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Résumé
Cette thèse présente une contribution aux développements de méthodes numériques
pour la simulation d’écoulements en milieu poreux, en particulier par des méthodes de
décomposition de domaine espace–temps qui permettent l’utilisation de pas de temps
différents dans les différents sous–domaines. Nous étudions deux types de méthodes:
la première est basée sur une généralisation de l’opérateur de Steklov–Poincaré au cas
de problèmes dépendants du temps, et la seconde est basée sur la méthode de Relax-
ation d’Onde Optimisée de Schwarz (OSWR) dans laquelle des conditions de transmis-
sion plus générales (Robin ou Ventcell) sont utilisées pour accélérer la convergence de
l’algorithme. Ces deux méthodes sont étudiées sur une formulation mixte qui est bien
adaptée à la modélisation de l’écoulement et du transport en milieu poreux.

Nous considérons tout d’abord un problème de diffusion et formulons, pour chaque
méthode, un problème sur l’interface espace–temps entre les sous–domaines. Le car-
actère bien posé de ces problèmes, avec des conditions aux limites de Dirichlet ou
de Robin, est démontré. Les preuves de convergence de l’algorithme OSWR et de
sa version semi–discrète sous forme mixte sont également données. Des expériences
numériques sont menées en 2D pour comparer les performances des deux méthodes sur
des problèmes fortement hétérogènes, et un préconditionneur de Neumann–Neumann
dépendant du temps permet d’accélérer la première méthode.

Les deux méthodes sont ensuite étendues au cas d’une équation d’advection–
diffusion, l’advection et la diffusion étant traitées séparément grâce une technique
de séparation d’opérateurs, ce qui permet d’utiliser des pas de temps différents pour
les deux phénomènes dans chaque sous-domaine. Des conditions de transmission
sont proposées séparément pour l’advection et pour la diffusion. La convergence des
méthodes est étudiée sur des exemples numériques, pour des problèmes en régime
d’advection dominante ou de diffusion dominante, et leur précision en temps est
étudiée dans le cas de grilles non–conformes en temps. Deux exemples inspirés de
la simulation du stockage de déchets nucléaires sont étudiés, et la simulation sur des
temps longs est réalisée par l’intermédiaire de fenêtres en temps.

Nous considérons également la méthode OSWR avec des conditions de transmis-
sion de Ventcell, étendues à la formulation mixte. Nous démontrons que les problèmes
de sous–domaine avec des conditions aux limites de Ventcell sont bien posés. Nous
comparons les performances des paramètres optimisés pour Ventcell et Robin dans le
cas de problèmes hétérogènes pour une décomposition en deux sous–domaines.

Enfin, nous étudions l’extension des deux méthodes au cas où l’interface représente
une fracture pour un modèle réduit d’écoulement dans un milieu poreux fracturé.

Mots-clés: décomposition de domaines espace–temps, formulation mixte, écoulement
et transport en milieu poreux, problèmes hétérogènes, opérateur de Steklov–Poincaré
dépendant du temps, Relaxation d’Onde de Schwarz Optimisée, grilles en temps non–
conformes, fractures.





Abstract

This thesis contributes to the development of numerical methods for flow and transport
in porous media, in particular, by using space-time domain decomposition methods
that enable the use of different time steps in the subdomains. In this work, we study
two types of methods: one is based on a generalization of the Steklov-Poincaré operator
to time-dependent problems and one is based on the Optimized Schwarz Waveform
Relaxation (OSWR) method in which more general (Robin or Ventcell) transmission
conditions are used to accelerate the convergence of the method. These two methods
are derived in a mixed formulation, which is well-suited to problems arising in the
modeling of flow and transport in porous media.

We first consider the diffusion problem and formulate an interface problem on the
space-time interfaces between the subdomains for each method. The well-posedness of
the subdomain problem with either Dirichlet or Robin boundary conditions is shown.
The convergence proofs of the OSWR algorithm and of the semi-discrete OSWR al-
gorithm in mixed form with nonconforming time discretization are given. Numerical
experiments in 2D comparing the performance of the two methods for strongly hetero-
geneous problems are carried out with a time-dependent Neumann-Neumann precon-
ditioner with weight matrices being used to accelerate the first method.

We then extend both methods to the advection diffusion equation where operator
splitting is used to treat the advection and the diffusion differently. Separate transmis-
sion conditions for the advection equation and for the diffusion equation are derived.
Using numerical results for various test cases, both advection-dominated and diffusion-
dominated problems, we compare the convergence of the two methods and analyze the
accuracy in time given by each when nonconforming time grids are used. Two proto-
types for nuclear waste disposal simulation are considered and time windows are used
for long-term simulation.

We also consider the OSWR method with Ventcell transmission conditions extended
to the mixed formulation. The subdomain problem with Ventcell boundary conditions
is shown to be well-posed. We compare numerically, for a decomposition into two
subdomains, the performance of the optimized Ventcell and Robin parameters for het-
erogeneous problems.

We finally study extensions of the two methods to the case in which the interface
represents a discrete-fracture in a reduced fracture model for flow in a fractured porous
medium.

Keywords: space-time domain decomposition, mixed formulations, flow and transport
in porous media, heterogeneous problems, time-dependent Steklov-Poincaré operator,
optimized Schwarz waveform relaxation, nonconforming time grids, fractures.
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Introduction

Motivation: simulation of a deep geological repository

What can be done with the radioactive waste? In 1957, the National Research Council
of the American National Academy of Sciences introduced the concept of a repository
in a deep geological formation that would effectively isolate wastes from the biosphere
for a time long enough for them to decay. In brief, the waste is first encapsulated in
multiple-metal-barrier, waste packages and then is buried deep underground (about
300m-500m in depth) in a sufficiently stable environment. There are many technical
challenges to deriving a full understanding of the long-term behavior and performance
of such a repository. These are due to the physical characteristics of the flow system, the
interaction of water with waste packages in the repository, the transport of radionu-
clides released from the packages due to corrosion, the chemical reactions that may
occur, the possible presence of undetected or newly developed fractures, etc. This is a
problem that involves scientists from many fields, hydrogeologists, physicists, chemists,
mathematicians, biologists, engineers, etc. and that attracts more and more attention
in many countries that have a sufficiently large amount of nuclear waste.

In France, ANDRA (l’Agence Nationale pour la gestion de Déchets RAdioactifs,
www.andra.fr), who sponsored this thesis and provided data for more realistic numer-
ical experiments, is the national radioactive waste management agency established in
1991 as a public body in charge of the long-term management of all radioactive waste.
One of the purposes of ANDRA is to study the future performance of potential reposi-
tories to demonstrate that it is safe and that it will pose no significant environmental
hazard due to possible leakages of the radioactive waste. Several different physical
phenomena are involved: at the geologic scale, the main phenomena are the flow
of water throughout the region of interest, and the subsequent possible migration of
the radionuclides caused by the leak from the containers over time. At the repository
scale, corrosion will cause formation of gas, so that two phase flow has to be taken into
account. Furthermore, chemical interactions between the engineered barrier and the
waste also play a role, as does the mechanical deformation due to the construction of
the storage. The task can be carried out by modeling and simulating the multiphase,
multicomponent flow and the transport of contaminants in a porous medium. In this
work, we will only be concerned with large scale issues, and only deal with single
phase flow and transport. Mathematically, one works with complex, coupled systems
of (nonlinear) partial differential equations (PDEs) and tries to approximate their so-
lutions as accurately and efficiently as possible. Additionally, the time interval for the
experiment can be very long (about 103 − 106 years due to the slow decay process of
radioactive elements) and simulations may need to be repeated many times to carry
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(a) Waste package 1.3m × Ø 0.43m

(c) Geological formation 20km ×20km ×500m

(b) A repository 2km ×2km

Figure 1: A possible layout for a deep geological repository provided by ANDRA.

out a sensitivity analysis. Thus there is a need for efficient simulators to deal with this
problem. One is confronted with the following challenges:

• The simulations involve objects with very different length scales, from 1 meter
(or even less if the possibility of fractures is considered) to hundreds or thou-
sands of meters, and with complex geometries (see Figure 1). Consequently,
local refinements in different zones may be required.

• The domain of calculation is actually a union of several subdomains representing
various geological layers involved in the simulation and regions in and around
the repository. These subdomains may have very different hydrogeological prop-
erties, which causes strong heterogeneity in space. In addition, the various phys-
ical or chemical processes involved might occur on very different time scales that
may vary over several orders of magnitude.

One possible way to efficiently carry out such a simulation is to use domain decom-
position methods: the domain of calculation Ω is decomposed into several subdomains
Ωi, then instead of solving a problem defined on the whole domain, we solve the sub-
problems defined on the subdomains and couple them through the use of well-chosen
transmission conditions on the interfaces between subdomains. This approach is well-
adapted to our original problem for three reasons: firstly, it reduces the problem on a
very complex and large domain (which may be very expensive or even impossible to
implement) to problems of smaller size; secondly, it makes possible the use of differ-
ent numerical schemes for spatial discretization for different subdomains adapted to
their physical properties (thus the refinements can be handled locally in each subdo-
main); thirdly, the subdomain problems can be solved in parallel on supercomputers
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with many processors so that the computational time may be reduced significantly. For
a dynamic system (i.e. changing with time), a straightforward extension of such an
approach is to first discretize the system in time, then apply domain decomposition to
solve the resulting stationary problem at each time step. Consequently, a single time
step is applied for all subdomains, which is not computationally efficient due to very
different time scales involved in the simulation. Hence we search for a method that
enables different time discretizations in the subdomains as well as different spatial dis-
cretizations. The idea is using an iterative procedure to decouple the dynamic system
into dynamic subsystems defined on the subdomains, to solve the time-dependent prob-
lem independently in each subdomain, and then to exchange information between the
subdomains on the space-time interfaces. This method, namely the space-time domain
decomposition method or global-in-time domain decomposition, may be enhanced by
using time windows, i.e. the long time interval is divided into several smaller sub-
intervals, called time windows, and the problem is then solved in the time windows
sequentially.

In this thesis, we consider the linear transport problem with both advection and
diffusion. Dispersion can be handled in a way similar to what has been done for diffu-
sion, however, we haven’t taken into account the impact of dispersion in our numerical
implementations. The aim of this thesis is to derive and analyze domain decomposition
methods with local time stepping for this type of parabolic equation before moving on
to more complicated models.

The object of the work: Space-time domain decomposition in
mixed formulations

Domain decomposition methods originated from the work of H. A. Schwarz [105] in
1870, in which he proposed an iterative method, now called the Schwarz alternating
method, to prove the existence of harmonic functions on irregular regions (such as a
region consisting of a rectangle and a circle which intersect). Since the mid-1980s,
due to the development of parallel computer architectures and multiprocessor super-
computer designs, one has witnessed a strong development of numerical methods for
partial differential equations (PDEs) based on the concept of domain decomposition,
see, e.g., [55, 15, 4, 20] and the references therein. We cite in particular the work of
P. L. Lions [85] (see also [83, 84]) introducing a parallelizable nonoverlapping domain
decomposition method based on Robin transmission conditions, which lays the corner
stone for a school of domain decomposition methods to which one of the two methods
developed in this thesis belongs. We refer to the books [101, 109, 94] and the refer-
ences therein for an overview of this subject and the website of the annual international
domain decomposition method conference, ddm.org, for an increasingly large amount
of research and numerical algorithms using domain decomposition for different types
of linear and nonlinear PDEs. It should be noted that domain decomposition methods
have a close relation with the numerical methods for the solution of linear algebraic
systems.

For parabolic equations, there are three possible classes of domain decomposition
methods (as acknowledged in [45]) :

• Domain decomposition in space: the equation is first discretized in time using
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an implicit scheme and the classical domain decomposition methods is then used
for solving the stationary problems at each time step (see, e.g. [78, 23] and the
references therein). Consequently, the same time discretization must be used in
each subdomain, which restricts the possibility of using numerical approxima-
tions adapted to the physics of the subdomain problem. In the context of using
parallel computing, this approach is costly as information needs to be exchanged
at every time step of the discretization.

• Domain decomposition in time: the equation is first discretized in space to obtain
a large system of ordinary differential equations, then a waveform relaxation
algorithm is used for solving such a system. Multi-splitting algorithm [76], multi-
grid dynamic iteration method [69] and convolution SOR waveform relaxation
algorithm [70] are examples of this class, where the analysis is carried out in an
algebraic view and thus it is difficult to interpret the physical properties such as
information exchange on the interfaces in this case. See the cited papers and the
references therein for more detail about this approach.

• Space-time domain decomposition: a space-time domain decomposition method
is derived at continuous level so that the time-dependent problems are solved
in each subdomain (resulting from a spatial decomposition) and the informa-
tion is then exchanged over space-time interfaces between subdomains. As a
result, different numerical schemes both in space and in time can be used in the
subdomains and less communication cost is needed (in terms of parallel com-
putations) as the data is transferred over the whole time interval. Such an ap-
proach using the waveform relaxation algorithm and the overlapping Schwarz
domain decomposition has been simultaneously and independently introduced
in [51, 54]. However, the resulting iterative algorithm was shown to converge
slowly (with a constant overlap). Then by using the idea of the Optimized
Schwarz method [72, 44], optimal transmission conditions were derived for
parabolic problems [47, 90, 12] and the new method was introduced, namely,
the Optimized Schwarz Waveform Relaxation method (more details about this
method will be given in the following).

Our work concentrates on the last of these classes as it provides a natural and sim-
ple way to efficiently deal with problems with strong heterogeneities. We apply such a
space-time domain decomposition method to model flow and transport in porous me-
dia. In particular, we focus on the use of local time stepping and only treat conforming
spatial discretizations. There are many works on nonconforming grids in space, for ex-
ample: mortar finite elements (see, e.g.[13, 113, 114]), mortar mixed finite elements
(see, e.g. [38, 115]), methods based on Schwarz algorithms with optimized Robin
transmission conditions (see [2, 50, 1]).

In order to handle efficiently the advection-diffusion problem, especially when ad-
vection is dominant, we use operator splitting [68] to treat the advection and the
diffusion separately and differently. It was shown that (see, e.g. [29, 30, 95]) approx-
imating the advection explicitly and the diffusion implicitly can reduce the numerical
diffusion. In [6, Chapter 2, p.14–32], numerical results in 1D comparing the three
schemes - fully implicit, explicit-implicit and operator splitting with sub-time steps for
the advection - show that the operator splitting gives good approximations both for
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homogeneous and for heterogeneous problems and at the same time makes possible
the optimal use of time steps for the advection and the diffusion. In particular, for an
advection-dominated problem, one may take a smaller time step, satisfying the CFL
condition, for the advection while much larger time step can be used for the diffusion.
Throughout the thesis, due to operator splitting, we study first the domain decompo-
sition methods for the pure diffusion equation, then extend the results to the coupled
advection-diffusion problem.

In addition, as the conservation of mass is essential for the application that we
envisage, we use conservative cell-centered techniques for discretization in space such
as mixed finite element methods, mixed hybrid finite element methods or finite vol-
ume methods. In particular we have chosen to use mixed methods. Mixed finite ele-
ment methods are numerical discretization methods first used by engineers in the mid
1960’s for problems in solid mechanics; see [111, 63, 64]. A mathematical analysis
of the basic method was given by F. Brezzi in 1974 [21], and the most widely used
approximation spaces associated with the method were introduced by P.-A.Raviart and
J.-M. Thomas in 1977 [102]. From the mid 1980’s these methods began to be used for
calculation of the flow field in reservoir simulation problems in particular because they
give an approximation simultaneously, and to the same order, of both the velocity field
and the pressure field [32, 34, 39, 24]. They were also considered to be particularly
appropriate methods for this problem because they are conservative and even locally
conservative. These same properties have made these methods interesting for many
other problems in which flow in a porous medium must be calculated: modeling flow
in and around underground nuclear waste repositories, studying seawater infiltration
into aquifers, evaluating the feasibility of CO2 sequestration, to name a few. If these
discretization methods have still today not become the method of choice for large in-
dustrial codes in the oil industry they are nonetheless much studied with respect to
porous medium applications in both the academic and engineering literature. For a
development from a mathematical point of view see [22] or [104] or from a more en-
gineering point of view see [25] or [26, Chapter 4.5]. The mixed formulation with two
types of variables is very well-suited for using domain decomposition [56], especially
since one has available both Dirichlet and Neumann data on the boundary.

In this work, we develop two space-time domain decomposition methods as fol-
lows:

1. The first method (called Method 1 in this thesis) is a global-in-time substruc-
turing method which uses a Steklov-Poincaré type operator. Steklov-Poincaré
operators are interface operators that enforce the classical transmission condi-
tions on the interfaces between subdomains. They were introduced for stationary
problems [3, 112, 14, 100] as natural mathematical tools for analyzing domain
decomposition algorithms for both homogeneous and heterogeneous problems.
The convergence of an iterative procedure associated with the discrete counter-
part of any Steklov-Poincaré operator (namely, the Schur complement matrix)
is accelerated by a use of the Neumann-Neumann preconditioner [99, 19, 31]
which is a local preconditioner defined by solving Neumann boundary prob-
lems in the subdomains. For a decomposition into many subdomains a technique
called Balancing Domain Decomposition (BDD) preconditioner was introduced
and analyzed in [88, 89], and in [28] for mixed finite elements. In brief, the
method "involves at each iteration the solution of a local problem with Dirich-
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let data, a local problem with Neumann data and a "coarse grid" problem to
propagate information globally and to insure the consistency of the Neumann
problems" [28]. It was shown that the condition number is independent of the
coefficient jumps between the subdomains and of the number of subdomains,
and it grows only as the square of the logarithm of the ratio of the subdomain
size to the element size in both two and three dimensions. Extension of Steklov-
Poincaré operators to parabolic problems was given in [35, 52] in which uniform
time steps are considered and the iterations are then performed at each time
step.

In this work, we extend the method to the case of unsteady problems and in the
context of operator splitting, and construct the time-dependent Steklov-Poincaré
operator. For parabolic problems, we need only the Neumann-Neumann pre-
conditioner [80] as there are no difficulties concerning consistency for time-
dependent Neumann problems. Of course one could make use of the idea of
the "coarse grid" to ensure a convergence rate independent of the number of
subdomains. However, this idea has not been pursued for lack of time.

2. The second method (Method 2) uses the Optimized Schwarz Waveform Relax-
ation (OSWR) approach. The OSWR algorithm is an iterative method that com-
putes in the subdomains over the whole time interval, exchanging space-time
boundary data through more general (Robin or Ventcell) transmission operators
in which coefficients can be optimized to improve convergence rates. For sta-
tionary problems, Robin and Ventcell transmission conditions for the alternating
Schwarz method were proposed in [96] and the optimized conditions were intro-
duced in [71, 74]. See [44] for an overview of the Optimized Schwarz methods.
In the context of mixed formulations, the classical Schwarz algorithm with Robin
transmission conditions for stationary problems with mixed finite elements was
analyzed in [33]. In this thesis, we extend the Optimized Schwarz methods with
Ventcell transmission condition to the mixed settings.

The OSWR method was introduced for parabolic and hyperbolic problems in
[47] and was extended to advection-reaction-diffusion problems with constant
coefficients in [90]. The optimization of the Robin or Ventcell parameters was an-
alyzed in [45, 90, 12] and extended to discontinuous coefficients in [46, 16, 60].
Extensions to heterogeneous problems and non-matching time grids were intro-
duced in [46, 17]. More precisely, in [17, 59], discontinuous Galerkin (DG) for
the time discretization of the OSWR was introduced to handle non-conforming
time grids, in one dimension with discontinuous coefficients. This approach was
extended to the two dimensional case in [61, 62]. One of the advantages of
the DG method in time is that a rigorous analysis can be carried out for any
degree of accuracy and local time-stepping, with different time steps in differ-
ent subdomains (see [61, 62]). A suitable time projection between subdomains
was obtained by an optimal projection algorithm without any additional grid, as
in [50] (see also [49] for efficient projection algorithms for higher dimensions).
These papers use Lagrange finite elements. An extension to vertex-centered finite
volume schemes and nonlinear problems is given in [57].

In this thesis, we study an extension of the OSWR method with Robin transmis-
sion conditions to the mixed formulation and in the context of operator splitting.
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In order to improve the convergence of the method, we also consider the Ventcell
transmission conditions in the mixed setting. Moreover, this type of transmission
conditions is concerned when we extend the OSWR method to a reduced fracture
model since the equation in the fracture is also second order.

The well-posedness of the subdomain problems involved in each method is pre-
sented using Galerkin’s method and suitable a priori estimates [81, 18, 65]. In
[106, 107] demonstrations using semigroups are given for nonlinear evolution prob-
lems.

For each method, we transform the multidomain problem into an interface problem
on the space-time interfaces between subdomains. Different time discretizations are
enabled by applying the projection algorithm in [50] to exchange information on the
space-time interfaces, for the lowest order DG method in time. The discrete counterpart
of the interface problem is solved iteratively using a Richardson iteration or can be
accelerated by a Krylov method such as GMRES. Numerical experiments are carried
out for different test cases, including realistic prototypes arising from the simulation of
an underground nuclear waste storage, to investigate and compare the performance of
the two methods and to analyze the accuracy in time of the nonconforming time grids.

We finally extend the two methods to model flow and transport in a porous medium
with fractures. A discrete-fracture model where the fracture is treated as an interface of
co-dimension 1 (see [5, 92] and the references therein) is considered. An extension of
Method 1 is straightforward while for Method 2, a new formulation is derived to adapt
to the coupled system of the reduced fracture model. Existence of a weak solution to
the subdomain problem involved in each method is shown. For the compressible flow
problem, numerical studies are carried out.

Contents of the thesis

This thesis consists of four main parts:

1. For pure diffusion problems: we have formulated the time dependent Steklov-
Poincaré operator and the time dependent Neumann-Neumann preconditioner
with weight matrices to handle heterogeneous problems (the convergence of a
Richardson iteration for the primal formulation of the heat equation was inde-
pendently introduced and analyzed in [79]). The corresponding semi-discrete-
in-time interface problem with the lowest order DG method and nonconforming
time steps is presented; we have extended the OSWR method with optimized
Robin transmission conditions to the mixed formulation and prove the conver-
gence of the OSWR algorithm in mixed form for the continuous problem and for
the semi-discrete problem in time with nonconforming time discretizations. The
well-posedness of the subdomain problems involved in each method (with either
Dirichlet or Robin boundary conditions) is shown. Numerical experiments in 2D
for both homogeneous and heterogeneous problems with a decomposition into
two/multiple subdomains are presented, in which the performance of the two
methods is investigated and the two are compared. The accuracy in time of the
solution is analyzed when nonconforming time grids are used.

The work in this section is the object of the publication [66].



8 Introduction

2. For advection-diffusion problems: using operator splitting, we have introduced
new schemes by extending the two methods derived for pure diffusion problems
to the advection-diffusion couplings, where the transmission conditions consist
of one equation for the advection and two equations for the diffusion (which
are similar to that of the pure diffusion case). For each method, a fully discrete
interface problem is formulated in a way such that it is equivalent to the original
problem defined on the whole domain. We study and compare the numerical
performance of the two methods, and use time windows to perform test cases
arising from the near-field simulation of a nuclear waste repository site and of a
surface waste storage site.

3. For the OSWR method with Ventcell transmission conditions: we have formu-
lated, in mixed form, the multi-domain problem with Ventcell transmission con-
ditions by introducing Lagrange multipliers on the interface; we then obtain a
subdomain problem coupling between a PDE defined in the subdomain and an-
other PDE with one less dimension on the interface. For elliptic problems, such
a subdomain problem is well-posed using an extension of the inf-sup condition
[22, 104]; for parabolic problem, the existence of weak solutions is shown using
Galerkin’s method and a priori estimates. For each case, an interface problem
is derived using the (time-dependent) Ventcell-to-Ventcell operator. We compare
numerically the performance of Ventcell and Robin transmission conditions for
strongly heterogeneous problems and for a decomposition into two symmetric
subdomains in 2D.

4. For reduced fracture models: we have extended the method based on the
Steklov-Poincaré type operator for incompressible flow [92, 7] to the case of
compressible flow, in which different time steps in the fracture and in the sur-
rounding medium can be used. In addition, we have introduced a new method
using the idea of the OSWR approach in which the transmission conditions on
the fracture-interface are rewritten equivalently in the form of Ventcell-to-Robin
type conditions. Extensions of both methods to the advection-diffusion equation
are given.

The rest of the thesis is organised as follows: in Chapter 1, we briefly present the mod-
els for flow and transport in porous media considered in this work. The subject of Chap-
ter 2 is domain decomposition methods for the pure diffusion problem written in mixed
form. Method 1 and Method 2 with Robin transmission conditions are introduced and
analyzed. We extend the results in Chapter 2 to the advection-diffusion equation with
operator splitting, which is presented in Chapter 3. In Chapter 4, Method 2 with Vent-
cell transmission conditions is studied both for elliptic and parabolic equations in a
mixed formulation. An extension of the two methods to the reduced fracture models
is derived and investigated in Chapter 5 for incompressible flow and transport of a
contaminant in a fractured porous medium. This thesis also includes three appendices
where we present successively the 2D convergence factor used to calculate the opti-
mized parameters of the OSWR algorithms (Appendix A), the detailed discretization
in space using the mixed finite element method with the lowest order Raviart-Thomas
spaces on rectangle (Appendix B), and the use of time windows for space-time domain
decomposition methods (Appendix C).
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Major contributions of the thesis

The main contribution of this thesis is the extension of two space-time domain decom-
position methods to mixed finite elements. The first method uses physical transmission
conditions and the second method uses more general (Robin or Ventcell) transmission
conditions which optimize the convergence rate of the algorithm. One of the diffi-
culties was to treat the Ventcell conditions, or more precisely to treat the tangential
derivatives occuring in the Ventcell operators, with mixed finite elements. The meth-
ods are then extended to treat advection and diffusion differently through operator
splitting. The main difficulty was to take into account the different ways of coupling
the unknowns on the interfaces (for the advection and for the diffusion). Two domain
decomposition methods are obtained both of which make possible the use of different
time steps in the different subdomains, both for the diffusion and for the advection. An
extension to the case in which the interface represents a discrete fracture in a reduced
model for flow in a fractured porous medium is also given. Ideas related to those used
to treat the Ventcell conditions for a simple interface make possible the introduction of
an optimization parameter into the transmission conditions on the fracture.





Chapter 1

Modeling flow and transport in
porous media

This chapter presents mathematical models for the single phase fluid flow and the
transport of a component in a fluid phase in porous media. We briefly present the
partial differential equations (PDEs) that govern the physical processes and introduce
the terminology and notation used throughout this thesis. For details of how these
PDEs are derived, we refer to many books on this topic, e.g. [11, 26] and the references
therein.

A porous medium such as the subsurface consists of a solid matrix and a void space,
occupied by one or more fluid phases. In this work, we will only be concerned by the
one phase flow case, that is we assume that the void space is filled by water. When
we study transport, we will additionally assume that the concentration of the dissolved
species is small enough that the "filled with water” assumption is still valid.

In this work, we employ the common approach of modeling the porous medium as
a continuum. This means that all considered quantities, such as pressure, velocity or
species concentration are actually averages of microscopic quantities over a represen-

tative elementary volume, or REV, cf. references above. An REV is usually defined as a
portion of space that is

1. large enough that averages over the REV are meaningful, and do not depend on
the precise size of the region,

2. small enough that making the approximation that the volume is "infinitesimal”
(so that the usual balance equations still make sense).

The averages should then not depend on the precise size of the REV. The description of
the porous medium in terms of quantities averaged over an REV is referred to as the
macroscopic description.

It is only over an REV that the concept of porosity makes sense: it measures how
much of the REV is occupied by the void. Similarly, Darcy’s law (described in the
next section) is the macroscopic law governing flow. It was originally proposed by
H. Darcy in 1856 as an experimental observation. Note that Darcy’s law can also be
obtained by homogenization from the Stokes equations at the microscopic level (see
for instance [67]), but this method is based on a different approach than the REV
approach.
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1.1 Flow equations

Water flow through an aquifer is modeled mathematically by Darcy’s law together with
the equation of conservation of mass.

1.1.1 Darcy’s law

Darcy’s law expresses the linear relationship between a volumetric fluid velocity and
the pressure gradient:

uuu = −
κκκ

µ

�
∇P −ρg∇z

�
, (1.1)

where

• uuu (m/s) is the Darcy velocity,

• P (Pa) is the fluid pressure, recall that

1 Pa= 1 N/m2, and 1 N= 1 kg ·m/s2.

• κκκ is the absolute permeability tensor of the porous medium: κκκ = (κ)i j where
κi j (m2) for i, j = 1,2,3, is the intrinsic permeability.

• µ (Pa·s) is the dynamic viscosity of the fluid.

• ρ (kg/m3) is the fluid density.

• g (m/s2) is the magnitude of the gravitational acceleration.

• z (m) is the depth.

Note that the density ρ is a function of fluid pressure, concentration of dissolved con-
taminants and temperature of the fluid: ρ = ρ(P, c, T ) and the porosity φ is a function
of fluid pressure: φ = φ(P). Here and throughout this thesis, we assume that ρ is
constant as a function of P, c and T . Consequently, equation (1.1) can be rewritten
equivalently in two different ways as follows:

1st interpretation

uuu = −KKK∇p, (1.2)

where

• KKK =
κκκ

µ
is called the permeability tensor and its components are measured in

m2/(Pa·s).

• p (Pa) is defined by p := P +ρg z and we shall refer to p as the pressure in the
following chapters.
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2nd interpretation

uuu = −K∇h, (1.3)

where

• K =
κκκρg

µ
is called the hydraulic conductivity tensor and its components are

measured in m/s.

• h (m) is the hydraulic head defined by

h :=
P

ρg
+ z. (1.4)

Note that the two equations (1.2) and (1.3) are mathematically equivalent and either
of them can be used depending on the physical description of the problem.

1.1.2 The equation of conservation of mass

The mass conservation equation describing the mass flow in a small element of a satu-
rated porous medium is given by

∂ (φρ)

∂ t
= −div (ρuuu) + q, (1.5)

where q is the external sources or sinks. As ρ is constant, equation (1.5) becomes

∂ φ

∂ P

∂ P

∂ t
= −div (uuu) +

q

ρ
, (1.6)

Due to the slightly compressible fluid is present, it is necessary to introduce the specific
storage Ss (m−1):

Ss = g
∂ φρ

∂ P
= g ρ

∂φ

∂ P
.

Then using the definition of h in (1.4) and from (1.6) we obtain

Ss

∂ h

∂ t
= −div (uuu) +

q

ρ
. (1.7)

This together with equation (1.7) gives a closed system for a compressible flow with
two unknowns - the scalar h and the vector field uuu:

uuu = −K∇h, in Ω× (0, T ),

Ss

∂ h

∂ t
+ div (uuu) =

q

ρ
, in Ω× (0, T ),

(1.8)

for a porous medium domain Ω and some fixed time T > 0. This system is completed
by defining the boundary and initial conditions. There are three most popular types of
boundary conditions as follows:

• Dirichlet boundary condition:

h= hd on ∂Ω× (0, T ).
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• Neumann boundary condition:

uuu · nnn= Ψ on ∂Ω× (0, T ),

where nnn is the outward unit vector normal to ∂Ω.

• Mixed (or Robin) boundary condition:

−uuu · nnn+αh=ψ on ∂Ω× (0, T ),

for α > 0 given.

The initial condition is defined by

h(·, 0) = h0 in Ω.

Incompressible flow or steady state flow equation

In our application, the flow is assumed to be incompressible: Ss = 0 and no source nor
sink is present. In this case, system (1.8) becomes

uuu = −K∇h, in Ω,
div (uuu) = 0, in Ω,

(1.9)

or equivalently
uuu = −KKK∇p, in Ω,

div (uuu) = 0, in Ω.
(1.10)

In the next section, we will make use of either of these systems for the water flow
involved in the transport process of contaminants dissolved in the water.

1.2 Transport equations

The quantity of a dissolved species in a fluid phase is measured by its (molar) concen-
tration, expressed in moles per litre of solution. The transport of such a component is
governed first by the general balance equation:

φ
∂ c

∂ t
+ div jjj = f , (1.11)

where

• c is the concentration of the dissolved contaminant,

• jjj is the flux of the species, that is the amount of the species going through a unit
surface per unit time.

• f is a source term.

The complete description needs a specification of the flux jjj. This involved three main
phenomena: advection, (molecular) diffusion and dispersion. The first two are com-
mon to most flow models, while the third one is specific to porous media. The flux will
then be a sum of three fluxes. We deal briefly with each phenomenon:
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Advection is the species being carried along the flow, without its shape undergoing
any deformation. The corresponding flux is

jjjadv = uuuc.

Molecular diffusion is caused by the Brownian motion of the molecules in the fluid.
It is expressed by Fick’s law:

jjjdiff = −De∇c,

where De is the effective diffusion coefficient of the medium (m2/s). It is related
to the molecular diffusion coefficient Dm by

De = φ Dm.

Since De includes the porosity in its definition, it is a macroscopic quantity.

Dispersion is a phenomenon specific to porous media: it is a macroscopic way of
taking into the small scale variations of the velocity, due to the microscopic het-
erogeneities in the medium. There exists several theories to write the dispersive
flux, and all of them are phenomenological. The most commonly employed is
Scheidegger model, for which the dispersive flow is written as

jjjdisp = |uuu|
�
αLE (uuu)+αT E⊥ (uuu)

�
∇c, (1.12)

where αL and αT (both in m) are, respectively, the longitudinal and trans-
verse dispersion coefficients, |uuu| is the Euclidean norm of uuu = (uuu1,uuu2,uuu3),

|uuu| =
Æ

uuu2
1 +uuu2

2 +uuu2
3, E is the orthogonal projection along the velocity,

E=
1

|uuu|2




uuu2
1 uuu1uuu2 uuu1uuu3

uuu2uuu1 uuu2
2 uuu2uuu3

uuu3uuu1 uuu3uuu2 uuu2
3




and E⊥ = III −E.

Equation (1.12) simply expresses the fact that, in a first approximation, disper-
sion has a tendency to spread the concentration plume, but does more (αL is
usually larger than αT ) in the direction of the flow than in the direction trans-
verse to it.

By replacing the flux jjj in equation (1.11) by the sum of the 3 fluxes jjjadv+ jjjdiff+ jjjdisp,
one obtains the general transport equation:

φ
∂ c

∂ t
− div (c uuu− DDD(uuu)∇c) = f , (1.13)

where we have denoted by by D(u) the diffusion-dispersion tensor

D(u) = De I + |uuu|
�
αLE (uuu) +αT E⊥ (uuu)

�
.

Even though they are different physical phenomena, it will be convenient to treat diffu-
sion and dispersion together, as acting in the same way as diffusion with an anisotropic
tensor.
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This chapter consists of three main parts. In the first part, we consider the
time-dependent diffusion problem written in a mixed formulation and prove its well-
posedness for Dirichlet and Robin boundary conditions by using Galerkin’s method
and a priori estimates. In the second part, two nonoverlapping domain decomposition
methods - the Steklov-Poincaré operator and the Optimized Schwarz waveform relax-
ation (OSWR) - are formulated through an introduction of the space-time interface
problems. We consider the semi-discrete problems in time using different time grids
in the subdomains. Convergence proofs for the continuous and semi-discrete OSWR
algorithms in mixed form are given. In the third part, we present numerical results for
different test cases to study and compare the performance of the two methods.

2.1 A model problem

In this section we define our model problem and show the existence and uniqueness of
its solution. For an open, bounded domain Ω of Rd (d = 2,3) with Lipschitz boundary
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∂Ω and some fixed time T > 0, we consider the following time-dependent diffusion
problem

φ∂t c + div (−DDD∇c) = f , in Ω× (0, T ) , (2.1)

with boundary and initial conditions

c = 0, on ∂Ω× (0, T ),

c(·, 0) = c0, in Ω. (2.2)

Here c is the concentration of a contaminant dissolved in a fluid, f the source term,
φ the porosity and DDD a symmetric time independent diffusion tensor (see Chapter 1
for a detailed description). Here and throughout this chapter, unless explicitly stated
otherwise, we assume that φ is bounded above and below by positive constants,
0 < φ− ≤ φ(x) ≤ φ+, and that there exist positive constants δ− and δ+ such that
ςT DDD−1(x)ς ≥ δ−|ς|2, and |DDD(x)ς| ≤ δ+|ς|, for a.e. x ∈ Ω and ∀ς ∈ Rd . For simplicity,
we have imposed a homogeneous Dirichlet boundary condition on ∂Ω. In practice,
we may use non-homogeneous Dirichlet and Neumann boundary conditions for which
the analysis remains valid (see Section 2.2 for the extension to Robin boundary condi-
tions).

We now rewrite (2.1) in an equivalent mixed form by introducing the vector field
rrr := −DDD∇c. This yields

φ∂t c + div rrr = f , in Ω× (0, T ) ,
∇c + DDD−1rrr = 0, in Ω× (0, T ) .

(2.3)

To write the variational formulation for (2.3) (see [22, 104]), we introduce the spaces

M = L2 (Ω) and Σ = H (div ,Ω) .

We multiply the first and second equations in (2.3) by µ ∈ M and vvv ∈ Σ respectively,
then integrate over Ω and apply Green’s formula to obtain:

For a.e. t ∈ (0, T ), find c(t) ∈ M and rrr(t) ∈ Σ such that

(φ∂t c,µ) + (div rrr,µ) = ( f ,µ), ∀µ ∈ M ,
−(div vvv, c) + (DDD−1rrr, vvv) = 0, ∀vvv ∈ Σ,

(2.4)

together with initial condition (2.2).
Here and in the following, we will use the convention that if V is a space of func-

tions, then we write VVV for a space of vector functions having each component in V . We
also denote by (·, ·) the inner product in L2(Ω) or L2(Ω)L2(Ω)L2(Ω) and ‖ · ‖ the L2(Ω)-norm or
L2(Ω)L2(Ω)L2(Ω)-norm.

Remark 2.1. Throughout this manuscript, we will treat various physical problems. Each

will be written in a mixed formulation and for each we will need a space of scalar functions

and a space of vector functions. We use the notation M for the former and Σ for the latter,

even though the definitions will change somewhat from problem to problem as we will

point out when these changes are made.

The well-posedness of problem (2.4) is shown in [81, 18], with an argument based
on Galerkin’s method and a priori estimates:
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Theorem 2.2. If f is in L2(0, T ; L2(Ω)) and c0 in H1
0(Ω) then problem (2.4), (2.2) has

a unique solution

(c, rrr) ∈ H1(0, T ; L2(Ω))×
�

L2(0, T ; H(div ,Ω))∩ L∞(0, T ; L2(Ω)L2(Ω)L2(Ω))
�

.

Moreover, if DDD is in W 1,∞(Ω)W 1,∞(Ω)W 1,∞(Ω), f in H1(0, T ; L2(Ω)) and c0 in H2(Ω)∩H1
0(Ω), then

(c, rrr) ∈ W 1,∞(0, T ; L2(Ω))×
�

L∞(0, T ; H(div ,Ω))∩ H1(0, T ; L2(Ω)L2(Ω)L2(Ω))
�

.

Remark 2.3. We give the proof of Theorem 2.2 in the finite dimensional setting since

some technical points (those involving ∂trrr, or rrr at time t = 0) can only be defined by their

finite dimensional Galerkin approximation. This is not surprising given the differential-

algebraic structure of system (2.35): the second equation has no time derivative. In DAE

theory it is well known that the algebraic equations have to be differentiated a number

of times (this is what defines the index), and that this imposes compatibility conditions

between the initial data (note that rrr(0) is not given). The index has been extended to

PDEs, see for instance [93].

The proof of Theorem 2.2 is carried out in several steps: in Lemma 2.4 we first con-
struct solutions of certain finite-dimensional approximations of (2.4), then we derive
suitable energy estimates in Lemma 2.5 and prove the first part of the theorem. The
higher regularity of the solution is obtained from the estimates given in Lemma 2.6.

We need first to introduce some notations: Let {µn | n ∈ N} be a Hilbert basis
of M and {vvvn | n ∈ N} be a Hilbert basis of Σ. For each pair of positive integers n

and m, we denote by Mn the finite dimensional subspace spanned by {µi}ni=1, and Σm

the finite dimensional subspace spanned by {vvv i}mi=1. Now let cn : [0, T] → Mn and
rrrm : [0, T]→ Σm be the solution of the following problem

(φ∂t cn,µi) + (div rrrm,µi) = ( f (t),µi), ∀i = 1, . . . , n,
−(div vvv j , cn) + (DDD

−1rrrm, vvv j) = 0, ∀ j = 1, . . . , m,
(2.5)

with
(cn(0),µi) = (c0,µi), ∀i = 1, . . . , n. (2.6)

Lemma 2.4. (Construction of approximate solutions) For each pair (n, m) ∈ N2,

n, m ≥ 1, there exists a unique solution (cn, rrrm) to problem (2.5).

Proof. We introduce the following notations

(FFF n(t))i = ( f (t),µi), (CCC0)i = (c0,µi), (WWW n)i j = (φµ j ,µi), ∀1≤ i, j ≤ n,

(AAAm)i j = (DDD
−1vvv j , vvv i), ∀1≤ i, j ≤ m, (BBBnm)i j = (div vvv j,µi), ∀1≤ i ≤ n, 1≤ j ≤ m.

We also denote by CCCn(t) the vector of degrees of freedom of cn(t) with respect to
the basis {µi}ni=1 and RRRm(t) that of rrrm(t) with respect to the basis {vvv i}mi=1. With this
notation, (2.5) may be rewritten as

WWW n

dCCCn

d t
(t) + BBBnmRRRm(t) = FFF n(t), (2.7a)

−BBBT
nmCCCn(t) +AAAmRRRm(t) = 0, (2.7b)

CCCn(0) = CCC0. (2.7c)
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As AAAm is a symmetric and positive definite square matrix of size m (because of the
assumptions concerning DDD), AAAm is invertible. Thus (2.7b) implies

RRRm(t) = AAA−1
m BBBT

nmCCCn(t). (2.8)

Substituting (2.8) into (2.7a) and as WWW n is invertible, we obtain

dCCCn

d t
(t) +WWW−1

n BBBnmAAA−1
m BBBT

nmCCCn(t) =WWW−1
n FFF n(t), for a.e. t ∈ [0, T]. (2.9)

This is a system of n linear ODEs of order 1 with initial condition (2.7c). Hence,

there exists a unique function CCCn ∈ (C([0, T]))n with
dCCCn

d t
∈
�

L2(0, T )
�n

satisfy-

ing (2.9) and (2.7c) (see [37]). From (2.8) we obtain RRRm ∈ (C([0, T]))m such that
dRRRm

d t
∈
�

L2(0, T )
�m

and then (cn, rrrm), which is the unique solution to (2.5).

In the next step, we derive some suitable a priori estimates similar to those given
in [81] but in a more detailed manner.

Lemma 2.5. There exists a constant C independent of n and m such that

‖cn‖L∞(0,T ;L2(Ω)) + ‖∂t cn‖L2(0,T ;L2(Ω)) + ‖rrrm‖L∞(0,T ;L2(Ω)L2(Ω)L2(Ω)) + ‖rrrm‖L2(0,T ;H(div ,Ω))

≤ C(‖c0‖H1
0(Ω)
+ ‖ f ‖L2(0,T ;L2(Ω))), ∀n, m ≥ 1.

Proof. We prove this lemma by deriving successively the estimates on cn, ∂t cn and rrrm,
and finally on div rrrm for the H(div ,Ω)-norm.
• Let n, m ≥ 1 and take cn(t) ∈ Mn and rrrm(t) ∈ Σm as the test functions in (2.5)

(φ∂t cn, cn) + (div rrrm, cn) = ( f , cn),
−(div rrrm, cn) + (DDD

−1rrrm, rrrm) = 0.

Adding these two equations, we obtain

(φ∂t cn, cn) + (DDD
−1rrrm, rrrm) = ( f , cn).

Using the properties of φ and DDD, and applying the Cauchy-Schwarz inequality, we get

(φ∂t cn, cn) =
1

2

d

d t
(φcn(t), cn(t)) ≥

φ−
2

d

d t
‖cn(t)‖2,

(DDD−1rrrm(t), rrrm(t)) ≥ δ−‖rrrm(t)‖,

( f (t), cn(t)) ≤ ‖ f (t)‖‖cn(t)‖ ≤
1

2φ−
‖ f (t)‖2 +

φ−
2
‖cn(t)‖2.

As φ− > 0, we deduce that

d

d t
‖cn(t)‖2 +

2δ−
φ−
‖rrrm(t)‖2 ≤

1

φ2
−
‖ f (t)‖2 + ‖cn(t)‖2.

Integrating this inequality over (0, t) for t ∈ [0, T], we find

‖cn(t)‖2+
2δ−
φ−

∫ t

0

‖rrrm(s)‖2ds ≤ ‖c(0)‖2+
1

φ2
−

∫ t

0

‖ f (s)‖2ds+

∫ t

0

‖cn(s)‖2ds, (2.10)
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since ‖cn(0)‖2 =
n∑

i=1

(c0,µi)
2 ≤

∞∑

i=1

(c0,µi)
2 = ‖c0‖2.

Thus (2.10) implies

‖cn(t)‖2 ≤ (‖c0‖2 +
1

φ2
−
‖ f ‖2

L2(0,T ;L2(Ω))
) +

∫ t

0

‖cn(s)‖2ds.

Applying Gronwall’s lemma, there exists C independent of n or m such that

‖cn‖2L∞(0,T ;L2(Ω))
≤ C(‖c0‖2 + ‖ f ‖2L2(0,T ;L2(Ω))

), (2.11)

• Now we derive the estimate for ∂t cn: Taking ∂t cn ∈ Mn as the test function in the first
equation of (2.5), we obtain

(φ∂t cn,∂t cn) + (div rrrm,∂t cn) = ( f ,∂t cn). (2.12)

Differentiating the second equation of (2.5) with respect to t, we find

−(div vvv,∂t cn) + (DDD
−1∂trrrm, vvv) = 0, ∀vvv ∈ Σm. (2.13)

Then we take rrrm as the test function in (2.13)

(DDD−1∂trrrm, rrrm)− (div rrrm,∂t cn) = 0. (2.14)

Adding (2.12) and (2.14), we see that

(φ∂t cn,∂t cn) + (DDD
−1∂trrrm, rrrm) = ( f ,∂t cn).

As DDD is symmetric and positive definite, by applying the Cauchy-Schwarz inequality to
the right hand side as well as using the property of φ, we obtain

φ−‖∂t cn(t)‖2 +
d

d t
‖
p

DDD−1rrrm(t)‖2 ≤
1

φ−
‖ f (t)‖2. (2.15)

Integrating (2.15) over (0, t) for t ∈ [0, T], we find

φ−

∫ t

0

‖∂t cn(s)‖2ds+ ‖
p

DDD−1rrrm(t)‖2 ≤ ‖
p

DDD−1rrrm(0)‖2+
1

φ−

∫ t

0

‖ f (s)‖2ds. (2.16)

To bound ‖rrrm(0)‖, we take rrrm ∈ Σm as the test function in the second equation of (2.5)
and let t = 0

(DDD−1rrrm(0), rrrm(0)) = (div rrrm(0), cn(0)). (2.17)

Noting that (2.17) holds for all n, m≥ 1, we bound the left-hand side as before and let
n→∞. Since cn(0)→ c0 in L2(Ω) and c0 ∈ H1

0(Ω), we have by Green’s formula

δ−‖rrrm(0)‖2 ≤ (div rrrm(0), c0) = (rrrm(0),−∇c0)≤ ‖rrrm(0)‖ ‖∇c0‖.

Thus
‖rrrm(0)‖ ≤ C‖c0‖H1

0(Ω)
. (2.18)
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This along with (2.16) yields

‖∂t cn‖2L2(0,T ;L2(Ω))
+ ‖rrrm‖2L∞(0,T ;L2(Ω)L2(Ω)L2(Ω))

≤ C(‖c0‖2H1
0(Ω)
+ ‖ f ‖2

L2(0,T ;L2(Ω))
), ∀n, m ≥ 1.

(2.19)
There only remains to show that ‖div rrrm‖L2(0,T ;L2(Ω)L2(Ω)L2(Ω)) is bounded.
• Fixing m≥ 1, as div rrrm(t) ∈ M we can write

div rrrm(t) =

∞∑

i=1

ξi
m(t)µi, for a.e. t ∈ (0, T ), (2.20)

where ξi
m(t) = (div rrrm(t),µi). Now we fix n ≥ 1 and multiply the first equation

of (2.5) by ξi
m(t), sum over i = 1, . . . , n, we see that

(div rrrm,
n∑

i=1

ξi
mµi)≤

1

2
(‖ f ‖+ C‖∂t cn‖)2 +

1

2
‖

n∑

i=1

ξi
mµi‖2. (2.21)

Integrating with respect to time and recalling (2.19), we find
∫ T

0

(div rrrm,
n∑

i=1

ξi
mµi)d t ≤ C(‖ f ‖2

L2(0,T ;L2(Ω))
+ ‖c0‖2H1

0(Ω)
) +

1

2

∫ T

0

‖
n∑

i=1

ξi
mµi‖2d t.

Let n→∞ and recall (2.20), we obtain
∫ T

0

‖div rrrm‖2d t ≤ C(‖ f ‖2
L2(0,T ;L2(Ω))

+ ‖c0‖2H1
0(Ω)
) +

1

2

∫ T

0

‖div rrrm‖2d t.

Thus
‖div rrrm‖2L2(0,T ;L2(Ω))

≤ C(‖ f ‖2
L2(0,T ;L2(Ω))

+ ‖c0‖2H1
0(Ω)
).

On the other hand, by recalling inequality (2.10) with t = T and by (2.11), we find

‖rrrm‖2L2(0,T ;L2(Ω)L2(Ω)L2(Ω))
≤ C(‖c0‖2 + ‖ f ‖2L2(0,T ;L2(Ω))

).

Hence,

‖rrrm‖2L2(0,T ;H(div ,Ω))
= ‖rrrm‖2L2(0,T ;(L2(Ω))2)

+ ‖div rrrm‖2L2(0,T ;L2(Ω))

≤ C(‖ f ‖2
L2(0,T ;L2(Ω))

+ ‖c0‖2H1
0(Ω)
), ∀m≥ 1,

which ends the proof of Lemma 2.5.

We now prove the first part of Theorem 2.2: there exists a unique solution (c, rrr) in
H1(0, T ; L2(Ω))× L2(0, T ; H(div ,Ω))∩ L∞(0, T ; L2(Ω)L2(Ω)L2(Ω)) of problem (2.3).

Proof. The proof of the first part of Theorem 2.2 follows the following steps:.
• Lemma 2.5 implies that for the sequences {cn}∞n=1 and {rrrm}∞m=1 defined by (2.5) and
(2.6), {cn}∞n=1 is bounded in L2(0, T ; L2(Ω)), {∂t cn}∞n=1 is bounded in L2(0, T ; L2(Ω))

and {rrrm}∞m=1 is bounded in L2(0, T ; H(div ,Ω)) ∩ L∞(0, T ; L2(Ω)L2(Ω)L2(Ω)). Thus, there exist
subsequences, still denoted by {cn}∞n=1 and {rrrm}∞m=1 and functions c ∈ L2(0, T ; L2(Ω))

with ∂t c ∈ L2(0, T ; L2(Ω)) and rrr ∈ L2(0, T ; H(div ,Ω))∩ L∞(0, T ; L2(Ω)L2(Ω)L2(Ω)) such that

cn * c in L2(0, T ; L2(Ω)),
∂t cn * ∂t c in L2(0, T ; L2(Ω)),
rrrm * rrr in L2(0, T ; H(div ,Ω)).

(2.22)
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• Next let η ∈ C1([0, T]; Mn0
), www ∈ C1([0, T];Σm0

) for n0, m0 ≥ 1. We choose n ≥ n0

and m ≥ m0, take η and www as the test functions in (2.5) and then integrate with respect
to time ∫ T

0

(φ∂t cn,η) + (div rrrm,η)d t =

∫ T

0

( f ,η)d t,
∫ T

0

−(div www, cn) + (DDD
−1rrrm,www)d t = 0.

(2.23)

Because of the weak convergence in (2.22), we also have

∫ T

0

(φ∂t c,η) + (div rrr,η)d t =

∫ T

0

( f ,η)d t,
∫ T

0

−(div www, c) + (DDD−1rrr,www)d t = 0.

(2.24)

Since the spaces of test functions η,www are dense in L2(0, T ; M) and L2(0, T ;Σ) respec-
tively, it follows from (2.24) that (2.4) holds for a.e. t ∈ (0, T ) (see [37]).

• There remains to show that c(0) = c0. Toward this end, we take η ∈ C1([0, T]; Mn0
)

with η(T ) = 0. It follows from the first equation of (2.24) that

−
∫ T

0

(φ∂tη, c) + (div rrr,η)d t =

∫ T

0

( f ,η)d t + (φc(0),η(0)). (2.25)

Similarly, from the first equation of (2.23) we deduce

−
∫ T

0

(φ∂tη, cn) + (div rrrm,η)d t =

∫ T

0

( f ,η)d t + (φcn(0),η(0)).

Using (2.22), we obtain

−
∫ T

0

(φ∂tη, c) + (div rrr,η)d t =

∫ T

0

( f ,η)d t + (φc0,η(0)), (2.26)

since cn(0) → c0 in L2(Ω). As η(0) is arbitrary, by comparing (2.25) and (2.26) we
conclude that c(0) = c0.
• For the uniqueness, as the equations are linear, it suffices to check that c = 0 and
rrr = 0 for f = 0 and c0 = 0. To prove this, we set µ = c and vvv = rrr in (2.4) (for f = 0)
and add the two resulting equations:

1

2

d

d t
(φc, c) + (DDD−1rrr, rrr) = 0.

Using the property of φ and the fact that (DDD−1rrr, rrr) ≥ δ−‖rrr‖2 ≥ 0, then integrating
with respect to t we see that

φ−‖c(t)‖2 + 2δ−

∫ t

0

‖rrr(s)‖2
L2(Ω)L2(Ω)L2(Ω)

ds ≤ 0, for a.e. t ∈ (0, T ),

where c(0) = c0 = 0. Thus c = 0 and rrr = 0 for a.e. t ∈ (0, T ).

We now prove the second part of Theorem 2.2. The higher regularity of the solution
to (2.3) is obtained by using the following lemma.
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Lemma 2.6. (Estimates for improved regularity) Assume that DDD is in W 1,∞(Ω)W 1,∞(Ω)W 1,∞(Ω), c0 in

H2(Ω) ∩ H1
0(Ω) and f in H1(0, T ; L2(Ω)) then

‖∂t c‖L∞(0,T ;L2(Ω)) + ‖rrr‖L∞(0,T ;H(div ,Ω)) + ‖∂trrr‖L2(0,T ;L2(Ω)L2(Ω)L2(Ω))

≤ C(‖ f ‖H1(0,T ;L2(Ω)) + ‖c0‖H2(Ω)).

Proof. As f ∈ H1(0, T ; L2(Ω)), the solutions of the ODE system (2.7) are more regular
in time than before (i.e. up to second-order time derivatives).

Let n, m ≥ 1. First, we differentiate the first equation of (2.5) with respect to t

(φ∂t t cn,µi) + (div ∂trrrm,µi) = (∂t f ,µi), ∀i = 1, . . . , n,

then we take ∂t cn as the test function

(φ∂t t cn,∂t cn) + (div ∂trrrm,∂t cn) = (∂t f ,∂t cn). (2.27)

Similarly, we differentiate the second equation of (2.5) with respect to t

(DDD−1∂trrrm, vvv i)− (div vi,∂t cn) = 0, ∀i = 1, . . . , m,

and take ∂trrrm as the test function

(DDD−1∂trrrm,∂trrrm)− (div ∂trrrm,∂t cn) = 0. (2.28)

Adding (2.27) and (2.28), we find

(φ∂t t cn,∂t cn) + (DDD
−1∂trrrm,∂t rrrm) = (∂t f ,∂t cn).

