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Introduction a la cryptographie bilinéaire

La cryptographie asymétrique

Jusqu’au milieu du XXe siécle, la cryptographie consistait a chiffrer des données sensibles pour un
archivage stir ou pour des transmissions via des réseaux de communication publics. De nos jours, la
cryptographie se doit aussi d’assurer l'intégrité des données et I'authentification des émetteurs et dépo-
sitaires sans recourir a une étape humaine.

Les débuts de la cryptographie moderne remontent aux prémices de la seconde guerre mondiale avec
la conception de la machine Enigma, puis sa cryptanalyse par les Britanniques. On pourra consulter
le chapitre 1 du livre [Ver12] a ce sujet. La cryptanalyse moderne et le premier calculateur sont nés a
Bletchley Park en Angleterre. Ce site fut dédié au décryptage des communications adverses, chiffrées
notamment avec Enigma. Une automatisation progressive d’une attaque par force brute de la machine
Enigma y fut congue et mise en ceuvre.

La cryptographie moderne asymétrique a communément pour point de départ I’année 1976. Cette
année-1a, Diffie et Hellman publient leur article fondateur [DH76]. Merkle est aussi lié a I'histoire et
apparait comme troisieme inventeur du brevet correspondant. Ce cryptosystéeme schématisé dans la Fig. 1
permet a deux participants de s’accorder sur une donnée secrete via un canal de transmission public (non
str).

Alice Bob
groupe G, deZg/énéZ#ate;rog,1 #G =m o= groupe (IS}, deZ %éngage;r 3, #G =m
a<+ ma., a y b= — mi., 0,1
(le tireunaléaa € {2,...,m —1}) o (ie tireunaléab € {2,...,m —1})
8a=2§&
recoit g, de Bob ! recoit g, d’Alice
calcule gy = g calcule gb = ¢

FIGURE 1 - Echange de clé de Diffie-Hellman. Alice et Bob connaissent 1’élément g’

Dans ce schéma, les éléments g%, ¢” qui transitent sur le canal public appartiennent & un groupe cy-
clique dans lequel il est facile de calculer g a partir de g et a mais difficile (impossible en temps et moyens
informatiques raisonnables) de calculer le secret g?’ a partir des éléments g, g%, ¢¥ qui transitent sur le ca-
nal.

Le schéma basé sur la factorisation, proposé par Rivest, Shamir et Adleman (RSA) est quant a lui
publié en 1978 [RSA78].

Le probleme du logarithme discret

Le protocole d’échange de clés de Diffie-Hellman repose sur la difficulté de calculer 1'élément g* a
partir des trois éléments g, ¢* et g’. On pourra consulter [MvV97, §3.6 et 12.6] sur ce sujet. Ce calcul
difficile est appelé le probleme Diffie-Hellman ou DHP pour l'abréviation anglaise. Ce probléme et ces
variantes servent de point de départ a de nombreux protocoles utilisés couramment. Plus généralement,
le probleme du logarithme discret (DLP dans ce qui suit) est tres étudié. Le DLP dans un groupe cyclique
G d’ordre m (noté multiplicativement) est défini de la fagon suivante : étant donnés un générateur g du
groupe G et un élément aléatoire g, du groupe G, il s’agit de calculer I'entier a € {2,...,m — 1} tel que
g% = ga. On peut voir aisément que s’il est facile de calculer le logarithme discret de n’importe quel
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INTRODUCTION A LA CRYPTOGRAPHIE BILINEAIRE

élément d’un groupe G alors il est facile de résoudre le probleme Diffie-Hellman dans ce groupe. En effet,
il suffit de calculer le logarithme discret a de ¢* puis de calculer g’ comme g% = (g%)”. La relation entre
probléme de Diffie-Hellman et probleme de logarithme discret a été étudiée dans [MW99].

Le calcul de logarithmes discrets est supposé difficile dans certains groupes bien choisis. Une premiere
proposition fut d’utiliser le groupe multiplicatif d'un corps fini, noté ;. L'identification de groupes ap-
propriés, ot le calcul de logarithmes discrets est tres difficile, mais la multiplication tres rapide, est tou-
jours un domaine en activité en cryptographie. Pour assurer un bon niveau de sécurité a un protocole
basé sur le DLP, on étudie la complexité en temps et en mémoire des attaques possibles dans ce groupe.
Les attaques principales sur les groupes les plus répandus sont listées ci-apres. La complexité de 1’at-
taque est exprimée en nombre d’opérations (d’exponentiation (g, ) — ¢“) dans le groupe G, en fonction
de I'ordre m du groupe G. Les complexités sont données en bits, autrement dit une complexité de ¢ bits
correspond a une attaque qui requiert 2¢ opérations. Cette notation logarithmique vient de la comparaison
avec la cryptographie symétrique. En effet, étant donné un message chiffré avec une clé secréete de ¢ bits,
une attaque par force brute pour retrouver la clé secréte et le clair correspondant va énumérer toutes les
clés secretes possibles. Il y a 2¢ clés secrétes possibles.

Une fois que I'on connait le temps nécessaire pour chacune des attaques existantes, on dimensionne la
taille du groupe en conséquence, afin de s’assurer que toutes les attaques connues nécessitent un temps
de calcul conséquent.

1. Les attaques Baby-step Giant-step, (petit poucet et bottes de sept lieues) et p de Pollard calculent
un logarithme discret dans un groupe G d’ordre m en temps O(y/m) [MvV97, §3.6.2 et 3.6.3]. Ces
attaques génériques sont possibles pour tout groupe G. Pour obtenir une sécurité équivalente a ¢
bits, on choisit un groupe d’ordre au moins m > 220 qutrement dit logm > 2¢.

2. L'attaque de Pohlig-Hellman décompose le calcul du logarithme discret dans chaque sous-groupe
premier de G. Si I'on écrit m = pi! - p72 - - - p;* alors l'attaque a pour complexité O(Xk_, ei(logm +
VPi)) [IMvV97, §3.6.4]. Le terme prépondérant de cette complexité est ,/p; avec p; le plus grand
facteur premier de m. Une parade a cette attaque est de choisir un groupe d’ordre premier.

3. Dans les corps finis, des attaques spécifiques plus efficaces existent. Il s’agit des attaques de type
index calculus ou calcul d’indice. Trois variantes existent pour trois cas différents de corps finis :
grande, moyenne et petite caractéristique, la caractéristique d"un corps fini [, étant le nombre pre-
mier p tel que g soit une puissance de p. Voici les trois principales complexités, en reprenant la
classification de [JL07]. De plus récemment, des améliorations trés importantes sont apparues, leur
impact est également indiqué. Les complexités sont parfois exprimées avec la fonction Ly dans ce
contexte. Cette fonction vaut

Lo(a,¢) = exp ((c +0(1)) In*(Q) In' *(In Q) )

avec0 < a < letc > 0. Des lors que & < 1, la complexité exprimée avec cette fonction est sous-
exponentielle en In Q. Lorsque & = 0, la complexité correspondante est polynomiale en In Q.

a) La premiere famille d’attaques concerne les corps finis en grande caractéristique, par exemple
IFp avec p un grand nombre premier (de plus de mille bits) ou F 12 avec p un nombre premier

de 256 bits, ou plus généralement, les corps [, avec e négligeable devant (In?/3 q In'31n q)-La
complexité du Number Field Sieve (NFS), ou crible algébrique, est exp ( (V/64/9 + 0(1)) In'/3 q

In?31In q) , autrement dit, Lq(l /3,v64/ 9) avec J/64/9 ~ 1.923. Une attaque avec la méthode

NES est a priori asymptotiquement plus efficace qu'une attaque générique. Plus précisément,
cette attaque avec NFS dépend de la taille totale du corps fini et non pas de la taille du sous-
groupe multiplicatif considéré. Ainsi, pour atteindre un méme niveau de sécurité face a des
attaques de deux types, génériques et avec NFS, on construira un corps fini de grande taille
(par exemple, 3072 bits sont considérés comme apportant une sécurité de 128 bits) contenant
un sous-groupe d’ordre premier de taille bien plus petite, 256 bits suffisent alors. Cette astuce
ne permet pas de compresser les éléments du corps fini (les ¢* d'un échange de clé Diffie-
Hellman) mais permet d’avoir une taille réduite pour les exposants (les g, b) et ainsi avoir des
exponentiations ((g,4) — ¢) moins cofiteuses.
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b) La deuxieme famille d’attaques concerne les corps de petite caractéristique. Les plus utili-
sés en cryptographie sont de la forme Fy, et F5. Les corps de la forme Fy. avec p premier

et e prépondérant devant In?/3 q In!/3 In g aussi sont concernés. L'attaque a pour complexité

exp ((\3/ 32/9 +0(1)) /3 In*/® q) [JL07] avec ¢ = 2¢ ou 3. Mais depuis le début de I’année
2013 et la premiere publication [Joul3b], de nouvelles améliorations assez époustouflantes ont
montré la vulnérabilité de ces corps de petite caractéristique [BBD*13, GGMZ13b, BGJT13,
AMORH13], notamment lorsqu’ils apparaissent comme corps de plongement de courbes su-
persinguliéres. Il s’agit par exemple du corps [F3697, déja attaqué en 2012 [HSST12].

¢) Enfin entre ces deux possibilités, lorsque e est compris entre les frontiéres O (In'/3 q In*31n q) et

O(lnz/ 3 q In/3In q), ces corps de moyenne caractéristique connaissent aussi des attaques spé-
cifiques. Lorsque le degré de 1’extension est premier, il existe une attaque connue depuis 2006

en exp ((\3/ 128/9 +0(1)) In'/% 1n*/3In q) [JLO7]. En décembre 2012 [Joul3a], Joux a proposé

une nouvelle amélioration de cette méthode de calcul de logarithme discret dans ces corps, en
Ly(1/4,¢c).

d) Lorsque le degré de 'extension e est friable (c’est-a-dire e est composé de petits nombres pre-
miers), en petite et moyenne caractéristique, depuis tres récemment il existe de prodigieux
algorithmes pour calculer des logarithmes discrets, par exemple [Joul3a, BGJT13]. De plus, ces
algorithmes s’appliquent d'une certaine fagon aux corps de petite caractéristique et de degré
d’extension premier. En quelque sorte, il s’agit de construire une petite extension [F,.. puis de
changer la représentation de ce corps pour en exploiter la structure plus riche afin d’appliquer
des variantes des algorithmes pour les corps de moyenne caractéristique. Cette nouvelle mé-
thode pour l'instant est plus efficace que précédemment lorsque ¢ est suffisamment petit, par
exemple sur [F3697 o1 £ = 97. Par contre lorsque par exemple £ = 1000, il faut prendre e = 10
ce qui donne des parameétres trop grands pour étre intéressants.

Depuis 2013, les corps de petite et moyenne caractéristique sont remis en cause pour de sérieuses raisons.
Les attaques ne s’appliquent pas encore a tous les corps mais au vu des avancées majeures de ces derniers
mois, il est préférable d’éviter d’utiliser des corps finis de petite et moyenne caractéristique. En particu-
lier, cela remet en cause 1'utilisation de courbes supersingulieres en caractéristique 2 et 3, jusque-la tres
populaires dans le contexte des applications bilinéaires.

L'introduction des courbes elliptiques et hyperelliptiques en cryptographie

Pour instancier un protocole reposant sur ’hypothese Diffie-Hellman, avec des parametres de tailles
les plus petites possibles pour un niveau de sécurité donné, on s’intéresse aux groupes dans lesquels
seules les attaques génériques sont applicables. Ainsi, pour un niveau de 128 bits de sécurité, il est suf-
fisant de construire un groupe d’ordre premier de 256 bits. D’ailleurs, lorsqu’on utilise le groupe multi-
plicatif d’un corps fini, on considére un sous-groupe d’ordre premier de 256 bits. La taille des exposants
(a,b dans le schéma en Fig. 1) est ainsi optimale. Mais la taille totale du corps fini n’est pas optimale.
Puisque les attaques par calcul d’indice s’appliquent, il faut un corps fini de taille bien plus grande pour
contrebalancer ces attaques par calcul d’indice.

On s’intéresse donc aux groupes ot1 seules les attaques génériques sont possibles. La loi de groupe doit
bien sfir rester trés efficace. Dans les années 70, les attaques par calcul d’'indice n’étaient pas encore tres
développées. De plus 'arithmétique des corps finis était bien connue et efficace. C’est pourquoi le groupe
multiplicatif d"un corps fini était tres utilisé. De plus la multiplication y est tres rapide. Cependant ces
groupes ne sont plus optimaux depuis 1’émergence des attaques sous-exponentielles exposées ci-dessus.

En 1985, Koblitz et Miller proposent indépendamment d’utiliser en cryptographie asymétrique le
groupe de points d'une courbe elliptique définie sur un corps fini. Si la courbe est bien choisie, seules les
attaques génériques s’appliquent. En effet jusqu’a maintenant, les tentatives pour adapter les attaques par
calcul d’indice aux courbes elliptiques sont infructueuses. Il est de plus tres facile d’identifier les courbes
particulieres a éviter. La derniere difficulté était de pouvoir construire des courbes avec un groupe d’ordre
premier, ou bien contenant un treés gros sous-groupe d’ordre premier. Pour cela, les algorithmes dits de
comptage de points se sont beaucoup développés. De tels algorithmes sont aussi importants que les tests de
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primalité pour construire de bons modules RSA. Finalement, la combinaison de méthodes dues a Schoof,
Elkies et Atkin, appelée SEA, permet de déterminer I'ordre d’une courbe elliptique de taille cryptogra-
phique en quelques secondes sur un PC. Ainsi, il est devenu assez simple d’obtenir un bon exemple de
courbe elliptique sur laquelle le logarithme discret est difficile. On définit un corps premier I, de 256
bits, puis une courbe elliptique sur ce corps. On calcule son ordre grace a la méthode SEA et on choisit de
nouveaux parametres pour la courbe elliptique tant que 1'ordre calculé n’est pas premier. Il est possible
de trouver une courbe convenable en moins d"une minute.

Il existe une seconde méthode pour construire une courbe elliptique appropriée. Il s’agit de choisir
d’abord son ordre premier m, puis de construire un corps fini I, et des parametres qui détermineront
une courbe elliptique d’ordre m sur ce corps. Cette méthode repose sur le calcul de polyndmes de classes,
polynémes de Hilbert ou polyndmes de Weber par exemple. La encore, de grandes avancées ont permis
de pouvoir effectuer ces calculs pour de trés grands nombres.

Et bien stir la loi de groupe sur les courbes elliptiques est efficace. Elle est plus complexe que la simple
multiplication dans un corps fini. Mais puisque sur une courbe elliptique, les éléments du groupe consi-
déré sont de taille bien plus petite que pour un corps fini présentant un niveau de sécurité équivalent, la
complexité de la loi de groupe est compensée par la rapidité obtenue grace aux tailles bien plus petites
des éléments manipulés.

Utilisation des couplages en cryptographie et cryptanalyse

Les accouplements de Weil apparaissent a la fin des années 40 en mathématiques. Le mathématicien An-
dré Weil les définit pour ses travaux en géométrie algébrique. Il introduisit ce qu’il nomma alors les accou-
plements. Aprés un passage en anglais (pairings), ils furent retraduits par couplages dans la communauté
cryptographique. Le terme accouplement est toujours utilisé en mathématiques. Pour 1’anecdote histo-
rique, Weil introduisit aussi la notation @ pour 1’ensemble vide. Cette lettre est empruntée aux langues
scandinaves. Elle se prononce /e/ et est 'abréviation d’est (le point cardinal de géographie) en danois.

Un couplage est une application bilinéaire e : Gy x G, — Gr. Les trois groupes G1, G, et Gt sont de
méme ordre m. L'application est bilinéaire a gauche et a droite, et non-dégénérée. Cela s’écrit, avec G
et Gy notés additivement et Gt multiplicativement, étant donnés des éléments g, 91,82 € Gq, I, hy, hy €
Gy, on ae(g,hy + hy) = e(g, hi)e(g, hy) et de méme a gauche : e(g1 + g2, 1) = e(g1,h)e(g2, h). De plus
I'application est non-dégénérée, c’est a dire que pour tout ¢ € Gy non nul, il existe un élément 1 € G,
tel que e(g, 1) ne soit pas I'élément neutre de Gt (et de méme a droite, étant donné un élément non nul
h € G3). Dans les détails, les deux groupes G et G, sont deux sous-groupes distincts, de méme ordre,
d’une courbe elliptique E définie sur un corps et Gt est une extension de degré fixé du corps sur lequel
est définie la courbe elliptique.

Afin d’exploiter cette application bilinéaire en cryptographie, elle doit étre facilement calculable (au
sens calculable en temps polynomial en la taille des entrées) mais difficilement inversible. S’il est facile-
ment calculable, le couplage permet de faire le lien entre le probleme du logarithme discret dans le groupe
de points d"une courbe elliptique et dans une extension d'un corps fini. Si I’on souhaite calculer le loga-
rithme discret d'un élément g, € G; en base g, alors on peut se ramener a calculer le logarithme discret
de e(g4, ) € Gt en base e(g,h) avec g un générateur de G; et h un générateur de G,. Ces deux calculs
de logarithme discrets doivent alors étre de méme difficulté dans G et G7. Un couplage n’est calculable
efficacement que lorsque Gr est de taille raisonnable (par exemple, lorsque Gt est une extension de corps
de degré compris entre 2 et 60 par rapport au corps de définition de la courbe elliptique).

En 1986, Victor Miller s’intéressa a 1’accouplement de Weil et proposa une méthode pour le calculer
en pratique [Mil86a]. Ces travaux furent publiés par la suite [Mil04], aprés avoir pris une importance
considérable en cryptographie. La premiére utilisation avérée des couplages en cryptographie se trouve
dans les travaux de these de Burton S. Jr Kaliski [Kal88] datant de 1988. Il programma en Macsyma un
couplage de Weil. Le code source est disponible en annexe A de son mémoire de thése. Macsyma était une
bibliotheque de calculs développée en Lisp a partir des années 60 au Massachuset Institute of Technology.
Avec ce code source se trouve un exemple de calcul d’accouplement de Weil sur la courbe supersinguliére
E: y2 = x3 — x définie sur le corps 1. Suite aux travaux de Miller et Kaliski, Menezes, Okamoto et
Vanstone présenterent en 1993 [MOV93] une attaque contre le probleme du logarithme discret sur des
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courbes supersingulieres. Deux années plus tard, Frey et Riick proposerent la méme attaque mais avec
un calcul de couplage de Tate, plus rapide. Ces deux attaques exploitent la propriété du couplage de
transférer le calcul de logarithme discret du groupe de points E(F;) de la courbe elliptique E vers un
sous-groupe multiplicatif d"un corps fini IF ;. Dans le cas des courbes supersinguliéres, I'article [MOV93]
liste les corps d’immersion (ou de plongement) du couplage, qui sont une extension de degré 1, 2, 3, 4 ou
6 du corps de définition [F; de la courbe elliptique. Des méthodes spécifiques aux calculs de logarithme
discret dans des corps finis existent alors et permettent un calcul bien plus efficace que les méthodes
génériques applicables au sous-groupe de la courbe elliptique. Par exemple les courbes elliptiques en
caractéristique 2, de la forme y? + y = x3, définies sur F,q et Fyi»; étaient alors proposées. L'attaque de
Menezes, Okamoto et Vanstone eut pour conséquence de proscrire 'utilisation de telles courbes.

Implémentation des couplages en cryptographie

En 1993, lorsque Menezes, Okamoto et Vanstone proposerent leur attaque, un calcul de couplage était
bien loin de s’effectuer en quelques milisecondes. En 1999, Harasawa, Shikata, Suzuki et Imai [HSSI99]
annoncerent un calcul de couplage de Tate en 40000 secondes (~ 11 heures) sur une courbe supersingu-
liere définie sur un corps premier de 50 chiffres décimaux (soit ~ 170 bits). Leurs calculs nécessitaient
aussi une mémoire tres importante.

En 2000, Joux [Jou00] introduisit I'idée d’évaluer, a chaque étape de la boucle de calcul du couplage
(la boucle de Miller), la fonction de Miller en le deuxieme point du couplage, afin de ne plus avoir a stocker
tous les coefficients de cette fonction en vue d’une évaluation finale en ce deuxieme point. Cette fagon de
procéder lui permis de calculer un couplage en une seconde sur une courbe supersinguliere définie sur
un corps premier de 150 chiffres décimaux, soit ~ 500 bits. Le corps de plongement était de taille double,
soit pres de 1024 bits, taille commune des modules RSA dans ces années. Un calcul de logarithme discret
n’était pas plus aisé dans le corps de plongement. Avec ce temps de calcul d'une seconde, les couplages
étaient alors tout a fait envisageables pour une utilisation dans de nouveaux protocoles. Il ne restait plus
qu’a tendre vers un calcul en moins d’une miliseconde, temps alors comparable a un déchiffrement RSA.
La contribution de Joux dans cet article n’était pas tant le protocole d’échange a la Diffie-Hellman a trois
en un tour (Fig. 2) que le calcul d'un couplage en un temps record, d’ailleurs cet article fut accepté a
une conférence de théorie algorithmique des nombres (ANTS). Le paragraphe suivant présente quelques
étapes qui ont permis, dans les années 2000, de réduire considérablement les calculs de couplages, au
point, de nos jours, de pouvoir les calculer sur des smartphones.

Alice Bob
a < Z/mZ b+ Z/mZ
regoit h;, de Bob hy = h? regoit g, d’Alice
recoit g, de Charlie . recoit /1. de Charlie
calcule 8a=38 calcule
e(ge hp)" = e(g, h)™ e(8a hc)" = e(g, h)™

ta = 1 8 =g

e = ( Charlie ) he = K¢
c 4 Z/mZ
recoit h, d’Alice
recoit g, de Bob
calcule

| elgn o) = e(g, 1) |

FIGURE 2 — Echange de clé de Joux (a.k.a. Triffie-Hellman). Alice, Bob et Charlie connaissent 1'élément
e(g,£)". La sécurité repose sur la difficulté de calculer I'élément e(g, h)**°.

Les améliorations apportées aux calculs de couplages deviennent tout de suite tres techniques. Leur
compréhension nécessite de larges prérequis en géométrie algébrique. Quelques avancées significatives
sont toutefois rappelées ici. On considere un couplage e : G; x Gp — G avec les trois groupes d’ordre
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m. Gy et G sont des sous-groupes d'une courbe elliptique E définie sur un corps fini F,. On a #E(F;) =
g+ 1 —tavec t appelée la trace de la courbe elliptique sur F;, et donc m divise g + 1 — t. La trace est de
petite valeur, plus précisément —2,/7 < t < 2,/7. Le troisiéme groupe Gr est un sous-groupe d’ordre
m de l'extension F . Le parametre k revient constamment pour les couplages. Il est appelé degré de
plongement ou degré d’immersion.

Les travaux de these de Benjamin Lynn, doctorant a Stanford University sous la direction de Daniel
Boneh, ont contribué sensiblement & la compréhension des calculs de couplages. En 2002 [BKLS02], Bar-
reto, Kim, Lynn and Scott proposent plusieurs optimisations importantes. Grace a une représentation
compacte du deuxiéme point Q du couplage e(P, Q), certains facteurs apparaissant dans les calculs de-
viennent inutiles, ils ne contribuent plus a la valeur finale du couplage. Leur calcul peut étre évité. Cette
idée se généralise aux couplages avec un point Q en représentation compacte grace a l'utilisation d’une
tordue de la courbe initiale, de degré d, avecd | ketd € {1,2,3,4,6} (en grande caractéristique). Ceci est
expliqué en détails aux sections 1.4.4.3 et 1.4.4.4.

Une autre voie d’optimisation fut la réduction de la longueur de la boucle de Miller, partie importante
du calcul de couplage. Pour un couplage de Tate, la boucle de Miller itere sur le parameétre m qui est
I'ordre des sous-groupes auxquels appartiennent les deux points P et Q. Par analogie, I'exponentiation
g" se calcule avec une boucle itérant sur a. Deux courbes supersingulieres couramment utilisées en petite
caractéristique furent E : y? +y = x3 + x + b, définie sur Fppui1 et avec b € {0,1}, de trace +t = 2"+ et
de degré de plongement k = 4; et E : y> = x> — x + 1 définie sur Fu11, de trace &=t = 3"*! et de degré
de plongement k = 6. En 2004, Barreto, Galbraith, O hEigeartaigh et Scott introduisent le couplage eta, ou
T sur des courbes supersingulieres en petite caractéristique [BGOS07]. Dursmaa et Lee en 2004 ont initié
ces travaux en caractéristique 3. L'idée de Barreto et al. est d’itérer la boucle de Miller sur ¢ — 1 au lieu
de m. La trace étant plus courte de moitié que 1’ordre du sous-groupe considéré, la boucle en est réduite
d’autant. Barreto et al. montrent que le couplage est toujours bilinéaire et non-dégénéré. Cette méthode ne
peut pas s’appliquer en grande caractéristique, ou bien si elle s’applique, elle ne permet pas d’améliorer
les calculs.

Peu apres, Hess, Smart et Vercauteren [HSV06] proposent une nouvelle version, le couplage ate, qui
cette fois-ci s’applique aux courbes ordinaires. Le degré de plongement k peut étre plus grand que 2 ou
3 pour une courbe ordinaire. En pratique il est de 6 a 12. La méthode devient alors intéressante. Leur
méthode est expliquée a la section 1.4.4.5.

Pour finir en 2009, Vercauteren [Ver10] introduit les couplages optimal ate. 1l s’agit d’exprimer plus
finement un couplage ate en fonction du couplage de Tate correspondant. Les termes correcteurs qui
apparaissent entre les deux, s’il y en a, sont alors eux-mémes susceptibles de définir un couplage bili-
néaire et non-dégénéré, grace a 1'égalité des deux couplages ate et Tate, et de ces termes correctifs. Le
couplage ate optimal est bien approprié aux constructions de courbes avec la méthode de Brezing-Weng
et ses variantes. L'exemple le plus répandu en ce moment est un couplage ate optimal sur une courbe de
Barreto-Naehrig. La longueur de la boucle de Miller y est divisée par quatre. Les détails se trouvent a la
section 1.4.4.6.

Construction de courbes appropriées aux couplages

En parallele, de nouvelles courbes propres aux couplages furent découvertes. Il s’agit de construire
des courbes avec un petit degré de plongement k. Les courbes supersinguliéres furent bien identifiées des
1993 et 'article [MOV93]. C’est pour ces raisons historiques que les courbes supersingulieres furent tres
utilisées pour instancier des couplages. Depuis peu, avec les protocoles basés sur des groupes d’ordre
composé, ces courbes supersinguliéres connaissent un regain d’intérét.

En 2001, Miyaji, Nakabayashi et Takano [MNTOO] caractérisent des courbes elliptiques de degré de
plongement égal a 3, 4 et 6. La premiére motivation de leurs recherches était de présenter de nouvelles
courbes elliptiques vulnérables a I'attaque de Frey et Riick, autrement dit sur lesquelles un couplage de
Tate était calculable. Ces courbes sont ordinaires, contrairement aux précédentes. Leurs constructions de
courbes ordinaires sur des corps premiers, de degré de plongement 6, se révélerent bien appropriées aux
instanciations de protocoles utilisant des couplages, & un niveau de sécurité de 80 bits.
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D’autres méthodes de génération de courbes de petit degré de plongement furent proposées. On
peut retenir les méthodes de Cocks—Pinch [CP01], de Brezing-Weng [BW05], de Dupont, Enge et Morain
[DEMO5] et la classification exhaustive (ou presque) de Freeman, Scott et Teske [FST10]. Un des critéres
de classification est la valeur du discriminant de la courbe elliptique. Pour une courbe définie sur un corps
IF;, on écrit la factorisation en facteur non carré t> — 49 = —D+?, avec q qui détermine le corps fini et ¢ la
trace de la courbe elliptique sur F,;. Le discriminant est le nombre D.

Des recherches minutieuses de cas particuliers pour de valeurs précises de petits discriminants, par
exemple D = 1,2,3,5, aboutirent a d'intéressants mais rares cas particuliers, parfois proches a posteriori
de résultats que pourraient donner des variantes de la méthode de Brezing-Weng. Galbraith, McKee et
Valenga [GMV07] amorcent cette méthode et décrivent d’autres courbes, généralisant les constructions
de [MNTO0]. En 2007, Freeman [Fre06] exhibe une famille de courbes de discriminant D = 5 et de degré
de plongement k = 10, avec la possibilité de trouver des exemples de courbes d’ordre premier, ce qui
est trés recherché. Et bien sir, il faut mentionner la construction devenue incontournable de courbes
avec un discriminant D égal a 3 et un degré de plongement k = 12 de Barreto et Naehrig [BN05]. Ce
degré de plongement 12 combiné avec la possibilité de trouver facilement, en quelques secondes, une
courbe d’ordre premier, font de cette famille de courbes la plus populaire actuellement pour instancier
un protocole utilisant un couplage.

Jusqu’en 2012, les courbes supersinguliéres en petite caractéristique, de degré de plongement 4 sur
Fon et 6 sur Fam, étaient aussi tres étudiées, notamment pour des implémentations matérielles (assem-
bleur, FPGA...). Depuis les récents records de calculs de logarithme discret dans des corps finis en petite
caractéristique, dont les corps de plongement des couplages de la forme F,1.. et F56.. sont des applications
directes, ces courbes sont a proscrire en cryptographie utilisant des couplages.

Bibliotheques de calculs de couplages

Ce paragraphe liste quelques bibliotheques de calculs implantant des couplages. Tout d’abord, Magma
[BCP97] depuis plusieurs années contient un calcul de couplage de Weil. Depuis 2011, un couplage de
Weil et de Tate sur des courbes elliptiques sur des corps finis est disponible. A ce jour, dans la version
de 2013, des couplages #7 sur des courbes supersingulieres en petite caractéristique, et des couplages
ate en grande caractéristique, sont disponibles. Gréace aux correspondances entre couplage de Tate, ate
et optimal ate, il est possible de tout calculer avec Magma. C’est trés pratique pour générer des vecteurs
d’entrée-sortie pour tester du code en développement. La bibliotheque Pari [BC55] écrite en C et dévelop-
pée a Bordeaux en France propose aussi, depuis 2011, des calculs de couplages possibles pour des tailles
cryptographiques.

La premiere bibliotheque de calculs optimisés de couplages, PBC, fut développée par Benjamin Lynn
en C et est toujours disponible [Lyn14]. Néanmoins ses performances ne sont pas optimales pour tous les
couplages.

Une deuxieéme librairie performante, Miracl, fut développée en Irlande par Michael Scott et ses colla-
borateurs [Scol1]. Cette bibliotheque, écrite en C++, était tres utilisée a des fins de recherche et tres per-
formante. Elle permettait également la génération de courbes appropriées aux couplages avec la méthode
de Cocks-Pinch et plus généralement, le calcul de polyndmes de classes de Weber, pour des discriminants
allant jusqu’a 10, ce qui était une belle performance. En 2011, cette bibliotheéque est devenue payante, son
contributeur historique, Michael Scott, ayant fondé une start-up, Certivox, promouvant l'utilisation des
couplages dans la vie quotidienne.

Une nouvelle librairie également écrite en C++ a pris le relais de Miracl ces derniéres années. Il s’agit
de Relic [AG35], développée par Diego Aranha et son équipe. Cette librairie détient certains des derniers
records de calculs de couplages et présente I'avantage d’étre, pour l'instant, sous licence permettant son
utilisation gratuite a des fins de recherche.

Derniérement, une équipe de I'Université de Tsukuba au Japon a lancé la bibliotheque Tepla [Lab10].
Cette derniere-née propose I'implémentation optimisée en C de couplages sur des courbes de Barreto-
Naehrig.

En ce qui concerne les librairies propriétaires (industrielles), les équipes de Microsoft Research de
Seattle disposent d"une excellente bibliothéque de calculs sur courbes elliptiques, et notamment d’opti-
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misations spécifiques a I’assembleur ARM, trés populaire depuis I’émergence des smartphones.
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Travaux réalisés : contexte et survol

Les travaux réalisés dans cette these s’inscrivent dans la continuité d’un stage de Master 2 effectué
en 2010 au laboratoire Chiffre. Ce stage consistait a développer une bibliothéque de calculs de couplages
en vue d’une utilisation pour de la diffusion chiffrée (broadcast en anglais). Ce besoin s’inscrivait dans le
cadre d’un projet ANR de diffusion chiffrée [ENSC"09]. Par la suite, il s’agissait d’améliorer les perfor-
mances de cette bibliotheque, pour atteindre celles de 1’état de ’art. Pour cela, les formes les plus récentes
de couplages (optimal ate) furent étudiées. Ensuite, un couplage s’inscrit toujours dans le cadre d'un
protocole. Depuis 2005, de nouveaux protocoles font appel a des couplages bilinéaires sur des groupes
d’ordre composé, typiquement un module RSA, et non plus simplement sur des groupes d’ordre premier.
Il s’agit de choisir soigneusement les courbes elliptiques et les types de couplages qui correspondent a
ces nouveaux protocoles.

