.12, pp.865-889, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00845282

S. , J. , L. Pennec, and E. , An aggregator point of view on NL-Means, SPIE, p.23, 2009.

S. , J. , L. Pennec, and E. , NL-Means and aggregation procedures, ICIP, pp.2977-2980, 2009.

T. , R. Saunders, M. Rosset, S. Zhu, J. et al., Sparsity and smoothness via the fused Lasso, Journal of the Royal Statistical Society, Series B, vol.67, issue.17, pp.91-108, 2005.

V. De-geer and S. A. , High-dimensional generalized linear models and the Lasso. The Annals of Statistics, pp.614-645, 2008.

V. De-geer, S. A. , B. , and P. , On the conditions used to prove oracle results for the Lasso, Electronic Journal of Statistics, vol.3, issue.0, pp.1360-1392, 2009.
DOI : 10.1214/09-EJS506

M. J. Van-der-laan, E. C. Polley, H. , and A. E. , Super Learner, Statistical Applications in Genetics and Molecular Biology, vol.6, issue.1, pp.32-74, 2007.
DOI : 10.2202/1544-6115.1309

W. , T. T. Chen, Y. F. Hastie, T. Sobel, E. et al., Genome-wide association analysis by lasso penalized logistic regression, Bioinformatics, vol.25, pp.714-721, 2009.

Z. , X. Liu, K. , W. , and S. T. , Cancer classification and prediction using logistic regression with bayesian gene selection, Journal of Biomedical Informatics, vol.37, pp.249-259, 2004.