Bounding (DDD−1∂trrrm,∂trrrm) ≥ δ−‖∂trrrm‖2, using the assumption about φ and applying
the Cauchy-Schwarz inequality, we obtain

d

d t
‖∂t cn‖2 +

2δ−
φ−
‖∂trrrm‖2 ≤

1

φ2
−
‖∂t f ‖2 + ‖∂t cn‖2.

For each t ∈ [0, T], we may integrate over (0, t) to obtain

‖∂t cn(t)‖2 +
2δ−
φ−

∫ t

0

‖∂trrrm‖2ds ≤ ‖∂t cn(0)‖2+
1

φ2
−

∫ t

0

‖∂t f ‖2ds+

∫ t

0

‖∂t cn‖2ds. (2.29)

In order to bound ‖∂t cn(0)‖, we use the first equation of (2.5) (with ∂t cn as the test
function, at t = 0) to obtain

‖∂t cn(0)‖ ≤ C(‖div rrrm(0)‖+ ‖ f (0)‖).

Using the second equation of (2.5) at t = 0, and then let n→∞ to get

(DDD−1rrrm(0)+∇c0, vvv) = 0, ∀vvv ∈ Σm.

Thus, using density argument and c0 ∈ H1
0(Ω)∩ H2(Ω), we obtain DDD−1rrrm(0) = −∇c0

in H1(Ω). Then, we bound

‖∂t cn(0)‖2 ≤ C(‖c0‖2H2(Ω)
+ ‖ f (0)‖2). (2.30)
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Replacing (2.30) in (2.29), we obtain

‖∂t cn(t)‖2 +
2δ−
φ−

∫ t

0

‖∂t rrrm‖2ds

≤ C(‖c0‖2H2(Ω)
+ ‖ f ‖2

H1(0,T ;L2(Ω))
) +

∫ t

0

‖∂t cn‖2ds. (2.31)

It now follows from (2.31) and Gronwall’s lemma that

‖∂t cn‖2L∞(0,T ;L2(Ω))
+

2δ−
φ−
‖∂trrrm‖2L2(0,T ;L2(Ω)L2(Ω)L2(Ω))

≤ C(‖c0‖2H2(Ω)
+ ‖ f ‖2

H1(0,T ;L2(Ω))
). (2.32)

Recalling (2.21) and using (2.32), we obtain

(div rrrm,
n∑

i=1

ξi
mµi)≤ C(‖c0‖2H2(Ω)

+ ‖ f ‖2
H1(0,T ;L2(Ω))

) +
1

2
‖

n∑

i=1

ξi
mµi‖2.

Then, let n→∞, we see that

‖div rrrm‖2L∞(0,T ;L2(Ω))
≤ C(‖c0‖2H2(Ω)

+ ‖ f ‖2
H1(0,T ;L2(Ω))

).

This along with (2.19) gives

‖rrrm‖2L∞(0,T ;H(div ,Ω)) ≤ C(‖c0‖2H2(Ω)
+ ‖ f ‖2

H1(0,T ;L2(Ω))
). (2.33)

The lemma now follows from (2.32), (2.33) and (2.22).

In the sequel, we will consider two domain decomposition methods for solving
(2.4), (2.2). The first one involves local Dirichlet subproblems whose well-posedness
is an extension of Theorem 2.2. In the second approach, the optimized Schwarz wave-
form relaxation method, we shall impose Robin transmission conditions on the inter-
faces. Thus, we extend the well-posedness results above to the case of Robin boundary
conditions.

2.2 A local problem with Robin boundary conditions

In this section, we consider problem (2.1)-(2.2) with Robin boundary conditions on
∂Ω× (0, T ) :

−rrr · nnn+αc = g, on ∂Ω× (0, T ), (2.34)

where α defined on ∂Ω is a time independent positive, bounded coefficient and g is a

space-time function. We define α̌ :=
1

α
and suppose that 0 < κ1 ≤ α̌ ≤ κ2 a.e. in ∂Ω.

We denote by (·, ·)∂Ω and ‖ · ‖∂Ω the inner product and norm in L2(∂Ω) respectively.
To derive a variational formulation corresponding to boundary condition (2.34), we
introduce the following Hilbert space

eΣ =H (div ,Ω) := {vvv ∈ H(div ,Ω)| vvv · nnn ∈ L2(∂Ω)},
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equipped with the norm

‖vvv‖2H (div ,Ω) := ‖vvv‖H(div ,Ω) + ‖vvv · nnn‖2∂Ω.

The weak problem with Robin boundary conditions may now be written as follows:

For a.e. t ∈ (0, T ), find c(t) ∈ M and rrr(t) ∈ eΣ such that

(φ∂t c,µ) + (div rrr,µ) = ( f ,µ), ∀µ ∈ M ,
−(div vvv, c) + (DDD−1rrr, vvv) + (α̌rrr · nnn, vvv · nnn)∂Ω = −(α̌g, vvv · nnn)∂Ω, ∀vvv ∈ eΣ.

(2.35)

Theorem 2.7. If f is in L2(0, T ; L2(Ω)), g in H1(0, T ; L2(∂Ω)) and c0 in H1(Ω), then

problem (2.35), (2.2) has a unique solution

(c, rrr) ∈ H1(0, T ; L2(Ω))×
�

L2(0, T ;H (div ,Ω))∩ L∞(0, T ; L2(Ω)L2(Ω)L2(Ω))
�

.

Moreover, if DDD is in W 1,∞(Ω)W 1,∞(Ω)W 1,∞(Ω), f in H1(0, T ; L2(Ω)) and c0 in H2(Ω) then

(c, rrr) ∈ W 1,∞(0, T ; L2(Ω))×
�

L∞(0, T ;H (div ,Ω))∩H1(0, T ; L2(Ω)L2(Ω)L2(Ω))
�

.

Proof. The proof of Theorem 2.7 relies on energy estimates and Gronwall’s lemma,
together with a Galerkin method, as for the proof of Theorem 2.2. We only present
here the parts of the proof that are different from those of the proof of Theorem 2.2.
We construct the finite-dimensional approximation problems to (2.35) as follows

(φ∂t cn,µi) + (div rrrm,µi) = ( f ,µi), 1≤ i ≤ n,
−(div ṽvv j, cn) + (DDD

−1rrrm, ṽvv j) + (α̌rrrm · nnn, ṽvv j · nnn)∂Ω = (−α̌g, ṽvv j · nnn)∂Ω, 1≤ j ≤ m,
(2.36)

where cn ∈ Mn, rrrm ∈ eΣm and ṽvv i , i = 1, . . . , m is the basis of eΣm. We then rewrite (2.36)
in matrix form as in (2.7):

WWW n

dCCCn

d t
(t) + B̃BBnmR̃RRm(t) = FFF n(t),

−B̃BB
T

nmCCCn(t) + ÃAAmR̃RRm(t) = GGGm(t),

where R̃RRm is the vector of degrees of freedom of rrrm with respect to the basis {ṽvv i}mi=1;

(ÃAAm)i j = (DDD
−1ṽvv j, ṽvv i) + (α̌ṽvv j · nnn, ṽvv i · nnn)∂Ω, ∀1≤ i, j ≤ m,

is symmetric and positive-definite,

(B̃BBnm)i j = (div ṽvv j ,µi) and (GGGm(t))i = (−α̌g(t), ṽvv i · nnn)∂Ω, ∀1≤ i ≤ n, 1≤ j ≤ m.

Thus, there exists a unique solution (cn, rrrm) to (2.36).
Now to prove the existence of a solution to (2.35), we derive suitable energy esti-

mates in the same manner as in Section 2.1 but with an extra term rrr ·nnn on the boundary.

Lemma 2.8. Let f ∈ L2(0, T ; L2(Ω)) , g ∈ H1(0, T ; L2(∂Ω) and c0 ∈ H1(Ω).

The following estimates hold

(i) ‖c‖L∞(0,T ;L2(Ω)) + ‖rrr‖L2(0,T ;L2(Ω)L2(Ω)L2(Ω)) + ‖rrr · nnn‖L2(0,T ;L2(∂Ω))

≤ C(‖c0‖L2(Ω)+ ‖ f ‖L2(0,T ;L2(Ω)) + ‖g‖L2(0,T ;L2(∂ Ω))),

(ii) ‖∂t c‖L2(0,T ;L2(Ω)) + ‖rrr‖L∞(0,T ;L2(Ω)L2(Ω)L2(Ω)) + ‖rrr · nnn‖L∞(0,T ;L2(∂ Ω))

≤ C(‖c0‖H1(Ω)+ ‖ f ‖L2(0,T ;L2(Ω)) + ‖g‖H1(0,T ;L2(∂Ω))),

(iii) ‖rrr‖L2(0,T ;H (div,Ω)) ≤ C(‖c0‖H1(Ω)+ ‖ f ‖L2(0,T ;L2(Ω)) + ‖g‖H1(0,T ;L2(∂Ω))).
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Lemma 2.9. (Estimates with greater regularity) Assume that DDD is in W 1,∞(Ω)W 1,∞(Ω)W 1,∞(Ω), c0 in

H2(Ω), f in H1(0, T ; L2(Ω)) and g in H1(0, T ; L2(∂Ω)), then

‖∂t c‖L∞(0,T ;L2(Ω)) + ‖rrr‖L∞(0,T ;H (div ,Ω)) + ‖∂trrr‖L2(0,T ;L2(Ω)L2(Ω)L2(Ω))

≤ C(‖ f ‖H1(0,T ;L2(Ω)) + ‖c0‖H2(Ω) + ‖g‖H1(0,T ;L2(∂Ω))).

Proof. (of Lemma 2.8). In order to prove (i), as before, we take cn and rrrm as test
functions in (2.36) and add the two equations:

(φ∂t cn, cn) +
�

DDD−1rrrm, rrrm

�
+
�
α̌rrrm · nnn, rrrm · nnn

�
∂Ω =

�
f , cn

�
+
�
−α̌g, rrrm · nnn

�
∂Ω .

The assumptions concerning φ, DDD and α̌ give

(φ∂t cn, cn)≥
φ−
2

d

d t
‖cn‖2, (DDD−1rrrm, rrrm)≥ δ−‖rrrm‖2,

�
α̌rrrm · nnn, rrrm · nnn

�
∂Ω ≥ κ1‖rrrm·nnn‖2∂Ω,

and the Cauchy-Schwarz inequality:

|
�

f , cn

�
|≤ ‖ f ‖‖cn‖ ≤

1

2φ−
‖ f ‖2 +

φ−
2
‖cn‖2. (2.37)

Similarly, for each ε > 0,

| −
�
α̌g, rrrm · nnn

�
∂Ω |≤ κ2‖g‖∂Ω ‖rrrm · nnn‖∂Ω ≤ κ2

�
1

2ε
‖g‖2∂Ω +

ε

2
‖rrrm · nnn‖2∂Ω

�
. (2.38)

Choosing ε =
κ1

κ2
, we then obtain

φ−
2

d

d t
‖cn‖2 + δ−‖rrrm‖2 +

κ1

2
‖rrrm · nnn‖2∂Ω ≤

1

2φ−
‖ f ‖2 +

κ2
2

2κ1
‖g‖2∂Ω +

φ−
2
‖cn‖2.

Integrating this inequality over (0, t) for t ∈ (0, T], and using ‖cn(0)‖2 ≤ ‖c0‖2, we get

‖cn (t) ‖2 +
2δ−
φ−

∫ t

0

‖rrrm (s) ‖2 ds+
κ1

φ−

∫ t

0

‖rrrm (s) · nnn‖2∂Ω ds

≤ C

�
‖c0‖2 + ‖ f ‖2L2(0,T ;L2(Ω))

+ ‖g‖2
L2(0,T ;L2(∂Ω))

�
+

∫ t

0

‖cn (s) ‖2 ds,

with C =max(1,
1

φ2
−

,
κ2

2

φ−κ1
). Then an application of Gronwall’s lemma completes the

proof of (i).

For (ii), we follow the same steps as in (2.12)-(2.15): taking ∂t cn ∈ L2(0, T ; M) as
the test function in the first equation of (2.36), we obtain

(φ∂t c,∂t c) + (div rrrm,∂t c) = ( f ,∂t c). (2.39)

Differentiating the second equation of (2.36) with respect to t, we obtain

−(div vvv,∂t cn) + (DDD
−1∂trrrm, vvv) + (α̌∂trrrm · nnn, vvv · nnn)∂Ω =−(α̌∂t g, vvv · nnn)∂Ω, ∀vvv ∈ eΣ.
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Then we take vvv = rrrm in the previous equation and add the resulting equation to (2.39)
to obtain

(φ∂t cn,∂t cn) + (DDD
−1∂trrrm, rrrm) +

�
α̌∂trrrm · nnn, rrrm · nnn

�
∂Ω = ( f ,∂t cn)−

�
α̌∂t g, rrrm · nnn

�
∂Ω .

As DDD is symmetric and positive definite, by applying the Cauchy-Schwarz inequality to
the right hand side as well as using the property of φ, we obtain

φ−‖∂t c‖2 +
1

2

d

d t
‖
p

DDD−1rrrm‖2 +
κ1

2

d

d t
‖rrrm · nnn‖2∂Ω ≤|

�
f ,∂t c

�
| + |

�
α̌∂t g, rrrm · nnn

�
∂Ω | .

We then apply the Cauchy-Schwarz inequality for the right-hand side (as

in (2.37), (2.38), replacing c and g by ∂t c and ∂t g), and take ε =
κ1

κ2
, C =

max(
1

φ−
,
κ2

2

κ1
) to obtain

φ−‖∂t cn‖2+
d

d t
‖
p

DDD−1rrrm‖2+κ1
d

d t
‖rrrm ·nnn‖2∂Ω ≤ C

�
‖ f ‖2 + ‖∂t g‖2∂Ω

�
+κ1‖rrrm ·nnn‖2∂Ω.

Integrating over (0, t) for t ∈ [0, T], we find

φ−

∫ t

0

‖∂t cn (s)‖2ds+ ‖
p

DDD−1rrrm (t) ‖2 + κ1‖rrrm (t) · nnn‖2∂Ω

≤ C(‖ f ‖2
L2(0,T ;L2(Ω))

+ ‖g‖2
H1(0,T ;L2(∂Ω))

) + ‖
p

DDD−1rrrm (0)‖2 + κ1‖rrrm (0) · nnn‖2∂Ω

+ κ1

∫ t

0

‖rrrm (s) · nnn‖2∂Ωds. (2.40)

So there only remains to bound the term (‖
p

DDD−1rrrm (0)‖2+κ1‖rrrm (0) ·nnn‖2∂Ω). Toward
this end, we use the second equation of (2.36) with vvv = rrrm and for t = 0 to obtain:

δ−‖rrrm(0)‖2+ κ1‖rrrm(0) · nnn‖2 ≤ (div rrrm(0), cn(0))+
�
−α̌g(0), rrrm(0) · nnn

�
∂Ω .

Let n→∞, as cn(0)→ c0 we have

δ−‖rrrm(0)‖2+ κ1‖rrrm(0) · nnn‖2 ≤ (div rrrm(0), c0) +
�
−α̌g(0), rrrm(0) · nnn

�
∂Ω

≤ (−rrrm(0),∇c0) +
�
c0 − α̌g(0), rrrm(0) · nnn

�
∂Ω

≤
δ−
2
‖rrrm(0)‖2+

1

2δ−
‖∇c0‖2+

κ1

2
‖rrrm(0) · nnn‖2 +

κ2

2κ1
‖c0 − g(0)‖2∂Ω,

or
δ−‖rrrm(0)‖2+ κ1‖rrrm(0) · nnn‖2 ≤ C

�
‖c0‖2H1(Ω)

+ ‖g‖2
H1(0,T ;L2(∂Ω)

�
.

This along with (2.40) and Gronwall’s lemma yields (ii). We now estimate ‖div rrrm‖2
as in Section 2.1: we derive (2.21) from (2.20) and the first equation of (2.36) (after
multiplying by ξi

m(t) and summing over i = 1, . . . , n). Then, using the bound for
‖∂t c‖L2(0,T ;L2(Ω)) in (ii), we obtain

‖div rrrm‖2L2(0,T ;L2(Ω))
≤ C(‖c0‖2H1(Ω)

+ ‖ f ‖2
L2(0,T ;L2(Ω))

+ ‖g‖2
H1(0,T ;L2(∂Ω))

). (2.41)

This along with (i) gives

‖rrrm‖2L2(0,T ;H (div ,Ω))
≤ C(‖c0‖2H1(Ω)

+ ‖ f ‖2
L2(0,T ;L2(Ω))

+ ‖g‖2
H1(0,T ;L2(∂Ω))

),

and the proof of Lemma 2.8 is completed.
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We now prove Lemma 2.9 for the higher regularity of the solution to (2.3).

Proof. (of Lemma 2.9). Let n, m ≥ 1. Differentiate both equations of (2.36) with
respect to t, take µ = ∂t cn and vvv = ∂trrrm as the test functions, and add the two resulting
equations to obtain

(φ∂t t cn,∂t cn) + (DDD
−1∂trrrm,∂trrrm) +

�
α̌∂trrrm · nnn,∂t rrrm · nnn

�
∂Ω

=
�
∂t f ,∂t cn

�
−
�
α̌∂t g,∂t rrrm · nnn

�
∂Ω .

Then, the assumptions concerning φ, DDD, α̌, and the Cauchy-Schwarz inequality give

φ−
2

d

d t
‖∂t cn‖2+δ−‖∂t rrrm‖2+

κ1

2
‖∂t rrrm·nnn‖2∂Ω ≤

1

2φ−
‖∂t f ‖2+

κ2
2

2κ1
‖∂t g‖2∂Ω+

φ−
2
‖∂t cn‖2.

Integrating this inequality over (0, t), for t ∈ (0, T], we obtain

‖∂t cn(t)‖2 +
2δ−
φ−

∫ t

0

‖∂t rrrm(s)‖2 ds+
κ1

φ−

∫ t

0

‖∂trrrm(s) · nnn‖2∂Ω ds

≤ C(‖∂t cn(0)‖2+ ‖∂t f ‖2
L2(0,T ;L2(Ω))

+ ‖∂t g‖2
L2(0,T ;L2(∂Ω))

) +

∫ t

0

‖∂t cn (s)‖2 ds, (2.42)

with C = max(1,
1

φ2
−

,
κ2

2

φ−κ1
). To bound ‖∂t cn(0)‖, we use the first equation of (2.36)

at t = 0 with µ = ∂t cn, and the Cauchy-Schwarz inequality to obtain

‖∂t cn(0)‖2 ≤ C(‖ f (0)‖2+ ‖div rrrm(0)‖2)≤ C(‖ f (0)‖2+ ‖c0‖2H2(Ω)
).

Here we have used the fact that DDD−1rrrm(0) = −∇cn(0) in D′(Ω) given by the second
equation of (2.36), and hence in L2(Ω) since c0 ∈ H2(Ω). From this inequality and
(2.42), we have

‖∂t cn(t)‖2 +
2δ−
φ−

∫ t

0

‖∂trrrm(s)‖2 ds+
κ1

φ−

∫ t

0

‖∂trrrm(s) · nnn‖2∂Ω ds

≤ C(‖c0‖2H2(Ω)
+ ‖ f ‖2

H1(0,T ;L2(Ω))
+ ‖g‖2

H1(0,T ;L2(∂Ω))
) +

∫ t

0

‖∂t cn‖2ds. (2.43)

It now follows from (2.43) and Gronwall’s lemma that

‖∂t cn‖L∞(0,T ;L2(Ω)) + ‖∂trrrm‖L2(0,T ;L2(Ω)L2(Ω)L2(Ω)) + ‖∂trrrm · nnn‖L2(0,T ;L2(∂Ω))

≤ C(‖c0‖2H2(Ω)
+ ‖ f ‖2

H1(0,T ;L2(Ω))
+ ‖g‖2

H1(0,T ;L2(∂Ω))
). (2.44)

To obtain the estimate in the H (div ,Ω)-norm, we follow the same steps as for (2.41)
to obtain

‖div rrrm‖2L∞(0,T ;L2(Ω))
≤ C(‖c0‖2H2(Ω)

+ ‖ f ‖2
H1(0,T ;L2(Ω))

+ ‖g‖2
H1(0,T ;L2(∂Ω))

).

This along with the inequality (i) of Lemma 2.8 gives

‖rrr‖2
L∞(0,T ;H (div ,Ω)) ≤ C(‖c0‖2H2(Ω)

+ ‖ f ‖2
H1(0,T ;L2(Ω))

+ ‖g‖2
H1(0,T ;L2(∂Ω))

). (2.45)

The lemma now follows from (2.44) and (2.45).

Thanks to Lemma 2.8, we can finish the proof of Theorem 2.7 using similar argu-
ments as for the proof of Theorem 2.2.
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2.3 Space-time domain decomposition methods

In this section, we present two nonoverlapping domain decomposition methods for
solving problem (2.3). For simplicity, we consider a decomposition of Ω into two non
overlapping subdomains Ω1 and Ω2 separated by an interface Γ (see Figure 2.1):

Ω1 ∩Ω2 = ;; Γ = ∂Ω1 ∩ ∂Ω2 ∩Ω, Ω = Ω1 ∪Ω2 ∪Γ.

Also for the sake of simplicity we have assumed throughout this section and the next
that the boundary condition given on ∂Ω is a homogeneous Dirichlet condition. How-
ever, the analysis given below can be generalized to the case of multiple subdomains
and more general boundary conditions (see Section 2.5).

Ω1 Ω2

Γ

x

t

yT

0
Figure 2.1: The decomposition of the domain into two subdomains where the

interface is a plane in space and in time (in 2D).

For i = 1,2, let nnni denote the unit outward pointing vector field on ∂Ωi, and for any
scalar, vector or tensor valued function ϕ defined on Ω, let ϕi denote the restriction
of ϕ to Ωi. Using this notation, problem (2.3) can be reformulated as an equivalent
multidomain problem consisting of the following space-time subdomain problems

φi∂t ci + div rrr i = f in Ωi × (0, T ),
∇ci + DDD−1

i rrr i = 0 in Ωi × (0, T ),
ci = 0 on

�
∂Ωi ∩ ∂Ω

�
× (0, T ),

ci(0) = c0 in Ωi,

for i = 1,2, (2.46)

together with the transmission conditions on the space-time interface

c1 = c2

rrr1 · nnn1 + rrr2 · nnn2 = 0
on Γ× (0, T ) , (2.47)

Alternatively, and equivalently, one may impose the transmission conditions

−rrr1 · nnn1 +α1,2c1 = −rrr2 · nnn1 +α1,2c2

−rrr2 · nnn2 +α2,1c2 = −rrr1 · nnn2 +α2,1c1
on Γ× (0, T ) , (2.48)

where α1,2 and α2,1 are a pair of positive parameters. The first method that we con-
sider is based on (2.46) together with the "natural" transmission conditions (2.47)
while the second method is based on (2.46) together with the Robin transmission con-
ditions (2.48). For the latter method the parameters αi, j may be optimized to improve
the convergence rate of the iterative scheme (see [12, 45, 46, 48]). For details of how
this optimization is carried out, see Appendix A.2.

For both methods the multidomain problem is formulated through the use of in-
terface operators as a problem posed on the space-time interface. For the first method
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the interface operators are time-dependent Steklov-Poincaré (Dirichlet-to-Neumann)
operators while for the second they are Robin-to-Robin operators. Associated with
a Jacobi algorithm this latter method is known as the Optimized Schwarz Waveform
Relaxation (OSWR) method. Rewriting the OSWR method as a space-time interface
problem solved by a more general (Krylov) method was done in [57]; here we extend
that work to a problem written in mixed form.

2.3.1 Method 1: Using the time-dependent Steklov-Poincaré operator

To introduce the interface problem for this method we introduce several operators, but
first we define some notation:

Λ = H1(0, T ; H
1
2
00(Γ)), and, for i = 1,2, Mi = L2(Ωi) and Σi = H(div ,Ωi),

where the space H
1
2
00(Γ) is the interpolated space of index 1/2 between H1

0(Γ) and L2(Γ)

(see, e.g., [82, p. 72]). We also define

H1
∗ (Ωi) = {v ∈ H1(Ωi), v = 0 over ∂Ωi ∩ ∂Ω}, for i = 1,2. (2.49)

Next, let Di, i = 1,2, be the solution operator that associates to the boundary, right-
hand-side, and initial data (λ, f , c0) the solution (ci , rrr i) of the subdomain problem

φi∂t ci + div rrr i = f in Ωi × (0, T ) ,
∇ci + DDD−1

i
rrr i = 0 in Ωi × (0, T ) ,
ci = 0 on

�
∂Ωi ∩ ∂Ω

�
× (0, T ),

ci = λ on Γ× (0, T ) ,
ci(0) = c0 in Ωi.

(2.50)

An extension of Theorem 2.2 (to the case of non-homogeneous Dirichlet boundary
conditions) guarantees that

Di : Λ× L2(0, T ; L2(Ωi))×H1
∗ (Ωi) −→ H1(0, T ; Mi)× L2(0, T ;Σi)

(λ, f , c0) 7→ (ci , rrr i) = (ci(λ, f , c0), rrr i(λ, f , c0))

is a well defined operator. We also make use of the normal trace operator

Fi : H1(0, T ; Mi))× L2(0, T ;Σi) −→ L2(0, T ; (H
1
2
00(Γ))

′)

(ci , rrr i) 7→ rrr i · nnni|Γ×(0,T)

to define the following operators:

Si : Λ −→ L2(0, T ; (H
1
2
00(Γ))

′)

λ 7→ −FiDi(λ, 0,0)

and

χi : L2(0, T ; L2(Ωi))×H1
∗ (Ωi) −→ L2(0, T ; (H

1
2
00(Γ))

′)

( f , c0) 7→ FiDi(0, f , c0).

Now letting S = S1 +S2 and χ = χ1 + χ2 we may rewrite problem (2.46), (2.47) as
the interface problem

S λ= χ( f , c0), on Γ× (0, T ) . (2.51)
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The weak formulation of this problem is then

Find λ ∈ Λ such that:
∫ T

0

〈S λ,η〉 =
∫ T

0

〈χ( f , c0),η〉, ∀η ∈ Λ,
(2.52)

where 〈·, ·〉 denotes the duality pairing between H
1
2
00(Γ) and (H

1
2
00(Γ))

′, and the operator
S is the time-dependent Steklov-Poincaré operator.

Remark 2.10. The interface problem (2.51) is derived in such a way that it is equivalent

to the multidomain problem (2.46) with the physical transmission conditions (2.47).
Thus (2.51) is equivalent to the original problem (2.3), which implies that problem (2.51)
is well-posed.

To investigate the properties of the operator Si, i = 1,2, we write the weak formu-
lation of problem (2.50) for f = 0 and c0 = 0:

For a.e. t ∈ (0, T ), find ci(t) ∈ Mi and rrr i(t) ∈ Σi such that

d

d t
(φici ,µ)Ωi

+ (div rrr i,µ)Ωi
= 0, ∀µ ∈ Mi ,

−(div vvv, ci)Ωi
+ (DDD−1

i
rrr i, vvv)Ωi

= −
∫

Γ

λ(vvv · nnni), ∀vvv ∈ Σi.

(2.53)

For λ ∈ Λ and for i = 1,2, we will denote by (ci(λ), rrr i(λ)) the solution of (2.53) for
the data function λ. Then for η,λ ∈ Λ and for almost every t ∈ (0, T ), we have

(φi∂t ci(λ), ci(η))Ωi
+ (div rrr i(λ), ci(η))Ωi

= 0,

−(div rrr i(η), ci(λ))Ωi
+ (DDD−1

i
rrr i(λ), rrr i(η))Ωi

= −
∫

Γ

λ(rrr i(η) · nnni).

Now adding the first equation to the second equation in which the roles of λ and η are
reversed, integrating over time and summing on i, we obtain

2∑

i=1

∫ T

0

�
(φi∂t ci(λ), ci(η))Ωi

+ (DDD−1
i rrr i(η), rrr i(λ))Ωi

�
= −

2∑

i=1

∫ T

0

∫

Γ

η(rrr i(λ) · nnni).

Thus we see that
∫ T

0

〈S λ,η〉 = −
2∑

i=1

∫ T

0

∫

Γ

(rrr i(λ) · nnni)η =

2∑

i=1

∫ T

0

�
(φi∂t ci(λ), ci(η))Ωi

+ (DDD−1
i

rrr i(λ), rrr i(η))Ωi

�
,

from which we conclude that S is a positive definite but non-symmetric, space-time
interface operator. Thus a direct proof of the existence and uniqueness of the solution
of the space-time interface problem (2.52) does not follow in a standard way as for the
elliptic problems (see [101, p. 5]), and we have not pursued this question here.

Nonetheless, we solve a discretized version of problem (2.51) iteratively by using a
Krylov method (here GMRES): the right hand side is computed (only once, it does not
change with the iteration) by solving problem (2.50) in each subdomain with λ= 0 and
then calculating the jump of the flux across the space-time interface; then for a given
vector η defined on Γ×(0, T ), the matrix vector product is obtained (at each iteration)
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by solving subdomain problem (2.50) with λ = η and with f = 0 and, c0 = 0, then
computing the jump of the flux on Γ× (0, T ). Once the discrete approximation to λ is
obtained, we can construct the multidomain solution of the discretized problem.

Following the work in [80, 89] for elliptic problems with strong heterogeneities, we
apply a Neumann-Neumann type preconditioner enhanced with averaging weights:

�
σ1S −1

1 +σ2S −1
2

�
S λ= χ̃, (2.54)

where σi : Γ× (0, T ) → [0,1] is such that σ1 +σ2 = 1, and S −1
i

, the Neumann-to-
Dirichlet operator, is the (pseudo)-inverse of Si, for i = 1,2, defined as follows

S −1
i : L2(0, T ; (H

1
2
00(Γ))

′) −→ Λ

ϕ 7→ ci(ϕ)|Γ×(0,T),

where (ci(ϕ), rrr i(ϕ)), i = 1,2, is the solution of

φi∂t ci +∇ · rrr i = 0 in Ωi × (0, T ) ,
∇ci + DDD−1

i
rrr i = 0 in Ωi × (0, T ) ,
ci = 0 on

�
∂Ωi ∩ ∂Ω

�
× (0, T ),

−rrr i · nnni = ϕ on Γ× (0, T ) ,
ci(0) = 0 in Ωi.

Remark 2.11. There is no analysis on the convergence of the GMRES algorithm for solving

the interface problem (2.51). One can perform Richardson iterations for this problem

and study the convergence of the corresponding algorithm (and hopefully, GMRES may

converge faster). This has been done using detailed properties of the Green’s function for

the case of a homogeneous problem by F. Kwok (see [79]); it is difficult to generalize this

analysis to the case of heterogeneous media.

2.3.2 Method 2: Using Optimized Schwarz Waveform Relaxation

The function spaces needed to derive the interface formulation of Method 2 are

Ξ := H1(0, T ; L2(Γ)), and, for i = 1,2, Mi = L2(Ωi) and eΣi =H (div ,Ωi).

To define the Robin-to-Robin operator we first define for i = 1,2, the following solution
operator Ri which depends on the parameter αi, j; j = 3− i :

Ri : Ξ× L2(0, T ; L2(Ωi))×H1
∗ (Ωi) −→ Ξ×H1(0, T ; Mi)× L2(0, T ; eΣi)

(ξ, f , c0) 7→ (ξ, ci , rrr i) = (ξ, ci(ξ, f , c0), rrr i(ξ, f , c0))

where (ci, rrr i) = (ci(ξ, f , c0), rrr i(ξ, f , c0)) is the solution to the problem

φi∂t ci + div rrr i = f in Ωi × (0, T ) ,
∇ci + DDD−1

i rrr i = 0 in Ωi × (0, T ) ,
ci = 0 on

�
∂Ωi ∩ ∂Ω

�
× (0, T ),

−rrr i · nnni +αi, jci = ξ on Γ× (0, T ) ,
ci(0) = c0 in Ωi.

(2.55)

(As stated earlier the parameters αi, j will be chosen is such a way as to optimize the
convergence of the algorithm). The existence and uniqueness of the solution of prob-
lem (2.55) is guaranteed by Theorem 2.7.
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Next, to impose the interface conditions (2.48) we will need the following interface
operators defined for i = 1,2, and j = 3− i:

Bi :
�
Ξ×H1(0, T ; M j)× L2(0, T ; eΣ j)

�
∩ Im(R j)−→ Ξ

(ξ, c j , rrr j) 7→ (−rrr j · nnni +
αi, j

α j,i
(ξ+ rrr j · nnn j))|Γ×(0,T)

Remark 2.12. To see that Im(Bi) ⊂ Ξ (instead of simply L2(0, T ; L2(Γ)), we note that

(2.35) implies that DDD−1rrr(t) = −∇c(t) in D′(Ω) for a.e. t ∈ (0, T ). Since rrr(t) is

in H(div ,Ω), we have c(t) ∈ H1(Ω), for a.e. t ∈ (0, T ). Consequently, ci(t) is in

H1(0, T ; H1(Ωi)). This along with the fact that ξ ∈ Ξ implies that rrr i · nnni |Γ×(0,T) ∈ Ξ.

Now, defining

SR : Ξ×Ξ −→ Ξ×Ξ�
ξ1

ξ2

�
7→

�
ξ1 −B1R2(ξ2, 0,0)

ξ2 −B2R1(ξ1, 0,0)

�
(2.56)

and
χR : L2(0, T ; L2(Ωi))×H1

∗ (Ωi) −→ Ξ×Ξ

( f , c0) 7→
�
B1R2(0, f , c0)

B2R1(0, f , c0)

�
,

we can write the interface problem as

SR

�
ξ1

ξ2

�
= χR( f , c0) on Γ× (0, T ). (2.57)

We then write (2.57) in weak form as

Find (ξ1,ξ2) ∈ Ξ×Ξ such that
∫ T

0

∫

Γ

SR

�
ξ1

ξ2

�
·
�
ζ1

ζ2

�
=

∫ T

0

∫

Γ

χR( f , c0) ·
�
ζ1

ζ2

�
, ∀(ζ1,ζ2) ∈ Ξ×Ξ.

(2.58)

Remark 2.13. The counterpart to Remark 2.10 is that the interface problem (2.57) is

well-posed due to the fact that it is equivalent to the multidomain problem (2.46) with

Robin transmission conditions (2.48).

In order to study the interface operator SR, we proceed as in Section 2.3.1 by giving
the weak formulation of the relevant subdomain problems (here (2.55) for i = 1,2 and
j = 3− 1) for f = 0 and c0 = 0:

For a.e. t ∈ (0, T ), find ci(t) ∈ Mi and rrr i(t) ∈ eΣi such that, ∀µ ∈ Mi and ∀vvv ∈ eΣi ,

d

d t
(φici ,µ)Ωi

+ (div rrr i ,µ)Ωi
= 0,

−(div vvv, ci)Ωi
+ (DDD−1

i
rrr i, vvv)Ωi

+

∫

Γ

1

αi, j
(rrr i · nnni)(vvv · nnni) = −

∫

Γ

1

αi, j
ξ(vvv · nnni).

(2.59)
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Now for any ζ ∈ Ξ letting ci(ζ) ∈ H1(0, T ; Mi) and rrr i(ζ) ∈ L2(0, T ; eΣi) be such that
Ri(ζ, 0,0) = (ζ, ci(ζ), rrr i(ζ)), we have for any pair of elements ξ and ζ in Ξ and for
a.e. t ∈ (0, T ) that

(φi∂t ci(ξ), ci(ζ))Ωi
+ (div rrr i(ξ), ci(ζ))Ωi

= 0,

−(div rrr i(ζ), ci(ξ))Ωi
+ (DDD−1

i
rrr i(ξ), rrr i(ζ))Ωi

+

∫

Γ

1

αi, j
(rrr i(ξ) · nnni)(rrr i(ζ) · nnni)

= −
∫

Γ

1

αi, j
ξ(rrr i(ζ) · nnni).

Next we add the first of these two equations to the second in which the roles of ζ and
ξ have been interchanged to obtain

(φi∂t ci(ξ), ci(ζ))Ωi
+ (DDD−1

i rrr i(ξ), rrr i(ζ))Ωi
+

∫

Γ

1

αi, j
(rrr i(ξ) · nnni)(rrr i(ζ) · nnni)

= −
∫

Γ

1

αi, j
ζ(rrr i(ξ) · nnni),

(2.60)

and this holds for any pair of elements ξ and ζ in Ξ. Now we consider the case in which
the parameters αi, j , i = 1,2, j = 3− i, are constant and apply (2.60) with ξ = ξ j and
ζ = ζi, to obtain

∫ T

0

∫

Γ

SR

�
ξ1

ξ2

�
·
�
ζ1

ζ2

�
=

2∑

i=1

∫ T

0

n∫

Γ

(ξi −
αi, j

α j,i
ξ j)ζi + (α1,2 +α2,1)

n
(φi∂t ci(ξ j), ci(ζi))Ωi

+(DDD−1
i rrr i(ξ j), rrr i(ζi))Ωi

+

∫

Γ

1

αi, j
(rrr i(ξ j) · nnni)(rrr i(ζi) · nnni)

oo

As for Method 1, we obtain a non-symmetric, space-time interface operator, but here it
is also not positive definite. We solve the discretized problem iteratively using Jacobi it-
erations or GMRES: the right hand side is computed (only once) by solving subdomain
problem (2.55) with ξ = 0 and then calculating the discrete Robin terms (correspond-
ing to the discrete counterpart of operatorBi, i = 1,2) on the space-time interface; for
a given pair of vectors (ξ1,ξ2), the matrix vector product is obtained (at each itera-
tion) by solving, for i = 1,2, problem (2.55) in Ωi × (0, T ) with ξ = ξi and with f = 0
and, c0 = 0, then computing the jump of the Robin data on Γ× (0, T ) (using (2.56)).
Performing Jacobi iterations for problem (2.57) is equivalent to the OSWR algorithm,
and in the next subsection we show that the algorithm (in mixed form) converges.

2.3.2.1 The OSWR algorithm

We consider the general case in which Ω is decomposed into I non-overlapping subdo-
mains Ωi. We denote by Γi, j the interface between two neighboring subdomains Ωi and
Ω j, Γi, j = ∂Ωi∩∂Ω j∩Ω. LetNi be the set of indices of the neighbors of the subdomain
Ωi, i = 1, . . . , I . The OSWR method may be written as follows: at the kth iteration, we
solve in each subdomain the problem

φi∂t c
k
i + div rrrk

i = f , in Ωi × (0, T ) ,
∇ck

i + DDD−1
i rrrk

i = 0, in Ωi × (0, T ) ,
−rrrk

i · nnni +αi, jc
k
i = −rrrk−1

j · nnni +αi, jc
k−1
j , on Γi, j × (0, T ) ,∀ j ∈ Ni,

(2.61)
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where, for i = 1, . . . , I , j ∈ Ni, αi, j > 0 is a Robin parameter. The initial value is that of

c0 in each subdomain. Moreover,
�

gi, j

�
:= −rrr0

j · nnni + αi, jc
0
j is an initial guess on Γi, j,

for i = 1, . . . , I , j ∈ Ni, in order to start the first iterate.

Remark 2.14. Problem (2.61) results from the application of Jacobi iterations for the

interface problem (2.57) (for the case of two subdomains). This can be seen by writing

the interface problem for (2.61) (following the same steps as in Subsection 2.3.2):

 
ξk

1 −B1R2(ξ
k−1
2 , 0,0)

ξk
2 −B2R1(ξ

k−1
1 , 0,0)

!
= χR( f , c0), on Γ× (0, T ),

or equivalently,

 
ξk

1

ξk
2

!
=

 
ξk−1

1

ξk−1
2

!
+χR( f , c0)−SR

�
ξk−1

1
ξk−1

2

�
, on Γ× (0, T ).

The variational formulation of (2.61) is written as follows:

For a.e. t ∈ (0, T ), find ck
i (t) ∈ L2(Ωi) and rrrk

i (t) ∈H (div ,Ωi) such that

(φi∂t c
k
i ,µi)Ωi

+ (∇ · rrrk
i ,µi)Ωi

= ( f ,µi)Ωi
, ∀µi ∈ L2(Ωi),

−(∇ · vvv i, ck
i )Ωi
+ (DDD−1

i rrrk
i , vvv i)Ωi

=
∑

j∈Ni

∫

Γi, j

ck
i (−vvv i · nnni), ∀vvv i ∈H (div ,Ωi),

(2.62)

for i = 1, · · · , I .

Theorem 2.15. Let DDD ∈W 1,∞(Ω)W 1,∞(Ω)W 1,∞(Ω), f ∈ H1(0, T ; L2(Ω)) and c0 ∈ H2(Ω)∩H1
0(Ω) and let

αi, j ∈ L∞(∂Ωi) be such that αi, j ≥ α0 > 0 for i = 1, . . . , I , j ∈ Ni. Algorithm (2.62),

initialized by (gi, j) in H1
�

0, T ; L2
�
Γi, j

��
, i = 1, . . . , I , j ∈ Ni, defines a unique sequence

of iterates

(ck
i , rrrk

i ) ∈W 1,∞(0, T ; L2(Ωi))×
�

L2(0, T ;H (div ,Ωi))∩H1(0, T ; L2(Ωi)L2(Ωi)L2(Ωi))
�

,

for i = 1, . . . , I , that converges to the weak solution (c, rrr) of problem (2.3).

Proof. The sequence (ck
i , rrr k

i )k is well-defined according to Theorem 2.7 and Re-
mark 2.12. Now, to prove the convergence of algorithm (2.61), as the equations are
linear, we can take f = 0 and c0 = 0 and show that the sequence

�
ck

i , rrrk
i

�
k

of iterates
converges to zero in suitable norms.

Choosing µi = ck
i and vvv i = rrrk

i in (2.62), then adding the two resulting equations and
replacing the boundary term by using the equation

�
−rrrk

i · nnni +αi, jc
k
i

�2 −
�
−rrrk

i · nnni −α j,ic
k
i

�2

= 2
�
αi, j +α j,i

�
ck

i

�
−rrrk

i · nnni

�
+
�
α2

i, j −α
2
j,i

��
ck

i

�2
, (2.63)

we obtain

(φi∂t c
k
i , ck

i )Ωi
+
�

DDD−1
i rrrk

i , rrrk
i

�
Ωi
+
∑

j∈Ni

∫

Γi, j

1

2
�
αi, j +α j,i

�
�
−rrrk

i · nnni −α j,ic
k
i

�2

=
∑

j∈Ni

∫

Γi, j

1

2
�
αi, j +α j,i

�
�
−rrrk

i · nnni +αi, jc
k
i

�2
+

1

2

∑

j∈Ni

∫

Γi, j

�
α j,i −αi, j

��
ck

i

�2
.
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We then integrate over (0, t) for a.e. t ∈ (0, T] and apply the Robin boundary condi-
tions. By using the properties of φ and DDD and using the fact that the Robin coefficients
αi, j belong to L∞

�
Γi, j

�
, i ∈ 1, · · · , I , j ∈ Ni and that ck

i belongs to H1(Ωi) (see Re-
mark 2.12), we apply the trace theorem and obtain, for some constant C ,

φ−‖ck
i (t) ‖

2
Ωi
+ 2δ−

∫ t

0

‖rrrk
i (s)‖

2
Ωi

ds+
∑

j∈Ni

∫ t

0

∫

Γi, j

1

αi, j +α j,i

�
−rrrk

i · nnni −α j,ic
k
i

�2

≤
∑

j∈Ni

∫ t

0

∫

Γi, j

1

αi, j +α j,i

�
−rrrk−1

j
· nnni +αi, jc

k−1
j

�2
+ C

∫ t

0

‖ck
i (s)‖

2
Ωi

ds.

Now we sum over all subdomains and define for k ≥ 1 and for a.e. t ∈ (0, T]

Ek (t) =

I∑

i=1

�
φ−‖ck

i (t) ‖
2
Ωi
+ 2δ−

∫ t

0

‖rrrk
i (s)‖

2
Ωi

ds

�
,

Bk (t) =

I∑

i=1

∑

j∈Ni

∫ t

0

∫

Γi, j

1

αi, j +α j,i

�
−rrrk

j · nnni +αi, jc
k
j

�2
.

Then we have, for all k > 0

Ek (t) + Bk (t) ≤ Bk−1 (t) + C

I∑

i=1

∫ t

0

‖ck
i (s)‖2Ωi

ds.

Now sum over the iterates for any given K > 0:

K∑

k=1

Ek (t) ≤ B0 (t) + C

K∑

k=1

I∑

i=1

∫ t

0

‖ck
i (s) ‖2Ωi

ds, (2.64)

where

B0 (t) =

I∑

i=1

∑

j∈Ni

∫ t

0

∫

Γi, j

1

αi, j +α j,i
(gi, j)

2,

for gi, j the initial guess on Γi, j . From the definition of Ek, since δ− > 0, we have

K∑

k=1

I∑

i=1

φ−‖ck
i (t) ‖

2
Ωi
≤ B0 (t) + C

K∑

k=1

I∑

i=1

∫ t

0

‖ck
i (s)‖

2
Ωi

ds.

Thus, by applying Gronwall’s lemma, we obtain for any K > 0 and a.e. t ∈ (0, T )

K∑

k=1

I∑

i=1

‖ck
i (t) ‖

2
Ωi
≤ e

CT

φ−
B0 (T )

φ−
. (2.65)

This along with (2.64) implies

K∑

k=1

I∑

i=1

2δ−

∫ t

0

‖rrrk
i (s)‖2Ωi

ds ≤ (1+
C T

φ−
e

CT

φ− )B0 (T ) , ∀K > 0. (2.66)

The inequalities (2.65), (2.66) imply that the sequence ck
i tends to 0 in

L∞
�

0, T ; L2 �Ωi

��
and rrrk

i converges to 0 in L2
�

0, T ; L2(Ωi)L2(Ωi)L2(Ωi)
�

for each i ∈ 1, . . . , I
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as k→∞.
To show convergence in higher norms, we differentiate the first and the second equa-
tions of (2.62) with respect to t, then take µi = ∂t c

k
i and vvv i = ∂trrr

k
i and add the

resulting equations together. We see that (after bounding the left hand side using the
assumptions on φ and DDD)

φ−
2

d

d t
‖∂t c

k
i ‖

2
Ωi
+ δ−‖∂trrr

k
i ‖

2
Ωi
≤
∑

j∈Ni

∫

Γi, j

∂t c
k
i (−∂trrr

k
i · nnni).

We proceed as in the previous argument with the use of Robin boundary conditions
after differentiating with respect to t

−∂trrr
k
i · nnni +αi, j∂t c

k
i = −∂trrr

k−1
j
· nnni +αi, j∂t c

k−1
j

, on Γi, j × (0, T ) ,∀ j ∈ Ni.

We then obtain, for all k > 0

Ẽk (t) + B̃k (t) ≤ B̃k−1 (t) + C

I∑

i=1

∫ t

0

‖∂t c
k
i (s) ‖2Ωi

ds.

where

Ẽk (t) =

I∑

i=1

�
φ−‖∂t c

k
i (t) ‖2Ωi

+ 2δ−

∫ t

0

‖∂trrr
k
i (s)‖2Ωi

ds

�
,

B̃k (t) =

I∑

i=1

∑

j∈Ni

∫ t

0

∫

Γi, j

1

αi, j +α j,i

�
−∂trrr

k
j · nnni +αi, j∂t c

k
j

�2
.

Now, as before, we sum over the iterates for any K > 0 and apply Gronwall’s lemma to
obtain for any K > 0 and a.e. t ∈ (0, T )

K∑

k=1

I∑

i=1

‖∂t c
k
i (t) ‖2Ωi

≤ e
CT

φ−
B̃0 (T )

φ−
, with B̃0 (t) =

I∑

i=1

∑

j∈Ni

∫ t

0

∫

Γi, j

1

αi, j +α j,i
(∂t gi, j)

2.

(2.67)
This along with (2.65) shows that the sequence ck

i converges to 0 in W 1,∞(0, T ; L2(Ωi)

as k→∞, for i = 1, . . . , I .
Now we choose µi = div rrrk

i in the first equation of (2.62) to obtain for a.e. t ∈ (0, T )

‖div rrrk
i ‖

2
Ωi
= −

�
∂t c

k
i , div rrrk

i

�
Ωi
≤ ‖∂t c

k
i ‖Ωi
‖div rrrk

i ‖Ωi
.

or
‖div rrrk

i ‖Ωi
≤ ‖∂t c

k
i ‖Ωi

∀t ∈ (0, T ).

Hence, by (2.67) we have

‖div rrrk
i ‖L∞(0,T ;L2(Ωi))

→ 0 as k→∞. (2.68)

This shows that the sequence rrrk
i converges to 0 in L2 �0, T ; H(div ,Ωi)

�
. Moreover, it

follows from the definition of Ẽk and (2.67) that

K∑

k=1

I∑

i=1

2δ−

∫ t

0

‖∂trrr
k
i (s) ‖

2
Ωi

ds ≤ (1+
C T

φ−
e

CT

φ− )B̃0 (T ) , ∀K > 0.

So that the sequence ∂trrr
k
i also converges to 0 in L2(0, T ; L2(Ωi)L2(Ωi)L2(Ωi)).
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2.4 Nonconforming time discretizations and projections in
time

One of the main advantages of Method 1 or Method 2 is that because these methods are
global in time, they enable the use of independent time discretizations in the subdo-
mains. At the space-time interface, data is transferred from one space-time subdomain
to a neighboring subdomain by using a suitable projection.

We consider semi-discrete problems in time with nonconforming time grids. Let
T1 and T2 be two possibly different partitions of the time interval (0, T ) into sub-
intervals (see Figure 2.2). We denote by J i

m the time interval (t i
m, t i

m−1] and by∆t i
m :=

(t i
m − t i

m−1) for m = 1, . . . , Mi and i = 1,2, where for simplicity of exposition we
have again supposed that we have only two subdomains. We use the lowest order
discontinuous Galerkin method [61, 17, 108], which is a modified backward Euler
method. The same idea can be generalized to higher order methods. We denote by

0

T

Ω1 Ω2

∆t1
m

∆t2
m

x

t

Figure 2.2: Nonconforming time grids in the subdomains.

P0(Ti,W ) the space of piecewise constant functions in time on grid Ti with values in

W , where W = H
1
2
00(Γ) for Method 1 and W = L2(Γ) for Method 2:

P0(Ti,W ) =
¦
ψ : (0, T )→W,ψ is constant on J i

m, ∀m= 1, . . . , Mi

©
. (2.69)

In order to exchange data on the space-time interface between different time grids, we
define the following L2 projection Π ji from P0(Ti,W ) onto P0(T j,W ) (see [48, 61]) :
for ψ ∈ P0(Ti,W ), Π jiψ|J j

m
is the average value of ψ on J j

m, for m= 1, . . . , M j:

Π ji

�
ψ
�
|
J

j
m
=

1

| J j
m |

Mi∑

l=1

∫

J
j
m∩J i

l

ψ. (2.70)

We use the algorithm described in [50] for effectively performing this projection. With
these tools, we are now able to weakly enforce the transmission conditions over the
time intervals.
We still denote by (ci, rrr i), for i = 1,2, the solution of the problem semi-discrete in time
corresponding to problem (2.53) or (2.59).

2.4.1 For Method 1

As there is only one unknown λ on the interface, we need to choose λ piecewise

constant in time on one grid, either T1 or T2. For instance, let λ ∈ P0(T2, H
1
2
00(Γ)) and

take c2 = Π22(λ) = Id(λ). The weak continuity of the concentration in time across the
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interface is fulfilled by letting

c1 = Π12(λ) ∈ P0(T1, H
1
2
00(Γ)).

The semi-discrete (nonconforming in time) counterpart of the flux continuity in the
second equation of (2.47) is weakly enforced by integrating it over each time interval
J2

m of grid T2 : ∀m = 1, ..., M2,

∫

J2
m

�
Π21
�
rrr1(Π12(λ), f , c0) · nnn1

�
+Π22

�
rrr2(Π22(λ), f , c0) · nnn2

��
d t = 0, on Γ. (2.71)

Remark 2.16. Obviously one could choose λ to be constant in time on yet another grid

(neither T1 nor T2), and this can be useful in some applications (e.g. flow in porous media

with fractures).

2.4.2 For Method 2

In Method 2, there are two interface unknowns representing the Robin terms from
each subdomain. Thus we let ξi ∈ P0(Ti, L2(Γ)), for i = 1,2. The semi-discrete in time
counterpart of (2.48) is weakly enforced as follows:

∫

J1
m

�
ξ1 −Π12

�
−rrr2(ξ2, f , c0) · nnn1 +α1,2c2(ξ2, f , c0)

��
d t = 0, on Γ, ∀m = 1, . . . , M1,

∫

J2
m

�
−Π21

�
−rrr1(ξ1, f , c0) · nnn2 +α2,1c1(ξ1, f , c0)

�
+ξ2

�
d t = 0, on Γ, ∀m= 1, . . . , M2,

(2.72)
where

�
ci(ξi, f , c0), rrr i(ξi, f , c0)

�
, i = 1,2, is the solution to (2.59).

Remark 2.17. For conforming time grids, the two schemes defined by applying GMRES

for the two interface problems (2.71) and (2.72) respectively converge to the same mon-

odomain solution. In the nonconforming case, due to the use of different projection opera-

tors, the two schemes yield different solutions at convergence. In Section 2.5, we will study

and compare the errors in time for the two methods.

As in Subsection 2.3.2.1, we consider the semi-discrete OSWR algorithm associ-
ated with (2.72) using Jacobi iterations and prove that this algorithm converges to the
nonconforming solution (see problem (2.74) below).

2.4.2.1 The semi-discrete, nonconforming in time, OSWR algorithm

We consider a decomposition of Ω into I non-overlapping subdomains φi and use the
same notation as in Subsection 2.3.2.1. We denote by Ti the time partition in subdo-
main φi . Using the DG method of order zero and the projections as well as the notation
introduced above, we write the semi-discrete problem of the OSWR algorithm (2.61)
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as follows: at kth iteration, we solve, for m = 1, . . . , Mi and i = 1, . . . , I ,

φi

�
c

k,m
i
− c

k,m−1
i

�
+∆t i

m div rrr
k,m
i

=

∫

J i
m

f d t, in Ωi,

∆t i
m

�
∇c

k,m
i
+ DDD−1

i rrr
k,m
i

�
= 0, in Ωi,

∆t i
m

�
−rrr

k,m
i
· nnni +αi, jc

k,m
i

�

=

∫

J i
m

Πi j

�
−rrrk−1

j · nnni +αi, jc
k−1
j

�
d t, on Γi, j ,∀ j ∈ Ni,

(2.73)

where c
k,m
i

:= ck
i|J i

m

, rrr
k,m
i

:= rrrk
i|J i

m

, for m = 1, . . . , Mi and i = 1, . . . , I . The third equation

of (2.73) is obtained by performing Jacobi iterations for (2.72).

We show in the following theorem that as k tends to infinity the sequence of problem
(2.73) converges to the solution of

φi

�
cm

i − cm−1
i

�
+∆t i

m div rrrm
i d t =

∫

J i
m

f d t, in Ωi,

∆t i
m

�
∇cm

i + DDD−1
i rrrm

i

�
= 0, in Ωi,

∆t i
m

�
−rrrm

i · nnni +αi, jc
m
i

�

=

∫

J i
m

Πi j

�
−rrr j · nnni +αi, jc j

�
d t, on Γi, j,∀ j ∈ Ni.