Réciproquement, les couplages les plus rapides, sur des groupes d’ordre premier, sont des couplages
asymétriques. Autrement dit, la représentation des deux groupes de départ, G; et G,, est différente.
En particulier, un élément du groupe G; bien souvent prend au moins deux fois plus de place qu'un
élément du groupe G;. Or bien souvent les protocoles sont écrits dans le cadre spécifique de couplages
symétriques, ou1 G; et G, sont explicitement isomorphes. Il s’agit alors de choisir quels éléments du
protocole seront en fait tirés du premier groupe, du deuxieme groupe, et lesquels ont besoin d"une double
représentation. Le protocole sera alors réécrit en conséquence. La traduction de protocoles peut aussi se
faire de maniere bien plus spécifique, en exploitant de nouvelles propriétés et hypotheses de sécurité,
disponibles uniquement dans le cadre de couplages asymétriques, comme 'hypothése SXDH mais cela
sort du cadre de cette these.

Une autre partie de cette these s’intéresse a la construction de courbes appropriées aux couplages.
Les courbes elliptiques furent proposées en 1985 indépendamment par Neal Koblitz et Victor Miller. 11
est possible de construire un groupe d’ordre premier dans lequel le probleme du logarithme discret est
difficile. On peut alors baser un cryptosystéeme a base de DLP sur des courbes elliptiques. L’avantage
est la robustesse des courbes elliptiques face au probleme du logarithme discret. En effet, hormis pour
quelques cas particuliers bien identifiables, il n’existe que des attaques génériques. Ainsi, les parametres
restent petits comparés aux parametres des corps premiers seuls, bien plus élevés pour un méme niveau
de sécurité.

En 1989, Koblitz propose d’utiliser comme groupe la jacobienne d’une courbe hyperelliptique. C’est
une généralisation des courbes elliptiques. Cette fois-ci, les points de la courbe ne forment pas directe-
ment un groupe, c’est pourquoi la structure intermédiaire de la jacobienne intervient. Néanmoins, cette
généralisation a ses limites. En effet, pour des courbes de genre plus grand que 3, les attaques génériques
contre le probleme du logarithme discret connaissent des améliorations.

De méme, il est possible de généraliser les courbes elliptiques sur des corps premiers aux courbes el-
liptiques sur des extensions de corps. Encore une fois, cette généralisation a ses limites. Il est possible, via
la méthode de la restriction de Weil, d’obtenir une correspondance entre le groupe d"une courbe elliptique
(donc de genre 1) définie sur une extension de degré n d"un corps fini, et un sous-groupe de la jacobienne
dune courbe de genre n. Or le paragraphe précédent exposait les vulnérabilités des courbes de genre
supérieur a 3. Ainsi, il est préférable de s’en tenir aux courbes elliptiques définies sur des corps premiers
ou des extensions quadratiques de corps premiers. Il est également possible de manipuler des courbes
en petite caractéristique, autrement dit, définies sur F,, ou F5,. Afin d’éviter une attaque par restriction
aux scalaires de Weil comme expliquée plus haut, le degré de 1’extension £ est choisi premier. Ces courbes
elliptiques ou de genre 2 en petite caractéristique sont bien appropriées pour des implémentations ma-
térielles et présentent de trés bonnes performances. Jusqu'a maintenant, seules les attaques génériques
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s’appliquent.

En ce qui concerne les performances des courbes elliptiques et de genre 2, on recherche des amélio-
rations de 'arithmétique des corps finis sur lesquels sont définis les courbes, des améliorations de la loi
de groupe (addition et doublement), des améliorations de la multiplication scalaire, notée [m]P sur une
courbe elliptique et [m]D sur une jacobienne. Tout ceci est utilisé dans des protocoles reposant sur le
logarithme discret.

De plus face a la technicité grandissante des attaques par canaux auxiliaires, ou side-channel attacks, on
s’intéresse aux courbes sur lesquelles les multiplications scalaires peuvent s’effectuer de maniere régu-
liere, tout en présentant de bonnes performances. L'une des pistes tres développée est la recherche de lois
d’additions unifiées sur les courbes, autrement dit, addition et doublement s’effectuent avec une seule
formule, ou du moins avec des formules ayant le méme nombre d’opérations.

En cryptographie bilinéaire, on recherche des améliorations de calculs de couplages et également
des courbes appropriées aux couplages (pairing-friendly curves). De telles constructions sont loin d’étre
triviales et on manque de diversité de choix de courbes présentant des parametres de taille optimale.

Implémentation de couplages

Une partie de cette thése fut consacrée a I'implémentation en langage C dans la bibliotheque du la-
boratoire Chiffre de fonctions de couplages. L'arithmétique des corps finis premiers était déja disponible,
de méme que l'arithmétique de courbes elliptiques définies sur ces corps premiers. Des optimisations en
assembleur pour les processeurs intel x86-64 furent apportées en 2011 par Frédéric De Portzamparc. Les
corps binaires furent développés par Thomas Prest en 2012. A I'issue de mon stage en 2010, des fonctions
de couplages sur des courbes supersinguliéres en grande caractéristique étaient disponibles, ainsi qu'une
premiére version, assez peu optimisée, de couplage de Tate sur une courbe de Barreto-Naehrig. Par la
suite, j’ai développé des fonctions de couplage de type ate et optimal ate, toujours sur des courbes de
Barreto-Naehrig. Ces courbes sont en effet parmi les plus efficaces. Ces versions ate et optimal ate ne sont
pas applicables aux courbes supersinguliéres utilisées.

Jusqu'en 2012, les courbes appropriées aux couplages en petite caractéristique (p = 2,3) étaient
aussi assez populaires. Seules les constructions de courbes supersinguliéres étaient alors disponibles.
Une construction de courbe ordinaire de petit degré de plongement était inconnue. Les méthodes de
Cocks-Pinch, Brezing-Weng ou encore de Dupont, Enge et Morain ne s’appliquant pas. Des méthodes
tres efficaces de doublement en caractéristique 2 et de triplement en caractéristique 3 furent développées.
Un projet de bibliotheque compleéte avait méme commencé a l'université de Tsukuba au Japon, dédiée a
la caractéristique 3. Il se trouve qu’entre I'hiver 2012 et 1’été 2013, de nombreux records de calculs de loga-
rithmes discrets furent annoncés successivement. Les cryptosystémes basés sur des extensions de corps
de caractéristique 2 et 3, typiquement [Fon et IF5, sont définitivement a éviter. Seules les courbes elliptiques
ordinaires, de degré de plongement bien trop grand (de 1'ordre de 2¢ ou 3¢) pour qu’un calcul de couplage
soit envisageable, ne sont pas concernées par ces attaques. Toutes les fonctions de couplages développées
dans la bibliotheque du laboratoire Chiffre sont sur des corps de grande caractéristique uniquement.

Contexte industriel

La laboratoire Chiffre fait partie du service SCC (Service Cryptologie et Composants) lui-méme dé-
pendant du service SSI (Sécurité des Systémes d’Information) de Thales Communications & Security. Il
est composé de spécialistes en mathématiques et algorithmie appliquée a la cryptographie. Ses princi-
pales missions sont la réalisation d’études en amont en cryptographie fondamentale, l'intégration d’algo-
rithmes et de mécanismes cryptographiques définis par la DGA-MI dans les composants gouvernemen-
taux, la réalisation de dossiers cryptographiques sur des équipements ou de systemes et la participation
a des projets de recherches collaboratifs.

La réalisation d’un produit ou équipement de sécurité pour la DGA suit un cycle de développement
qu’on peut brievement schématiser ainsi : la DGA définit ses besoins et établit un cahier des charges.
Lorsque Thales remporte 1'appel d’offres, le laboratoire Chiffre intervient au niveau des composants
cryptographiques du produit. Dans la LibCryptoLCH, une branche est développée pour les besoins spé-
cifiques de chaque affaire.
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Les parametres cryptographiques utilisés, par exemple les nombres premiers et les parametres de
courbes elliptiques, sont définis par la DGA. C’est pourquoi il est nécessaire que tout code développé
puisse prendre en compte tous les paramétres possibles définissables par la DGA. Ainsi, un haut niveau
de généricité est recherché a toutes les étapes du développement de la LibCryptoLCH.

Les équipements de sécurité commandés la DGA nécessitent un controle et une validation par un
troisiéme intervenant extérieur : I'agence nationale de la sécurité de systémes d’information (ANSSI). Un
service tres actif de spécialistes en cryptographie fait partie de I'ANSSI. Ce service est également partagé
en un laboratoire de cryptographie et un laboratoire de composants. L’ANSSI délivre quatre labels aux
différents produits qui lui sont soumis :

— la certification Criteres Communs (CC);

— la certification de sécurité de premier niveau (CSPN);

- la qualification d"un produit;

— l'agrément (label réservé aux produits destinés a protéger les informations relevant de la défense et

de la sécurité nationale).

Dans le cadre précis de cette these, il est probable que le code développé pour les calculs de couplages
soit prochainement utilisé dans un produit commercial Thales, par exemple dans une version ultérieure
de Teopad (environnement sécurisé sur smartphones et tablettes sous Android). Ce produit fera alors
'objet d'une demande de CSPN. Il est envisageable que le code serve aussi un jour dans un équipement
qui nécessitera un agrément de 1’ANSSI et utilisera des parametres définis par la DGA. En ce qui nous
concerne, a postériori les corps de petite caractéristique se sont révélés vulnérables a de fulgurantes at-
taques, et ce depuis début 2013. Or il y a a peine cinq ans, les courbes supersingulieres en caractéristique
2 et 3 étaient tres populaires, trés étudiées et plusieurs équipes développaient des calculs de couplages
optimisés et tres performants sur ces courbes. Les ingénieurs de la DGA ayant déja depuis longtemps un
avis mitigé sur les corps de petite caractéristique, dés le début de cette thése les courbes supersingulieres
en petite caractéristique ont été écartées.

Implémentation pour un protocole de broadcast dans le cadre d’un projet ANR [DGSLB12]

Dans le cadre d"un projet ANR en commun avec Thales, Nagra, CryptoExperts, Paris 8 et 'ENS, une
implémentation compléte d’un protocole de broadcast et de ses améliorations a été réalisée sur trois ans
au laboratoire Chiffre. Renaud Dubois, Marine Sengelin, Romain Perez et Margaux Dugardin ont pris
part a ce projet. Une premieére étape fut d’identifier les protocoles apportant des réponses satisfaisantes.
Il est apparu dés le début du projet que les protocoles a base de couplages procuraient des solutions nou-
velles et tres intéressantes en termes d’efficacité, de capacité de révocation d’utilisateurs compromis, et
de bande-passante, contrairement aux solutions a base d’arbres de clés symétriques. Un premier stage
lié a ce projet a Thales consita a développer un module de calculs de couplages performant. Puis, les
stages suivants ont consisté a développer les protocoles retenus [BGWO05] et [PPSS13], améliorer leurs
performances, les insérer dans un dispositif général de broadcast, et réaliser un prototype ol un centre
émetteur (un PC) envoie du contenu via une antenne wifi a des récepteurs, en 'occurence des smart-
phones. Le centre émetteur peut révoquer a tout moment n’importe quel récepteur de fagon individuelle.

Les deux variantes du protocole décrites en [BGWO05] utilisent un couplage symétrique. Les travaux
présentés a Pairing 2012 a Cologne présentent une application du protocole [BGWO05] utilisé avec un
couplage asymétrique sur des courbes de Barreto-Naehrig. Sur ces courbes, les éléments du groupe G,
prennent deux fois plus de place que ceux du groupe G;. Néanmoins, avec ce couplage asymétrique,
la représentation d’éléments du groupe G est six fois plus petite qu’avec un couplage symétrique (sur
des courbes supersinguliéres en grande caractéristique, de degré d’immersion k = 2). Pour adapter le
protocole a ce couplage asymétrique, on identifie quels éléments sont affectés a Gy, respectivement G, et
lesquels nécessitent d’étre dupliqués dans les deux groupes. Finalement, méme lorsqu’il faut dupliquer
certains éléments (des parameétres publics par exemple), tout est plus intéressant et plus compact avec ce
couplage asymétrique puisque les éléments de G, et G, sont trois ou six fois plus économiques en espace
mémoire qu’avec un couplage symétrique.

Dans cet article une stratégie de pré-calculs est développée afin de réduire le cotit du déchiffrement au
niveau de chaque récepteur. En effet, dans la deuxiéme version du protocole original, ce cofit est linéaire
en le nombre d’utilisateurs autorisés a accéder au contenu diffusé. Un arbre de précalculs permet de faire
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baisser cette complexité. Enfin, des temps de calculs sont donnés. Le temps nécessaire au déchiffrement
pour 50 000 utilisateurs est de 1.44 s sur un smartphone Samsung Galaxy équipé d'un processeur ARM
Cortex A8 (architecture 32 bits). Pour 200 000 utilisateurs, le temps de déchiffrement passe la barre des
2 secondes avec un temps de 2.08 s. Pour 5 millions d’utilisateurs, le temps de déchiffrement est de
6 secondes. Les utilisateurs actuels de smartphones ne peuvent pas accepter un tel temps de latence.
De meilleurs temps sont a espérer avec l'introduction de parties critiques du code en assembleur. Par
ailleurs, les constructeurs de smartphones et de processeurs a faible consommation d’énergie spécifiques
aux systemes embarqués sont tres actifs et proposent tous les six mois de nouveaux produits toujours
plus performants. On pourra noter la sortie prévue en 2014 d’une nouvelle série de processeurs ARM
bénéficiant d"une architecture 64 bits ce qui permettra de gagner sensiblement en performance.

Ces travaux furent présentés en 2012 a la conférence Pairing [DGSLB12]. La conférence s’est tenue du
16 au 18 mai 2012 a Cologne en Allemagne.

Implémentation de couplages sur des courbes d’ordre composé et comparaison avec les
courbes d’ordre premier [Guil3]

En 2005, Boneh, Goh et Nissim proposent un cryptosysteme partiellement homomorphe. Le chiffre-
ment homomorphe, brievement, est la propriété de pouvoir faire des opérations sur les chiffrés, sans
avoir a déchiffrer. Un objectif majeur est de pouvoir a la fois additionner et multiplier des chiffrés, ou
encore de pouvoir effectuer des opérations binaires comme le Xor sur les chiffrés, sans avoir a déchiffrer.
Actuellement, les pistes les plus prometteuses dans ce domaine sont basées sur les réseaux euclidiens.
Dans cet article de 2005, les auteurs proposent un moyen d’additionner des chiffrés et de les multiplier
une fois. Il est possible de continuer a additionner (avec retenue, ce n’est pas un Xor) les chiffrés apres
une multiplication. L’addition homomorphe est obtenue par la propriété de la multiplication qui devient
une addition dans les exposants, autrement dit, pour un générateur g et deux messages my, 1y, on a
M . oM = Mt T3 multiplication est obtenue avec un couplage. Afin d’avoir de bonnes propriétés,
il n’est pas possible d’instancier tel quel ce protocole. Les auteurs utilisent alors non pas un couplage sur
un groupe d’ordre premier (cas classique) mais un couplage sur un groupe dont l'ordre est un module
RSA dont la connaissance de la factorisation est une trappe. Les choix d’instanciation dans ce cas précis
sont alors bien différents. Tout d’abord, les tailles des parametres sont directement dictées par ce module
RSA. Ce module fait par exemple de 1024 a 3072 bits (pour un niveau de sécurité de tres faible a stan-
dard). Ainsi, il n’est pas nécessaire d’avoir un degré de plongement élevé car le corps de plongement fait
déja le double du module RSA, avec un degré de plongement égal a 1 ou 2. De simples constructions
de courbes supersinguliéres, finalement les plus utilisées au début des années 2000, sont intéressantes
dans ce cas de figure, notamment pour leur simplicité. Apres implémentation, de tels couplages sur des
courbes supersinguliéres de degré de plongement égal a 2 et présentant un sous-groupe dont 1’ordre est
un module RSA donné, il se trouve que les couplages s’effectuent en pres de 400 ms pour un module
RSA de 2048 bits et 1300 ms pour un module de 3072 bits. C’est tres lent. Pour comparaison, un couplage
optimal ate sur une courbe de Barreto-Naehrig, a comparer avec un module RSA de 3072 bits, se fait en
5 ms sur le méme processeur. Pour finir, le protocole de Boneh, Goh et Nissim était intéressant et langa
l'utilisation de groupes d’ordre composé, mais en pratique, 1'étape de déchiffrement n’était possible en
temps raisonnable que pour quelques bits de données, et non pas quelques octets.

En 2009, Freeman proposa une conversion de ces protocoles pour n"utiliser que des groupes bilinéaires
d’ordre premier et ainsi pouvoir se ramener aux implémentations records de couplages (en milisecondes).
L'implémentation montre que la conversion de Freeman est jusqu’a 250 fois plus rapide que la version
initiale. De plus, les parameétres ont des tailles plus raisonnables. Ces premiers travaux de traduction de
protocoles furent continués par Lewko en 2012. La encore, il y a une différence de temps d’exécution
entre les versions initiales et les versions converties assez importante, les choix d’instanciation sont alors
évidents : les couplages sur des groupes bilinéaires d’ordre composé sont a éviter.

Ces travaux furent présentés a la conférence ACNS en 2013 qui s’est tenue a Banff en Alberta au
Canada, du 25 au 28 juin 2013. Les résultats sont parus dans les actes de la conférence [Guil3] et sont
disponibles en ligne : http://eprint.iacr.org/2013/218.
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Recherches de nouvelles propriétés sur des courbes de genre 1 et 2

Comptage de point sur deux familles de courbes de genre 2 et constructions pour les
couplages [GV12]

Afin de diversifier un peu les choix possibles pour implémenter un cryptosystéme basé sur des courbes
de genre 2, on s’est intéressé a deux familles de courbes, déja étudiées en mathématiques. En 2009, Satoh
[Sat09] introduit la famille C; : y?> = x° + ax> + bx en cryptographie. Puis en 2011 avec Freeman [FS11],
ils étudient également la famille C, : y?> = x° + ax® + b. Ces deux familles de courbes présentent une
propriété particuliere qui permet d’avoir une méthode tres efficace de comptage de points. En effet, ces
deux familles de courbes présentent une jacobienne qui devient isogene au produit de deux courbes el-
liptiques, elles-mémes isogenes, sur une extension de petit degré (divisant 8 pour la premiere famille et
divisant 6 pour la deuxieme).

Ainsi via cette isogénie, il est possible de déterminer 'ordre de la jacobienne des courbes C; et C;
sur une extension de corps, en faisant appel simplement aux algorithmes de comptage de points sur les
courbes elliptiques correspondantes. La difficulté du genre 2 est évitée. Ensuite il s’agit de déduire 1’ordre
de la jacobienne sur le corps de base en fonction de l'ordre obtenu sur une extension. Satoh donna une
premiere méthode [Sat09]. L'article [GV12] affine les formules de Satoh et présente une méthode similaire
pour la deuxiéme famille de courbes de genre 2. De plus les formules explicites proposées permettent de
mettre en lumiére d’autres propriétés de ces courbes de genre 2. Dans un premier temps, ces formules
sont utilisées pour obtenir des constructions appropriées aux couplages. Quelques nouvelles familles de
courbes sont proposées. Néanmoins pour l'instant, les propositions en genre 2 ne sont pas compétitives
aux possibilités existantes en genre 1 comme les courbes de Barreto-Naehrig.

La qualité des courbes utilisées pour implémenter un couplage se mesure au ratio p entre la taille
du sous-groupe premier de la courbe (ou la jacobienne en genre supérieur a 1) qui présente un degré
de plongement déterminé k, et la taille totale sur F; du groupe de la courbe correspondante (ou de la
jacobienne). En genre 1, une courbe elliptique définie sur un corps F; a pour ordre g + 1 — ¢, avec la trace
t qui vérifie la borne #?> < 44. Si la courbe est d’ordre premier 1, ce nombre premier aura la méme taille
que ¢, i.e. logm = logq (a un bit pres) et on aura p = 1 ce qui est optimal. C’est la cas pour les courbes
de Barreto-Naehrig. Pour I'instant, il n’existe pas de constructions de courbes de genre 2 ordinaires avec
p < 2 autrement dit, pour l'instant les courbes de genre 2 ordinaires ne sont pas compétitives dans le
contexte des couplages.

Ces travaux furent présentés en 2012 a la conférence Pairing [GV12]. La conférence s’est tenue du 16
au 18 mai 2012 a Cologne en Allemagne.

Deux nouvelles familles de courbes de genre 1 et 2 présentant des endomorphismes
intéressants [SS13]

Cet article reprend les deux familles de courbes de genre 2 de l’article précedent [GV12]. L'ordre des
jacobiennes correspondantes se calcule facilement via un calcul de trace de courbe elliptique. De plus, les
jacobiennes sont munies naturellement d’'un endomorphisme facilement calculable. Cet article s’intéresse
a construire un second endomorphisme afin d’effectuer plus rapidement des multiplications scalaires
avec la méthode de Gallant, Lambert et Vanstone [GLVO01]. Il est possible de construire un endomor-
phisme approprié pour cette méthode sur des courbes elliptiques. Puisque les jacobiennes sont isogenes
au produit de deux courbes elliptiques, I'idée est de construire un endomorphisme sur ces courbes el-
liptiques puis de le ramener sur les jacobiennes par 1'isogénie. Les calculs sont un peu techniques mais
les résultats concluants. En fixant un petit discriminant D pour les courbes elliptiques, on construit un
second endomorphisme sur les jacobiennes qui correspond a la multiplication complexe des courbes el-
liptiques. Les deux endomorphimes des jacobiennes ont des valeurs propres suffisamment différentes
pour qu'une méthode GLV en dimension quatre s’applique.

De plus un second endomorphisme est aussi disponible sur les familles de courbes elliptiques corres-
pondantes. La aussi une multiplication scalaire avec la méthode GLV en dimension quatre est possible.
On peut voir ces deux familles de courbes elliptiques comme une généralisation des travaux de Longa et
Sica [LS12].
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Ces travaux furent présentés au workshop ECC 2013 a Leuven en Belgique et publiés a la conférence
Asiacrypt 2013 qui aura lieu & Bengalore en Inde du ler au 5 décembre 2013.

Autres travaux : arithmétique d’extensions de corps de degré 5 [MGI11]

En tout début de these, j'ai eu la chance de participer a un article déja bien avancé. J'ai travaillé avec
Nadia El Mrabet, maitre de conférences en informatique a 'université de Paris 8, et Sorina Ionica, post-
doc a I’école polytechnique. Leurs travaux proposent des formules de multiplications efficaces pour les
extensions de corps (en grande caractéristique) de degré 5. Etant donné un corps fini F; et une exten-
sion de degré 5 de celui-ci, on représente les éléments de F s par des polyndomes de degré 4. Lorsque
p = 1 mod 5 on peut représenter ’extension a ’aide d’un binome irréductible sur F; de la forme X5 —uq,
avec « aussi petit que possible. Il existe plusieurs choix pour les formules de multiplications. Si les multi-
plications et les additions dans [F; ont sensiblement le méme cofit (ce qui peut arriver si g est de la taille
d’un mot machine et que le programmeur a accés aux instructions assembleur), alors la méthode dite
schoolbook, ou élémentaire, est la plus simple et la plus appropriée. Elle cotite 25 multiplications dans .

Si le cotit d’une multiplication devient prépondérant devant une addition, il devient intéressant de
regrouper et factoriser les multiplications dans ;. Cette méthode est bien connue pour les extensions
quadratiques (méthode de Karatsuba). Peter Montgomery développa une telle méthode pour les exten-
sions de degré 5, 6 et 7. Sa proposition pour les extensions de degré 5 requiert 13 multiplications dans [,
pour un sur-cotit de additions (62 additions au total).

Une troisieme méthode de regroupement des multiplications consiste a utiliser 'interpolation poly-
nomiale. Cette méthode porte le nom de Toom-Cook. Les éléments de I'extension F s sont, en tant que
polynomes, évalués en des points bien choisis : {0,00, —1,1,2}. Cela cotite seulement un nombre limité
d’additions. Puis, les coefficients du résultat sont reconstruits par interpolation. Cette méthode nécessite
moins de multiplications que la précédente. par contre, des divisions par de petites constantes, ici 2 et 3,
apparaissent dans les formules. Si ces divisions sont suffisamment efficaces, c’est le cas si elles ne cofitent
que 2 additions par exemple, alors cette méthode de Toom-Cook est plus efficace que la précédente.

Le troisiéme co-auteur d’une pré-publication de ces travaux était Nicolas Guillermin, ingénieur de
I'armement au Celar. Mon travail fut de reprendre ses travaux d’implémentation et de les poursuivre, en
C, afin d’avoir de bonnes mesures de performances des méthodes proposées dans l'article. Les résultats
montrent que pour des extension de degré 5 sur un corps premier de 768 bits, le gain avec la derniere
méthode est de 8 % sur un processeur Intel 32 bits. Sur un corps de 1024 bits pour un processeur de mots
de 64 bits, la derniere méthode devient plus efficace au dela de 1024 bits. Le gain est de 9 % sur un corps
premier de 1536 bits. Ces travaux furent publiés en 2011 a Africacrypt [MGI11]. La conférence a eu lieu
du 4 au 10 juillet 2011 a Dakar au Sénégal.
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Introduction

Cryptography was until the middle of the 20th century the art of encrypting secret data for secure
storage or secure communications. Nowadays cryptography consists in ensuring confidentiality of the
communication, integrity of the encrypted data and authentication of the involved parties (e.g. sender,
receiver). These functionalities are used everywhere, everyday, to connect securely to our mailbox, to
access restrained services on the Internet, for online banking, etc.

For a secure telecommunication, two participants (also known as Alice and Bob) first need to share
some secret information indicating how to encrypt the message. In cryptography this is formalized as
sharing a secret key. This key will parameterize as input the encryption algorithm Alice and Bob have
chosen. Alice wants to send securely her message to Bob. She encrypts her message with their secret
key. Then Alice sends the encrypted data to Bob through an insecure channel. Bob can decipher with
the same shared secret key at the other side of the channel. To perform the encryption operation, cryp-
tographers design encryption algorithms satisfying some precise properties. This is known as symmetric
cryptography.

Before sending her message as described above, Alice and Bob need to share some secret information
or secret key. This means either they meet physically somewhere to exchange this secret key, or they can
use a protocol using asymmetric cryptography to agree remotely on some secret data through an insecure
channel. An aspect of this notion is commonly sketched as follows. Bob sends to Alice an open lock.
He is the only one to have the corresponding key. Alice uses Bob’s lock to secure the sensitive data then
sends it (closed) back to Bob. Bob then uses his secret key to unlock Alice’s data. This is an analog
on the real life of a cryptographic scheme known as public key encryption. In 1978, Rivest, Shamir and
Adelman proposed the well-known RSA scheme providing public-key encryption. Its security relies on
the factorization problem: given a large modulus N = pq of two prime numbers, it is very difficult to
recover the two prime factors. This is still one of the most widely used cryptosystems in the world.

Another way for Alice and Bob to exchange remotely some secret key is to use a key agreement protocol.
In 1976, Diffie and Hellman proposed such a scheme (DH-scheme in the following). Their construction
handles the keys as elements in a finite field where the exponentiation (computing ¢* from g an element
in the finite field and x an integer) is easy to compute (on a PC, laptop, smartphone) but impossible to
invert in reasonable time (a month, a couple of years, ten years...) which means, given g and g%, this is
infeasible to compute x in reasonable time. This is known as the Discrete Logarithm Problem (DLP).

These two examples, RSA and DH schemes, are now very common in asymmetric cryptography. Their
underlying mathematical candidates for one-way functions are widely studied and attacked, but not yet
broken. Their weaknesses are well-known, rare and limited. Furthermore there exist simple and easy-to-
implement countermeasures. A common countermeasure is to enlarge the key and parameter sizes. The
time needed to solve e.g. an instance of the DLP will grow accordingly. However this reduces the effi-
ciency of both encryption and decryption steps (they are slower and Alice waits more time for checking
her mailbox). This also augments the bandwidth consumption or the place required for a secure storage
of encrypted data. That is why cryptographers are looking for other instantiation of these cryptosystems.
For example in DLP-based cryptography, we are always looking for other candidates of groups where
the DLP is intractable, i.e. where the function (g, x) — ¢* is very difficult to invert. Such a function is
also called a one-way function.

In 1985, Koblitz and Miller introduced from algebraic geometry the use of elliptic curves instead of
finite fields for DLP-based cryptosystems, then hyperelliptic curves (a generalization of elliptic curves) in
1989. This thesis is mostly about elliptic and hyperelliptic curves. Moreover a second good candidate of
one-way function is available on curves. We can combine this second function with the exponentiation
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function (used e.g. in the DH scheme) to achieve interesting new properties in cryptosystems. Roughly
speaking, a pairing isamap e : (g,h) — e(g, h) which is bilinear in the sense that e(g1 - g2, 1) = e(g1,h) -
e(g2, 1) and the same property holds with respect to the right-hand side inputs. This map is not invertible
in reasonable time and computer resources. It is computationally infeasible in reasonable time, given a
pairing output f and a pairing input g, to compute an input value h such that e(g,#) = f. The pairing
definition and properties are introduced in Chapter 1 and an efficient implementation is provided in
Chapter 3.

We give a few examples of interesting new cryptographic schemes based on pairings. We can cite
the Identity-Based encryption scheme (IBE) of Boneh and Franklin [BF01]. With this, Alice can use as
Bob’s public key simply Bob’s email address. She only needs to register to the service an receive at the
beginning a secret key (stored e.g. on a smartcard). This simplifies considerably the secured telecommu-
nications. We can also highlight the tri-partite key agreement protocol of Joux [Jou00, Jou04] as one of the
first applications of pairings in cryptosystem design. This is a generalization of the Diffie-Hellman key
agreement scheme. In the last decade, various encryption schemes, broadcast encryption schemes and
signature schemes where proposed, based on bilinear maps. We have chosen to study and implement a
broadcast encryption scheme and a hierarchical identity-based encryption scheme using pairings. This
work is presented in the second part of Chapter 3. The design of new pairing-based protocols and their
implementation is a very active area of research in cryptography, as shown by the programs of the main
cryptology conferences.

We now give the outline of this thesis. The preliminaries on elliptic and hyperelliptic curves are in-
troduced in Chapter 1, followed by the pairing definition and properties. Chapter 2 focuses on efficient
arithmetic of two families of elliptic curves and hyperelliptic curves. We also investigate pairing-friendly
constructions of curves from these families. Finally in Chapter 3 we present an efficient implementation
of pairings, of the broadcast encryption scheme of Boneh, Gentry and Waters [BGWO05] and its improve-
ment thanks to Phan, Pointcheval, Strefler and Shahandashti [PPSS12, PPSS13] and also a compared im-
plementation of different variants of the hierarchical idendity-based encryption scheme of Lewko and
Waters [LW11, Lew12].



Chapter 1

Background on elliptic and hyperelliptic curves
in cryptography

This chapter presents briefly the algebraic geometry background needed in this thesis. We start by
introducing elliptic curves over finite fields, addition law, scalar multiplication and properties of endo-
morphisms. Next we present the Tate pairing on an elliptic curve. In the second part of this chapter we
give the definition of a genus 2 hyperelliptic curve, its Jacobian together with the addition law. Finally,
we introduce the zeta function and the Weil numbers of a Jacobian.

1.1 Motivation

In the 70’s, the cryptographic community experienced a revolution with the introduction of asymmet-
ric cryptography. History remembers the Diffie-Hellman key agreement [DH76] and the RSA public-key
encryption scheme [RSA78] as the starting point of modern cryptography. The security of the Diffie-
Hellman key agreement relies on the intractability of the so-called Diffie-Hellman Problem (DHP). The
reader is refereed to e.g. [MvV97, §3.6 and 12.6] for an introduction on this subject. This problem and its
variants are beneath a large proportion of protocols used in cryptography nowadays. In this thesis, we
are interested in the instantiation of some protocols using variants of the DHP. We briefly sketch the DHP
and the related Discrete Logarithm Problem (DLP for short in the following). The DLP in a multiplicative
cyclic group G of order m generated by g is defined as follows: given as inputs a generator (or base point)
¢ and an element a € G, compute the integer x € [0,...,m — 1] such that a = g*. The Diffie-Hellman key
agreement protocol is based on the intractability of the DHP. This key exchange is sketched in Fig. 1.1.

Alice ) Bob
a < Z/mZ & =8 b < Z/mZ
receives g; from Bob receives g, from Alice

— o
computes gp = gl §a =& computes g7 = ¢

Figure 1.1: Diffie-Hellman key exchange. Alice and Bob share the element g*°.