(2.74)

Theorem 2.18. Assume that αi, j = α j,i for i = 1, . . . , I , j ∈ Ni. Then

1. Problem (2.74) has a unique solution (ci , rrr i) ∈ P0(Ti; L2(Ωi)) ×
P0(Ti;H (div ,Ωi)), where P0(Ti; W ) is defined as in (2.69) for W = L2(Ωi)

or W =H (div ,Ωi)), ∀i = 1, . . . , I .

2. Algorithm (2.73), initialized by (gi, j) in P0

�
Ti; L2

�
Γi, j

��
, i = 1, . . . , I , j ∈ Ni,

defines a unique sequence of iterates

(ck
i , rrr k

i ) ∈ P0(Ti; L2(Ωi))× P0(Ti;H (div ,Ωi)),

for i = 1, . . . , I , that converges to the solution of problem (2.74).

Proof. The proof is carried out in several steps: we first derive the enery estimates as in
the proof of Theorem 2.15, then we prove the convergence of algorithm (2.73); finally
the well-posedness of problem (2.74) is shown.

As the equations are linear, we take f = 0 and c0 = 0. We multiply the first and the
second equations of (2.73) by c

k,m
i

and rrr
k,m
i

respectively, integrate over φi then add
two resulting equations and use (2.63) to obtain

(φic
k,m
i

, c
k,m
i
)Ωi
− (φic

k,m−1
i

, c
k,m
i
)Ωi
+∆t i

m(DDD
−1
i

rrr
k,m
i

, rrr
k,m
i
)Ωi

+
∑

j∈Ni

∆t i
m

∫

Γi, j

1

2
�
αi, j +α j,i

�
�
−rrr

k,m
i
· nnni −α j,ic

k,m
i

�2

≤
∑

j∈Ni

∆t i
m

∫

Γi, j

1

2
�
αi, j +α j,i

�
�
−rrr

k,m
i
· nnni +αi, jc

k,m
i

�2
+
∆t i

m

2

∫

Γi, j

�
α j,i −αi, j

��
c

k,m
i

�2
ds.

(2.75)
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Note that ck
i and rrrk

i are piecewise constant on each time interval J i
m. Using the assump-

tions about φ and DDD and the inequality a2− ab ≥
1

2
(a2− b2) for the first two terms of

(2.75), we obtain

φ−
�
‖ck,m

i
‖2Ωi
−‖ck,m−1

i
‖2Ωi

�
+ 2δ−

∫

J i
m

‖rrrk
i (s) ‖

2
Ωi

ds

+
∑

j∈Ni

∫

J i
m

∫

Γi, j

1

αi, j +α j,i

�
−rrrk

i · nnni −α j,ic
k
i

�2

≤
∑

j∈Ni

∫

J i
m

∫

Γi, j

1�
αi, j +α j,i

�
�
−rrrk

i · nnni +αi, jc
k
i

�2
+

∫

J i
m

∫

Γi, j

�
α j,i −αi, j

��
ck

i

�2
ds,

(2.76)

for i = 1, . . . , I , m= 1, . . . , Mi .

Because of the global in time projection Πi j , we can not use Gronwall’s lemma as in
the continuous case. Thus, we assume that αi, j = α j,i , ∀i ∈ 1, . . . , I , j ∈ Ni to cancel
the last term. Now summing (2.76) over the sub-intervals J i

n in (0, t i
m], as ck

i (0) = 0
we have

φ−‖ck,m
i
‖2Ωi
+ 2δ−

∫ t i
m

0

‖rrrk
i (s) ‖

2
Ωi

ds+
∑

j∈Ni

∫ t i
m

0

∫

Γi, j

1

αi, j +α j,i

�
−rrrk

i · nnni −α j,ic
k
i

�2

≤
∑

j∈Ni

∫ t i
m

0

∫

Γi, j

1�
αi, j +α j,i

�
�
−rrrk

i · nnni +αi, jc
k
i

�2
. (2.77)

Substituting the third equation of (2.73) into (2.77) and as Πi j is an L2 projection we
obtain

φ−‖ck,m
i
‖2Ωi
+ 2δ−

∫ t i
m

0

‖rrrk
i (s) ‖

2
Ωi

ds+
∑

j∈Ni

∫ t i
m

0

∫

Γi, j

1

αi, j +α j,i

�
−rrrk

i · nnni −α j,ic
k
i

�2

≤
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j∈Ni

∫ t i
m

0
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Γi, j
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αi, j +α j,i

�
Πi j

�
−rrrk−1

j · nnni +αi, jc
k−1
j

��2

≤
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j∈Ni
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0

∫

Γi, j
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αi, j +α j,i

�
−rrrk−1

j
· nnni +αi, jc
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j

�2
.

Now we sum over all subdomains and define for k ≥ 1

Bk
m =

I∑

i=1

∑

j∈Ni

∫ t i
m

0

∫

Γi, j

1

αi, j +α j,i

�
−rrrk

j · nnni +αi, jc
k
j

�2
.

Then we have, for all k > 0,

φ−‖ck,m
i
‖2Ωi
+ 2δ−

∫ t i
m

0

‖rrrk
i (s) ‖

2
Ωi

ds+ Bk
m ≤ Bk−1

m . (2.78)

We sum over the iterates k to obtain that ‖ck,m
i
‖2Ωi

and

∫ t i
m

0

‖rrrk
i (s)‖

2
Ωi

ds converge to 0

as k→∞ for m = 1, . . . , Mi and i = 1, . . . , I .
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Now we multiply the first equation of (2.73) by∇· rrrk,m
i

and integrate over Ωi to obtain

∆t i
m‖∇ · rrr

k,m
i
‖2Ωi
= −

�
ωi(c

k,m
i
− c

k,m−1
i

),∇ · rrrk,m
i

�
Ωi

≤ω−‖ck,m
i
− c

k,m−1
i
‖Ωi
‖∇ · rrrk,m

i
‖Ωi

, (2.79)

which implies that ‖∇ · rrrk,m
i
‖Ωi

converges to 0 as k → ∞ for m = 1, . . . , Mi and
i = 1, . . . , I .

To prove the well-posedness of a solution to problem (2.74), one has to show only
the uniqueness of the solution as (2.74) is a square discrete system. This is obtained
by noting that (2.78) and (2.79) still hold without the superscript k.

Remark 2.19. The proof can be extended to higher order DG methods (see [62]) using

a technique introduced in [87] to rewrite the DG formulation in another way with a

reconstruction operator. Since only the lowest order DG method is considered here, a

simpler proof without using such a technique was given.

2.5 Numerical results

In this section, we carry out numerical experiments in 2D (using MATLAB) to inves-
tigate the performance of the two methods presented above. We consider DDD = dIII

isotropic and constant on each subdomain, where III is the 2D identity matrix. Conse-
quently, we may denote by di, the diffusion coefficient in the subdomains. For the spa-
tial discretization, we use mixed finite elements with the lowest order Raviart-Thomas
spaces on rectangles (for details about the subdomain solver, see Appendix B).

We consider in the first test problem (see Section 2.5.1) a homogeneous case with
a decomposition into two subdomains. The convergence and asymptotic behaviors of
the two methods will be studied. In the second test problem (see Section 2.5.2), we
consider the two subdomain case with discontinuous coefficients. We vary the jumps
in the diffusion coefficients and we see how it affects the convergence speed. We also
analyze the behavior of the error versus the time steps in the nonconforming case.
In the last test problem (see Section 2.5.3), suggested by ANDRA 1 as a first step
towards repository simulations, we consider several subdomains. We observe how
both methods handle this application with the strong heterogeneity and long time
computations.

Remark 2.20. The numerical results presented for Method 2 are done with optimized

two-sided Robin parameters. We refer to Appendix A.2 for details of how to calculated

these optimized parameters.

Remark 2.21. One iteration of Method 1 with the preconditioner costs twice as much as

one iteration of Method 2 (in terms of number of subdomain solves). Thus to compare

the convergence of the two methods with GMRES, in the sequel we show the error in the

concentration c and the vector field rrr versus the number of subdomain solves (instead of

the number of iterations).

1The French agency for nuclear waste management
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2.5.1 A test case with a homogeneous medium

The computational domain Ω is the unit square, and the final time is T = 1. The
porosity is φ = 1 and the diffusion coefficient d = 0.02. We split Ω into two nonover-
lapping subdomains Ω1 = (0,0.5)× (0,1) and Ω2 = (0.5,1)× (0,1). For the spatial
discretization, we use a uniform rectangular mesh with size ∆x = 1/200. For the time
discretization, we use conforming time grids with ∆t1 =∆t2 = 1/200.

We consider the error equations, i.e. f = 0, c0 = 0 and homogeneous boundary
conditions, and use a random initial guess on the space-time interface. We stop the
iteration when the errors (both in c and rrr) are less than 10−6 as depicted in Figure 2.3
(left). We observe that the two methods work well and Method 1 converges very fast
compared to Method 2. The errors in c (in red (Method 1) and blue (Method 2)) and
the errors in rrr (in magenta (Method 1) and green (Method 2)) are in the same order
of magnitude.
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Figure 2.3: Left: Convergence curves with GMRES. Right: Level curves for the error in
the vector field (in logarithmic scale) for various values of the parameters α1,2 and

α2,1, where the red star shows the optimized parameters.

To verify the performance of the optimized parameters we vary α1,2 and α2,1 and
plot the logarithmic scale of error in the concentration after 24 Jacobi iterations in
Figure 2.3 (right). We see that the pair of optimized two-sided Robin parameters (the
red star), computed by numerically minimizing the continuous convergence factor (see
Appendix A.2.1), is located close to those giving the smallest error after the same
number of iterations.

Table 2.1 shows the number of subdomain solves (for different algorithms) required
to reach a reduction of 10−6 of the errors in the concentration and in the vector field
(in square brackets) when refining the mesh in space and in time, with ∆x2/∆t = const.
We observe that the convergence of Method 1 is independent of the mesh (due to the
use of the preconditioner), while that of Method 2 is slightly dependent on the mesh.
The latter is obtained because the optimization depends on the mesh size h = maxhi

and the time step ∆t = max∆t i (see Appendix A), i.e. the optimized parameters
serve in some sense as a preconditioner (see [12]). For Method 2, GMRES gives faster
convergence speed than Jacobi but it does not improve the asymptotic results by a
square root as it does in the case of elliptic problems [44]. This has been pointed out
and analyzed in [98] and one should use the convolution Krylov subspace methods
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[86] for dynamic systems to accelerate the convergence at the same degree as in the
case of stationary problems [43] .

∆x ∆t
Method 1 Method 2
GMRES GMRES Jacobi

1/10 1/100 4 [4] 14 [15] 17 [18]
1/20 1/400 4 [4] 17 [18] 21 [23]
1/40 1/800 4 [4] 21 [22] 24 [27]
1/80 1/6400 4 [4] 25 [26] 28 [31]

Table 2.1: Number of subdomain solves needed to reach a reduction of 10−6 of the
errors for different algorithms, and for different values of the discretization

parameters ∆x and ∆t.

2.5.2 A test case with a heterogeneous medium

The computational domain Ω is again the unit square, and the final time is T = 1. We
decompose Ω into 2 nonoverlapping subdomains as in Subsection 2.5.1. The porosity
is φ1 = φ2 = 1, the diffusion coefficients are d1 and d2 in Ω1 and Ω2 respectively
(d1 6= d2). We fix d2 = 0.2 and vary d1 as shown in Table 2.2. We let D denote the
diffusion ratio d2/d1. For the spatial discretization, we use a uniform rectangular mesh
with size ∆x1 = ∆x2 = 1/200. For the time discretization, we use nonconforming
time grids with ∆t1 and ∆t2, given in Table 2.2, adapted to different diffusion ratios.

D d1 1/∆t1 d2 1/∆t2

10 0.02 150 0.2 200
100 0.002 50 0.2 200
1000 0.0002 20 0.2 200

Table 2.2: Diffusion coefficients and corresponding nonconforming time steps.

As in the first test case, we analyze the convergence behavior of each method.
We solve a problem with c0 = 0 and f = 0 (thus c = 0 and rrr = 0). We start with
a random initial guess on the space-time interface and plot the error (in logarithmic
scale) in the L2(0, T ; L2(Ω))-norm of the concentration c and the vector field rrr, versus
the number of subdomain solves. We stop the iteration when the errors (both in c

and rrr) are less than 10−6. In Figure 2.4, the convergence of the two methods (with
GMRES) for different diffusion ratios is shown. We see that both methods work well.
Method 1 (Schur) converges faster than Method 2 (Schwarz) for small diffusion ratios
D. However, when D is increased, they are comparable. We also observe that the
errors in c and rrr are nearly the same for Method 2 while the error in rrr is greater than
the error in c for Method 1. Both methods handle the heterogeneities efficiently. To
obtain such a good performance, we have used the following formula for calculating
the weights in (2.54) (see [89])

σi =

�
di

d1 + d2

�2

, i = 1,2.
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D = 100
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Figure 2.4: Convergence curves for different diffusion ratios: errors in c for Method 1
(red) and Method 2 (blue); errors in rrr for Method 1 (magenta) and Method 2 (green).

Consider now the case with D = 10. For Method 2, we vary Robin parameters
α1,2 and α2,1 and plot the logarithmic scale of the residual after 20 Jacobi iterations in
Figure 2.5. We again see that the pair of optimized Robin parameters (the red star) is
located close to those giving the smallest residual after the same number of iterations.
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Figure 2.5: Level curves for the residual (in logarithmic scale) after 20 Jacobi
iterations for various values of the parameters α1,2 and α2,1. The red star shows the

optimized parameters computed by numerically minimizing the continuous
convergence factor.

As in the first test case, we show in Table 2.3 the number of subdomain solves
needed to reach a reduction of 10−6 of the errors in the concentration and in the vector
field (in square brackets) when refining the mesh in space and in time, with ∆x2/∆t =

const. We observe that for discontinuous coefficients, the convergence of Method 1 is
again independent of the mesh size while that of Method 2 is almost independent of the
discretizations, especially when the diffusion ratio is large. Just as in the homogeneous
case, for Method 2, GMRES does not improve either the convergence speed or the
asymptotic results.

Next, we analyze the accuracy in time of the two methods with nonconforming time
steps. We impose an inital condition c0 = exp

�
(x − 0.55)2+ 0.5(y − 0.5)2

�
together

with a zero source term f = 0. We consider four initial time grids (for ∆tc and ∆t f
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∆x ∆t

D= 10 D = 100
Method 1 Method 2 Method 1 Method 2
GMRES GMRES Jacobi GMRES GMRES Jacobi

1/10 1/100 14 [14] 11 [11] 13 [12] 10 [10] 8 [9] 9 [10]
1/20 1/400 14 [14] 13 [13] 14 [14] 10 [12] 9 [9] 9 [9]
1/40 1/800 12 [14] 14 [14] 15 [16] 10 [10] 9 [9] 10 [10]
1/80 1/6400 12 [14] 15 [16] 16 [16] 10 [10] 10 [10] 10 [10]

Table 2.3: Number of subdomain solves needed to reach a reduction of 10−6 of the
errors for different algorithms , and for different values of the discretization

parameters ∆x and ∆t.

given), which we then refine several times by a factor of 2:

• Time grid 1 (fine-fine): conforming with ∆t1 =∆t2 =∆t f .
• Time grid 2 (coarse-fine): nonconforming with ∆t1 =∆tc and ∆t2 =∆t f .
• Time grid 3 (fine-coarse): nonconforming with ∆t1 =∆t f and ∆t2 =∆tc.
• Time grid 4 (coarse-coarse): conforming with ∆t1 =∆t2 =∆tc .
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Figure 2.6: Errors in c (left) and rrr (right) in logarithmic scales between the reference
and the multidomain solutions versus the time step for D = 10.

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

∆t

E
rr

or
 in

 c
on

ce
nt

ra
tio

n 
c

 

 

Time grid 1 (F−F)
Time grid 2 (C−F)
Time grid 3 (F−C)
Time grid 4 (C−C)
Slope 1

10
−4

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

∆t

E
rr

or
 in

 v
ec

to
r 

fie
ld

 r

 

 

Time grid 1 (F−F)
Time grid 2 (C−F)
Time grid 3 (F−C)
Time grid 4 (C−C)
Slope 1

Figure 2.7: Errors in c (left) and rrr (right) in logarithmic scales between the reference
and the multidomain solutions versus the time step for D = 100.
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In space, we fix a conforming rectangular mesh and we compute a reference solution
by solving problem (2.4) directly on a very fine time grid, with ∆t =∆t f /2

6. The con-
verged multidomain solution is such that the relative residual is smaller than 10−11.
We show in Figures 2.6 and 2.7 the errors in the L2(0, T ; L2(Ω))-norms of the concen-
tration c and the vector field rrr versus the time step ∆t = max(∆tc,∆t f ) for different
diffusion ratios. We only give the results for Method 1 because the curves for Method 2
look exactly the same. For D = 10, we take ∆tc = 1/94 and ∆t f = 1/128; for
D = 100, we take ∆tc = 1/40 and ∆t f = 1/160 (for D = 1000, the same results hold
for ∆tc = 1/16 and ∆t f = 1/160 but we don’t present them here). We first observe
that first order convergence is preserved in the nonconforming case. Moreover, the
errors obtained in the nonconforming case (Time grid 2, in blue) are nearly the same
as in the finer conforming case (Time grid 1, in red). This means that nonconforming
time grids preserve the accuracy in time of the solution and one should refine the time
step where the solution varies most (i.e. where the diffusion coefficient is larger).

2.5.3 A porous medium test case

In this subsection, we consider a simplified version of a problem simulating contami-
nant transport in and around a nuclear waste repository site. The test case is described
in Figure 2.8, where the repository is shown in red and the clay layer in yellow. The
domain is a 3950m by 140m rectangle and the repository is a centrally located 2950m
by 10m rectangle. The initial condition is c0 = 0. We impose homogeneous Dirichlet
conditions on top and bottom, and homogeneous Neumann conditions on the left and
right hand sides. We decompose Ω into 9 subdomains as depicted in Figure 2.9 with
Ω5 representing the repository. The porosity is φ5 = 0.2 and φi = 0.05, i 6= 5. The dif-
fusion coefficients are d5 = 2 10−9 m2/s and di = 5 10−12 m2/s, i 6= 5. So the diffusion
ratio is D = 400.

10 m

2950 m

3950 m

140 m

Figure 2.8: Geometry of the domain.

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

Figure 2.9: The decomposition into 9 subdomains (blow up in the y-direction).

For the spatial discretization, we use a non-uniform but conforming rectangular
mesh with a finer discretization in the repository (a uniform mesh with 600 points
in the x direction and 30 points in the y direction) and a coarser discretization in
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the clay layer (the mesh size progressively increases with distance from the repository
by a factor of 1.05). For the time discretization, we use nonconforming time grids
with ∆t5 = 2000 years and ∆t i = 10,000 years, i 6= 5. For this application, we are
interested in the long-term behavior of the repository, say over one million years. Thus,
we test the performance of the two methods for a "short" time interval (T = 200,000
years) and for a longer time interval (T = 1,000,000 years). The same time steps,
∆t i, are used for both cases. As in the first test problem, we analyze the convergence
results by solving a problem with f = 0. For Method 2, as we have a small, thin
object embedded in a large area, it has been shown in [60, 75] that it is important to
derive an adapted optimization for Robin parameters. Thus, we consider two different
optimization techniques: the classical one (Opt. 1, see Appendix A.2.1) as used in the
first test problem, and an adapted version (Opt. 2, see Appendix A.2.2) where we take
into account the dimension of the subdomains.

In Figure 2.10 we compare the errors in the concentration c (on the left) and in the
vector field rrr (on the right) both over a shorter time interval (on top) and over a longer
time interval (on bottom) where GMRES is used in all cases as the iterative solver:
Method 1 (red), Method 2 with Opt. 1 (blue) and Method 2 with Opt. 2 (green). They
are comparable and perform well in the case of multiple subdomains. We also note
that the longer the time interval, the larger the number of subdomain solves needed
to converge to a given tolerance (here 10−6). Thus, the use of time windows (see
[17, 62]) could considerably improve the performance of all the algorithms, especially
with an adapted choice of the initial guess on the interface based on the solution on the
previous time window. In Figure 2.11, we plot the errors in the concentration c over
different time intervals for Method 2: GMRES with Opt. 1 (continuous blue), GMRES
with Opt. 2 (continuous green), Jacobi iteration with Opt. 1 (dashed blue) and Jacobi
iteration with Opt. 2 (dashed green) (the errors in the vector field rrr behave similarly).
We observe that GMRES converges faster than Jacobi iteration, especially for the long
time interval. Further, with Jacobi iteration, unlike with GMRES, only Opt. 2 is able to
handle the long time interval.

Next we consider the problem over the long time interval, T = 1,000,000 years,
and with the source term defined as follows: f = 0 in the clay layer and

f =

¨
10−5 s−1 if t ≤ 105 years,
0 if t > 105 years,

in the repository. (2.80)

The discretizations in space and in time (nonconforming) are the same as above. We
verify the performance of Method 1 and Method 2 (with Opt. 2) using GMRES and
zero initial guess on the space-time interfaces. The tolerance of the iteration is 10−6.
In Figure 2.12, the evolution of the solution at different times is depicted (both meth-
ods give similar results). As time goes on and under the effect of diffusion, the con-
taminant slowly migrates from the repository to the surrounding area. Moreover, its
concentration c increases until injection stops (i.e. after 100,000 years) and then de-
creases. In Figure 2.13 the relative residuals for each method versus the number of
subdomain solves are shown, as the monodomain solution with nonconforming grids
is unknown. Both methods work well and we observe that Method 1 converges linearly
while Method 2 initially converges extremely rapidly, the convergence becoming linear
after the first few iterations.
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Figure 2.10: Convergence curves for different time intervals with GMRES: error in c

(on the left) and error in rrr (on the right), for short time T = 200,000 years (on top)
and for long time T = 1,000,000 years (on bottom).
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Figure 2.11: Convergence curves for Method 2 using GMRES and Jacobi iteration: for
short time T = 200,000 years (on the left) and for long time T = 1,000,000 years

(on the right).
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Figure 2.12: Snapshots of the multidomain solution after 20,000 years (top left), 100
000 years (top right), 200 000 years (bottom left), and 1,000,000 years (bottom

right), with a blow up in the y-direction.
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Figure 2.13: The relative residuals in logarithmic scales using GMRES for Method 1
(on the left) and Method 2 (with Opt. 2) (on the right).
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Conclusion

We have given mixed formulations for two different interface problems for the diffu-
sion equation, one using the time-dependent Steklov-Poincaré operator and the other
using OSWR with Robin transmission conditions on the space-time interfaces between
subdomains. The subdomain problems with Dirichlet and Robin boundary conditions
are proved to be well-posed. Nonconforming time grids are considered and a suitable
projection in time is employed to exchange information between subdomains on the
space-time interface. Convergence proofs of the continuous and semi-discrete OSWR
algorithms in mixed form are given. Numerical results for 2D problems using mixed
finite elements (with the lowest order Raviart-Thomas spaces on rectangles) for dis-
cretization in space and the lowest order discontinuous Galerkin method for discretiza-
tion in time are presented. We have analyzed numerically the performance of the two
methods for three test cases, the first two are academic with two subdomains and the
last one is more realistic with several subdomains. We have observed that Method 1
(with the Neumann-Neumann preconditioner and averaging weights) and Method 2
(with optimized Robin parameters) handle well the heterogeneity and nonconforming
time grids, both efficiently preserving the accuracy in time of the solution. Asymptot-
ically, their convergence is almost independent of the discretizations. The two meth-
ods are also well-adapted for the simulation of diffusive contaminant transport in and
around a repository with a special geometry and long time computations. In particular,
for Method 2 we have shown that an adapted optimization technique to compute the
optimized parameters is necessary if Jacobi iteration is used. We have pointed out the
possible advantage for efficiency of using time windows for problems with long time
intervals. This will be considered in the next chapter.
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In this chapter, we present extensions of the two methods introduced in the previ-
ous chapter to the coupled advection-diffusion problem. We use operator splitting to
treat differently the advection equation and the diffusion equation: the former is ap-
proximated with the explicit Euler method in time and with an upwind, cell-centered
finite volume method in space, while the latter is approximated with the implicit Euler
method in time and with a mixed finite element method in space. This chapter consists
of two main parts. In the first part, we derive the discrete multidomain problem in
operator splitting context and define two discrete, interface problems, extensions of
the methods, Method 1 and Method 2, analyzed in Chapter 2. For Method 1, a gen-
eralized Neumann-Neumann preconditioner is given. We describe how we handle the
nonconforming time grids (for advection and diffusion time steps) using the L2 pro-
jection defined in Chapter 2. In the second part, we carry out numerical experiments
for various test cases, both academic and more realistic prototypes for nuclear waste
disposal simulation, to investigate and compare the behavior of the two methods.
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3.1 A model problem and operator splitting

In this section, we define our model problem and the corresponding discrete problem.
For an open, bounded domain Ω of Rd (d = 2,3) with Lipschitz boundary ∂Ω and
some fixed time T > 0, consider the linear advection-diffusion problem written in
mixed form:

φ∂t c + div (uuuc + rrr) = f in Ω× (0, T ),
∇c + DDD−1rrr = 0 in Ω× (0, T ),

c = 0 on ∂Ω× (0, T ),
c(·, 0) = c0 in Ω.

(3.1)

Recall (see Chapter 1) that c is the concentration of a contaminant dissolved in a fluid,
f the source term, φ the porosity, uuu the Darcy velocity (assumed to be given and time-
independent) and DDD a symmetric time independent diffusion tensor. For simplicity, we
have imposed homogeneous Dirichlet boundary conditions. The analysis presented in
the following can be generalized to other types of boundary conditions.

One of the advantages of the time splitting approach [68] is that one can use
different numerical time schemes for the advection and diffusion. It has been shown
that treating the advection explicitly can significantly reduce the numerical diffusion
(see, e.g., [27]). In the sequel, we use a first-order in time splitting method for solving
problem (3.1): the advection equation is approximated by the forward Euler method
and the diffusion equation by the backward Euler method. The resulting scheme is first-
order accurate in time, O (∆t) (see, e.g., [29], [6, Chapter 2, p.14–32]). In the context
of local mass conservative approximations, we consider an upwind, cell-centered finite
volume method for the advection equation, and a mixed finite element method for the
diffusion equation.

In the following, we write the fully discrete problem associated with such discretiza-
tion techniques. For that purpose, we first introduce the discretizations in space and in
time.

Let Kh be a finite element partition of Ω into rectangles for simplicity, we suppose
Ω ⊂ R2). We use the lowest order Raviart-Thomas (or Nédélec in three dimensions)
mixed finite element spaces Mh × Σh ⊂ L2(Ω) × H(div,Ω) (see, e.g., [22, 104] and
Appendix B). For Ω⊂ R2 and for rectangular elements, these spaces have the form

Mh =
¦
µ ∈ L2(Ω) : µ|K = const, K ∈ Kh

©
,

Σh =
¦

vvv ∈ H(div,Ω) : vvv |K =
�
aK + bK x , cK + dK y

�
, (aK , bK , cK , dK) ∈ R4, K ∈Kh

©
.

The degrees of freedom of ch ∈ Mh correspond to the average values of ch on the
elements K ∈Kh, and those of rrrh correspond to the values of the flux rrrh ·nnnE across the
edges E of K , where nnnE is a previously chosen unit normal vector to E.

For the time discretization (see Figure 3.1), we consider, for simplicity, a uni-
form partition of (0, T ) into N subintervals

�
tn, tn+1

�
with length ∆t = tn+1 − tn

for n = 0, . . . , N − 1 with t0 = 0 and tN = T (the derivation can be easily generalized
to the case of nonuniform partitions). In order to satisfy the CFL condition required for
the explicit scheme used for the advection equation without imposing that condition
on the diffusion equation, we consider sub-time steps for the advection part:

∆ta =∆t/L, for some L ≥ 1,
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and

tn,l = l∆ta + tn, for l = 0, . . . , L, n= 0, . . . , N − 1.

Note that tn,0 = tn and tn,L = tn+1.

0

T

t

tn

tn+1

tn,l

Ω

∆t = L∆ta T = N∆t

x

Figure 3.1: A uniform partition in time with different time steps for
advection and diffusion.

The operator splitting algorithm is initialized by defining c0
h to be the L2 projection

of c0 onto Mh:

c0
h|K :=

1

meas(K)

∫

K

c0, ∀K ∈Kh.

(For convenience of notation, we also write c
0,0
h

for c0
h).

Using the advection equation, we calculate c
n,l
h

, the approximation of c(tn,l ), for
n = 0, . . . , N − 1, l = 1, . . . , L and then using the diffusion equation we calculate cn+1

h

and rrrn+1
h

, approximations of c(tn+1) and rrr(tn+1) respectively, for n = 0, . . . , N − 1.

As we use an upwind scheme for the advection equation, to calculate c
n,l+1
h

for

n= 0, . . . , N − 1, l = 0, . . . , L− 1, in addition to the value c
n,l
h

, we will need an upwind

value ĉ
n,l
h

of the concentration on each edge of the grid. This upwind value is defined
by

�
ĉ

n,l
h

�
|E
=





• the given Dirichlet boundary data (in our case 0) if E is on the
boundary ∂Ω and the average value of uuu · nnnΩ over E is negative (i.e.
fluid entering Ω through E), where nnnΩ is the outward normal to ∂Ω,

,

• the value of c
n,l
h

on K if E is an edge of K and the average value of
uuu · nnnK over E is nonnegative (fluid exiting K through E), where nnnK is
the outward normal to ∂ K .
(Note that if the average value of uuu · nnnK over E is 0, it makes no
difference which of the neighboring value is assigned).

(3.2)
In Figure 3.2, we show some examples where the upwind value is defined specifically.

The operator splitting algorithm is defined by:
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For given cn
h ∈ Mh, first solve the advection equation, for l = 0, . . . , L − 1 :

∫

K

φ
c

n,l+1
h
− c

n,l
h

∆ta

+
∑

E⊂∂ K

∫

E

ĉ
n,l
h

�
uuu · nnnK

�
= 0, ∀K ∈Kh. (3.3)

The solution generated after these L advection steps is c
n,L
h

.
Next, we solve the diffusion equation (recall that the test functions for the first

equation are just linear combinations of the characteristic functions on the elements
K ∈ Kh):

∫

K

φ
cn+1
h
− c

n,L
h

∆t
+

∫

K

div rrrn+1
h

=

∫

K

f (tn+1), ∀K ∈Kh,

∫

Ω

DDD−1rrrn+1
h
· vvv −

∫

Ω

cn+1
h

div vvv = 0, ∀vvv ∈ Σh,

(3.4)

The solution generated at this step is
�

cn+1
h

, rrrn+1
h

�
.

Thus, we end up with the algorithm as follows:

For n= 0, . . . , N − 1,

1. define c
n,0
h
= cn

h , where c0
h|K :=

1

meas(K)

∫

K

c0, ∀K ∈Kh,

2. for l = 0, . . . , L − 1,

(a) define the upwind value ĉ
n,l
h

(cf. (3.2)),

(b) solve the advection equation (3.3) with c
n,l
h

and obtain c
n,l+1
h

,

3. solve the diffusion equation (3.4) with c
n,L
h

and obtain cn+1
h

and rrrn+1
h

.

Remark 3.1. Due to the upwind scheme, for the advection equation, we need to impose

Dirichlet conditions only on the inflow boundary of Ω (i.e. where the fluid enters Ω).

In the next section, we consider the domain decomposition approach for solving
problem (3.3)-(3.4). An equivalent multidomain problem adapted to the splitting ap-
proach will be formulated and from that we will derive two global-in-time domain
decomposition methods.

3.2 Domain decomposition with operator splitting

For simplicity, we consider a conforming decomposition of Ω into two non-overlapping
subdomains Ω1 and Ω2 (the analysis can be generalized to the case of many subdo-
mains). Note that the partition Kh,i of subdomain Ωi, i = 1,2, is a subset of Kh . We
denote by Γ := ∂Ω1 ∩ ∂Ω2 the interface between the subdomains, and denote by Gh

the set of edges (or faces) of elements ofKh that lie on Γ. For i = 1,2, let nnni denote the
unit outward pointing vector field on ∂Ωi, and for any scalar, vector or tensor valued
function ψ defined on Ω, let ψi denote the restriction of ψ to Ωi.
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∂Ω : c = 0

x

y

E1�
ĉ

n,l
h

�
|E1

= 0
K1

E2 K2

�
ĉ

n,l
h

�
|E2

=
�

c
n,l
h

�
|K1

K3
E3

�
ĉ

n,l
h

�
|E3

=
�

c
n,l
h

�
|K3

Figure 3.2: An illustration of the upwind concentration defined in the context of
cell-centered finite volumes, the arrows represent the direction of the normal flux

across the edges,

∫

E

uuu · nnn, with nnn= (1,0).

As noted in Remark 3.1 only the inflow boundary (not the whole boundary) is
important for an upwind scheme, we then define the set of the inflow boundary edges
on the interface for each subdomain:

G in
h,i :=

¨
E ∈ Gh :

∫

E

uuui · nnni < 0

«
, for i = 1,2.

Thus
G in

h,1 ∩G
in
h,2 = ;, and G in

h,1 ∪G
in
h,2 = Gh.

Since we have split apart advection equation and diffusion equation, and treat
them with different numerical schemes, it is natural to have separate transmission con-
ditions for the advection part and for the diffusion part when domain decomposition is
used. In the following, we will write the advection and diffusion equations associated
with each subdomain Ωi, and derive the transmission conditions on the space-time
interface which are needed to obtain a formulation equivalent to the monodomain
problem (3.3)-(3.4).

With this aim, we denote by Mh,i and Σh,i, i = 1,2, the restrictions of the mixed
finite element spaces Mh to Ωi and Σh to Ωi respectively. To define the transmission
conditions, we introduce the following interface space

Λh :=
¦
λ ∈ L2(Γ) : λ|E = const, ∀E ∈ Gh

©
.

Because conforming discretization in space is used, we have

Λh = Σh,i · nnni |Γ, i = 1,2.

Now, for i = 1,2, and for given cn
h,i , the advection equation in Ωi is defined for

l = 0, . . . , L − 1, by
∫

K

φi

c
n,l+1
h,i − c

n,l
h,i

∆ta

+
∑

E⊂∂ K

∫

E

ĉ
n,l
h,i (uuu · nnnK) = 0, ∀K ∈Kh,i, (3.5)
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with c
n,0
h,i = cn

h,i .

Because of the decomposition, the upwind value of c
n,l
h,i on edges on the interface

Γ may not depend only on the element values c
n,l
h,i inside subdomain Ωi. In particular,

if G in
h,i 6= ; (i.e. there is fluid flowing in Ωi through some part of Γ), then the upwind

concentration ĉ
n,l
h,i on the edge E ∈ G in

h,i is defined by the concentration value of the
element in the neighboring subdomain (see Figure 3.3):

�
ĉ

n,l
h,i

�
|E
=
�

c
n,l
h, j

�
|KE

, ∀E ∈ G in
h,i , (3.6)

where KE necessarily in Kh, j , j = 3− i, is the element has E as an edge.

Equation (3.6) serves as a Dirichlet boundary condition on E ∈ G in
h,i and it defines

the transmission condition for the advection equation.

Γ

x

y

Ω1 Ω2

E
KE

�
ĉ

n,l
h,2

�
|E
=
�

c
n,l
h,1

�
|KE

KF

F�
ĉ

n,l
h,1

�
|F
=
�

c
n,l
h,2

�
|KF

Figure 3.3: An illustration of the upwind concentration in the context of domain
decomposition, the arrows represent the direction of the normal flux across the edges

(for a fixed normal vector nnn= (1,0)).

Now for the diffusion equation, with data c
n,L
h,i generated by the advection step, we

solve:

∫

K

φi

cn+1
h,i − c

n,L
h,i

∆t
+

∫

K

div rrrn+1
h,i =

∫

K

f (tn+1), ∀K ∈Kh,i,

∫

Ωi

DDD−1
i rrrn+1

h,i · vvv −
∫

Ωi

cn+1
h,i div vvv −

∫

Γ

λn+1
h,i (vvv · nnn) = 0, ∀vvv ∈ Σh,i ,

(3.7)

where λn+1
h,i ∈ Λh, i = 1,2, is the Lagrange multiplier (see, e.g., [22, 104]) representing

"the trace" of the concentration cn+1
h,i on the interface Γ. We need to introduce λh,i since

the concentration approximation ch,i is defined on the elements only (this is of course
not the case if one considers the continuous problem (see Chapter 2)).
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As in the pure diffusion problem (cf. Chapter 2), the transmission conditions for
the diffusion equation consist of the equality between the concentration and the con-
servation of the normal diffusive flux across the interface:

∫

E

λn+1
h,1 =

∫

E

λn+1
h,2 ,

∫

E

�
rrrn+1

h,1 · nnn1+ rrrn+1
h,2 · nnn2

�
= 0,

∀E ∈ Gh. (3.8)

The multidomain problem is defined by

For n= 0, . . . , N − 1,

1. for i = 1,2, define c
n,0
h,i = cn

h,i , where
�

c0
h,i

�
|K

:=
1

meas(K)

∫

K

c0, ∀K ∈Kh,i,

2. for l = 0, . . . , L − 1,

(a) define the upwind concentration ĉ
n,l
h,i , i = 1,2, in each subdomain using the

transmission condition (3.6),

(b) solve the advection equation (3.5) in each subdomain with c
n,0
h,i known and

obtain c
n,L
h,i , i = 1,2,

3. solve the diffusion equation (3.7) in each subdomain together with the transmis-
sion conditions (3.8), with c

n,L
h,i known and obtain cn+1

h,i and rrrn+1
h,i for i = 1,2.

To show the equivalence between this multidomain problem and the monodomain
problem (3.3)-(3.4) is straightforward.

Alternatively, and equivalently to (3.8), one may impose Robin transmission condi-
tions (for the diffusion equation), for all E ∈ Gh and n= 0, . . . , N − 1 :

∫

E

�
−rrrn+1

h,1 · nnn1 +α1,2λ
n+1
h,1

�
=

∫

E

�
−rrrn+1

h,2 · nnn1+α1,2λ
n+1
h,2

�
,

∫

E

�
−rrrn+1

h,2 · nnn2 +α2,1λ
n+1
h,2

�
=

∫

E

�
−rrrn+1

h,1 · nnn2+α2,1λ
n+1
h,1

�
,

(3.9)

where α1,2 and α2,1 are two positive constants. The first method that we consider is
based on (3.5), (3.7) together with the "natural" transmission conditions (3.6), (3.8)
while the second method is based on (3.5), (3.7) together with Robin transmission
conditions (3.6), (3.9). For both methods the multidomain problem is formulated as a
problem posed on the space-time interface via the use of interface operators.

Remark 3.2. As pointed out above, with the upwind scheme, the solution of the advection

equation in a subdomain depends not only on the information in the subdomain and on

its boundary, but also on information coming from the neighboring subdomain, while

for the diffusion equation the solution is local to the subdomain as in the pure diffusion

case. However, since we use operator splitting, we do not need to be concerned about the

problem of a slow convergence of the OSWR algorithm as has been observed when a fully

implicit scheme and an upwind scheme for the advection are used [57]. With operator

splitting we obtain separate transmission conditions for the advection part and for the
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diffusion part. In fact, we observe numerically (see Section 3.4) that the convergence is

governed by the Robin transmission conditions associated with the diffusion equation and

the optimized Robin parameters significantly improve the convergence of the algorithm

(for both advection-dominated and diffusion-dominated problems). In our observations,

the advection plays no role in the rate of convergence.

Remark 3.3. As the advection and the diffusion equations are treated separately, the

formulations of the diffusion equation corresponding to Method 1 and Method 2 will be

derived just as in Chapter 2. The formulation for the advection equation will be the same

for both methods.

In the multidomain context, the formulation of the advection step can be expressed
more simply by defining an upwind operator Uh,i, i = 1,2, which associates to a set of
concentration values on each element of Kh,i and on each edge of Gh, a value on each
edge of an element of K ∈ Kh,i. These latter values will be the upwind values. So if we
denote by Eh,i the set of edges of elements of Kh,i and by Nh,i the space of functions
on the union of the edges in Eh,i that are constant on each edge, we may define Uh,i as
follows

Uh,i : Mh,i ×Λh→ Nh,i

�
Uh,i

�
|E
=





0 if E ⊂
�
∂Ωi ∩Ω

�
and the average value of uuu · nnni over E

is negative,�
ch, j

�
|K if E ∈ G in

h,i where K is the element in Kh, j having E as an
edge, for j = 3− i,�

ch,i

�
|K otherwise, where K is the element in Kh,i having E as an

edge and having the average value of uuu · nnnK over E is non-
negative.

(3.10)
In the following,using operator splitting we derive discrete, interface problems for the
advection-diffusion equation (3.1), which are extensions of the discrete counterparts
of the interface problems (2.51) and (2.57) derived for the diffusion problem in the
previous chapter.

3.2.1 Method 1: An extension of the time-dependent Steklov-Poincaré
operator approach

To define the interface problem for Method 1, we introduce solution operators
Di, i = 1,2, where Di associates to an L2(0, T ; L2(Ωi)) source term f together
with H1

∗ (Ωi) (cf. (2.49)) initial data c0 and discrete boundary data
�
λa,λ

�
given on

Γ× (0, T ), the solution of the discrete advection-diffusion problem in Ωi × (0, T ) that
we define below (problem (3.11)-(3.12)). In our notation, λa ∈ ΛN×L and λ ∈ ΛN

represent the Dirichlet boundary data for the advection equation and for the diffusion
equation respectively:

λa =
�
λ

n,l
h,a

�
n=0,...,N−1, l=0,...,L−1

and λ=
�
λn+1

h

�
n=0,...,N−1

.

Using the upwind operator (3.10), the subdomain problem is defined, for given�
λa,λ, f , c0

�
, by:

For n= 0, . . . , N − 1,
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1. define c
n,0
h,i = cn

h,i , where
�

c0
h,i

�
|K

:=
1

meas(K)

∫

K

c0, ∀K ∈Kh,i,

2. for l = 0, . . . , L − 1,

(a) define the upwind values

ĉ
n,l
h,i =Uh,i

�
c

n,l
h,i ,λn,l

h,a

�
,

(b) solve the advection equation

∫

K

φi

c
n,l+1
h,i − c

n,l
h,i

∆ta

+
∑

E⊂∂ K

∫

E

ĉ
n,l
h,i (uuu · nnnK) = 0, ∀K ∈Kh,i, (3.11)

with c
n,l
h,i known and obtain c

n,l+1
h,i ,

3. solve the diffusion equation

∫

K

φi

cn+1
h,i − c

n,L
h,i

∆t
+

∫

K

div rrrn+1
h,i =

∫

K

f (tn+1), ∀K ∈Kh,i,

∫

Ωi

DDD−1
i rrrn+1

h,i · vvv −
∫

Ωi

cn+1
h,i div vvv =

∫

Γ

λn+1
h
(vvv · nnni), ∀vvv ∈ Σh,i .

(3.12)

with c
n,L
h,i known and obtain (cn+1

h,i , rrrn+1
h,i ).

The operator Di is now defined by

Di : ΛN×L
h
×ΛN

h × L2(0, T ; L2(Ωi))×H1
∗ (Ωi) →

�
Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N

�
λa,λ, f , c0

�
7→
�

ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i

�
,

where ĉ
∆t,∆ta

h,i =
�

ĉ
n,l
h,i

�
n=0,...,N−1, l=0,...,L−1

and
�

c∆t
h,i , rrr∆t

h,i

�
=
�

cn
h,i , rrrn

h,i

�
n=1,...,N

.

We remark that as the advection is approximated explicitly, in the definition of Di

we have extracted the upwind values ĉ
n,l
h,i for l = 0, . . . , L − 1 (instead of l = 1, . . . , L)

for each n, n= 0, . . . , N − 1.
For the problem on the interface, we will need as input from the subdomain prob-

lems the first component ĉ
∆t,∆ta

h,i of the output of Di (for the advection step) and the

values of the third component rrr∆t
h,i (for the diffusion step). In fact, we need only the

values of ĉ
∆t,∆ta

h,i associated with edges E in G in
h,i ( j = 3− i) and values of rrr∆t

h,i associated
with edges E in Gh. Thus we define the two projection operatorsHi and Fi as follows

Hi :
�

Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N →
�
Λh

�N×L

�
ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i

�
7→





0, ∀E ∈ G in
h,i,�

ĉ
∆t,∆ta

h,i

�
|E

, ∀E ∈ G in
h, j , with j = 3− i,
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and

Fi :
�

Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N →
�
Λh

�N

�
ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i

�
7→
�

rrr∆t
h,i · nnni

�
|E

, ∀E ∈ Gh.

With these operators, we can rewrite the transmission condition (3.6) for the advection
equation equivalently as

∫ tn,l+1

tn,l

∫

E

λa−H1D1(λa,λ, f , c0) = 0, ∀E ∈ G in
h,1,

∫ tn,l+1

tn,l

∫

E

λa−H2D2(λa,λ, f , c0) = 0, ∀E ∈ G in
h,2,

∀n= 0, . . . , N − 1, ∀l = 0, . . . , L − 1,

or
∫ tn,l+1

tn,l

∫

E

λa −H1D1(λa,λ, f , c0)−H2D2(λa,λ, f , c0) = 0,

∀E ∈ Gh, ∀n= 0, . . . , N − 1, ∀l = 0, . . . , L − 1.

(3.13)

Since we have imposed a Dirichlet condition on Γ in (3.12) for the diffusion equation,
the first equation of (3.8) is satisfied and (3.8) reduces to the flux equality, which is
equivalent to

∫ tn+1

tn

∫

E

F1D1(λa,λ, f , c0)−F2D2(λa,λ, f , c0) = 0,

∀E ∈ Gh, ∀n= 0, . . . , N − 1.

(3.14)

Note that the composite operator FiDi, i = 1,2, is a Steklov-Poincaré (Dirichlet-to-
Robin) type operator. Equation (3.14) together with (3.13) forms an interface problem,
equivalent to problem (3.5) - (3.7) - (3.6) - (3.8):

Find
�
λa,λ

�
∈ (Λh)

N×L × (Λh)
N such that

∫ tn,l+1

tn,l

∫

E

λa−H1D1(λa,λ, f , c0)−H2D2(λa,λ, f , c0) = 0,

∫ tn+1

tn

∫

E

F1D1(λa,λ, f , c0) +F2D2(λa,λ, f , c0) = 0,

∀E ∈ Gh, ∀n= 0, . . . , N − 1, ∀l = 0, . . . , L − 1,

(3.15)

or equivalently
Find

�
λa,λ

�
∈ (Λh)

N×L × (Λh)
N such that

S
�
λa

λ

�
=

�
χ̂

χ

�
,

(3.16)

where

S
�
λa

λ

�
=




∫ tn,l+1

tn,l

∫

E

λa −
2∑

i=1

HiDi(λa,λ, 0,0)

∫ tn+1

tn

∫

E

−
2∑

i=1

FiDi(λa,λ, 0,0)




E∈Gh, n=0,...,N−1, l=0,...,L−1



3.2. Domain decomposition with operator splitting 63

and

�
χ̂

χ

�
=




∫ tn,l+1

tn,l

∫

E

2∑

i=1

HiDi(0,0, f , c0)

∫ tn+1

tn

∫

E

2∑

i=1

FiDi(0,0, f , c0)




E∈Gh, n=0,...,N−1, l=0,...,L−1

.

System (3.16) can be solved iteratively by using a Krylov method (e.g. GMRES): the
right hand side is computed only once by solving problem (3.11)-(3.12) in each subdo-
main with λa = 0 and λ= 0; then for a pair of vectors (ηa,η) given in (Λh)

N×L×(Λh)
N ,

the matrix vector product is obtained, at each Krylov iteration, by solving subdomain
problem (3.11)-(3.12) with λa = ηa, λ= η and with f = 0 and c0 = 0, and extracting
the correct traces on the interface.

Following the same idea as in Section 2.3.1 we apply a generalized Neumann-
Neumann preconditioner. With this aim, we define the solution operator Ni, i = 1,2 :

Ni :
�
Λh

�N×L ×
�
Λh

�N →
�

Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N

�
λa,ϕ

�
7→
�

ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i

�
,

where

ĉ
∆t,∆ta

h,i =
�

ĉ
n,l
h,i

�
n=0,...,N−1, l=0,...,L−1

and
�

c∆t
h,i , rrr∆t

h,i

�
=
�

cn
h,i , rrrn

h,i

�
n=1,...,N

are the solution of the subdomain problem that consists of solving, for n = 0, . . . , N−1,

• the advection equation: for l = 0, . . . , L − 1,

∫

K

φi

c
n,l+1
h,i − c

n,l
h,i

∆ta

+
∑

E⊂∂ K

∫

E

ĉ
n,l
h,i (uuu · nnnK) = 0, ∀K ∈ Kh,i,

ĉ
n,l
h,i =Uh,i

�
c

n,l
h,i ,λn,l

h,a

�
,

with c
n,0
h,i := cn

h,i where c0
h,i := 0,

• and the diffusion equation

∫

K

φi

cn+1
h,i − c

n,L
h,i

∆t
+

∫

K

div rrrn+1
h,i = 0, ∀K ∈ Kh,i,

∫

Ωi

DDD−1
i

rrrn+1
h,i · vvv −

∫

Ωi

cn+1
h,i div vvv = 0, ∀vvv ∈ Σ0

h,i,

∫

E

rrrn+1
h,i · nnni =

∫

E

ϕn+1, ∀E ∈ Gh,

where Σ0
h,i is introduced to treat the Neumann boundary condition on the inter-

face and is defined by

Σ0
h,i =

¦
vvv ∈ Σh,i : vvv · nnn|E = 0, ∀E ∈ Gh

©
.
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In order to define a (pseudo-)inverse operator of FiDi , i = 1,2, we need to intro-
duce the trace operator

Tri :
�

Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N →
�
Λh

�N

�
ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i

�
, 7→ λ

where λ =
�
λn

h

�
n=1,...,N

stands for the trace of the concentration on the interface and
is defined by

∫

E

λn
h(vvvE · nnni) =

∫

Ωi

DDD−1
i rrrn

h,i · vvvE −
∫

Ωi

cn
h,idiv vvvE , ∀E ∈ Gh, n= 1, . . . , N ,

for vvvE ∈ Σh,i such that
�
vvvE

�
|K = 0 for all K ∈Kh,i that do not share the edge E.

The generalized Neumann-Neumann preconditioner for (3.16) is defined as

∫ tn,l+1

tn,l

∫

E

S λa−
2∑

i=1

HiNi(S λa,S λ) =
∫ tn,l+1

tn,l

∫

E

χ̂ −
2∑

i=1

HiNi(χ̂,χ),

∫ tn+1

tn

∫

E

2∑

i=1

σiTriNi(S λa,S λ) =

∫ tn+1

tn

∫

E

2∑

i=1

σiTriNi(χ̂,χ),

∀E ∈ Gh, ∀n= 0, . . . , N − 1, ∀l = 0, . . . , L − 1.

(3.17)

Here the composite operator TriNi, i = 1,2, is a Neuman-to-Dirichlet type operator
(which is the inverse operator of FiDi , i = 1,2) and σi : Λh → [0,1], i = 1,2, are
weights such that σ1 +σ2 = 1. As in the case of pure diffusion problems (see Chap-
ter 2), if DDDi = diI, i = 1,2, then

σi :=
di

d1 + d2
.

3.2.2 Method 2: An extension of the Optimized Schwarz Waveform Re-
laxation approach

As in Method 1, we first define several operators needed to define the interface problem
for this method. Let Ri , i = 1,2, be the solution operator which depends on the two
Robin parameters αi, j, i = 1,2, j = 3− i :

Ri :
�
Λh

�N×L ×
�
Λh

�N × L2(0, T ; L2(Ωi))×H1
∗ (Ωi)

→
�
Λh

�N ×
�

Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N

�
λa,ξ, f , c0

�
7→
�
ξ, ĉ

∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i

�
,

where

• λa =
�
λh,a

�
n=0,...,N−1, l=0,...,L−1

represents Dirichlet boundary data on the inter-
face for the advection equation (just as in Method 1).

• ξ =
�
ξn

h

�
n=1,...,N

represents the Robin boundary data (instead of Dirichlet data
as in Method 1) on the interface for the diffusion equation. Here we include ξ in
the output of Di as in the pure diffusion case (see Subsection 2.3.2) in order to
calculate Robin data transmitted to the neighboring subdomain.
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• ĉ
∆t,∆ta

h,i =
�

ĉ
n,l
h,i

�
n=0,...,N−1, l=0,...,L−1

and
�

c∆t
h,i , rrr∆t

h,i

�
=
�

cn
h,i , rrrn

h,i

�
n=1,...,N

are the

solution of the subdomain problem, for given (λa,ξ, f , c0) :

For n= 0, . . . , N − 1,

1. define c
n,0
h,i = cn

h,i , where
�

c0
h,i

�
|K

:=
1

meas(K)

∫

K

c0, ∀K ∈Kh,i,

2. for l = 0, . . . , L − 1,

(a) define the upwind values

ĉ
n,l
h,i =Uh,i

�
c

n,l
h,i ,λn,l

h,a

�
,

(b) solve the advection equation

∫

K

φi

c
n,l+1
h,i − c

n,l
h,i

∆ta

+
∑

E⊂∂ K

∫

E

ĉ
n,l
h,i (uuu · nnnK) = 0, ∀K ∈Kh,i, (3.18)

with c
n,l
h,i known and obtain c

n,l+1
h,i ,

3. solve the diffusion equation

∫

K

φi

cn+1
h,i − c

n,L
h,i

∆t
+

∫

K

div rrrn+1
h,i =

∫

K

f (tn+1), ∀K ∈Kh,i,

∫

Ωi

DDD−1
i rrrn+1

h,i · vvv −
∫

Ωi

cn+1
h,i div vvv +

1

αi, j

∫

Γ

(rrrn+1
h,i · nnni)(vvv · nnni) =

−
1

αi, j

∫

Γ

ξn+1
h
(vvv · nnni), ∀vvv ∈ Σh,i.

(3.19)
with c

n,L
h,i known and obtain (cn+1

h,i , rrrn+1
h,i ).

As stated in Remark 3.3, the advection step for Method 1 and Method 2 are the
same. So we define the projection operator fHi, i = 1,2, similar to the operator Hi in
Method 1, but now take the second component of the output of Ri:

fHi :
�
Λh

�N ×
�

Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N →
�
Λh

�N×L

�
ξ, ĉ

∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i

�
7→





0, ∀E ∈ G in
h,i ,�

ĉ
∆t,∆ta

h,i

�
|E

, ∀E ∈ G in
h, j , j = 3− i,

Next, for the Robin transmission conditions (3.9) of the diffusion equation, we need
the following interface operators defined for i = 1,2, with j = 3− i,

Bi :
�
Λh

�N ×
�

Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N →
�
Λh

�N

�
ξ, ĉ

∆t,∆ta

h, j , c∆t
h, j , rrr∆t

h, j

�
7→
�
−rrrh, j · nnni +

αi, j

α j,i
(ξ+ rrrh, j · nnn j)

�

|E
, ∀E ∈ Gh.
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The transmission condition (3.6) for the advection part leads to
∫ tn,l+1

tn,l

∫

E

λa− fH1R1(λa,ξ1, f , c0)− fH2R2(λa,ξ2, f , c0) = 0,

∀E ∈ Gh, ∀n= 0, . . . , N − 1, ∀l = 0, . . . , L − 1.

(3.20)

The transmission conditions (3.9) for the diffusion equation lead to
∫ tn+1

tn

∫

E

ξ1 −B1R2(λa,ξ2, f , c0) = 0,

∫ tn+1

tn

∫

E

ξ2 −B2R1(λa,ξ1, f , c0) = 0,

∀E ∈ Gh, ∀n= 0, . . . , N − 1. (3.21)

Note that the composite operator BiRi, i = 1,2, is a discrete Robin-to-Robin type
operator. Equation (3.21) together with (3.20) forms an interface problem, equivalent
to problem (3.5) - (3.7) - (3.6) - (3.9), as follows

Find
�
λa,ξ1,ξ2

�
∈ (Λh)

N×L × (Λh)
N × (Λh)

N such that
∫ tn,l+1

tn,l

∫

E

λa − fH1R1(λa,ξ1, f , c0)− fH2R2(λa,ξ2, f , c0) = 0,

∫ tn+1

tn

∫

E

ξ1 −B1R2(λa,ξ2, f , c0) = 0,

∫ tn+1

tn

∫

E

ξ2 −B2R1(λa,ξ1, f , c0) = 0,

∀E ∈ Gh, ∀n= 0, . . . , N − 1, ∀l = 0, . . . , L − 1,

(3.22)

or equivalently,

SR



λ̂

ξ1

ξ2


 = χR, (3.23)

where

SR



λ̂

ξ1

ξ2


 =




∫ tn,l+1

tn,l

∫

E

λa −
2∑

i=1

fHiRi(λa,ξi , 0,0)

∫ tn+1

tn

∫

E

ξ1 −B1R2(λa,ξ2, 0,0)

∫ tn+1

tn

∫

E

ξ2 −B2R1(λa,ξ1, 0,0)




E∈Gh, n=0,...,N−1, l=0,...,L−1

and

χR =




∫ tn,l+1

tn,l

∫

E

2∑

i=1

fHiRi(0,0, f , c0)

∫ tn+1

tn

∫

E

B1R2(0,0, f , c0)

∫ tn+1

tn

∫

E

B2R1(0,0, f , c0)




E∈Gh, n=0,...,N−1, l=0,...,L−1

.
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System (3.23) can be solved iteratively using Jacobi iterations, which corresponds
to the discrete "splitting" OSWR algorithm) or a Krylov method such as GMRES: the
right hand side is computed by solving subdomain problem (3.18)-(3.19) with λa = 0
and ξ = 0; then for a given vector (ηa,ξ1,ξ2) in (Λh)

N×L × (Λh)
N × (Λh)

N , the matrix
vector product is obtained (at each iteration) by solving problem (3.18)-(3.19) in Ωi×
(0, T ), i = 1,2, with λa = ηa, ξ= ξi , and with f = 0 and c0 = 0.

Remark 3.4. Due to the use of the splitting method, we have formulated a generalization

of the OSWR method in which the Robin parameters only act on the diffusion equation as

in the case of pure diffusion problems. The advection term is now like a source term for

the diffusion equation. Thus the optimized Robin parameters αi, j, i = 1,2, j = 3 − i,
are calculated in the same way as for the pure diffusion case (see Appendix A.2.1). Con-

sequently, the advection coefficient is not taken into account in the computation of the

optimized parameters. This may be an advantage of using operator splitting because we

don’t need to handle variable coefficients due to the velocity field, as one does for a fully

implicit scheme (see, e.g, [61, 62]. In Section 3.4, we study numerically the impact of

the optimized parameters on the convergence behavior, especially for advection-dominated

problems.

As the interface problem derived above for each method is global in time, one
may use different time steps for different subdomains as in the case of pure diffusion
problems (see Section 2.4). In the next section, we describe how we enforce the trans-
mission conditions over such nonconforming time grids.

3.3 Nonconforming time discretizations

Let T1 and T2 be two different uniform partitions of the time interval (0, T ) into N1 and
N2 sub-intervals respectively with lengths ∆t1 and ∆t2, respectively (see Figure 3.4).
The sub-time step for the advection in each subdomain is defined by

∆t i = Li∆t i,a, i = 1,2,

and we denote by T a
i , i = 1,2, the corresponding partition in time for the advection.

We denote by P0(Ti,Λh) the space of piecewise constant functions in time on grid Ti

with values in Λh. Then define Πi j the average-valued projection from P0(T j,Λh) to
P0(Ti,Λh) (see (2.70)), and Πa

i j from P0(T a
j ,Λh) to P0(T a

i ,Λh).

0

T

Ω1 Ω2

L1∆t1,a =∆t1 ∆t2 = L2∆t2,a
T = N1∆t1 = N2∆t2

x

t

Figure 3.4: Nonconforming time grids in the subdomains.
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As pointed out earlier, due to the use of the splitting method the interface problem
for either Method 1 or Method 2 consists of an equation imposing the transmission
condition for the advection problem and one or more imposing the transmission con-
ditions for the diffusion problem. The latter can be enforced in time in a way similar
to that of the pure diffusion problem (see Section 2.4). For the advection transmission
condition, as there is only one unknown λa on the interface, one needs to choose λa

to be piecewise constant in time on either the grid T a
1 or T a

2 . This is the case for both
methods.

For Method 1 We choose λa and λ to be piecewise constant in time on the ad-
vection and diffusion time grids respectively. For instance, let λa ∈ P0(T a

2 ,Λh) and
λ ∈ P0(T2,Λh). Then the interface problem (3.15) is rewritten as

Find
�
λa,λ

�
∈ (Λh)

N2×L2 × (Λh)
N such that

∫ t
n,l+1
2

t
n,l
2

∫

E

λa −Πa
21

�
H1D1(Π

a
12(λa),Π12(λ), f , c0)

�
−H2D2(λa,λ, f , c0) = 0,

∫ tn+1
2

tn
2

∫

E

Π21

�
F1D1(Π

a
12(λa),Π12(λ), f , c0)

�
−F2D2(λa,λ, f , c0) = 0,

(3.24)
for ∀E ∈ Gh and ∀n= 0, . . . , N2− 1, ∀l = 0, . . . , L2 − 1.

For Method 2 We choose λa to be piecewise constant in time on one grid, for in-
stance, T a

2 . For the two Robin terms ξ1 and ξ2, we use the same technique as in
Subsection 2.4.2. The interface problem (3.22) is then rewritten as

Find
�
λa,ξ1,ξ2

�
∈ (Λh)

N2×L2 × (Λh)
N1 × (Λh)

N2 such that
∫ t

n,l+1
2

t
n,l
2

∫

E

λa −Πa
21

� fH1R1(Π
a
12(λa),ξ1, f , c0)− fH2R2(λa,ξ2, f , c0)

�
= 0,

∫ tm+1
1

tm
1

∫

E

ξ1 −Π12
�
B1R2(λa,ξ2, f , c0)

�
= 0,

∫ tn+1
2

tn
2

∫

E

ξ2 −Π21

�
B2R1(Π

a
12(λa),ξ1, f , c0)

�
= 0,

(3.25)

for ∀E ∈ Gh, ∀m= 0, . . . , N1 − 1, and ∀n= 0, . . . , N2 − 1, ∀l = 0, . . . , L2 − 1.

For conforming time grids, the two schemes defined by performing GMRES on
the two interface problems (3.24) and (3.25) respectively converge to the same mon-
odomain solution; while for the nonconforming case, these two schemes yield different
solutions at convergence due to the use of different projection operators (this is also
the case for pure diffusion problems studied in Chapter 2). In the next section we will
carry out numerical experiments to investigate and compare the errors in time of the
two methods.
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3.4 Numerical results

We present 2D, numerical experiments (carried out using MATLAB) to illustrate the
performance of the two methods formulated in the previous sections. We consider
an isotropic diffusion matrix DDDi = diIII , where III is the 2D identity matrix. In Subsec-
tion 3.4.1, a simple test case with two subdomains is studied. The coefficients are
constant in the subdomains and can be continuous or discontinuous across the in-
terface. We verify the convergence behavior of the two methods for different Péclet
numbers and check that the nonconforming time grids preserve the accuracy in time
of the solution. Then in Subsection 3.4.2, we consider a test case with a rotating ve-
locity and discontinuous diffusion coefficients (and also with two subdomains). We
investigate how the two methods handle the variable coefficients, especially when the
advection is dominant. Different time steps for the advection equation and for the
diffusion equation are considered in this case.

In Subsection 3.4.3 we consider a test case that is a prototype for a nuclear waste
repository simulation, in which the subdomains involved have different length scales
(from 1m to 100m) and different physical properties. In particular, the advection field
is governed by Darcy’s law (and thus is variable), and the diffusion coefficients are
discontinuous. The convergence of the two methods for a decomposition into 9 subdo-
mains is studied, and we analyze numerically the error in time when nonconforming
grids are used. Time windows are employed to approximate the solution over long time
intervals. In Subsection 3.4.4, a test case for the simulation of the transport around a
surface nuclear waste storage site is considered. In this case, the geometry of the do-
main is quite complex and layers with highly different physical properties are present.
The domain is decomposed into 6 subdomains and time windows are also used.

As in the pure diffusion problem (see Remark 2.21), to compare the convergence
of Method 1 and Method 2 with GMRES, we show the error in c and in rrr versus the
number of subdomain solves (instead of the number of iterations as one iteration of
Method 1 with the preconditioner costs twice as much as one iteration of Method 2).

3.4.1 Test case 1: Piecewise constant coefficients

The computational domain Ω is the unit square, and the final time is T = 1. We split Ω
into two nonoverlapping subdomains Ω1 = (0,0.5)× (0,1) and Ω2 = (0.5,1)× (0,1).
Homogeneous Dirichlet boundary conditions are imposed on ∂Ω, the initial condition
is

c0(x , y) = x y(x − 1)(y − 1)exp(−100((x − 0.2)2+ (y − 0.2)2)), (3.26)

and the source term is

f (x , y, t) = exp(−100((x − 0.2)2+ (y − 0.2)2)). (3.27)

The porosity is φ1 = φ2 = φ = 1. The diffusion and advection coefficients, di and uuui

for i = 1,2, are constant in each subdomain. These coefficients can be continuous or
discontinuous across the interface. In the following we consider each of the two cases.

3.4.1.1 A case with continuous coefficients

The advection field is uuu1 = uuu2 = uuu = (1,1), and the diffusion coefficient is d1 = d2 = d ,
where d is successively 1 then 0.1 and then 0.01. The corresponding global Péclet
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numbers,

PeG :=
H | uuu |

d
,

where H is the size of the domain (in this case H = 1), are
p

2 then 10
p

2 and then
100
p

2 respectively. This range of the Péclet numbers covers most common cases one
may deal with in practice. For the spatial discretization, we use a uniform rectangu-
lar mesh with size ∆x1 = ∆x2 = ∆x = 1/100. For the time discretization, we use
conforming time grids with ∆t1 = ∆t2 = ∆t = 1/100. The advection time step is
equal to the diffusion time step, ∆ta,i =∆t, i = 1,2. The CFL condition in this case is
∆tCFL ≤ 0.01.

We first check that for the two methods, the multidomain solution computed at
each iteration of GMRES converges to the monodomain solution on the same mesh in
space and in time. We start with a zero initial guess on the space-time interface and
compute the error in the L2(0, T ; L2(Ω))-norm of the difference between the multido-
main solution and the monodomain solution at each iteration. For d = 0.01, we show
in Figure 3.5 the error in the concentration c (left) and in the diffusive velocity rrr (right)
versus the number of subdomain solves for Method 1 with the generalized Neumann-
Neumann preconditioner (red, triangle) and Method 2 (blue, x-mark). We observe that
the error tends to zero as the iteration increases, which implies that the two methods
work well and confirms the theoretical equivalence between the multidomain formula-
tion and the monodomain formulation. Furthermore, we see that Method 2 converges
much faster than Method 1.
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Figure 3.5: L2 − L2 error in c (left) and in rrr (right) in logarithmic scale of the
difference between the multidomain and the monodomain solutions versus the

number of subdomain solves for PeG = 100
p

2.

We now analyze the convergence behavior of each method and study the ef-
fect of the preconditioner on the convergence of Method 1. We solve a problem
with c0 = 0 and f = 0 (thus c = 0 and rrr = 0). We start with a random initial
guess on the space-time interface. We compute the errors in the L2(0, T ; L2(Ω))-
norm of the concentration c and the diffusive velocity rrr, and stop the iteration (of
GMRES) when the errors are less than 10−6. We show in Figures 3.6, 3.7 and
A2Fig:Test1ContConvergencePe100 the convergence of different algorithms for differ-
ent Péclet numbers PeG =

p
2, PeG = 10

p
2 and PeG = 100

p
2 respectively. Three algo-
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rithms are considered: Method 1 with no preconditioner (magenta, circle), Method 1
with the preconditioner (red, triangle) and Method 2 (blue, x-mark). We observe that
for Method 1, the preconditioner works well in the case of small PeG. The larger PeG,
the slower the convergence of Method 1 with the preconditioner while inversely, the
faster the convergence of Method 1 with no preconditioner. For Method 2, the con-
vergence speed does not significantly change with the Péclet number. Method 1 with
the preconditioner is comparable with Method 2 when diffusion is dominant. When
advection is dominant, Method 2 converges faster than Method 1 (at least by about a
factor of 2). The errors in c and in rrr behaves quite similarly.
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For PeG =
p

2.

Figure 3.6: Convergence curves with GMRES for PeG =
p

2: L2 − L2 error in the
concentration c (left) and in the vector field rrr (right).

0 20 40 60 80 100

10
−6

10
−4

10
−2

10
0

Number of subdomain solves

Lo
g 

of
 e

rr
or

 in
 c

on
ce

nt
ra

tio
n

 

 

No Precond. Schur
Precond. Schur
Opt. Schwarz

0 20 40 60 80 100

10
−6

10
−4

10
−2

10
0

Number of subdomain solves

Lo
g 

of
 e

rr
or

 in
 v

ec
to

r 
fie

ld

 

 

No Precond. Schur
Precond. Schur
Opt. Schwarz

For PeG = 10
p

2.

Figure 3.7: Convergence curves with GMRES for PeG = 10
p

2: L2 − L2 error in the
concentration c (left) and in the vector field rrr (right).
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For PeG = 100
p

2.

Figure 3.8: Convergence curves with GMRES for PeG = 1000
p

2: L2 − L2 error in the
concentration c (left) and in the vector field rrr (right).

We now fix d = 0.01 so that PeG = 100
p

2. In order to check the performance
of the optimized parameters, we show in Figure 3.9 the error in the concentration (in
logarithmic scale) for various values of the parameters α1,2 and α2,1 after 20 Jacobi
iterations. We see that the pair of optimized Robin parameters (red star), computed
by numerically minimizing the continuous convergence factor, is located close to those
giving the smallest error after the same number of iterations.
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Figure 3.9: For PeG = 100
p

2: Level curves for the error in the concentration (in
logarithmic scale) after 20 Jacobi iterations for various values of the parameters α1,2

and α2,1, where the red star shows the optimized two-sided Robin parameters.

In the sense of efficiency, it is important for a domain decomposition algorithm to be
weakly dependent on the mesh size (space and time), i.e. the number of iterations (or
subdomain solves) does not increase considerably when the mesh size decreases. Thus,
in Table 3.1, we count the number of subdomain solves required to reach a reduction
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of 10−6 in the error in the concentration c and in the diffusive velocity r (in square
brackets) of the different algorithms when refining the mesh in space and in time with
∆x/∆t = const. We see that the convergence of Method 1 with the preconditioner is
independent of the mesh size, while that with no preconditioner increases significantly.
This is a well-known result for elliptic problems [88, 89, 28], but we haven’t developed
an analysis of the generalized Neumann- Neumann preconditioner for time-dependent
problems. For Method 2, the convergence has a very weak dependence on the mesh
size, which is obtained by the fact that the optimized parameters plays a role of a
preconditioner (as it does for the pure diffusion equation, see Chapter 2). We also
observe that for Method 2, GMRES does not improve the convergence speed compared
to Jacobi iterations. This is also the case for pure diffusion problems (see Chapter 2),
and thus the convolution Krylov subspace method [86], adapted to time-dependent
systems, is an alternative that one could use in order to obtain the same acceleration
in the convergence speed as in the case of stationary problems.

∆x
No Precond. Precond. Opt. Schwarz

Schur Schur GMRES Jacobi
1/50 26 [27] 52 [54] 18 [18] 20 [20]
1/100 33 [33] 52 [52] 18 [20] 18 [21]
1/200 43 [43] 54 [52] 18 [20] 20 [22]
1/400 61 [59] 54 [52] 20 [22] 20 [25]

Table 3.1: For PeG = 100
p

2: Number of subdomain solves needed to reach a
reduction of 10−6 in the error for the different algorithms , and for different values of

the discretization parameters.

With the aim of analyzing the accuracy in time of the various methods when non-
conforming time steps are used, we consider now c0 6= 0 and f 6= 0 defined in (3.26)
and (3.27) respectively. We consider four initial time grids, which we then refine four
times by a factor of 2,

• Time grid 1 (fine-fine): conforming with ∆t1 =∆t2 = T/125.

• Time grid 2 (fine-coarse): nonconforming with ∆t1 = T/125 and ∆t2 = T/100.

• Time grid 3 (coarse-fine): nonconforming with ∆t1 = T/100 and ∆t2 = T/125.

• Time grid 4 (coarse-coarse): conforming with ∆t1 =∆t2 = T/100.

The advection time step in each subdomain is such that ∆t i = ∆ta,i, i = 1,2. In
space, we fix a conforming rectangular mesh and we compute a reference solution
by solving problem (3.3)-(3.4) directly on a very fine time grid, with ∆t = ∆ta =

T/(125× 26). The converged multidomain solution is such that the relative residual
is smaller than 10−11. We show in Figure 3.10 the error in the L2(0, T ; L2(Ω))-norm
of the concentration c and of the vector field rrr versus the length of the maximum time
step, max

i
∆t i. We only give the results for Method 2 because the curves for Method 1

look exactly the same. We observe that first order convergence is preserved in the
nonconforming case and the errors obtained in the nonconforming cases (Time grid
2, in blue and Time grid 3, in green) lie in between the errors in the fine and coarse
conforming cases (Time grid 1, in red and Time grid 4, in magenta). Furthermore, the
error in the concentration obtained in the nonconforming case (Time grid 2, in blue)
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are very close to the errors in the finer conforming case (Time grid 1, in red). So for the
continuous coefficient case, depending on the physics of the problem, nonconforming
time grids may preserve the accuracy in time of the solution in the concentration (not
in the diffusive velocity).
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Figure 3.10: For PeG = 100
p

2: L2 − L2 error in c (left) and in rrr (right) in logarithmic
scale of the difference between the reference and the multidomain solutions versus

the size of the time step.

3.4.1.2 A case with discontinuous coefficients

The advection and diffusion coefficients, uuui and di, i = 1,2, given in Table 3.2, are con-
stant in each subdomain but discontinuous across the interface. The global Péclet num-
ber and the CFL condition in each subdomain are also shown. We use nonconforming
time grids ∆t1 6= ∆t2, but equal advection and diffusion time steps, ∆ta,i = ∆t i, i =

1,2. In space, we use a uniform rectangular mesh with size∆x1 =∆x2 =∆x = 1/100.
As in the continuous coefficient case, we analyze the convergence behavior of each

uuui di PeG ∆t i d tCFL ∆ta,i

Ω1 (0.5,1) 0.02 ≈ 10 1/100 1/100 1/100
Ω2 (0.5,0.1) 0.002 ≈ 100 1/75 1/50 1/75

Table 3.2: Data for the discontinuous test case.

method with c0 = 0 and f = 0. Figure 3.11 shows the error (in logarithmic scale)
in the L2(0, T ; L2(Ω))-norm of the concentration c and of the vector field rrr, versus
the number of subdomain solves using GMRES with a random initial guess. Again we
see that for advection-dominated problems, the preconditioner for Method 1 does not
work well and Method 2 converges much faster than Method 1, by about a factor of 2.6
(with no preconditioner) and a factor of 3.3 (with the preconditioner) for both errors
in c and rrr.

Figure 3.12 shows the error in the diffusive flux rrr (in logarithmic scale) for various
values of the parameters α1,2 and α2,1 after 15 Jacobi iterations. We observe that, for
discontinuous coefficients, the pair of optimized parameters (red star) is also located
close to the optimal numerical values after the same number of iterations.
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Figure 3.11: For discontinuous coefficients: Convergence curves for the different
algorithms using GMRES: L2 − L2 error in c (left) and in rrr (right).
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Figure 3.12: For discontinuous coefficients: Level curves for the error in rrr after 15
Jacobi iterations for various values of α1,2 and α2,1.

In Table 3.3, the number of subdomain solves needed to reach a reduction of 10−6

in the error in the concentration c and in the vector field rrr (in square brackets) when
refining the mesh in space and in time with the ratio of∆x to∆t constant is shown. We
see that for discontinuous coefficients and nonconforming time grids, the convergence
of Method 1 with the Neumann-Neumann preconditioner is slightly dependent on the
mesh size, while that with no preconditioner increases fairly rapidly with decreasing
mesh size. For Method 2, the convergence is almost independent of the mesh size and
again, the use of GMRES, instead of Jacobi iterations, does not improve significantly
the convergence speed. We see that the convergence of Method 2 is very fast.

For the analysis of the accuracy in time of the multidomain solution when noncon-
forming time grids are used, we consider c0 6= 0 and f 6= 0 defined in (3.26) and (3.27)
respectively. We consider four initial time grids which are then refined four times by a
factor of 2,

• Time grid 1 (fine-fine): conforming with ∆t1 =∆t2 = T/136.
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∆x
No Precond. Precond. Opt. Schwarz

Schur Schur GMRES Jacobi
1/50 25 [25] 40 [40] 13 [13] 14 [14]
1/100 36 [36] 48 [46] 15 [14] 16 [15]
1/200 52 [50] 54 [52] 15 [15] 17 [16]
1/400 76 [72] 58 [54] 16 [15] 18 [17]

Table 3.3: For discontinuous coefficients: Number of subdomain solves required to
reach a reduction of 10−6 in the error for the different algorithms , and for different

values of the discretization parameters.

• Time grid 2 (fine-coarse): nonconforming with ∆t1 = T/136 and ∆t2 = T/100.

• Time grid 3 (coarse-fine): nonconforming with ∆t1 = T/100 and ∆t2 = T/136.

• Time grid 4 (coarse-coarse): conforming with ∆t1 =∆t2 = T/100.

As in the case with continuous coefficients, we take the same time step for the advection
and the diffusion: ∆t i =∆ta,i, i = 1,2, and a reference solution is computed on a very
fine time grid, with∆t =∆ta = T/(136×26) (note that in space, the conforming mesh
is fixed). In Figure 3.13 the error in the concentration c and of the vector field rrr versus
the length of the maximum time step, max

i
∆t i is shown. Here we give the results for

Method 1 (instead of Method 2 as for the continuous test case) since the error in time
given by the two methods can’t be distinguished on the figure. We observe that: firstly,
first order convergence in time is preserved in the nonconforming cases; secondly, the
errors obtained in the nonconforming cases are in between the errors obtained in the
conforming coarse and conforming fine grids (which is reasonable); thirdly, the errors
obtained in the nonconforming case (Time grid 2, in blue, with a finer time step in Ω1,
where the advection and diffusion coefficients are larger) are very close to the errors in
the finer conforming case (Time grid 1, in red). Thus using nonconforming grids can
adapt the time steps in the subdomains and limit the computational cost locally, while
preserving almost the same accuracy as in the finer conforming case.
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Figure 3.13: For discontinuous coefficients: L2 − L2 error in c (left) and in rrr (right) in
logarithmic scale of the difference between the reference and the multidomain

solutions versus the size of the time step.
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3.4.2 Test case 2: Rotating velocity

The computational domain Ω is (0,2)2 and the final time is T = 1. We split Ω into
two nonoverlapping subdomains Ω1 = (0,0.7)× (0,2) and Ω2 = (0.7,2)× (0,2). The
porosity is constant in each subdomain and discontinuous across the interface, φ1 =

1,φ2 = 0.1, and the advection coefficient is the rotating velocity field (see Figure 3.14)

uuu =
�
− sin(π/2(y − 1)) cos(π/2(x − 1)), cos(π/2(y − 1)) sin(π/2(x − 1))

�
.

The diffusion coefficient is constant in each subdomain. We consider the two cases
shown in Table 3.14 . For the spatial discretization, we use a uniform rectangular mesh
with size ∆x1 = ∆x2 = ∆x = 1/100. The maximum local Péclet number in each
subdomain is shown in Table 3.14. For the time discretization, we use nonconforming
time grids

∆t1 = 1/100 and ∆t2 = 1/75,

and the advection time steps are such that

∆t i = 10∆ta,i, for i = 1,2,

(which satisfies the CFL condition in each subdomain,∆t1
CFL ≤ 0.02 in Ω1 and∆t2

CFL ≤
0.002 in Ω2).

d1 PeL,1 d2 PeL,2

Advection-dominated 0.01 1.9995 0.007 2.8564
Diffusion-dominated 0.1 0.19995 0.07 0.28564

0 0.7 2

2

Figure 3.14: Left: Diffusion coefficient and corresponding maximum local Péclet
number in each subdomain; Right: The rotating velocity field.
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Figure 3.15: For rotating velocity: L2 − L2 error in the concentration c for the
different algorithms using GMRES: the advection-dominated case (left) and the

diffusion-dominated case (right).
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As in the first test problem, we first analyze the convergence behavior by solving
a problem with c0 = 0 and f = 0 (thus c = 0 and rrr = 0). We start with a random
initial guess on the space-time interface and compute the errors (in logarithmic scale)
in the L2(0, T ; L2(Ω))-norm of the concentration c and the vector field rrr, versus the
number of subdomain solves. We stop the iteration when the errors are less than 10−6.
In Figure 3.15 we show the errors in the concentration c of the different algorithms
for the advection-dominated (left) and diffusion-dominated (right) cases (the errors
in the vector field rrr behave in a same way as the errors in the concentration). We
observe results similar to those obtained for the previous test cases: for Method 1,
the Neumann-Neumann preconditioner considerably improves the convergence speed
when the diffusion is dominant but deteriorates it when the advection is dominant;
Method 2 converges much faster than Method 1 with or without the preconditioner,
it is at least by a factor of 2 (for the advection-dominated case) and of 2.5 (for the
diffusion-dominated case). In Figure 3.16, we show the error in the concentration (in
logarithmic scale) for various values of the parameters α1,2 and α2,1 after 15 Jacobi
iterations for the advection-dominated case. We see again that the pair of optimized
parameters (red star) is located close to the small error zone.

−6

−6

−
6−6

−6

−5
−

5

−5 −5 −5

−5

−5
−5

−
4

−
4

−
4

−4
−4 −4

−4

−4
−4

−
3

−
3

−3 −3

−
2

−
1

α
2,1

α 1,
2

1 2 3 4 5

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Figure 3.16: For rotating velocity: Level curves for the error in the concentration (in
logarithmic scale) after 15 Jacobi iterations for various values of the parameters α1,2

and α2,1, where the red star the optimized Robin parameters.

Next, we analyze the accuracy in time when nonconforming time grids are used.
Toward this end, we consider the advection-dominated case and impose an initial con-
dition

c0(x , y) = 0.5x y(x − 2)(y − 2)exp(−100((x − 0.2)2+ (y − 0.5)2)).

Four initial time grids, which are then refined 4 times by a factor of 2, are considered

• Time grid 1 (fine-fine): conforming with ∆t1 =∆t2 = T/128.

• Time grid 2 (fine-coarse): nonconforming with ∆t1 = T/128 and ∆t2 = T/94.

• Time grid 3 (coarse-fine): nonconforming with ∆t1 = T/94 and ∆t2 = T/128.

• Time grid 4 (coarse-coarse): conforming with ∆t1 =∆t2 = T/94.
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Unlike the first test case, here we consider different time steps for the advection and
the diffusion: ∆t i = 10∆ta,i, i = 1,2. A reference solution is again computed on a
very fine time grid, with ∆t = 10∆ta = T/(128× 26) (the mesh in space is fixed for
the monodomain and multidomain problems). We consider the multidomain solution
to have converged when the relative residual is smaller than 10−11. Figure 3.17 shows
the error in c and in rrr versus the size of the time step, max

i
∆t i. We observe that

for this case with variable coefficients, first order convergence is also preserved in the
nonconforming case and the nonconforming time grids preserve the accuracy in time
of the solution.
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Figure 3.17: For rotating velocity: L2 − L2 error in c (left) and in rrr (right) in
logarithmic scale of the difference between the reference and the multidomain

solutions versus the size of the time step for the advection-dominated case.

3.4.3 Test case 3: A near-field simulation

We consider a simplified test case [53] for the simulation of the transport of a contam-
inant in a near field around a nuclear waste repository site. The domain of calculation
is a 10m by 100m rectangle and the repository is a centrally located unit square (see
Figure 3.18 with a blow-up in the x− direction for visualization purpose). The reposi-
tory consists of the EDZ (Excavation Damaged Zone) and the vitrified waste. The final
time is T f = 2 1011s (≈ 20000 years). The coefficients for the simulation are given
in Table 3.4. The advection field is governed by the (time-independent) Darcy flow
equation together with the law of mass conservation

uuu = −K∇p in Ω,
div uuu = 0 in Ω,

No flow boundary is imposed horizontally and a pressure gradient is imposed vertically
with p = 100 Pa on bottom and p = 0 on top.

The source term is f = 0 and an initial condition c0 is defined by

c0 =

¨
1, in the red box (containing the vitrified waste),
0, elsewhere.

(3.28)
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Boundary conditions of the tranport problem are homogeneous Dirichlet conditions on
top and bottom, and homogeneous Neumann conditions on the left and right hand
sides.

Material Permeability K (m/s) Porosity φ Diffusion coefficient d (m2/s)
Host rock 10−13 0.06 6 10−13

EDZ 5 10−11 0.20 2 10−11

Vitrified waste 10−8 0.10 10−11

Table 3.4: Data for flow and transport problems.
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Figure 3.18: The domain of calculation and its decomposition.

For the spatial discretization (for both the flow and transport equations), we use a
non-uniform but conforming rectangular mesh with a finer discretization in the repos-
itory (a uniform mesh with 10 points in each direction) and a coarser discretization in
the host rock (the mesh size progressively increases with distance from the repository
by a factor of 1.05). The Darcy flow is approximated by using mixed finite elements.
Figure 3.19 shows a zoom of the velocity field around the repository. The maximum
local Péclet number in this test case is 0.0513, thus it is a diffusion-dominated prob-
lem. The time step due to the CFL condition is large as the velocity field is very small
(of order of 10−13 m/s), ∆tCFL = 0.075 T f in the repository and ∆tCFL = 0.125 T f

elsewhere. We decompose Ω into 9 subdomains as depicted in Figure 3.18 with Ω5

representing the repository. For the time discretization, we use nonconforming time
grids (with a finer time step in the repository) and equal diffusion and advection time
steps ∆t i =∆ta,i,∀i.

As observed in the second test case of Chapter 2, the longer the time interval the
slower the convergence. In addition, for a fixed time step ∆t, it is more costly to
approximate the solution for a longer time interval than for a shorter time interval.
Thus we use time windows (see Appendix for this test case. We divide (0, T f ) into
200 time windows with size T = 109s. We will first analyze the convergence behavior
as well as the accuracy in time of the multidomain solution with nonconforming grids
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for the first time window, (0, T ). The time steps are ∆t5 = ∆ta,5 = T/500, and ∆t i =

∆ta,i = T/100, i 6= 5.
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Figure 3.19: Darcy flow.

To analyze the convergence behavior of each method, as in the previous test cases,
we solve a problem with c0 = 0 (thus c = 0 and rrr = 0). We start with a random initial
guess on the space-time interface and stop the iteration when the errors both in the
concentration c and in the vector field rrr are less than 10−6 (Figure 3.20). We see that
Method 1 with the preconditioner significantly improves the convergence speed com-
pared to the case with no preconditioner, which makes it and Method 2 comparable.
This is because the diffusion is dominant in this case. The errors in c and rrr behave
quite similarly.
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Figure 3.20: Convergence curves using GMRES: errors in c (on the left) and error in rrr

(on the right).

Consider now the initial condition c0 6= 0 defined in (3.28). We check if the non-
conforming time grids preserve the accuracy in time. We consider four initial time
grids, which we then refine 4 times by a factor of 2,

• Time grid 1 (conforming fine): ∆t i = T/250, ∀i.
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• Time grid 2 (nonconforming, fine in the repository): ∆t5 = T/250 and
∆t i = T/50, ∀i 6= 5.

• Time grid 3 (nonconforming, coarse in the repository): ∆t5 = T/50 and
∆t i = T/250,∀i 6= 5.

• Time grid 4 (conforming coarse): ∆t i = T/50, ∀i.

Note that the advection time steps are equal to the diffusion time steps. The time
steps are then refined several times by a factor of 2. In space, we fix a conforming
rectangular mesh and we compute a reference solution on a very fine time grid, with
∆t = ∆ta = T/(250× 26). Figure 3.21 shows the error in the L2(0, T ; L2(Ω))-norm
of the concentration c and of the vector field rrr versus the length of the maximum time
step, max

i
∆t i . We observe that first order convergence is preserved in the noncon-

forming case and the errors obtained in the nonconforming case with a fine time step
in the repository (Time grid 2, in blue) are nearly the same as in the finer conforming
case (Time grid 1, in red). Thus the use of nonconforming grids (where the ratio of
the fine time step to the coarse time step is 5) preserves the accuracy in time of the
monodomain scheme.
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Figure 3.21: Errors in c (left) and rrr (right) in logarithmic scales between the
reference and the multidomain solutions versus the time step.

Next we test how the two methods work in practice, where the exact solution is
unknown and one can only rely on the relative residual at each iteration of GMRES
to know whether he should stop the iterations and compute the corresponding mul-
tidomain solution. Consider the time grid defined at the beginning, ∆t5 = T/500,
∆t i = T/100, i 6= 5 and ∆t i = ∆ta,i for T = 109s. We use GMRES for Method 1
(with the Neumann-Neumann preconditioner) and Method 2, and then compute the
L2(0, T ; L2(Ω)) error of the difference between the multidomain solution and a refer-
ence solution computed on a very fine time grid, ∆t = ∆ta = T/(500× 22). We show
in Figure 3.22 the relative residuals for each method versus the number of subdomain
solves, and in Figure 3.23 the corresponding errors in c (left) and rrr (right) . We see
that Method 2 converges faster than Method 1 and that the scheme errors in c and rrr

are obtained for both methods when the relative residual is less than 10−3; typically
after 10 subdomain solves for Method 1 and 6 subdomain solves for Method 2.
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Figure 3.22: Relative residuals of GMRES for Method 1 (with the Neumann-Neumann
preconditioner) and Method 2.
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Figure 3.23: L2 − L2 error in c(left) and in rrr (right) in logarithmic scales between the
reference and the multidomain solutions.

We now use time windows where the initial guess of the (N + 1)th time window
is calculated from the information at the final time of the N th time window (see Ap-
pendix C), which helps reduce considerably the number of iterations required to reach
the same tolerance compared with an arbitrary initial guess. Since the size of the time
windows is uniform, we can use the same optimized parameters for all time windows
for Method 2. In each time window, we stop the iterations when the relative residual is
less than 10−3. From the observation above, the maximum number of iterations in each
time window is not greater than 5 (equivalent to 10 subdomain solves) for Method 1
(with the Neumann-Neumann preconditioner) and is not greater than 5 (equivalent to
5 subdomain solves) for Method 2. Figure 3.24 show the concentration in the reposi-
tory (left) and in the host rock (right) after 1 (≈ 100 years), 50 (≈ 5000 years), 100
(≈ 10000 years) and 200 (≈ 20000 years) time windows respectively. We use different
color scales for the solution in the repository to see clearly the effect of the advection
field, while we use same color scales for the solution in the host rock to see the spread-
ing of the contaminant in time. The concentration field behaves as expected and the
migration of the radionuclide from the repository to the surrounding medium takes
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place very slowly.
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Figure 3.24: Snapshots of the concentration in the repository (left) and in the host
rock (right) after approximately 100 years, 5000 years, 10000 years and 20000 years

respectively
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3.4.4 Test case 4: A simulation for a surface, nuclear waste storage

We consider a test case designed by ANDRA for a surface storage of short half-life
nuclear waste. The computational domain is depicted in Figure 3.25 with different
physical zones, where the waste is stored in square boxes ("dechet" zone). The prop-
erties of these zones are given in Table 3.5. Note that in our calculation, we use the
effective diffusion, defined by deff = φ×dm. The advection field is governed by Darcy’s
law together with the law of mass conservation

uuu = −K∇h in Ω,
div uuu = 0 in Ω.

Dirichlet conditions are imposed on top, h = 10m and on bottom h = 9.998m of the
domain and no flow boundary on the left and right sides.

The final time is T f = 500 years. The source term is f = 0 and the initial condition
is such that

c0 =

¨
1, in "dechet1" and "dechet2",
0, elsewhere.

Boundary conditions of the transport problem are homogeneous Dirichlet conditions
on top and bottom, and homogeneous Neumann conditions on the left and right hand
sides.

12ÊmÊ

9
.6
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conteneur1Ê

dalleobturÊ

dalleprotecÊ
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terrainÊ voileÊ

dechet2Ê

conteneur2Ê

N.B.ÊTheÊunderlyingÊmeshÊappearsÊinÊblueÊ

Figure 3.25: The geometry of the test case.

For the spatial discretization (for both the flow and transport equations), we use
a non-uniform rectangular mesh, shown in Figure 3.25 in blue, with 171 cells in the
x−direction and 158 cells in the y−direction (see Appendix D for more details about
the discretization). The mesh size is ∆x ≈ 0.42m. The hydraulic head is approximated
by mixed finite elements and is shown in Figure 3.26 (left). We decompose the domain
into 6 rectangular subdomains in a way such that the black zone ("terrain") is separated
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Zone Hydraulic conductivity Porosity Molecular diffusion
K (m/year) φ dm (m2/year)

terrain 94608 0.30 1
radier 3.1536 10−4 0.15 6.31 10−5

forme 3.1536 10−3 0.20 1.58 10−3

drainant 94608 0.30 5.36 10−2

voile 3.1536 10−3 0.20 1.58 10−3

remplissage 5045.76 0.30 5.36 10−2

dalleprotec 3.1536 10−3 0.20 1.58 10−3

dalleobtur 3.1536 10−3 0.20 1.58 10−3

drain 94608 0.30 1
conteneur1/conteneur2 3.1536 10−4 0.12 4.47 10−4

dechet1/dechet2 3.1536 10−4 0.30 1.37 10−3

Table 3.5: Data for flow and transport problems.
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Figure 3.26: The hydraulic head field and the decomposition of the domain.

from the rest and subdomain Ω3 includes the "dallerobtur", "voile", "radier" and a part
of "drain" zones (see Figure 3.26 (right)). The transport is dominated by diffusion
in subdomain Ω3 (the maximum of the local Péclet number PeL ≈ 0.0032) and is
dominated by advection (with PeL ≈ 2.75). The time steps due to the CFL condition
are ∆ta,3 ≤ 0.6551 year and very small elsewhere, ∆ta,i ≤ 6.0874 10−5 year, ∀i 6= 3.

As in test case 3, we use time windows with size T = 10 years. We consider the
first time window, (0, T ) and use nonconforming time grids with ∆td,3 = 0.1 (year)
and ∆td,i = 0.5 year, ∀i 6= 3. The advection steps, satisfying the CFL conditions,
are ∆ta,3 = ∆td,3 and ∆ta,i = 825∆td,i, ∀i 6= 3. We use a zero initial guess on the
space-time interface, and perform GMRES for Method 1 (with Neumann-Neumann
preconditioner) and Method 2. We compute the errors of the difference between the
multidomain solution and a reference solution computed with a very fine, conforming
time grid. We show in Figure 3.27 the relative residuals for each method versus the
number of subdomain solves, and in Figure 3.28 the corresponding errors in c and rrr

(note that the scales between the errors in c and rrr are different). We observe that the
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convergence of Method 2 is much faster than Method 1. The error due to the schemes
in c and rrr are obtained for both methods when the relative residual is less than 10−2.
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Figure 3.27: Relative residuals of GMRES for Method 1 (with the Neumann-Neumann
preconditioner) and Method 2.
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Figure 3.28: L2− L2 error in c (left) and in rrr (right) in logarithmic scales between the
reference and the multidomain solutions.

Next, we run the two methods for 50 time windows and stop the iterations in each
time window when the relative residual is less than 10−2. From the observation above,
the maximum number of iterations in each time window is not greater than 10 (equiv-
alent to 20 subdomain solves) for Method 1 (with the Neumann-Neumann precondi-
tioner) and is not greater than 8 (equivalent to 8 subdomain solves) for Method 2. Fig-
ures 3.29 shows the concentration field after 2 (20 years), 5 (50 years), 35 (350 years)
and 50 (500 years) time windows respectively. We see that the radionuclide escapes
from the waste packages and slowly migrates into the surrounding area. Due to the
specific design of the storage and under the effect of advection, the radionuclide tends
to move toward the bottom right corner.
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Figure 3.29: Snapshots of the concentration after 20 years, 50 years, 350 years and
500 years respectively.

Conclusion

In the context of operator splitting, we have extended the two methods derived in
the previous section for the pure diffusion problem to the heterogeneous advection-
diffusion problem. Two discrete interface problems corresponding to the generalized
time-dependent Steklov-Poincaré operator and OSWR approach have been formulated
in a way such that they are equivalent to the discrete monodomain problem and
that they enable different advection and diffusion time steps in the subdomains. For
Method 1, a generalized Neumann-Neumann preconditioner is considered and is vali-
dated for different test cases in 2D experiments. Numerical results show that Method 2
outperforms Method 1 (with or without preconditioner) in terms of subdomain solves
needed to reach a fixed error reduction in the solution (by a factor of 2 to 2.5 in our
test cases). Due to the use of the optimized Robin parameters, Method 2 is robust
in the sense that it handles well and consistently both the advection-dominated and
diffusion-dominated problems. Method 1 with the Neumann-Neumann preconditioner
works well and converges faster than without preconditioner when the diffusion is
dominant and it also efficiently deals with the case with large jumps in the diffusion
coefficients. When the advection is dominant, the Neumann-Neumann preconditioner
converges slower than when there is no preconditioner. However, asymptotically the
convergence of the Neumann-Neumann preconditioned Method 1 has a weak depen-
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dence on the mesh size of the discretizations while that of Method 1 with no precondi-
tioner significantly depends on the mesh size. For Method 2, because of the optimized
parameters, which play in some sense the role of a preconditioner, the convergence
is weakly dependent on the discretization parameters. In addition, both methods pre-
serve the accuracy in time when nonconforming time steps are used, both for two
subdomains and for multiple subdomains: the error of the nonconforming time grid
(with finer time steps in the zones where the solution varies most, i.e. with larger
advection and diffusion coefficients) is close to that of the conforming fine grid.

Two test cases for the simulation of nuclear waste disposal are implemented using
nonconforming time grids and time windows. As the geometry of the computational
domain is complex and the physical coefficients are highly variable, we consider mul-
tiple subdomains. For this application where the diffusion is dominant, the Neumann-
Neumann preconditioned Method 1 and Method 2 work well but Method 2 converges
faster than Method 1. We also observe that with an adapted initial guess calculated
from the previous time window, one performs only a few iterations in each time win-
dow to reach the scheme error.
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In the previous chapters, we have studied the Optimized Schwarz Waveform Re-
laxation (OSWR) method with optimized Robin transmission conditions in a mixed
formulation. Robin transmission conditions result from approximations by zero order
polynomials of the optimal interface operators (here "optimal" means that these opera-
tors lead to convergence of the algorithm in a number of iterations equal to the number
of subdomains (see, e.g., [97, 72, 44, 48] and Appendix A.2). The convergence of the
OSWR algorithm can be improved by using higher order approximations, such as Vent-
cell transmission conditions [62, 73]. The optimized transmission conditions were
originally introduced for stationary problems in [97, 72] and analyzed in [44], namely



92 Chapter 4. Extension to Ventcell transmission conditions

Optimized Schwarz methods, and were considered in the primal formulation only. In
this chapter, we study the Optimized Schwarz and OSWR methods with Ventcell trans-
mission conditions in the context of mixed formulations. The chapter consists of three
sections treating the stationary problem, the time-dependent diffusion problem and the
advection-diffusion problem, respectively. For each of these three problems, the mul-
tidomain formulation with Ventcell transmission conditions in mixed form is derived;
the equivalence between the multidomain problem and the original problem is proved
and an interface problem is formulated and solved iteratively using Jacobi iterations
or GMRES. For the stationary and time-dependent diffusion problems, the proofs of
the well-posedness of the subdomain problems with Ventcell boundary conditions are
given. For the advection-diffusion problem, we use operator splitting to treat the ad-
vection and the diffusion separately as was done in Chapter 3. For time-dependent
problems, we consider nonconforming time grids to take advantage of this global-in-
time method. Numerical experiments (for two subdomains) for different test cases
are presented for the stationary problem and the time-dependent diffusion problem to
study the performance of the Optimized Schwarz and OSWR methods with Ventcell
transmission conditions and (for the diffusion problem) to compare it with the two
methods analyzed in Chapter 2.

4.1 Stationary problems

For an open, bounded domain Ω⊂ Rd (d = 2,3) with Lipschitz boundary ∂Ω, consider
a model for single phase flow in porous media written in mixed form:

div uuu = f in Ω,
KKK−1uuu+∇p = 0 in Ω,

p = 0 on ∂Ω.
(4.1)

Recall (see Chapter 1) that p is the pressure, uuu the Darcy velocity, f the source term
and KKK a symmetric, positive definite, time independent hydraulic conductivity (or per-
meability) tensor. For the sake of simplicity, we have imposed homogeneous Dirichlet
condition on the boundary, other types of boundary conditions can be treated similarly.
The well-posedness of problem (4.1) is well-known (see, e.g., [21, 22, 104]).

Theorem 4.1. Assume that there exist positive constants K− and K+ such that

ςT KKK−1(·)ς ≥ K−|ς|2, and |KKK(·)ς| ≤ K+|ς| a.e. in Ω and ∀ς ∈ Rd . If f is in L2(Ω),

problem (4.1) has a unique weak solution

(p,uuu) ∈ L2(Ω)×H(div,Ω).

In the following, we consider a nonoverlapping decomposition of Ω and formulate
a multidomain problem equivalent to problem (4.1), in which Ventcell transmission
conditions are used. This type of transmission conditions involves not only the normal
flux and the pressure trace on the interface (as in zero order (Robin) transmission
conditions), but also the tangential divergence of the flux on the interface.
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4.1.1 Multidomain formulation with Ventcell transmission conditions

For simplicity, we consider a decomposition of Ω into two nonoverlapping subdomains,
Ω1 and Ω2, separated by an interface Γ:

Ω1 ∩Ω2 = ;; Γ = ∂Ω1 ∩ ∂Ω2 ∩Ω, Ω = Ω1 ∪Ω2 ∪Γ.

The same analysis can be extended to the case of many subdomains in bands. For
i = 1,2, let nnni denote the unit, outward pointing, vector field on ∂Ωi, and for any
scalar, vector or tensor valued function ψ defined on Ω, let ψi denote the restriction of
ψ to Ωi. We use the notation ∇τ and divτ for the tangential gradient and divergence
respectively, where τ is the tangential unit vector. We denote by KKK i,Γ the tangential
component of KKK i , i = 1,2, restricted to Γ. A multidomain formulation equivalent to
problem (4.1) is obtained by solving in each subdomain the following problem

div uuui = f in Ωi,
KKK−1

i
uuui +∇pi = 0 in Ωi,

pi = 0 on
�
∂Ωi ∩ ∂Ω

�
,

together with the transmission conditions

p1 = p2,
uuu1 · nnn1 +uuu2 · nnn2 = 0,

on Γ. (4.2)

Under sufficient regularity, one may replace (4.2) by the Ventcell transmission condi-
tions, which were introduced and analyzed for primal formulations in [96, 71, 74]:

−uuu1 · nnn1+α1,2 p1 + β1,2 divτ (−KKK2,Γ∇τp1) = −uuu2 · nnn1+α1,2 p2+

β1,2 divτ (−KKK2,Γ∇τp2), on Γ,

−uuu2 · nnn2+α2,1 p2 + β2,1 divτ (−KKK1,Γ∇τp2) = −uuu1 · nnn2+α2,1 p1+

β2,1 divτ (−KKK1,Γ∇τp1), on Γ,
(4.3)

where αi, j and βi, j, i = 1,2, j = 3 − i, are positive constants. The transmission
conditions (4.3) are derived in such a way that they are equivalent to the original
ones given in (4.2) (see Subsection 4.1.2 for the proof). However, the convergence
rate of the iterative algorithm used to solve the multidomain problem depends on the
parameter αi, j and βi, j used in the transmission conditions (4.3). These parameters
then may be chosen to optimize the convergence factor. See [72, 71] and Appendix A.1
for details of the derivation of Ventcell transmission conditions and of how to compute
the optimized parameters αi, j and βi, j.

In order to handle Ventcell transmission conditions in mixed form (where higher
regularity required for the second order term), we introduce Lagrange multipliers on
the interface Γ: pi,Γ, i = 1,2, representing the pressure trace pi on Γ and a vector field
uuuΓ,i := KKK j,Γ∇τpi,Γ, i = 1,2, j = 3− i. We use the notation uuuΓ,i instead of uuui,Γ to insist
that uuuΓ,i is NOT the tangential component of a trace of uuui on the interface. In fact
uuuΓ,i is used as an artificial tool for convergence purposes (it does not have a particular
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physical meaning). We rewrite (4.3) defined on Γ as follows

−uuu1 · nnn1 +α1,2 p1,Γ + β1,2 divτ uuuΓ,1 = −uuu2 · nnn1+α1,2 p2,Γ + β1,2 divτ
�

KKK2,ΓKKK
−1
1,ΓuuuΓ,2

�
,

−uuu2 · nnn2 +α2,1 p2,Γ + β2,1 divτ uuuΓ,2 = −uuu1 · nnn2+α2,1 p1,Γ + β2,1 divτ
�

KKK1,ΓKKK
−1
2,ΓuuuΓ,1

�
,

KKK−1
2,Γ uuuΓ,1 +∇τp1,Γ = 0,

KKK−1
1,Γ uuuΓ,2 +∇τp2,Γ = 0.

(4.4)
The corresponding multidomain problem consists of solving in the subdomains the
problem, for i = 1,2, j = 3− i:

div uuui = f in Ωi,
KKK−1

i uuui +∇pi = 0 in Ωi,
pi = 0 on

�
∂Ωi ∩ ∂Ω

�
,

−uuui · nnni +αi, j pi,Γ + βi, j divτ uuuΓ,i = −uuu j · nnni +αi, j p j,Γ + βi, j divτ (KKK j,ΓKKK
−1
i,ΓuuuΓ, j) on Γ,

KKK−1
j,Γ uuuΓ,i +∇τpi,Γ = 0 on Γ,

pi,Γ = 0 on ∂ Γ.
(4.5)

This can be seen as a coupling problem between a d−dimensional PDE in the subdo-
main Ωi and a (d−1)−dimensional PDE on the interface Γ, and both PDEs are written
in mixed form. In the following, we prove that under a suitable regularity hypothesis
the multidomain formulation (4.5) is equivalent to the monodomain formulation (4.1)
and that the subdomain problem of (4.5) is well-posed. Then we derive an interface
problem associated with this multidomain formulation.

4.1.2 Equivalence between the multidomain and the monodomain prob-
lems

To prove the equivalence between monodomain problem (4.1) and multidomain prob-
lem (4.5), we need to write their variational formulations. With this aim, we introduce
the following space (as was used in the Robin case, see Subsection 2.2):

HΓ(div ,Ωi) :=
¦

vvv ∈ H(div,Ωi) : vvv · nnni|Γ ∈ L2(Γ)
©

, i = 1,2.

Then variational forms of the monodomain and multidomain problems are respectively
as follows:

Find (p,uuu) ∈ L2(Ω)×H(div ,Ω) such that

(div uuu,µ)Ω = ( f ,µ)Ω ∀µ ∈ L2(Ω), (4.6a)

(KKK−1uuu, vvv)Ω − (div vvv, p)Ω = 0 ∀vvv ∈ H(div ,Ω). (4.6b)

Find (pi,uuui, pi,Γ,uuuΓ,i) ∈ L2(Ωi)×HΓ(div ,Ωi)× L2(Γ)×H(divτ ,Γ) such that

(div uuui,µ)Ωi
= ( f ,µ)Ωi

, ∀µ ∈ L2(Ωi), (4.7a)

(KKK−1
i uuui, vvv)Ωi

− (div vvv, pi)Ωi
+ (vvv · nnni, pi,Γ)Γ = 0, ∀vvv ∈HΓ(div ,Ωi), (4.7b)

(−uuui · nnni ,µΓ)Γ + (αi, j pi,Γ,µΓ)Γ+ (βi, j divτ uuuΓ,i ,µΓ)Γ =

(−uuu j · nnni,µΓ)Γ + (αi, j p j,Γ,µΓ)Γ+
�
βi, j divτ (KKK j,ΓKKK

−1
i,ΓuuuΓ, j),µΓ

�
Γ

,∀µΓ ∈ L2(Γ), (4.7c)

(KKK−1
j,Γ uuuΓ,i, vvvΓ)Γ − (divτ vvvΓ, pi,Γ)Γ = 0, ∀vvvΓ ∈ H(divτ ,Γ), (4.7d)

for i = 1,2, j = 3− i.
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The multidomain problem (4.7) is equivalent to the monodomain problem (4.6) in
a sense made explicitly in the following two theorems:

Theorem 4.2. Let (p,uuu) be the solution of problem (4.6). If p and uuu are sufficiently

regular, then (pi ,uuui, pi,Γ,uuuΓ,i), defined by

pi := p|Ωi
, uuui := uuu|Ωi

,
pi,Γ := p|Γ, uuuΓ,i := KKKΓ, j∇τpi,Γ,

for i = 1,2,

is the solution of (4.7).

Proof. The proof of this theorem is obvious.

Theorem 4.3. Assume that

(pi ,uuui, pi,Γ,uuuΓ,i) ∈ L2(Ωi)×HΓ(div ,Ωi)× L2(Γ)×H(divτ ,Γ)

is the solution to (4.7), for i = 1,2. Define p ∈ L2(Ω) and uuu ∈ L2(Ω)L2(Ω)L2(Ω) by

p|Ωi
:= pi, uuu|Ωi

:= uuui, for i = 1,2, (4.8)

then uuu ∈ H(div ,Ω) and (p,uuu) is the solution to (4.6).