The Diffie-Hellman Problem on a group G of order m is defined as follows: given the elements g, g4, 33,
compute the value ¢*” with a, b such that g, = ¢* and g, = g¥. If we can solve easily the DLP then we can
solve also the DHP. Indeed, we simply compute the discrete logarithm a of g, then compute (g,)* = g**.
The DLP is assumed to be computationally hard in certain well-chosen groups G. Selecting a suitable
group for the use of DLP is an active area in cryptography. To ensure a given level of security to a protocol
based on the DLP in a group G, we study the complexity of the available attacks on the DLP in the given
group G. We then set the group order m accordingly since the attack complexity is directly related to m.
We enumerate the main attacks and their complexity in the most used groups. The complexity is given
in bits. A security level of ¢ bits in a group G means that the most efficient attack against the DLP needs
(at least) 2 group operations to compute a discrete logarithm.
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1. The Baby-step Giant-step and Pollard-p attacks compute a discrete logarithm in a group G of order
m in time complexity O(y/m) [MvV97, §3.6.2 and 3.6.3]. They are generic attacks available in any
group G. To obtain an equivalence of ¢ bits of security in G, we choose a group G of order m ~ 22
(i.e. logm = 2/).

2. The Pohlig-Hellman attack decomposes the DLP in the prime order subgroups of G. Let m =
pi - pg -+ pit be the factorization of m. The complexity of this attack is O(Y5_; e;(logm + /7))
[MvV97, §3.6.4]. The leading term is Vi with p; the largest prime dividing m. That is why we
commonly choose a prime-order group to instantiate the DLP.

3. In finite fields, another attack better-than-generic named index calculus exists. Three optimized vari-
ants are used for three different kind of finite fields. We state some complexity results from the
survey [JLO7].

a) In the multiplicative group of a finite field of large characteristic and small extension degree
Fy = IF;, with e < p, the Number Field Sieve (NFS) method computes a discrete loga-

rithm in sub-exponential time exp ((\3/ 64/9 +0(1)) In'/3 q In?/3In q) [JLO7]. This means that
the running time in practice of the NFS method is faster than the running time of a generic
method such as Pollard-p. To achieve a security level of ¢ bits, the size of the finite field is

actually larger than 2/. For example, for a 128-security level, a prime finite field IF,, of size
3072 < log(p) < 3248 is recommended.

b) The Function Field Sieve (FFS) method computes a discrete logarithm in a finite field of small
characteristic and prime degree extension (e.g. Fp» or F3» with n prime) in a complexity

exp ((\3/ 32/9 + 0(1)) nl/31n2/3 n) [JLO7]. The recommended sizes in this case are even larger

than in the previous one. However the arithmetic in characteristic 2 is very efficient in hard-
ware (e.g. FPGA).

c) The Function Field Sieve (FFS) method computes a discrete logarithm in a finite field of medium
sized characteristic and medium prime degree extension (e.g. I« with p, k prime) in a com-

plexity exp ((\3/ 128/9 + 0(1)) In'/3 q %3 1In q) [JLO7].

d) When the extension degree n of the finite field is smooth (n is divisible by many small prime
numbers), there are prodigious new algorithms solving the DLP (we can cite for example
[Joul3a, BGJT13]). Since 2013 these finite fields have been considered weak and should be
avoided.

To instantiate a protocol based on the DLP in a group with the smallest possible order for a given level
of security (hence optimal parameter sizes) we need a group where the attacks with a better complexity
than the generic one are not available. In the 70’s these specific index calculus attacks where not yet
developed, that is why the multiplicative group of finite fields is widely used. Moreover it has a very
efficient group law. However it is not optimal. That’s why Koblitz and independently Miller suggested
to use the the group of points of an elliptic curve defined over a finite field [Kob90, Kob89, Mil86b]. If
we select carefully the curve, only the generic attacks such as the Pohlig-Hellman one apply. We can
instantiate the DLP in an elliptic curve group of prime order m with log m = 2¢ for an equivalent of ¢-bit
security level, in other words the group order size is optimal. However the group law is more complicated
(see Sec. 1.2.2) but various improvements have been made and nowadays, Elliptic Curve Cryptography
(ECC) is even commonly embedded in smartcards.

In order to be able to use the prime-order groups of elliptic curves in cryptography, we need the

following properties.

— We need an efficient method to compute the order of the elliptic curve. For a prime finite field [,
the order of the multiplicative group is simply p — 1. Roughly speaking, to construct a suitable
finite field for cryptography, we choose a prime r of 2¢ bits (to achieve an ¢-bit security level) and
search for a prime p = h -7 + 1 of size given by tables (based on the NFS complexity), e.g. if £ = 128,
we take 3072 < p < 3248. On elliptic curves, this is completely different. It is even worse (much
more complicated) on Jacobians (a generalization of elliptic curves proposed to the cryptographic
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community in [Kob89]). An algorithm computing a curve order is also named a point counting
algorithm.
— We need an efficient group law and moreover an efficient exponentiation to compute g* € G. On
an elliptic curve, the additive notation is commonly used and the cryptographic operation is called
a scalar multiplication, denoted by [a|P with P a generator (or base point) of the group G. This is
explained in Sec. 1.2.4.
In this thesis we describe an improvement of a method to compute efficiently the order of two families
of Jacobians, this is explained in Sec. 2.3. We also introduce two new families of elliptic curves (Sec. 2.4)
on which we present a method to compute very efficiently a scalar multiplication. We also propose an
equivalent method to compute efficiently a scalar multiplication on two families of genus 2 curves in
Sec. 2.5.

On certain suitable elliptic curves, a bilinear map is available. The properties of this map are explained
in Sec. 1.4.1. This bilinear map is also named a pairing. In 1999, Harasawa, Shikata, Suzuki and Imai
[HSSI99] implemented such bilinear maps with Miller algorithm. They computed a Tate pairing and a
Weil pairing on an embedding-degree 2 supersingular curve E : y> = x3 + x defined over a prime finite
field Fp, of 163 bits, of order p + 1 with a 143-bit prime factor. They computed a Miller function in about 40
000 seconds (~ 11 hours) on a Pentium SONY QL-50NX at 75MHz. In 2000 Joux showed [Jou00] a method
to improve this implementation. Joux was able to compute a pairing on similar curves in less than one
second. Joux then proposed a key agreement protocol to show that pairings can be used to design new
protocols in cryptography. We sketch Joux’s protocol in Fig. 1.2. Pairings are now quite efficient and
maybe they will become widespread on smartphones in the forthcoming years.

Alice Bob

a <+ 7Z/mZ b b« Z/mZ

receives g; from Bob 8 =& receives g, from Alice
receives g from Charlie o receives g. from Charlie

computes 8a =8 computes

e(gp,8c)" = e(g,8)™* e(a,8c)? = e(g,8)™
ga =g =38
gc = gc ( Charlie ) Qe = gc
¢+ Z/mZ

receives g, from Alice
receives g, from Bob
computes

| e(8a,80) = e(8,8)

abc

Figure 1.2: Joux key exchange (a.k.a. Tripartite Diffie-Hellman). Alice, Bob and Charlie share the element
gﬂ C.

1.2 Elliptic curves

In 1985, Koblitz and Miller independently proposed [Kob90, Kob89, Mil86b] to use in cryptography
the group of points of an elliptic curve defined over a finite field. At that time, the multiplicative group of
a finite field was commonly used. Nowadays the group of points of an elliptic curve is widely used and
recommended as first choice for governmental use [NIS11, FNI10]. The discrete logarithm computation
seems indeed less vulnerable in this new group.

1.2.1 Definitions

An elliptic curve is a mathematical object from algebraic geometry. In practice it is usually studied
when its coefficients are defined in the field of rational numbers QQ or complex numbers C. In cryptogra-
phy we consider an elliptic curve defined over a finite field. Le p be a prime number and g a power of p.
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1. BACKGROUND ON ELLIPTIC AND HYPERELLIPTIC CURVES IN CRYPTOGRAPHY

We denote by [F, the finite field of g elements. In all these cases (over C, Q, ;) we can define an addition
law on the set of points on the curve (see Sec. 1.2.2).
An elliptic curve over C is a projective smooth curve given by an equation of the form

E:Y*Z+mXYZ+a3YZ% = X3+ a4y X% 7 + ay XZ? + 0gZ° . (1.1)
This is the homogenous Weierstrass form of the curve. We define the values
dy = IZ% +4ay, dy = 2a4 + aya3, dg = a% + 4ag, dg = a%aé + 4ayaq — ayaza4 + (1211% — aﬁ, (1.2)

then we define A(E) to be
A(E) = —d3dg — 845 — 27d2 + 9dod,ds (1.3)

The property A(E) # 0 is required for the curve to be non-singular. We will assume in all the following
that this is the case. The j-invariant of the curve is defined as

(d3 — 24d,)3

NG (1.4)

The set of points of an elliptic curve is the set of points (X : Y : Z), Z # 0 satisfying eq. (1.1) plus the
point at infinity P, = (0 : 1: 0). The set of points with coordinates in a given field such as the finite field
[F; is commonly denoted E(TF;).

The book of Tate and Silverman [ST94] (designed for Master’s students) is a good introduction on
elliptic curves over C. The more advanced course of Silverman [Sil09] explains important results about
the properties of elliptic curves. In the following we will present the background on elliptic curves over
finite fields. The reader can refers to [Sil09] and the second volume [Sil94] for the theory over C and a
discussion on the differences that arise when the curve is defined over IF,.

In the next section (Sec. 1.2.2) we will explain the construction of the addition law on the set of
points of an elliptic curve defined over a finite field. To start we give the generic expression of an elliptic
curve when it’s defined over a finite field, and the simplifications (the reduced forms) specific to fields of
characteristic 2, 3 and larger than 2 and 3. This will help to compute simpler formulas for the addition
law.

An elliptic curve over I, can be defined by a generic affine equation named Weierstrass equation

y2 +ay1xy + asy = X3 + ayx? + agx + ag (with Ap # 0). (1.5)

The point at infinity does not have an expression in affine coordinates. In projective coordinates (1.1) we
can write P, = (0 : 1:0) as over C. Since this point will be the neutral element of the addition law, it is
also denoted by O. We can simplify this equation, depending on the value of p = char(IF;). We state the
results from [Sil09, A.1.1].

1. If p > 5 we can obtain a short Weierstrass equation of the form

3
day

L S 1.6)
3 (
4a3 + 2702

E:y? = x® +ayx +ag, with A= —16(4a3 + 2742) and j(E) = 1728

This is one of the most used forms in cryptography.

2. If p = 2 (i.e. in characteristic 2) we have the following reduced forms:
—E:y*+xy=x3+apx? +agif j(E) #0, A = ag, j(E) = 1/a¢ and
- E:y?+ a3y = x® + asx + ag if j(E) = 0, in this case A = 43.
The elliptic curves defined over a field of characteristic 2 are wery well used because they are very
efficient with a hardware implementation.

3. If p = 3 we also have two reduced forms:
- E:y* =x3+ax? + a6 if j(E) #0,A = —adae, j(E) = —a3/ae and
— E:y? = x3 +ayx + a6 if j(E) = 0, in this case A = —aj.
These curves in characteristic 3 have also efficient hardware implementations.
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The reduced forms are useful to speed-up the addition law, since some coefficients are equal to zero.
Any elliptic curve in a general Weierstrass representation can be turned into one of the above reduced
forms with a birational change of variables. There exist other representations, for example the Edwards
representation of a curve [Edw07, BL07] is E : x* + y? = c2(1 + dx?y?) over a field of characteristic
strictly greater than 3. The Huff representation of an elliptic curve in characteristic 2 [JTV10, DJ11] is
E:ax(y* +y+1) =by(x> +x+1).

1.2.2 Addition law

The set of points of an elliptic curve over a finite field has a group structure with an addition law. The
point at infinity P is the neutral element by construction. That’s why it is also noted O in cryptography.
We first present a graphical addition law on Fig. 1.3. The addition law was historically defined firstly
over Q and C. The resulting formulas stand for elliptic curves defined over finite fields of characteristic
different than 2 and 3. Dedicated addition formulas over Fy» and [F3» exist and can be found e.g. online

P P;

P’; P] Pz
(a) Addition: draw the line (b) Doubling: draw the
through P; and P, and reflect tangent at P; and reflect
the third intersection point the intersection point

Figure 1.3: The chord-and-tangent addition law on an elliptic curve.

[LB, http://hyperelliptic.org/EFD]. The difference is that when reducing the general formulas from
C to the finite field, we must avoid the divisions by 2 or 3. Moreover the reduced equation of the curve is
not the same (see the previous section 1.2.1).

Let E : y2 = x3 4+ a4x + ag be an elliptic curve defined over a field of characteristic different from 2
and 3. Let P} = (x1,1), P> = (x2,2) € E, P # £DP,. The negation is straightforward. We then have two
different formulas, one for addition and one for doubling.

- Negation. The opposite point of P; is —P; = (x1, —y1).

— Addition. Let A = % The sum P; = (x3,y3) of the two points is given by x3 = A% — x; — xp and

ys = A(x1 —x3) — 11
- Doubling. Let A = 3ta
2y
y3 = A(x1 —x3) — 11
This law is commutative and associative, the proof can be found e.g. in [ST94].

The doubling P; = (x3,y3) of the point is given by x3 = A2 — 2x; and

1.2.3 Points of order 2 and 3

We can characterize graphically the points of order 2 and 3. A point of order two on the curve is
such that the tangent at this point is vertical. Since the elliptic curve is symmetric with respect to the
abcissa, the y coordinate of a 2-torsion point is equal to 0. There are then three 2-torsion points (different

7


http://hyperelliptic.org/EFD

1. BACKGROUND ON ELLIPTIC AND HYPERELLIPTIC CURVES IN CRYPTOGRAPHY

than O), the points (x;,0) where x; is a root of the polynomial in x on the right side of the equation of E.
Graphically (like over R), we can draw one or three such points. Over C, the three points always exist.
Over a finite field, it depends if the polynomial in x of the curve equation has roots in the given finite
field.

Graphically, the points of order 3 are the inflexion points of the curve. Writing y = £./f(x) with
f(x) = x% + ax> + ayx + ag (this time we keep a, and we will cancel a4 in the following), the inflexion
points are the roots of the polynomial [f" f — 1 £2](x):

3a* 4 dayx® 4 6a4x% + 12a6x + (4azag — aﬁ) . (1.7)

Over C there are four solutions x; of (1.7) that form eight points on the curve, namely the four (x;, y;) plus
their opposite (x;, —y;). There are eight 3-torsion points different than O on a curve over C. To find all
the 2- and 3-torsion points of an elliptic curve defined over a finite field, we need to consider the points
defined over an appropriate extension field.

[N\

P\ Py, K
N )

—P
(@) y* = %+ 4x% + 2x, three (b) ¥> = x® — 3x, three 2-torsion (©)y? = x> —3x2 +3x +3,
2-torsion points, two 3-torsion and two 3-torsion points one 2-torsion and two 3-
points torsion points

Figure 1.4: Points of order 2 and 3 on an elliptic curve, representation on R.

1.2.4 Scalar multiplication

Using repeated additions, we may perform a scalar multiplication [m|P = P+ P+ ...+ P, m times, with
P a point of the curve and m € Z. If m is negative, we perform [—m|(—P) with —m > 0. A well-known
efficient implementation of the multiplication [m]P is to write the scalar m in binary representation as
explained in Alg. 1.

There exist further improvements. We can cite the binary-signed representation. The negation of a
point is almost for free: if P = (x,y) then —P = (x, —y). We write m in binary representation. Then we
transform (on the fly) 01...1 — —10...0. In Alg. 1, L. 8 is changed into if m; = 1 then S <— S + P else
if m; = —1 then S <— S — P. This technique reduces in average by a factor 2 the number of additions in
Alg. 1.

The formulas given in Sec. 1.2.2 require two inversions in [F; at each step that are expensive, reduc-
ing considerably the scalar multiplication efficiency. Different systems of extended coordinates were
proposed to avoid inversion. The website [LB] enumerates these different systems. The main idea is to
accumulate in a third coordinate (commonly denoted by Z) the denominators and perform a single inver-
sion at the end of the scalar multiplication in order to output the point in affine coordinates. We present
in Tab. 1.1 p. 10 three well-known systems in large characteristic: the projective, Jacobian and Edwards
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Algorithm 1: Double-and-add scalar multiplication on an elliptic curve.

Input: An elliptic curve E, a point P on the curve, a scalar m > 0
Output: The point S = [m]P.
1 if m = 0 then

2 | Return O

3 else ‘

4 Write m in binary representation, m = Z{:O m;2! with m; € {0,1}

5 S« P

6 forifrom I —1to0do from most significant bit to less significant bit (or left to right)
7 S+ 2§ computed with the doubling formula
8 if m; = 1 then

9 L S« S+P computed with the addition formula
10 return S

coordinates. The notation M stands for a multiplication, S for a square, Mzand M, for a multiplication
by the curve parameter 4, resp. c. If the parameter is small, e.g. @ = 1 then this can be perfomed with an
addition instead of a multiplication.

1.2.5 Group of m-torsion points

A point of order m is such that [m|P = O and m is minimal in the sense that for all divisor d of m
different than m, [d|P # O. An m-torsion point is such that [m]P = O. The group of m-torsion points with
coordinates in a finite field F; is the group of IF;-rational m-torsion points and is denoted E(IF,) [m].

E(F,)[m] = {P € E(F,),[m]P = O} .

The group of points of m-torsion with coordinates in the algebraic closure of F, is denoted E(F,)[m] or
E[m]. We are interested in the structure of E[m]. Let p denotes the characteristic of IF,;. If p does not divide
m then

E[m] ~Z/mZ x Z/ mZ .

For m = p then either E[p’] = O for all £ > 0 or E[p'] = Z/p'Z with the following definition that
distinguish these two cases.

Definition 1. Let E be an elliptic curve defined over ¥y of characteristic p. The curve E is supersingular if it
has no point of order p over Fy, ice. if E[p’] = {O} for all ¢ > 0. Otherwise E[p'] = Z/p'Z and the curve is
ordinary.

The supersingular curves are interesting in cryptography. They were used at the beginning of the
elliptic curve based cryptography, when it was highly difficult to count the number of points of a given
curve over a finite field because the order of a supersingular elliptic curve is already known. These
curves are nowadays quite used in pairing-based cryptography. In the following section we give somes
properties on the elliptic curve order over a finite field. Then it will be possible to express the order of a
supersingular elliptic curve.

1.2.6 Elliptic curve order and characteristic polynomial of the Frobenius endomorphism

In cryptography we need to know the order of the elliptic curve we are considering. For a curve
defined over a field IF;, E(IF;) denotes the group order. This is the number of points with coordinates in
[F; (plus the point at infinity). Moreover to understand the pairing-friendly curve constructions presented
in Sec. 1.4.3, we will need a relation, for an elliptic curve defined over a finite field I;, between its number
of points with coordinates in an extension field, denoted #E(F 4 ), in terms of the number of points of the
curve with coordinates in the basefield, namely #E(IF;). For doing that, we will use some properties of
the Frobenius endomorphism and of its characteristic polynomial. This characteristic polynomial indeed

9



1. BACKGROUND ON ELLIPTIC AND HYPERELLIPTIC CURVES IN CRYPTOGRAPHY

Table 1.1: Addition and doubling in projective, Jacobian and Edwards coordinates for points with coor-
dinates in a field of characteristic different than 2 and 3.

(a) Doubling in projective, Jacobian and Edwards coordinates.

Projective Jacobian Edwards
E:y> =x>+asx +ag E:y?> =x3+ayx +ag E: x> +y? = 2(1 +dx*y?)
(x,y) = (X/Z,Y/Z) (x,y) = (X/Z%,Y/Z%) (x,y)=(X/Z,Y/Z)
P1:(X1:Y1:Z1),doubling: P3=2P1=(X32Y3:Z3)
X, = Xj
Z = 7 X, = X?
W = a-Zy+3X% YZ _ Y B = (X1+Y1)?
S, = 2Y1-74 2 1 C = x2
2 Yy = Y 3
S, = 5] 7, = 72 D = Y]
= . - 1 =
> _ oL S = 2((X1+Y2)? —Xo - Yy) L C—’—Dz
R = Y15 2 H = (C'Zl)
) M = 3X;+aZ;
R, = R T — M _0S ] = E-2H
B = (X1+R?=Xp—Ry y _ 7 X3 c-(B—E)-]
— 2 _ 3 = = ¢-E-(C—
H = W=-2B Y; = M-(S—T)—8Y, Y3 = c-E-(C-D)
X = H-5 7y = M+Z)P-Y,-Z % = EJ
Y; = W'(B—H)—ZRZ 3 = 1 1 2 2
5M + 65+ M, 1M +85+ 1M, 3M + 4S5 4+ 3M,
(b) Addition in projective, Jacobian and Edwards coordinates.
Projective | Jacobian | Edwards
P = (X] 1Yy Zl),Pz = (Xz Yy Zz), addition: P; = P; + P, = (X3 1Yz Zg)
S = Y2 0
T = X1-2Zp Z = 74 A = Z1-7Z;
U = Xp-Z
zZ = 717 S — Y717 B = A
U = Y,-Z;-S5 hz, B uz—lx C = X1-X
U = U2 o H22 ! D = Y%
V = Xo-Z1—-T ? — 4H E = d-C-D
Vv, = V2 ] B H.ZI F = B—E
R = VT Vo — xio1 ! X3 = A-F-(X1+Y)
A = U-Z—Vz3—2R . — R%f]onV (X2 +Ys) —C—D)
X3 = V-A 5 7 Y; = A-G-(D-C)
Y3 R-(V—-X3)—2Y;-] _
Y; = U-(R-A)—V3-S 7 (Z A H? 71 Z3 ¢c-F-G
Ty = V3-Z 5 = (Li+H)P-Z-H,
12M + 25 + M, 7M +4S 10M + S + M,

provides an expression of #E (]Fqk) with respect to #E(IF,;). Background and definitions are presented in
e.g. [Sil09, V.2] and [LV05, §8.1.1].
Let E be an elliptic curve defined over a finite field [F; and let
m;:E — E
(xy) = (y7)

be the qth power Frobenius endomorphism. The characteristic polynomial of the Frobenius 77, is
XEn,(T) = T2 =T +¢

with the trace ¢ such that —2,/7 < t < 2,/7 by the Hasse bound. A point P is in E(F;) if and only
if 74(P) = P hence #E(F,;) = #ker(my — Id) = xr,(1) = q —t+ 1. Similarly, a point P is in E(Fqk)
iff nqk(P) = P so #E (Fqk) = Xy (1) with X the characteristic polynomial of n"; = 7. To compute
the order of the curve over an extension field Fqk we only need to know the coefficients of Xﬂqk. These

10



1.2. Elliptic curves

coefficients are given by Newton’s recurrence formulas. The characteristic polynomial of 77 is of the

form Xy = T2 — 4T + g* with

o=t
t, = t2—2q (1.8)
ty = totp1—q-typfork>2.

As an example we can compute the first traces t; for k € {2,3,4,6}.
#E(F;) = q-l—l—t
#E(F2) = ¢*+1—(#—2q)
#E(Fp) = q +1— (£ —3tq)
#E(F) = q +1— (t* — 4g> +24°)
#E(Fp) = q°+1— (1 —6qt* +94°1> — 2¢°)

So the main point to compute the curve order over F, is to compute its trace t. This question was
deeply investigated in the last thirty years. This computation is related to the computations of isoge-
nies. At the beginning of ECC, computing a curve order was not feasible so supersingular curves were
proposed. We explain now why the order of these curves is easy to compute.

Proposition 1. Let p denotes the characteristic of F. An elliptic curve defined ove a finite field I, is supersingular
if one of the equivalent conditions holds:

1. E[p’] = {O} forall £ > 0;
2. the trace of the curve t satisfies t = 0 mod p;

3. the endomorphism ring of E is an order in a quaternion algebra.

The first condition says that the curve has no point of p-torsion. The second condition gives a quite
restrictive condition on the trace. For example if F; is a prime field, then t = 0 mod 4. Thanks to the
Hasse bound: |t| < 2,/7, the only possibility is then t = 0 hence #E(F;) = q+ 1. If ¢ = p? with p prime
then the trace t can be —2p, —p, 0, p, 2p and there are five possibilities for #E(IF;). That's why the order of
a supersingular curve is easy to compute.

The third condition says that in particular, the endomorphism ring of E is non-commutative. We will
present the structure of the endomorphism ring of an elliptic curve in Sec. 1.2.7.

1.2.7 Isogenies and endomorphisms

In this section we will define an isogeny betweeen two elliptic curves. We will present how to com-
pute it with Velu’s formulas in Sec. 1.2.8. Then we will present endomorphisms and the structure of the
endomorphism ring of an elliptic curve and the difference between ordinary and supersingular curves in
this case.

Definition 2. Let E and E' be two elliptic curves defined over IFy. Anisogeny Z : E — Eisa morphism of curves
that preserves the point at infinity. The curves E and E' are said isogenous.

T

E E

As a consequence, an isogeny is surjective and has finite kernel. The degree of the isogeny is degZ =
#kerZ.

Example 1. In Sec. 1.2.10.1 we compute an example of a degree-2 isogeny. Let E : y*> = x> + apx® + azx be
an elliptic curve defined over ;. We don’t use the reduced Weierstrass equation here because in this way the
isogeny has a nicer expression. A point of order 2 on this curve is Py = (0,0). The degree-2 isogeny has kernel
kerZ, = {P,, O}. The isogenous curve is E: ]/2 = x% —2ax? 4 (a3 — 4a4)x The isogeny is given by
Ir:E — E
o ifP = (0, 0),
(xy) = { X+ay+ %,y (1 - %)) otherwise.

11



1. BACKGROUND ON ELLIPTIC AND HYPERELLIPTIC CURVES IN CRYPTOGRAPHY

We explain this computation in Sec. 1.2.10.1. This example is to show that when deg(Z) is small the isogeny
has a simple expression.

An isogeny has the important property to factor the multiplication-by-m map.

Proposition 2. Let E and E' be two isogenous elliptic curves defined over Iy and let T denote the isogeny. There
exists a dual isogeny 7 : E' — Esuchthat ToT = [deg ). The composition of T and its dual T is the
multiplication by deg T on E.

z

T~

[degZ] < E E

\/
1z

There is another important result about isogenous elliptic curves.

Theorem 1. Honda-Tate theorem for elliptic curves. Let E and E' be two elliptic curves definied over a finite
field ¥,. The two curves are isogeous over ¥y iff their respective Frobenius endomorphisms 7ty have the same
characteristic polynomial.

7

T

E E
XE,r[q = XE/,r(q

This result is a consequence for genus one curves of the Honda-Tate theorem. This theorem arises in
the more general theory of genus g curves. We will use this result in Ch. 2. Note that the curves do not
need to be isomorphic but only isogenous. An isomorphism of curves is a stronger notion that we define
just after.

Proposition 3. Let E and E' be two elliptic curves defined over IFy. The curves are isomorphic iff they have the
same j-invariant.

i /

E ‘ ; E
isomorphism
j(E) = j(E)
Anisogeny E — E is a curve endomorphism. We will also use ¢ to denote an endomorphism.
¢
E E

We now state results on endomorphisms on an elliptic curve and its endomorphism ring. We are also
interested in the group of the elliptic curve. The following theorem states that a curve isogeny induces a
morphism of groups hence a curve endomorphism is also a group endomorphism.

Theorem 2. [Sil09, Th. 111.4.8] Let
I:ESE

be an isogeny. Then
Z(P+Q)=Z(P)+Z(Q)forallP,Q € E.

All the multiplication-by-m maps on the curve are endomorphisms. Hence the endomorphism ring of
E contains Z. Moreover, we saw in Sec. 1.2.6 that there exists the Frobenius endomorphism 77;. We have
this result on End(E).

Proposition 4. Let E be an elliptic curve defined over .

1. If E is supersingular then End(E) is an order in a quaternion algebra.

12



1.2. Elliptic curves

2. If E is ordinary then End(E) is an order in a quadratic imaginary field.

Let E be an ordinary elliptic curve and t the trace of the Frobenius endomorphism. Define the dis-
criminant of the curve to be the number D such that > — 49 = —D+? with D square-free. Moreover if
—D = 2,3 mod 4 then set —D to be —4D, so we have —D = 0,1 mod 4 now.

- If —=D = 1mod 4 then End(E) = Z [@} and there exists an endomorphism ¢ on the curve

satisfying ¢? — ¢ + 2L = 0.
- If D = 0 mod 4 then End(E) = Z [\/—D] and there exists an endomorphism ¢ on the curve satis-
fying ¢> + D = 0.

How to compute this endomorphism for a given curve E over [F; ? In the case —D = 1 mod 4 the
degree of ¢ is %. The first step is to compute an isogeny of degree %. In the case —D = 0 mod 4 we
start with an isogeny of degree D /4. We obtain a second elliptic curve E' (with Vélu’s formulas explained
in Sec. 1.2.8). Then there will be an isomorphism from E’ to E to turn the isogeny into an endomorphism.

1.2.8 Isogenies with Vélu’s formulas

In this section we recall Vélu's formulas for computing isogenies and further improvements on these
formulas found independently by Dewaghe [Dew95] and Kohel [Koh96]. A precise description and im-
provements were given in Lercier’s thesis. [Ler97, §4.1]. A more recent description and implementation
can be found in De Feo’s thesis [DF10]. Let E; be an elliptic curve defined over an algebraic closed field
K, and F a subgroup of the group of points of E,. There exists an elliptic curve E; defined over the field
K and an isogeny of kernel F from E, to Ej, with coefficients in K.

The isogeny from E, into E, of kernel F is given by

P OE!; if P= OE,;/ (1 9)
— . .
(x + XQer\0p, XP+Q — XQ, ¥+ X0er\0p, YP+Q — yQ) if P = (x,y)

and the coefficients of E, are also given by explicit formulas. To simplify, assume that
Eo:y? =23+ ax® +agx +ag = f(x). (1.10)

There are more general formulas for elliptic curves that are not in reduced Weierstrass form given in
[l. We write here the simplified version. Let R be the subset of F defined by F \ E;[2] = RU (—R),
RN (—R) =@and S = FNE;[2] — {O,}. Now let for all points Q = (xg,xq) € F\ {Og,},

Y= 3x2 4 2apx0 4 a4 = f (x0) to = 80 ifQ <5,
g% B ZQ QR T AR Q - 288 = 6x +4axxg +2ay  otherwise,
g0 = Yo ug = (gé)2 = 4y2Q = 43% + 4a2xé + 4agxg + 4ag,
t = EQERUS to,
w = ZQGRUS MQ -+ XQtQ .
(1.17)
Then Ej is given by
E,: y2 = + b2x2 ~+ byx + bg with by = ap, by = ag — 5t and bg = ag — 4art — 7w (1.12)
and the isogeny has degree #F and is given by
T:E, — Ep
P o OEb %fP = Of,, (1.13)
(xz(pyyz(p)) P = (x,y)
with
£ u
Xz(p) = ¥+ Xgerus (% + (x_fQ)z) ’
B 2ugy | to(V—v0) 8580 (1.14)
yz(py = Y+ Loerus 3ol —xg)? .
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1. BACKGROUND ON ELLIPTIC AND HYPERELLIPTIC CURVES IN CRYPTOGRAPHY

Assuming that the 2-torsion points are of the form (xg,0) we simplify the formulas. We have gz =0,
ug = 0 and the formulas are

t u
xI(P) = X+ ZQGRUS X*QXQ + ZR (X_JI?R)ZI (1 15)
t 2u t ’
v = v (1 Es i+ I (2 + )

1.2.9 Gallant-Lambert-Vanstone method for scalar multiplication

In 2001, Gallant, Lambert and Vanstone [GLV01] introduced a new idea to speed-up scalar multipli-
cation on elliptic curves. This improvement was not available on generic groups or on prime fields. They
exploit the existence of some shortcut on the group of points. We denote by E an elliptic curve defined
over a finite field F; and by r the order of E(IF;). Given an efficient shortcut ¢ to compute the scalar
multiplication [A] on the curve with a given fixed A, they decompose a random scalar m into mgy + mqA
mod r with mg, m; of half size compared to m. Since for any P € E(F;), we have [r]P = O, the scalar
multiplication can be [m|P = [mg]P + [m1]¢(P). This method requires an elliptic curve with an endomor-
phism ¢ (the shortcut) efficiently computable and a point P which is an eigenvector for ¢. Some families
of elliptic curves have this property. We give examples in the following.

Why is computing [mg]|P + [m1]¢(P) more efficient than computing [m|P ? Computing [m|P costs
log, m doublings and log, /2 additions in average with Alg.1. Computing [1ny]P + [m;]¢(P) sequen-
tially costs log, mg +log, m; doublings, half additions (in average) and one evaluation of ¢. There exists a
method to parallelize the computation of [m] P + [m1]Q for a total cost of max(log, m, log, m;) doublings
instead of log, mg + log, my. This saves half the doublings if 1y and m; are balanced. More generally,
the method computes [m1]P; + [my] P, + ... + [m;]P; in max; log m; doublings and additions (instead of
Y log m;), plus 2'~! precomputations (and their storage in memory). We present this method applied for
two points in Alg. 2.

Algorithm 2: Double scalar-multiplication on an elliptic curve

Input: An elliptic curve E, two points P, Q and two scalars a, b
Output: The point S = [a|P + [b]Q.
1 Precompute R = P+ Q
Write a = Y 02!, b = Yt b;2! with a;, b; € {0,1}
if [, > [, then S < Pelseif I, > I, then S < Qelse S <+ R
for i from max(I,;, I,) —1to 0 do left to right

SN U1 R W N

S+ 2§
ifa;=1,b;=1thenS < S+ Relseifa; =1,b; =0then S + S+ Pelseifa; =0,b; = 1 then
S+ S+Q

7 return S

On average, this technique costs max(loga,logb) doublings and 3/4max(loga,logb) additions on
the curve. The naive method computes sequentially [a]P then [b]Q and adds both points. This costs on
average loga + logb doublings and 1/2(loga + logb) additions. The technique presented in Alg. 2 is
faster if log a ~ log b. More accurate estimates are described in [GLV01].