Proof. We first sum (4.7a)|i=1 and (4.7a)|i=2 for a test function µ ∈ L2(Ω) and sum
(4.7b)|i=1 and (4.7b)|i=2 for a test function vvv ∈ C∞(Ω)C∞(Ω)C∞(Ω) to obtain

2∑

i=1

(div uuui,µ)Ωi
=

2∑

i=1

( f ,µ)Ωi
, ∀µ ∈ L2(Ω), (4.9a)

(KKK−1uuu, vvv)Ω− (div vvv, p)Ω + (vvv · nnn1, [pΓ])Γ = 0, ∀vvv ∈ C∞(Ω)C∞(Ω)C∞(Ω), (4.9b)

where [pΓ] := p1,Γ − p2,Γ is the jump of p across Γ. Then there remains to show that
uuu ∈ H(div ,Ω) and thus (4.6a) holds, and that the third term on the left hand side of
(4.9b) vanishes and thus (4.6b) holds for test functions vvv ∈ C∞(Ω)C∞(Ω)C∞(Ω). That (4.6b) holds
for test functions vvv ∈ H(div ,Ω) then follows from the density of C∞(Ω)C∞(Ω)C∞(Ω) in H(div ,Ω)
(see [103, p. 209]). Hence it suffices to show that (i) [uuu · nnn] := uuu1 · nnn1|Γ+uuu2 · nnn2|Γ = 0,
which together with the fact that uuui ∈ H(div ,Ωi), i = 1,2, implies that uuu ∈ H(div ,Ω);
and that (ii) [pΓ] = 0.

Toward this end, we rewrite equation (4.7c), for i = 1,2, and for test functions
µΓ ∈ L2(Γ), as

−([uuu · nnn],µΓ)Γ + (α1,2 [pΓ],µΓ)Γ+
�
β1,2 divτ (KKK2,Γ¹uuuΓº),µΓ)

�
Γ
= 0, (4.10a)

−([uuu · nnn],µΓ)Γ − (α2,1 [pΓ],µΓ)Γ−
�
β2,1 divτ (KKK1,Γ¹uuuΓº),µΓ)

�
Γ
= 0, (4.10b)

where ¹uuuΓº := KKK−1
2,ΓuuuΓ,1 −KKK−1

1,ΓuuuΓ,2.

We then subtract (4.10b) from (4.10a) for test functions µΓ ∈ L2(Γ) and subtract
(4.7d)|i=2 from (4.7d)|i=1 for test functions vvvΓ ∈ H(divτ ,Γ) to obtain

(α1,2+α2,1)([pΓ],µΓ)Γ +
�

divτ
�
(β1,2 KKK2,Γ + β2,1 KKK1,Γ)¹uuuΓº

�
,µΓ)

�
Γ
= 0, ∀µΓ ∈ L2(Γ),

(¹uuuΓº, vvvΓ)Γ − (divτ vvvΓ, [pΓ])Γ = 0, ∀vvvΓ ∈ H(divτ ,Γ).
(4.11)

We seek the pair
�
[pΓ],¹uuuΓº

�
∈ L2(Γ)× H(divτ ,Γ) as the unique solution (see [22,

104]) of the problem (4.11), which is necessarily the solution [pΓ] = 0, ¹uuuΓº = 0.
That [uuu · nnn] = 0 now follows from either equation of (4.10).
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Next we prove the well-posedness of the subdomain problem with Ventcell bound-
ary conditions.

4.1.3 Well-posedness of the Ventcell boundary value problem

For an open, bounded domain O ⊂ Rd (d = 2,3) with Lipschitz boundary ∂ O , consider
the following elliptic problem written in mixed form with Ventcell boundary conditions

div uuuO = fO in O ,
KKK−1uuuO +∇pO = 0 in O ,

−uuuO · nnn+αp∂ O +βdivτ ũuu∂ O = f∂ O on ∂ O ,

K̃KK
−1
∂O ũuu∂ O +∇τp∂ O = 0 on ∂ O ,

(4.12)

where nnn is the unit, outward pointing, normal vector on ∂ O , KKK(·) ∈ Rd2
and

K̃KK∂ O (·) ∈ R(d−1)2 are given, and α and β are positive constants.
In order to write the weak formulation of problem (4.12), we need to define the

following Hilbert spaces (see Remark 2.1)

M =
¦
µ = (µO ,µ∂ O ) ∈ L2(O )× L2(∂ O )

©
,

Σ =
�
vvv = (vvvO , ṽvv∂ O ) ∈ L2(O )L2(O )L2(O )× L2(∂ O )L2(∂ O )L2(∂ O ) : div vvvO ∈ L2(O ) and

βdivτ ṽvv∂ O − vvvO · nnn|∂ O ∈ L2(∂ O )
	
,

equipped with the norms

‖µ‖2M = ‖µO ‖
2
O + ‖µ∂ O ‖

2
∂ O ,

‖vvv‖2Σ = ‖vvvO ‖
2
O + ‖div vvvO ‖2O + ‖ṽvv∂ O ‖

2
∂ O + ‖βdiv ṽvv∂O − vvvO · nnn|∂ O ‖2∂ O ,

where ‖ ·‖O and ‖ ·‖∂ O are the L2(O ) and L2(∂ O )− norms, respectively. We denote by
(·, ·)O and (·, ·)∂O the inner products of L2(O ) and L2(∂ O ).
Next, define the following bilinear forms (recall that β is a positive constant)

a : Σ×Σ −→ R
(uuu, vvv) 7→ a(uuu, vvv) =

�
KKK−1uuuO , vvvO

�
O +

�
βK̃KK
−1
∂ O ũuu∂ O , ṽvv∂ O

�
∂ O

,

b : Σ×M −→ R
(uuu,µ) 7→ b(uuu,µ) =

�
div uuuO ,µO

�
O +

�
βdivτ ũuu∂ O −uuuO · nnn|∂O ,µ∂ O

�
∂ O ,

c : M ×M −→ R
(p,µ) 7→ c(p,µ) =

�
αp∂ O ,µ∂ O

�
∂ O ,

and the linear form

L f : M −→ R
µ 7→ L f (µ) =

�
fO ,µO

�
O +

�
f∂ O ,µ∂ O

�
∂ O .

With these spaces and forms, the weak form of (4.12) can be written as follows:

Find
�

p,uuu
�
∈ M ×Σ such that

a(uuu, vvv)− b(vvv, p) = 0 ∀vvv ∈ Σ,
−b(uuu,µ)− c(p,µ) = −L f (µ) ∀µ ∈ M .

(4.13)
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Theorem 4.4. Assume that there exist positive constants K− and K+ such that

ςT KKK−1(·)ς≥ K−|ς|2, and |KKK(·)ς| ≤ K+|ς| a.e. in O and ∀ς ∈ Rd; and that ηT K̃KK
−1
∂ O (·)η≥

K−|η|2, and |K̃KK∂ O (·)η| ≤ K+|η| a.e. in ∂ O and ∀η ∈ Rd−1.

If ( fO , f∂ O ) is in M then there exists a unique solution (p,uuu) ∈ M ×Σ of problem (4.13).

Proof. The existence and uniqueness of the solution of (4.13) is a generalization of the
classical case (see [22, pp. 47 – 50], [104, pp. 572 – 573]). To prove Theorem 4.4,
one has to show that:

• a(·, ·), b(·, ·) and c(·, ·) are continuous on Σ×Σ, on Σ×M and on M×M respec-
tively, which is straightforward.

• a(·, ·) is positive definite

a(vvv, vvv)> 0, ∀vvv ∈ Σ, vvv 6= 0,

and is VVV -elliptic

inf
vvv∈VVV

a(vvv, vvv)

‖vvv‖2
≥ Ca > 0,

where VVV = {vvv ∈ Σ : b(vvv,µ) = 0, ∀µ ∈ M}.

• b(·, ·) satisfies the inf-sup condition:

inf
µ∈M

sup
vvv∈Σ

b(vvv,µ)

‖vvv‖Σ‖µ‖M
≥ Cb > 0.

• c(·, ·) is symmetric and positive definite

c(µ,µ) > 0, ∀µ ∈ M , µ 6= 0.

Firstly we have c(µ,µ) = α‖µ∂ O ‖2∂ O ≥ 0, ∀µ ∈ M as α > 0. Using the assumptions on
the permeability and the coefficient β , one finds

a(vvv, vvv) =
�

KKK−1vvvO , vvvO
�
O +

�
βK̃KK
−1
∂ O ṽvv∂ O , ṽvv∂ O

�
∂O

≥ K−‖vvvO ‖2O + βK−‖ṽvv∂ O ‖2∂ O ≥ 0.

To check that a(·, ·) is VVV−elliptic, note that for vvv ∈ VVV :

div vvvO = 0, and βdivτ ṽvv∂ O = vvvO · nnn|∂ O .

Hence
‖vvv‖2Σ = ‖vvvO ‖2O + ‖ṽvv∂ O ‖2∂ O , ∀vvv ∈ VVV .

Using the assumptions on KKK , K̃KK∂O and β we obtain

a(vvv, vvv) =
�

KKK−1vvvO , vvvO
�
O +

�
βK̃KK
−1
∂ O ṽvv∂O , ṽvv∂ O

�
∂ O

≥ K−‖vvvO ‖2O + βK−‖ṽvv∂ O ‖2∂ O
≥ Ca‖vvv‖2Σ, ∀vvv ∈ V, where Ca = inf

�
(1,β)K−

	
.
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To check that b(·, ·) satisfies the inf-sup condition, for any given µ ∈ M we construct
a vector vvv ∈ Σ such that b(vvv,µ) = ‖µ‖2M and ‖vvv‖Σ ≤ Cb‖µ‖M . Toward this end, we
consider the following problem

−∆φ = µO in O ,
∂ φ

∂ nnn
− β∆τφ = µ∂ O on ∂ O ,

(4.14)

where β > 0 is a constant and ∆τ is the Laplace-Beltrami operator. To write the
variational formulation of problem (4.14), we introduce the following Hilbert space

H1,1(O ) = {φ ∈ H1(O ) : φ|∂ O ∈ H1(∂ O )}, (4.15)

equipped with the norm

‖φ‖2
H1,1(O ) = ‖φ‖

2
H1(O ) + ‖φ‖

2
H1(∂ O ).

We define the bilinear form A and the linear form B as follows

A : H1,1(O )×H1,1(O ) −→ R

(φ,ϕ) 7→ a(φ,ϕ) =
�
∇φ,∇ϕ

�
O +

�
β∇τφ,∇τϕ

�
∂ O ,

B : H1,1(O ) −→ R

ϕ 7→ B(ϕ) =
�
µO ,ϕ

�
O +

�
µ∂O ,ϕ

�
∂ O .

The weak formulation of (4.14) is written as

Find φ ∈ H1,1(O ) such that A(φ,ϕ) = B(ϕ), ∀ϕ ∈ H1,1(O ). (4.16)

Lemma 4.5. Assume that µ = (µO ,µ∂ O ) ∈ M, then problem (4.16) has a unique solu-

tion.

Proof. As β > 0, one can easily prove that A is coercive. Thus, by applying the Lax-
Milgram theorem, we prove the existence and uniqueness of a weak solution φ to
(4.14). Moreover, there exists a constant C∗ > 0 such that

‖φ‖H1,1(O ) ≤ C∗‖µ‖M .

Now, for µ = (µO ,µ∂ O ) ∈ M let φ be the weak solution of (4.14). We define

vvvO = −∇φ and ṽvv∂ O = −∇τφ∂ O ,

then

div vvvO = µO ∈ L2(O ) and βdivτ ṽvv∂ O − vvvO · nnn|∂ O = µ∂O ∈ L2(∂ O ).

Hence, vvv = (vvvO , ṽvv∂ O ) ∈ Σ and b(vvv,µ) = ‖µ‖2M . Moreover, we have

‖vvv‖2Σ = ‖µ‖2M + ‖∇φ‖2O + ‖∇τφ‖2∂ O ≤ (1+ C∗)‖µ‖2M .

This completes the proof of Theorem 4.4.
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4.1.4 An interface problem

In this subsection, we derive an interface problem associated with the multidomain
problem (4.5). With this aim, we define the Ventcell-to-Ventcell operators S VtV

i which
depend on the parameters αi, j and βi, j, for i = 1,2, and j = 3− i, as follows

S VtV
i : L2(Γ)× L2(Ωi) → L2(Γ)

(ϑ, f ) 7−→ S VtV
i (ϑ, f ) = −uuui · nnn j|Γ +α j,i pi,Γ + β j,i divτ (KKK i,ΓKKK

−1
j,ΓuuuΓ,i),

where (pi,uuui, pi,Γ,uuuΓ,i), i = 1,2, is the solution of

div uuui = f in Ωi,
KKK−1

i uuui +∇pi = 0 in Ωi,
pi = 0 on

�
∂Ωi ∩ ∂Ω

�
,

−uuui · nnni +αi, j pi,Γ + βi, j divτ uuuΓ,i = ϑ on Γ,
KKK−1

j,Γ uuuΓ,i +∇τpi,Γ = 0 on Γ,

pi,Γ = 0 on ∂ Γ.

(4.17)

The well-posedness of problem (4.17) is given by an extension of Theorem 4.4. The in-
terface problem, corresponding to the Ventcell transmission conditions (4.4), is defined
by

ϑ1 = S VtV
2 (ϑ2, f )

ϑ2 = S VtV
1 (ϑ1, f )

on Γ, (4.18)

or equivalently,

SVSVSV

�
ϑ1

ϑ2

�
= χVχVχV ( f ), on Γ, (4.19)

where
SVSVSV : L2(Γ)× L2(Γ) −→ L2(Γ)× L2(Γ)�

ϑ1

ϑ2

�
7−→

�
ϑ1 −S VtV

2 (ϑ2, 0)
ϑ2 −S VtV

1 (ϑ1, 0)

�
,

and
χVχVχV : L2(Γ) −→ L2(Γ)× L2(Γ)

f 7−→
�
S VtV

2 (0, f )

S VtV
1 (0, f )

�
.

One can solve problem (4.19) iteratively using Jacobi iteration or GMRES: the right
hand side is computed (only once) by solving problem (4.17) in each subdomain with
ϑ = 0; then for a given pair of vectors (ϑ1,ϑ2), the matrix vector product is obtained
(at each iteration) by solving, for i = 1,2, subdomain problem (4.17) in Ωi with ϑ = ϑi

and with f = 0. If one uses Jacobi iteration for solving (4.19), the resulting algorithm is
equivalent to the optimized Schwarz algorithm with Ventcell transmission conditions
and is written as follows: starting with a given initial guess g0

i, j on Γ for the first
iteration,

−uuu0
i · nnni +αi, j p0

i,Γ + βi, j divτ (uuu
0
Γ,i) = g0

i, j,
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then at the kth iteration, k = 1, . . . , solve in each subdomain the problem

div uuuk
i = f in Ωi,

KKK−1
i uuuk

i +∇pk
i = 0 in Ωi,

pk
i = 0 on

�
∂Ωi ∩ ∂Ω

�
,

−uuuk
i · nnni +αi, j pk

i,Γ + βi, j divτ (uuu
k
Γ,i) = −uuuk−1

j · nnni +αi, j pk−1
j,Γ +

βi, j divτ (KKK j,ΓKKK
−1
i,Γuuuk−1

Γ, j ) on Γ,

KKK−1
j,Γuuu

k
Γ,i +∇τpk

i,Γ = 0 on Γ,

pk
i,Γ = 0 on ∂ Γ,

(4.20)
for i = 1,2, and j = 3− i.

In the next subsection, we will carry out numerical experiments to study the per-
formance of two algorithms corresponding to Jacobi iterations and GMRES applied to
the interface problem (4.19).

4.1.5 Numerical results

We consider a domain Ω = (0,π)2 and its decomposition into two nonoverlapping

subdomains Ω1 =

�
0,
π

2

�
× (0,π) and Ω2 =

�π
2

,π
�
× (0,π). The permeability is

KKK = KIII isotropic and constant on each subdomain, where III is the 2D identity matrix.
We take K1 = 1/K and K2 = 1, where K = 1,10 or 100. The exact solution is

p(x , y) = cos(πx) sin(πy).

For the spatial discretization, we use mixed finite elements (with interface Lagrange
multipliers) with the lowest order Raviart-Thomas spaces on rectangles (see Ap-
pendix B.5).

Remark 4.6. In order to handle the discontinuous coefficients, we use the optimized,

weighted Ventcell parameters defined by

α1,2 = K2α, α2,1 = K1α,

β1,2 = K2β , β2,1 = K1β .

Details of how these optimized parameters are calculated are presented in Appendix A.1.

We first verify that the multidomain solution (obtained by solving the interface
problem (4.19) with Jacobi iterations or GMRES) converges to the monodomain so-
lution. We start with a zero initial guess and compute the error in the L2(Ω)-norm
of the difference between the multidomain solution and the monodomain solution at
each iteration. In Figure 4.1, we show the error in the pressure p (cyan, diamond)
and in the velocity uuu (red, dot) using Jacobi iterations (left) and GMRES (right). We
observe that the error tends to zero as the number of iterations increases, which im-
plies that both algorithms work well and the numerical results confirm the theoretical
equivalence between the multidomain problem and the monodomain problem.

In order to study the convergence behavior of the optimized Schwarz method with
the optimized weighted Ventcell parameters, we consider the error equation, i.e. with
f = 0 and homogeneous Dirichlet boundary conditions. We start with a random ini-
tial guess on the interface and compute the error in the L2(Ω)-norm of the pressure
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Figure 4.1: L2 error of the difference between the multidomain solution and the
monodomain solution: with Jacobi iterations (left) and GMRES (right).

p and of the velocity uuu. Table 4.1 gives the number of iterations needed to reach an
error reduction of 10−6 first in p and then in uuu (in square brackets) when one refines
the mesh. Both GMRES and Jacobi iterations are considered. For homogeneous case
(K = 1), GMRES significantly improves the convergence speed (by a factor of 2) and
also the asymptotic results compared to the Jacobi iteration. These results are con-
sistent with those obtained with primal formulations [44] (where a finite difference
scheme is used). As the ratio K increases, the number of iterations is smaller and GM-
RES does not greatly accelerate the convergence speed compared to Jacobi iterations.
Also for large K , the convergence rate of the algorithms with GMRES or Jacobi are
almost independent of the mesh size. This is also the case where a primal formulation
and a finite volume method are used [36].

h
K = 1 K = 10 K = 100

Jacobi GMRES Jacobi GMRES Jacobi GMRES
π/50 15 [15] 10 [11] 11 [10] 9 [9] 7 [6] 7 [7]
π/100 17 [18] 11 [12] 11 [10] 9 [9] 7 [6] 7 [7]
π/200 21 [21] 13 [13] 11 [10] 9 [9] 7 [6] 7 [7]
π/400 25 [25] 14 [14] 11 [10] 10 [9] 7 [6] 8 [8]
π/800 29 [29] 15 [16] 13 [12] 10 [10] 7 [6] 8 [8]

Table 4.1: Number of iterations required to reach an error reduction of 10−6 in p and
in uuu (in square brackets) for different permeability ratios, and for different values of

the discretization parameter h.

Next we verify the performance of the optimized parameters, computed by nu-
merically minimizing the continuous convergence factor (see Appendix A.1). We take
h= π/100, vary α and β , and compute the error in the velocity uuu after a fixed number of
Jacobi iterations for different permeability ratios. The results are shown in Figure 4.2
for K = 1 (# iter = 20 iterations), K = 10 (# iter = 12 iterations) and K = 100
(# iter = 8 iterations) respectively. We see that, in all cases, the optimized weighted
Ventcell parameters (the red star) are located close to those giving the smallest error
after the same number of iterations.
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Figure 4.2: Level curves for the error in the velocity (in logarithmic scale) after some
fixed number of Jacobi iterations for various values of the parameters α and β and for

different permeability ratios K . The red start shows the optimized parameters.

Finally, we compare the performance of the optimized Schwarz method with
Ventcell transmission conditions with that with Robin transmission conditions (i.e.
β = 0). We consider the optimized 2-sided Robin parameters with α1,2 6= α2,1 and
β1,2 = β2,1 = 0 (see Appendix A.1 for the calculation of these parameters). Figures 4.3,
4.4 and 4.5 show the error in the pressure versus the number of iterations using Jacobi
(on the left) and GMRES (on the right) for different diffusion ratios, K = 1, K = 10
and K = 100 respectively. We see that for the homogeneous case (K = 1), with Ja-
cobi iterations the optimized weighted Ventcell converges significantly faster than the
optimized 2-sided Robin (by a factor of 2). As K increases, the optimized weighted
Ventcell and the optimized 2-sided Robin are comparable. With GMRES, the difference
in the convergence of the two types of optimized parameters becomes less significant,
especially for high diffusion ratios. These results are for a symmetric two subdomain
case with a conforming mesh, Ventcell transmission conditions may have a more impor-
tant effect on the convergence (compared with Robin transmission conditions) when
many subdomains and nonmatching grids are considered [73].
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Figure 4.3: L2 error in the pressure p for K = 1: Jacobi (left) and GMRES (right).
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Figure 4.4: L2 error in the pressure p for K = 10: Jacobi (left) and GMRES (right).
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Figure 4.5: L2 error in the pressure p for K = 100: Jacobi (left) and GMRES (right).

4.2 Time-dependent diffusion problems

We extend the results in the previous section to the case of time-dependent problems.
We consider the transient problem for compressible flow of a single phase fluid (cf.
Chapter 1) written in mixed form:

s∂t p+ div uuu = f in Ω× (0, T ),
KKK−1uuu+∇p = 0 in Ω× (0, T ),

p = 0 on ∂Ω× (0, T ),
p(·, 0) = p0 in Ω,

(4.21)

where s > 0 is the storage coefficient, p is the pressure, uuu the velocity, KKK a symmetric
time independent hydraulic conductivity (or permeability) tensor, f the source term
and p0 an initial condition. As usual, we have imposed homogeneous Dirichlet condi-
tion on the boundary for the sake of simplicity.

Remark 4.7. Problem (4.21) can be interpreted as a model problem for diffusion process
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(see Chapter 2):

φ∂t c + div rrr = f in Ω× (0, T ),
DDD−1rrr +∇c = 0 in Ω× (0, T ),

c = 0 on ∂Ω× (0, T ),
c(·, 0) = c0 in Ω,

(4.22)

(recall that c is the concentration of a contaminant dissolved in a fluid, f the source term,

φ the porosity and DDD a symmetric time independent diffusion tensor).

To give a coherent representation of the analysis of this section with that of Section 4.1,

we will use the notation (4.21) for the analysis while we present numerical experiments

in context of the formulation (4.22) to compare with the results in Chapter 2.

The well-posedness of problem (4.21) follows from Theorem 2.2 (see Chapter 2).
We recall a result concerning the regularity of the solution in the following theorem:

Theorem 4.8. Assume that s is bounded above and below by positive constants, 0< s− ≤
s(x) ≤ s+, and that there exist positive constants K− and K+ such that ςT KKK−1(x)ς ≥
K−|ς|2, and |KKK(x)ς| ≤ K+|ς|, a.e. x ∈ Ω and ∀ς ∈ Rd . If f is in L2(0, T ; L2(Ω)) and p0

in H1
0(Ω) then problem (4.21) has a unique solution

(p,uuu) ∈ H1(0, T ; L2(Ω))×
�

L2(0, T ; H(div ,Ω))∩ L∞(0, T ; L2(Ω)L2(Ω)L2(Ω))
�

.

In the following, we derive a multidomain formulation associated with prob-
lem (4.21) where Ventcell transmission conditions are used on the space-time interface.
The difference between this case and the elliptic case is that now these transmission
conditions also involve the time derivative of the trace of the pressure on the interface.

4.2.1 Multidomain formulation with Ventcell transmission conditions

For simplicity, we consider a decomposition of Ω into two nonoverlapping subdomains
and we use the same notation as introduced in Subsection 4.1.1. Proceeding as in
Section 4.1.1, we can reformulate problem (4.21) as a multidomain problem consisting
of the subdomain problems, for i = 1,2, j = 3− i,

si∂t pi + div uuui = f in Ωi × (0, T ),
KKK−1

i uuui +∇pi = 0 in Ωi × (0, T ),
pi = 0 on

�
∂Ωi ∩ ∂Ω

�
× (0, T ),

−uuui · nnni +αi, j pi,Γ + βi, j

�
s j∂t pi,Γ+ divτ uuuΓ,i

�
=

−uuu j · nnni +αi, j p j,Γ + βi, j

�
s j∂t p j,Γ + divτ (KKK j,ΓKKK

−1
i,ΓuuuΓ, j)

�
on Γ× (0, T ),

KKK−1
j,Γ uuuΓ,i +∇τpi,Γ = 0 on Γ× (0, T ),

pi,Γ = 0 on ∂ Γ× (0, T ),
pi(·, 0) = p0 in Ωi × (0, T ),

pi,Γ(·, 0) = p0|Γ on Γ.
(4.23)

where αi, j and βi, j, i = 1,2, j = 3− i, are positive constants (see Appendix A.2 for
details concerning how these constants are used to optimize the convergence factor).

Remark 4.9. As in the elliptic case, under suitable regularity hypotheses the multidomain

problem (4.23) with Ventcell transmission conditions is equivalent to the monodomain

problem (4.21). It is simple to extend the demonstration of Theorem 4.3 to the case of the

problem considered here.
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In the following, we prove the well-posedness of the subdomain problem (4.23)
with Ventcell boundary conditions. We then reformulate the multidomain problem as a
space-time interface problem, which is used in the numerical experiments to investigate
the performance of the OSWR method with Ventcell transmission conditions.

4.2.2 Well-posedness of the Ventcell boundary value problem

For an open, bounded domain O ⊂ Rd (d = 2,3) with Lipschitz boundary ∂ O and for
some T > 0, consider the following time-dependent problem in mixed form

s∂t pO + div uuuO = f in O × (0, T ),
KKK−1uuuO +∇pO = 0 in O × (0, T ),

−uuuO · nnn+αp∂ O + β
�
s̃∂t p∂ O + divτ (ũuu∂ O )

�
= f∂ O on ∂ O × (0, T ),

K̃KK
−1
∂ O ũuu∂O +∇τp∂ O = 0 on ∂ O × (0, T ),

pO (·, 0) = p0 in O × (0, T ),
p∂ O (·, 0) = p0|∂ O on ∂ O ,

(4.24)

where nnn is the unit, outward pointing, normal vector on ∂ O ; KKK(·) ∈ Rd2
, K̃KK∂ O (·) ∈

R
(d−1)2 and s, s̃ > 0 are given functions defined on O and ∂ O respectively; α and β are

positive constants.
To write the variational formulation of (4.24), we use the Hilbert spaces M and Σ as

well as the bilinear forms a, b and c, and the linear form L f defined in Subsection 4.1.3.
Furthermore, we define

cs : M ×M −→ R

(p,µ) 7→ cs(p,µ) =
�
spO ,µO

�
O +

�
s̃p∂ O ,µ∂ O

�
∂ O .

The weak form of (4.24) can be written as follows:

For a.e. t ∈ (0, T ), find
�

p(t),uuu(t)
�
∈ M ×Σ such that

a(uuu, vvv)− b(vvv, p) = 0 ∀vvv ∈ Σ,
b(uuu,µ) + c(p,µ) + cs(∂t p,µ) = L f (µ) ∀µ ∈ M .

(4.25)

together with the initial conditions

pO (·, 0) = p0 in O ,
p∂ O (·, 0) = p0|∂ O in ∂ O .

(4.26)

Theorem 4.10. Assume that s and s̃ are bounded above and below by positive constants,

0 < s− ≤ s(·) ≤ s+ a.e. in O and 0 < s− ≤ s̃(x) ≤ s+ a.e. in ∂ O , and that there exist

positive constants K− and K+ such that ςT KKK−1(·)ς ≥ K−|ς|2, and |KKK(·)ς| ≤ K+|ς| a.e. in

O and ∀ς ∈ Rd ; and that ηT K̃KK
−1
∂ O (·)η ≥ K−|η|2, and |K̃KK∂ O (·)η| ≤ K+|η| a.e. in ∂ O and

∀η ∈ Rd−1.

If ( fO , f∂ O ) is in L2(0, T ; M) and p0 in H1,1(O ) (cf. (4.15)) then there exists a unique

solution (p,uuu) ∈ M ×Σ of problem (4.25).

As in the Dirichlet and Robin boundary condition case (see Chapter 2), we use
Galerkin’s method and a priori estimates to prove Theorem 4.10. These estimates are
given by the following lemma:
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Lemma 4.11. Assume that f is in L2(0, T ; M) and p0 in H1,1(O ) then the following

estimate holds

‖p‖L∞(0,T ;M) + ‖∂t p‖L2(0,T ;M) + ‖uuu‖L2(0,T ;Σ) ≤ C
�
‖ f ‖L2(0,T ;M) + ‖p0‖H1,1(O )

�
.

Remark 4.12. The proof of Lemma 4.11 is given in the infinite dimensional setting but

some technical points (those involving rrr at time t = 0) can only be defined by their

finite dimensional Galerkin approximations (as was done in detail for Dirichlet and Robin

boundary conditions in Sections 2.1 and 2.2 respectively). The results presented below

have to be understood in that sense.

Proof. We prove this lemma by deriving successively the estimates on p, ∂t p and uuu.

• In order to obtain an estimate on p, we take p(t) ∈ M and uuu(t) ∈ Σ as the test
functions in (4.25) and add

a(uuu,uuu) + c(p, p) + cs(∂t p, p) = L f (p).

Using the definitions of a, c and cs, and the assumptions on the storage coefficient
and the permeability tensor as well as the Cauchy-Schwarz inequality, we obtain

s−
2

d

d t
‖p‖2M +α‖p∂ O ‖

2
∂ O + K−‖uuu‖2MMM ≤

1

2

�
‖ f ‖2M + ‖p‖

2
M

�
, (4.27)

where MMM :=
¦

vvv = (vvvO , ṽvv∂ O ) ∈ L2(O )L2(O )L2(O )× L2(∂ O )L2(∂ O )L2(∂ O )
©

and ‖vvv‖2MMM = ‖vvvO ‖
2
O + ‖ṽvv∂O ‖

2
∂ O .

Integrate (4.27) over (0, t) for t ∈ (0, T], we find

s−‖p(t)‖2M+2α

∫ t

0

‖p∂ O ‖2∂ O+2K−

∫ t

0

‖uuu‖2MMM ≤ s−‖p0‖2M+‖ f ‖
2
L2(0,T ;M)

+

∫ t

0

‖p‖2M .

Using Gronwall’s lemma, we obtain

‖p‖2
L∞(0,T ;M) ≤ C

�
‖p0‖2M + ‖ f ‖

2
L2(0,T ;M)

�
, (4.28)

and consequently,

‖uuu‖2
L2(0,T ;MMM )

≤ C
�
‖p0‖2M + ‖ f ‖2L2(0,T ;M)

�
. (4.29)

• Now to derive an estimate on ∂t p, we differentiate the first equation of (4.25)
with respect to t and take uuu as a test function:

a(∂tuuu,uuu)− b(uuu,∂t p) = 0. (4.30)

Next, take ∂t p as a test function in the second equation of (4.25), we have

c(∂t p, p) + cs(∂t p,∂t p) + b(uuu,∂t p) = L f (∂t p). (4.31)

Now adding (4.30) and (4.31), we obtain

a(∂tuuu,uuu) + c(∂t p, p) + cs(∂t p,∂t p) = L f (∂t p),
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thus

s−‖∂t p‖2M +
α

2

d

d t
‖p∂ O ‖2∂ O +

K−
2

d

d t
‖uuu‖2MMM ≤

1

2
‖ f ‖2M +

1

2
‖∂t p‖2M .

Integrating this inequality over (0, t) for t ∈ (0, T]

s−

∫ t

0

‖∂t p‖2M+α‖p∂ O (t)‖
2
∂ O+K−‖uuu(t)‖2MMM ≤ ‖ f ‖

2
L2(0,T ;M)

+α‖p0|∂ O ‖2∂ O+K−‖uuu(0)‖2MMM .

(4.32)
There only remains to bound the term K−‖uuu(0)‖2MMM . Toward this end, we use the
first equation of (4.25) with vvv = uuu and for t = 0

K−‖uuu(0)‖2MMM ≤
�
div uuuO (0), p0

�
O +

�
βdivτ ũuu∂ O (0)−uuuO (0) · nnn, p0

�
∂ O ,

≤ −
�
uuuO (0),∇p0

�
O − β

�
ũuu∂ O (0),∇τp0

�
∂ O ,

≤
K−
2
‖uuu(0)‖2MMM +

β

2K−
‖p0‖H1,1(O ).

Substituting this into (4.32), we obtain

s−

∫ t

0

‖∂t p‖2M +α‖p∂ O (t)‖
2
∂ O + K−‖uuu(t)‖2MMM ≤ C

�
‖ f ‖2

L2(0,T ;M)
+ ‖p0‖H1,1(O )

�
.

Thus
‖∂t p‖2L2(0,T ;M)

≤ C
�
‖ f ‖2

L2(0,T ;M)
+ ‖p0‖H1,1(O )

�
. (4.33)

• Finally, to obtain an estimate for uuu ∈ Σ, because of (4.29) there only remains to
estimate the terms ‖div uuuO ‖2O and ‖βdivτ ũuu∂ O −uuuO ·nnn‖2∂ O . For that purpose, take�
qO ,q∂ O

�
=
�

div uuuO , βdivτ ũuu∂ O −uuuO · nnn|∂ O
�

as the test function in the second
equation of (4.25), we have

‖div uuuO ‖2O + ‖βdivτ ũuu∂ O −uuuO · nnn‖2∂ O
= ( fO − s∂t pO , div uuuO )O + ( f∂ O −αp∂ O − s̃∂t p∂ O ,βdivτ ũuu∂ O −uuuO · nnn)∂ O ,

≤
�

1

2
‖ fO − s∂t pO ‖2O +

1

2
‖div uuuO ‖2O

�
+

1

2
‖ f∂ O−αp∂ O−s̃∂t p∂ O ‖2∂ O+

1

2
‖βdivτ ũuu∂ O−uuuO ·nnn‖2∂ O ,

then

‖div uuuO ‖2O + ‖βdivτ ũuu∂ O −uuuO · nnn‖2∂ O ≤ ‖ f ‖
2
M +α‖p‖

2
M + s+‖∂t p‖2M .

Using (4.28) and (4.33), we obtain

∫ T

0

�
‖div uuuO ‖2O + ‖βdivτ ũuu∂ O −uuuO · nnn‖2∂ O

�
≤ C

�
‖ f ‖2

L2(0,T ;M)
+ ‖p0‖H1,1(O )

�
.

This along with (4.29) gives the estimate for ‖uuu‖L2(0,T ;Σ), which completes the
proof of the lemma.

The proof of Theorem 4.10 is then completed as was done for Theorem 2.2 (see Chap-
ter 2).
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4.2.3 A space-time interface problem

In this subsection, we derive an interface formulation associated with the multidomain
problem (4.23). With this aim, we introduce the spaces

Θ := L2(0, T ; L2(Γ)),

and

H1,1
∗ (Ωi) :=

¦
q ∈ H1(Ωi) : q|∂Ωi∩∂Ω = 0 and q|Γ ∈ H1(Γ)

©
, i = 1,2. (4.34)

The time-dependent Ventcell-to-Ventcell operator S VtV
i , which depends on the param-

eters αi, j and βi, j, i = 1,2, j = 3− i, is defined as

S VtV
i :Θ× L2(0, T ; L2(Ωi))×H1,1

∗ (Ωi)→ Θ
(ϑ, f , p0) 7−→ S VtV

i (ϑ, f , p0) = −uuui · nnn j|Γ +α j,i pi,Γ+ β j,i

�
si∂t pi,Γ + divτ (KKK i,ΓKKK

−1
j,ΓuuuΓ,i)

�
,

(4.35)
where (pi,uuui, pi,Γ,uuuΓ,i), i = 1,2, is the solution of

si∂t pi + div uuui = f in Ωi × (0, T ),
KKK−1

i uuui +∇pi = 0 in Ωi × (0, T ),
pi = 0 on

�
∂Ωi ∩ ∂Ω

�
× (0, T ),

−uuui · nnni +αi, j pi,Γ + βi, j

�
s j∂t pi,Γ + divτ uuuΓ,i

�
= ϑ on Γ× (0, T ),

KKK−1
j,Γ uuuΓ,i +∇τpi,Γ = 0 on Γ× (0, T ),

pi,Γ = 0 on ∂ Γ× (0, T ),
pi(·, 0) = p0 in Ωi × (0, T ),

pi,Γ(·, 0) = p0|Γ on Γ.
(4.36)

The well-posedness of problem (4.36) is guaranteed by an extension of Theorem 4.10.
The space-time interface problem, corresponding to the Ventcell transmission condi-
tions, is defined by

ϑ1 = S VtV
2 (ϑ2, f , p0)

ϑ2 = S VtV
1 (ϑ1, f , p0)

on Γ× (0, T ), (4.37)

or equivalently,

SVSVSV

�
ϑ1

ϑ2

�
= χVχVχV ( f , p0), on Γ× (0, T ), (4.38)

where
SVSVSV :Θ×Θ −→ Θ×Θ�

ϑ1

ϑ2

�
7−→

�
ϑ1 −S VtV

2 (ϑ2, 0,0)
ϑ2 −S VtV

1 (ϑ1, 0,0)

�
,

and
χVχVχV : L2(0, T ; L2(Ω))×H1,1

∗ (Ωi) −→ Θ×Θ

( f , p0) 7−→
�
S VtV

2 (0, f , p0)

S VtV
1 (0, f , p0)

�
.

Problem (4.38) can be solved iteratively using Jacobi iteration or GMRES. The former
choice yields an algorithm equivalent to the OSWR algorithm with Ventcell transmis-
sion conditions and is written as follows: starting with a given initial guess g0

i, j on
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Γ× (0, T ) for the first iteration,

−uuu0
i · nnni +αi, j p0

i,Γ+ βi, j

�
s j∂t p0

i,Γ + divτ (KKK j,ΓKKK
−1
i,Γuuu

0
Γ,i)
�
= g0

i, j,

then at the kth iteration, k = 1, . . . , solve in each subdomain the problem, for i =

1,2, j = 3− i :

si∂t p
k
i + div uuuk

i = f in Ωi × (0, T ),
KKK−1

i uuuk
i +∇pk

i = 0 in Ωi × (0, T ),
pk

i = 0 on
�
∂Ωi ∩ ∂Ω

�
× (0, T ),

−uuuk
i · nnni +αi, j pk

i,Γ + βi, j

�
s j∂t pk

i,Γ+ divτ uuuk
Γ,i

�
=

−uuuk−1
j · nnni +αi, j pk−1

j,Γ + βi, j

�
s j∂t p

k−1
j,Γ + divτ (KKK j,ΓKKK

−1
i,Γuuuk−1

Γ, j )
�

on Γ× (0, T ),

KKK−1
j,Γ uuuk

Γ,i +∇τpk
i,Γ = 0 on Γ× (0, T ),

pk
i,Γ = 0 on ∂ Γ× (0, T ),

pk
i (·, 0) = p0 in Ωi × (0, T ),

pk
i,Γ(·, 0) = p0|Γ on Γ.

(4.39)

Remark 4.13. The proof of the convergence of algorithm (4.39) is more complicated than

in the Robin case (see Subsection 2.3.2.1). The counterpart of algorithm (4.39) in primal

form was proved to converge in [62] and one should be able to obtain the same results

with mixed formulations. However, we haven’t had time to pursue that here.

As in the case with Robin transmission conditions (see Chapter 2), the interface
problem with Ventcell transmission conditions, problem (4.38), is defined on the whole
time interval (0, T ), where its left and right hand sides are computed by solving the
subdomain problems in each subdomain over (0, T ). Thus one may use different time
steps in the subdomains and then exchange the interface data over the whole time
interval using the projections introduced in Section 2.4.

4.2.4 Nonconforming discretization in time

We consider semi-discrete problems in time with nonconforming time grids. Let T1 and
T2 be two possibly different partitions of the time interval (0, T ) into sub-intervals (see
Figure 4.6). We denote by J i

m the time interval (t i
m, t i

m−1] and by ∆t i
m := (t i

m − t i
m−1)

for m = 1, . . . , Mi and i = 1,2. For the approximation in time, we use the lowest order
discontinuous Galerkin method as in Chapter 2. We denote by P0(Ti, L2(Γ)), i = 1,2,
the space of piecewise constant functions in time on grid Ti with values in L2(Γ):

P0(Ti, L2(Γ)) :=
¦
θ : (0, T )→W, θ is constant on J i

m, ∀m= 1, . . . , Mi

©
.

0

T

Ω1 Ω2

∆t1
m

∆t2
m

x

t

Figure 4.6: Nonconforming time grids in the subdomains.
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The semi-discrete-in-time counterpart of the Ventcell-to-Ventcell operator (4.35),
which is still denoted by S VtV

i , is defined by

S VtV
i : P0(Ti, L2(Γ))× L2(0, T ; L2(Ωi))×H1,1

∗ (Ωi) → P0(Ti, L2(Γ))

(ϑ, f , p0) 7−→ S VtV
i (ϑ, f , p0),

with

S VtV
i (ϑ, f , p0) := −uuum

i · nnn j|Γ +α j,i pm
i,Γ +β j,i

 
si

pm
i,Γ − pm−1

i,Γ

∆tm
i

+ divτ (KKK i,ΓKKK
−1
j,Γuuu

m
Γ,i)

!
,

∀m = 1, . . . , Mi .

To exchange the interface data on nonconforming time grids, we use the L2 pro-
jection Π ji from the space P0(Ti, L2(Γ)) onto P0(T j, L2(Γ)) (see Chapter 2), defined
by

Π ji (θ) |J j
m
=

1

| J j
m |

Mi∑

l=1

∫

J
j
m∩J i

l

θ , ∀m= 1, . . . , M j . (4.40)

With this projection, the semi-discrete in time counterpart of (4.37) is weakly enforced
over each time sub-interval, in the same way as was done for the Robin transmission
conditions (Subsection 2.4.2):

∫

Γ

∫

J1
m

ϑ1 −Π12

�
S VtV

2 (ϑ2, f , p0)
�

d t = 0, ∀m= 1, . . . , M1,

∫

Γ

∫

J2
m

ϑ2 −Π21

�
S VtV

1 (ϑ1, f , p0)
�

d t = 0, ∀m= 1, . . . , M2.

In the next subsection, we study the numerical behavior of the method with Ventcell
transmission conditions with nonconforming time grids. We compare it with the two
algorithms introduced and analyzed in Chapter 2.

4.2.5 Numerical results

As stated in Remark 4.7, we now change the notation and consider the diffusion prob-
lem as follows:

φ∂t c + div rrr = f , in Ω× (0, T ) ,
∇c+ DDD−1rrr = 0, in Ω× (0, T ) ,

c(·, 0) = c0, in Ω,
c = 0, ∂Ω× (0, T ).

(4.41)

We consider the first two test cases of Section 2.5 for homogeneous and heterogeneous
media respectively. Recall that the computational domain Ω is a unit square which
is decomposed into two nonoverlapping subdomains Ω1 = (0,0.5)× (0,1) and Ω2 =

(0.5,1)× (0,1), and the final time is T = 1. The porosity is φ1 = φ2 = 1 and the
diffusion is an isotropic tensor, DDDi = diIII , i = 1,2, where III is the 2D identity matrix.
The diffusion coefficient di, i = 1,2, is assumed to be constant in each subdomain. The
source term is f = 0, and an initial condition is

c0 = exp
�
(x − 0.55)2+ 0.5(y − 0.5)2

�
. (4.42)
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Just as in the stationary case (see Subsection 4.1.5), for the discretization in space
we use mixed finite elements (with Lagrange multipliers on the space-time interface)
with the lowest Raviart-Thomas spaces on rectangles (cf. Appendix B.5). We refer
to Appendix A.2.1 for the calculation of the optimized two-sided Robin and weighted
Ventcell parameters used for the numerical results in this section.

Remark 4.14. To compare the convergence behavior of Ventcell transmission conditions

with the two methods presented in Chapter 2, we will use GMRES and plot the error in the

concentration c and in the vector field rrr versus the number of subdomain solves (instead

of the number of iterations) (see Remark 2.21). However, a more appropriate comparison

would be considered after (such as using CPU time) since the cost per subdomain solve

corresponding to Ventcell boundary conditions is more costly than that of Robin conditions

(due to the introduction of Lagrange multipliers on the interface).

4.2.5.1 A test case with a homogeneous medium

The diffusion coefficient is continuous across the interface, d1 = d2 = 0.02. The mesh
and the time grids are conforming in the subdomains, and ∆x1 =∆x2 = ∆x = 1/200
and∆t1 =∆t2 =∆t = 1/200. We first verify that the multidomain solution converges
to the monodomain solution as the number of iterations increases. We start with a zero
initial guess on the interface and compute, at each iteration of GMRES, the error in
the L2(0, T ; L2(Ω))-norm of the difference between the multidomain solution and the
monodomain solution. Figure 4.7 shows that the error goes to zero when the number
of iterations goes to infinity, which confirms the theoretical equivalence between the
multidomain problem and the monodomain problem.

5 10 15 20 25
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of iterations

R
el

at
iv

e 
er

ro
r

 

 

Error in c
Error in r

Figure 4.7: L2 − L2 error in the concentration c and in the vector field rrr of the
difference between the multidomain solution and the monodomain solution, using

optimized Ventcell parameters.

Next, we analyze the convergence behavior of the method with Ventcell transmis-
sion conditions and compare it with the two methods analyzed in Chapter 2. We con-
sider the error equation, i.e. c0 = 0, and use a random initial guess on the space-time
interface. In Figure 4.8, we plot the error in the concentration c and the vector field
rrr versus the number of subdomain solves for the different algorithms (using GMRES):
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Method 1 with Neumann-Neumann preconditioner, Method 2 with optimized 2-sided
Robin parameters and Method 2 with optimized weighted Ventcell. We see that the op-
timized weighted Ventcell improves the convergence of the optimized two-sided, but it
is still slower than that of the preconditioned Method 1. For pure diffusion problems
and with continuous coefficients, it seems that the preconditioned Method 1 is the best
choice.
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Figure 4.8: L2 − L2 error in the concentration c and in the vector field rrr with GMRES
for the different algorithms.

To check the performance of the optimized parameters, we plot the error in the
concentration after 14 Jacobi iterations for various values of α and β as depicted in
Figure 4.9. We see that optimized weighted Ventcell parameters (the red star), which
are calculated by numerically minimizing the convergence factor (see Appendix A.2),
are not far from the zone giving the small errors after the same number of iterations .
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Figure 4.9: Level curves for the error in the vector field for various values of α and β ,
where the red star shows the optimized Ventcell parameters.
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To study the asymptotic behavior of the algorithm with Ventcell transmission con-
ditions, we show in Table 4.2 the number of subdomain solves needed to reach an
error reduction of 10−6 first in c and then in rrr (in square brackets) when refining
the mesh in space and in time, with the ratio of ∆x2 to ∆t constant. We observe
that the convergence has a weak dependence on the mesh size of the spatial and time
discretizations. In contrast to the stationary case, GMRES does not improve the con-
vergence speed compared to Jacobi iterations, which is similar to the case of optimized
Robin parameters (see Subsection 2.5.1). This is explained by the fact that GMRES
is not well-adapted to dynamic systems and, as mentioned in Chapters 2 and 3, a
convolution-based approach (see, e.g., [98, 86]) should be considered instead.

∆x ∆t Jacobi GMRES
1/10 1/100 14 [19] 14 [17]
1/20 1/400 14 [22] 15 [20]
1/40 1/1600 15 [25] 16 [24]
1/80 1/6400 16 [29] 17 [27]

Table 4.2: Number of subdomain solves needed to reach an error reduction of 10−6

for continuous coefficients, using optimized Ventcell parameters.

4.2.5.2 A test case with a heterogeneous medium

We consider the case in which the diffusion coefficients are discontinuous across the
interface: d1 6= d2. These coefficients are shown in Table 4.3, together with the non-
conforming time discretizations in the subdomains adapted to different diffusion ratios
D = d2/d1. For the spatial discretization, we use a conforming rectangular mesh with
∆x1 =∆x2 =∆x = 1/200.

D d1 1/∆t1 d2 1/∆t2

10 0.02 150 0.2 200
100 0.002 50 0.2 200
1000 0.0002 20 0.2 200

Table 4.3: Diffusion coefficients and corresponding nonconforming time steps.

As in the first test case, we compare the convergence behavior of the different algo-
rithms by solving the error equation, i.e. c0 = 0. We start with a random initial guess
and compute the error in c and in rrr at each iteration of GMRES. The results are depicted
in Figure 4.10 for D = 10, D = 100 and D = 1000 respectively. We observe results sim-
ilar to those obtained in the stationary case with discontinuous coefficients: the larger
the diffusion ratio, the smaller the difference between the optimized weighted Ventcell
and optimized 2-sided Robin. Consequently, for large D the convergence of three al-
gorithms - the preconditioned Method 1, Method 2 with optimized Robin parameters
and Method 2 with optimized weighted Ventcell parameters - are comparable.

In order to check the performance of the optimized parameter, in Figure 4.11 we
plot the error in the vector field after 12 Jacobi iterations for various values of α and
β for ratio D = 10. We observe that with discontinuous coefficients, the optimization
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Figure 4.10: L2− L2 error in the concentration c and in the vector field rrr with GMRES
for the different algorithms and different diffusion ratios (the same legend applies to

all three subfigures).

works well since the optimized parameters are located very close to the zone with
smallest errors.

To verify the asymptotic behavior of Method 2 with optimized weighted Ventcell
parameters, we show in Table 4.4 the number of subdomain solves required to reach a
reduction of 10−6 of the errors in the concentration and in the vector field (in square
brackets) when refining the mesh in space and in time, with ∆x2/∆t = const. We observe
that the convergence of the optimized weighted Ventcell is almost independent of the
discretizations for different diffusion ratios and as in the stationary case, GMRES does
not improve either the convergence speed or the asymptotic results compared to Jacobi
iterations.

Next, we check that Ventcell transmission conditions with nonconforming time
grids preserve the accuracy in time. We use the initial condition c0 6= 0 defined in
(4.42). We consider four initial time grids (for ∆tc and ∆t f given), which we then
refine several times by a factor of 2:

• Time grid 1 (fine-fine): conforming with ∆t1 =∆t2 =∆t f .

• Time grid 2 (coarse-fine): nonconforming with ∆t1 =∆tc and ∆t2 =∆t f .
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Figure 4.11: Level curves for the error in rrr after 12 Jacobi iterations for various values
of the parameters α and β . The red star shows the optimized parameters.

∆x ∆t
D= 10 D = 100

Jacobi GMRES Jacobi GMRES
1/10 1/100 11 [10] 9 [9] 8 [8] 7 [7]
1/20 1/400 12 [12] 10 [10] 9 [8] 9 [9]
1/40 1/1600 12 [12] 11 [11] 9 [8] 9 [9]
1/80 1/6400 12 [12] 11 [12] 10 [10] 9 [9]

Table 4.4: Number of subdomain solves needed to reach an error reduction of 10−6

for different diffusion ratios, using optimized weighted Ventcell parameters.

• Time grid 3 (fine-coarse): nonconforming with ∆t1 =∆t f and ∆t2 =∆tc.

• Time grid 4 (coarse-coarse): conforming with ∆t1 =∆t2 =∆tc .

For D = 10, we take ∆tc = 1/94 and ∆t f = 1/128; for D = 100, we take ∆tc = 1/40
and ∆t f = 1/160. In space, we fix a conforming rectangular mesh and we compute
a reference solution by solving problem (4.41) directly on a very fine time grid, with
∆t =∆t f /2

6. The converged multidomain solution is such that the relative residual is
smaller than 10−11.

Figure 4.12 shows the error in the L2(0, T ; L2(Ω))-norm of the concentration c

versus the maximum length of the time steps, max
i
∆t i , for D = 10 (left) and D =

100 (right). We see that for both cases Method 2 with optimized Ventcell parameters
with nonconforming grids preserves the accuracy in time of the solution: firstly, the
error with nonconforming time steps is in between that of the conforming coarse and
conforming fine time steps; secondly, first-order convergence of the scheme is obtained
for nonconforming grids; thirdly, the error for Time grid 2 (nonconforming with a finer
time step in Ω2 where the diffusion coefficient is larger) is close to that of Time grid 1
(conforming fine).
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Figure 4.12: L2 − L2 error in c of the difference between the reference and the
multidomain solutions versus the time step size for D = 10 (left) and D= 100 (right),

using Ventcell transmission conditions.

4.3 Time-dependent advection-diffusion problems

As in the Robin case, we extend the OSWR method with Ventcell transmission condi-
tions (derived in the previous section) to the advection-diffusion problem (cf. (3.1))
written in mixed form:

φ∂t c + div (uuuc + rrr) = f in Ω× (0, T ),
DDD−1rrr +∇c = 0 in Ω× (0, T ),

c = 0 on ∂Ω× (0, T ),
c(·, 0) = c0 in Ω.

(4.43)

We use operator splitting as in the previous chapter to treat differently the advection
and the diffusion equations. Details about the discretizations in space and in time, the
derivation of the monodomain problem and its associated multidomain problem in the
operator splitting context, and the corresponding notation can be found in Sections 3.1
and 3.2. Here we only point out the differences when Ventcell transmission conditions
are used and then formulate the interface problem for this case.

4.3.1 An extension of the OSWR with Ventcell transmission conditions
and operator splitting

Recall that due to operator splitting, the transmission conditions consists of one equa-
tion (cf. (3.6)) for the advection steps and two equations (cf. (3.8)) for the diffusion
step. The Ventcell transmission conditions can be used only for the latter (as for the
Robin case, see Section 3.2) and the former will be treated in the same way as in Chap-
ter 3. Thus we just replace the transmission conditions (3.8) for the diffusion equation
by Ventcell transmission conditions (under a suitable regularity hypothesis). To write
the discrete Ventcell transmission conditions, we first introduce the following notation:
Let

Mh,i ×Σh,i ⊂ L2(Ωi)×H(div,Ωi)

be the usual mixed finite element approximation made of Raviart-Thomas (and Nédélec
in three dimensions) spaces of lowest order (see, e.g., [22, 104] and Appendix B), and
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let
Λh×Σh,Γ ⊂ L2(Γ)×H(divτ,Γ)

be the lowest order Raviart-Thomas mixed finite element space defined on the inter-
face Γ.

The discrete Ventcell transmission conditions, equivalent to (3.8), for the diffusion
equation is defined by: for n= 0, . . . , N − 1,

∫

E

−rrrn+1
h,1 · nnn1 +α1,2cn+1

1,Γ + β1,2

 
φ2

cn+1
1,Γ − cn

1,Γ

∆t
+ divτ rrrn+1

Γ,1

!
=

∫

E

−rrrn+1
h,2 · nnn1 +α1,2cn+1

2,Γ + β1,2

 
φ2

cn+1
2,Γ − cn

2,Γ

∆t
+ divτ (DDD2,ΓDDD

−1
1,Γrrrn+1

Γ,2 )

!
, ∀E ∈ Gh,

∫

E

−rrrn+1
h,2 · nnn2 +α2,1cn+1

2,Γ + β2,1

 
φ1

cn+1
2,Γ − cn

2,Γ

∆t
+ divτ rrrn+1

Γ,2

!
=

∫

E

−rrrn+1
h,1 · nnn2 +α2,1cn+1

1,Γ + β2,1

 
φ1

cn+1
1,Γ − cn

1,Γ

∆t
+ divτ (DDD1,ΓDDD

−1
2,Γrrrn+1

Γ,1 )

!
, ∀E ∈ Gh,

∫

Γ

DDD−1
2,Γrrrn+1

Γ,1 · vvvΓ−
∫

Γ

cn+1
1,Γ divτ vvvΓ = 0, ∀vvvΓ ∈ Σh,Γ,

∫

Γ

DDD−1
2,Γrrrn+1

Γ,2 · vvvΓ−
∫

Γ

cn+1
2,Γ divτ vvvΓ = 0, ∀vvvΓ ∈ Σh,Γ,

(4.44)
where αi, j and βi, j, i = 1,2, j = 3− i, are positive constants, ci,Γ, i = 1,2, (which
is equal to λn+1

h,i in (3.8)) represents the trace of the subdomain concentration on the
interface. Note that (4.44) is the discrete counterpart of the Ventcell transmission
conditions in derived Section 4.2 for pure diffusion problems (cf. (4.23)).

In order to define the interface problem of the method, we introduce the solution
operators Vi, i = 1,2, which associate to an L2(0, T ; L2(Ωi)) source term f together
with H1,1

∗ (Ωi) initial data c0 and discrete boundary data
�
λa,θ

�
given on Γ× (0, T ),

the solution of the discrete advection-diffusion problem in Ωi × (0, T ) which is defined
below (problem (4.45)-(4.46)). Input

λa =
�
λ

n,l
h,a

�
n=0,...,N−1, l=0,...,L−1

and θ =
�
θ n

h

�
n=1,...,N

are Dirichlet data for the advection equation and Ventcell data for the diffusion equa-
tion respectively.

The initial data c0 ∈ H1,1
∗ (Ωi) is discretized by L2 projections onto Mh,i and onto

Λh:

�
c0
h,i

�
|K

:=
1

meas(K)

∫

K

c0, ∀K ∈Kh,i and
�

c0
i,Γ

�
|E

:=
1

meas(E)

∫

E

c0, ∀E ∈ Gh.

Then for given
�
λa,θ , f , c0

�
, the discrete subdomain problem is defined by:

For n= 0, . . . , N − 1,

1. initialize c0
i,Γ by projecte
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2. define c
n,0
h,i = cn

h,i ,

3. for l = 0, . . . , L − 1,

(a) define the upwind values

ĉ
n,l
h,i =Uh,i

�
c

n,l
h,i ,λn,l

h,a

�
,

(b) solve the advection equation

∫

K

φi

c
n,l+1
h,i − c

n,l
h,i

∆ta

+
∑

E⊂∂ K

∫

E

ĉ
n,l
h,i (uuu · nnnK) = 0, ∀K ∈Kh,i, (4.45)

with initial data c
n,l
h,i and obtain c

n,l+1
h,i ,

4. solve the diffusion equation

∫

K

φi

cn+1
h,i − c

n,L
h,i

∆t
+

∫

K

div rrrn+1
h,i =

∫

K

f (tn+1), ∀K ∈Kh,i ,

∫

Ωi

DDD−1
i rrrn+1

h,i · vvv−
∫

Ωi

cn+1
h,i div vvv +

∫

Γ

cn+1
i,Γ (vvv · nnni) = 0, ∀vvv ∈ Σh,i ,

∫

E

−rrrn+1
h,i · nnni +αi, jc

n+1
i,Γ + βi, j

 
φ j

cn+1
Γ,i − cn

Γ,i

∆t
+ divτ rrrn+1

Γ,i

!
=

∫

E

ϑ, ∀E ∈ Gh,

∫

Γ

DDD−1
j,Γ rrrn+1

Γ,i · vvvΓ −
∫

Γ

cn+1
Γ,i divτ vvvΓ = 0, ∀vvvΓ ∈ Σh,Γ,

(4.46)
with initial data c

n,L
h,i and cn

i,Γ, and obtain
�

cn+1
h,i , rrrn+1

h,i , cn+1
i,Γ , rrrn+1

Γ,i

�
.

The solution operator Vi, i = 1,2, is now defined by

Vi :
�
Λh

�N×L×
�
Λh

�N × L2(0, T ; L2(Ωi))×H1,1
∗ (Ωi)

→
�

Nh,i

�N ×
�

Mh,i

�N×L ××
�
Σh,i

�N ×
�
Λh

�N ×
�
Σh,Γ

�N

�
λa,ϑ, f , c0

�
7→
�

ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i , c∆t
Γ,i , rrr∆t

Γ,i

�
,

where
ĉ
∆t,∆ta

h,i =
�

ĉ
n,l
h,i

�
n=0,...,N−1, l=0,...,L−1

,

and �
c∆t
h,i , rrr∆t

h,i , c∆t
Γ,i , rrr∆t

Γ,i

�
=
�

cn
h,i , rrrn

h,i, cn
Γ,i , rrrn

Γ,i

�
n=1,...,N

.

As in the Robin case, to impose the transmission condition for the advection equa-
tion, we define the projection operatorsH i, i = 1,2, which extract the first component
of the output of Vi:

H i :
�

Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N ×
�
Λh

�N ×
�
Σh,Γ

�N →
�
Λh

�N×L

�
ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i , c∆t
Γ,i , rrr∆t

Γ,i

�
7→





0, ∀E ∈ G in
h,i ,�

ĉ
∆t,∆ta

h,i

�
|E

, ∀E ∈ G in
h, j , with j = 3− i.
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Now for the diffusion equation, we define the interface operators to transmit Vent-
cell data between the subdomains

B i :
�

Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N ×
�
Λh

�N ×
�
Σh,Γ

�N →
�
Λh

�N

�
ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i , c∆t
Γ,i , rrr∆t

Γ,i

�
7→

�
−rrr∆t

h, j · nnni +αi, jc
∆t
j,Γ + βi, j

�
φ j∂t c

∆t
j,Γ + divτ (DDD j,ΓDDD

−1
i,Γrrr∆t

Γ, j)
��
|E

,∀E ∈ Gh,

where

∂t c
∆t
j,Γ :=

 
cn+1

j,Γ − cn
j,Γ

∆t

!

n=0,...,N−1

.

With these operators, the interface problem corresponding to the transmission con-
dition for the advection quation and Ventcell transmission conditions for the diffusion
equation is:

Find
�
λa,ϑ1,ϑ2

�
∈ (Λh)

N×L × (Λh)
N × (Λh)

N such that
∫ tn,l+1

tn,l

∫

E

λa −H 1V1(λa,ϑ1, f , c0)−H 2V2(λa,ϑ2, f , c0) = 0,

∫ tn+1

tn

∫

E

ϑ1 −B1V2(λa,ϑ2, f , c0) = 0,

∫ tn+1

tn

∫

E

ϑ2 −B2V1(λa,ϑ1, f , c0) = 0,

∀E ∈ Gh, ∀n= 0, . . . , N − 1, ∀l = 0, . . . , L − 1.

(4.47)

Note that the composite operator B iVi, i = 1,2, is a discrete Ventcell-to-Ventcell type
operator and the last two equations of (4.47) are an extension of the discrete counter-
part of the interface problem (4.37) for pure diffusion equations. As usual, we solve
(4.47) iteratively using Jacobi iterations or GMRES.

As in all the time-dependent considered, the domain decomposition method is de-
rived globally in time so that different time steps in the subdomains, ∆t1 6= ∆t2, can
be used. In the next subsection, we briefly describe the weakly enforcement of the
Ventcell transmission conditions over the time interval with nonconforming time grids
in the operator splitting context. In fact, it is done just as in Chapter 3 for Robin
transmission conditions.
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4.3.2 Nonconforming time discretizations

0

T

Ω1 Ω2

L1∆t1,a =∆t1 ∆t2 = L2∆t2,a
T = N1∆t1 = N2∆t2

x

t

Figure 4.13: Nonconforming time grids in the subdomains.

We first recall notation which was defined earlier in Section 3.3. Let T1 and T2 be
two different uniform partitions of the time interval (0, T ) into N1 and N2 sub-intervals
respectively with lengths ∆t1 and ∆t2, respectively (see Figure 4.13). The sub-time
step for the advection in each subdomain is defined by

∆t i = Li∆t i,a, i = 1,2,

and we denote by T a
i , i = 1,2, the corresponding partition in time for the advection.

We denote by P0(Ti,Λh) the space of piecewise constant functions in time on grid Ti

with values in Λh. Then define Πi j the average-valued projection from P0(T j,Λh) to
P0(Ti,Λh) (see (4.40)), and Πa

i j the projection from P0(T a
j ,Λh) to P0(T a

i ,Λh) as in
Section 3.3.

The transmission condition for the advection is weakly enforced in time in a same
way as it was done in Section 3.3 and that for the diffusion is handled like in the pure
diffusion case (see the previous section, Subsection 4.2.4). In particular, we choose
λa to be piecewise constant in time on one grid, for instance, T a

2 and choose ϑi to be
piecewise constant on grid Ti, problem (4.47) then becomes

Find
�
λa,ϑ1,ϑ2

�
∈ (Λh)

N2×L2 × (Λh)
N1 × (Λh)

N2 such that
∫ t

n,l+1
2

t
n,l
2

∫

E

λa −Πa
21

�
H 1V1(Π

a
12(λa),ϑ1, f , c0)

�
−H 2V2(λa,ϑ2, f , c0) = 0,

∫ tm+1
1

tm
1

∫

E

ϑ1 −Π12

�
B1V2(λa,ϑ2, f , c0)

�
= 0,

∫ tn+1
2

tn
2

∫

E

ϑ2 −Π21

�
B2V1(Π

a
12(λa),ϑ1, f , c0)

�
= 0,

∀E ∈ Gh, ∀m= 0, . . . , N1− 1, and ∀n= 0, . . . , N2 − 1, ∀l = 0, . . . , L2 − 1.

4.3.3 Some comments on the approach with Ventcell transmission condi-
tions and operator splitting

Due to operator splitting, on the space-time interface Dirichlet conditions are imposed
on the inflow boundary for the advection equation and Ventcell conditions are used
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for the diffusion equation only. In some way, we do not completely take advantage
of the optimized Ventcell transmission conditions as one could do with a fully implicit
scheme (see, e.g. [62]) in which the tangential component of the advection on the
interface is also taken into account and thus the optimized parameters depend on the
advection field as well. As a result, information exchange is significantly enhanced,
especially when advection is dominant. On the other hand, we observe in Section 4.2
that for pure diffusion equations and for a symmetric two subdomains, the convergence
of optimized weighted Ventcell and optimized 2-sided Robin is comparable when the
diffusion ratio is sufficiently large. Because of the operator splitting, such a result
might be true here for the advection-diffusion equation andfor a decomposition into
two subdomains (when many subdomains are considered, the Ventcell transmission
conditions may significantly improve the convergence compared with the Robin ones
[73]) . We thus have not carried out numerical experiments for the algorithm derived
this section. However, it could be interesting to compare the performance of such an
algorithm with the fully implicit one with Ventcell transmission conditions.

Conclusion

We have formulated in mixed formulations the multidomain problems with Ventcell
transmission conditions for three different types of PDEs. For the stationary and the
time-dependent diffusion problems, the associated subdomain problems with Ventcell
boundary conditions are proved to be well-posed. For each case, an interface problem
with two Lagrange multipliers is derived through an introduction of what’s called (time
dependent) Ventcell-to-Ventcell operators. For time-dependent problems, such an in-
terface problem is defined over the time interval and thus different time steps can be
used in the subdomains. Numerical experiments in 2D for the two subdomain case for
the elliptic and the time-dependent diffusion equations are shown. For homogeneous
problems, the optimized Ventcell parameters improve significantly the convergence
speed compared to the optimized 2-sided Robin parameters (by a factor of 2 with Ja-
cobi iterations). For heterogeneous problems, we use the optimized weighted Ventcell
parameters adapted to the jumps in the coefficients and we observe that the stronger
the heterogeneity the smaller the difference between the convergence of the optimized
weight Ventcell and of optimized 2-sided Robin. The results are valid for both station-
ary and time-dependent diffusion problems, and for conforming spatial discretizations
of two symmetric subdomains. We verify for different diffusion ratios that the Ventcell
transmission conditions with nonconforming time grids preserve the accuracy in time
of the solution. For the advection-diffusion problems, we derive the discrete multido-
main formulation in the context of operator splitting and obtain an interface problem
in which the Ventcell transmission conditions are used for the diffusion only. The nu-
merical results have not been implemented yet due to a question as to the efficiency of
the algorithm (cf. Subsection 4.3.3) as well as for lack of time.
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An ideal place to apply the domain decomposition methods derived in the previous
chapters is where there exist fractures and faults-"fast paths". In such a case, the water
flow rapidly through these paths while it moves much more slowly through the rock
matrix. As a result, the contaminants present in the porous medium may follow the
water and they are transported faster than in the case with no fracture. Thus the time
scales in the fractures and in the surrounding medium are very different and in the
context of simulation, one should use much smaller time steps in the fractures than
in the rock matrix. Here we consider the case in which the domain is separated into
two matrix subdomains by a fracture. The permeability in the fracture can be larger
or smaller than that in the surrounding medium. The former corresponds to a fast
pathway and the latter corresponds to a geological barrier. Here we are interested in
the "fast path" fracture and we aim to use space-time domain decomposition methods to
model flow and transport problems in a porous medium containing such a fracture. A
straightforward application of what has been presented in the previous chapters would
be then to consider the fracture as a third subdomain and to take smaller time steps
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there. We consider instead however a reduced model in which the fracture is treated
as an interface between the two subdomains. We first consider the compressible flow
for the reduced model and prove its well-posedness using Galerkin’s method, then we
extend the two methods, the one using the Steklov-Poincaré type operator and the
one using the Optimized Schwarz waveform relaxation (OSWR) approach, to handle
this model problem. Extension of the former is straightforward while for the latter a
new idea is needed. A linear combination between the pressure continuity equation
and the fracture problem is used as a transmission condition, and a free parameter is
used to accelerate the convergence rate. We write the space-time interface problem
for each method and consider the corresponding semi-discrete problem in time where
different time discretizations are used. Numerical experiments are carried out to verify
the performance of the two methods. We then extend these results to the advection-
diffusion problem where we use operator splitting as considered in Chapter 3. We
formulate the fully discrete interface problem for each method and discuss the use of
nonconforming time grids in this case.

5.1 The compressible flow model of a single-phase fluid

For an open, bounded domain Ω of Rd (d = 2,3) with Lipschitz boundary ∂Ω and
some fixed time T > 0, we consider the compressible flow problem written in mixed
form as follows

s∂t p+ div uuu = q in Ω× (0, T ),
uuu = −KKK∇p in Ω× (0, T ),
p = 0 on ∂Ω× (0, T ),

p(·, 0) = p0 in Ω.

(5.1)

Recall (see Chapter 1) that p is the pressure, uuu the velocity, q the source term, s the
storage coefficient and KKK a symmetric time independent hydraulic conductivity (or
permeability) tensor. As in the earlier chapters, for simplicity we have imposed the
homogeneous Dirichlet condition on the boundary.

We suppose that the fracture Ω f , with variable thickness δ(·), is a subdomain of
Ω and separates Ω into two connected subdomains (see Figure 5.1, left where for
visualization purposes the size of δ is shown as being much larger than it is in reality),

Ω \Ω f = Ω1 ∪Ω2, Ω1 ∩Ω2 = ;.

Also for simplicity we assume that Ω f consists of the intersection with Ω of a line or
plane γ (depending on whether d = 2 or 3), together with the points xxx = xxxγ + snnnγ

where xxxγ ∈ γ, s ∈
�
−
δ(xxxγ)

2
,
δ(xxxγ)

2

�
and nnnγ is a unit vector normal to γ. We denote

by γi the part of the boundary of Ωi shared with the boundary of the fracture Ω f :

γi =
�
∂Ωi ∩ ∂Ω f

�
∩Ω, i = 1,2,

and we denote by nnni the unit, outward pointing, normal vector field on ∂Ωi. We use
the convention that for any scalar, vector or tensor valued function φ defined on Ω, φi

denotes the restriction of φ to Ωi, i = 1,2, f . We rewrite problem (5.1) as the following
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Ω1 Ω2

nnn1

nnn2

γ1 γ2

Ω f

δ

Ω1 Ω2

nnn1

nnn2

γ

Figure 5.1: Left: The domain Ω with the fracture Ω f . Right: The domain Ω with the
interface-fracture γ.

transmission problem:

si∂t pi + div uuui = qi in Ωi × (0, T ), i = 1,2, f ,
uuui = −KKK i∇pi in Ωi × (0, T ), i = 1,2, f ,
pi = 0 on

�
∂Ωi ∩ ∂Ω

�
× (0, T ), i = 1,2, f ,

pi = p f on γi × (0, T ), i = 1,2,
uuui · nnni = uuu f · nnni on γi × (0, T ), i = 1,2,
pi(·, 0) = p0,i in Ωi, i = 1,2, f .

(5.2)

Modeling flow in porous media with fractures is challenging and requires a multi-
scale approach: firstly, the fractures represent strong heterogeneities as they have much
higher or much lower permeability than that in the surrounding medium; secondly, the
fracture width is much smaller than any reasonable parameter of spatial discretization.
Thus one might need to refine the mesh locally around the fractures to tackle the prob-
lem, which is well-known to be very computationally costly and is not useful at the
macroscopic scale (i.e. when the fractures can be modeled individually). One possible
approach is to treat the fractures as (d − 1)−dimensional interfaces between subdo-
mains (see [10, 5, 40, 92, 8, 110, 42] and the references therein) so that one can avoid
refining locally around the fractures. We pointed out that in these reduced fracture
models, unlike in some discrete fracture models, the interactions between the frac-
tures and the surrounding porous medium are taken into account. In the next section,
we consider a reduced model with a highly permeable fracture, which results in the
continuity of the pressure and discontinuity of the normal component of the velocity
across the fracture-interface. Then in Section 5.3 we consider a domain decomposition
approach for solving the resulting problem. Note that more general reduced models
that can handle both large and small permeability fractures [92] introduce more com-
plicated transmission conditions on the fracture-interface (in the form of Robin type
conditions), and it is not yet clear how to formulate an associated domain decomposi-
tion problem with a parameter that can be optimized.

5.2 A reduced fracture model

In the reduced fracture model, the fracture is treated as an interface γ between subdo-
mains Ω1 and Ω2 (see Figure 5.1, right). We use the notation ∇τ (respectively divτ )
for the tangential gradient (respectively tangential divergence) operators along the
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fracture γ. We denote by sγ and KKKγ the storage coefficient and the permeability tensor
in the fracture. A reduced model [5, 92] consists of the equations in the subdomains

si∂t pi + div uuui = qi in Ωi × (0, T ),
uuui = −KKK i∇pi in Ωi × (0, T ),
pi = 0 on

�
∂Ωi ∩ ∂Ω

�
× (0, T ),

pi = pγ on γ× (0, T ),
pi(·, 0) = p0,i in Ωi,

for i = 1,2, (5.3)

and in the fracture

sγ∂t pγ+ divτ uuuγ = qγ+
�

uuu1 · nnn1|γ+uuu2 · nnn2|γ
�

in γ× (0, T ),

uuuγ = −KKKγδ∇τpγ in γ× (0, T ),
pγ = 0 on ∂ γ× (0, T ),

pγ(·, 0) = p0,γ in γ.

(5.4)

This model may be derived by averaging across the transversal cross sections of the
fracture. It consists of the mass conservation equation and the Darcy equation in the
subdomain together with the lower dimensional mass conservation and Darcy equa-
tions in the fracture of co-dimension 1. These two systems are coupled: the fracture
sees the subdomain through the additional source term in the conservation equation in
the fracture (the second term on the right hand side) which represents the difference
of the fluid entering the fracture from the subdomain and that exiting through the sub-
domain. Each subdomain sees the fracture through the Dirichlet boundary condition
imposed on the common part of its boundary with the fracture.

In order to prove the well-posedness of problem (5.3)-(5.4) we first write its weak
formulation. As before, we use the convention that if V is a space of functions, then we
write VVV for a space of vector functions having each component in V . For an arbitrary
domain O , we denote by (·, ·)O the inner product in L2(O ) or L2(O )L2(O )L2(O ) and by and ‖ · ‖O
the L2(O )−norm or L2(O )L2(O )L2(O )-norm. To write the weak formulation of (5.3)-(5.4), we
define the following Hilbert spaces (see Remark 2.1):

M =
¦
µ = (µ1,µ2,µγ) ∈ L2(Ω1)× L2(Ω2)× L2(γ)

©
,

Σ =
�
vvv = (vvv1, vvv2, vvvγ) ∈ L2(Ω1)L2(Ω1)L2(Ω1)× L2(Ω2)L2(Ω2)L2(Ω2)× L2(γ)L2(γ)L2(γ) : div vvv i ∈ L2(Ωi), i = 1,2,

and divτ vvvγ−
2∑

i=1

vvv i · nnni|γ ∈ L2(γ)
	
,

equipped with the norms

‖µ‖2M =
2∑

i=1

‖µi‖2Ωi
+ ‖µγ‖2γ,

‖vvv‖2Σ =
2∑

i=1

�
‖vvv i‖2Ωi

+ ‖div vvv i‖2Ωi

�
+ ‖vvvγ‖2γ+ ‖divτ vvvγ−

2∑

i=1

vvv i · nnni|γ‖2γ.
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We define the following bilinear forms

a : Σ×Σ −→ R

(uuu, vvv) 7→ a(uuu, vvv) =

2∑

i=1

�
KKK−1

i uuui , vvv i

�
Ωi
+
�
(KKKγδ)

−1uuuγ, vvvγ
�
γ

,

b : Σ×M −→ R

(uuu,µ) 7→ b(uuu,µ) =
2∑

i=1

�
div uuui,µi

�
Ωi
+

 
divτ uuuγ−

2∑

i=1

uuui · nnni|γ,µγ

!

γ

,

cs : M ×M −→ R

(η,µ) 7→ cs(η,µ) =
2∑

i=1

�
siηi ,µi

�
Ωi
+
�

sγηγ,µγ
�
γ

,

and the linear form

Lq : M −→ R

µ 7→ Lq(µ) =

2∑

i=1

�
qi,µi

�
Ωi
+
�

qγ,µγ
�
γ

.

With these spaces and forms, the weak form of (5.3)-(5.4) can be written as follows:

For a.e. t ∈ (0, T ), find p(t) ∈ M and uuu(t) ∈ Σ such that

a(uuu, vvv)− b(vvv, p) = 0 ∀vvv ∈ Σ,
cs(∂t p,µ) + b(uuu,µ) = Lq(µ) ∀µ ∈ M ,

(5.5)

together with the initial conditions

pi(·, 0) = p0,i in Ωi, i = 1,2,
pγ(·, 0) = p0,γ in γ.

(5.6)

5.2.1 Existence and uniqueness of the solution

We first define the space

H1
∗,a(Ω) :=

¦
µ = (µ1,µ2,µγ) ∈ H1(Ω1)×H1(Ω2)×H1

0(γ) : µi = 0 on ∂Ωi ∩ ∂Ω
©

,

equipped with the norm

‖µ‖2
H1
∗,a(Ω)

= ‖µ‖2M +
2∑

i=1

‖∇µi‖2Ωi
+ ‖∇τµγ‖2γ.

The well-posedness of problem (5.5)-(5.6) is given by the following theorem:

Theorem 5.1. Assume that there exists four positive constants s− and s+, K− and K+
such that

• s− ≤ si(x)≤ s+ for a.e. x ∈ Ωi, i = 1,2,

• s− ≤ sγ(x)≤ s+ for a.e. x ∈ γ,

• ςT KKK−1
i (x)ς≥ K−|ς|2, and |KKK i(x)ς| ≤ K+|ς|, for a.e. x ∈ Ωi, ∀ς ∈ Rn, i = 1,2,

• ηT (KKKγ(x)δ)
−1η ≥ K−|η|2 and |(KKKγ(x)δ)−1η| ≤ K+|η| for a.e. x ∈ γ, ∀η ∈ Rn−1.
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If q is in L2(0, T ; M) and p0 in H1
∗,a(Ω) then problem (5.5)-(5.6) has a unique solution

(p,uuu) ∈ H1(0, T ; M)× L2(0, T ;Σ).

The proof of Theorem 5.1 is quite similar to that of Theorem 4.10. However, we
include it here for completeness. We again use Galerkin’s method and derive energy
estimates to prove the existence and uniqueness of the solution. The energy estimates
are given by the following lemma:

Lemma 5.2. Assume that q is in L2(0, T ; M) and p0 in H1
∗,a(Ω) then the following esti-

mate holds

‖p‖L∞(0,T ;M) + ‖∂t p‖L2(0,T ;M) + ‖uuu‖L2(0,T ;Σ) ≤ C
�
‖q‖L2(0,T ;M) + ‖p0‖H1

∗,a(Ω)

�
.

Proof. As usual we proceed by estimating successively p, ∂t p and uuu.

• Firstly, to derive an estimate for p, we take p(t) ∈ M and uuu(t) ∈ Σ as the test
functions in (5.5) and add

a(uuu,uuu) + cs(∂t p, p) = Lq(p).

Using the definitions of a and cs, and the hypotheses concerning the storage
coefficient and the permeability tensor in the subdomains and in the fracture as
well as the Cauchy-Schwarz inequality, we obtain

s−
2

d

d t
‖p‖2M + K−‖uuu‖2MMM ≤

1

2

�
‖q‖2M + ‖p‖

2
M

�
. (5.7)

Now integrate (5.7) over (0, t) for t ∈ (0, T], we find

s−‖p(t)‖2M + 2K−

∫ t

0

‖uuu‖2MMM ≤ ‖p0‖2M + ‖q‖
2
L2(0,T ;M)

+

∫ t

0

‖p‖2M .

Then we apply Gronwall’s lemma to obtain

‖p(t)‖2
L∞(0,T ;M) ≤ C

�
‖p0‖2M + ‖q‖

2
L2(0,T ;M)

�
,

and consequently,

‖uuu‖2
L2(0,T ;MMM )

≤ C
�
‖p0‖2M + ‖q‖

2
L2(0,T ;M)

�
. (5.8)

• Next, we estimate ∂t p. For this, we differentiate the first equation of (5.5) with
respect to t and take uuu as a test function. This yields

a(∂tuuu,uuu)− b(uuu,∂t p) = 0. (5.9)

Then take ∂t p as a test function in the second equation of (5.5)

cs(∂t p,∂t p) + b(uuu,∂t p) = Lq(∂t p). (5.10)

Now adding (5.9) and (5.10), we obtain

a(∂tuuu,uuu) + cs(∂t p,∂t p) = Lq(∂t p),
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or

s−‖∂t p‖2M +
K−
2

d

d t
‖uuu‖2MMM ≤

1

2
‖q‖2M +

1

2
‖∂t p‖2M .

Integrating this inequality over (0, t) for t ∈ (0, T], we have

s−

∫ t

0

‖∂t p‖2M + K−‖uuu(t)‖2MMM ≤ ‖q‖2L2(0,T ;M)
+ K−‖uuu(0)‖2MMM . (5.11)

There only remains to bound the term K−‖uuu(0)‖2MMM . Toward this end, we use the
first equation of (5.5) with vvv = uuu and for t = 0 (as usual, we assume that the
equation is valid at time t = 0 in a sense that the analysis is carried out through
the construction of finite dimensional approximations of the continuous problem
(see Chapter 2)):

K−‖uuu(0)‖2MMM ≤
2∑

i=1

�
div uuui(0), p0,i

�
Ωi
+

 
divτ uuuγ(0)−

2∑

i=1

uuui(0) · nnni|γ, p0,γ

!

γ

,

≤ −
2∑

i=1

�
uuui(0),∇p0,i

�
Ωi
−
�
uuuγ(0),∇τp0,γ

�
γ

,

≤
K−
2
‖uuu(0)‖2MMM +

1

2K−
‖p0‖H1

∗,a(Ω)
.

Substituting this into (5.11), we obtain

s−

∫ t

0

‖∂t p‖2M + K−‖uuu(t)‖2MMM ≤ C
�
‖q‖2

L2(0,T ;M)
+ ‖p0‖H1

∗,a(Ω)

�
.

Thus
‖∂t p‖2L2(0,T ;M)

≤ C
�
‖q‖2

L2(0,T ;M)
+ ‖p0‖H1

∗,a(Ω)

�
. (5.12)

• From (5.8), we only need to derive an estimate for div uuui, i = 1,2, and for

divτ uuuγ−
2∑

i=1

uuui ·nnni|γ to complete the proof. With this aim, we take
�
µ1,µ2,µγ

�
=

 
div uuu1, div uuu2, divτ uuuγ−

2∑

i=1

uuui · nnni|γ

!
as the test function in the second equation

of (5.5), we have

2∑

i=1

‖div uuui‖2Ωi
+ ‖divτ uuuγ−

2∑

i=1

uuui · nnni|γ‖2γ

=

2∑

i=1

(qi − si∂t pi, div uuui)Ωi
+ (qγ− sγ∂t pγ, divτ uuuγ−

2∑

i=1

uuui · nnni|γ)γ,

≤
2∑

i=1

�
1

2
‖qi − si∂t pi‖2Ωi

+
1

2
‖div uuui‖2Ωi

�
+

1

2
‖qγ−sγ∂t pγ‖2γ+

1

2
‖divτ uuuγ−

2∑

i=1

uuui·nnni|γ‖2γ,

or
2∑

i=1

‖div uuui‖2Ωi
+ ‖divτ uuuγ−

2∑

i=1

uuui · nnni|γ‖2γ ≤ ‖q‖
2
M + s+‖∂t p‖2M .
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Using (5.12), we obtain
∫ T

0

 
2∑

i=1

‖div uuui‖2Ωi
+ ‖divτ uuuγ −

2∑

i=1

uuui · nnni|γ‖2γ

!
≤ C

�
‖q‖2

L2(0,T ;M)
+ ‖p0‖H1,∗

0 (Ω)

�
.

This along with (5.8) gives the estimate for ‖uuu‖L2(0,T ;Σ), which completes the
proof of the lemma.

5.3 Two space-time domain decomposition methods

It is natural to apply domain decomposition methods for solving problem (5.2) or prob-
lem (5.3) - (5.4), especially since these allow different time steps in the subdomains
and in the fracture. For problem (5.2), it is a straightforward application of the meth-
ods derived in Chapter 2 while for problem (5.3) - (5.4), we need to derive a different
formulation. In the following, we present two global-in-time domain decomposition
methods for solving (5.3) - (5.4) based on different transmission conditions. A space-
time interface problem is derived for each approach, and it will be solved iteratively
using, for instance, GMRES as the system is nonsymmetric.

5.3.1 Method 1: Using the time-dependent Steklov-Poincaré operator

This method is directly derived from the formulation of problem (5.3) - (5.4). To obtain
the interface problem for this method, we define the space

H1,1
∗ (Ωi) :=

¦
q ∈ H1(Ωi) : q|∂Ωi∩∂Ω = 0 and q|γ ∈ H1(γ)

©
, i = 1,2,

which was also used in the Ventcell transmission conditions case (4.34). Then we
define the following Dirichlet to Neumann operators S DtN

i , i = 1,2 :

S DtN
i : H1(0, T ; L2(γ))× L2(0, T ; L2(Ωi))×H1

∗ (Ωi) → L2
�

0, T ; L2(γ)
�

S DtN
i (λ,q, p0) = uuui · nnni|γ,

where, (pi ,uuui), i = 1,2, is the solution of the problem

si∂t pi + div uuui = q in Ωi × (0, T ),
uuui = −KKK i∇pi in Ωi × (0, T ),
pi = 0 on

�
∂Ωi ∩ ∂Ω

�
× (0, T ),

pi = λ on γ× (0, T ),
pi(·, 0) = p0 in Ωi.

(5.13)

Remark 5.3. Subdomain problem (5.17) with Dirichlet boundary conditions is well-posed

(see Chapter 2).

Problem (5.4) is reduced to an interface problem with one unknown λ

sγ∂tλ+ divτ uuuγ = qγ+

2∑

i=1

S DtN
i (λ,qi, p0,i) in γ× (0, T ),

uuuγ = −KKKγδ∇τλ in γ× (0, T ),
λ = 0 on ∂ γ× (0, T ),

λ(·, 0) = p0,γ in γ.

(5.14)
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or equivalently

sγ∂tλ+ divτ uuuγ−
2∑

i=1

S DtN
i (λ, 0,0) = qγ+

2∑

i=1

S DtN
i (0,qi, p0,i) in γ× (0, T ),

uuuγ = −KKKγδ∇τλ in γ× (0, T ),
λ = 0 on ∂ γ× (0, T ),

λ(·, 0) = p0,γ in γ.
(5.15)

The discrete counterpart of this problem using the discontinuous Galerkin method of
order zero for time discretization and mixed finite elements for spatial discretization is
of the form

�
sγIII BBB

BBBT AAA

� 
 λn+1

h

UUUn+1
h,γ


−


 sγIII 0

0 0




 λn

h

UUUn
h,γ


−




∫ tn+1

tn

2∑

i=1

S DtN
h,i (λh, 0,0)

0


=




∫ tn+1

tn

 
Qγ+

2∑

i=1

S DtN
h,i (0,qi, p0,i)

!

0


 , (5.16)

for n = 0, . . . , N , (where N is the number of time intervals of a partition of (0, T )), or
in compact form (space-time),

S λh = χ.

This problem is solved iteratively as was done in the previous chapters.
To improve the convergence of the iterative algorithm, we will use a precondi-

tioner. We remark that the interface problem is dominated by the second order oper-
ator

�
divτ (KKKγδ∇τ)

�
since the permeability is larger in the fracture and the Steklov-

Poincaré is of lower order (first order). Thus the first choice of a preconditioner is PPP−1
loc

defined by taking the discrete counterpart of the operator
�

divτ (KKKγδ∇τ)
�−1

. With
the notation in (5.16), we have

PPP−1
loc = BBBAAA−1BBBT .

For elliptic problems, it was shown numerically [7] that this local preconditioner signif-
icantly improves the convergence compared with that without preconditioner. Another
possibility is to use the Neumann-Neumann preconditioner as employed in Chapter 2
for normal domain decomposition (i.e. without fractures). The preconditioning system
is then

PPP−1
NNϕ = χ̃,

with
PPP−1

NN :=
�
σ1(Š DtN

h,1 )
−1 +σ2(Š DtN

h,2 )
−1
�

,

where

• σi : Γ× (0, T )→ [0,1] is such that σ1 +σ2 = 1. If KKK i = KiIII and Ki is constant
in each subdomain then

σi =
Ki

K1+K2
.
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• (Š DtN
h,i )

−1, i = 1,2, is the discrete counterpart of the inverse of the operator

Š DtN
i := S DtN

i (·, 0,0).

The continuous (Neumann-to-Dirichlet) operator (Š DtN
i )−1 is defined by

(Š DtN
i )−1 : L2

�
0, T ; L2(γ)

�
→ H1

�
0, T ; L2(γ)

�
�
Š DtN

i

�−1
(ϕ) = pi|γ,

where, (pi ,uuui), i = 1,2, is the solution of the problem

si∂t pi + div uuui = 0 in Ωi × (0, T ),
uuui = −KKK i∇pi in Ωi × (0, T ),
pi = 0 on

�
∂Ωi ∩ ∂Ω

�
× (0, T ),

−uuui · nnni = ϕ on γ× (0, T ),
pi(·, 0) = 0 in Ωi.

(5.17)

In Section 5.4, we will carry out numerical experiments and compare the performance
of these two preconditioners.

5.3.2 Method 2: Using Optimized Schwarz waveform relaxation

Instead of imposing Dirichlet boundary conditions on γ×(0, T ) and solving the fracture
problem in γ× (0, T ) as was done for Method 1, we introduce new transmission con-
ditions which combine the equation for continuity of the pressure across the fracture
with the flow equations (5.4) in the fracture. These new transmission conditions con-
tain a free parameter which is used to accelerate the convergence. This is an extension
of the OSWR method with optimized Robin parameters studied in Chapter 2 in which
Robin-to-Robin transmission conditions are considered. Here however, because of the
fracture problem, we end up with what we will call Ventcell-to-Robin transmission
conditions as presented below.

5.3.2.1 Ventcell-to-Robin transmission conditions

The new transmission conditions are derived by introducing Lagrange multipliers
pi,γ, i = 1,2, representing the trace on the interface γ of the pressure pi in each
subdomain. As the pressure is continuous across the interface, one finds

p1,γ = p2,γ = pγ, on γ× (0, T ), (5.18)

We then rewrite the Darcy equation in the fracture associated with each pi,γ as

uuuγ,i = −KKKγδ∇τpi,γ, on γ× (0, T ), i = 1,2.

We have used the notation uuuγ,i, i = 1,2, instead of uuui,γ to insist on the fact that uuuγ,i is
NOT the tangential component of a trace of uuui on γ. In fact, uuuγ,i, i = 1,2, represents
the tangential velocity in the fracture:

uuuγ,1 = uuuγ,2 = uuuγ, on γ× (0, T ), i = 1,2.
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With the notation introduced above, the flow equation(5.4) in the fracture can be
rewritten, for i = 1,2, and j = (3− i), as

−uuui · nnni + sγ∂t pi,γ+ divτ uuuγ,i = qγ−uuu j · nnni , on γ× (0, T ),

uuuγ,i = −KKKγδ∇τpi,γ, on γ× (0, T ),

pi,γ = 0 on ∂ γ× (0, T ),
pi,γ(·, 0) = p0,γ in γ.

(5.19)

In the context of domain decomposition, (5.18) and (5.19) are the coupling conditions
between the subdomains. Thus, as in the case without a fracture one may take a linear
combination of these conditions to obtain equivalent Ventcell-to-Robin transmission
conditions:

−uuu1 · nnn1 +αp1,γ + sγ∂t p1,γ+ divτ uuuγ,1 =−uuu2 · nnn1 +αp2,γ + qγ

uuuγ,1 =−KKKγδ∇τp1,γ
on γ× (0, T ),

(5.20)−uuu2 · nnn2 +αp2,γ + sγ∂t p2,γ+ divτ uuuγ,2 =−uuu1 · nnn2 +αp1,γ + qγ

uuuγ,2 =−KKKγδ∇τp2,γ
on γ× (0, T ),

(5.21)
together with boundary and initial conditions

p1,γ = p2,γ = 0 on ∂ γ× (0, T ),
p1,γ(·, 0) = p2,γ(·, 0) = p0,γ in γ.

(5.22)

Using these transmission conditions, the subdomain problem is obtained by imposing
Ventcell boundary conditions on γ× (0, T ), i = 1,2, j = 3− i:

si∂t pi + div uuui = q in Ωi × (0, T ),
uuui = −KKK i∇pi in Ωi × (0, T ),

−uuui · nnni +αpi,γ+ sγ∂t pi,γ+ divτ uuuγ,i = −uuu j · nnni +αp j,γ+ qγ on γ× (0, T ),
uuuγ,i = −KKKγδ∇τpi,γ in γ× (0, T ),

pi = 0 on
�
∂Ωi ∩ ∂Ω

�
× (0, T ),

pi,γ = 0 on ∂ γ× (0, T ),
pi(·, 0) = p0 in Ωi,

pi,γ(·, 0) = p0,γ in γ,
(5.23)

where the quatity on the right hand side of the third equation is supposed to be known.
In the next subsection we prove that problem (5.27) is well-posed.

Remark 5.4. The subdomain problem of Method 2 corresponding to Ventcell boundary

conditions is somewhat more complicated than that of Method 1 (problem (5.17)). Con-

sequently, for solving problem (5.27), one needs to introduce Lagrange multipliers on the

interface to handle the Ventcell conditions (representing the fracture problem).

5.3.2.2 Well-posedness of the subdomain problem with Ventcell boundary con-
ditions

For an open, bounded domain O ∈ Rd (d = 2,3) with Lipschitz boundary ∂ O , con-
sider the following time-dependent problem written in mixed form with Dirichlet and
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Ventcell boundary conditions

sO ∂t pO + div uuuO = q in O × (0, T ),
uuuO = −KKKO∇pO in O × (0, T ),

−uuuO · nnn+αpγ + sγ∂t pγ + divτ uuuγ = θ + qγ on ∂ γ× (0, T ),
uuuγ = −KKKγδ∇τpγ in γ× (0, T ),
pO = 0 on

�
∂ O \ γ

�
× (0, T ),

pγ = 0 on ∂ γ× (0, T ),
pO (·, 0) = p0 in Ωi,
pγ(·, 0) = p0,γ in γ,

(5.24)

where θ is a given function defined on γ×(0, T ). In order to write the weak formulation
of (5.24), we need to define the following Hilbert spaces (see Remark 2.1):

M =
¦
µ = (µO ,µγ) ∈ L2(O )× L2(γ)

©
,

Σ =
¦

vvv = (vvvO , vvvγ) ∈ L2(O )L2(O )L2(O )× L2(γ)L2(γ)L2(γ) : div vvvO ∈ H(div ,O ) and
�

divτ vvvγ− vvvO · nnn|γ
�
∈ L2(γ)

©
,

equipped with the norms

‖µ‖2M = ‖µO ‖
2
O + ‖µγ‖

2
γ,

‖vvv‖2Σ = ‖vvvO ‖O + ‖div vvvO ‖2O + ‖vvvγ‖
2
γ + ‖divτ vvvγ− vvvO · nnn|γ‖2γ.

Then we define the bilinear forms

a : Σ×Σ −→ R
(uuu, vvv) 7→ a(uuu, vvv) =

�
KKK−1
O uuuO , vvvO

�
O +

�
(KKKγδ)

−1uuuγ, vvvγ
�
γ

,

b : Σ×M −→ R
(uuu,µ) 7→ b(uuu,µ) =

�
div uuuO ,µO

�
O +

�
divτ uuuγ−uuuO · nnn|γ,µγ

�
γ

,

c : M ×M −→ R
(η,µ) 7→ c(η,µ) =

�
αηγ,µγ

�
γ

,

cs : M ×M −→ R
(η,µ) 7→ cs(η,µ) =

�
sOηO ,µO

�
O +

�
sγηγ,µγ

�
γ

,

and the linear form

Lq : M −→ R

µ 7→ Lq(µ) =
�
q,µO

�
O +

�
θ + qγ,µγ

�
γ

.

With these spaces and forms, the weak form of (5.24) can be written as follows:

For a.e. t ∈ (0, T ), find p(t) ∈ M and uuu(t) ∈ Σ such that

a(uuu, vvv)− b(vvv, p) = 0 ∀vvv ∈ Σ,
cs(∂t p,µ) + c(p,µ) + b(uuu,µ) = Lq(µ) ∀µ ∈ M ,

(5.25)

together with the initial conditions

p(·, 0) = p0 in O ,
pγ(·, 0) = p0,γ in γ.

(5.26)

Next, we define the space

H1,1
∗,γ (O ) :=

¦
µ = (µO ,µγ) ∈ H1(Ω)×H1(γ) : µO = 0 on

�
∂ O \ γ

�
and µγ = 0 on ∂ γ

©
,

then the well-posedness of problem (5.26) is given by the following theorem:
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Theorem 5.5. Assume that there exist four positive constants s− and s+, K− and K+

• s− ≤ sO (x)≤ s+ for a.e. x ∈ O ,

• s− ≤ sγ(x)≤ s+ for a.e. x ∈ γ,

• ςT KKK−1
O (x)ς≥ K−|ς|2, and |KKK i(x)ς| ≤ K+|ς|, for a.e. x ∈ O , ∀ς ∈ Rn,

• ηT KKK−1
γ (x)δη≥ K−|η|2 and |(KKKγ(x)δ)−1η| ≤ K+ for a.e. x ∈ γ, ∀η ∈ Rn−1.

If q is in L2(0, T ; M), p0 in H1,1
∗,γ (O ) and θ in L2(0, T ; L2(γ)) then problem (5.25)-(5.26)

has a unique solution
(p,uuu) ∈ H1(0, T ; M)× L2(0, T ;Σ).

Proof. The proof of Theorem 5.5 is a simple extension of that of Theorem 4.10.

5.3.2.3 The interface problem and the convergence factor formula for comput-
ing the optimized parameter

As for Method 1, we derive in this subsection the interface problem associated with
Ventcell-to-Robin transmission conditions (5.20)-(5.21)-(5.22). With this aim, we de-
fine the following Ventcell-to-Robin operator S VtR

i , which depends on the parameter
α, for i = 1,2, j = (3− i):

S VtR
i : L2(0, T ; L2(γ))× L2(0, T ; L2(Ωi))×H1

∗ (Ωi)× L2(0, T ; L2(γ))×H1
0(γ)

→ L2(0, T ; L2(γ))

S VtR
i (θ ,q, p0,qγ, p0,γ) = −uuui · nnn j|γ +αpi,γ,

where, (pi,uuui, pi,γ,uuuγ,i) is the solution of the subdomain problem with Ventcell bound-
ary conditions

si∂t pi + div uuui = q in Ωi × (0, T ),
uuui = −KKK i∇pi in Ωi × (0, T ),

−uuui · nnni +αpi,γ + sγ∂t pi,γ + divτ uuuγ,i = θ + qγ on γ× (0, T ),
uuuγ,i = −KKKγδ∇τpi,γ in γ× (0, T ),

pi = 0 on
�
∂Ωi ∩ ∂Ω

�
× (0, T ),

pi,γ = 0 on ∂ γ× (0, T ),
pi(·, 0) = p0 in Ωi,

pi,γ(·, 0) = p0,γ in γ.
(5.27)

The interface problem with two Lagrange multipliers is then

θ1 = S VtR
2 (θ2,q2, p0,2,qγ, p0,γ) + qγ

θ2 = S VtR
1 (θ1,q1, p0,1,qγ, p0,γ) + qγ

on γ× (0, T ), (5.28)

or equivalently

θ1 −S VtR
2 (θ2, 0,0,0,0) = S VtR

2 (0,q2, p0,2,qγ, p0,γ) + qγ

θ2 −S VtR
1 (θ1, 0,0,0,0) = S VtR

1 (0,q1, p0,1,qγ, p0,γ) + qγ
on γ× (0, T ), (5.29)

The discrete counterpart of this problem can be solved iteratively using Jacobi it-
erations or GMRES. The former choice yields an algorithm equivalent to the OSWR
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algorithm for the reduced fracture model (5.3) - (5.4) and is written as follows: start-
ing with a given initial guess g0

i, j on γ× (0, T ) for the first iteration,

−uuu0
i · nnni +α p0

i,γ+ sγ∂t p0
i,γ+ divτ uuu0

γ,i − qγ = g0
i, j,

then at the kth iteration, k = 1, . . . , solve in each subdomain the time-dependent
problem, for i = 1,2, j = (3− i),

si∂t p
k
i + div uuuk

i = qi in Ωi × (0, T ),
uuuk

i = −KKK i∇pk
i in Ωi × (0, T ),

−uuuk
i · nnni +αpk

i,γ+ sγ∂t pk
i,γ+ divτ uuuk

γ,i = −uuuk−1
j · nnni +αpk−1

j,γ + qγ on γ× (0, T ),

uuuk
γ,i = −KKK f ,τδ∇τpk

i,γ on γ× (0, T ),

pk
i = 0 on

�
∂Ωi ∩ ∂Ω

�
× (0, T ),

pk
i,γ = 0 on ∂ γ× (0, T ),

pk
i (·, 0) = p0,i in Ωi,

pk
i,γ(·, 0) = p0,γ in γ.

(5.30)
The convergence of algorithm (5.30) depends on the choice of the parameter α. Thus
we extend the analysis for the convergence factor of the OSWR algorithm derived in
the case without fractures [12, 44] to this algorithm and from that, one can calculate
the optimized parameter α. Details about such an analysis and the way to compute α
are presented in Appendix A.3.

In our applications, the fracture is assumed to have much larger permeability than
the surrounding, which implies that the time step inside the fracture should be very
small compared with that of the surrounding matrix subdomains. As either method
derived in Subsections 5.3.1 and 5.3.2 is global in time, i.e. the subdomain problem
is solved over the whole time interval before the information is exchanged on the
space-time interface, we can use different time steps in the fracture and in the rock
matrix. In the next subsection, we consider the semi-discrete problem in time with
nonconforming time grids.

5.3.3 Nonconforming discretizations in time

Let T1,T2 and Tγ be three different partitions of the time interval (0, T ) into sub-
intervals (t i

m, t i
m−1] for m= 1, . . . , Mi and i = 1,2,γ (see Figure 5.2). For simplicity, we

consider the uniform partitions only, and denote by ∆t i , i = 1,2,γ the corresponding
time steps. Assume that ∆tγ ≪ ∆t i , i = 1,2. We use the lowest order discontinuous
Galerkin method [61, 17, 108], which is a modified backward Euler method. The same
idea can be generalized to higher order methods. We denote by P0(Ti, L2(γ)) the space
of piecewise constant functions in time on grid Ti with values in L2(γ):

P0(Ti, L2(γ)) =
¦
ψ : (0, T )→ L2(γ),ψ is constant on J i

m, ∀m= 1, . . . , Mi

©
.

In order to exchange data on the space-time interface between different time grids, we
use L2 projection Πγ i from P0(Ti, L2(γ)) onto P0(Tγ, L2(γ)) as defined in Chapter 2 (see
(2.70)): forψ ∈ P0(Ti,W ), Π jiψ|J j

m
is the average value of ψ on J j

m, for m = 1, . . . , M j .
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t

x
Ω1 Ω2γ

T = M1∆t1 = M2∆t2 = Mγ∆tγ∆t1 ∆t2

Figure 5.2: Nonconforming time grids in the rock matrix and in the fracture.

For Method 1

The unknown λ on the interface represents the fracture pressure, thus λ is piecewise
constant in time on grid Tγ. In order to obtain Dirichlet boundary data for solving
subdomain problem (5.17), we project λ onto the Ti, for i = 1,2 :

pi = Πiγ(λ), on γ, i = 1,2.

The semi-discrete counterpart of the interface problem (5.14) is obtained by weakly
enforcing the fracture problem over each time sub-interval of Tγ as follows

sγ
�
λm+1−λm

�
+

∫ tm+1
γ

tm
γ

divτ uuum+1
γ =

∫ tm+1
γ

tm
γ

�
qγ+

2∑

i=1

Πγ i

�
S DtN

i (Πiγ(λ),qi, p0,i)
��

,

in γ,
uuum+1
γ = −KKKγδ∇τλm+1 in γ,

λm+1 = 0 on ∂ γ,
λ0 = p0,γ in γ,

(5.31)
for m= 0, . . . , Mγ − 1.

For a piecewise constant functionϕ on the fine grid Tγ, the semi-discrete Neumann-
Neumann preconditioner (still denoted by PPP−1

N N) is defined by:

PPP−1
N Nϕ :=

2∑

i=1

σiΠγi

��
Š DtN

i

�−1 �
Π1γ

�
ϕ
���

, (5.32)

where we have solved the subdomain problem with Neumann-Neumann data projected
from Tγ onto Ti, i = 1,2, then extract the pressure trace on the interface and project
backward from Ti onto Tγ. Thus the interface problem is defined on the fracture’s time
grid.

Remark 5.6. From (5.32) we see that the Neumann-Neumann preconditioner defined by

solving the subdomain problems on the coarse grid, thus we indeed enforce the transmis-

sion conditions on the coarse grid only. The projection from the coarse to the fine grid does

not improve the accuracy in time of the solution in the fracture.

For Method 2

In Method 2, there are two interface unknowns representing the linear combination
of the fracture pressure and some terms from the fracture problem. Thus we let



138 Chapter 5. Application to reduced fracture models

θi ∈ P0(Tγ, L2(Γ)), for i = 1,2. In order to obtain Ventcell boundary data for solv-
ing subdomain problem (5.24), we project θi onto the Ti, for i = 1,2 :

−uuui · nnni +αpi + sγ∂t pi + divτ uuuγ = Πiγ(θi) + qγ, on γ, i = 1,2.

Remark 5.7. This setting is different from the case of usual domain decomposition (with-

out fractures) analyzed in Chapter 2 (see Subsection 2.4.2) where the two interface un-

knowns represent the Robin data in each subdomain and thus they are chosen to be con-

stant on the associated subdomain’s time grid, i.e. ξi ∈ P0(Ti, L2(Γ)), for i = 1,2.

The semi-discrete in time counterpart of (5.28) is weakly enforced over each time
sub-interval of the fracture’s time grid as follows:

∫ tm+1
γ

tm
γ

θ1 =

∫ tm+1
γ

tm
γ

Πγ2

�
S VtR

2 (Π2γ(θ2),q2, p0,1,qγ, p0,γ)
�
+ qγ,

∫ tm+1
γ

tm
γ

θ2 =

∫ tm+1
γ

tm
γ

Πγ1

�
S VtR

1 (Πiγ(θ1),q1, p0,1,qγ, p0,γ)
�
+ qγ,

on γ, (5.33)

for ∀m= 0, . . . , Mγ − 1.

Remark 5.8. We point out that with Method 2 as with Method 1 preconditioned by a

Neumann-Neumann preconditioner (cf. Remark 5.6), we can not hope to gain in accuracy

in the fracture by using a finer grid there since the fracture problem is actually solved on

the coarser time grids of the two subdomains. We will see this in the numerical experi-

ments. Projection onto the fracture grid is only useful for the case when the time grids on

Ω1 and Ω2 are different and there one could use a master grid and a slave grid.

5.4 Numerical results

We carry out some preliminary experiments to investigate the numerical performance
of the two methods proposed above. We consider the test case pictured in Figure 5.3
where the domain is a rectangle of dimension 2×1 and is divided into two equally sized
subdomains by a fracture of width δ = 0.001 parallel to the y axis. The permeability
tensor in the subdomains and in the fracture is isotropic: KKK = KiIII , i = 1,2, f , and
Ki is assumed to be constant. Here we choose K1 = K2 = 1 and K f = 103 (so that
K f δ = 1). A pressure drop of 1 from the bottom to the top of the fracture is imposed:
p = 1 on bottom and p = 0 on top. On the external boundaries of the subdomains a
no flow (homogeneous Neumann) boundary condition is imposed except on the lower
fifth (length 0.2) of both lateral boundaries where a Dirichlet condition is imposed:
p = 1 on the right and p = 0 on the left. See Figure 5.3.

As in the previous chapter, we consider a uniform rectangular mesh with size
h = 1/100 and use the lowest order Raviart-Thomas mixed finite element spaces
(see Appendix B.5). In time, we fix T = 0.5 and use uniform time partitions in
the subdomains with time step ∆t i , i = 1,2, and in the fracture with varying time
step ∆tγ. We first consider the case with the same time step throughout the domain,
∆t1 =∆t2 =∆tγ =∆t = T/300.

In Figure 5.4 the snapshots of the pressure field and flow field (on a coarse grid for
visualization) at different times are shown. The length of the arrows is proportional to
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Figure 5.3: Geometry of the test case where the fracture is considered as an interface.
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Figure 5.4: Snapshots of the pressure field (left) and flow field (right) at t = T/300,
t = T/4, t = T/2 and t = T respectively (from top to bottom).
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the magnitude of the velocity and the red arrows represent the flow in the fracture.
We see that the flow field is a combination of flow in the fracture and flow going
from right to left in the rest of the porous medium and there is actually interaction
between them as some fluid is coming out of the fracture and then re-enters it. Since
K f ≫ Ki, i = 1,2, the velocity is much larger in the fracture than in the surrounding
medium.

Next, in order to analyze the convergence behavior of Method 1 and Method 2,
we consider the problem with homogeneous Dirichlet boundary conditions (i.e., the
solution converges to zero). We start with a random initial guess on the space-time
interface-fracture and use GMRES as an iterative solver and compute the error in the
L2(0, T ; L2(Ω))-norm for the pressure p and for the velocity uuu. We stop the iteration
when the respective error is less than 10−6. We consider four algorithms: Method 1
with no preconditioner, Method 1 with the local preconditioner, Method 1 with the
Neumann-Neumann preconditioner and Method 2 with the optimized Robin parame-
ter. As the cost of a subdomain solve for each method is different (see Remark 5.4),
in the following we first compare the convergence behavior of these four algorithms in
terms of the number of iterations only (though a more appropriate way of comparison
should be considered, in particular, using CPU time).