This method of Gallant, Lambert and Vanstone is efficient also if the cost for evaluating ¢ is neglige-
able, for instance if ¢ costs a doubling. Secondly the eigenvalue A needs to be large enough so that in
the decomposition m = mgy + m;A mod r, the two mg, m; have (almost) half size of m. So elliptic curves
with such a very efficient endomorphism and large eigenvalue are required to apply this method. Fi-
nally wa also want a decomposition into m and m; of negligeable cost (compared to the computation of
[mp] P + [m1]Q). An elliptic curve may have an endomorphism different from the scalar multiplication. We
give two examples in the following (Ex. 2 and 3).

Elliptic curves with such an endomorphism are very rare. Nevertheless, they are well-known in cryp-
tography. In characteristic different than 2 and 3, we can mention the two families of curves E, : y?> =
x3 + ax of j-invariant 1728 (used in practice over F; with ¢ = 1 mod 4) and the curves E; : y2 =x34bof
j-invariant 0 (in practice, over ; with g4 = 1 mod 3).
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1.2. Elliptic curves

Example 2. Let E, : y?> = x% +ax. The curve has Complex Multiplication by v/—1: ¢ : P = (x,y)
[V=1|P = (—x,iy) with i such that i* = —1. Intuitively, note that *(P) = (—(—x),i%y) = (x,~y) =
—P — ¢* = [—1]. If we consider points with coordinates in a finite field Fy with ¢ = 1 mod 4 then there exists
i € Fys.t. i = —1. If P is of prime-order r then the eigenvalue of this endomorphism is A = \/—1 mod r and
P — (—x,iy) = [AJP. If the curve is defined over Fq with ¢ = 3 mod 4 then i is not in Fg but in F > and
moreover the curve is supersingular (see Sec. 1.4.3.1).

Example 3. Consider the elliptic curve Ey, : y*> = x3 + b. Let {3 be a primitive third root of unity, i.e. such that
23+ 3 +1 = 0. The curve has Complex Multiplication by _1%\/_73 The endomorphism is ¢ : P(x,y) —
(C3x,y). Note that ¢3(P) = P. Now consider the points with coordinates in Fy, with =1 mod 3. In this case

there exists a primitive third root of unity {3 € IF,. The eigenvalue satisfies A = *1%‘/?3 mod r with r the order
of P. Note also that {3 and A both correspond to a primitive third root of unity but {3 € I, whereas A is taken mod
r. Note that we need ¢ =1 mod 3 otherwise {3 & I, and the curve is supersingular (see Sec. 1.4.3.1).

We will explain in the next section how to construct an elliptic curve with an endomorphism of given
kernel and how to compute this endomorphism.

1.2.10 Endomorphisms on elliptic curves: two examples

We will explain two examples of endomorphisms on elliptic curves defined over ;. We will start
by computing for our first example an isogeny of degree 2, i.e. an isogeny whose kernel is of the form
{P,, O} with P, a 2-torsion point on the curve. For our second example, we will start by computing a
degree 3 isogeny whose kernel is of the form {P5, —P3, O} with P5 a 3-torsion point of the curve.

1.2.10.1 Endomorphisms constructed from a degree-2 isogeny

We aim to find an elliptic curve E defined over F; with Complex Multiplication by /=2, i.e. with an
endomorphism ¢ such that on a prime subgroup of E(F;), ¢* = [—2]. We start by finding with Vélu’s
formulas an isogeny of degree 2, i.e. whose kernel is {O, (x9,0)} with (x(,0) a 2-torsion point. The
general approach can be found in [Sil94, II, Prop. 2.3.1]. Let E : y?> = x3 + ax? + a4x + a4 be an elliptic
curve defined over F; with a 2-torsion point (xg,0). If xp = 0 then ag = 0 and the curve equation is
of the form y> = x(x? + apx + a4). Otherwise xy # 0 but satisfies x3 + apx3 + a4x9 + a6 = 0 hence
e = —(x3 + axx3 + asxp) and we can write y> = (x — xg) ((x — x9)% + (a2 + 3x0) (x — x0) + 3x5 + 2a2x9 +
a) = x (x2 + a;x, + a;) with the change of variables X =x—xp, a’z = ap + 3xy, a; = 3x3 + 2a3x0 + a4
and alé = 0. We will assume in the following that! xg = 0 and a5 = 0.

Using Vélu’s formulas we find t = a4 and w = 0. The 2-isogenous elliptic curve of E is E : y2 =
x% 4+ ayx? + (ag — 5t)x + (ag — dast — 7w) = x3 + ax> — dayx — 4apay. The isogeny is given by

I:E — E
0] if P = (0,0), (1.16)
P =
(y) = { (x + %,y (1 - %)) otherwise.
We note that the equation of E' can be expressed in E;O:O,%:O cy? = 2%+ apx? — dagx — dazay =
(x 4 a2) ((x 4 a2)? — 2ay(x + ap) + a3 — 4ay) . We remark that (—ay,0) is a 2-torsion point of E . This will

1. If xog # 0,a¢ # 0 we obtain t = 3x(2] + 2ayxg + a4 and w = txg. The image of the 2-isogeny is the elliptic curve E : yz =
%%+ apx® + (ag — 5t)x + (ag — 4ast — 7w). In terms of ap, a4, as, X9, we find that 11/2 = ap, a; = —15x3 — 10ayx9 — 4a4 and a’6 =
—5ayx3 + (—8a3 + 14a4)xg + 22a — 4apa4. The isogeny is given by

I:E — E

N if P = (x0,0),
=y (x+t/(x—x0),y (1 —t/(x—x0)?)) otherwise, with t = 3x3 4+ 2apx0 + a4 .

The j-invariants of the two curves are
28(—a3 + 3a4)3

i(E) = dj(E') =2
i(E) 4ui+27ué+a2((4a§718114)116711211%) and j(E')

4 (a3 +12ay + 15x0 (3x0 + 2a7))®
uzx% + u1xg + Up

with up = 2(a3 — 3a4)%; u1 = (a3 — 3a4) (243 — 7axay + 9ag); up = —Sa%uﬁ + aday + 16a2 + 27aé + (7a3 — 27aza4) .
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be a useful indication in the next step to find the complete change of variables from E' to E to turn the
isogeny into an endomorphism. The change of variables will start with (x', ') — (" + a,y').
The j-invariants of the two curves are

i(E) = 28 (3ay —a3)3 and J(E') 16(a3 + 12514)3 o (a3 + 12a4)3 '
(4ay — a3)a3 —8a3a2 + ajay + 1645 (4ay — a3)2ay
Now we set
J(E) = J(E) (1.17)

in order to obtain an endomorphism on E. We will adopt another approach in Sec. 2.4.1. We assume that
ag =0,x9 =0,a4 #0,4a, — a% # 0. The equation (1.17) turns into

a3(—8ay + a3) (1643 — 81a3a, + 324a,)> = 0. (1.18)

1. If a = 0 then the curve E has equation y> = x> + a4x, E : y? = x> — 4ayx and j(E) = 1728. This
is the curve of Example 2. The map from E' to E is (x,y) — ( ix 1+’y) defined over F,[v/—1] and
the endomorphism is

¢:E — E
(@) if P=(0,0),

=xy) — {( P(x+ %), y%( —%)> otherwise.

This endomorphism actually computes P = (x,y) — (x,y) + (—x,iy) which is [1 + v/ —1]. Note
that (1 ++/—1)? = 2¢/—1. Applying two times this endomorphism send the 2-torsion points to O
but this endomorphism is not [/—2]. Its characteristic polynomial is x> — 2x + 2.

2. If 16a5 — 81aday + 32403 = 0 & a4 = 9i5r a3 the j-invariant is j(E) = j(E') = —3375. The

endomorphism computes {H\F} (see [81194, Ch. II, Prop. 2.3.1]). This is the same curve as in

[LS12, LS13, Ex. A.3]. The characteristic polynomial of the endomorphism is )(2 —x +2. We will
meet this particular curve a second time in 2.3.1.3.
2 , 2 3
3.If (—8ag+a3) =0 ¢ ag =a3/8, E: 2 = ¥ +apx® + @x, E 1y = x® + apx? — Zx — 7 and
j(E) = j(E') = 8000. We remark that the 2- torsion point of E is (—ap,0). We write E' : 12 =

2
(x +a2)((x + a2)? — 2ap(x +a2) + %2) = x'(x2 = 2apx + ) and see that the change of variables
from E back to E is (x,y) — ((x +a2)/(=2),y/ (=2~ )) Finally the endomorphism is

2
¢pp:E — E:y?=x+ax?+ Zx

o if P = (0,0), (1.19)
— 2
P=(xy) = (21 (x tap+ gi) ZF (1 + )) otherwise.

and satisfies ¢> = [—2]. This time the characteristic polynomial is x*> + 2. Note that this is the
curve presented in [LS12, LS13, Ex. A.4]. We can compute explicitly its eigenvalue A = /—2. The

2 2
! Zzy with ¢ the trace of the curve

discriminant of the curve is D = 2 and q is of the form g =
over ;. We have also #E(F;) = g+ 1—t = % hence A = /-2 = % mod #E(IF,) (if y is
1nvert1ble mod #E(IF,)). For a prime- order r point P, there is no ambiguity on 1/y mod r.

1.2.10.2 Endomorphisms constructed from a degree-3 isogeny

For our second example, we aim to find an elliptic curve with an endomorphism ¢ such that ¢? = [—3].
The 3-torsion points on the curve are given by the solutions of Eq. (1.7): 3x* + 4ayx® + 6a,x% + 12a¢x +
(4aza6 — aﬁ) = 0. To simplify the computations, we assume that 4a,a¢ — ai = 0in order to have P5(0, \/a¢)
a 3-torsion point of the curve. We assume that ag # 0 (this 3-torsion point cannot be a 2-torsion point).
—1+2¢T3

1. If ap = a4 = 0 then the curve has j-invariant 0 and Complex Multiplication by (3 = , this is

the curve of Example 3.
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1.3. Genus 2 hyperelliptic curves

If ay # 0,a4 # 0 the point P3(0, \/a6) is a 3-torsion point on the curve (with coordinates in IF; or qu). We
set R = {P3} in Vélu's formulas notations. We compute t = 2a4, w = 4a,. We obtain an isogeny of degree
3 into the curve E : y? = x3 4+ ax> — 9ayx — (8azay + 27ag). The j-invariants are

12 (a% + 27a4)3a%

, 3a4)3a3 -
E) — 712 (ﬂz 4" ondi(E) = L 2
]( ) an ]( ) (811% _ 27”4)3[]4

(843 — 27a4)a}
The isogeny is given by

E — E :y?=x3+ax% —9ayx — (8ayay + 27ac)
) ) if P=4P; = (0,£/a5), (1.20)
=Xy <x + 2% + 4;26,]/ ( 2“4 + 8”6)) otherwise.

Now we set j(E) = j(E'). Assuming that ay # 0,a4 # 0,843 — 27a, # 0 (otherwise the curve would
be singular), we obtain the equation —2(—27a4 + 4a3) (2747 — 8a3as + a3)(27a3 — 8a3a4 + 8a3) = 0. We
observe that on the curve E /, the x-coordinate of the obvious 3-torsion point is —4a, /3. With the change of

2
variable x’ — x + 4a,/3 = x" we obtain E” : y2 =x"3 - 3a2x”2 + (%a% - 9a4) X+ dara4 — %ga% — %Z—‘;
This expression will be useful to recover the change of variables from E' to E when they will have the
same j-invariant.

We obtain these possibilities.

2. a4 = %, j = 54000. This is the same curve as in [LS12, LS13, Ex. A.6]. Here we have E : yz =
X3+ apx? + 4{1%/ 33x 4+ 4ag /3°. The isogenous curve obtained with Vélu’s formulas is E yz =
X3 + apx? — 4a3/3x — 4a3/ 3 The obvious 3- torsion point on E is —4a/3 so we apply first x —
X + 4a3/3. We obtain E” : y? = x% — 32 + azx — ﬁaz The map to E is now obvious. We apply

(x,y) — (x/(=3),y/(=3+/—=3)). The complete endomorphism is given by

E — E:y>=x3+a? + x+4a2
o if P = 4P,

P =(x, — 2 2 5,3 .
(x,y) < 1 (4112 txt 2 uz + 36x2) S\ﬁ (1 4 383’;22 + ;f{g)) otherwise.

(1.21)

We can apply the change of variables (x,y) — ( x+3, \F3 y) to obtain a reduced form E : y2 =
x'3 —15x" + 22. The 3-torsion point we consider is P3(3,2). The endomorphism is then

E - E:y>?=x>-15x+22
(x.1) { Oif P=+P; = (3, iz), (1.22)
=Wy = 24 y 2 32 -
( (x+ 2+ ( ) ), e (1 + oo + (x73)3>) otherwise.
The characteristic polynomial of ¢ is x> + 3. This is the curve we were looking for, the endomor-

phism corresponds to [v/—3].

3. a4 = 4 5 71 az, j = —32768. This is the curve in [LS12, LS13, Ex. A.5]. The characteristic polynomial
1+\/—1 }

of ¢ is x> — x + 3. The endomorphism corresponds on the curve to [ This curve will be

useful in Sec. 2.3.2.2.

4 a4 = 2215ra2, j = 8000, this is the curve constructed in the previous paragraph. It can be found
in another form in [LS12, LS13, Ex. A.4].

These special cases of curves with supplementary endomorphisms will be useful to identify some
special cases in Sec. 2.3.

1.3 Genus 2 hyperelliptic curves

Definition 3. A hyperelliptic genus 2 curve defined over a finite field I, of characteristic greater than 2 is a curve
defined by an affine equation of the form
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1. BACKGROUND ON ELLIPTIC AND HYPERELLIPTIC CURVES IN CRYPTOGRAPHY

with the polynomial f such that deg(f) = 5 or 6 and f has only simple roots over the algebraic closure of IF,.

For example we draw in Fig. 1.5 a representation of C : y*> = x> — 3x% + x.

E:y?=x%-3x+1 C:y?P=x>-3x3+x

() (N
\ /

(a) Elliptic (genus one) curve (b) Genus two curve

Figure 1.5: An elliptic curve and a genus 2 hyperelliptic curve

Unlike elliptic curves, the points of a genus 2 curve like C never form a group. But there is a geometric
group associated with any genus 2 curve C: it is a two-dimensional object called the Jacobian J;. The
abstract geometric definition of J; is not very convenient for computing with, but we can identify its
points with elements of a much more concrete group:

Je(Eq) = Pic®(C)(Fy).

In the rest of this section, we construct the group Pic’(C)(F,), compute the group law, explain the Mum-
ford representation for the elements, and give expressions for the number of elements in the group.

1.3.1 Divisors and Jacobian of a genus 2 curve

In this section we present the divisors on a genus 2 curve to be able to define a group with an addition
law. On an elliptic curve, a divisor is directly identified to a point on the curve. On a genus 2 curve,
a divisor is related to a tuple of points on the curve. The divisors are also involved in the definition of
a pairing or bilinear map that we will introduce in Sec. 1.4. After the divisors we construct the degree-
0 Picard group of the curve, this will be the group of the genus two curve. We will use this group in
cryptography. We only are interested on genus two curves over finite fields. We refer to e.g. [BSS05, Ch.
VII] for an introduction on this subject and to [ACD™"05] for a complete description. The reader can refer
to [HS00, Part A] for the theory over perfect fields.

First we need some facts about the function field of the curve. The following is taken from [Sil09,
§IL1]. Let C : y*> = F(x) be a genus 2 curve as defined above. For each point P € C, an ideal Mp of
Fy[C] = Fy[x,y]/ (y* — F(x)) is defined by

Mp = {femq L f(P) :o} .
Mp is a maximal ideal, since there is an isomorphism

F,[Cl/Mp — T,
f = f(P)
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1.3. Genus 2 hyperelliptic curves

Definition 4. [Sil09, §I1.1]. Let C be a smooth genus one or two curove defined over Fy and P € C. The (normalized)
valuation on Fy[C]p is given by

Ordp:Fq[C]p — {0,1,2,...}U{OO}
f o~ ordp(f):sup{deN:feM%}.

So we are interested on how f vanishes at P. Using ordp(f/g) = ordp(f) — ordp(g), we extend ordp
to F;(C) (the function field of C),
ordp : F,(C) — Z U {0} .

Definition 5. [Sil09, §IL.1]. Let C be a smooth genus one or two curve defined over F,, P € C and let f € F,(C)
an element of the function field of the curve. The order of f at P is ordp(f). If ordp(f) > O then f has a zero
at P, and if ordp(f) < O, then f has a pole at P. If ordp(f) > 0 then f is regular or defined at P and we can
evaluate f(P). Otherwise f has a pole at P and we can write f(P) = oo.

Proposition 5. [5il09, Prop. I1.1.2]. Let C be a smooth genus one or two curve defined over Fy and f € Fy(C)
with f # 0. Then there are only finitely many points of C at which f has a pole or zero. Further, if f has no pole,
then f € F,.

This proposition will be useful in the following. Next we define the group of divisors of the curve.
There will be a correspondence between the elements f € F,(C) and a subgroup of the divisor group of
the curve.

Definition 6 (Divisor [Sil09, §I1.3] ). Let C be a smooth genus one or two curve defined over Fy. The divisor
group of C, denoted by Div(C) is the free abelian group generated by the points of C. A divisor D € Div(C) is a
finite formal sum of points

D =Y np(P)withnp € Z, np = 0 for all but finitely many P € C .
peC

The degree of a divisor D is

deg(D) =) np.
peC

The divisors of degree 0 form a subgroup of Div(C), denoted by
Div’(C) = {D € Div(C), deg(D) = 0} .

Let 71; be the Frobenius map C — C, P = (x,y) — my(P) = (x7,y7). Let 75 act on Div(C) in the
following way: 71;(D) = Ypec np(714(P)). Then D is defined over F, if 714(D) = D.

We note that this does not mean that P; € C (Fq) for all P; of D. It suffices for 77; to permute the P; in
an appropriate way. For example, if C is defined over Fy, let P € C(F2) and let D = (P) + 74(P). Then
(D) = (mq(P)) + (72 (P)) = (77q(P)) + (P) = D and D is defined over I, while P and 774 (P) are not.

We denote the group of divisors defined over F; by Divy, (C) and similarly for Div%q (C). The follow-
ing explains the correspondence between divisors on the curve C and elements f in the function field of
C.

Let f € F,(C)* an element in the function field of C. Then we associate to f the divisor div(f) given
by

div(f) = Y ordp(f)(P). (1.23)
peC

This is a divisor (in particular the sum is finite) thanks to Prop. 5. We can see that div(7,(f)) =
7mq(div(f)). In particular, if f € F4(C), then div(f) € Divp, (C). This formula (1.23) means that the
divisor of f = fuum/ faen is made of the intersection points of fy,,; and C for the zeros and the intersection
points of f;.,, and C for the poles, counted with their multiplicities.

Since each ordp is a valuation, the map

div : F,(C)* — Div(C)
is a homomorphism of abelian groups.
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1. BACKGROUND ON ELLIPTIC AND HYPERELLIPTIC CURVES IN CRYPTOGRAPHY

We continue with a few terminology. The support of a divisor D = Y_; n;(P;) is the finite set of points
{P;}ic1, P; € C such that n; # 0, i.e. all the points arising in the effective expression of D.
We then obtain this important definition.

Definition 7. Principal divisors and related definitions[Sil09, Sec. I1.3]
- A divisor D € Div(C) is principal if it has the form D = div(f) for some f € Fq(C). The principal
divisors form a subgroup of Div(C).
— Two divisors D1, D, are linearly equivalent, written Dy ~ Dy, if D1 — D is principal.
— The divisor class group or Picard group of C, denoted by Pic(C), is the quotient of Div(C) by its subgroup
of principal divisots.
— We let Pic, (C) be the subgroup of Pic(C) fixed by 1.

Example 4. Degree zero divisors. Given a function f € Fo(C)*, as already said in (1.23) the associated principal
divisor is D = div(f) = Yp.cc ni(P;). The P; with n; > 0 are the zeros of the function f, of order n; and the P;
with nj < 0 are the poles of f, of order —n;.

1. Let E : y2 =x3—3x—8bean elliptic curve defined over Fy = F1p7. We have #E(F127) = 109. Let

_ 7x+5y+3
f  8x+o6y+4

in the function field of the curve. We compute the divisor of f. We solve the system

7x+5y+3=0
¥ —x>+3x+8=0

to get the zeros of div(f). We obtain three points Py = (92,23), P, = (70,3), P; = (33,4) (a line intersects
an elliptic curve in three points). The numerator fuym = 7x 4+ 5y + 3 has three zeros at Py, Py, Py and three
poles at infinity: div(fpum) = (P1) + (P2) + (P3) — 3Peo. We do the same with the denominator, we solve

8x+6y+4=0
Y —x>+3x+8=0

and find the three points Q1 = (75,111), Q2 = (66,123), Q3 = (16,105) so div(fyen) = (Q1) + (Q2) +
(Qs) — 3P, Then div(f) = div(fuum) — div(faen) = (P1) + (P2) + (P3) — (Q1) — (Qs) — (Qs) (the
Pw cancel out).

2. Let E be an elliptic curve defined over Fy, P, P, € E with Py # P, Py # —P, and D = (Py) — (P,). Then
D is a non-principal degree 0 divisor in Div(E). The two points Py = (x1,y1), P» = (X2,y2) define a line.
This line can be expressed by a linear polynomial f = (y2 — y1)x — (X2 — x1)y + y1x2 — x1y2 in Fy(E).
Bezout’s theorem tells that a line intersects the elliptic curve in three points counted with multiplicity. If we
denote by DPs the third intersection point of E and the line through Py and Py, then (Py) 4+ (P2) + (P3) — 3P
is a principal divisor.

3. Let C a genus 2 curve of the form y* = F(x) defined over Fy and let P € C(F,). The involution i(P)
sends P = (xp,yp) to (xp, —yp). Define the divisor D = (P) + (i(P)) — Do with Do = 2(Ps) or
Do = (P) + (Pg). Then D is a principal divisor. The corresponding function in Fy(C) is f = x — xp
which can be written in projective coordinates =L~

4. Let C as in the previous example and let Py, P, € C be two points not at infinity. Then D = (Py) + (P2) —
Do is a non-principal divisor unless Py = P, or P; = i(P,).

Proposition 6 ([Sil09, Prop. 11.3.1]). Let C be a smooth genus one or two curve defined over Fg and let f €
F,(C)*.

1. div(f) = 0ifand only if f € E*, i.e. f is constant.

2. deg(div(f)) =0.

We will use these two properties to define the addition law.

1. Let f1, f» € Fy(C)* be two functions of principal divisors denoted by Dy, D,. Then the divisor of
f1 - f2is D1 + D, and the divisor of f1/ f, is Dy — D».

2. Let f € F;(C)* whose principal divisor is denoted Dy. Then div(f™) = mDy.

To conclude, we have the following definition.
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1.3. Genus 2 hyperelliptic curves

Definition 8 ([Sil09, §IL.3]). We define the degree-0 part of the divisor class group of C to be the quotient
of Div0(C) (the degree-0 divisors of C) by the subgroup of principal divisors. We denote this group by Pic®(C).
Similarly, we write Pic%q (C) for the subgroup of Pic®(C) fixed by m,.

Finally, the group of the curve called the Jacobian is identified with the degree-0 Picard group.

Je(Ey) = Picg, (C). (1.24)

We present in the next section (Sec. 1.3.2) the Mumford representation for elements in Pic%q (C) to
handle a divisor in practice and be able to compute easily the addition law on J¢ (IFy).

1.3.2 Mumford representation of divisors

Mumford introduced [Mum83] a representation of divisors on hyperelliptic curves which we present
here. This representation gives another interpretation of the group law and better algorithms to compute
it. For simplifications, we assume that the curve is of the form C : y?> = F(x) with F of degree 5. This
means that the curve has one point at infinity. One can refer to the work of Galbraith, Harrison and
Mireles-Morales [GHMMO8] for the general case (a curve with two points at infinity).

Proposition 7 ([BSS05, Prop. VIL.1] and [ACD'05, Th. 4.145]). Let C be a hyperelliptic curve of genus 2
defined over a field Fy with equation y* = F(x) and F of degree 5. Then the elements of the Jacobian of C that
are defined over I are in one-to-one correspondence with the pairs of polynomials (u(X),v(X)) with coefficients
in By, such that deg(v) < deg(u) < 2, the polynomial u is monic, and u divides v*> — F. If u and v are two
polynomials that satisfy these conditions, the corresponding element of J¢ is denoted by D = div(u, v).

By the Riemann-Roch theorem [Sil09, §I1.5], every divisor class has a unique reduced representative:
that is, a representative in the form D = 216:1 P; — P, with P; € C, where P; # Pe, P; # —P; fori # j
and ¢ < 2.

Definition 9 (Mumford representation from [ACD"05, §4.4.7] ). Let C be a hyperelliptic curve of genus 2
defined over a field IF, with equation y? = F(x) and F of degree 5. Let D be a divisor on the Jacobian ¢, uniquely

represented by D = Zle P; — {Ps. Put P; = (x;,y;). Then the corresponding polynomials u and v of Th. 7 are
defined by

and the property that if P; occurs n; times then

(c&)j [0(x)? - F(X)]X:X’_ =0, for0<j<m—1.

In practice, for a genus 2 hyperelliptic curve of the form y?> = F(x) and deg(F) = 5, we obtain this
Mumford representation, with { = ¢ =2, D = (P;) + (P2) — 2Ps, Py = (x1,11), P2 = (x2,12):

u(X)=(X—x1)(X—x) = X% — (x1+x2)X 4+ x1x2,

and we can also write only the two coefficients and recall that
u = (u1,u0) = (=(x1+x2), 1122) -

We can see in practice here that D can be made of points with coordinates in an extension of I, but
still D € Je(Fy). We take again the example P = (x,y) € C(F2) and D = (P) + (74(P)) — 2Peo. Then
u(X) = X2 — (x4 1y (x)) X + x7y(x) = X* — TrFqZ/Fq(x)X + Norm]qu/Fq(x) has coefficients in ;.

We can compute the second polynomial v of the Mumford representation with Lagrange interpolation
[ACD*05, §14.1.2]:

& (X =)

X) =
o) = Iz (xi — xj)

Yi
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which turns into < <
—Xx —x - X1y — X
v(X) _ 2y1 + 1y2 _4n yzx+ 1Y2 2Y1 _
X]— X2 X2 — X1 X1 — X2 X1 — X2

As for u we can denote the two coefficients of v:

_ (Y1~ Y2 X1Y2 — X211
Z)_(01’00)_(%1—%2' X1 — X2 >

In Chapter 2 we will use this notation:

D= (P, P) = (u1,u9,v1,70)

_ _ Y1i— Y2 X1Y2 — Xol1 (1.25)
= ( (x1 +x2), x1x2, H—x x—1 ) )

1.3.3 Characteristic polynomial of the Frobenius endomorphism

This section is about the properties of the Frobenius endomorphism on the Jacobian of a genus 2 curve,
in the same way as in Sec. 1.2.6. Let C a genus 2 curve defined over a finite field IF; and let J¢ its Jacobian.
Knowing the coefficients of this characteristic polynomial, we can compute #]¢ (F;) and #]¢ (]Fqk) for any
k > 1. This will be useful in Sec. 2.3 where we are interested in computing #], (F;) knowing #]c, (F.s)
and #]c, (Fy) knowing #]c, (F e ) for two genus 2 curves Cy, C; defined over a field Fy.

The Frobenius endomorphism is defined as

Ty : Je — Je
D = (uq,u9,v1,79) +> (u‘{,ug, vz,vg) .

The characteristic polynomial x¢,, of the Frobenius endomorphism 77, is of the form
X, (T) = T* — agT° + b, T — qa, T+ ¢° (1.26)

with ag, b; integers satisfying the Weil bounds: |a,| < 4,/7 and |b; — 2q| < 4. Compared to the character-
istic polynomial of the Frobenius endomorphism over elliptic curves, two coefficients a4, by are involved
here, instead of one (the trace t). This polynomial x¢ , is a Weil polynomial: its four roots z; ; have norm
= /4. For simplicity in the following, we order the roots pairwise such that:

Zig
Z1,4%0, = G, Z34%49 =] -
A divisor D is on J¢(F;) if and only if 77,(D) = D so
#]e(Fg) = xemy (1) = 4° + 1= (q+1)ag + by .

Similarly, a divisor D is in ]C(IFqk) iff nqk(D) =D so #]C(Fqk) = Xemy (1).
We can compute the coefficient a ¢ of x¢,x , knowing ag, by from x¢,, exactly as we did in Sec. 1.2.6 for
q

elliptic curves. The difference is that the Newton’s recurrence formulas are four-step instead of two-step.

aqz = (Clq)z - qu

ap = agap —bgag+3qay

gy = agag —bgap +qagag —4q°

Age = Aglg—1 — bqﬂqk—Z + qaqa40—3 — q2ﬂqk74 .

We can also compute b g« with bqk = %((a 1)? — a ). The Frobenius 7« has characteristic polynomial

q q

XCm i (T) =T*— ﬂqkT3 + bqsz — qkaqkT + qzk .

We will also use formally the other representation of x¢  ,:
g

xer,(T) = (T—z1g)(T —229)(T — 239)(T — 2a);

Xemy(T) = (T—2 )T —25,)(T—2)(T-2,). (1.27)
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1.4. Pairings

We saw in the introduction on elliptic curves that two isogenous elliptic curves have the same char-
acteristic polynomial of Frobenius endomorphism. This holds for isogenous Jacobians. This comes from
results on Honda-Tate theory. This theory is more general (not only about elliptic curves and Jacobians)
and was developed in 19661968 in [Tat66, Hon68, Tat68]. A short summary can be found in [Bis11, §II.4].
Here is the important theorem we will need in Sec. 2.3.

Theorem 3. [Tat66], from [Bis11, Th. 11.4.3] Two Jacobians are isogenous if and only if their respective Frobenius
endomorphisms have the same characteristic polynomial.

Je Jer
X]c,ﬂq = X]C/,T[q

1.4 Pairings

In this introduction we point out a few historical facts on pairings in cryptography. We suggest also
interesting bibliographical references. Then in Sec. 1.4.1 we present the black-box properties of pairings
widely used in cryptography. The mathematical prerequisites are presented in Sec. 1.3.1. The Weil and
Tate pairings are defined in Sec. 1.4.2. All the pairing variants used in cryptography are derived from
these two definitions. The construction of curves suitable for pairing computation is not trivial. An
overview of the main methods is provided in Sec.1.4.3. Finally in Sec. 1.4.4 the algorithm to compute a
Tate pairing is explained, with its various improvements for practical use in cryptography.

For independent interest, we recall here some historical facts. Bilinear pairings were defined the first
time in algebraic geometry, in particular over elliptic curves. The first pairing was introduced in 1948
by the French mathematician André Weil. He gave the name accouplement to this map. In 1986, Victor S.
Miller worked on the Weil pairing and found a practical algorithm to compute it. His work was recently
published in [Mil04]. In 1988 Kaliski was the first to implement the Weil pairing in Macsyma. The source
code is available in his PhD thesis [Kal88]. He used it for example to decide whether an elliptic curve
has a cyclic group of points. Building on Miller” and Kaliski’s work, Menezes, Okamoto and Vanstone
presented in 1993 in [MOV93] an attack on supersingular elliptic curves to compute very efficiently dis-
crete logarithms. Two years later, Frey and Riick [FR94] proposed to compute a Tate pairing to speed-up
this attack. The main property used here is that the pairing embeds the discrete logarithm problem in
the group E(IF;) to a quite small finite field, namely Fp2. In this field the discrete logarithm problem is
vulnerable to more efficient attacks than in the elliptic curve.

A mathematical presentation of the Weil pairing can be found in [Sil09, SIII.8]. We recommend to
look first at Galbraith’s chapter [BSS05, Ch. IX]. For less-theoretical (but more technical) proofs than
in Silverman’s book, we suggest to read Washington’s book [Was03]. The mathematical definition of a
pairing contains many new theoretical notions. We will present here the properties of pairings that are
used in cryptography and hope this will encourage the reader to look at the mathematics after that.

1.4.1 Black-box properties
Definition 10 (Pairing [BSS05, IX.1]). Let (G1, +), (Go, +) and (Gr, -) be three cyclic groups of same order. A
pairing is a map e : Gy X Gy — G which is

1. bilinear: e(P; + P»,Q) = e(Py, Q)e(P2, Q) and e(P, Q1 + Q2) = e(P, Q1)e(P, Q2).

2. non-degenerate: For all P # O € Gy, there is some Q € Gy such that e(P,Q) # 1. Forall Q # O € Gy,
there is some P € G such that e(P, Q) # 1.

3. efficiently computable (in polynomial time in the input size).

We note that if the three groups G, G, Gt are of prime order, then (P, Q) = 1 implies that P = O or
Q = O. This is not true if the group order is not prime (e.g. is an RSA modulus). A pairing satisfies the
following properties (this is a straightforward consequence of the definition):
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- ¢(P,0)=¢(0,Q) =1,
- e(=P,Q) =¢(P,Q)"" =e(P,—Q),
— e([a]P, [b]Q) = e(P,Q)* = e([b]P,[a]Q) for all a,b € Z. This property is widely used in protocol
design.

We now develop the main idea of the MOV and FR attacks. The ECDLP (Sec. 1.1) in E([F;) takes in two
points P, S to compute the scalar s such that S = [s]P. If the curve is supersingular, a pairing is available
on the curve. Moreover there exists an explicit isomorphism from G; into G, provided by the distortion
map. In cryptography, authors say that the pairing is symmetric with G; = G,. We have Gy = E(Fy),
Gy is isomorphic to Gy through the distorsion map ¢ which sends P € G; to ¢(P) € Gy and Gr = Ik
with k small (k € {2,3,4,6}). Then s satisfies e(P,S) = e(P,$(P))°. The ECDLP of S in base P can be
transformed into computing the discrete logarithm of y = ¢(P,S) € Gt inbase g = e(P,¢(P)). If Eisa
supersingular curve defined over a prime field F, with log p = 160, then k = 2 and Gt = F 3 is a finite
field of 320 bits. The discrete logarithm in a finite field of such size was already computable in reasonable
time (weeks or months on a PC) in the 90’s [JL07, Tab. 6].

In 2000 at the SCIS conference in Japan, Sakai, Ohgishi and Kasahara presented an ID-based cryp-
tosystem using the Weil pairing [RSK00]. However the history recalls mostly the 3-partite Diffie-Hellman
key exchange (Triffie-Hellman) introduced in 2000 by Joux [Jou00, Jou04] and the identity-based encryp-
tion of Boneh and Franklin [BF01] as the first use of pairing as a new tool in cryptography. This was the
beginning of a prolific area in cryptography.

1.4.2 Weil and Tate pairings

The Weil and Tate pairings are bilinear maps on curves defined over a field K. We rewrite here the
presentation in [Sil09, II1.8]. We will also need the definition of divisors on a curve presented in Sec. 1.3.1.

Let E be an elliptic curve defined over a field K. Let m > 2 be an integer coprime to p = char(K) if
p > 0. Define the group of K-rational m-torsion points of the curve to be

E(K)[m] = {P € E(K), [m]P = O} .

We need to characterize the structure of E[m], the m-torsion points over an algebraic closure of K. We
have this very useful result.

Proposition 8 ([Sil09, Corollary 6.4, II1.6]). Let E be an elliptic curve defined over a field K and let m € Z with
m # 0.
1. deg([m]) = m?, i.e. the multiplication-by-m map has degree m?.
2. Ifm #0in K, ie. if either char(K) = 0 or p = char(K) > 0and p { m, then the m-torsion points of E
over an algebraic closure of K are
E[m| =Z/mZ X Z/mZ .

Let T € E[m]. There exists a function f € K(E) such that
div(f) =m(T) —m(O) .

We will present a method to compute it in Sec. 1.4.4.
This function has a zero of order m at T and a pole of order m at O. Letting T € E with [m]T' =T,
there is similarly a function g € K(E) satisfying

div(g) = [m]*(T) — [m]*(0) = Y (T +R)—(R).
ReE[m)|

The notation [m]*(T) means that we consider the pre-image of T under the map [m]. The point T € E is
chosen such that [m]T" = T. Observe that [m2]T = © which means that we can choose T as an arbitrary
m?-torsion point. To enumerate the pre-images of T under [m] we simply enumerate all the points T +R
with R an m-torsion point. We have [m](T + R) = [m]T + [m]R = T + © = T. We can also write
divlg) = ['(T)-[m(©) |
= (T'+R)+ (T +R)+ (T +R3)+...+ (T +R, )
—(R1) = (R2) = (R3) — ... = (Ry2) -
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The function g has m? distinct zeros at T + R; and m? distinct poles at R; with R; enumerating the m-
torsion points on E. There are m? such m-torsion points, i.e. #E[m] = m?. Now we consider the function
f o [m]. The zeros of this function are the points S such that f([m]S) = 0, i.e. such that [m]S = T. These
points are exactly the points T' + R which are zeros of <. These zeros are of order m. The poles of f o [m]
are the points S such that [m]S is a pole of f. The function f has a pole of order m at O hence the poles of
f o [m] are the m? points of order m and they have order m. We deduce that the function f o [m] has m?
zeros of order m at the points T' + R with T' such that [m]T = T and R € E[m]. The function f o [m] has
m? poles of order m at the points R with R an m-torsion point. Hence

div(f o [m]) = mdiv(g) .

The functions f o [m] and g™ have the same divisor, so up to a multiplication by an element of K (by
Prop. 6), we may assume that

folml=g".
Now suppose that S € E[m] is another m-torsion point (S = T is allowed). Then for any point X € E,
X+ 9" = f([m]X + [m]S) = f([m]X) = g(X)™ . We deduce that g(X + S)/g(X) is an m-th root of
unity.

Definition 11 (Weil pairing (accouplement de Weil) [Sil09, II1.8] ). We define a pairing
CWeil,m E[Wl] x E[m} = B
with p,,, the group of mth roots of unity by setting

eWeil,m(S/ T) = g(X+ S) /g(X)/

where X € E is any point such that g(X + S) and g(X) are both defined and non-zero. Note that although g is
only defined up to multiplication by an element of K, eweilm (S, T) does not depend on this choice. This pairing is
called the Weil pairing.

There is a second definition [Sil09, §II1.8 Remark 8.5] which can be proven equivalent to the first one.
Choose arbitrary points X, Y € E and functions fs, fr € K(E) satisfying

div(fs) = m(X +S) —m(X) and div(fr) =m(Y +T) —m(Y) .

Then
fs(Y+T)
__fs(¥Y)
eweilm (S, T) = F(X19)
fr(X)
The value ey, (S, T) is well-defined which means that it does not depend on the choice of X and Y but only
on the two points S and T.
This second definition of Weil pairing is close to the Tate pairing definition that we will present in the
sequel. We state here the presentation given in [BSS05, IX.3]. Let E be an elliptic curve over a field K.

Let m be a positive integer which is coprime to the characteristic of the field Ky. The set of m-th roots of
unity is defined to be p,, = {u ey, um=1 } Define the field K = Ko (g,,) to be the extension of Ko
generated by the m-roots of unity. We define the group

mE(K) = {[m]P, P € E(K)} .

We need to consider the quotient group E(K)/mE(K). We can see it as the set of points on E(K) up to
a point in mE(K). In other words, two points Pj, P> on the curve E(K) represent the same equivalence
class of E(K)/mE(K) if P, — P, € mE(K), i.e. there exists a point P’ in E(K) such that P, — P, = [m]P’.

Let P € E(K)[m] and Q € E(K), in a way Q is a representative of a class in E(K)/mE(K). Since
[m]P = O, there exists a function f such that its divisor is (f) = m(P) — m(O). This is a degree 0 divisor.
Let D be any degree zero divisor equivalent to (Q) — (O) such that D is defined over K and the support
of D is disjoint from the support of (f) (i.e. there is no common point between the points describing D
and the zeros and poles of f).
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Definition 12 (Tate pairing, [BSS05, IX.3]). The Tate pairing is the map

() s E(K)[m] x E(K)/mE(K)  —  K*/(K*)™
(P,Q) = (P,Q), =f(D)

The pairing value is a representative of an equivalence class. In cryptography, e.g. for any key agree-
ment protocol, we need a unique output value. The reduced Tate pairing (Def. 14) over finite fields is
introduced for this purpose. We need before that to explicit the groups K* and E(K)[m]. We first give an
important definition.

Definition 13 (Embedding degree [BSS05, IX.5]). Let E be an elliptic curve defined over a finite field Ko = .
Let m be an integer coprime to q which divides #E(F;). Let K = Fy(p,,,) be the finite field extension of F; generated
by the m-roots of unity. We define the embedding degree k to be the integer such that K = I .

Proposition 9. Let E be an elliptic curve defined over a finite field IF5, m be an integer coprime to q s.t. m | #E(F;)
and k be the embedding degree of E with respect to q and m. Then k is also the smallest positive integer such that m
divides gF — 1.

Thanks to the properties of m-torsion points (Prop. 8), we state now this important result.

Theorem 4 (Balasubramanian and Koblitz, [BSS05, IX.12]). Let E be an elliptic curve over a finite field IFy and
let m be a prime dividing #E(IF;). Suppose that m does not divide (q — 1) (i.e. k > 1) and that ged(m,q) = 1.
Then E[m] C E(F ) if and only if m divides (gF —1).

With this theorem, when the embedding degree is strictly greater than one, we know that the full
m-torsion of E will be on F e This is useful to define G, G, and Gr.

We combine these two results. Let E be an elliptic curve defined over a finite field IF,, let m | #E(F;)
and let k > 1 be the embedding degree of E with respect to g and m. Then E(Fy)[m] = Z/mZ x Z/mZ
and more precisely, by definition of the embedding degree, the full m-torsion is not defined over any
proper subfield of F i, in other words, E(Fi)[m] = Z/mZ for all 1 < i < k. Finally, in most applica-
tions, we will set Gy = E(IF;)[m] ~ Z/mZ and G, C E(]Fqk)[m] such that G; NG, = {O}. Thanks to
Balasubramanian and Koblitz theorem (Th. 4), we know that Gy C FF g

Definition 14 (Reduced Tate pairing, [BSS05, IX.5] ). The reduced Tate pairing is the map

€Tate,m * E(Fqk)[m] X E(Fqk)/mE(Fqk) — My - F;k

k1 *1

(P,Q) — (P,Q)" =f(D)m

The practical computation of the function f will be explained in Sec. 1.4.4. The powering to (g% —
1)/m cancels all the terms which are not m-th roots of unity. Since the pairing takes its values in the
multiplicative group F;‘k, after this powering any output value will be in the subgroup p,, rather than in

an equivalence class.

1.4.3 Pairing-friendly curves

Freeman, Scott and Teske propose this definition for pairing-friendly curves in [FST10].

Definition 15 ([FST10, Def. 2.3]). Let E be an elliptic curve defined over a finite field F;. We say that E is
pairing-friendly if the following two conditions hold:

1. thereis a primer > \/q dividing #E(F;), and

2. the embedding degree of E with respect to r is less than log, (1) /8.

The first condition says that the p-value is less than 2, where p = log g/ logr is used to measure how
far the curve parameters are from the optimal case where the curve is of prime order (p = 1 in this
case). Finding pairing-friendly elliptic curves has been a quite active field of research, especially in the
last decade, until the survey paper of Freeman, Scott ant Teske [FST10]. We recall the main idea of the
available constructions and the usual notations. Let E be an elliptic curve defined over a finite field F,.
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We denote by ¢ its trace over Iy and by m its order over Fy, #E(F;) = g +1—t = m. Moreover we
consider a prime divisor r of #E(IF;). We denote by k the embedding degree with respect to r and g, i.e.
the smallest integer such that E[r] C E(F ). The high-level structure of the constructions in the literature
follow essentially these two steps [FST10, §2, p. 9].

1. Fixk, and compute integers t, 7, g such that there is an elliptic curve E(IF;) that has trace t, a subgroup
of prime-order r, and embedding degree k.

2. Use the complex multiplication method to find the equation of the curve E over F,.

An ordinary elliptic curve with these properties can be constructed if an only if the following conditions
hold [FST10, §2, p. 91:

1. g is prime or a prime power. At the moment, there is not any construction for interesting (i.e. with
p < 2) ordinary pairing-friendly elliptic curves over extension fields.

2. ris prime.

3. tisrelatively prime to g to ensure that the curve is not supersingular. Note that t must satisfies the
Hasse bound |[t| < 2,/7, this is induced through condition 6.

4. rdividesg+1—t.
5. rdivides ¢ —1,and r g — 1for1 <i < k.

6. 4q — t> = Dy? for some sufficiently small positive integer D and some integer y.

1.4.3.1 Supersingular curves

The first pairing-friendly elliptic curves to be proposed were supersingular. A supersingular curve
over a finite field [, is such that #E(F;) = 1 mod p with p = char(F,;) or equivalently, #E(F;) =
g+ 1 —t with p | t. Actually, supersingular curves were used in ECC because their order is well-known,
running a point-counting algorithm is not needed (this was quite costly in the 80’s). These supersingular
curves were attacked with the MOV and FR methods [MOV93, FR94] to embed the discrete logarithm
computation from the elliptic curve subgroup E(F) into the finite field F». (For curves defined over F»
or 31, the embedding degree can be higher, up to 4, resp. 6). They were proposed again in cryptography
in [BF01, JouO0] with larger parameter size for use in the first pairing-based cryptography applications.

Example 5. Let p be a large prime (p > 5), p = 3 mod 4 and E : y?> = x3 + ax with a € F,, that is not a
square. This curve has j-invariant j = 1728 and p 4 1 points (hence trace t = 0). For any m > 2 such that
mi{p—1,m| p+1, wehave m|p> —1 = (p+ 1)(p — 1) hence the embedding degree is k = 2. We have
#E(F2) = pP+1— tyo with t,, = > —2p = —2p hence #E(F2) = p?>+1+42p = (p+1)% There exists a
distortion map (x,y) — (—x,iy) withi = /=1 € F 2.

Example 6. Let p be a large prime (p > 5), p =2 mod 3 and E : y* = x> + b with b € F,. This curve has
p + 1 points (and trace t = 0). There exists a distortion map (x,y) +— ({3x,y) with {3 a primitive third root of
unity, i.e. z;§ +03+1=0¢ sz.

The two following methods, the Cocks-Pinch and the Brezing-Weng algorithms, search for parameters
satisfying the constraints presented in Sec. 1.4.3. Let E be an elliptic curve and let #E(F)) = p+1—t = hr
with r a large prime and h the related cofactor. Hence p = t — 1 mod r. Let A = t> — 4p with a square-
free factorization into A = —Dy?. The second useful formula is Dy?> = 4p — t* = 4hr — (t — 2)?, hence
~Dy? = (t—2)? mod r.

1.4.3.2 Cocks-Pinch Method

We recall in Alg. 3 p. 28 the method proposed by Cocks and Pinch in 2001 to construct pairing-friendly
elliptic curves [CP01] (see also [BSS05, Algorithm IX.4]). The obtained elliptic curves have p-value around
2. Any prime can be chosen as input value. As r divides ®y(p), we can rewrite it as ®(p) =0 mod r.
With properties of cyclotomic polynomials, we obtain p = {; mod r with {; a primitive k-th root of
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Algorithm 3: Cocks-Pinch method to find a pairing-friendly elliptic curve.

Input: Square-free integer D, size of r and embedding degree k to match the security level in bits,
knowing that p ~ 2.
Output: Prime order r, prime number p
1 repeat
2 Pick at random a prime 7 of prescribed size until —D is a square in the finite field F, and F,
contains a primitive k-th root of unity (j, thatisr =1 mod k.
3 | Lifttand y from F, to Z and set p = 1 (2 + Dy?).
until p is prime.
5 returnv, p

'S

unity. Furthermore, t = 1+ p mod r so this method chooses t = 1+ {; in F,. Theny = (t —2)/+/—D
in IF;. To obtain the curve parameters a and b, we need to compute a j-invariant for the curve of given
trace t over [F),. The first method is to compute the Hilbert class polynomial Hp associated to D, then
to compute a root of this polynomial modulo p, the root will be a candidate for the j-invariant. This
polynomial has very large coefficients and is not computable in reasonable time and memory for large D,
e.g. D > 10°. There exists some variants such as the computation of the Weber polynomial associated
to D. This polynomial has smaller coefficients. A root of the Weber polynomial modulo p can give a
root of the Hilbert class polynomial of D. Correspondences between roots of Hp and roots of Weber
polynomials for various D are given in e.g. [KKSZ10]. Computing class polynomials (Hilbert, Weber)
can be performed with the Miracl library [Scol1], and more recently with the work of Enge [Eng12] and
Sutherland [Sut12].

1.4.3.3 Brezing-Weng and Scott-Barreto methods

The method proposed by Brezing and Weng and the other version proposed by Barreto and Scott
compute the parameters in a number field K ~ Q[x]/(7(x)) instead of a finite prime field F,. The param-
eters will be polynomials modulo an irreducible polynomial (a cyclotomic polynomial in a first version)
instead of integers modulo a prime. The choice of D is limited to few tiny values such as 1, 2, 3. Otherwise
the polynomials p(x), 7(x) defining the primes p and r will have a too high degree. In this case there will
be no choice on r and p. There is a heuristic on the form of polynomials p(x),r(x) taking many prime
values when iterating over x.

Definition 16 ([FST10, Def. 2.5]). Let f(x) be a polynomial with rational coefficients. We say f represents
primes if the following conditions are satisfied:

1. f(s) is non-constant;

- f
- f
f

(
(x) has positive leading coefficient;
(x) is irreducible;
(x) € Z for some x € Z (equivalently, for an infinite number of x € 7Z);

{f(x):x flx) €Z}) = 1.
We adopt the approach in [FST10]. The polynomial method uses the formula

G N

)
)
)
ed(

Dy* = 4p(x) — t(x)? = 4h(x)r(x) — (t(x) —2)? (1.28)

from h(x)r(x) = p(x) +1 — t(x) with h(x) a cofactor as small as possible and r(x), p(x) are prime for a
given x.

We give an example for k = 16. The 16-th cyclotomic polynomial is ®14(x) = x8 + 1. We can start
with 7(x) = x® 4+ 1. We build K = Q[x]/(®P6(x)). We know that K contains {15 = x, {3 = x> = 1—\;;,
s =i=x*=+/—1andalso V-2 = x® +x? € K. So we can try with D = 1 or D = 2. We obtain
t(x) = x°+1,eo0dd, 1 < e < 15. Unfortunately in any case, the polynomial p(x) is not irreducible.

Lrx)=x28+1
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Algorithm 4: Polynomial method to find a pairing-friendly elliptic curve.

Input: an embedding degree k, a square-free discriminant D
Output: irreducible polynomials p and r, polynomials t, y, h such that (1.28) is satisfied

1 Construct a number field K ~ Q[x]/(r(x)) D Q[Ck], the number field K contains the primitive k-th
roots of unity (. For example, simply choose r(x) = ®x(x) the k-th cyclotomic polynomial.

2 Choose t(x) to be a polynomial corresponding to 1 + i € K. For example if K = Q[x]/(Px(x))
then t(x) =14 x® with 1 < e < k — 1, e coprime to k.

3 if /=D € K then

Brezing-Weng method:
4 | The equation (1.28) factors into (f(x) —2+y+/—D) (t(x) =2 —yv/=D) =0 mod r(x)
5 Sety(x) = +(t(x) —2)/v/-D €K

6 else (in that case v/ —D ¢ K)
Scott-Barreto method:
Search for a suitable polynomial /(x) of degree 0 or 1 such that (1.28) is satisfied.

s Set p(x) = 1 (£3( —|—Dy (x)).
9 if p(x) represents primes and r(x) has positive leading coefficient then

)
10 | return p(x),r(x),t(x),y(x), h(x)

11 else
12 | Return to step 1 and choose a different r(x).

2. t(x) =x°+1

3. If D =1then v/—D = x* 1/v/—D mod r(x) = —x*
—y(x) = £(t(x) —2)/vV/=D = (x* —1)(—x*) = —x*te 4 x*

— We choose e = 1,5, 9,13 to minimize both the degrees of ¢ and y.

|t oy [p)
x+1 [ —x>+x*|( )
X +1 x+x* | (x+1)2
( )

2

x8 —2x7 4 2x° — 223 +2x + 1) /4
x8 —2x7 +4x° — 6x° +8x* — 6x% +4x% —2x +1)/4
x84 2x7 —2x° 4 2x3 — 2x + 1) /4
x8 +2x7 +4x° 4 6x° + 8x* + 6x° +4x% +2x + 1) /4

O| 1| = || D

—x+1] x4+
13— +1| —x+a*| (x—1)

|||

We see here that the method fails with » a cyclotomic polynomial. We need to choose another r.

4. IfD =2then /=D = x° +x%,1/v/=D mod r(x) = 1 (x° + x?)
- y(x) = £(t(x) —=2)/vV/=D = —(x* = 1)(x® + x2) /2 = (—x¢+0 — x*+2 4 x® 4 x2) /2. We will have
p = 12/8 = 1.5 in any case.

Constructions from [KSS08] are obtained with a systematic search (with computer). As in [FST10] we
can cite some examples.

Example 7 ([KSS08, Example 4.2]).

kK = 16

D =1
t(x) = (2x°+41x+35)/35
p(x) = (x10+2x% +5x8 4+ 48x° + 152x° + 240x* + 625x2 + 2398x + 3125) /980
r(x) = x8+48x*+625

x = %25 mod 70

1.4.3.4 Barreto-Naehrig Construction of Pairing-Friendly Elliptic Curves

In 2005 at the SAC conference, Barreto and Naehrig [BNO5] proposed a particular case of pairing-
friendly curves with D = 3. These so-called BN curves are now very popular. The embedding degree
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k = 12 is optimal for curves with p = 1 and security level equivalent to an AES 128. The 12-th cyclotomic
polynomial is ®15(x) = x* — x2 + 1. We want to find two polynomials r(x) and p(x) irreducible, of small
degree, such that r(x) defines the elliptic curve order and r(x) | ®15(x). Barreto and Naehrig observed

that
Dpp(6x%) = (36x* +36x3 +18x? + 6x +1)(36x* — 36x% + 18x2 — 6x + 1) and

Dp(2x%) = (dx* —4x® +2x% —2x + 1) (4x* + 43 + 22 +2x + 1) .

We may set t(x) = 6x2 + 1 in the first decomposition and #(x) = 2x* + 1 in the second one. Letting
r(x) = (36x* + 36x3 4 18x% 4 6x + 1), one may write ®15(6x2) = r(x)r(—x). Let #E(F) = r(x). Then
p(x) = r(x) + t(x) — 1 = r(x) + 6x% and moreover, t* — 4p factors into —3(6x? + 4x + 1), thus D = 3
and y = 6x2 + 4x + 1. To sum up, the coefficients of the curve are given by

k= 12
(x) = 6x*+1

r(x) = 36x*436x> +18x% 4 6x +1

(x) = 36x*+36x> +24x% +6x +1

(x) = 108x* 4 144x> + 84x? + 24x + 3 = 3(6x> + 4x + 1)?

with x taking positive or negative values. The curve equation is of the form E : y> = x> + b with b € F,,
and E is not supersingular contrary to the example 6 because here p = 1 mod 3. The same method
applied to ®1,(2x?) fails because t> — 4p = —(6x% + 4x + 3)(2x> — 4x + 1) with no square in this case.

It is quite easy to find values for x such that both p and r are prime numbers of a given size. To achieve
log p = logr = 256, we need to search for good values of x in the range

262 < Xpnin = 0x57e2266168ce663b < X < Xmax = 0x6882£5c030b0f7ef < 203 . (1.29)

In practice we start at x = 0x6000000000000001 = 262 4 26! 41 to obtain sparce values for p and 7.

1.4.4 Tate pairing: Miller algorithm and improvements

As mentioned above, in 1986 Miller provided an efficient algorithm to compute the Weil pairing.
His work was widely used and was finally published in the Journal of Cryptology in 2004 [Mil04]. His
algorithm is mostly used to compute the Tate pairing since this pairing turns out to be more efficient
in practice on various elliptic curves. The original manuscript is available online [Mil86a]. Let P, Q be
two points of order m on an elliptic curve E, with coordinates in [F;. The aim is to compute a function f
such that div(f) = m(P) — m(O). Miller’s algorithm uses a double-and-add method with intermediate
functions f;. Let f; be a function whose divisor is

div(f;) = i(P) = ([iiP) = (i = 1)(O).. (1.30)
Then f,, is such that
div(fm) = m(P) — ([m]P) — (m —=1)(O) = m(P) —m(O) = div(f)

since [m|P = O. The recursive formula is the following. Let f;, f; be two functions as in (1.30).

div(fiyj) = (+)(P) = ([ +]P) - (i+j-1)(0)

i(P) = (i =1)(0) +j(P) = (j = 1)(O) = ([i +j1P) = (O)
( ) = ([P) = (i =1)(0)

+(P) = ([1P) = (G = 1)(O)

+([iP) + ([1P) = ([i+jIP) = (O) .

To express div(f; ;) in terms of div(f;), div(f;) and few additional divisors, we observe that a line through
the points [i|P and [j]P has divisor div({};p jp) = ([i]P) + ([j]P) + (=[i +j]P) —3(O). We implicitly
compute the coefficients of this line when computing the sum of the two points (see the graphical rep-
resentation of the addition law, Sec. 1.2.2 and especially Fig. 1.3a). From the computation above we
have then div(fiy;) = div(f;) +div(f;) + div(¢ypp) — (([i +]P) + (=[i +j]P) — 20). The last term
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([i +1P) + (=[i + j]P) — 20 is the divisor of the vertical line through [i + j|P. We denote by /; ; the line
through [i]P and [j]P and by v;; the vertical line at [i + j|P. More generally in the following we will
denote by /p o the line through two points P, Q and by vy the vertical line at a point R. Finally,

le(fH_]) = le(fl) + le(f]) + le(&,]) - diV(UH_]') . (131)

Then we have ’
i = i 0:32)
1+

up to a constant term.

1.4.4.1 Miller’s algorithm

We are now able to present Miller’s algorithm. The two progression formulas are
/..
foi = firi= flzf with /;; the tangent at [i]P and vy; the vertical line at [2i]P
2i

fix1 = fii

/.
L with ¢ the line through P and [i]P and v; the vertical line at [i + 1]P .
i+1

0

We develop Miller’s method applied for computing a Tate pairing in Alg. 5.

k
Algorithm 5: Miller’s algorithm, reduced Tate pairing e% L) /m [BSS05]

te,m

Input: E:y> = x® + ax + bwitha,be F,, P € E(Fqk)[m], Qe E(IFqk), m
Output: ere,n (P, Q) /™ € T,
1 Choose S € E (]Fqk) such that P and Q + S are linearly independent

2 Q'+ 0Q+S
3 P]‘ +— P
4 f+1
Miller loop
5 forj < |log,(m)] —1,...,0do
6 ¢ + tangent at P;
7 v < vertical line at 2P;
8 P]' < ZP]'
/
10 if mj =1 then
11 £ < line through P]- and P
12 v + vertical line at (P; + P)
13 P]' — P]' + P
!/
14 ff- i((g’));jg; step fit1 < fifilp,p, /vp,,

Final exponentiation

15 f ¢ flD/m
16 return f

Miller’s algorithm (Alg. 5) is practical. This pairing is a good candidate for a cryptographic pairing.
In particular, the third condition on efficiency is met. Since 2002 there has been various improvements to
this algorithm. We present the main contributions of Barreto, Kim, Lynn and Scott in [BKLS02].

First, we clarify the definition of the two subgroups G; and G,. We will use Th. 4 and Prop. 8. We
first set Gy = E(IF;)[m]. This means that P € G (in the left-hand side of the pairing) is of order m
and has coefficients in F;. Secondly we use the fact that in this setting, E(F;)[m] = Z/mZ, E(Fqk) [m] =
Z/mZ x Z/mZ and for any subfield F; with 1 < i < k we have E(F)[m] = Z/mZ by definition of
the embedding degree (see Def. 13 and Prop. 9). So we find an m-torsion point G, € E(Fqk) such that
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Gy ¢ E(Fy). We set G, = (Gz) to be the subgroup of order m of E(F ) generated by G;. In this way we
know that G; NG, = {O}.

With this setting for G and Gy, for all points P € Gy and Q € G, different from O, the two points
are linearly independent. We can set S = O in Alg. 5 and remove all the terms ¢(S), v(S). Indeed, these
terms are in IF; with S = O and they are sent to 1 after the final exponentiation. We obtain the simplified
algorithm presented in Alg. 6.

Algorithm 6: Miller’s algorithm, reduced Tate pairing elf —/m [BKLS02]

Tate,m
Input: E:y> = x> +ax+0b, P € E(Fy)[m], Q € E(F ) [m] \ E(Fy)[m], m
Output eTate,m(P/ Q)(qk_l)/m € F;k
1 if P = O or Q = O then Return 1 else

3 f+1
Miller loop

4 | forj< |log,(m)] —1,...,0do

5 ¢ + tangent at P;

6 v < vertical line at 2P

8 fefr 528% step faoi < f7Lp,p,/vpy

9 if m; =1 then

10 ¢ < line through P; and P

1 v < vertical line at (P; + P)

12 Pj < Pi+ P

13 fef. 5% step fi1 < fifiln,p /0.,
Final exponentiation

w | f e fWD/m

15 | return f

1.4.4.2 Example: Tate pairing on a supersingular curve

We state in Alg. 7 a Tate pairing computation. The intermediate values ¢ and & are computed in
Alg. 8 and Alg. 9, with the normal-font numbers in F; and the bold ones (X) in F .. Algorithm 7
uses an optimization presented first in [BKLS02]. A degree-2 twisted elliptic curve is used to remove
the denominators, namely the vertical lines v,7(Q) and v, p(Q). This trick is explained in Sec. 1.4.4.3.
Moreover on a supersingular curve of the form y? = x> + ax, we can always set 2 = 1 in order to save
a multiplication in the tangent computation, line 10 of Alg. 8. Moreover if p = 1 mod 3 then —3 is a
square in F, and we can set 2 = —3 in order to compute t5 = 3(X2 — tﬁ) =3(Xr+1t4)  (Xr —t4) in one
multiplication, we save one more square.

1.4.4.3 Twists of curves

Twisted elliptic curves were introduced in [BKLS02] to speed-up pairing computations. A general
overview of use in pairings is explained in [HSV06, §4]. We recall here these properties.

Definition 17 (Twist of elliptic curve [HSV06, Def. 1]). Let E and E' be two elliptic curves defined over a finite
ge?d IF,7, ‘thella E' is called a twist of degree d of E if there exists an isomorphism ¢ : E' — E defined over Fq and
is minimal.

We note that the two elliptic curves are defined over a finite field IF; and the isomorphism is defined
over an extension of degree d of ;. In other words the expression of the isomorphism contains coeffi-
cients in F 4. We now give a useful classification.
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2
Algorithm 7: Tate pairing eqate m (P, ¢(Q)) B ona supersingular curve of embedding degree 2

Input: E : y> = x® + ax defined over F,, P = (xp,yp), Q = (xq,yq) € E(Fy)[m], m
Output: eate,m (P, ¢(Q)) € 1y, C ]F;ZZ

1 R:(XR:YRZZR)%(Xp:ypil)

2 f+1

3 fori < |log,(m)| —1,...,0do

4 (R,?) < g(R, Q) (see Alg 8 for computing g 8M) + 6S,

5| fefrel S,2 + M,z = 5M,,

6 if m; = 1 then

7 (R,?) < h(R,P,Q) (see Alg 9 for computing /) 11M, +3S,

8 Lf<—f-€ M,» = 3M,
Miller loop: log, m - (13M, +6S,) +HW(m) - (14M, + 3Sp)

o f« fP1 2M, + I,

10 [« flptl)/m — gh log, 11 S, + HW(l) M,z

11 return f Final exp.: log, 1 S » + HW(h)M,2 + 2M)p + I,

Algorithm 8: Function g(T, Q) [CSB04]

Input: E, T = (X7 : Y7 : Z7), Q = (x0,¥q) € E(F)p)
Output: 2T € E(Fp), ET,T((P(Q)) c F;z with (P(foyQ) = (—XQ,yQX)

1t < ZY% Sp
2 t) «+ 2X1 1 Mp
3 3 < Zt% Sp
4ty 7% Sp
5 if 2 = —3 then when p =1 mod 3
6 L ts < 3(X7 + t4) (X7 — t4) My,
7 elseif 4 = 1 then in any case with a supersingular curve with j = 1728
8 | t5 < 3X3+15 25,
9 else otherwise
0 | ts5 ¢ 3X3 +at] 2S,+M,
1 Xor t% — 2ty Sp
12 Yor ¢ t5(t2 — Xor) — 13 M,
13 ZoT ZYT Zr Mp
14 £ [i’5(XT + 1y XQ) - tl] + [ZZT t4 yQ}X 4Mp
15 return ((XZT :Yor: ZZT), 6) 6Sp+8Mp

Proposition 10 ([HSV06, Prop. 1]). Let E be an elliptic curve defined over a finite field IFy with g = p". Assume
that p > 5, then the set of twists of E is canonically isomorphic with F;/(F;)d withd = 2 if j(E) # 0,1728,

d=4if j(E) = 1728 and d = 6 if j(E) = 0.