In Figure 5.5, the error curves versus the number of iterations are shown: the error
in p (on the left) and in uuu (on the right). We see that Method 1 with no preconditioner
(the blue curves) converges extremely slowly (after 500 iterations, the error, both in p

and in uuu, is about 10−1). The performance of Method 1 with the local preconditioner
(the green curves) is much improved but still very slow- it requires about 350 iterations
to reach an error reduction of 10−6. The Neumann-Neumann preconditioner (the cyan
curves) further improves the convergence and one needs about 150 iterations to obtain
a similar error reduction. Now Method 2 needs only 6 iterations to reduce the error to
10−6 and thus the convergence of Method 2 is much faster than the other algorithms
(at least by a factor of 25). This comes from the use of the optimized parameter α. In
Figure 5.6, we show the error in uuu (in logarithmic scale) after 10 Jacobi iterations for
various values of α. We see that the optimized Robin parameter (the red star) is located
close to those giving the smallest error after the same number of iterations. Also we
observe that the convergence can be significantly slower if α is not chosen well.

Next, we study we study the behavior of three of the algorithms when noncon-
forming time grids are used. For this we use nonhomogeneous boundary conditions as
depicted in Figure 5.3. In all cases, we consider equal time steps for the subdomains
as they have the same permeability: ∆t1 =∆t2 =∆tm. We look at three time grids as
follows:

• Time grid 1 (conforming coarse): ∆tm =∆t f = T/100.

• Time grid 2 (nonconforming): ∆tm = T/100 and ∆t f = T/500.

• Time grid 3 (conforming fine): ∆tm =∆t f = T/500.

We start with a zero initial guess on the space-time interface and stop GMRES itera-
tions when the relative residual is less than 10−6. In Figure 5.7 we show the relative
residual versus the number of iterations for three schemes: Method 1 with the local
preconditioner, Method 1 with the Neumann-Neumann preconditioner and Method
2 with an optimized Robin parameter. We see that Method 2 still performs better
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Figure 5.5: Convergence curves for the compressible flow: errors in p (on the left)
and in uuu (on the right) - Method 1 with no preconditioner (blue), Method 1 with local

preconditioner (green), Method 1 with Neumann-Neumann preconditioner (cyan)
and Method 2 (red).
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Figure 5.6: L2 velocity error (in logarithmic scale) after 10 Jacobi iterations for
various values of the Robin parameter. The red star shows the optimized parameters

computed by numerically minimizing the continuous convergence factor.

than Method 1, and Method 1 with the Neumann-Neumann preconditioner still con-
verges faster than with the local preconditioner. Importantly, both Method 1 with the
Neumann-Neumann preconditioner and Method 2 are almost independent of the time
grid (the number of iterations does not change with the time grid) while the local pre-
conditioner significantly depends on the time grid. We also notice that the behavior of
the three methods in the cases of nonconforming and conforming fine grids are very
similar.

Now we analyze the error in time of the three algorithms for each of the three
time grids. A reference solution (in time) is obtained by solving problem (5.3) - (5.4)
directly on a very fine time grid ∆t = T/2000. The L2 − L2 error of the difference
between the multi-domain and the reference solutions at each iteration are computed.
We distinguish two different errors: error in the rock matrix L2(0, T ; L2(Ωi)), i = 1,2,
and error in the fracture L2(0, T ; L2(γ)). Figures 5.8 and 5.9 show the pressure error
in the subdomains and in the fracture respectively. We first observe that the error in
the subdomains after convergence (Figure 5.8) in the nonconforming case (Time grid
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Figure 5.7: Relative residual with GMRES for different time grids: Method 1 with the
local preconditioner (green), Method 1 with the Neumann-Neumann preconditioner

(cyan) and Method 2 (red).

2) is equal to that in the conforming coarse case (Time grid 1) for all three algorithms.
This is as expected as we use the same time step ∆tm = T/100 in the matrix for both
of these grids. However, as already pointed out in Remark 5.8, if one might hope that
the error in the fracture (Figure 5.9) in the nonconforming case is close to that in the
conforming fine grid case (Time grid 3), this can only be the case for Method 1 with the
local preconditioner. Only for this case do we actually solve the fracture problem on
the fine grid. For the other algorithms,the fracture error of the nonconforming case is
equal to that of the conforming coarse grid instead. None of the methods deteriorates
the accuracy because of nonconforming time grids.

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

Number of iterations

E
rr

or
 in

 p

 

 

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

Number of iterations

E
rr

or
 in

 p

 

 

1 2 3 4 5
10

−3

10
−2

10
−1

10
0

Number of iterations

E
rr

or
 in

 p

 

 

Method 1 - local precond. Method 1 - NN precond. Method 2

Figure 5.8: L2 pressure error in the rock matrix: Time grid 1 (blue), Time grid 2
(magenta), Time grid 3 (black).

Remark 5.9. While Method 2 does not make it particularly useful to use a finer time grid

in the fracture, it does give a rather remarkable convergence speed. For the advection-

diffusion problem of the next subsection with an explicit time scheme for advection, one of

if not the main advantage of using smaller time steps in the fracture is to avoid imposing

a time step in the two subdomains dictated by the CFL number of the equation in the

fracture. Thus we are hopeful that this algorithm will be useful when coupled with the
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Figure 5.9: L2 pressure error in the fracture: Time grid 1 (blue), Time grid 2
(magenta), Time grid 3 (black).

advection equation simply for the convergence speed that it gives. We add however that we

are still pursuing some ideas for modifying this scheme to obtain an algorithm that can

take advantage of smaller time steps in the fracture for the diffusion equation.

5.5 Extension to transport problems

We first introduce the model problem and its discretizations using operator splitting.
Then we derive extensions of the two methods studied in the previous sections to the
advection-diffusion couplings and discuss the use of nonconforming time discretiza-
tions in this case.

5.5.1 A model problem and operator splitting

Consider now the linear advection-diffusion problem

φ∂t c + div (uuuc + rrr) = qc in Ω× (0, T ),
rrr = −DDD∇c in Ω× (0, T ),
c = 0 on ∂Ω× (0, T ),

c(·, 0) = c0 in Ω.

(5.34)

Here c is the concentration of a contaminant dissolved in a fluid, qc the source term,
φ the porosity, uuu the Darcy velocity (given and time-independent) and DDD a symmetric
time independent diffusion tensor.

Following the same idea as in the previous section, we obtain two models for a frac-
tured porous medium:
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• An n−dimensional fracture model consists of the following equations

φi∂t ci + div (uuuici + rrr i) = qc,i in Ωi × (0, T ), i = 1,2, f ,
rrr i =−DDDi∇ci in Ωi × (0, T ), i = 1,2, f ,
ci = 0 on

�
∂Ωi ∩ ∂Ω

�
× (0, T ), i = 1,2, f ,

ci = c f on γi × (0, T ), i = 1,2,
−rrr i · nnni −uuui · nnnici =−rrr f · nnni −uuu f · nnnic f on γi × (0, T ), i = 1,2,

ci(·, 0) = c0,i in Ωi, i = 1,2, f .
(5.35)

• A co-dimension 1 fracture model consists of the equations in the subdomains

φi∂t ci + div (uuuici + rrr i) = qc,i in Ωi × (0, T ),
rrr i =−DDDi∇ci in Ωi × (0, T ),
ci = 0 on

�
∂Ωi ∩ ∂Ω

�
× (0, T ),

ci = cγ on γ× (0, T ),
ci(·, 0) = c0,i in Ωi,

for i = 1,2,

(5.36)
coupled with the following equation in the (n− 1)−dimensional fracture

φγ∂t cγ + divτ (uuuγcγ+ rrrγ) = qc,γ+

2∑

i=1

(rrr i · nnni +uuui · nnnici)|γ in γ× (0, T ),

rrrγ = −DDDγδ∇τcγ in γ× (0, T ),
cγ = 0 on ∂ γ× (0, T ),

cγ(·, 0) = c0,γ in γ.
(5.37)

As in Chapter 3, we use operator splitting to separate the advection and the diffusion
terms and treat them with different numerical schemes. Recall that for the time dis-
cretization, the advection is approximated with the explicit Euler method (where the
sub-time steps are used) and the diffusion with the implicit Euler method. For the
spatial discretization, both are approximated with locally mass conservative schemes:
the advection with an upwind, cell-center finite volume scheme and the diffusion with
a mixed finite element method. In order to write the fully discrete problem corre-
sponding to (5.36), we consider again a uniform partition of (0, T ) into N subintervals
(tn, tn+1) of length ∆t = tn+1 − tn, for n = 0, . . . , N − 1, and sub-time steps for the
advection equation

∆ta =∆t/L, for L ≥ 1,

and
tn,l = l∆ta + tn, for l = 0, . . . , L, n= 0, . . . , N − 1.

In space, let Kh,i be a finite element partition of Ωi, i = 1,2, such that Kh,1 ∩ Kh,2

forms a finite element partition of Ω, i.e. such that the two partitions match up at
the interface γ. Denote by Gh the set of edges/faces of elements of Kh,i lying on the
interface γ. To perform the upwind scheme for the advection equation, since only the
inflow boundary (not the whole boundary) is important, as in Chapter 3 we define

G in
h,i :=

¨
E ∈ Gh :

∫

E

uuui · nnni < 0

«
, for i = 1,2.
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For an element K ∈ Kh,i (respectively an edge E of K), we denote by nnnK (respec-
tively nnnE) the unit, outward normal vector on ∂ K (respectively ∂ E).

Remark 5.10. For simplicity, we have used matching grids. This is not necessary, see

[41].

Let
Mh,i ×Σh,i ⊂ L2(Ωi)×H(div,Ωi)

be the usual mixed finite element approximation made of Raviart-Thomas (and Nédélec
in three dimensions) spaces of lowest order (see, e.g., [22, 104] and Appendix B), and
let

Λh×Σh,γ ⊂ L2(γ)×H(divτ,γ)

be the lowest order Raviart-Thomas mixed finite element space defined on the
(d − 1)−dimensional interface γ. Then we define

Mh =
⊕

i=1,2

Mh,i ⊕Λh, Σh =
⊕
Σh,i ⊕Σh,γ.

With operator splitting, we use the advection equations in the subdomains and
in the fracture to calculate c

n,l
h,i , i = 1,2, and c

n,l
h,γ, approximations of ci(t

n,l) and

cγ(t
n,l) respectively, for n = 0, . . . , N − 1, l = 1, . . . , L, and then use the diffusion

equations in the subdomain and in the fracture to calculate
�

cn+1
h,i , rrrn+1

h,i

�
, i = 1,2, and�

cn+1
h,γ , rrrn+1

h,γ

�
, approximations of

�
ci(t

n+1), rrr i(t
n+1)

�
and

�
cγ(t

n+1), rrrγ(t
n+1)

�
respec-

tively, for n = 0, . . . , N − 1.
As in all of the advection-diffusion problems we have considered, we use an upwind

scheme for the advection equation. Thus, we need to compute the upwind value ĉ
n,l
h,i

on each edge of the grid Kh,i. Due to the presence of the fracture, which serves as an
interface, we make use of the same upwind operator Uh,i , i = 1,2, defined in (3.10)
(see Chapter 3) in the context of domain decomposition. Recall thatUh,i : Mh,i×Λh→
Nh,i where Nh,i is the space of functions on the union of the edges of elements of Kh,i

that are constant on each edge. We have

ĉ
n,l
h,i =Uh,i

�
c

n,l
h,i , c

n,l
h,γ

�
, for n= 0, . . . , N − 1, l = 0, . . . , L − 1,

so that if an edge E lies on γ, i.e. E ∈ Gh, and if the average value of uuu · nnni on E is
negative (fluid entering Ωi through E) then

Uh,i

�
c

n,l
h,i , c

n,l
h,γ

�
|E
=
�

c
n,l
h,γ

�
|E

,

otherwise Uh,i is defined as before (cf. (3.10)).
Because of the dynamic problem in the fracture, in addition to the upwind values

ĉ
n,l
h,i on the edges of the grid, we need to calculate also the upwind value ĉh,γ on each

end point P of the edges on the fracture:

�
ĉ

n,l
h,γ

�
|P
=





• the given Dirichlet boundary data (here 0) if P ∈ ∂ γ and the fluid
enters γ through P,

• the value of c
n,l
h,γ on E if P is an end point of E and the value of uuu · nnnE

at P is nonnegative (i.e. fluid exiting E through P).
(5.38)
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The operator splitting algorithm for problem (5.36)-(5.37) is initialized by defining
c0
h,i , i = 1,2, and c0

h,γ to be the L2 projections of c0
h,i onto Mh,i and of c0

h,γ onto Λh

respectively:

�
c0
h,i

�
|K

:=
1

meas(K)

∫

K

c0,i , ∀K ∈Kh,i , i = 1,2, and
�

c0
h,γ

�
|E

:=
1

meas(E)

∫

E

c0,γ, ∀E ∈ Gh.

As before, we also write c
0,0
h,i for c0

h,i and c
0,0
h,γ for c0

h,γ.

The algorithm is written as: for n= 0, . . . , N ,

1. define c
n,0
h,i = cn

h,i , i = 1,2, and c
n,0
h,γ = c0

h,γ,

2. for l = 0, . . . , L − 1,

• define the upwind values ĉ
n,l
h,i , i = 1,2, and ĉ

n,l
h,γ,

• solve the advection equations in the subdomains and in the fracture

∫

K

φi

c
n,l+1
h,i − c

n,l
h,i

∆ta

+
∑

E⊂∂ K

∫

E

ĉ
n,l
h,i (uuui · nnnK) = 0, ∀K ∈Kh,i, i = 1,2,

∫

E

φγ

c
n,l+1
h,γ − c

n,l
h,γ

∆ta

+

∫

∂ E

ĉ
n,l
h,γ(uuuγ · nnnE) =

∫

E

2∑

i=1

uuui · nnni ĉ
n,l
h,i , ∀E ∈ Gh,

(5.39)
with c

n,l
h,i , i = 1,2, known and c

n,l
h,γ and obtain c

n,l+1
h,i , i = 1,2, and c

n,l+1
h,γ .

3. solve the diffusion equations in the subdomains and in the fracture

∫

K

φi

cn+1
h,i − c

n,L
h,i

∆t
+

∫

K

div rrrn+1
h,i =

∫

K

qc,i(t
n+1), ∀K ∈Kh,i,

∫

Ωi

DDD−1
i rrrn+1

h,i · vvv −
∫

Ωi

cn+1
h,i div vvv +

∫

γ

cn+1
h,γ (vvv · nnni) = 0, ∀vvv ∈ Σh,i,

∫

E

φγ

cn+1
h,γ − c

n,L
h,γ

∆t
+

∫

E

div rrrn+1
h,γ −

∫

E

2∑

i=1

rrrn+1
h,i · nnni =

∫

E

qc,γ(t
n+1), ∀E ∈ Gh,

∫

γ

(DDDγδ)
−1rrrn+1

h,γ · vvvγ−
∫

γ

cn+1
h,γ div vvvγ = 0, ∀vvvγ ∈ Σh,γ,

(5.40)
with c

n,L
h,i , i = 1,2, known and c

n,L
h,γ and obtain

�
cn+1
h,i , rrrn+1

h,i

�
, i = 1,2, and�

cn+1
h,γ , rrrn+1

h,γ

�
.

In the next subsection, we extend the two domain decomposition methods introduced
in the previous section to problem (5.39)-(5.40). Since the advection and diffusion
equations are split, the interface problem consists of the transmission conditions due
to advection and due to diffusion. The latter can be rewritten equivalently as Ventcell
transmission conditions as derived in Subsection 5.3.2.

Remark 5.11. Solving problem (5.35) using domain decomposition and operator split-

ting is a straightforward application of the methods derived in Chapter 3.
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5.5.2 Domain decomposition formulations

Here we derive discrete, interface problems for the advection-diffusion problem (5.36)-
(5.37) corresponding to extensions of the discrete counterpart of the interface prob-
lems (5.15) and (5.29) derived for the pure diffusion problem (5.3)-(5.4) in the pre-
vious section. These extensions are carried out in the context of operator splitting as
before. However, unlike in Chapter 3 (cf. Remark 3.3), in this case because of the frac-
ture problem, the formulations for the two methods are different from one another, not
only for the diffusion part but also for the advection part.

5.5.2.1 Method 1: an extension of the time-dependent Steklov-Poincaré operator

To define the interface problem for Method 1, we introduce solution operators Di, i =

1,2, where Di associates to initial data c0 on Ωi, an source term qc on Ωi × (0, T ) and
discrete boundary data λ f given on the discrete counter part of γ×(0, T ) the solution of
the discrete advection-diffusion subdomain problem on Ωi× (0, T ) that will be defined

below (problem ). In our notation, λ f ∈ ΛN×(L+1)
h

; that is λh =
�
λ

n,l
h

�
n=0,...,N−1, l=0,...,L

and for each n, n= 1, . . . , N , we identify λn
h with λn,0

h

λn
h
= λ

n,0
h

.

Then for given
�
λ f , c0,qc

�
, the subdomain problem is defined by:

For n= 0, . . . , N − 1,

1. define c
n,0
h,i = cn

h,i , where
�

c0
h,i

�
|K

:=
1

meas(K)

∫

K

c0,i , ∀K ∈Kh,i,

2. for l = 0, . . . , L − 1,

• define the upwind values

ĉ
n,l
h,i =Uh,i

�
c

n,l
h,i ,λn,l

h

�
,

• solve the advection equation

∫

K

φi

c
n,l+1
h,i − c

n,l
h,i

∆ta

+
∑

E⊂∂ K

∫

E

ĉ
n,l
h,i (uuui · nnnK) = 0, ∀K ∈Kh,i, (5.41)

with c
n,l
h,i known and obtain c

n,l+1
h,i .

3. solve the diffusion equations in the subdomain

∫

K

φi

cn+1
h,i − c

n,L
h,i

∆t
+

∫

K

div rrrn+1
h,i =

∫

K

qc,i(t
n+1), ∀K ∈Kh,i,

∫

Ωi

DDD−1
i

rrrn+1
h,i · vvv −

∫

Ωi

cn+1
h,i div vvv = −

∫

γ

λn+1
h
(vvv · nnni), ∀vvv ∈ Σh,i ,

(5.42)

with c
n,L
h,i known and obtain

�
cn+1
h,i , rrrn+1

h,i

�
.
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The operator Di, i = 1,2, is now defined by

Di : ΛN×(L+1)
h

× L2(0, T ; L2(Ωi))×H1
∗ (Ωi) →

�
Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N

�
λ f ,qc, c0

�
7→
�

ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i

�
,

where ĉ
∆t,∆ta

h,i =
�

ĉ
n,l
h,i

�
n=0,...,N−1, l=0,...,L−1

and
�

c∆t
h,i , rrr∆t

h,i

�
=
�

cn
h,i , rrrn

h,i

�
n=1,...,N

.

For the problem on the fracture interface, the input needed from the subdomain
problem consists of the first and the third components of the output of Di restricted to
the edges on the fracture, i.e. E ∈ Gh. So we define the two projection operator Hi

and Fi as follows:

Hi :
�

Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N →
�
Λh

�N×L

�
ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i

�
7→
�

ĉ
∆t,∆ta

h,i

�
|E

, ∀E ∈ Gh.

and
Fi :

�
Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N →
�
Λh

�N

�
ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i

�
7→ (rrr∆t

h,i · nnni)|E, ∀E ∈ Gh.

With these operators, we can write the interface problem, which is the system in the
fracture γ, consists of solving, for n= 0, . . . , N − 1 :

• the advection equation: for l = 0, . . . , L − 1,

∫

E

φγ
λ

n,l+1
h
−λn,l

h

∆ta

+

∫

∂ E

λ̂
n,l
h
(uuuγ · nnnE) =

1

∆ta

∫ tn,l+1

tn,l

∫

E

2∑

i=1

uuui · nnniHiDi(λ f ,qc,i, c0,i),

∀E ∈ Gh,
(5.43)

where λn,0
h
= λn

h, and λ0
h

:=
1

meas(E)

∫

E

c0,γ, ∀E ∈ Gh,

• then the diffusion equation

∫

E

φγ
λn+1 −λn,L

∆t
+

∫

E

div rrrn+1
h,γ =

∫

E

qc,γ(t
n+1)+

1

∆t

∫ tn+1

tn

∫

E

2∑

i=1

FiDi(λm,qc,i, c0,i),

∀E ∈ Gh,
∫

γ

(DDDγδ)
−1rrrn+1

h,γ · vvvγ−
∫

γ

λn+1div vvvγ = 0, ∀vvvγ ∈ Σh,γ.

(5.44)

Note that the composite operator FiDi, i = 1,2, is a Steklov-Poincaré (Dirichlet-to-
Robin) type operator. The interface problem (5.43)-(5.44) can be written in the form

S λ f = χ, (5.45)

where S : ΛN×(L+1)
h

→ ΛN×(L+1)
h

is defined by
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S λ f =


∫

E

φγ
λ

n,l+1
h
−λn,l

h

∆ta

+

∫

∂ E

λ̂
n,l
h
(uuuγ · nnnE)−

1

∆ta

∫ tn,l+1

tn,l

∫

E

2∑

i=1

uuui · nnniHiDi(λ f , 0,0)

∫

E

φγ
λn+1

h
−λn,L

h

∆t
+

∫

E

div rrrn+1
h,γ −

1

∆t

∫ tn+1

tn

∫

E

2∑

i=1

FiDi(λ f , 0,0)




E∈Gh
n=0,...,N−1
l=0,...,L−1

in which rrrn+1
h,γ is defined by

∫

γ

(DDDγδ)
−1rrrn+1

h,γ · vvvγ −
∫

γ

λn+1
h

div vvvγ = 0, ∀vvvγ ∈ Σh,γ, ∀n= 0, . . . , N − 1.

and

χ =




1

∆ta

∫ tn,l+1

tn,l

∫

E

2∑

i=1

uuui · nnniHiDi(0,qc,i, c0,i)

∫

E

qc,γ(t
n+1) +

1

∆t

∫ tn+1

tn

∫

E

2∑

i=1

FiDi(0,qc,i, c0,i)




E∈Gh
n=0,...,N−1
l=0,...,L−1

5.5.2.2 Method 2: an extension of the Optimized Schwarz Waveform Relaxation
approach

As in the pure diffusion problem (cf. Subsection 5.3.2), for Method 2 the fracture
problem is included in the subdomain solves. However, in addition to the diffusion
equation in the fracture, here we need to solve also the advection equation in the
fracture for each subdomain solve. The formulation associated with the diffusion step
is just like in the previous section: we still denote by θ ∈ ΛN

h the space-time discrete
Robin data transmitted from one subdomain to the neighboring subdomain at each
diffusion time step,

θ =
�
θ n

h

�
, n= 1, . . . , N .

For the advection step, to solve the advection equation in the fracture we need an
input data as a source term corresponding to the discrete advective flux from the two
subdomains entering or exiting the fracture (the right hand side of the second equation
in (5.39)). Thus we introduce an discrete interface unknown λ̌ ∈ ΛN×L

h
defined by

λ̌=
�
λ̌

n,l
h

�
, n= 0, . . . , N − 1, l = 0, . . . , L − 1,

where �
λ̌

n,l
h

�
|E

:=
2∑

i=1

∫

E

uuui · nnni ĉ
n,l
h,i , ∀E ∈ Gh.

Now to derive the interface problem for this method, we first define the solution
operators Ri , i = 1,2, by

Ri :
�
Λh

�N×L ×
�
Λh

�N × L2(0, T ; L2(Ωi)) ×H1
∗ (Ωi)× L2(0, T ; L2(γ))×H1

0(γ)→�
Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N × (Λ)N ×
�
Σh,γ

�N

�
λ̌,θ ,qc , c0,qc,γ, c0,γ

�
7→
�

ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i , c∆t
i,γ , rrr∆t

γ,i

�
,
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where ĉ
∆t,∆ta

h,i =
�

ĉ
n,l
h,i

�
n=0,...,N−1, l=0,...,L−1

and
�

c∆t
h,i , rrr∆t

h,i , c∆t
γ,i , rrr∆t

γ,i

�
=
�

cn
h,i , rrrn

h,i, cn
i,γ, rrrn

γ,i

�
n=1,...,N

are the solution of the subdomain

problem:

For given (λ̌,θ ,qc , c0,qc,γ, c0,γ), then for n= 0, . . . , N :

1. define c
n,0
h,i = cn

h,i , i = 1,2, and c
n,0
γ,i = c0

h,γ,

2. for l = 0, . . . , L − 1,

• define the upwind values in the subdomain

ĉ
n,l
h,i =Uh,i

�
c

n,l
h,i , c

n,l
i,γ

�
,

and in the fracture ĉ
n,l
h,γ (cf. (5.38)),

• solve the advection equations in the subdomains and in the fracture

∫

K

φi

c
n,l+1
h,i − c

n,l
h,i

∆ta

+
∑

E⊂∂ K

∫

E

ĉ
n,l
h,i (uuui · nnnK) = 0, ∀K ∈Kh,i , i = 1,2,

∫

E

φγ
c

n,l+1
i,γ − c

n,l
i,γ

∆ta

+

∫

∂ E

ĉ
n,l
i,γ (uuuγ · nnnE) =

∫

E

λ̌
n,l
h

, ∀E ∈ Gh,

(5.46)
with c

n,l
h,i , i = 1,2, and c

n,l
i,γ known, and obtain c

n,l+1
h,i , i = 1,2, and c

n,l+1
i,γ ,

3. solve the diffusion equations in the subdomains and in the fracture

∫

K

φi

cn+1
h,i − c

n,L
h,i

∆t
+

∫

K

div rrrn+1
h,i =

∫

K

qc,i(t
n+1), ∀K ∈Kh,i,

∫

Ωi

DDD−1
i

rrrn+1
h,i · vvv−

∫

Ωi

cn+1
h,i div vvv +

∫

γ

cn+1
i,γ (vvv · nnni) = 0, ∀vvv ∈ Σh,i,

−
∫

E

rrrn+1
h,i · nnni +α

∫

E

cn+1
i,γ +

∫

E

φγ
cn+1

i,γ − c
n,L
i,γ

∆t
+

∫

E

div rrrn+1
γ,i =

∫

E

�
θ n+1

h
+ qc,γ(t

n+1)
�

, ∀E ∈ Gh,

∫

γ

(DDDγδ)
−1rrrn+1

γ,i · vvvγ−
∫

γ

cn+1
i,γ div vvvγ = 0, ∀vvvγ ∈ Σh,γ,

(5.47)
with c

n,L
h,i , i = 1,2, known and c

n,L
i,γ and obtain

�
cn+1
h,i , rrrn+1

h,i , cn+1
i,γ , rrrn+1

γ,i

�
.

As in Method 1, to impose the transmission condition for the advection equation,
we define the projection operator to extract the first component ĉ

∆t,∆ta

h,i of the output

of Ri: fHi, i = 1,2 :

fHi :
�

Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N × (Λ)N ×
�
Σh,γ

�N →
�
Λh

�N×L

�
ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i , c∆t
i,γ , rrr∆t

γ,i

�
7→
�

ĉ
∆t,∆ta

h,i

�
|E

, ∀E ∈ Gh.
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Now for the Ventcell-to-Robin transmission conditions, we need the following in-
terface operators Bi , i = 1,2, which depend on the Robin parameter α:

Bi :
�

Nh,i

�N×L ×
�

Mh,i

�N ×
�
Σh,i

�N × (Λ)N ×
�
Σh,γ

�N →
�
Λh

�N

�
ĉ
∆t,∆ta

h,i , c∆t
h,i , rrr∆t

h,i , c∆t
i,γ , rrr∆t

γ,i

�
7→ (rrr∆t

h,i · nnni +αc∆t
i,γ )|E, ∀E ∈ Gh.

With these operators, we can write the interface problem for Method 2 as follows

∫ tn,l+1

tn,l

∫

E

λ̌ =

∫ tn,l+1

tn,l

∫

E

2∑

i=1

uuui · nnni
fHiRi(λ̌,θi ,qc,i, c0,i ,qc,γ, c0,γ),

∫ tn+1

tn

∫

E

θ1 =

∫ tn+1

tn

∫

E

�
B2R2(λ̌,θ2,qc,2, c0,2,qc,γ, c0,γ) + qc,γ(t

n+1)
�

,

∫ tn+1

tn

∫

E

θ2 =

∫ tn+1

tn

∫

E

�
B1R1(λ̌,θ1,qc,1, c0,1,qc,γ, c0,γ) + qc,γ(t

n+1)
�

,

∀E ∈ Gh, ∀n= 0, . . . , N − 1, ∀l = 0, . . . , L − 1.

(5.48)

Note that the composite operator BiRi , i = 1,2, is the discrete Ventcell-to-Robin op-
erator. As usual, we solve (5.48) using Jacobi iterations or GMRES. The former choice
yields an algorithm equivalent to the OSWR algorithm, extended to the reduced frac-
ture model and operator splitting.

As stated in Remark 5.9, we are interested in the case where different advection
time steps (maybe also different diffusion time steps for Method 1) are used. In the
next step, we explain how to handle these nonconforming grids in this case, using the
L2 projections as in the previous chapters.

5.5.3 Nonconforming discretizations in time

As in Subsection 5.3.3, we consider Ti, i = 1,2,γ, three different uniform partitions of
the time interval (0, T ) with into Ni subintervals with size ∆t i, i = 1,2,γ respectively
(see Figure 5.10). The sub-time step for the advection in the subdomain and in the
fracture is defined by

∆t i = Li∆t i,a, i = 1,2,γ,

and we denote by T a
i , i = 1,2,γ the corresponding partition in time for the advection.

We denote by P0(Ti,Λh) the space of piecewise constant functions in time on grid Ti

with values in Λh. Then define Πiγ the average-valued projection from P0(Tγ,Λh) to
P0(Ti,Λh), and Πa

iγ the projection from P0(T a
γ ,Λh) to P0(T a

i ,Λh).

For Method 1

As the interface unknown is the concentration in the fracture, we choose it to be piece-
wise constant on the fracture time grid T a

γ :

λ f ∈ (Λh)
Nγ×(Lγ+1).

Because Dirichlet data at each diffusion time step λn
h is identified with λn,0

h
, Dirichlet

data of the associated advection step, we only need to project λ f onto the advection
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t

x
Ω1 Ω2γ

T = Mγ∆tγ = MγLγ∆ta,γL1∆t1,a =∆t1 ∆t2 = L2∆t2,a

Figure 5.10: Nonconforming advection and diffusion time grids in the rock matrix and
in the fracture.

time grid T a
i of each subdomain. After the subdomain problem is solved, information

corresponding to the transmission condition of the advection equation is projected back
to T a

γ and information corresponding to the transmission condition of the diffusion
equation is projected to Tγ.

The interface problem (5.45) becomes:

S λ f = χ,

where

S λ f =




∫

E

φγ
λ

n,l+1
h
−λn,l

h

∆tγ,a
+

∫

∂ E

λ̂
n,l
h
(uuuγ · nnnE)

∫

E

φγ
λn+1

h
−λn,L

∆tγ
+

∫

E

div rrrn+1
h,γ




E∈Gh
n=0,...,Nγ−1
l=0,...,Lγ−1

+




−
1

∆tγ,a

∫ tn,l+1
γ

t
n,l
γ

∫

E

2∑

i=1

uuui · nnni Π
a
γ i

�
HiDi(Π

a
iγ(λ f ), 0,0)

�

−
1

∆tγ

∫ tn+1
γ

tn
γ

∫

E

2∑

i=1

Πγ i

�
FiDi(Π

a
iγ(λ f ), 0,0)

�




E∈Gh
n=0,...,Nγ−1
l=0,...,Lγ−1

and

χ =




1

∆tγ,a

∫ tn,l+1
γ

t
n,l
γ

∫

E

2∑

i=1

uuui · nnni Π
a
γ i

�
HiDi(0,qc,i, c0,i)

�

∫

E

qc,γ(t
n+1
γ ) +

1

∆tγ

∫ tn+1
γ

tn
γ

∫

E

2∑

i=1

Πγ i

�
FiDi(0,qc,i, c0,i)

�




E∈Gh
n=0,...,Nγ−1
l=0,...,Lγ−1

For Method 2

We recall that one advantage of operator splitting in this case is that one may efficiently
make use of small time step for the advection in the fracture. Thus λ̌ is piecewise
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constant on grid T a
γ and is used for solving the advection equation in the fracture

(without projecting on the advection time grid of the subdomain, T a
i ). As in the pure

diffusion case, θi is piecewise on grid Tγ. The interface problem (5.48) of Method 2 is

∫ tn,l+1
γ

t
n,l
γ

∫

E

λ̌ =

∫ tn,l+1
γ

t
n,l
γ

∫

E

2∑

i=1

uuui · nnni Π
a
γ i

� fHiRi(λ̌,Πiγ(θi),qc,i, c0,i ,qc,γ, c0,γ)
�

,

∫ tn+1
γ

tn
γ

∫

E

θ1 =

∫ tn+1
γ

tn
γ

∫

E

�
Πγ2

�
B2R2(λ̌,Π2γ(θ2),qc,2, c0,2,qc,γ, c0,γ)

�
+ qγ(t

n+1
γ )

�
,

∫ tn+1
γ

tn
γ

∫

E

θ2 =

∫ tn+1
γ

tn
γ

∫

E

�
Πγ1

�
B1R1(λ̌,Π1γ(θ1),qc,1, c0,1,qc,γ, c0,γ)

�
+ qγ(t

n+1
γ )

�
,

∀E ∈ Gh, ∀n= 0, . . . , Nγ − 1, ∀l = 0, . . . , Lγ − 1.

5.5.4 Some remarks on numerical implementation

Because of the time availability, we haven’t carried out numerical experiments to verify
the performance of the two methods derived in this section. Otherwise we have two
remarks concerning the use of preconditioners for Method 1 and of the optimized
parameters for Method 2:

• For Method 1, the local and Neumann-Neumann preconditioners derived in Sub-
section 5.3.1 can be extended to this problem of advection-diffusion equation and
with operator splitting. The extension of the local preconditioner is straightfor-
ward, while for the Neumann-Neumann preconditioner, we use an idea similar to
that used in the case of domain decomposition without fracture (Chapter 3): the
preconditioning system is obtained by solving in the subdomain the advection
equation with inflow Dirichlet data and the diffusion equation with Neumann
data on the space-time fracture-interface.

• For Method 2, the Robin optimized parameters are computed by solving the same
min-max problem as in the pure diffusion case since the optimized transmission
conditions are derived for the diffusion equation only (see Chapter 3 for a related
result).

Conclusion

We apply two domain decomposition methods for modeling the compressible flow in
fractured porous media in which the fractures are assumed to be much more perme-
able than the surrounding medium. Two space-time interface problems are formulated
using the time-dependent Dirichlet-to-Neumann and the Ventcell-to-Robin operators
respectively, so that different time discretizations in the subdomains and in the frac-
ture can be adapted. For Method 1, two different preconditioners - the local and the
Neumann-Neumann preconditioners- are considered and are first validated for a sim-
ple test case with one fracture. For Method 2, the optimized parameter is used to
accelerate the convergence of the associated iterative algorithm. Preliminary numer-
ical experiments show that Method 2 converges much faster than Method 1 (with ei-
ther the preconditioner) in terms of the number of iterations. The Neumann-Neumann
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preconditioner works better than the local preconditioner in the sense that its conver-
gence is faster and is only weakly dependent on the mesh size of the discretizations.
Method 2 also has a weak dependence on the mesh size. When nonconforming time
steps are used, only the local preconditioner preserves the accuracy in time: the L2

error in the fracture of the nonconforming time grid is close to that of the conforming
fine grid. For the other algorithms, the L2 error in the fracture of the nonconforming
time grid is close to that of the conforming coarse grid instead. There are several possi-
bilities to overcome this problem as mention in Subsection 5.4, and this work is still in
progress. The two methods are then extended to the transport problem with advection
and diffusion, where operator splitting is used. Two discrete interface problems are
formulated in which the advection and the diffusion transmission conditions are taken
into account. Numerical results have not yet completed due to lack of time.



Conclusion and future work

In this thesis, we have developed two different types of space-time domain decom-
position methods for diffusion and advection-diffusion problems in the mixed formu-
lations: one method (Method 1) is based on the Steklov-Poincaré operator and one
method (Method 2) is based on the OSWR method with Robin or Ventcell transmis-
sion conditions. For all problems considered, each method is formulated as a problem
defined on the space-time interfaces between the subdomains, which facilitates the
use of a matrix-free iterative method to solve such an interface problem (in our case,
we use GMRES for Method 1 and Jacobi iterations or GMRES for Method 2). This
unified presentation also helps to understand the similarities and differences between
the formulations of the two methods, and between their formulations for different
model problems. As the main interest of this work is to use different time steps in
the subdomains, we have formulated the semi-discrete-in-time interface problem with
nonconforming time grids in which the transmission conditions are enforced by using
L2 projections in time. In the advection-diffusion problems, with the use of operator
splitting, both the advection and the diffusion time steps can be different from one
subdomain to another, and they can be different in each subdomain as well. Thus,
depending on the physical properties of the problem, we can choose the time steps
efficiently in the sense that the multi-domain solution with a nonconforming time grid
preserves the accuracy in time of the solution compared with a monodomain solution
computed with a conforming fine grid. This has been observed for different test cases
in 2D, both academic and realistic , with two subdomains or many subdomains, with
constant and discontinuous coefficients or variable coefficients.

Another objective of this work was to compare the convergence performance of
the two methods. From our numerical experiments, we observe that for pure diffusion
problems with piecewise constant and continuous coefficients, Method 1 outperforms
Method 2, while with piecewise constant and discontinuous coefficients, the conver-
gence speed (in terms of subdomain solves) of Method 1 and Method 2 are comparable.
These results are obtained for Method 1 enhanced with a time dependent Neumann-
Neumann preconditioner and weight matrices to deal with heterogeneous problems,
and for Method 2 with optimized Robin or Ventcell parameters. Asymptotically, both
methods have been observed depend weakly on the discretization parameters.

For advection-diffusion problems in the operator splitting context: Method 2 is
more robust than Method 1 since Method 2 can efficiently handle both advection-
dominated (high Péclet number) and diffusion-dominated (low Péclet number) prob-
lems and the convergence of Method 2 is almost independent of the Péclet number.
Method 1 with a generalized Neumann-Neumann preconditioner works well when the
diffusion is dominant, but it becomes slow when the advection is dominant - even



156 Conclusion and future work

slower than Method 1 without preconditioner. In terms of accuracy in time, both meth-
ods are good since the multidomain solution with the nonconforming time grid has the
same accuracy as that with a conforming fine grid. Of course, one need to choose the
time steps adapted to the physics of the problem - smaller time steps are chosen where
the coefficient is large (i.e. where the solution varies most).

Since a fracture in a porous medium seems to provide an ideal setting in which the
use of different time steps could be useful, we have extended the two methods to the
modeling of flow and transport in fractured porous medium. In particular, we consider
a reduced fracture model in which the fracture is treated as an interface and there
is a dynamic system in the fracture that is coupled with the dynamic system in the
surrounding medium. Preliminary results show that in terms of convergence Method 2
is very efficient and converges very fast compared with Method 1 using different types
of preconditioner.

Because the purpose of using domain decomposition is to take advantage of using
different numerical schemes, in both spatial and time discretizations, we would like to
extend the work for the advection-diffusion equation to nonmatching grids in space as
well, using a mortar mixed finite element method. Dispersion might also be taken into
account for better modeling the physical processes in the porous medium.

For the fracture applications, we will first complete the numerical results for the
transport problem and then improve Method 2 so that it can actually take advantage
of the smaller diffusion time step in the fracture.

Since another reason for using domain decomposition methods is to solve the sub-
domain problems in parallel and to obtain a significant gain in terms of computational
time, we would like to perform parallel computing on a supercomputer.

From a more long-term perspective, a possible direction for extension is to do nu-
merical experiments in 3D for modeling more realistic environmental phenomena.



Appendix A

Convergence factor and optimized
parameters

We present the formulas for the convergence factor of the Optimized Schwarz and
Optimized Schwarz Waveform Relaxation (OSWR) algorithms for problems with dis-
continuous coefficients. These formulas are used to calculate the optimized parameters
associated with the zero-order (Robin) or second-order (Ventcell) transmission condi-
tions. We derive such formulas for three different problems involved in the thesis: the
stationary problem (in Chapter 4), the time-dependent diffusion problem (in Chap-
ter 2) and the reduced fracture model for compressible flow (in Chapter 5).

The derivation of the convergence factor is carried out using Fourier transform,
where the solution is assumed to be indefinitely differentiable (actually it is in the
Schwarz space). In such a context, the mixed formulation is equivalent to the primal
formulation and since finding the convergence factor (not the solution) is what we are
interested here, in the sequel we will write the problems in primal form.

For simplicity, we consider 2D problems and note that the results presented below
can be extended to higher dimensions.

In the following, we recall the formula for convergence factor for stationary prob-
lems (Section A.1) and for time-dependent problems (Section A.2). Then in Sec-
tion A.3, we extend the analysis to the OSWR algorithm associated with the formu-
lation derived in Chapter 5 for a reduced fracture model.

A.1 Stationary problems

We consider the following elliptic problem

Lp := −div (K∇p) = f , on Ω = R2, (A.1)

where K> 0 is assumed to be constant on each half space R+×R and R−×R, but may
be discontinuous at x = 0,

K=

¨
K+ (x , y) ∈ R+×R,
K− (x , y) ∈ R−×R.

In addition, the solution of (A.1) is assumed to decay at infinity. We decompose Ω into
two nonoverlapping subdomains, Ω− = R

−×R and Ω+ = R
+×R with an interface
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Γ = ∂Ω+ ∩ ∂Ω− = {x = 0}. In order to write the multi-domain problem of (A.1), we
denote by

L±p :=−div (K±∇p), (x , y) ∈ Ω±,

and introduce the normal trace operators on the interface as follows

B±p := K±
∂ p±
∂ nnn±

= ∓K±
∂ p

∂ x
, (x , y) ∈ Γ,

where nnn− and nnn+ are the unit outward normal vectors on ∂Ω− and ∂Ω+ respectively.
The multi-domain problem equivalent to (A.1) consists of the subdomain problems:

L−p = f , on Ω−, and L+p = f , on Ω+,

together with the transmission conditions

p− = p+,
B−p− +B+p+ = 0

on Γ. (A.2)

These conditions can be replaced equivalently by
�
B− + S−

�
p− =

�
−B++ S−

�
p+�

B+ + S+
�

p− =
�
−B−+ S+

�
p−

on Γ, (A.3)

where S± is some positive linear operators defined along the y direction. We will
see in the following that the choice of S± has an important effect on the convergence
of the Jacobi algorithm applied to solve the multi-domain problem with transmission
conditions (A.3). Such an algorithm is called the Optimal Schwarz algorithm (see [44]
and references therein) and is defined by: starting with an initial guess

�
B± + S±

�
p0
± = g0

±,

at the kth iteration, k = 1, . . ., solving

L−pk
− = f in Ω−,�

B−+ S−
�

pk
− =

�
−B+ + S−

�
pk−1
+ on Γ,

L+pk
+ = f in Ω+,�

B++ S+
�

pk
+ =

�
−B− + S+

�
pk−1
− on Γ.

(A.4)

Because the problem is linear, we only consider f = 0 and analyse the convergence of
the algorithm to the zero solution. Using a Fourier transform in the y direction with
parameter η, we obtain the Fourier functions p̂k

± in y of pk
±, are solutions to an ODE in

the x variable

−K−
∂ 2 p̂k
−

∂ x2 +K−η
2 p̂k
− = 0, x < 0, η ∈ R,

�
K−

∂

∂ x
+σ−

�
p̂k
− =

�
K+

∂

∂ x
+σ−

�
p̂k−1
+ , x = 0, η ∈ R,

and

−K+
∂ 2 p̂k

+

∂ x2
+K+η

2 p̂k
+ = 0, x > 0, η ∈ R,

�
−K+

∂

∂ x
+σ+

�
p̂k
+ =

�
−K−

∂

∂ x
+σ+

�
p̂k−1
− , x = 0, η ∈ R,
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where σ± are the symbols of the operators S± respectively:

dS±c(η) = σ±(η)p̂(η).

The subdomain solutions in the Fourier transformed domain are of the form

p̂(x ,η) = A(η)e|η|x + B(η)e−|η|x .

As the solution decays at infinity, we obtain

p̂k
− = Ak(η)e|η|x ,

p̂k
+ = Bk(η)e−|η|x .

(A.5)

Substitute these into the transmission conditions on the interface we find

�
K−|η|+σ−

�
p̂k
−(0,η) =

�
−K+|η|+σ−

�
p̂k−1
+ (0,η),�

K+|η|+σ+
�

p̂k
+(0,η) =

�
−K−|η|+σ+

�
p̂k−1
− (0,η).

Then by induction we obtain

p̂2k
− (0,η) =

−K+|η|+σ−
K−|η|+σ−

·
−K−|η|+σ+
K+|η|+σ+

p̂2k−2
− (0,η)

= . . .ρk p̂0
−(0,η),

where

ρ(K−,K+,η) =
−K+|η|+σ−
K−|η|+σ−

·
−K−|η|+σ+
K+|η|+σ+

< 1. (A.6)

Similarly, we deduce

p̂2k
+ (0,η) = ρk p̂0

+(0,η).

On the other hand, from (A.5) we have

p̂k
−(0,η) = Ak(η),

p̂k
+(0,η) = Bk(η).

Thus
p̂2k
− (x ,η) = ρk p̂0

−(x ,η),
p̂2k
+ (x ,η) = ρk p̂0

+(x ,η),

which implies that ρ(K−,K+,η) is the convergence factor of algorithm (A.4). An obvi-
ous choice made by

σ
opt
− = K+|η|, and σopt

+ = K−|η|,

leads to ρ(K−,K+,η) = 0, which makes the algorithm converges in 2 iterations in-
dependently of the coefficient K and the intial guess. However, this choice results in
nonlocal operator S± as σopt

± contains the absolute value of the frequency. One pos-
sibility is to approximate σopt

± by polynomials. In the following, we consider the zero
order and the second order polynomials since the operator of the underlying problem
is second order.
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A.1.1 Zero order (Robin) transmission conditions

We approximate the optimal symbol σopt
− by

σRobin
− = K+a−, and σRobin

+ = K−a+,

where a± are positive constants.
The convergence factor (A.6) becomes

ρRobin(K−,K+, a−, a+,η) =
K+|η|+K+a−
K−|η|+K+a−

·
−K−|η|+K−a+

K+|η|+K−a+
.

The parameters a± are calculated in a way such that they minimize the convergence
factor over some range of frequencies relevant to the problem:

min
a+,a−

�
max

|η|≤ηmax,|ω|≤ωmax

|ρRobin(K−,K+, a−, a+,η)|
�

.

For numerical computations in a finite domain, denoting by h the mesh size over the
interface with length L, it is sufficient to search for the minimum value of |ρ| over a
bounded range of frequencies:

min
a+,a−

 
max

|η|∈
�
π
L

, π
h

� |ρRobin(K−,K+, a−, a+,η)|
!

. (A.7)

One can choose a+ and a− to be equal or different. The former is called weighted
Robin parameters, and the latter is referred as two-sided Robin parameters:

• Weighted Robin parameters:

α− := K+a, and α+ := K−a,

hence the optimization problem (A.7) is defined for only one free parameter a.

• Two-sided Robin parameters:

α− := K+a− and α+ := K−a+, where a− 6= a+.

The optimized parameters are obtained by solving the min-max problem for two
free parameters.

Obviously, the convergence given by the optimized two-sided Robin parameters can not
be worse than the weighted Robin ones. Thus for numerical results of the Optimized
Schwarz methods with Robin transmission conditions, we show the performance of
two-sided Robin parameters only (unless otherwise specified).

A.1.2 Second order (Ventcell) transmission conditions

In this case, we approximate the optimal symbol σopt
− by second order polynomials:

σVentcell
− = K+

�
a−+ b−K+η

2
�

, and σVentcell
+ = K−

�
a++ b+K−η

2
�

,

where a± and b± are positive constants. The first order term is not considered because
the operator of the model problem is self-adjoint.
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The convergence factor (A.6) is now

ρVentcell(K−,K+, a−, b−, a+, b+,η) =
 
K+|η|+K+

�
a−+ b−K+η

2
�

K−|η|+K+

�
a−+ b−K+η

2
�
!  
−K−|η|+K−

�
a+ + b+K−η

2
�

K+|η|+K−
�
a+ + b+η

2
�

!
.

The parameters a± and b± are computed by solving the following min-max problem:

min
a±,bpm

 
max

|η|∈
�
π
L

, π
h

� |ρVentcell(K−,K+, a−, b−, a+, b+,η)|
!

. (A.8)

As in the Robin case, one can choose a+ and a−, and b− and b+ to be equal or differ-
ent. However, in practice it’s difficult to solve numerically an optimization with four
parameters. Thus we consider only the case where a− = a+ = a and b+ = b+ = b,
namely weighted Ventcell parameters:

α− = K+a, β− = K+b,
α+ = K−a, β+ = K−b.

Note that with such a choice of σVentcell
± , we have accordingly

SVentcell
− p = α− p+ β− divτ (K+∇τp), and SVentcell

+ p = α+ p+ β+ divτ (K−∇τp),

where divτ and ∇τ are the tangential divergence and gradient with respect to the
interface Γ.

A.2 Time-dependent diffusion problems

In this section, we consider the OSWR method for the time-dependent diffusion prob-
lems. This method is an extension of the Optimized Schwarz method to evolution
problems using waveform relaxation algorithms, in which time-dependent subdomain
problems are solved and information is exchanged on the space-time interface. Op-
timized transmission conditions are derived in an analogous was as in the stationary
case using Fourier transform, but now in time direction also. In the following, we
briefly recall the convergence factor of the OSWR method and the calculation of the
optimized Robin and Ventcell parameters for a two-half space decomposition [12, 44]
(as considered in Section A.1). However, it was shown in [60, 75] that for some ap-
plications where the subdomains has different lengths, one might need to take into
account the size of the subdomain of small scale to efficiently improve the convergence
of the algorithm. Thus we consider additionally the three domain decomposition and
show in detail the derivation of the convergence factor obtained in this case.

A.2.1 Two half-space analysis

The model problem is the two dimensional time-dependent diffusion equation:

L c := φ∂t c − div (d∇c) = f in Ω×R,
c(·, 0) = c0 in Ω,

(A.9)



162 Appendix A. Convergence factor and optimized parameters

where Ω = R2, the porosity φ and the diffusion coefficient d > 0 are assumed constant
on each half space R+ ×R and R−×R, but may be discontinuous at x = 0,

φ =

¨
φ+ (x , y) ∈ R+×R,
φ− (x , y) ∈ R−×R,

d =

¨
d+ (x , y) ∈ R+×R,
d− (x , y) ∈ R−×R.

In addition, the solution to (A.9) is required to decay at infinity. We decompose Ω into
two half-spaces

Ω− = R
− ×R, Ω+ = R

+ ×R,

with an interface Γ = {x = 0}. In order to define the multi-domain problem of (A.9),
we introduce the notation

L±c := φ±∂t c − d±∆c, (x , y, t) ∈ Ω±×R,

B±c := d±
∂ c

∂ nnn±
= ∓d±

∂ c

∂ x
, (x , y, t) ∈ Γ×R,

where nnn− and nnn+ are the unit outward normal vectors on ∂Ω− and ∂Ω+ respectively.
It is well-known that (A.9) is equivalent to the decomposed problem

L−c− = f in Ω−×R,
c−(·, 0) = c0 in Ω−,

L+c+ = f in Ω+×R,
c+(·, 0) = c0 in Ω+,

together with the transmission conditions which are defined on the space-time interface
(not only in space as in the stationary problem)

c− = c+
B−c− +B+c+ = 0

on Γ×R.

As for the Optimized Schwarz method, we again replace these physical conditions
by new transmission conditions, which results in the optimal Schwarz waveform relax-
ation algorithm defined by: starting with an initial guess on the space-time interface

(B± +S±)c0
± = g0

±,

at the kth Jacobi iteration, k = 1,hdots, solve

L−ck
− = f in Ω−×R,

ck
−(·, 0) = c0 in Ω−,

(B−+S−)ck
− = (−B++S−)ck−1

+ on Γ×R,

L+ck
+ = f in Ω+×R,

ck
+(·, 0) = c0 in Ω+,

(B++S+)ck
+ = (−B−+S+)ck−1

− on Γ×R,

(A.10)

where S− and S+ are linear pseudo-differential operators.
Because the problem is linear, we only consider f = 0 and c0 = 0, and analyze the
convergence of (A.10) to the zero solution. Using a Fourier transform in time with
parameterω and in the y direction with parameter η, we obtain the Fourier transforms
ĉk
± in time t and in y of ck

± are solutions to the following ODE in the x variable:

−d
∂ 2 ĉ

∂ x2 + (φiω+ dη2)ĉ = 0.
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Hence, the Fourier transforms of the subdomain solutions are of the form

ĉ(x ,η,ω) = A(η,ω) er+(φ,d,η,ω)x + B(η,ω) er−(φ,d,η,ω)x ,

where r±(φ, d ,η,ω) are the roots (with positive and negative real parts) of the char-
acteristic equation

−dr2+φiω+ dη2 = 0.

Thus we have

r± = ±
p
∆

d
, where∆= d(φiω+ dη2). (A.11)

As the solution decays at infinity, we deduce that

ĉk
−(x ,η,ω) = Ak(η,ω) er+(φ−,d−,η,ω)x ,

ĉk
+(x ,η,ω) = Bk(η,ω) er−(φ+,d+,η,ω)x .

(A.12)

We also note that
B− ĉk

− = d−r+(φ−, d−,η,ω)ĉk
−,

B+ ĉk
+ = −d+r−(φ+, d+,η,ω)ĉk

+.
(A.13)

Substituting (A.12) and (A.13) into the transmission conditions (the 3rd and 6th equa-
tions of (A.10)) and denoting by σ± the symbols of the operators S ±, i.e.

ÕS ±c(η,ω) = σ±(η,ω)ĉ(η,ω),

we obtain the transmission conditions in the Fourier domain

�
d−r+(φ−, d−,η,ω) +σ−

�
ĉk
−(0,η,ω) =

�
d+r−(φ+, d+,η,ω) +σ−

�
ĉk−1
+ (0,η,ω),

�
−d+r−(φ+, d+,η,ω) +σ+

�
ĉk
+(0,η,ω) =

�
−d−r+(φ−, d−,η,ω) +σ+

�
ĉk−1
− (0,η,ω).

By induction, we have on the space-time interface Γ×R

ĉ−2k
(0,η,ω) =

d+r−(φ+, d+,η,ω) +σ−
d−r+(φ−, d−,η,ω) +σ−

ĉ2k−1
+ (0,η,ω)

=

�
d+r−(φ+, d+,η,ω) +σ−
d−r+(φ−, d−,η,ω) +σ−

��
−d−r+(φ−, d−,η,ω) +σ+
−d+r−(φ+, d+,η,ω) +σ+

�
ĉ2k−2
− (0,η,ω)

= . . .ρk ĉ0
−(0,η,ω).

Similarly,
ĉ2k
+ (0,η,ω) = ρk ĉ0

+(0,η,ω),

where ρ = ρ(φ+, d+,φ−, d−,σ+,σ−,η,ω) is the convergence factor, defined by:

ρ =

�
d+r−(φ+, d+,η,ω) +σ−
d−r+(φ−, d−,η,ω) +σ−

��
−d−r+(φ−, d−,η,ω) +σ+
−d+r−(φ+, d+,η,ω) +σ+

�
. (A.14)

Hence, the optimal convergence (i.e. in two iterations and independently of the coeffi-
cients and the initial guess) is obtained by choosing for the symbols

σ
opt
− = −d+r−(φ+, d+,η,ω) =

p
∆(φ+, d+,η,ω),

σ
opt
+ = d−r+(φ−, d−,η,ω) =

p
∆(φ−, d−,η,ω).
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This choice leads to non-local operators S ± as the symbol σopt
± contains a square root

of the frequencies. As in the Optimized Schwarz method, we will approximate the
optimal choice of σ± by polynomials. We consider again the zero order and the second
order approximations though one may use higher order approximations (see, e.g., [96,
72, 71, 12, 62]. In fact, this approach is originally introduced for absorbing boundary
conditions where higher order approximations are very useful (see, e.g.,[58, 9]).