We give an example with d = 2. Let E : y> = x® + ax + b be an elliptic curve defined over a finite field
F; and let E' beits quadratic twist, d = 2. The twist is given by the equation E: ay? = x>+ ax + b, with

& € Fy anon-square. We can schematize their groups of points over F; and I > in this way.

isomorphism ’
E(qu) ~ E (qu)
U U
#E(Fy) =q+1—t, E(F,) E'(F,) #E(F) =q+1+1t,

The following map ¢, sends a point in E’ (Fq) to a pointin E(F2), with /a € F».

¢:E — E
(x,y) = (,yVa).
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Algorithm 9: function h(P, T, Q) [CSB04]

Input: E,P= (XP,yp), T = (XT Y7 ZT), Q= (xQ,yQ) c E(Fp)
Output: T+ P € E(Fp), l1p(¢(Q)) € F;z

1t Z% Sp
2 by« Z1H Mp
3 i3+ xpt Mp
4 ty < ypty Mp
5 t5 < t3 — X7

6 tg <ty — YT

7 t7 13 Sp
8 tg < t5 ty My
9 tg «— X7ty Mp
10 X74p < 12 — (t3+ 2t9) Sp
11 Y7yp < te(to — Xr4p) — Y7 13 2M,
12 Zryp 4+ Z1 t5 Mp
13 £« [—ZT+p yp + t6(XQ + Xp)} + [ZT+p yQ]X 3M,
14 return (X7, p: Yrip: Zryp), ¥) 35,+11M,,

Note that the orders satisfy #E(FF;) = q +1 — t; and #E'(F 7) = g+ 1+ tg, the traces are opposite. Since
the isomorphism ¢, contains a coefficient /a in IF > the two groups #E(F ) and #E' (F,;2) have the same
order, which is (q +1 —t;)(q + 1 + t;). The idea behind is to compress the representation of the points
in E(Fj2). We manipulate points of the form (x,y) with x,y € F,, these points belong to E(F;), and
secondly we have points of the form (x, \/ay) with x,y € Fy. The group E(F ) is isomorphic to the sum
E(Fy) © ¢2(E (Fyq)).

For a pairing-friendly curve, we consider the twist from on top of the elliptic curve, over IF e with k
even.

isomorphism ’

E(F ) < E'(Fy)
U U
E(F /2) E'(F )
U
E(Fy)

A twist is used to obtain a compressed form of the second point Q € G, C E (Fqk). We recall from
Sec. 1.4.2 (and a consequence of Prop. 8 and Th. 4) that E(F;)[m] has the structure of Z/mZ for all 1 <
i < k with k the embedding degree of E with respect to 4 and m.

We can decompose E(F ) in two subgroups and write

12

E(Fqk) E(Fqk/Z) @® ¢ (E (Fqk/z))
#E(Fqk) = #E(Fqk/z) HE' (]Fqk/z)
(@2 +1 = ts2) (2 + 1+ tis2) -

This means that any point Q in the subgroup of E(Fqk) of order (¢*/2 +1+ tqk/z) corresponds to a point

Q/ of same order on E (F x/2) via the ma Q/ = x/, DS xl, '\/&). Moreover since we know that
q P Y Y
Gy, ¢ E(Fqk/z), we obtain that

G, C ¢2(EI (Fqk/z)) .
More precisely, we know that

P I#EF) = (072 1= tg2) (2 + 1+ tpn)
r #E(Fqk/z) = (qk/2 +1-— tqk/z)
r | #E(Fy) = (q+1—ty)
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By definition of k (and with some restrictions on g, see [BCF09]), we deduce that 2 ¢ #E(Fqk/z) and we
conclude that 7 | (g5/2 41 + tqk/z) = #E,<Fqk/z).

A point Q € G; of order m can be compressed in the form ¢,(Q") with Q" a point of order m in the
quadratic twist E' defined over Fqk/z. The point Q has the form Q = (xo, y1 /) with Q (x0,y1) a point on
EI(Fqk/z)-

In [BKLS02], the authors remark that in a pairing computation, the vertical lines evaluated at Q €

Gy C E(Fqk) have the form v7(Q) = x1 — xg with x7 € F; and xg € IF x> with the above compression.
k_ k/2
Hence vr(Q) € F 2 simplifies after the final exponentiation: vT(Q)% = op(Q)W*-D? i By def-

inition of the embedding degree, k is the smallest integer such that m | g — 1. Thus m { ¢¥/2 — 1 and
#2401
m | ¢/ + 1. We can write vT(Q)# = (UT(Q)qm’l S
and very efficient simplification. This can be generalized to higher degree twists.

The general idea is to compress a pointin G, C E (Fqk) into a simpler form, then see that some compu-
tations simplify after the final exponentiation. We give in the following table (Tab. 1.2 the different forms
of a twist, with respect to its degree d from [HSV06, §4], then we compress the second point Q thanks to

this degree d twist.

= 1 since v7(Q) € F /2. This is an elegant

Table 1.2: Twists of elliptic curves of degree 2, 3, 4,and 6 in large characteristic

d Edefined over Fy  F twist E' defined over Fy  ¢a(x,y)
V=2 +ax+b  FuplZ]/(Z2-a) y*=2+ %x + % (xZ,0yZ)
V' =x+ax+b  FuplZ]/(Z2—a) ay*=2>+ax+b (x,yZ)

4 y*=x3+tax Fos[2)/(Z4 —a)  y* =2+ gx (xZ2,yZ°%)

3 yY¥P=x3+b FuslZ]/ (22 —a®) y> =20+ % (xZ,ya)

6 Y =x3+b F /e [Z]/(Z2° —a) y?>=x3+ Z (xZ2,yZ3)

Now, there is a refinement for degree 3, 4 and 6 twists. Any two degree-2 twists E' and E" defined
over [F; of a same elliptic curve E also defined over [, are isomorphic over F; and isomorphic to E over
Iqu. Indeed, we have

E:y> = x®+ax+b
E: ocy’z = x34+ax' +b
E// : ‘By//z _ x//3 + ax// + b

then we have this isomorphism from E intoE":

E - E
(x/,y/) — (x’,y’,/uc/ﬁ) with y/a/B € Fy;

Since both « and B are non-square in [, the quantity a/p is a square, then \/a/B € F,; and these two
curves are isomorphic over ;. There is only one choice, up to isomorphism over [, for a quadratic
twist of a given curve E defined over Fq. This is not the same for degree 3, 4 and 6 twists because we
have two different choices for the element « defining the twist. We list here the different cases and the
corresponding twist orders.

For a number theoretical explanation, this comes from the different choices we have for primitive d-th
roots of unity. For degree 4 twists, there is {4, —{4 and for degree 3 and 6 twists, there is {3, {3 and (g, (2.

The next step is to compress the representation of Q € G, C E(Fqk) thanks to this degree-d twist. If
d | k and a degree-d twist of E(F /1) is available then the points in E(F ) have a factor-d compression.
First, we have to choose the right twist. To do that, we compute the trace f; of E(IF;) then compute the two
orders of the two twists and choose the twist whose order is a multiple of m, with m related to the pairing
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Table 1.3: Degree 3, 4 and 6 twist of elliptic curves.

Twist degree curve eq. curve order

4 E:y?>=x +ax q+1—tg, with t; even, 7 — 4q = —4y*
g=1 mod 4 E/:y/zzx/3+a/1xx, qg+1-2y

« is not a square E”'yuz— X —a/ax" g+1+2y

3 E: y2=x +b q+1—tg, with £2 — 4g = —3y?

g=1 mod 3 E: y —x +b/1x q+1—(3y—tg5)/2

« is not a cube E':y2=x"3+b/a q+1—(-3y—t;)/2

6 E: y2 x3 +b q+1—tg, with 7 —4q = —3y°

g=1 mod 6 E: y = X3+ b/w q+1—(-3y+t;)/2

w is neither a square nora cube  E" :y'2 = x"3 4+ b/a’ q+1—(3By+ty)/2

(€Tate,ms €Weil - Then, Q is compressed in the form cpd(Q,) with Q, a point on the right twist, defined
over Fi/a. We obtain a factor d compression. If this compression gives a point Q whose x-coordinate
is in a proper subgroup of I, then the vertical lines in the pairing computation are also in this proper
subfield and we can remove them from the pairing computation, since they are neutralized through the
final exponentiation. This simplification is compatible with degree 2, 4 and 6 twists but not with degree 3
twists. We now give an example with degree 6 twists.

Example 8 (Factor-6 compression of G, with a degree-6 twist and 6 | k). Let E : y?> = x3 + b be a pairing-
friendly elliptic curve defined over ¥y, of embedding degree k such that 6 | k. Let E' :y? = x®+b/p the right
degree 6 twist defined over g, with p € Fy neither a square nor a cube and let F i defined by F /6 [Z]/ (26 - B).
We can have a factor 6 compression for Gy on this curve E.

E(Fx) 5 Q= (x'72,y 73) E(Fy)
U 'q)\ U
#E(Fqk/s) =g 41— tgkrs E(Fqk/é) ( Y ) ( k/6)
U ( k/6)=q+1*(i3y+fk/6)/2

HE(Fy) =q+1—t, E(IF,)

Apoint Q € Gy C E(Iﬁ‘qk) is compressed in the form Q = (x' 72,y Z%) with (x',y') € F (Fqk/e)[m}. Hence
a vertical line has the form vr(Q) = x — xX72 e Foss. This vertical line is in the subgroup IF;‘k 3 0f IF;‘k hence

k_q k/3 1) (14 pk/3 1 y2k/3
Pt (r JALpT 24 pT ) k/3_ . . . oo
vom =0 m and vP = 1 so we can remove v from the computations since its contribution is

neutralized by the final exponentiation.

To conclude this paragraph, using a degree-d twist to compress the second point Q is useful to remove
the vertical line computations in the algorithm when d is even and in general, we can optimize the line
and tangent computations thank to the compression of Q.

1.4.4.4 Implementation of a Tate pairing on a BN curve

The implementation uses Alg. 6 without the verticals. We will explicit the line and tangent computa-
tions with a degree 6 twist. We re-use the functions g and h explained in Alg 8 and Alg. 9 and adopt the
same notations. This time the degree 6 twist is ¢ : (x/Q,y/Q) — (xQUZ,yQ ud) e E(F 1) for a D-twist,

ie.QeF (sz) : y/z =x3+b/ p with p a non-square and non-cube in ¥ ». The element B is also used to

define the extension field 12 = I » [U]/(U® — B). We obtain the following for tangent and line compu-
tations, with the black numbers in Fp, the light gray bold ones (X) in > and the gray bold ones (U) in

F 1.
P
fTT(Y/Q;y/Q) = ZYTZ%yEQ*ZY%*(3X%+aZ‘%)(Z%x'QfXT)
Urr(xoU yoU®) = Zor tayoUP — ty — t5(tyx U2 — Xr) (1.33)
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lrp(x0y0) = Zrep(yy —Ye) = (Yp Z3 — Y1) (x, — Xp)
lep(xQUZ, }/QU3) = ZT+p(yQLI3 — Yp) — fé(xQUZ — Xp/) (1.34)
= teXp—Zr4pYp — t6xQU2 + ZT+PyQu3

In both cases the line an tangent are sparse elements of Fpu of the form ¢ = gy + loU? + (3U° with
loo € Fp and lp, 45 € sz. A multiplication in ]Fplz costs 18Mpz ~ 54M, in our implementation. A
dedicated line-multiplication for the steps f < f?- {1 7(¢s(Q)) (Alg. 6 line 8 and Alg. 7 line 5) and
f < f-Llrp(¢6(Q)) (Alg. 6 line 8 and Alg. 7 line 8) permits to save up to 5M,. In this first version of
Tate pairing, we implemented a quite naive line multiplication in 12Mp + 3 x 3Mp2 ~ 39Mp. A more
optimized version is presented in Sec. 3.2.2, see Alg. 15 and 14 with a line multiplication in 10M,,» +
6Mp ~ 36Mp, saving 3Mp more.

k_ k_
The final exponentiation is decomposed in two steps: £ L q’;k(pl) q)"n(lp ) with @y, the k-th cyclotomic
polynomial. The first part can be computed with one inversion and some Frobenius maps. The second
part is an exponentiation in F 1> but this time, with a smaller exponent (compared to the size of (p* —

1) /m). In our context,

plz_l

6 P 6 2 P+l
w Py T P D)
In practice we compute f Pl = f P ! with f P* almost free (it costs only 6 subtractions in F,) and f~1
as optimized as possible with a recursive norm computation and one final inversion in Fj,. The compu-
tation of f P*+1 costs one Frobenius map f P in 5M,» and one M,1>. The last part is an exponentiation in
F,12 with an exponent of roughly 3log p bits. This exponentiation can be optimized very-well with the
formulas in [GS10, DSDO07]. The details are presented in Sec. 3.2.3 and Alg. 17.

1.4.4.5 The ate pairing

After the introduction of Tate pairing and the improvements for supersingular curves (eta pairings
or 17), Hess, Smart and Vercauteren presented in the paper [HSV06] a similar optimization for ordinary
curves. They named their algorithm the ate pairing.

Definition 18. Let E be an ordinary pairing-friendly elliptic curve dedined over ¥, of embedding degree k > 1
with respect to q and m | #E(IF;). Let 7, be the g-power Frobenius, rty : (x,y) — (x7,y7). Define the two groups
Gy = E[m] Nker(my, —1d),
G, = E[m] Nker(mry; — [q]).
The ate pairing is defined as
eaten : Go x Gy —  Gr

QP) & fiaoP) 5.

The two differences with the Tate pairing are firstly the swap of the two input groups G; and G, and
secondly the loop is over t — 1 instead of m (hence of length divided by two). These two pairings are
related through this formula (1.35) we will prove in the following.

Theorem 5 (variant of [HSVO06, Th. 1] ). Let E(Fy) be an ordinary pairing-friendly elliptic curve of embedding
degree k > 1 with respect to q and m | #E(IF;). Let 7, be the q-power Frobenius, 1ty : (x,y) +— (x7,y7). Let
Gy = E[m] Nker(mry —1d), G, = E[m] Nker(mry; — [q]) and let P € Gy, Q € Go.

(t—1)k-1

eReducedTate,m(Q/ P) 1= eate,m(Q; P)k . (1‘35)

For the Tate pairing, it is more efficient to compute the Miller function f,, p(Q), whose divisor is
m(P) — (m)O, evaluated at Q instead of f,, o(P). Here, Hess, Smart and Vercauteren proposed to com-
pute a Miller function whose divisor depends on the point Q € Gy, evaluated at P € G4, but of reduced
length. We explain in the following where this idea comes from.

Hess, Smart and Vercauteren remarked that t —1 = {; mod m since m | ®(t — 1) by construction.
Secondly, they used the following property.
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Proposition 11 ([HSV06, §2] from [GHS02, §6 p.330] ). Let N be an integer such that m | N | g — 1. Then

k qkfl

eReducedTate,m(P/ Q) = fm,P(Q)% = fN,P(Q)T . (1-36)

k_q k_q
Proof. We prove that for an m-torsion point P and any non-zero integer n coprime to m, fnZTI’) = m
We start with
div(fu,p) = m(P)—m(O)
div(fy.np) = mn(P)—mn(O) (1.37)

— 0 (m(P) —m(0))

In terms of functions, we get fy.,,p = f;. p. Then we write N = m - n since N | m. Then fy p = f}, p. The
k_

reduced Tate pairing is egegycedtate (P, Q) = fi,p(Q) T . We then write

qk—l u]kfl

fN,P(Q)T = fmn,P(Q) mn

(@)

(Fup(Q)' 7

eReducedTate,m (P ’ Q) .

O

We can replace the integer m by any N such that m | N | g* — 1. This enlarges the Miller function
computation and reduces the final exponentiation. The next step is to choose an appropriate N which can
be decomposed efficiently. Hess, Smart and Vercauteren choose in a first step

N =ged((t—1)F —1,45 1)
by definition, N | ¢* — 1. Moreover, m | ®;(t — 1) since t —1 = ¢ mod m; ®x(t —1) | (t —1)* — 1 and
m | ¢¢ — 1 hence m | N. We have

k qkfl

eReducedTate(P/ Q) - fm,P(Q)% - fN,P(Q)T .

The second step is to write, with L such that L x N = (t — 1)f —1:

k

CReducedTate (P, Q)" = fN,P(Q)kTL
= fhp@
= fnLp(Q) )
= f(t—l)k—l,P(Q)% :

This is also true if we swap the two points P and Q:

=
-

2

q -1

z‘ I

-1

eReducedTate(Q/ P)L = f(tfl)kaQ(P) N

The next step is to decompose (t — 1)k — 1. Now, the main idea is to remark that over G; C E(F,),
computing [t — 1]P for a given P € G costs a scalar multiplication of length log(t — 1) ~ logg/2. On
the other hand, over G, C E(Fqk) this computation is almost free since t — 1 is the eigenvalue of an
endomorphism. Let Q € G, C E(Fy). Then 7,(Q) = (x7,y7) = [{x]Q = [t — 1]Q. We computed at a
cost of two Frobenius in F x the point [t — 1]Q. This can be explained in two ways. First G, is constructed
as Gy = E[m] Nker(mry; — [q]). Hence for all Q € Gy, m;(Q) = [q]Q. Moreover, since g = t —1 mod m
and Q is an m-torsion point, we conclude that 77,(Q) = [q]Q = [t — 1]Q. The second explanation is the
following. Let Q be an m-torsion point in E(F ) [m] such that Q ¢ E(IF;). By definition of the embedding
degree, we know that Q is not in any subgroup defined over a proper subfield of I x. Since E is actually
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defined over I, the g-power Frobenius acts over E(Fqk) as [Cx] with (i a k-th primitive root of unity.
Hence 77,(Q) = [{x]Q (and nqk(Q) = nlq‘(Q) = Q). Moreover, Q is an m-torsion point and m | &y (t — 1)
which means that t — 1 = {; mod m. The eigenvalue of [{i] in the subgroup of order m is then t — 1 and

to conclude, 77,(Q) = [{x]Q = [t — 1]Q.
To simplify the computation of f(;_y o(P), we need this lemma.

Lemma 1. The Miller function f; g : div(fs o) = s(Q) — ([s]Q) — (s — 1)(O) satisfies the property

fsz,Q = fss,Q ’ fs,[s]Q . (1.38)

More generally,
faro = fig frso - (1.39)

We prove this lemma with explicit divisor computations:

div(fs,o) = s(Q)—([s1Q) — (s —1)(0)
div(fio) = sdiv(fso)
s2(Q) —s([s]Q) — (s> = 5)(0)
= 5(Q) — ([’]Q) — (s* = 1)(0)

= (s([s]Q) = ([*]Q) — (s = 1)(0))
= diV(fsle) - diV(fs,[s]Q)

div(fiy) = tdiv(fsq)

t-s(Q) —t([s]Q) — (t-s—)(O)
ts(Q) — ([ts]Q) — (ts — 1)(O)

= (H([s]Q) — ([t][s]Q) — (t = 1)(O))
= div(fis,0) — div(fi5)0)

Lemma 2. The Miller function satisfies the property

(t=)F1 (t—1)k2 (t—1)k (t—1)k—4 (t—1)2 1
f(tle() ftlQ t—1,t—1]Q ftl[ 2]Q ftl(tl ftl[ 1)k-3]Q " t —1,[(t-1)k2]Q ftl (t-1)k1]Q -

(1 40)

We continue the divisor computations to obtain this lemma, with s = t — 1 to simplify the notations.

fsk,Q(P) = f:k—llQ'fs,[sk*]]Q

= f:f 20 -f;;sk_zlQ fofs 10

fk 3,0 f:[sk—s]Q f: [-2)Q 'fs,[skfl]Q

S s s s2 s
Q s [S]Q s SZ]Q fS [S3 'fsr[5k73]Q .fs,[sk’z]Q fs 10

The next observation of Hess, Smart and Vercauteren is to note that the iterated computations of
[s/]Q = [(t — 1)/]Q can be performed very efficiently with the Frobenius endomorphism: [(t — 1)/]Q =

n,]i(Q) and moreover, since we evaluate this function at P € E(F,) with 77;(P) = P,

j
ftq,[(tq)i]Q(P) = ft_lﬂ{%(Q)(P) = (ft—l,Q(P))aq
with oy the g-th power Frobenius in I . We obtain this third lemma.

Lemma 3.

DL 1) 2o, (t-1)F 802 (t-1)F 40P (t-1)%053  _(t-1)ok2 ok
f(t—l)k,Q(P):ft(—l,(% ft ft—l,Q q'ft—l,Q q"'ft—l,Q ! 'ft—l,Qq 'ftjl,Q‘ (1.41)

k=1—j,]

We can also simplify the terms ft 11) ]U” 0 < j < k—1. The pairing output is of order m, i.e.

- =1¢ ]F .LetfeT 4 of order m. Then f% = f1 = f1 modm = £1=1 5 to m-th powers and
Q(P P P
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more generally, f‘d = f(t_l)j. We deduce that (ft_LQ(P))(t_l)kflfj = (fi—1,0(P))” o up to m powers
S ]Fqk and
(tlkl]a liU]_ k1
fica ! ft 10 | ft 10"
We can conclude that (f(;_1y o(P)) = (ft_LQ(P))k %" and since O'q =IdinFy,
(fe—1)r,o(P)71 = (fi1,0(P))E. (1.42)

We can now conclude about the ate pairing. We recall that N = ged ((t —1)¥ — 1,45 — 1) and (t — 1)* —
1=L-N. Then

1 1
eReducedTate,m(QrP) = fm,Q(P) " :fN,Q(P) Nk
-1 -1
eReducedTate,m(Q/P)L = fN,Q(P) N L:fNL,Q(P) N
-1
= fu—rp,0P) ¥
k-1

- (f<t o(P)- f oP) 7 = fuiaoP)'

1
€ReducedTate,m (Qr p )L M= f (
qk 1 gk -1

= f- 1Q( )W = frao(P)r
We multiply by # both sides to obtain

eReducedTate,m(Q/ P)L‘n 1 = eate,m(Ql P)k

with N =m-n.Since L-n-m = (t — 1)k — 1, we rewrite L - n = (G o 1) ! and obtain Th. 5, with 0, the

g-power Frobenius:
)k

-1
eReducedTatem(Q P) 7 = = Cate m(Q P)

1.4.4.6 The optimal ate pairing

Vercauteren introduced the optimal ate pairing in [Ver10]. Vercauteren summed-up the ate pairing
concept in this way, for an m-torsion point Q and any ¢ { m:

g1
eReducedTate,m(Q/ P)Z = fmrQ (P) ! (1.43)

-1
= fomq(P) 7 (see (1.37)).

Hence the aim is to find ¢ such that ¢m simplifies into a power of a small A with A such that [A](Q) is
almost free. This means that A is the eigenvalue of an endomorphism on G,. With the observation that
multiplication by g on G is a Frobenius map (hence almost free) and is the identity on Gy, the ate pairing
takes A = g mod m. In his paper on optimal ate pairings, Vercauteren introduced an efficient way to
compute fy,, o(P) instead of fy o(P). The idea here is to express {m in term of powers of g with small
coefficients.

Theorem 6 ([Ver10, Th. 1] ). Let A = € - m with £ { m and write A = };_, ciq then

€lcg,e1,mce] GoxGr — Gr~um

-1

i 0. 0P\ 7 , (1.44)
—1 “lsin]Q[eiq'1Q :
(Q,P) ( f:o ZQ(P) : f:é W) with s; = Z]‘f:i c]-q]
defines a bilinear pairing. Furthermore, if
qk B .
mkgk=1 # T Zicith mod m, (1.45)
i=0

then the pairing is non-degenerate.
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This definition is well-suited for pairing computations on Barreto-Naehrig curves.

Example 9 ([Ver10, §4]). Observe that

lp = q = 6x> modm,
6 = ¢ = —(B6x3+18x2+6x+1) mod m, (1.46)
Gu = ¢ = —(36x3+24x2 +12x +3) mod m

and that
l10—C6+l4+6x+2=0 mod m.

A possibility for an optimal ate pairing on a BN curve is then

-1

Coptatem(Q, P) = (f6x+2,Q(P) 05,0y (P) - €—0y+05,0,(P) 'ng—Qz+Q3/[6x+2]Q(P)> (1.47)

with Q; = [41]Q = 7,1 (Q). The Miller function fexi2q(P) has length log p/4, instead of log p/2 for an ate
pairing and log p for a Tate pairing. This pairing is implemented in Sec. 3.2, see. Alg. 18.

We explain this optlmal ate pairing computation. The endomorphisms of eigenvalues (15, (g, (4 are
efficiently computable on E’ (Fp2) and E( x). They cost less than a doubling and we know explicitly their

eigenvalue modulo m, see Ex. 9 We set )t =t —1 = 6x2, A is the eigenvalue of {1 mod m. We have
A =A% 4 A% 4 6x 42 = 6x% —36x* +216x°0 +6x +2 =m - (6x% —6x +2). (1.48)

We set N = (6x2 — 6x +2) - m and n = 6x% — 6x + 2. We have the equalities

k vkt k1
CTate,m (Q, P)L = fuo(P) 7 = fyo(P) T (1.49)
eTatem(Q P) P-6x42) = fN Q(p)pnj

We now decompose the N in fy o (P) in terms of eigenvalues of endomorphisms.

fN,Q(P) = f/\—/\2+A3+6x+2Q(p)
Z[A A2423]Q [6x+2]Q P (1-50)

OA=A24A346x+2]Q

= faca243,0(P)fex+2,0(P)~

Since Q is an m-torsion point, [A — A% + A% 4 6x 4+ 2]Q = O and the line and vertical can be removed
from computations. Then we decompose f, _,2. 3 o(P) first with the additive property from (1.32) and
secondly in the same way as in Lem. 2 and 3

14

_ “NQ[-A2+M3]Q
fA7A2+)\3,Q = f/\,fo/\ZJr)@[;Q UA-224A3]0
_ M
foreweg = frafev i, (151)
_ [ 22]Q, /\S]Q [/\]Q[ A2423]Q
f)\_Az+)\3,Q f/\ Qf—/\2 Qf/\3 Q U_a24310  YIA-A2403)Q

We can remove the vertical lines since they disappear after the final exponentiation. We decompose each
term f};  with the property

-
frio(P) = fao(PY" (1.52)
with A the eigenvalue of 4 mod m. This equality 1.52 is obtained directly from
k-1 _1k1 . x
fre—1ro(P) = ft_LQ(P)kU‘f = ft_LQ(P)k(t D™ since we are in p,, C Fox

We obtain ,
(Froforofig) (P) = fig(P)i2+3) (1.53)

and we conclude that
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NQ(P) = fi_r2irieriao(P) i

fox+2,0(P) fa,o(P)' M4 a1 0310 (P o - 224 a310(P) -
As previously noted by Naehrig, Niederhagen and Schwabe in [NNS10, §2], we can remove the line

computation o, g, 10, [ex+2]0(P) since this is a vertical line. Indeed, A — A2 4+ A3 +6x+2=0 mod m

as stated in (1.48), Q is an m-torsion point and 77;(Q) — ng(Q) + ﬂS’(Q) =Q1— Q2+ Q3 =—[6x+2]Q.
We finish, with n = 6x2 —6x+2and N = m - n:

(1.54)

-1

eReducedTate,m(Qr P)n = fN,Q(P) "

k 1 k1
= forr2(P) T fro(P) T I 00 010 (PYajg - r24a310(P)

= C€opt ate(Qr P)eate(Q/ P)172/\+3/\2 .
(1.55)
We can also deduce that

eopt ateyn(Q, P) = eatem(Q, P) 36X +6x*+3x+1) (1.56)
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Chapter 2

Genus 2 Jacobians: isogenies, point counting
and endomorphisms

This chapter studies the properties of two families of splitting genus two curves. We will introduce
Cr:Y?=X"4aX>+bXand C; : Y? = X® 4 aX> + b defined over a finite field F,. Both are genus two
hyperelliptic curves. They are moreover isogenous over a small degree extension field to the product of
two elliptic (i.e. genus one) curves. We explicit the isogeny in terms of divisors of the Jacobian in Sec. 2.2.
Satoh and Freeman [Sat09, FS11] studied these curves and proposed an efficient point-counting algorithm
thanks to the isogenies. We present a refinement of their method in Sec. 2.3. This work was published at
the PAIRING’2012 conference [GV12]. In Sec. 2.6 we propose pairing-friendly constructions for genus 2
curves of the form C; and C,. This was also published in he same paper at PAIRING'2012 [GV12].

This is just the beginning of the interesting properties of these curves. We explain in Sec.2.4 that the
two isogenous elliptic curves have a very interesting property: in certain conditions easily met, we can
construct two different endomorphisms on these curves. Their eigenvalues are far enough to use them
as if they where independent. These two endomorphisms can be used to speed-up a scalar multiplica-
tion. This property was independently discovered by Smith [Smil3] in a completely different way, and
used for different applications. In our work we also sketch in Sec. 2.5 the computations to obtain two
corresponding endomorphisms on the Jacobians. This work was presented as an invited talk at the ECC
2013 workshop in Leuven, Belgium and was accepted to be presented at the Asiacrypt 2013 conference in
Bengalore, India.

2.1 Preliminaries

In 1985, the idea of using the group of rational points on an elliptic curve over a finite field in
public-key cryptography was introduced independently by Miller [Mil86b] and Koblitz [Kob87]. The
main advantage of using elliptic curves is efficiency since no sub-exponential algorithms are known for
solving the discrete logarithm problem in these groups (and thus key sizes can remain small). In 1989,
Koblitz [Kob89] suggested using Jacobians of hyperelliptic curves in cryptography. Genus 1 hyperelliptic
curves are elliptic curves; genus 2 and 3 hyperelliptic curves are more complicated but are an attractive
replacement for elliptic curves in cryptography. They are as efficient as genus one curves for bandwidth
but still have a slower group law.

As for any group used for the discrete logarithm problem, one needs the order of the group to contain
a large prime factor. This raised the problem of finding hyperelliptic curves over a finite field whose
Jacobian order is (almost) a prime. For elliptic curves over finite fields, the Schoof-Elkies-Atkin (SEA)
algorithm [Sch98, LLV05] runs in polynomial time in any characteristic and in small characteristic, there
are even faster algorithms based on the so-called p-adic method [Sat02, LLV05]. For genus 2 hyperelliptic
curves, the p-adic method gives efficient point counting algorithms in small characteristic, but up to now,
no algorithms as efficient as SEA are known when the characteristic of the underlying finite field is large
(though substantial progress has recently been made in [GKS11] and [GS12]). The strategy is then to
select a particular case which reduces to already known point-counting methods. Using basic properties
on character sums, Furukawa, Kawazoe and Takahashi [FKT04] gave an explicit closed formula for the
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order of Jacobians of very special curves of type Y? = X° + bX where b € F,. Satoh [Sat09] considered
an intermediate approach and showed that point counting on specific Jacobians of certain genus 2 curves
can be performed much faster than point counting on Jacobians of generic curves. He gave an algorithm
to test whether the order of the Jacobian of a given hyperelliptic curve in the form Y? = X° + aX® + bX
has a large prime factor. His method relies on the fact that the Jacobian of the curve is F 4-isogenous to
a square of an elliptic curve defined over F 4, hence their respective zeta functions are the same over F 4
and can be computed by the SEA algorithm. Satoh’s method obtains candidates for the zeta function of
the Jacobian over IF; from the zeta function over F 4. The methodology can be formalized as an efficient
probabilistic polynomial algorithm but is not explicit and gives 26 possible orders to test for the Jacobian.

The second requirement on a group used for the discrete logarithm problem is an efficient exponentia-
tion (denoted g* with a multiplicative notation such as on IFy) or scalar multiplication (denoted [x]P with the
additive notation of elliptic curves). Various techniques were introduced to speed-up the scalar multipli-
cation. Firstly there exist exponent-recoding techniques such as sliding window and Non-Adjacent-Form
representation. These techniques are valid for generic groups and improved for elliptic curves as the
inversion (or negation in additive notation) is free.

Secondly, in 2001, Gallant, Lambert and Vanstone [GLV01] introduced a method which uses en-
domorphisms on the elliptic curve to decompose the scalar multiplication in a 2-dimensional multi-
multiplication. Given an elliptic curve E defined over a prime finite field ), with a fast endomorphism ¢
and a point P of large prime order m such that ¢(P) = [A]P, the computation of [k]P is decomposed as

[K]P = [k1]P + [k2] (P),

with k = k1 + Ak (mod m) such that |kq|, |kz| ~ /m. Gallant et al. provided examples of curves whose
endomorphism ¢ is given by: complex-multiplication by y/—1 (j-invariant j = 1728), 1+\2/j3 (G=0),v-2
(j = 8000) and %j (j = —3375). These examples were well-known in algebraic geometry, e.g. they
are presented as toy examples in [Sil94, II, Prop. 2.3.1]. We explained where these examples come from in
Sec. 1.2.10.1.

In 2009 Galbraith, Lin and Scott [GLS09] presented a very efficient method to construct an efficient
endomorphism on elliptic curves E defined over I ,» which are quadratic twists of elliptic curves defined
over [F,. In this case, a fast endomorphism ¢ is obtained by carefully exploiting the Frobenius endo-
morphism. This endomorphism verifies the equation ¥ +1 = 0 on E(Isz). In 2012, Longa and Sica
improved the GLS construction, by showing that a 4-dimensional decomposition of scalar multiplication
is possible, on GLS curves allowing efficient complex multiplication ¢. Let A,  denote the eigenvalues of
the two endomorphisms ¢, 1. Then we can decompose the scalar k into k = kg + kA + kop + kzAp and
compute

[K]P = [ko]P + [k1]@(P) + [ka]y (P) + [k3]¢p o (P) .
Note that most curves presented in the literature have particular j-invariants. GLV curves have j-invariant
0, 1728, 8000, or -3375, while GLS curves have j-invariant in F, even though they are defined over Isz.

In 2013, Bos, Costello, Hisil and Lauter proposed in [BCHL13b] a 4-dimensional GLV technique to
speed-up scalar multiplication in genus 2. They considered the Buhler-Koblitz genus 2 curves y*> = x> +b
and the Furukawa-Kawazoe-Takahashi curves y> = x° + ax. These two curves have a very efficient
dimension-4 GLV technique available. On BK curves, they proposed 2-dimensional GLV on the corre-
sponding Kummer surface. Recently at CHES2013 the same authors [BCHL13a] proposed a 8-GLV scalar
decomposition on genus-2 Buhler-Koblitz curves defined over a quadratic extension field. They choose
the primes p = 261 — 1, p = 2% — 189, p = (23! —307656) - 232 — 1 and target a 112-bit security level.
The parameter sizes are not optimal because of Weil descent attack nevertheless their implementation is
well-suited for 32-bit and 64-bit architectures.

In Sec. 2.4 and 2.5 we provide two new families of genus-2 curves defined over a prime field, and
elliptic curves defined over a quadratic extension field whose j-invariant is in F» (contrary to the previ-
ous constructions where j € F}). A four dimensional GLV decomposition technique is available on this
curves.

In recent years, many useful cryptographic protocols have been proposed that make use of a bilinear
map, or pairing, between two groups in which the discrete logarithm problem is hard (e.g. [BF01, BF03,
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BLS01, BLS04]). Pairing-based cryptosystems can be constructed by using the Weil or Tate pairing on
abelian varieties over finite fields. These pairings take as input points on an abelian variety defined over
the field Iy and produce as output elements of an extension field Fr. The degree of this extension is
known as the embedding degree. In cryptography, abelian varieties obtained as Jacobians of hyperelliptic
curves are often used. Suitable hyperelliptic curves for pairing-based cryptography are called pairing-
friendly. Such pairing-friendly curves are rare and thus require specific constructions.

For a pairing-based cryptosystem to be secure and practical, the group of rational points on the Ja-
cobian should have a subgroup of large prime order r, and the embedding degree k should be large
enough so that the discrete logarithm problem in F is difficult but small enough to make the pairing
efficiently computable. The efficiency parameter in pairing-friendly constructions is the so-called p-value:
for a Jacobian of hyperelliptic curve of genus g it is defined as p = gloggq/logr. It measures the ra-
tio of the bit-sizes of the order of the Jacobian and the subgroup order r. The problem of constructing
pairing-friendly elliptic curves with small p-values has been studied extensively [FST10]. Unfortunately,
there are very few results for constructing pairing-friendly hyperelliptic curves of genus g > 2 with small
p-values [GHV07, BBC*11a]. Galbraith, Pujolas, Ritzenthaler and Smith [GPRS09] gave (supersingular)
genus 2 pairing-friendly hyperelliptic curves with p-values close to 1 but only for embedding degrees
ke {4, 5,6, 12}. Freeman, Stevenhagen and Streng presented in [FSS08] a general method that produced
pairing-friendly (ordinary) genus 2 pairing-friendly hyperelliptic curves with p ~ 8 for all embedding
degrees k. Kawazoe and Takahashi [KT08] (see also [Kac10]) presented an algorithm which constructed
hyperelliptic curves of the form Y? = X® + bX (thanks to the closed formula for its Jacobian order). Fol-
lowing Satoh’s approach, Freeman and Satoh [FS11] constructed pairing-friendly genus 2 hyperelliptic
curves of the form Y? = X° +aX3 +bX and Y? = X® +aX® + b (witha,b € [F7) by means of elliptic
curves that become pairing-friendly over a finite extension of the underlying finite field. Constructions
from [KT08, Kac10, FS11] produce pairing-friendly Jacobians with 2.22 < p < 4 only for embedding
degrees divisible by 3 or 4.

Our contributions.

Satoh’s approach to compute the Jacobian order of a hyperelliptic curve Y2 = X° + aX3 + bX is not
explicit. For each candidate, he has to check that the order is not weak for cryptographic use. In [GSO01,
§4], Gaudry and Schost showed that the Jacobians of hyperelliptic curves of the form Y? = X® 4+ aX3 + b
are also isogenous to a product of two elliptic curves over an extension field. Satoh claimed that his
method applies as well to this family but did not derive an algorithm for it.

Our first contribution is to extend and generalize Satoh’s idea to provide explicit formulas for the
zeta function of the Jacobian of genus 2 hyperelliptic curves of the form Y? = X° + aX3 + bX and Y? =
X6 +aX3+ b (witha,b € [F7). Our results are proved by elementary polynomial root-finding techniques.
This permits to generate efficiently a random hyperelliptic curve, in one of these two forms, suitable
for cryptographic use. These curves enable various improvements to make scalar multiplication in the
Jacobian efficient (e.g. the Gallant-Lambert-Vanstone algorithm [GLV01], Takashima’s algorithm [Tak06]
or Gaudry’s algorithm [Gau07]). These large families of curves are still very specific but there is no
evidence that they should be more vulnerable to discrete logarithm attacks than the absolutely simple
Jacobians.

Two algorithms proposed in [FS11] to produce pairing-friendly genus 2 hyperelliptic curves are very
general as they are still valid for arbitrary abelian varieties over any finite field. Assuming that the finite
field is a prime field and the abelian variety is of the above form, we can consider any embedding degree.
The security restrictions concerning the embedding degree (which must be a multiple of 3 or 4) made
in [FS11] are unnecessary in this particular case. Satoh and Freeman exclude constructions which need
an elliptic curve defined over a quadratic extension of a prime field (with j-invariant in F 2), resulting in
restricted sets of parameters a,b € ). Using our closed formulas for the Jacobian order, we use two ap-
proaches that construct pairing-friendly elliptic curves and adapt them to produce pairing-friendly genus
2 curves. The first one is based on the Cocks-Pinch method [CP01] (see also [BSS05, Algorithm IX.4]) of
constructing individual ordinary pairing-friendly elliptic curves. The other is based on cyclotomic poly-
nomials as originally proposed by Brezing and Weng [BW05] which generates families of curves while
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achieving better p-values. We adapt both constructions using the elliptic curve complex multiplication
method (CM) [AM93, BSS05] to compute one of the two elliptic curves to which the Jacobian is isogenous
to (even if the curve j-invariant is in I » rather than in a prime field F). In particular, this method can
construct pairing-friendly elliptic curves over F > but unfortunately with p ~ 4.

Our approach contains the previous constructions by Kawazoe and Takahashi [KT08] and is in a sense
a specialization of Freeman and Satoh [FS11]. It also produces new families for ordinary genus 2 hyper-
elliptic curves. Explicit examples of cryptographically interesting curves are given.

2.2 Two splitting Jacobians

In the following, p > 5 denotes a prime number and g a power of p. In this section, we consider the
genus 2 hyperelliptic curves defined over a finite field F,:

Ci:Y? =X +aX®+bX, 2.1)

with a,b # 0 € F,;. We denote by J¢, the Jacobian of this curve. The Jacobian splits into the product of
two isogenous elliptic curves in an extension of IF‘q of degree 1, 2, 4 or 8 [Sat(09].
We will also consider the genus 2 curves defined over [,

Cy:Y? = X8+ ax® 4, 2.2)

with a,b # 0 € [F;. In the same way, we denote by J¢, the Jacobian of the curve. The Jacobian splits into
the product of two isogenous elliptic curves in an extension of ]F,7 of degree 1,2, 3 or 6.

A Jacobian which never splits into lower genus Jacobians is an absolutely simple Jacobian. A splitting
Jacobian is a non-simple Jacobian. Here the Jacobian is non absolutely simple. We aim to investigate the
isogeny in order to count the number of points of the Jacobian and transport the endomorphisms available
on the genus 1 curve to the Jacobian.

We will not consider Satoh’s isogeny [Sat09, §3] as in [GV12, §2.1] rather consider Freeman and Satoh’s
isogeny given in [FS11, Proof of Prop. 4.1].

We will explicit the isogeny with respect to divisors of the Jacobian (and not simply maps between
points on the genus one curve and the genus two curve). A divisor D € J¢, (F;) is given by two points
P = (X1, Y1), P, = (X3, Y2) on C; and the Mumford representation is D = (uy, ug, v1,vg) with

Y1 -, o X1 — XoY,
X —X' 0T X — X,

up = —(X1+Xo), up = X1+ Xp, v1 = (2.3)

and the u;, v; are in F; (as explained in Sec. 1.3.2). In particular we have v;X; + vp = Y7 hence —v1u; +
200 = Y1+ Yo.

2.2.1 Isogeny from J¢, into two elliptic curves E; . x Ej

It was shown in [LM97, Sat09, FS11, §2, §3, §4.1] that the Jacobian of C; is isogenous to the product of
the two elliptic curves Eq . X Ej .. The curve E; . is defined over IF, [vb] by

Eic:y? = (c+2)x® — (3¢ — 10)x> + (3¢ — 10)x — (c +2) (2.4)
with ¢ = a/+/b which is in F, or qu. The j-invariant of this curve is

(3c —10)3

j(E1e) = 26m -

(2.5)
Freeman and Satoh [FS11] gave two maps @1, ¢ from points on the genus 2 curve C; to points on the
curve Ej .. From these two maps the (2,2)-isogeny Z, ) between J¢, and E1 . x Ey is given by [Sil09,
Remark I1.3.4]

Topy:ley, — EicxEic

P+Q—2Pu — (91:(P) + ¢1.(Q), 92:(P) + ¢2:(Q)) 29
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and its dual is R
Lop)tEre X Ere — o

(S1,52) = 97(51) + 93(S2) = 4P
with (p]’-‘ (Sj) = Zpecl,q,]_*( P)=s; P. In other words we add the points in the pre-image of S; with respect to
¢;. We explicit the isogeny Z 5 ) and the maps @1 and ¢;.

2.7)

2.2.1.1 Maps between genus 2 curves

We follow some hints in [CF96]. We need to find an expression of C; of the form Y2 = X6+ a4X/4 +
1X2 4 ag. The isogeny to the elliptic curve will be (X, Y') — (X2, Y"). We introduce the genus 2
hyperelliptic curve

Cr:Y? =X+ eX®+ X withc=a/Vb #0. (2.8)

The map from C; to C; and the induced isogeny are defined over F, [V/b] and given by

Cl - C; C; — Cl
(X,Y) — (%%) (X, Y) = (x’%,y’%S)
Je, — ]C’ IC; - e, (2.9)
(111, 19,01,09) [\/ L 51“3’ ;%5] (uy, 119, 0}, 0) [u;%,uéﬁ,v;%s,véwg’]

The next step consists in writing the curve in a way we can see the maps to the two elliptic curves.

X H . We obtain the curve

Freeman and Satoh proposed to write X =

Cl Y2 =(c+2)X" = (38c—10)X"* + (3c = 10)X "2 — (c +2) with c # +2. (2.10)

The change of variables is

"

¢, — ¢, - q
"y xX+1 sy "o xX'11 Y
(X /Y ) — <X,71’ (lel)?’) (X /Y ) — (X”*l’ (X/lfl)?’)

The map to the elliptic curve is then obvious: we set (x,y) = (X'2,Y"). This point is on the elliptic curve
E; . defined over [F,[c] by the equation

Eie:y? = (c+2)x® — (3¢ — 10)x% + (3¢ — 10)x — (c 4 2) with ¢ = a/ V. (2.11)

The other map to the same curve uses the following equivalent equalities:

Cl:Y? = (c+2)X"®—(3c—10)X"4 + (3¢ —10)X"? — (c +2)
L 2) — (3¢ — 10)— + (3¢ — 10)— 2L
(i)Xi::é = (c+2)—Bc— )W‘F(C— )Xi (+)Xu6
@iz (c+2)i—(3c—1o)i+(3c—1o)——(c+2)
X//62 X//6 X//4 X//2
iy 1 1 1

X2’ X3
The direct formulas of the maps from C; to Eq . X Ej are the following, with i € I, or qu such that

2= —1:

1"
We recognize here the other map: we set (x,y) = ( i ) This point is on the same elliptic curve Ej ..

P1: Cl — El,c @2 : Cl — El,c
y) + 5\ 8yv/b (y) o =B\ 8iyv/b (2.12)
& x=Vb) " (x—Vb)? Y x+Vb) " (x+Vb)?

The maps are defined over Fy[i, v/b].
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The isogeny in terms of divisors requires a quite tedious computation. The critical point is the compu-
L1 (0617
X, —X]

tation of v’l/ and vg, especially the quantity . With some help from Maple we obtained

the following equalities:

" " " _2 - b

u = =X =X = (u04 vh)
Ug + M1\/B + \/B

u// _ X//X// - uo—ul%—i—\/E

0 Y Vb + Vo

s (2.13)

o = Y, ) _ 4 (1109 — ugv1 ) Uy — gy + 3(u1v9 — tgvy) Vb + 3v9vV/b 4+ v1 Vb

! X\ =X b (1t + u1 Vb + V/b)?

3

S X -xyy) | —4 (00 — uov1)uy — gt + (U100 — 1gv1) Vb — vovV'b — v Vb

0 X| =X, Vb (ug + u1 Vb + Vb)?

We explain the operation count. Firstly we will store the denominator z = ug + 1 v/b + /b separately.
The terms u/ll and ug have denominator z. Computing their numerator is free. Then u,{ and ug are free if
we consider the two operandes of the fraction independantly. Computing Ull/ and vg can be done with a
common precomputation which costs 4M:

s = U199

t = s—ugu
s = tug

r = S—Uupg9g

and

o 4 r—|—3t\4/5+300\/5—0—01\4/53
1 - Y 7

% (uo+u1%+\/5)2
Vb

" ;47"'—1'\4/5—'00\/5—01\4/53

UO =

\[ (M0+M1\4/E+ \/E)Z

The inverse map is the following.

4 /! 4 1 — U
up = Vou, = 2Vb——"2;
! 1+ ug +u)
" " + 1
/ Uy —u
ug=vVbuy = Vb-9—1——
uy +u; +1
non non " non non non " "
83 531 (10 — uyvy )uy — uyvy + 3(uy vy — uyvy) + 305 + 74
01 = \/E 0 = \/E Py 7 7 o
2 (g +uy +1)
non non " non non non " "
§/=5 1 5751 (—uq 0y + ugvy Juy + gy — Uy 0 + Uyvy + vy + vy
vo=Vbo, = Vb= 7 5
2 (g +u; +1)

2.21.2 Computing Z,5) on J¢, (Fy).

We show first how to compute explicitly the (2,2)-isogeny on J¢, (IF;) with only a small number of
operations over the extension fields of IF;. Let D be a divisor in J¢, (IF;) given by its Mumford coordinates

D= (ulruOI 01100)/ Uup,u1,99,01 S Fl] .

It corresponds to two points Py = (X1,Y1), P> = (X2, Y2) € Ci(Fy) or C1(Fp2). The correspondance
between D and the two points is given in eq. (2.3). The generic formula for the isogeny is given in eq. 2.6.
We will now explain this isogeny. We need to express ¢1, with respect to D = (u1, 19, v1,vp). We will
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proceed in two steps. We already know D' e o with respect to D € J¢,. We will compute ¢, (D",
1
then ¢1,(D). We express the map which sends a divisor D' e ¢ to two points on E; ., then we add

. . . " .
the two points to obtain one point on E; ., then go back to C; where we get two points on the curve,
then add the two points to get one divisor. Let D" a divisor in | o~ We send with ¢;, the two points

1

P{’ = (X;’ , Y{,), Pg = (X’ZI , Y;) corresponding to D" in E; . and add them with the addition law on E ..
We recall that P]{/ — (X},Z, Y]{,) = (xj,y;) € E1, which is defined over F,[vb] by
Eic: y? = (c+2)x*> — (3c — 10)x> 4 (3¢ — 10)x — (c +2) .
We denote
§=(x3,y3) = 14(P1) + 91.(P2) € Eqc .

We will also use the representation with the two-torsion point, namely

Eie: 2= (c+2)(x—1)°4+2Bc—2)(x —1)24+2(3Bc —2)(x — 1) .

/!

We observed that the expression of x3 is simpler with this representation. The addition law is then

A = Y2=y1 — Y=
(p-1)=(x-1) = x=x’ ,
X3—1 (ifz—(x1+x2—2)—2—’?;f210 1:(:172—0(1—%—3@—2)—;#762,
y3 = Mxi—x3)—y1.
We add the two points with this addition law.
A= 2 ho-Y _ Y, -Y _ Y9

Xo—x1 XX (X - X)X+ X)) —u]

We continue with x3. We note that x; +x, —2 = ulll2 — 2u3 — 2. Then

//2
" " 1
X3—1=Lﬁ—(1/l12—2u0—2)— 6 .
(c+2)up? c+2
Concerning y3, we need to find an expression with respect to v/l,, vg so we introduce both y; and y; in
this way.
y3 = AMxi—x3) -y
Y3 = )\(Xz — X3) — Y2 (2.14)
2y3 = AMxi+xa—=2x3) = (1 +y2) =AM +x2-2-2(x3-1)) = (1 +¥2)
with x; +x — 2 = u/l/z — ZuS —2and y1 +y2 = —v/l/u,ll + 208 since y; = Yi” = v/l/X;/ + vg. We obtain

1 non

Y3 = % (}\( "2 _2u 0 —2—2(x3 — 1)) +ouy — 27)6). Since A = fvll//ull/ two terms simplify. To sum
up,

UIIZ " " 16
3 (C+2) /1/2 — (1 02 c+2
1 Ul ” " non "
3. = 5 ( i ( uy” = 2u, —2—2(x3—1)) + 01y _2UO> (2.15)
1"
01 "
= us+1+(x3—1)) — o, .
uy ( 0 (x5 )) 0

We will now write down x3, y3 with respect to D(u1, 19, v1, vo). We start by computing the intermedi-
ate values A and xq + xp, — 2.

" 3
P :i(ulvo—uovl)ul—uovo+3(ulvo—uovl)%+3vo\/5+01\4/5

Uy \s/l; (u0+u1\4f+ \f)(uo— \[)
{32u%b} { 16u0(u0+b)\f} + {—4u0u1 u — }\er [41/11 b)} \4/53

(g + u1 Vb 4+ V/b)2(ug — V/b)?

(2.16)

X1+x—-2 =
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2
A2 AW AV ((ugvg — ugvr)ug — ugvo + 3(u1v9 — tovr) Vb + 3voVh + v NG
c+2 a+2vb  a+2Vb (ug + Vb + Vb) (ug — Vb)
(2.17)
We now express x3 in terms of (11, ug, v1,vp) and a, b, Vb, V/b.
A2 16 A2Vb 16V/b
x3—1 = —(x1+x0—2) — = —(x1+x7—2) — . (2.18)
3 C+2(1 2 )C+2 a+2\/5(1 2 )a+2\/5
The denominator of x3 — 1 is
Zy,—1 = (a +2Vb)2? (2.19)
with 3
z = (uo—f—ul%—i— \/E)(uo — \/E) = u%—b—kuoul%—ul%
and

3
22 = [(u3 — b)* — 2ugu3b] + 2uguy (uf — b) Vb + u3 (uf + b)Vb — 2(uf — b)us Vb .
Computing y3 is quite complicated because we deal with divisors so we do not have directly the
coefficients of the two points. We use this trick:
2ys = Alxg+x2—2x3) — (y1+y2)
Since x1 + xp was already computed for x3, getting (x7 + x» — 2x3) costs only additions. We multiply the
numerators of A and (x7 + x — 2x3) which costs IM,4. The denominator is z% and since z? is already
computed, this costs 1M,4+. We have y; +y, = —v’{u’l’ + 208. In details,

non

Nty = -uny + 20,
2y = _—7,],1 <u’1,2 —uy —2—2(x3 — 1)) + oy Uy — 20,
Al
vz = %(u6+1+(x3—1))—vg.
1

The numerator of (y; + y2) contains products of uy, i1, vp, v1 previously computed and its denomina-
tor is simply z3. The total cost of y3 is then 2M,+. Finally, computing (x3,y3) costs

6Mp + 25, + 5Mp2 + Sp4 + 2MP4 .
Now we show that computing Sy = (x32,Ys,) = ¢24(P1) + @2.(P2) is free. We notice that
¢1(X;,Y)) = ¢2(—=X;,iY;).
Rewriting this equation in terms of divisors, we deduce that
SZ - (PZ* (ul/ Uup, 01, UO) = (Pl* <_ul/ uo, _ivll iUO) .

We can simply compute S, with @1,

xs, = x3((—uy,ug, —ivy,ivg)) with
. s 43
ASZ = )\((_ul/ Uo, _ivll iUO)) = 8271 (Uoul - Uluo>(ul_3\/g) _4UOuO - 3\/5’00_\/5 1 = nﬁz(}\)
Vb (1o — Vb)(o—V/buy + Vb)
and 2 e — 6B
o _ ugtVbui—6vVbug+b
(x1 + x2) ((—u1, ug, —ivy,ivg)) = 2 (o Vo + VB2 T (X1 + x2) -
We deduce that x5, = 7,2 (x3), ys, = 71,2(y3) and
$2:(P1) + 924 (P2) = 72 (91 (P1) + @14(12))
thus
92:(D) = m,2(91.(D)) - (2.20)

Computing S»(xs,,Ys,) costs two Frobenius 77, which are performed with four negations in Fp.

p
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2.2.1.3 Computing j(z,z) from E; x Eq to Jc,.

Now, to go back from S = (x3,y3) = ¢1.(D) € Ey to J,». We have two possibilities for the square
1

root of x3. The generic formula is

i)=Yy T.

TeCy,91:(T)=S

The two points in the pre-image of S under ¢y, are (/x3,3), (—/X3,3) € C;. We add these two points
to get ¢ (S) but in C;’ for the moment. This means that we compute the divisor in ], of the two points
1

(v/%3,y3) and (—./x3,y3). We obtain
D3 = ¢i(¢1.(D)) = 9i(S) = (0, —x3,0, —y3) € Jer

with the square roots which simplify and two coefficients equal to zero. With these two coefficients equal
to zero, it is quite easy to go back to ], then J¢,. We obtain
1

D, — (pl=% | w(3+x) v
5= 215 % x3" 7 2(14x3)2 " 2(1+x3)

and finally

X3 \/y3( 3+x3) Ve Y3
( 2\[14— 3 \f (1+X3)2 T2 (1+X3)> ’

To obtain the final result in this isogeny computation, we need to add two divisors on the Jacobian,
namely D3 = ¢](¢1:(D)) and ¢3(¢2.(D)). We note that the four coefficients of D3 are in F 4 and not F .

Indeed it’s quite obvious that y3 is of the form %y; with y; € F4. Hence the Vb term simplifies with
\8/53 for the third coefficient and with %5 for the fourth coefficient of Ds.

First, we show that ¢3(¢2.(D)) = 7,2(Ds). This will help to simplify our computations. A similar
computation for ¢3(S;) as above with @7 (S) gives

¢§(x52'y52) = ( x52'y52)+(_\/x52’y52)
. 3 . 5
+2\4/El—x52 N0 iv/b ys,(—3 +xs,) n ivb Ys, ) '

7 7

1+XS2 2(1+x52)2 ! 2(1+x52)

Since x5, = 7,2(x3) and ys, = 71,2(y3), we have

p?

. 1= (x3) iV 2(y3) (=3 + m,2(x3)) iV 2(y3)
il ) = (* e Y T 2 e '+2<1+nzz<x3>>) '

We remark that
92(xs,,Ys,) = M (91(x3,y3)) -

Finally,
392 (P) + 92.(22) = 72 (4 (2.7 + 122 )

in other words,
93 (92:(D)) = 72 (91 (91:(D))) - (2.21)

With our previous notations, we finally have to compute D3 + T2 (D3) on the Jacobian J¢,. We can
use the addition formulas from [CL11]. This ends our isogeny computation.
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2.2.2 Isogeny from ], into two elliptic curves E . X Ey .

We consider an analogous family of degree 6 curves. These curves were studied by Duursma and
Kiyavash [DKO05] and by Gaudry and Schost [GS01]. Their equation is

Cr:Y?=Xb+aX? +bwithab#0eF, (22).

The Jacobian of the curve denoted ¢, is isogenous to the product of the two elliptic curves Ey X Ep ¢
defined over F;[c]|, where

Eae: y? = (c+2)x3+ (—3c+30)x% + (3¢ +30)x + (—c +2) and

2.22
Er o: y?=(—c+2)x>+ (3c+30)x2 + (=3¢ +30)x + (c +2), 222)

with ¢ = a/v/b. The construction of the isogeny is similar to the one for Z(37) and J¢,. We recall the
formulas for maps from C; to E; - and to E; .. For explicit computations, the reader is referred to Freeman
and Satoh [FS11, Prop. 4].

@c:Cr — Epc ) ¢p-c:C — Ep )
X+ o 8Y x— 8Y (2.23)
(X,Y) = ((X%) ’(X%)3> (X,Y) = <<X+%> ’(X+(’/E)3)

This maps induce an isogeny

T:Je, — EcxE_c

D= (P,P) — {¢c*(P1) + QDC*(Pz), ¢,C*(P1) + ¢7C*(P2)} (2.24)

Note that the isogeny constructed using these maps is defined over an extension field of degree 1, 2, 3
or 6. We compute the isogeny from J¢, to Ec X E_. as in Sec. 2.2.1 for J¢, .
Let D = ((X1, Y1), (X2,Y2)) a divisor in the Jacobian J¢,. We denote

Y1 X1Y, — XoYq
=—(X1+X = X1 X = .
up = —(X1+ X2),up = X1 X2, v1 = X, Xz vo X, X
We obtain these formulas.

u// o _X// . X// - —2(M0 — %)

! L b+ b
u// N X//XN Ug — Ml\é/E + \3/E

C T Ve U

" Y(l _ Y//
vy = SH—=%

X; =X,

" X// Y// X// Y//
v, = 221

T XX

With analogy from (2.13), we obtain

A (1100 — ugvy)q — g0 + 3(u1v9 — go1) Vb + 309 Vb + Ul\[
! Vb (uo +uy Vb + V/b)?

o - 4 (1109 — tov1)u1 — ugvo + (4109 — tov1) Vb — voVb — v1 Vb
0 \6/E (Mo + Ml\G/E + \3/5)2 .

We deduce the coefficients of the addition law on the curve E.. We denote by S = (x3,y3) the result of
@ex (D) = @ (P1) + @ex(P2). We have (c+2)x3 = (A% — (c +2)(x1 + x2) — (=3¢ + 30)) hence

_ A2 3¢—30
X3 = Fp—(v+x)+ gy

36

1 (2.25)
X371 = 2 (x1+x272)7c+2.
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We start with the coefficient A.

L nm Y-, _YW-Y, 1 -y
M-x XP2-X2 X - Xy X|+Xy, i

2 (w309 — ugoy)uy — tgug + (1109 — ugo1) Vb + 309 Vb + 01V
Vb (1o + u1 Vb + V/b) (ug — V/b)

The we compute x; + x and x; + xp — 2 in the next step.

2(ud + (u2 — 6ug) Vb + %2)
(ug + M1\6/E+ \B/E)z

1 1" " "
x1+x = X2+ X% =u?—2uy =

With the expression

(g + ur Vb + Vb)? = 1} + 2uguy Vb + (2ug + u?) Vb + 2u1 Vb + NGE

we get
_zfuoul—l—éluoxf—i-ul\f.
(1o + u1 Vb + V/b)?

X1+x—-2 =

We will need later A2.

2 o 4 ([(ulvo — Ugu1)u1 — Upvp + 300\3/5} + [3(M100 —ugu1) + 01 \3/5} \6/5)2 (2.26)

Vb (g + ur Vb + Vb)2(ug — V/b)?

The curve equation is

Ee: 12 = (c+2)x +3(—c+10)x +3(c + 10)x + (—c +2) .

This is not a usual reduced Weierstrass equation. In this setting, the addition law on the curve E; . is

w-1 = 1o [Azxf (x1+x2—2)(a+2\/5)—36\/5]. (2.27)

We set the common divisor of all terms in x3 — 1 to be
zz3 = (a+2Vb) (ug+uVb+ Vb)*(ug— Vb)?
(a+2Vh) ([ + 0] + [21 (s + b)) Vb + [ +b] Vb (2.28)
+ [—2uqu1] Vb + [—2ug(uo + u?)] I+ [—2ugu] \6/ES> )

We compute —(x1 + xp — 2)(a + 2v/b) with denominator z3:

—(x1+x2 —2)(a+2VD)
_ uy(ud +b) +4u3 Vb — udui Vb — 8u \/—uoule +4u0\f (2.29)
- Ay (@ + 2VB) o + b+ VEP (o — VP

The computation of y3 is similar to the computation in the preceding section (Sec. 2.2.1, eq. (2.14)).
We obtain in the same way that

x3—1 = i// (’1’2_2%'_2)_&,
(c+2) 2 c+2 (2.30)
'U "
yz = ﬁ(uo—l—l—i-(xg,—l))—vo.

Uy
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2.3 Point counting on two families of genus 2 splitting Jacobians

In this section we are interested in computing the Jacobian order over F; of the two genus 2 curves
Cr: Y2 =X+aX3+0bX,and G : Y2 = X0 +aX3 + b witha,b € ;. We saw in Sec. 2.2 that the
Jacobians of the two curves C; and C; are isogenous to the product of two elliptic curves. We can say from
Honda-Tate theorem (Th. 3) that their respective characteristic polynomial of Frobenius endomorphism
are equal. In practice, the involved isogenies are defined over an extension F;n so the equalities hold
for the characteristic polynomials of 77;n. From these equalities we aim to compute the characteristic
polynomial of 7, over C; and C».

2.3.1 Point Counting on J¢, (IF,)

In this section, we assume that a # 0,b # 0. The case 2 = 0 corresponds to the curves studied by
Furukawa, Kawazoe and Takahashi in [FKT04]. The isogeny computed in Sec. 2.2 between the Jacobian
Jc, and the product of the two curves Eq . X Ej . is defined over Fy» with n | 8. We deduce that Xey g =
XEy o7t XEy ., mpn thanks to Honda-Tate theorem (Th. 3). Thus the Jacobian order #]c, (Fgn) = Xy (1) is
the product of the two elliptic curve orders. This was already stated for J¢, by Satoh in [Sat09]. In 1997
Leprévost and Morain also computed this isogeny and obtained results on the Jacobian order in [LM97]
in a more general context of character sum computation. They did not investigate the Jacobian order
computation in the way we are interested here. We aim to deduce the explicit Jacobian order over F,
from its order over FF s. We will present a refinement of Satoh’s method. This provides elegant formulas
and will permit us to obtain more interesting results on this Jacobian in Sec. 2.5.1.

Satoh used the notation Z Je, (T,F,) from the notation of the zeta function. We will use the notation of
the characteristic polynomial of the Frobenius endomorphism x¢, ,. Let us denote

Xy (T) = T* —ag T + by T — qag T+ q° = (T — 21,4) (T — 22,0) (T — 23,0) (T — 24,9 - (2.31)
We assume the same root ordering as in Sec. 1.3.3: z1 422 ; = q and z3 424 4 = ¢, then

_ 4 _

ag = Yi=1Zig = Z1q T 224 23T Zay

bq = H1<i<j<4 ZigZjq = 21,922, T 214239 + 21,4244 + 22,423, T 224244 + 23,4244 (2.32)
= 20+ (214 +22) (239 + 244) -

We know that the polynomial x¢, ~, over an extension of I is given by (1.27):
XC]ﬂTqi (T) = T - aqiT3 + bqiTZ - qiaqi’r + qu ‘
= (T=2)(T=2,)(T = 2,)(T—})

with z; , the four roots of x¢,,,. Our goal is to find two simple formulas for computing (a4, by) in terms of
(aqz, qu) without computing the roots in C, and apply the two formulas recursively. The Newton-Girard

formulas Satoh used give a,, = (ag)? — 2by and bp = —(aq4 - (aqz)z) /2 but the expression for b, can be
improved. Our computation gives
ap = (ag)* —2b (2.33)
bp = (bg)* — 4qbg +29% — 2qa, (2.34)

Knowing g and qu, we can solve first the second equation (2.34) for b, then recover a, using (2.33). We
need to know the extension degree of F; where the isogeny is defined in order to solve the corresponding
system. In each case, two solutions are possible for b;. This method was developed in [GV12]. We give
here a more precise result. In order to reduce the number of possibilities, we will consider the two halves
of the isogeny, namely ¢ and ¢,. We write

Xermy(T) = (T2 = (21, +2h )T +4)(T? = (2, +24,)T +4))

The two half isogenies ¢ and ¢, are defined over an extension field F; with j | 8. If we denote by ¢ g

the trace of the Frobenius endomorphism 7T, on E; . with j such that ¢y, ¢, are defined over F g then we
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have
Koy (T) = (T2= (2], + 2 ) T+g)(T = (&, +2,)T+4)
= XE],T[qj(T)
= (T*—t,T +¢*)?

so by identification, we obtain the system (over Z)

j j

zy A zn =1 ;

{ ]M ]Z,q q (2.35)
22,'1 + Z3,l7 = tqj

Since j € {1,2,4,8} we can solve the system (2.35) step by step with
(Zl,qj + Zz,qf)Z =2y, + 2o + qu

which gives

Zg Thg =+ \/ 2y, + 2o, 200 (2.36)
knowing that the two coefficients a g7 b g are in Z.