A.2.1.1 Robin transmission conditions

We approximate the optimal transmission conditions by Robin type conditions:

σRobin
− = d+a−,
σRobin
+ = d−a+,

for a+ and a− > 0.

Note that the weights d+ and d− comes from the fact that there is a factor d in the def-
inition of ∆. In fact, this choice is well-adapted to problems with highly discontinuous
coefficients.

Consequently, the convergence factor (A.14) becomes

ρRobin(φ+, d+,φ−, d−, a−, a+,η,ω) =

−

p
∆(φ+, d+,η,ω) + d−a+p
∆(φ−, d−,η,ω) + d−a+




−

p
∆(φ−, d−,η,ω) + d+a−p
∆(φ+, d+,η,ω) + d+a−


 . (A.15)

To accelerate the convergence, the parameters a+ and a− in (A.2.1.1) are chosen to
minimize the convergence factor (A.15) over low and high frequencies. Thus, we end
up with a min-max problem as follows:

min
a+,a−

�
max

|η|≤ηmax,|ω|≤ωmax

|ρRobin(φ+, d+,φ−, d−, a−, a+,η,ω)|
�

.

In practice, for ∆t the time step of a uniform partition of [0, T] and h the mesh size
over the interface with length L, it is sufficient to search for the minimum value of
|ρRobin| over a bounded range of frequencies

min
a+,a−

 
max

|η|∈
�
π
L

, π
h

�
,|ω|∈

�
π
T

, π
∆t

� |ρRobin(φ+, d+,φ−, d−, a−, a+,η,ω)|
!

. (A.16)

As in the stationary case, we distinguish two types of Robin parameters:

• Weighted Robin parameters: with one free parameter a and

α− := d+a, and α+ := d−a.

• Two-sided Robin parameters: with two parameters a± and

α− := d+a− and α+ := d−a+, where a− 6= a+.

Again for numerical experiments presented in the thesis, we consider only the opti-
mized two-sided Robin parameters when the OSWR method with Robin transmission
conditions is considered.
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A.2.1.2 Ventcell transmission conditions

We use second-order polynomials to approximate σopt
± :

σVentcell
− = d+

�
a−+ b−(iφ+ω+ d+η

2)
�

,
σVentcell
+ = d−

�
a++ b+(iφ−ω+ d−η

2)
�

,
for a± and b± > 0.

Consequently, we obtain

ρVentcell =

 
d+r−(s+, d+,η,ω) + d+

�
a−+ b−(iφ+ω+ d+η

2)
�

d−r+(s−, d−,η,ω) + d+
�
a−+ b−(iφ+ω+ d+η

2)
�
!
·

�
−d−r+(s−, d−,η,ω) + d−

�
a+ + b+(iφ−ω+ d−η

n)
�

−d+r−(s+, d+,η,ω) + d−
�
a+ + b+(iφ−ω+ d−η

n)
�
�

.

The optimized parameters a± and b± are then computed by solving the min-max prob-
lem

min
a±,b±

 
max

|η|∈
�
π
L

, π
h

�
,|ω|∈

�
π
T

, π
∆t

� |ρVentcell(φ+, d+,φ−, d−, a−, b−, a+, b+,η,ω)|
!

. (A.17)

For the same reasons as in the stationary case (see Section A.1), we consider the
weighted Ventcell parameters and optimize the convergence factor for two free pa-
rameters a and b:

α− = d+a, β− = d+b,
α+ = d−a, β+ = d−b.

Note that with this choice, we have accordingly

S Ventcell
− c = α− c + β−

�
φ+∂t c + divτ (d+∇τc)

�
, and

S Ventcell
+ c = α+ c + β+

�
φ−∂t c + divτ (d−∇τc)

�
,

where divτ and ∇τ are the tangential divergence and gradient with respect to the
interface Γ.

Remark A.1. Since the optimization depends on the mesh size h = maxhi and the time

step ∆t = max∆t i, the optimized parameters serve in some sense as a preconditioner.

See [12] and the numerical results in Chapters 2, 3 and Chapter 4 where the asymptotic

behaviours of the Optimized Schwarz or OSWR methods with either Robin or Ventcell

transmission conditions are studied.

A.2.2 Three domain analysis

It has been shown in [60, 75] that for a domain consisting of layers with highly differ-
ent sizes and physical properties, the classical optimization, based on two half-space
analysis presented above, is not well-adapted to the problem. Thus another optimiza-
tion that takes into account the size of the domain of small scale has been derived
in these papers and it has good numerical performance compared to the classical opti-
mization (see Subsection 2.5.3 where we consider a realistic test case inspired from the
nuclear waste repository simulations). In this subsection, we will recall the formulation
for this adapted optimization.
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Consider a decomposition into three domains

Ω1 = (−∞, 0)×R, Ω2 = (0, L)×R and Ω3 = (L,∞)×R with L≪ 1.

As in the previous subsection, we assume that the porosity and the diffusion are piece-
wise constant in each subdomain (but may be discontinuous across the interface)

φ = φi , d = di ∀(x , y) ∈ Ωi, i = 1,2,3.

The new transmission conditions, equivalent to the physical ones, are

d1

∂ ck
1

∂ x
+S1,2ck

1 = d2

∂ ck−1
2

∂ x
+S1,2ck−1

2 , on {x = 0}×R,

−d2
∂ ck

2

∂ x
+S2,1ck

2 = −d1

∂ ck−1
1

∂ x
+S2,1ck−1

1 , on {x = 0}×R,

d2

∂ ck
2

∂ x
+S2,3ck

2 = d3

∂ ck−1
3

∂ x
+S2,3ck−1

3 , on {x = L} ×R,

−d3

∂ ck
3

∂ x
+S3,2ck

3 = −d2

∂ ck−1
2

∂ x
+S3,2ck−1

2 , on {x = L} ×R.

Proceeding as in Subsection A.2.1, the solutions of (A.9) are

ĉk
1(x ,η,ω) = Ak

1(η,ω)er+(d1,φ1,η,ω)x , x < 0,

ĉk
2(x ,η,ω) = Ak

2(η,ω)er+(d2,φ2,η,ω)x + Bk
2(η,ω)er−(d2 ,φ2,η,ω)x , 0< x < L,

ĉk
3(x ,η,ω) = Bk

3(η,ω)er−(d3,φ3,η,ω)x , x > L,

where r± are defined in (A.11). We further denote by

r±
i
= r±(di,φi ,η,ω).

The transmission conditions in the Fourier domain can be written, for a.e. t ∈ R, as
follows
�

d1r+1 +σ1,2

�
Ak

1 =
�

d2r+2 Ak−1
2 + d2r−2 Bk−1

2

�
+σ1,2

�
Ak−1

2 + Bk−1
2

�
,

on {x = 0}, (A.18)�
−d2r+2 Ak

2 − d2r−2 Bk
2

�
+σ2,1

�
Ak

2 + Bk
2

�
=
�
−d1r+1 +σ2,1

�
Ak−1

1 ,

on {x = 0}, (A.19)�
d2r+2 er+2 LAk

2 + d2r−2 er−2 LBk
2

�
+σ2,3

�
er+2 LAk

2 + er−2 LBk
2

�
=
�

d3r−3 +σ2,3

�
er−3 LBk−1

3 ,

on {x = L}, (A.20)
�
−d3r−3 +σ3,2

�
er−3 LBk

3 =
�
−d2r+2 er+2 LAk−1

2 − d2r−2 er−2 LBk−1
2

�
+

σ3,2

�
er+2 LAk−1

2 + er−2 LBk−1
2

�
, on {x = L}. (A.21)

• From (A.18), we have
�

d1r+1 +σ1,2

�
Ak

1 =
�

d2r+2 +σ1,2

�
Ak−1

2 +
�

d2r−2 +σ1,2

�
Bk−1

2 .

Thus
Ak

1 = s1Ak−1
2 + s2Bk−1

2 , on {x = 0}×R, (A.22)

where

s1 =
d2r+2 +σ1,2

d1r+1 +σ1,2
; s2 =

d2r−2 +σ1,2

d1r+1 +σ1,2
.
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• From (A.21), we have
�
−d3r−3 +σ3,2

�
Bk

3 =
�
−d2r+2 +σ3,2

�
er+2 LAk−1

2 +
�
−d2r−2 +σ3,2

�
er−2 LBk−1

2 .

Thus
Bk

3 = s7Ak−1
2 + s8Bk−1

2 , on {x = L} ×R, (A.23)

where

s7 =
−d2r+2 +σ3,2

−d3r−3 +σ3,2
e(r

+
2 −r−3 )L; s8 =

−d2r−2 +σ3,2

−d3r−3 +σ3,2
e(r
−
2 −r−3 )L.

• Rewrite (A.19) as
�
−d2r+2 +σ2,1

�
Ak

2+
�
−d2r−2 +σ2,1

�
Bk

2 =
�
−d1r+1 +σ2,1

�
Ak−1

1 , on {x = 0},

Thus, we can deduce

Ak
2 = s4Ak−1

1 − s5Bk
2 , on {x = 0}×R, (A.24)

where

s4 =
−d1r+1 +σ2,1

−d2r+2 +σ2,1
, s5 =

−d2r−2 +σ2,1

−d2r+2 +σ2,1
.

Similarly, rewrite (A.20) as
�

d2r+2 +σ2,3

�
er+2 LAk

2 +
�

d2r−2 +σ2,3

�
er−2 LBk

2 =
�

d3r−3 +σ2,3

�
er−3 LBk−1

3 , on {x = L},

and obtain
Bk

2 = −s3Ak
2 + s6Bk−1

3 , on {x = L} ×R, (A.25)

where

s3 =
d2r+2 +σ2,3

d2r−2 +σ2,3
e(r

+
2 −r−2 )L, s6 =

d3r−3 +σ2,3

d2r−2 +σ2,3
e(r
−
3 −r−2 )L.

To obtain a representation of Ak
2 depending only on the terms at the (k − 1)th

iteration, we substitute (A.25) into (A.24) and have

Ak
2 =

s4

D
Ak−1

1 −
s5s6

D
Bk−1

3 , (A.26)

where D = 1− s5s3. Then substituting this into (A.25), we obtain

Bk
2 = −

s3s4

D
Ak−1

1 +
s6

D
Bk−1

3 . (A.27)

Finally denoting by ξk = [Ak
1; Ak

2; Bk
2 ; Bk

3], from (A.22), (A.23), (A.26) and (A.27),
we have

ξk =MMMξk−1,

where

MMM =




0 s1 s2 0
s4/D 0 0 −s5s6/D

−s3s4/D 0 0 s6/D

0 s7 s8 0


 .
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Thus, the convergence factor ρ is the spectral radius of the matrix MMM .
If we choose the symbols

σ
opt
1,2 = −d2r−2 , σopt

2,1 = d1r+1 , σopt
2,3 = −d3r−3 and σopt

3,2 = d2r+2 ,

then Ak
2 = 0 for k ≥ 1, Ak

1 = Bk
3 = 0 for k ≥ 2 and Bk

2 = 0 for k ≥ 3. This gives
the optimal convergence of the algorithm, i.e. in three iterations and independently of
the initial guess. As in Subsection A.2.1, we approximate this optimal choice σi, j by
zero-order polynomials (the second order case can be considered, but we do not treat
such a case here):

σ
app
1,2 = −d2a1,2, σ

app
2,1 = d1a2,1,

σ
app
2,3 = −d3a2,3, σ

app
3,2 = d2a3,2.

(A.28)

Then parameters ai, j can be computed by solving the min-max problem

min
ai, j

�
max

|η|≤ηmax,|ω|≤ωmax

|ρRobin(φ1, d1,φ2, d2,φ3, d3, a1,2, a2,1, a2,3, a3,2,η,ω)|
�

.

Remark A.2. In practice, the optimization for four parameters is complicated (for in-

stance, using "fminsearch" of Matlab may give you local minimum value which can be

much larger than the global minimum value). We propose two possible choices to handle

this problem:

• If subdomains Ω1 and Ω3 have the same physical properties, i.e.

φ1 = φ3 = φ13, d1 = d3 = d13,

then (A.28) reduces to

σ
app

1,2 = −d2a13, σ
app

2,1 = d13a2,
σ

app

2,3 = −d13a2, σ
app

3,2 = d2a13.

The associated min-max problem is then for only two parameters

min
a13,a2

�
max

|η|≤ηmax,|ω|≤ωmax

|ρ(φ13, d13,φ2, d2, a13, a2η,ω)|
�

.

• Otherwise, i.e. if each subdomain has different physical properties, one could opti-

mize on two parameters by letting

σ
app

1,2 = −d2a1, σ
app

2,1 = d1a1,
σ

app

2,3 = −d3a2, σ
app

3,2 = d2a2.

A.3 Reduced fracture model of the incompressible flow

In this section, we extend the two domain analysis above (Subsection A.2) to derive
the convergence factor associated with the OSWR type method which we have intro-
duced in Chapter 5 for a reduced fracture model of the incompressible flow. With this
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aim, we consider the two half-space decomposition and write the fractured OSWR al-
gorithm (obtained by performing Jacobi iterations on the interface problem (5.28), see
Chapter 5) in the primal formulation: at the kth Jacobi iteration, solve

s−∂t p
k
− + div (−KKK−∇pk

−) = q in Ω−× (0, T ),

KKK−
∂ pk
−

∂ nnn−
+α−pk

− + sγ∂t pk
−+ divτ (−KKK f ,τδ∇τpk

−) = KKK+
∂ pk−1
+

∂ nnn−
+α−pk−1

+ + q f

on γ× (0, T ),
pk
−(·, 0) = p0 in Ω−,

(A.29)
and

s+∂t p
k
+ + div (−KKK−∇pk

+) = q in Ω+× (0, T ),

KKK+
∂ pk
+

∂ nnn+
+α+pk

+ + sγ∂t pk
++ divτ (−KKK f ,τδ∇τpk

+) = KKK−
∂ pk−1
−

∂ nnn+
+α+pk−1

− + q f

on γ× (0, T ),
pk
+(·, 0) = p0 in Ω+,

(A.30)
where

Ω− = R
− ×R, Ω+ = R

+ ×R,

and γ = {x = 0} is the fracture. We assume that the permeability is isotropic:

KKK pm = K±III , and KKK f ,τ = K f ,

where III is the 2D identity matrix. In addition, the solution of the problem is assumed to
decay at infinity. As the problem is linear, we only consider q = 0, q f = 0 and p0 = 0,
and analyse the convergence of (A.29)-(A.30) to the zero solution. As in previous
sections, we use Fourier transform in time with parameter ω and in y direction with
parameter η to obtain the Fourier functions p̂k

± in time t and y of pk
±, are solutions to

the Ordinary Differential Equation (ODE) in the x variable

−K
∂ 2 p̂

∂ x2 +
�

siω+Kη2
�

p̂ = 0.

Thus

p̂ = A(η,ω)er+ x + B(η,ω)er− x ,

where r± are the roots of the characteristic equation

−Kr2+
�

siω+Kη2
�
= 0,

so

r± = ±
p
∆

2K
, ∆= 4K

�
siω+Kη2

�
.

As the solution decays at infinity, we obtain

p̂k
− = Ak(η,ω)er+(s−,K−,η,ω)x ,

p̂k
+ = Bk(η,ω)er−(s+,K+,η,ω)x .
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Substitute these into the transmission conditions on the interface Γ× (0, T ) (i.e. the
second equations of (A.29) and (A.30)), we find
�
K−r+(s−,K−,η,ω) +α− + sγiω+K f δη

2
�

p̂k
−(0,η,ω)

=
�
K+r−(s+,K+,η,ω) +α−

�
p̂k−1
+ (0,η,ω),

�
−K+r−(s+,K+,η,ω) +α+ + sγiω+K f δη

2
�

p̂k
+(0,η,ω)

=
�
−K−r+(s−,K−,η,ω) +α+

�
p̂k−1
− (0,η,ω).

(A.31)
Denote by

θ = sγiω+K f δη
2,

then from (A.31) and by induction we obtain

p̂2k
− (0,η,ω) =

K+r−(s+,K+,η,ω) +α−
K−r+(s−,K−,η,ω) +α−+ θ

p̂2k−1
+ (0,η,ω)

=

�
K+r−(s+,K+,η,ω) +α−

K−r+(s−,K−,η,ω) +α− + θ

� �
−K−r+(s−,K−,η,ω) +α+
−K+r−(s+,K+,η,ω) +α+ + θ

�
p̂2k−2
− (0,η,ω)

= . . .ρk
f p̂0
−(0,η,ω).

Similarly,
p̂2k
+ (0,η,ω) = ρk

f p̂0
+(0,η,ω),

where

ρf =

�
K+r−(s+,K+,η,ω) +α−

K−r+(s−,K−,η,ω) +α− + θ

� �
−K−r+(s−,K−,η,ω) +α+
−K+r−(s+,K+,η,ω) +α+ + θ)

�
,

is the convergence factor of the algorithm (A.29)-(A.30). Thus, we can calculate the
parameters α± such that it minimizes this continuous convergence factor:

min
α+,α−

 
max

|η|∈
�
π
L

, π
h

�
,|ω|∈

�
π
T

, π
∆t

� |ρf(s+,K+, s−,K−,α−,α+,η,ω)|
!

, (A.32)

where L is the length of the fracture, h is the spatial mesh size, T is the final time and
∆t is the maximum time step of the discretization in time.

Note that α− and α+ can be equal or different. In the numerical results of Chap-
ter 5, as the first step we have used the optimized one-sided Robin parameters:

α− = α+ = α.

Of course one may make use of the two-sided Robin as in the previous section. In
Chapter 5, the optimized one-sided Robin parameter works well since in the test case
we considered, the two subdomains Ω1 and Ω2 (representing the rock matrix) have
similar physical properties (though a comparison of the performance of the one-sided
and two-sided parameters might be considered).



Appendix B

Discretizations in space using
mixed finite element methods

We present the mixed finite element method for a 2D parabolic equation - which can
be a model for compressible flow in porous media or for contaminant transport with
an effect of diffusion only (see Chapter 1). Different boundary conditions (Dirichlet,
Neumann and Robin types) are treated.

We first give the variational formulation of the model problem, then discretize the
problem in space using the lowest order Raviart-Thomas spaces on rectangles. In time,
the discontinuous Galerkin method of zero order (or the modified backward Euler
method) is considered. Details of the calculation of the basis functions and the matrices
of the resulting algebraic system is shown.

In addition, a type of mixed-hybrid mixed finite element method, where Lagrange
multipliers for the scalar unknown are introduced on some part of the boundary, is
considered. This is the case when one uses the OSWR method with Ventcell trans-
mission conditions in the context of mixed formulations (see Chapter 4) or when the
OSWR method is used for modeling flow and transport in fractured porous media (see
Chapter 5).

Note that the discretization in space for an elliptic problem can be easily obtained
from the results presented in this appendix.

Remark B.1. Our purpose here is to formulate the discrete problem and show how to

calculate the terms of the matrices of the algebraic system for implementation purposes.

B.1 A model problem and its mixed variational formulation

For a polygonal domain Ω ⊂ R2 and some fixed T > 0, consider a model problem
written in mixed form as follows:
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KKK−1uuu+∇p = 0 in Ω× (0, T ),

s
∂ p

∂ t
+ div uuu = f in Ω× (0, T ),

p = gD on ΓD × (0, T ),

−KKK
∂ p

∂ nnn
= gN on ΓN × (0, T ),

ϕp+KKK
∂ p

∂ nnn
= gR on ΓR × (0, T ),

p (x , 0) = p0 (x) in Ω,

(B.1)

where Γi , i = D, N ,R, is a subset of ∂Ω such that Γi ∩Γ j = ;, i 6= j and ΓD ∪ΓN ∪ΓR =

∂Ω, nnn is the outward unit normal vector on ∂Ω, s is a strictly positive function on Ω,
KKK is a symmetric, positive definite tensor, ϕ is a strictly positive function on ΓR, f , gD,
gN and gR are given.

In order to write the variational formulation of (B.1), we need to introduce the
following spaces (for the Robin boundary conditions)

M = L2(Ω),

Σ =H (div ,Ω) :=
¦

vvv ∈ H(div ,Ω) : vvv · nnn ∈ L2(∂Ω)
©

.

To handle Neumann boundary conditions, we need also the space

ΣgN :=
�
vvv ∈ Σ : vvv · nnn= gN on ΓN

	
⊂ Σ.

Consequently,

Σ0 =
�
vvv ∈ Σ : vvv · nnn= 0 on ΓN

	
⊂ Σ.

Note that Σ0 is a vector space whereas ΣgN is not.

Remark B.2. If there is no Robin boundary condition, we take Σ = H(div ,Ω). How-

ever, the mixed finite element subspace of Σ does not change whether the Robin boundary

condition is present or not.

We now derive the variational formulation of (B.1): we multiply the first equation
of (B.1) by a test function vvv ∈ Σ0 and integrate over Ω. Then using Green’s formula as
well as boundary conditions we obtain

∫

Ω

�
KKK−1uuu

�
· vvv−

∫

Ω

p∇ · vvv+
∫

ΓR

ϕ−1 (uuu · nnn) (vvv · nnn) = −
∫

ΓD

gD vvv · nnn−
∫

ΓR

ϕ−1 gR vvv · nnn,

∀vvv ∈ Σ0.

Next multiplying the second equation of (B.1) by a test function µ ∈ M and integrating
over Ω, we have ∫

Ω

s
∂ p

∂ t
µ+

∫

Ω

div uuu µ =

∫

Ω

f µ, ∀µ ∈ M .
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Before writing the variational problem, we introduce the following bilinear forms
a, b and r and the linear forms LD and LR:

a : L2(Ω)L2(Ω)L2(Ω)× L2(Ω)L2(Ω)L2(Ω) −→ R, a (uuu, vvv) =

∫

Ω

�
KKK−1uuu

�
· vvv,

b : Σ×M −→ R, b
�
vvv,µ
�
=

∫

Ω

µ∇ · vvv,

r : Σ×Σ −→ R, r (uuu, vvv) =

∫

ΓR

ϕ−1 (uuu · nnn) (vvv · nnn) ,

LD : Σ −→ R, LD (vvv) = −
∫

ΓD

gD vvv · nnn,

LR : Σ −→ R, LR (vvv) = −
∫

ΓR

ϕ−1 gR vvv · nnn.

We denote by (·, ·)Ω the scalar product in M = L2 (Ω):

�
f ,µ
�
Ω =

∫

Ω

f µ, for f ,µ ∈ M . (B.2)

The variational formulation of problem (B.1) is written as follows:
Find uuu : (0, T )→ Σg and p : (0, T )→ M such that

a (uuu, vvv)− b
�
vvv, p
�
+ r (uuu, vvv) = LD (vvv) + LR (vvv) , ∀vvv ∈ Σ0, t ∈ (0, T ),�

s
∂ p

∂ t
,µ

�

Ω

+ b
�
uuu,µ
�
=
�

f ,µ
�
Ω , ∀µ ∈ M , t ∈ (0, T ),

�
p (·, 0) ,µ

�
Ω =

�
p0,µ

�
Ω , ∀µ ∈ M .

(B.3)

In the next section, we formulate the semi-discrete-in-space problem of (B.3) using
mixed finite element spaces. In particular, we use the lowest order Raviart-Thomas
spaces on rectangles.

B.2 Semi-discrete approximations in space

We denote by

• h a positive number,

• Kh a conforming triangulation of Ω into rectangles of diameters no greater than
h, with card

�
Kh

�
= nc = number of the cells in the mesh,

• Eh the set of all edges of rectangles in Kh, with card
�
Eh

�
= ne = number of the

edges,

• Êh the subset of Eh containing the edge in Eh that are not contained in ΓN , with
card

�
Êh

�
= ne− nne, where nne is the number of edges not in ΓN .

Now we come to the definition of the finite dimensional subspaces Mh ⊂ M and Σh ⊂ Σ
and the approximations ph(t) ∈ M and uuuh(t) ∈ Σh of p(t) and uuu(t) respectively.

• Mh is the space of functions µh ∈ M which are constant over each cell:
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– dim Mh = card
�
Kh

�
= nc = number of the cells in the mesh Kh.

– A basis of Mh is
�
χK

	
K∈Kh

where:

χK (x) =

(
1 if x ∈ K ,

0 otherwise.

– The degrees of freedom are
�

pK (t)
	

K∈Kh
, pK (t) is the average value of

p (t) over the cell K for K ∈Kh.

The approximate scalar solution ph : (0, T ) 7→ Mh has a unique representation as
follows

ph (x , t) =
∑

K∈Kh

pK (t) χK (x) , (x , t) ∈ Ω× (0, T ).

• Σh is the lowest order Raviart-Thomas on Kh (see [22, 104]), i.e. the space of
vector functions vvvh ∈ Σ such that the restriction of vvvh to each element K ∈ Kh,
vvvh|K is in ΣK

ΣK =

¨
vvvh ∈ Σ : vvvh|K =

�
āx1+ b̄

c̄ x2 + d̄

�
, (ā, b̄, c̄, d̄) ∈ R4

«
, K ∈ Kh.

The properties of Σh are as follows

– dimΣh = card
�
Eh

�
= ne = the number of edges in the mesh.

– A basis of Σh is
�
wwwE

	
E∈Eh

defined by:

∫

F

wwwE · nnnF = δE,F , ∀F ∈ Eh.

where nnnE is a chosen unit normal to the edge E ∈ Eh:

∗ for E ⊂ ∂Ω, nnnE is the outward unit normal to ∂Ω;

∗ for E = ∂ Ki ∩ ∂ K j for Ki, K j ∈ Kh, nnnE is either unit vector orthogonal
to the edge E. However, after choosing nnnE (which may be an outward
normal to ∂ Ki or ∂ K j ) we will fix and record its direction for further
computations.

– The degrees of freedom are
�
uE (t)

	
E∈Eh

, where uE (t) is the flow rate of
uuu (t) across E ∈ Eh:

uE =

∫

E

uuu · nnnE .

Hence the approximate vector solution uuuh : (0, T )→ Σh has a unique representa-
tion as follows

uuuh (x , t) =
∑

E∈Eh

uE (t)wwwE (x) , (x , t) ∈ Ω× (0, T ).

We define the corresponding finite dimensional spaces of ΣgN and Σ0 by

Σ
gN

h
=
�
vvvh ∈ Σh : vvvh · nnn= gN on ΓN

	
, and Σ0

h =
�
vvvh ∈ Σh : vvvh · nnn= 0 on ΓN

	
.
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Using the notation introduced above, one can write the semi-discrete problem of (B.3)
as follows

Find uuuh : (0, T )→ Σg

h
and ph : (0, T )→ Mh such that

a
�
uuuh, vvvh

�
− b

�
vvvh, ph

�
+ r
�
uuuh, vvvh

�
= LD

�
vvvh

�
+ LR

�
vvvh

�
, ∀vvvh ∈ Σ0

h, t ∈ (0, T ),�
s
∂ ph

∂ t
,µh

�

Ω

+ b
�
uuuh,µh

�
=
�

f ,µh

�
Ω , ∀µh ∈ Mh, t ∈ (0, T ),

�
ph (·, 0) ,µh

�
Ω =

�
p0,µh

�
Ω , ∀µh ∈ Mh.

(B.4)

Since vvvh =
∑

E∈Eh

ϑE wwwE (x) and µh =
∑

K∈Kh

ηK χK (x), the system (B.4) is equivalent

to∑

F∈Eh

a
�
wwwF ,wwwE

�
uF (t)−

∑

K∈Kh

b
�
wwwE ,χK

�
pK (t)+

∑

F∈Eh

r
�
wwwF ,wwwE

�
uF (t)= LD

�
wwwE

�
+ LR

�
wwwE

�
,

∀E ∈ Eh, E 6⊂ ΓN , t ∈ (0, T ),
∑

S∈Kh

�
sχS ,χK

�
Ω

dpS (t)

d t
+
∑

E∈Eh

b
�
wwwE ,χK

�
uE (t) =

�
f ,χK

�
Ω , ∀K ∈Kh, t ∈ (0, T ),

∑

S∈Kh

�
χS ,χK

�
Ω pS (0) =

�
p0,χK

�
Ω , ∀K ∈Kh,

uE (t) =

∫

E

gN , ∀E ∈ Eh, E ⊂ ΓN , t ∈ J .

This is a linear system of (ne+ nc) equations in (ne+ nc) unknowns
�
uE (t)

	
E∈Eh

and�
pK (t)

	
K∈Kh

. It can be rewritten in matrix form

Au (t) + Bp (t) = GDNR (t) , t ∈ (0, T ),

BTu (t)−M
dp (t)

d t
= −F (t) , t ∈ (0, T ),

Mp (0) = p0,

(B.5)

where u =
�
uE

�
E∈Eh

is a vector of size ne, p=
�

pK

�
K∈Kh

is a vector of size nc, and

• A is an ne× ne matrix:

A(E, F) =





a
�
wwwE ,wwwF

�
+ r
�
wwwF ,wwwE

�
, if E 6⊂ ΓN ,

1, if E ⊂ ΓN and F = E,
0, if E ⊂ ΓN and F 6= E,

• B is an ne× nc matrix:

B=
�
−b
�
wwwE ,χK

��
E∈Eh,K∈Th

,

• M is an nc× nc diagonal matrix:

M=
��

sχS ,χK

�
Ω

�
K,S∈Kh

,

• GDNR is a vector of size ne:

GDNR(E) =





LD

�
wwwE

�
+ LR

�
wwwE

�
, if E 6⊂ ΓN ,∫

E

gN , if E ⊂ ΓN .
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• F is a vector of size nc:
F=

��
f ,χK

�
Ω

�
K∈Kh

.

• p0 is a vector of size nc:

p0 =
��

p0,χK

�
Ω

�
K∈Kh

.

B.3 Fully discrete problem with an implicit scheme in time

Now we solve the system of ordinary differential equations (B.5) by discretizing the
time derivative using the discontinuous Galerkin method of order zero (which is equiv-
alent to a modified Euler method). Let 0 = t0 < t1 < · · · < tN = T be a partition of J
into N subintervals

�
tn, tn+1

�
of length ∆tn = tn+1 − tn. For a generic function v of

time, we denote by vn = v (tn).
The fully discrete variational formulation of (B.3) is

Find uuun
h ∈ Σ

g

h
and pn

h ∈ Mh for n= 1,2, · · · , N such that

a
�

uuun+1
h

, vvvh

�
− b
�

vvvh, pn+1
h

�
− r
�

uuun+1
h

, vvvh

�
=

∫ tn+1

tn

�
LD

�
vvvh

�
+ LR

�
vvvh

��
, ∀vvvh ∈ Σ0

h
,

�
pn+1

h
− pn

h ,µh

�
+∆tn b

�
uuun

h,µh

�
=

∫ tn+1

tn

�
f ,µh

�
Ω , ∀µh ∈ Mh,

�
p0

h
,µh

�
=
�

p0,µh

�
, ∀µh ∈ Mh,

or equivalently in matrix form

Aun+1 + Bpn+1 =

∫ tn+1

tn

GDNR,

∆tnBTu
n+1 −Mpn+1 = −Mpn−

∫ tn+1

tn

Fn+1,

Mp (0) = p0,

(B.6)

where un =
�

un
E

�
E∈Eh

and pn =
�

pn
K

�
K∈Kh

with

pn
h =

∑

K∈Kh

pn
KχK ,

uuun
h
=
∑

E∈Eh

un
EwwwE ,

for n= 1,2, · · · , N .

B.4 Detailed calculation of the matrices in the linear system

We present detailed calculation of the matrices in (B.6) for a rectangular mesh Kh

whose horizontal and vertical edges are parallel to the x1− and x2−coordinate axes,
respectively (see Figure B.1). We assume that s and KKK are piecewise constant on each
element Ki j ∈ Kh and write

si j = s|Ki j
, KKK = KKK |Ki j

, ∀Ki j ∈Kh.

In order to compute the basis functions wwwE of Σh, we fix the normal vector nnnE in a way
that nnnE = nnn1 = (1,0) if E is vertical, and nnnE = nnn2 = (0,1) if E is horizontal. We give the
explicit formula for wwwE for a vertical edge E and for a horizontal edge E.
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i, j + 1

ij i+ 1, j
j + 1/2

j − 1/2
j

i+ 1/2i− 1/2 i ✲~n1

✻
~n2

h1i

h2j

✲✛

✻
❄

Figure B.1: A conforming triangulation into rectangles.

Remark B.3. By the definition of the basis function wwwE of Σh, the restriction of wwwE to the

cells which are not adjacent to E is equal to zero.

• If E is a vertical edge (not on the boundary ∂Ω): E = Ei+1/2, j . Due to Remark B.3,
we only consider the restriction of wwwE to two adjacent cells Ti j and Ti+1, j of the
edge Ei+1/2, j . By definition, we have

www i+1/2, j |Ti j
=

�
ax1 + b

cx2 + d

�
,

for some a, b, c, d ∈ R and
∫

Ei+1/2, j

www i+1/2, j · nnni+1/2, j = 1,

∫

Ei−1/2, j

www i+1/2, j · nnni−1/2, j = 0,

∫

Ei, j+1/2

www i+1/2, j · nnni, j+1/2 = 0,

∫

Ei, j−1/2

www i+1/2, j · nnni, j−1/2 = 0,

or equivalently,





ax i+1/2 + b = 1/h2 j

ax i−1/2 + b = 0
c = d = 0

⇔





a =
1�

x i+1/2 − x i−1/2

�
h2 j

=
1

h1ih2 j

=
1

| Ti j |
,

b = −
x i−1/2

| Ti j |
,

c = d = 0.

Thus

www i+1/2, j |Ti j
=




x1 − x i−1/2

| Ti j |
0


 .

Similarly, we have

www i+1/2, j |Ti+1, j
=



−x1+ x i+3/2

| Ti+1, j |
0


 .

From these two equations, we obtain an explicit formula for the basis function
www i+1/2, j :

www i+1/2, j
�

x1, x2
�
=

�
vi+1/2, j

�
x1
�

0

�
,
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where vi+1/2, j
�

x1
�

is the hat function (see Figure B.2 ):

vi+1/2, j
�

x1
�
=





x1− x i−1/2

| Ti j |
if x1 ∈

�
x i−1/2, x i+1/2

�
,

−x1+ x i+3/2

| Ti+1, j |
if x1 ∈

�
x i+1/2, x i+3/2

�
,

0 otherwise.

0

1/h2j

xi−1/2 xi+1/2 xi+3/2 x1

Figure B.2: The hat function vi+1/2, j
�

x1
�
.

• E is a horizontal edge (not on the boundary ∂Ω): E = Ei, j+1/2. Proceeding as
above, we obtain the corresponding basis

www i, j+1/2
�

x1, x2
�
=

�
0

vi, j+1/2
�

x2
�
�

,

where

vi, j+1/2
�

x2
�
=





x2− x j−1/2

| Ti j |
if x2 ∈

�
x j−1/2, x j+1/2

�
,

−x2+ x j+3/2

| Ti, j+1 |
if x2 ∈

�
x j+1/2, x j+3/2

�
,

0 otherwise .

Remark B.4. If the edge E is on the boundary, then E has only one adjacent cell. The

corresponding basis function wwwE is defined using its the restriction to that cell only. For

example, If E is on the left boundary (i = 0), then

www1/2, j
�

x1, x2
�
=

�
w1/2, j

�
x1
�

0

�
,

where

w1/2, j
�

x1
�
=





−x1+ x3/2

| T1 j |
if x1 ∈

�
x1/2, x3/2

�
,

0 otherwise.

We now compute explicitly the coefficients in the system (B.6). We begin with the
2nd equation: since the basis functions χK of Mh are characteristic functions , we have

∑

E∈Eh

un
E

∫

Ω

χK∇ ·wwwE =
∑

E∈∂ K

un
E

∫

K

∇ ·wwwE .
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Using the explicit formulas derived above for the basis function wwwE , we deduce

∫

Ti j

∇ ·www i+1/2, j =

∫

Ti j

1

| Ti j |
= 1,

∫

Ti j

∇ ·www i−1/2, j =

∫

Ti j

−
1

| Ti j |
= −1.

Then the i, j row (corresponding to Ki j) of the second matrix equation of (B.6) can be
rewritten as

−∆tn
�

un+1
i+1/2, j − un+1

i−1/2, j + un+1
i, j+1/2 − un+1

i, j−1/2

�
− |Ti j |si j p

n+1
i j
= −|Ti j|pn

i j −
∫ tn+1

tn

∫

Ti j

f .

From this we see that MMM is a diagonal matrix with entries si j and BBBT is a matrix having
4 nonzero entries per row.

Now to calculate the coefficients of AAA, we use the first equation of (B.6) and first
consider a row corresponding to an interior edge E or to wwwE . Since E is an interior
edge, the boundary terms on the right hand side vanish, and thus is KKK constant on
each element, we may write KKK−1

|Ki j
in the form

KKK−1
|Ki j
=

�
α1

i j α12
i j

α12
i j α2

i j

�
.

Using the definition of the basis function wwwE , we rewrite the rows of the first equation
of (B.6) as

• For an interior vertical edge E = Ei+1/2, j :

α1
i j

3

h1i

h2 j

un+1
i+1/2, j+

α1
i j

6

h1i

h2 j

un+1
i−1/2, j+

α12
i j

4

�
un+1

i, j+1/2 + un+1
i, j−1/2

�
+
α1

i+1, j

3

h1,i+1

h2 j

un+1
i+1/2, j+

α1
i+1, j

6

h1,i+1

h2 j

un+1
i+3/2, j +

α12
i+1, j

4

�
un+1

i+1, j+1/2 + un+1
i+1, j−1/2

�
+ pn+1

i+1, j − pn+1
i j
= 0.

• For an interior horizontal edge E = Ei, j+1/2:

α2
i j

3

h2 j

h1i

un+1
i, j+1/2+

α2
i j

6

h2 j

h1i

un+1
i, j−1/2+

α12
i j

4

�
un+1

i+1/2, j + un+1
i−1/2, j

�
+
α2

i, j+1

3

h2, j+1

h1,i
un+1

i, j+1/2

+
α2

i, j+1

6

h2, j+1

h1,i
un+1

i, j+3/2 +
α12

i, j+1

4

�
un+1

i+1/2, j+1 + un+1
i−1/2, j+1

�
+ pn+1

i, j+1 − pn+1
i j
= 0.

Now if E lies on ΓD, for instance, on the left boundary E = E1/2, j , as there is only
one adjacent cell, the first equation of (B.6) corresponding to E or wwwE =www1/2, j becomes

α1
1 j

3

h11

h2 j

un+1
1/2, j+

α1
1 j

6

h11

h2 j

un+1
3/2, j+

α12
1 j

4

�
un+1

1, j+1/2 + un+1
1, j−1/2

�
+pn+1

1, j =
1

h2 j

∫ tn+1

tn

∫

E1/2, j

gD.
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If E lies on ΓR, the first equation of (B.6) corresponding to E or wwwE = www1/2, j is
written as

α1
1 j

3

h11

h2 j

un+1
1/2, j+

α1
1 j

6

h11

h2 j

un+1
3/2, j+

α12
1 j

4

�
un+1

1, j+1/2 + un+1
1, j−1/2

�
+ pn+1

1, j +
1

h2
2 j

∫

E1/2, j

ϕ−1un+1
1/2, j

=
1

h2 j

∫ tn+1

tn

∫

E1/2, j

ϕ−1 gR.

If E lies on ΓN , the first equation of (B.6) corresponding to E or wwwE = www1/2, j is

un+1
1/2, j =

∫ tn+1

tn

∫

E1/2, j

gN .

Thus on a row that corresponds to an interior edge E: the matrix AAA has 7 nonzero
entries associated with the degrees of freedom of uuuh on the edges of the two cells
adjacent to E while the matrix BBB has 2 nonzero entries associated with the degrees of
freedom of ph on the two adjacent cells; on a row corresponding to a boundary edge
of Dirichlet or Robin conditions: the matrix AAA has 4 nonzero entries while the matrix
BBB has only 1 nonzero entry. Recall that in the mixed setting, the Neumann boundary
condition is explicitly imposed in the finite dimensional space, ΣgN

h
.

B.5 Mixed finite elements for Ventcell type boundary condi-
tions

In Chapter 4, we have formulated the OSWR method with Ventcell transmission con-
ditions for a problem in mixed formulation. This requires the solution of the subdo-
main problems with Ventcell boundary conditions. These subdomain problems take the
form:

KKK−1uuu+∇p = 0 in Ω× (0, T ),

s
∂ p

∂ t
+ div uuu = f in Ω× (0, T ),

K̃KK
−1
Γ ũuuΓ +∇τpΓ = 0, on Γ× (0, T ),

−uuu · nnn+αpΓ + s̃Γ
∂ pΓ

∂ t
+ divτ (ũuuΓ) = g on Γ× (0, T ),

p (·, 0) = p0 in Ω,
pΓ (·, 0) = p0|Γ in Γ,

(B.7)

where we have imposed pure Ventcell boundary conditions on Γ = ∂Ω for simplicity.
Recall that pΓ represent the trace of p on Γ while ũuuΓ is not the tangential trace of
uuu on Γ. Similarly, s̃Γ and K̃KKΓ do not necessarily have any connection with s and KKK

respectively.

Remark B.5. Problem (B.7) can be seen as a coupling between a 2D (in Ω) and a 1D

(in Γ) problems, both are written in mixed form. This remark will be useful later for the

mixed approximations of the 2D and 1D unknowns.

In this section, we explain how to discretize problem (B.7) using the lowest order
Raviart-Thomas spaces on rectangles. We first write the variational formulation of
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(B.7). Toward this end, we introduce the spaces

M = L2(Ω), Λ = L2(Γ),

Σ =H (div ,Ω), ΣΓ = H(divτ,Γ).

We define the bilinear forms a and b as in Section B.1 and their 1D counterparts defined
on Γ as follows

aΓ : Λ×Λ −→ R, aΓ
�
uuuΓ, vvvΓ

�
=

∫

Γ

�
K̃KK
−1

uuuΓ

�
· vvvΓ,

bΓ : ΣΓ×Λ −→ R, bΓ
�
vvvΓ,µΓ

�
=

∫

Γ

µΓ∇τ · vvvΓ, .

We also make use of the following bilinear form:

d : Λ×Σ −→ R, d
�
µΓ, vvv

�
=

∫

Γ

µΓ (vvv · nnn) .

Finally we denote by (·, ·)Γ the scalar product in L2 (Γ).
The variational formulation of (B.7) is written as:

For a.e. t ∈ (0, T ), find (p,uuu, pΓ, ũuuΓ) such that

a (uuu, vvv)− b
�
vvv, p
�
+ d(pΓ, vvv) = 0, ∀vvv ∈ Σ,�

s
∂ p

∂ t
,µ

�

Ω

+ b
�
uuu,µ
�
=
�

f ,µ
�
Ω , ∀µ ∈ M ,

aΓ
�
ũuuΓ, vvvΓ

�
− bΓ

�
vvvΓ, pΓ

�
= 0, ∀vvvΓ ∈ ΣΓ,

−d(µΓ,uuu) +
�
αpΓ,µΓ

�
Γ +

�
s̃Γ
∂ pΓ

∂ t
,µΓ

�

Γ

+ bΓ
�
ũuuΓ,µΓ

�
=
�

g,µΓ
�
Γ , ∀µΓ ∈ Λ,

�
p (·, 0) ,µ

�
Ω =

�
p0,µ

�
Ω , ∀µ ∈ M ,

�
pΓ (·, 0) ,µΓ

�
Γ =

�
p0|Γ,µΓ

�
Γ

, ∀µΓ ∈ Λ.
(B.8)

Using the conforming triangulation Kh of Ω into rectangles and the nonuniform
partition in time defined in previous sections, we obtain the fully discrete problem of
(B.9) (with zero order discontinuous Galerkin method in time and mixed finite ele-
ments in space):

For n= 1, . . . , N, find (pn
h ,uuun

h, pn
h,Γ, ũuun

h,Γ) such that

a
�

uuun+1
h

, vvvh

�
− b

�
vvvh, pn+1

h

�
+ d(pn+1

h,Γ , vvvh) = 0, ∀vvvh ∈ Σh,

�
s pn+1

h
,µh

�
Ω
+∆tn b

�
uuun+1

h
,µh

�
=
�

s pn
h ,µh

�
Ω
+

∫ tn+1

tn

( f ,µh)Ω, ∀µh ∈ Mh,

aΓ

�
ũuun+1

h,Γ , vvvh,Γ

�
− bΓ

�
vvvh,Γ, pn+1

h,Γ

�
= 0, ∀vvvh,Γ ∈ ΣΓ,h,

−∆tn d(µh,Γ,uuu
n+1
h
) +∆tn

�
αpn+1

h,Γ ,µh,Γ

�
Γ
+
�

s̃Γpn+1
h,Γ ,µh,Γ

�
Γ
+ ∆tn bΓ

�
ũuun+1

h,Γ ,µh,Γ

�

=
�

s̃Γpn
h,Γ,µh,Γ

�
Γ
+

∫ tn+1

tn

(g,µh,Γ)Γ, ∀µh,Γ ∈ Λh,

�
p0

h ,µh

�
Ω
=
�

p0,µh

�
Ω , ∀µh ∈ Mh,�

p0
h,Γ,µh,Γ

�
Γ
=
�

p0|Γ,µh,Γ

�
Γ

, ∀µh,Γ ∈ Λh,

(B.9)
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where Σh × Mh and ΣΓ,h × Λh are 2D and 1D respectively mixed finite elements of
Raviart-Thomas type of lowest order. Proceeding as in the previous sections, we obtain
a matrix form of (B.9) as follows:




AAA BBB 0 DDD

BBBT −MMM 0 0
0 0 AAAΓ BBBΓ
DDDT 0 BBBT

Γ −MMMα −MMMΓ







uuun+1

pppn+1

ũuun+1
Γ

pppn+1
Γ


=




0
−MMMpppn− FFF n+1

0
−MMMpppn

Γ−GGGn+1


 , (B.10)

where

• uuun, pppn, ũuun
Γ and pppn

Γ are vectors of the degrees of freedom of uuuh, ph, ũuuh,Γ and ph,Γ in
their associated finite dimensional spaces.

• AAA,BBB and MMM are defined as in Section B.2, but now for the interior edges E ⊂ Ω
only (as there is the 1D problem defined on the boundary).

• AAAΓ,BBBΓ and MMMΓ can be seen as the 1D counterparts of AAA,BBB and MMM respectively and
one can easily calculate the coefficients of these matrices following steps similar
to those of Section B.4.

• DDD represents the coupling term between the normal flux and the pressure trace
on the boundary,

DDD = d(χE,wwwE)E∈Eh∩Γ,

where χE is a basis function of Λh and wwwE is a basis function of Σh.

• MMMα is a diagonal matrix defined by

MMMα = (αχE,χF )E,F∈Eh∩Γ.

• FFF and GGG are vectors representing the source term and the Ventcell data,

FFF n+1 =



∫ tn+1

tn

∫

K

f




K∈Kh

,

GGGn+1 =



∫ tn+1

tn

∫

E

g




E∈Eh∩Γ
.



Appendix C

Space-time domain decomposition
with time windows

In many applications, such as the simulation of contaminant transport around a nu-
clear waste repository site, the simulation of radioactive transport for a CO2 geological
storage, etc. one has to deal with a dynamic system for a very long time interval (0, T ).
In this case, the discretization on the whole time interval may be very expensive for im-
plementation. In addition, if a waveform relaxation algorithm or a space-time domain
decomposition method is used for a large T , it will lead to a slow convergence rate (see,
e.g. [116] and Chapter 2). A technique called windowing waveform relaxation was
introduced to handle this problem, in which one decomposes (0, T ) into subintervals,
namely time windows and perform the iteration on each time window successively.
Such a technique was incorporated in the context of Optimized Schwarz Waveform Re-
laxation (OSWR) methods, such as for the 1D wave equation [48], the viscous shallow
water equation [91], the 1D or 2D convection-diffusion equation involved in ocean-
atmostphere coupling [17, 62], the advection-diffusion-reaction equation in porous
media [60], etc. The question of how to choose an efficient window length in practical
computation was addressed in [116, 77] for waveform relaxation methods and in [48]
for OSWR methods.

In this appendix, we explain in detail how time windows are used in the context of
the two space-time domain decomposition methods presented in Chapters 2 and 4. The
formulations are derived through a space-time interface problem, which facilitates the
use of different iterative solvers, such as Jacobi iterations, GMRES, etc. An important
point is that an adapted initial guess for the (m+1)th time window calculated from the
mth time window can be used to improve the convergence in the time windows, which
enhances the global performance on the whole time interval (see [62]).

We first recall the model problem and briefly describe the two methods involved.
Consider the time-dependent diffusion equation in mixed form:

φ∂t c + div rrr = f , in Ω× (0, T ) ,
∇c + DDD−1rrr = 0, in Ω× (0, T ) ,

c(·, 0) = c−, in Ω.
(C.1)

(we have omitted the boundary conditions as it is not the main interest here). For
simplicity, we decompose Ω into two nonoverlapping subdomains Ω1 and Ω2 with an
interface Γ = ∂Ω1 ∩ ∂Ω2 ∩ Ω. Problem (C.1) can be formulated as an equivalent
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multidomain problem:

φi∂t ci + div rrr i = f in Ωi × (0, T ),
∇ci + DDD−1

i rrr i = 0 in Ωi × (0, T ),
ci(0) = c0 in Ωi,

for i = 1,2,

coupled with the transmission conditions on the interface

c1 = c2, on Γ× (0, T ),
rrr1 · nnn1+ rrr2 · nnn2 = 0, on Γ× (0, T ),

(C.2)

where nnni, i = 1,2, is the unit outward normal on ∂Ωi.
In the OSWR methods, one replaces (C.2) by equivalent transmission conditions:

B
OSWR
1 p1 =B

OSWR
1 p2

B
OSWR
2 p2 =B

OSWR
2 p1

on Γ× (0, T ), (C.3)

where B
OSWR
i , i = 1,2, are optimized operators representing Robin or Ventcell trans-

mission conditions (cf. Appendix A).
We now give a short description of the two space-time domain decomposition meth-

ods that are studied in Chapters 2 and 4.

Method 1: using the time-dependent Steklov-Poincaré operator

In the first method, we impose Dirichlet boundary conditions, representing the equality
of the concentration trace, on the interface to solve the time-dependent subdomain
problem. Then we calculate the resulting flux and enforce it to be continue across the
space-time interface. This leads to an interface problem in a form:

S (λ) = χ( f , c0), on Γ× (0, T ), (C.4)

where λ representing the concentration trace on the interface, S = S1 + S2 is the
time-dependent Steklov-Poincaré operator and is linear in λ, and χ is an operator
affine in each component c0 and f (for precise definitions of S and χ, see Chapter 2).
Importantly, S (λ) is the jump of the flux across the interface, obtained by solving the
subdomain problems with interface Dirichlet data λ and with a zero source term and a
zero initial condition; while χ( f , c0) is also the jump of the flux but obtained by solving
the subdomain problems with zero Dirichlet data on the interface and with a source
term f and an initial data c0.

The discrete counterpart of the interface problem is solved by using an iterative
method: one start with an initial guess λh, which is a vector representing the approx-
imation in space and in time of the concentration trace, and solve the time-dependent
subdomain problems to calculate Sh(λh), then iterate until convergence. Note that the
right-hand side is computed once as it does not depend on λh.

Method 2: using the OSWR method with Robin or Ventcell transmission
conditions

In the second method, we impose Robin or Ventcell boundary conditions on the inter-
face

B
OSWR
i pi = ξi, on

�
∂Ωi ∩Γ

�
× (0, T ), i = 1,2,
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and solve the corresponding time-dependent subdomain problem. The resulting solu-
tions are enforced to verify the transmission conditions (C.3), which leads to a space-
time interface problem with two Lagrange multipliers (see Chapters 2 and 4):

SOSWR

�
ξ1

ξ2

�
= χOSWR( f , c0), on Γ× (0, T ). (C.5)

Here SOSWR is the Robin-to-Robin or Ventcell-to-Ventcell operators, calculating by first
solving the subdomain problem with Robin/Ventcell boundary data ξi (for Ωi), i = 1,2,
and with a zero source term and a zero intial condition, then computing the jumps
of the Robin/Ventcell terms for each subdomain. A similar calculation is applied for
χOSWR( f , c0) but now with zero Robin/Ventcell boundary data, a source term f and an
initial data c0.

As in Method 1, we solve iteratively by starting with a space-time initial guess as a
pair of vectors (ξh,1,ξh,2), then iterating until the algorithm converges.

Time windows for the space-time interface problem

Both methods presented above can be formulated as a space-time interface problem in
a form:

S ϑ = χ( f , c0), on Γ× (0, T ), (C.6)

where the left and right hand sides are computed by solving the associated subdomain
problems with Dirichlet/Robin/Ventcell boundary conditions on the interface.

We now use time windows for solving the interface problem (C.6). Toward this
end, we divide (0, T ) into M sub-intervals

(0, T ) =

M⋃

m=1

�
T m−1, T m

�
, with T 0 = 0 and T M = T.

Instead of solving (C.6) on the whole time interval (0, T ), now we solve it successively
in each time window with an updated initial condition given by the solution of the
previous time window. In particular, the interface problem solved on the (m+1)th time
window is defined by

S ϑm+1 = χ
�

f , c(·, T m)
�

, on Γ× (T m, T m+1), m= 0, . . . , M − 1, (C.7)

where c(·, T m) is the converged solution (i.e. corresponding to a relative residual of a
iterative solver (GMRES) less than a fixed tolerance) at the final time of the mth time
window (T m−1, T m):

c(·, T 0) = c0,

and

c(·, T m) =

¨
c1(·, T m) in Ω1,
c2(·, T m) in Ω2,

∀m= 1, . . . , M − 1.

Importantly, instead of using a random initial guess for ϑm+1, we compute an
adapted value obtained from the solution at the previous time window. Such an
adapted initial guess is closer to the converged ϑm+1 than a random. In order to
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explain how to construct this adapted initial guess, we consider the fully discrete inter-
face problem and denote by ϑh,m the discrete counterpart of ϑh,m. In particular, ϑh,m is
a vector corresponding to discretizations in space and in time on the interface:

ϑh,m =
�
ϑ

m,1
h

, . . . ,ϑm,Nm

h

�
,

where Nm is the number of time subintervals corresponding to the partition in time of
the mth time window

�
T m−1, T m

�
:

�
T m−1, T m

�
=

Nm⋃

n=1

�
tm,n−1, tm,n

�
, for m= 1, . . . , M .

Assume now we have solved the interface problem (C.7) on the mth time window
and obtained the converged interface solution ϑh,m. An adapted initial guess θm+1 for
the (m+ 1)th time window, (T m, T m+1), is defined by using values of ϑh,m at its final
time T m and duplicating them Nm+1 times:

θm+1 =
�
ϑ

m,Nm

h
, . . . ,ϑm,Nm

h︸ ︷︷ ︸
Nm+1 times

�
.

Thus θm+1 incorporates the information of the solution at the initial time T m of the
(m+ 1)th time window and obviously, such a choice is better than a zero initial guess
for the convergence of the associated iterative algorithm.
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