The maps @1, @2 contain the coefficients Vb, Vb, ¥/band @ contains moreover v/ —1. We deduce easily
these possibilities:

1. @1 and ¢, are defined over I, (2.3.1.1) ;
2. ¢ is defined over Fy and ¢, over F» (2.3.1.2);
3. @1 and @ are defined over F» (2.3.1.3) ;
4. @1 and ¢y are defined over Fq4 (2.3.1.4);
5. ¢1 and ¢, are defined over F s (2.3.1.5).

We assume that ¢; gives us informations on z, ;i, z, ,; and @2 concerns z3 i, zy -
We will need the following isogeny. Let
E;:v2/Vb = (c+2)x* — (3c = 10)x® + (3¢ — 10)x — (c +2) (2.37)

defined over F,[v/b] a quadratic twist of E; (which is defined over F,[v/b]). The map from C; to E) is
defined over F,[v/] and is given by

q),l : Cl — Ell ) ( )
X+ ¥b 8Y 2.38
(XY) = ((X%) ’(X%P)

We removed the term in v/b in the Y coordinate.

It is important to determine the extension degree where we can find a square, fourth and eighth root
of b and a square root of —1. It is well-known that —1 is a square in I if and only if 4 = 1 mod 4 (and
is not a square when g = 3 mod 4). We denote by i a square root of —1, by (g a square root of i (we have
Z¢ = —1) and by {36 a square root of {g (we have {8, = —1). We denote by f,, B4, Bs elements in extension
fields of F, such that 3 = b, B} = b and B3 = b. We obtained the following observations.

1. If ¢ = 3 mod 4 then —1 has no square root in F; (i ¢ ;) but has in qu (ie qu) and there exists an
element (g € ]qu such that Qé = —1 (because 4> = 1 mod 8).

a) If b is a square then there exists , € F; such that 83 = b and moreover, one of B, —f; is also
a square in F,. Then these exists an element B, € F; such that } = b (with B equals to one of
B2, —B2)- With the same argument, there exists an element Bg in F,, such that g§ = b, in other
words, b has an eighth root in ;. The isogeny is defined over I > with ¢; defined over F; and
¢ defined over F, (because the square root of —1is in > and not in I;). This case is treated
in Sec. 2.3.1.2. The conclusion is that #]¢, (F;) = (g +1+4t;) (g +1 — t;).
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b) If b is not a square then —b has a square root in IF; which we denote by B,. A square root of
b can be writen By = +iB, with B, € Fyand i € F2 such that i = —1 (i ¢ Fy). We see with
this notation that a fourth root of b is B4 = {sfs with B4 € Fy such that B3 = —b. Since F
contains an eighth root of unity ({g € F,2), we deduce that b has a square and a fourth root
in F». We write Bg = C16Ps with Bg € I, such that f§ = —band {36 € F2 or Fs such that
§§6 = —1. We only need to know whether (g is a square or not in ]qu, i.e. whether (4 is in

Fp2 orin Fp. Since g = 3 mod 4 we have 7> = 9mod 16 and (14 ¢ Fg2. We conclude that if

q
q =3 mod 4 and b is not a square in F, then the square and fourth roots of b are in F > (we can

write By, B4 € F,2) and the eighth roots of b are in F 4 but not in F>. The isogeny is defined
over F 4. The Jacobian is isogenous to two quadratic twists over I, thanks to the map (2.38).
We can say that #]c, (F2) = (> +1+ tqz)2 with £, the trace of E; over Fp» (and —f,, is the

trace of the quadratic twist El1 over IF 2). This case is considered in 2.3.1.4.
2. Ifg=1mod 4 theni € F,.

a) If b is an eighth power then the isogeny is defined over F; (2.3.1.1). We have #]¢, (F;) =
(g4+1—ty)%
b) If bis a square and a fourth power but not an eighth power, the isogeny is defined over F» but

the Jacobian is isogenous to two quadratic twists of E; over [F; (with the map (2.38)). We have
#]c, (Fy) = (9 + 1+ t4) with t, the trace of E; over F,,.

¢) If bis a square but not a fourth power, g, € F; and p4 € F». Since 7> =1mod 8, Bs € IF 4 but
notin 2. The isogeny is defined over IF 4. The Jacobian is isogenous over I » to two quadratic

twists (see (2.38)) and #], (F2) = (> +1+ ifqz)2 (Sec. 2.3.1.4).

d) If bis notasquare, 57 € qu, B & qu, Ba € Fq4 and Bg € Fqg. This case is solved in Sec. 2.3.1.5.
We can start from #]c, (Fou) = (q* +1+t4)> = (g +1 2% + (£.2)%).

2.3.1.1 ¢ and ¢, are defined over [,.

of same
Je,(Fq) = Enc(Fq) x Evc(Fy)
This happens when both an eighth root of b and a square root of —1 are in F;. We need in particular
g = 1mod 4 to have i € F;. We denote by ¢, the trace of E; over F,;. This case is solved directly by
Honda-Tate theorem (Th. 3). We have x¢, x, (T) = XE,,7,(T) - XEy,7,(T) = (T? — t,T + q)*. We conclude

2.3.1.2 ¢ is defined over F; and ¢, over I ».

f sam
]Cl(qu) LS El,c(Fql)XEl,c(qu)

order

U U
Je, (Fy) E1c(Fg) % E1c(IFy)

This happens when b is a square (8, € ;) and ¢ = 3 mod 4. In this case —1 is not a square in . If B, is
not a square in F; then —B; is a square and there exists B4 € F; such that B3 = —PBa, hence B = b. With
the same argument, we can find an eighth root Bg of b in IF;.

We can see that ¢, corresponds to ¢ composed with the quadratic twist map (x,y) — (x,iy). We
see that T? — (z14 + 220)T + g = T> — ;T + q (because ¢y is defined over F,) and we find that T —
(23,4 +240)T +q = T?> + t;,T + q. We have xeym (T) = (T? — 4T + q)(T? + 4T + q). We conclude that
#]c,(Fy) = (+1—1t;)(qg+14t,). If a = 0 this is Th. 7 in [FKTO04].
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2.3.1.3 ¢ and ¢; are defined over ]qu.

This happens when g = 1 mod 4 and b is a square and a fourth power but not an eight power in ;.
In particular the curve E; is defined over .

of same
]C] (qu) — El,C(IFqZ) X El,c(]qu)

order

U U
ICl (Fq) El,c(Fq) X El,C(Fq)

We observe that the quadratic twist E; (2.37) is defined over F; and the product E; X El1 is isogenous to
Je, over [ since By, B4 € Fy. The trace of the curve E,1 over F; is —t; with ¢, the trace of E; over ;. We
conclude that #]¢, (F;) = (74 1+ t4)2. If a = 0 this is Th. 8 in [FKT04].
23.14 ¢ and ¢, are defined over F 4.

This happens when

1. 4 =3 mod 4 and b is not a square in F;

]C] (Fq4) M) El,c X El,C(Fq4)

order
U U
Je, (Fp2) E1e x E1c(Fp2)
U
I Cq (Fq)

2. g = 1mod 4 and b is a square but not a fourth power in F,.

]C] (Fq4) & El,c X El,C(Fq4)

order
U U
Je,(Fp2) E1c % Erc(Fp2)
U U
Je, (Fq) Eic x Eqc(Fy)

We proceed in two steps. Firstly we compute the Jacobian order over F,. and secondly over F;.
Thanks to the isogeny (2.37) defined over I » with the product of the two quadratic twists, We start with
(T) = (T* + t2T+4%)2.

2 2

Xcl,ﬂqz (T) = XE, T (T) .XE, T
1"q 1"

We obtain directly the system

Zl,q2 + Zz/q2 - _tqZ (239)
23,42 + Zgp2 = —tqz

Secondly we apply the formula (2.36), in our case this is (z1,; + 224)* = 21,22 + 2o 2 + 2q. To simplify
the computations, we introduce an additional notation. If E; . is defined over [, i.e. if ¢ € F; then from

the expression té — 49 = —D~?* we can write the two roots &g, @, of the characteristic polynomial of 7,:
V-Dy — —v-D . . .
ag = t'ﬁ%, ag = tqu Otherwise, c is in qu but not in ;. We denote

(t2)* = 24" = =Dy* = (tp —2q)(t,2 +29)

and we decompose it into

tp—29 = —Div}
P~ N (2.40)
tp+2q9 = Dav;
2 2
with Dy, D, > 0 and square-free. We can write g = Dnll—Dnz = Y=DimdvDor2 . o =PiptvDene — g

with &y = —W. We note that a; + &; = v/D;7; is not necessarily in Z. ay +&; € Z < Dy = 1
(by definition of D, which is square-free).
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We note that if E; . is defined over F, then its trace is t; = a; + & € Z hence D, = 1,7, = t;. We have
also t» +2q = (tg)? in this case.
Since
XEyomp (T) = (T — ag) (T — %) (2.41)

We find again that tp g + aé = —ley% + Dz'yg (see eq. (2.40)).
We obtain

{ (z1,4 +erq)2 =1+t +2=—tp+2q= ley% N { 21,4+ 224 = VD1

2 23,q T Z4q9 = +v/Dim

(2.42)
(234 + Z4Iq)2 =230+ 240 +29 = —ta+20= D17

We obtain these three possibilities:

(=2 (poamm e
q—

by D1’h+2q——tz+4q ’ D1’yl—|—2q——tz—|—4q ’ bq:—Dl'y%—i—Zq:tqz

In the third case, a; = 0 € Z and in each case, bj is in Z. However, we do not have necessarily 4, € Z
when a; = £21/D171. To ensure that we need to have Di=1or leyl = 0. If D; = 1 the Jacobian order
will factors in either (g4 1+ 71)? (1 = £271) or (§+1+71)(9+1—71) (a5 = 0). If D17 = 0 then the
curve is supersingular and #]¢, (F;) = (g + 1)
1. If g = 3 mod 4 and b is not a square in F; then the curves E; and E,1 are not defined over [, but over
IF ;2. We need to identify when the Jacobian splits over F; whereas the curve E; . is defined over I ».
2. If g = 1mod 4 and b is a square but not a fourth power in F; then the curve E; is defined over F,
(hence Dy = (t;)?) and the curve E/1 is defined over F . We have t» —2¢q = (ty)> — 49 = —Dy73.
If D; = 1 then the curve has j-invariant 0 and ¢ = 14/9.
There is no reason to have /D171 € Z for a random curve. However this may happen for example if the
curve is supersingular, in which case D1y = 0. We state here a result from [Has97] pointed out to us in
another context by B. Smith. Our curve E; defined over F; is related to the curve

(3v/du —5)3
(Vdu —1)(Vdu +1)?

presented in [Has97, Th. 2.2] (and used in cryptography in [Smil3]), with d a square-free integer different
from 1 and u a rational number, through

€2 /Q(VA) : y? = 2° + 6(3Vdu — 5)x — 8(9Vdu ~7), j = 2° (2.44)

a
== 2V du . (2.45)

We see with this simple change of notations that E is the reduction over > of 55(123 (Q(+/d)). Hasegawa
listed in [Has97, Rem. 4.7 (ii)] the degenerate cases, i.e. when the Weil restriction of 50(1213 from Q(\/E ) to

Q (denoted Resg, VA)/Q (5523) in Hasegawa’s paper) is isogenous over (Q to a power of an elliptic curve
(2)

over Q. This occurs if and only if the curve £/ is isogenous over Q(+/d) to an elliptic curve defined

by an equation with rational coefficients. In this case E{gzu) has Complex Multiplication (this is a rare

property over Q). The degenerate case we are interested in here is when (d,u) = (=7,£5/9) i.e. with
our notations, when ¢ = +£10/9+/—7. We observe that in our context, we are over a quadratic extension

qu of a finite field.

1. We assume that b is not a square. This degenerate case corresponds to ¢ = a/ \/E = +10/9v/—7
hence (a,b) = (£10/9v,0?/(-7)) with v € IF; and —7 which is not a square in Fy. In this case
which is also treated in [FS11, Prop. 4.6], j(E1) = —3375 and the curve is supersingular. The trace
of the curveis f, = —2¢. We already met an elliptic curve of j-invariant j = —3375 in Sec. 1.2.10.1.

9j:5\/7

We constructed the curve E : y* = x3 + arx? + ayx, with ay, a4 such that ay = a% The curve

1+\/7 (

has Complex Multiplication by over C). Since —7 is not a square in [, the map from the
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Complex Multiplication is a distortion map and the curve is supersingular. To conclude, the genus-2
curve

1
CF,): Y =X+ +00x3 4 © x
9 -7
with —7 not a square in F; and v € I} is supersingular and of order #]¢, (Fy) = (9 + 1)2.
2. We assume that b is a square. This time —7 is a square in [F;. The curve E; is not supersingular and

has Complex Multiplication by szj The discriminant of the curve is D = —7. We do not have
v/ D171 in Z. We are not in a special case.

In the general case, we have

2.46
{%:—mﬁ+mzw (2:46)

and the Jacobian order is #]¢, (F;) = ¢> + 1+ tp

2.3.1.5 ¢q and ¢, are defined over I s.

This case corresponds to g = 1 mod 4 and b is not a square in Fy.

Je,(Fps) <=2 Eye x Eqo(Fys)

order

U U

Je, (Fge) Eic X E1c(Fp)
U U

Je,(F2) Eic % Ec(Fp2)
U

Je, (Fq)

First we note that if ¢ = +10/9+/—7 with —7 not a square in F;, the curve is supersingular and
#]c,(Fy) = (q+1)2. Otherwise we proceed in three steps. We compute the Jacobian order over F 4, over

F > then over ;. We remark that the Jacobian is isogenous over F 4 to E/l P E/1 through the map (2.38).
We start with

Xcl,ﬂq4<T) =Xg x (T> "XE' o (T> = (TZ + tq4T+ q4)2
17 q4 17 q4
With b = (ifqz)2 — 247 the trace of E1 over F 4. The trace of E/1 over F o4 is —t 4. The corresponding system

1S

Zpptpp =t = _(tq2>2 + 247
' A _ 2 2 (2.47)
23,4 + Zygh = _tq4 = —(tqz) +2q
We continue with
(leqz + 22,112)2 = —(tqz)z + 4q2 = D1 Dz’)/%’)’% - Zl,q2 + Zz,qz = :|:\/ D1 DZ'YlfYZ (2 48)
(23,‘12 + Z4’q2)2 = —(tqz)z + 4q2 = Dl Dg’y%’)’g Z3,q2 + Z4,q2 = i\/ Dl DZ'Yl"YZ ’

We assume that /D1 D,7177 is not in Z. Unless the curve is supersingular or isogenous to two elliptic
curves of j-invariant equals to 1728 (in this caseD D, = 4), our assumption holds. Furokawa, Kawwazoe
and Takahashi exposed a result on when the curve Y> = X° + bX is supersingular. When a = 0 in our
notations, Th. 3 in [FKT04] states that 2; = 0 mod p and b; = 0 mod p when p # 1,3 mod 8.

We assume that the curve is not supersingular (and that a # 0).

(2.49)

{ 21,2 + 22 = VDiDam1m2 L) Pt = i\/ VDD 429
230 + 250 = —VDiD2nm2 239+ 249 = £/ —VDiDan ™2 + 29

We obtain easily b; = 29 + \/\/DlDZ’n’yz + Zq\/—\/Dlszh’)/z +2q =29+ \/4q2 —D1Dyy172 =29+

t;2. We use (2.33) to compute a;. We obtain a% = ap +2by = 2b; hence a; = + 2(29 £ tqz). We
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deduce that either D, = 2 then a; = 27, if by = 29 + tp = Dyvz or Dy = 2 then a; = £27q if
by=29—tp = D1 73. To conclude,

#le,(Fg) = +1£2(q+ 1)y +297, i € {1,2}.

. . . Dyy3+2+3 — VDim+v—=2 2934+Dy73
We note that in this case, we have either p = W%"Yz = pp withp = Mor;}: w =

pp with p = m"’f V=D212  The discriminant D = D1D; of the curve does not need to be even. We may
have both D; and D; even, so that D is equal to 4 times an odd integer. In Sec. 2.4.1 we will prove that
the curve E; defined over IF > (with b not a square in Fy) has an endomorphism corresponding to [pV£2].

Moreover the curve has another endomorphism coming from the complex multiplication by v/D. We
will see that this complex multiplication decomposes into two endomorphisms, either [pv/—2], [p+/D1]

or [pv2], [pv/—Dz).

Eventually we have the following theorem.

Theorem 7. Let Cy be a hyperelliptic curve defined over a finite field F, by the equation C1(Fy) : Y2 = X5 +
aX® + bX with a,b # 0 € F,. Let Ey be the elliptic curve defined over Fy[\/b] by the equation y*> = (c +2)x> —
(3c — 10)x? + (3¢ — 10)x — (c +2) with ¢ = a/b. Let t, be the trace of E1(F,) if b is a square in F, and let tpe
be the trace of Eq (qu) if b is not a square in .

1. If b is an eighth power in Fy and moreover /=1 € Fy then #]c, (Fy) = (q+ 1 — t4)? (Sec. 2.3.1.1).
Otherwise if \/—1 & Fy then #]c, (Fy) = (9 +1—t5)(q+ 1+ ty) (Sec. 2.3.1.2). If b is a fourth power in
IFy but not an eight power then #Jc, (Fy) = (9 + 1+ i.‘q)2 (Sec. 2.3.1.3). In these three cases the Jacobian
splits over .

2. If g = 1 mod 4 and b is a square but not a fourth power in ¥y, or if g = 3 mod 4 and b is not a square in
Fy, then (Sec. 2.3.1.4) #]c, (Fq) = q* + 1+ t2.

3. Ifg =1 mod 4 and b is not a square in Fy, then (Sec. 2.3.1.5) #]¢, (Fy) is equal to q* + 1 £ 2;(q + 1) + 277
where vy; € N is such that either 2q + tp = 292 or 29 — tp = 2932,

In practice, when Th. 7 presents two order possibilities one can easily discriminate between them by
checking whether the scalar multiplication of a random point by the possible orders gives the infinity
point.

The first case (Th. 7 (1)) is not interesting for a cryptographic application because the Jacobian order
factors trivially over Fq whereas we are interested in almost-prime order jacobians. In the second case
(Th. 7 (2)) the Jacobian has the same order as the elliptic curve Eq ¢(FF,2). We can use either Ej ¢ or J¢,. At
the moment, the addition law is more efficient on elliptic curves so it is preferable to use ELC(qu) for a
cryptographic application. The last case (Th. 7 (3)) provides an interesting family of genus 2 curves with
an efficient point counting method. Moreover in Sec. 2.5 we will explicit two fast endomorphisms on the
Jacobian allowing a fast four-dimensional GLV technique for scalar multiplication.

Example 10. The numerical example in [Sat09] takes g = p = 509 and C1(Fp) : Y? = X° +3X3 +7X (b =7 is
not a square). The curve Eq(F ) (which corresponds to our quadratic twist E;,C(]FP4) ) has a trace t 4 = 126286.

We deduce that t, = &, [2p% — tp = £626. As 2p +626 = 2-2-3-137 is not 2 times a square, we try

2p — 626 = 2147 = 392, 50 n = +14 and #]c, (F,) € {245194,273754}. To finish, we have to exclude one of
the two possibilities as in [Sat09] by taking a random point P and test whether [245194]P = O or [273754]P = O.
We conclude that #]¢, () = 245194.

In the two following examples, we take at random a prime p = 1 mod 4 of 128 bits and start with
a = —3and b = —2 until b is not a square mod p. Then let ¢ = a/V'b, El,C(Isz) be as in eq. (2.4) and ty2
be its trace. We deduce the Jacobian order and factor it. We repeat this process with subsequent b-values
until the Jacobian order is almost prime.

Example 11. p = 0x84c4f7ab6b9ace8c6b4bb34fa2a2baec69 = 1 mod 8. The 17th test provided b = —38,
tpz = 0x702461acf6a929e295786868f846ab40 = 0 mod 2, bp = 2p— tpz = 2’)/% as expected with vy, =
—0x8c1fc81b9542ce23. We find #]¢, (Fp) = 257 with r a 250-bit prime of cryptographic size close to the 128-bit

security level. ¥ = 0x226ddb780b2ded62d1d70138d9c7361794679a609fbe52e85918c88f5b6ea7d.
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Example 12. p = 0xb081d45d7d08109c2905dd6187£7cbbd = 5 mod 8. The 17th test provided b = —41,
t = —0x11753eaab1f725f£118£63bb131c8b8f2 = 0 mod 2, by, = 2p +1t, = 292 as expected with
Y1 = —0x611e298cc019b06e. We find #]¢, (Fy) = 2 -5 - r with r a 252-bit prime of cryptographic size close to
the 128-bit security level:

r = 0xc2b7a2f39d49b6b579d4c15a8440315cd1ccc424df912e6748c949008ebd989.

2.3.2 Point Counting on J¢, (IF,)

We use the same method as for computing #]¢,. We consider the two isogenies ¢, ¢ given in Sec.
2.2.2 by (2.23). The two isogenies contain coefficients with Vb, Vb, /b. If the two isogenies are defined
over F g thanks to Honda-Tate theorem (Th. 3) we write

XCz,nq]-(T) = XEc,rr (T)xe_., nq](T) (2.50)
(T2 - (Z],qf +Zz,qf)T+q])(T2 - (Z3lqj +Z4,qf)T+q]> = (T2 - tq]/cT—'_q])( tq].,ch—i_q])
with £  the trace of EC(qu) and f; _ the trace of E,C(Fq;). There are four possibilities:

1. @cand @ are defined over [, (2.3.2.1) ;

2. ¢; and ¢_. are defined over qu (2.3.2.3);

3. ¢c and ¢ are defined over F 3 (23.2.2) ;

4. ¢cand ¢ are defined over F¢ (2.3.2.4).
We assume that ¢ gives us informations on z; ;i + 2, ;i and ¢ concerns z3 ;; + z4 ,i. The two curves are
isogenous over Fy[/—3]. This is stated in [FS11, Proof of Prop. 4.2]. A detailed computation is given in
Sec. 2.4.2.1. There exists an isogeny from E, into E_. of kernel {P3, —P3, O} C E.[3] with P3 = (3, ¢ +2)
a 3-torsion point on E.. The isogeny has coefficients with v/b and v/—3. The two curves have the same
order (by Honda-Tate theorem) over I, [v'b, v/—3]. We deduce that if both b and —3 are squares in [, then
the curves have the same trace over [F; and we will be able to simplify our computations with ¢, = t; ..

In any case the curves have the same trace over F > and we have f» . = > .

23.21 ¢ and ¢ are defined over [F;.

Je,(Fy) &S E((Fy) x E—o(Fy)

order
This case is easy. We use Honda-Tate theorem and obtain xc, , (T) = (T? - tq T+ ) (T? —tg T +g%).
Moreover if § = 1 mod 3 then /=3 € Fy, t5c = t,—c and xc,, r(T) = (T? — t5,c T + ¢°)?. Otherwise
(g =2 mod 3,/-3 ¢ F,) Xeym,(T) = (T? — tg, T+ g*)(T? + t4,.T + ¢°). One (single) trace computation
is required. To sum-up,
- ifg =1 mod 3then#]c,(Fy) = (4> +1—tyc)%,
- elseq =2 mod 3and#]C2( ) = (*+1—toc)(q* + 14 tg).

2.3.22 ¢cand ¢ are defined over F ;.

of same

Je,(Fgs) — EcxE- c(Fps)
U U
]Cz(Fq) E. X E*C(]Fq)

This case is also quite simple because there are simplifications. If the isogenies are defined over F 5

then Vb € [F; and the two curves are defined over F,;. Secondly, Vb, Vb € an. We can deduce thatg =1
mod 3 since there exist elements in F; (e.g. b) that do not have a cube root in ;. We can also deduce from
g =1 mod 3 that V=3 € [F; and the curves E; and E_. are isogenous over ;. Finally, t.; =t 4. The
order of the two curves over F 5 is P+1- tegp With £ s = (teq)® — 3qtg,c (see Ex. 1.8). We start with

XCz,nqg (T) = XEc,ﬂq3 (T) : XEfc,nq3 (T) = (T2 - tc,q3T + q3)2
= (L@, R TP - (B, + )T+ )
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and obtain the system

3 3 _ = - =
{ Zl,q +22,q - tc,qS = (tc/q) 3qtc,q { ”rf - 2tC'q3 (2.51)

zg,q + Ziq =t g5 = teq((teq)® —34) by = (tc,q3)2 +2¢°

with g and bq3 the zeta function coefficients of J¢, over ]Fqs. We note that z% ot zg g = (zl,q + Zz,q)3 —
3q(z1,4 +2z2,4) and Zg, gt Zi, 0= (23,4 + 24,4)° — 3q(23, + 24 4). After some computations we can obtain this
system to solve

by (bg)® —3q°(bg) — 3q(aq)*(bg) + 697 (ag)?

This system is not linear and the two equations are not independent. We will instead consider the inter-
mediate values z1 4 + 23 5 and z3 ; + z4 ;. From 2.51 we obtain the system

{ a5 = (ag)® —3ag(bg —q)

2, +2, = (210 +229)° = 3q(z19 T 229) = (teq)’ —3qteq 252)
zg/q + Zz,q = (234 +244)° —3q(z3g +240) = (teq)® —3qteq '

An obvious solution is z1 ; + 23 3 = 23,5 + 24,4 = tc4. This happens when the isogenies ¢, ¢ are defined
over [y, i.e. b is a square and a cube. We assumed that this is not the case. The two other solutions are

21+ 220 = (—teq /3040 — (teq)?)) /2 .
2+ 21 = (~tog & /3040 (te0)?)) /2

We obtain these three solutions.

b, = —q+ (tc,q)2

ag = —teq+1/3(49 — (tcq)?) (2.55)

by =20+ § ()2 +3(47 = (teq)?) + teq[3(49 — (tq)?) )

ag = —teg — /349 — (teq)?)
by =20+ % ((teq)? +3(49 = (teq)?) — tog/3(40 — (te)?))
With the first solution we obtain #]c, (F;) = g> — g+ 14 (14 g+ tc,q)tcq. Note that #E, (Fp3) = #E_c(Fp3) =

9> +1- b = (g+1— tc,q)(qz =g+ 14 (14 +teg)teq) = #E(Fy)#]c, (Fy).
The first solution has its coefficients in Z. The two other solutions are special cases requiring that
4q — (tc,q)? is of the form 312 in order to have a4, b; € Z. We then obtain

{ ag = ~leg (2.54)
q

(2.56)

aqg = _tC,li + 3y _ e )
{ bq 2q + (_tc,q + 3,)/)2/4 = #]Cz (Fq) (q +1 ( teq + 3’)‘)/2) (2.57)

g = —teg — 37 _ o )
{ by =2q+ (_tc,q _ 37)2/4 = #]c, (Fq) =(@g+1—( teq 37)/2) (2.58)

We will identify exactly when this happens. Let E, and EI_C be two isogenous elliptic curves defined
over IF; of trace (—tcq + 37)/2. These curves are isogenous to Jc, (IFy). They are also isogenous over F_;
toE;and E_..

QS g (F) &8 E(Fu) X EL(F) &S E(F) x E_o(F,5)
order q order 1 1 order q q
U U U
isogeny / /
ICZ(IFq) E; x Efc(]Fq) E; x E—C(Fq)

PcOPe,p—cOP—c
For a second time we will use the results of Hasegawa stated in [Has97]. We consider the elliptic curve

(4v/du +5)°
(Vdu —1)3(Vdu+1)

ELNQ(VA)) : y? = x* —3(4Vdu +5)x +2(2du? +14Vdu +11), j = —2*33 (2.59)
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from [Has97, §2. p. 349]. We see that with the change of notations ¢ = 2Vdu (or a = 2u,b = 1/d)
we obtain exactly the reduced form of E.. Then Remark 4.7 states the result we are interested in. The
curve 5533 is isogenous over Q(v/d) to an elliptic curve defined by an equation with rational coefficients
when (d,u) = (—3,0) and (d,u) = (—11,£1/4). This corresponds to ¢ = 0 and more precisely (a,b) =
(0,—1/3). The second possibility is ¢ = +1/—11/2, (a,b) = (41/2v,9?/(—11)) (also stated in [FS11,
Prop. 4.8]). The j-invariant of the curve is j(E;) = —32768. We already met such a curve when computing
endomorphisms obtained from a degree 3 isogeny in Sec. 1.2.10.2, item 3. This elliptic curve has Complex

Multiplication by | 1Y~ | hence D = 11 and we are not in a special case. In the next section the curve
% y 2 P

will be supersingular in this case.
23.23 ¢cand ¢_. are defined over I 2

of same

]Cz(Fq2) m} Ec x E—C<Fq2)
U
]Cz(Ff'])

In this case, the two elliptic curves are isogenous and have the same trace over F > and b is not a square.
We start with

Kot (T) = e (T) X (T) = (T2 =t 2T+ %)

{ ST { o (2.60)

— — {2 2
Z3,2 T 24 =t p bp = tc,qz +29

and

We solve

2 __
{ (21,17 + Z2/q> = tc,qz +2q 2.61)

(Zg,q + 24,,7)2 = tc,qz +2q
We write (tc,qz)z —4g* = (te —29) (L2 +29) = —D37v3D172. We obtain
{ 219+ 224 = £V D1m (2.62)
234+ 249 = £vVD1m

Either we face a special case with D; = 1 (we recall that if the curve is actually defined over F; then
D; =1and teqg + 2q = (tcrq)z), or this is a normal case (D; # 1) and we get

ag =0,
2.63
{ bq = —Dl’)/% +2q = _tc,q2 ( )

and
Xeom)(T) =T =t 2 T2 + 4% (2.64)
The Jacobian J¢, (Fy) has the same order as the elliptic curve E¢(F2).

2.3.24 ¢cand ¢ are defined over I ¢.

isogeny
]CS(]qu) m E. X Efc(IFq(,)
U U
Je, (F.2) Ec x E_o(F,2)
U
]Cz (Fq)

We proceed in two steps. First we apply the formulas obtained when the isogeny is defined over F .
We use the notation (1‘C,qz)2 —4q* = (teqe —20)(t 2 +2q) = —D37v3D172. We obtain

{ 21,2 + 232 = (—te 2 + v/3D1D37173) /2

2.65
gt 2yp = (_tc,q2 —+/3D1D37173)/2 (2.65)
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and deduce that
ap = —t.
q g (2.66)
{ qu = _qz + (tc,qz)z
The last step starts from
(219 +224)* = (~tep +v3D1D3N73)/2+2q = (3D373 +2v/3D1D3 7173 + D117) /4
= (V3D373 + v/Di71)%/4 (2.67)
(z3q+249)* = (~te2 — v3D1D31173)/2 429 = (3D393 — 2V/3D1D3m 73 + D17}) /4
(—v/3D373 + /D171)? /4
We deduce that
{ 214+ 224 = £(v/3D373 + vDi11)/2 (2.68)
234 + 244 = +(v/3D373 — v/D171)/2 .

To obtain integer values for a,4, b; we have two choices. We can force D to be equal to 1 then get

aq vDPim 5 §g! (2.69)
bq :fc,qz-f—q:'h —q
T) = T4 5 4T3 + (¢ T2 T + ¢
_ Xeym(T) FnT + (tpe+9)T"FanT + 47, (2.70)

#e,B) = —q+1F 1491 +73

% = 373 271
{bq—3q—tc,q2—q+37% 270

or we can set D3 = 3 to get

XCymy(T) = THF 373T° + (3¢ — t, 2) T> F 3973 T + ¢,
#]e,(Fg) = ¢ + 9+ 1F 313(g +1) + 373,

2 2
We note that in this case, we have p = pp = w with p = m and the discriminant of the
curve is a multiple of 3, D = 3D;. In Sec. 2.4.2.1 we will prove that the curve E. defined over qu (with b

N (2.72)

not a square in ;) has an endomorphism corresponding to [pv/—3].
We obtain the following theorem:

Theorem 8. Let C; be a hyperelliptic curve defined over a finite field F, by the equation Co(Fy) : Y2 = X° +
aX® + b with a,b # 0 € F,. Let E. and E_. be the elliptic curves defined over Fq[\/l;] by the equation y* =
(c+2)x® — (3¢ — 30)x? + (3¢ + 30)x + (—c + 2) and assume that the curves are not supersingular. Let ty2 be
the trace of Ec(F2) and if b is a square then let tq be the trace of Ec(Fy).

1. If bis a sixth power then #]c,(F,) = (q+1 —t5)? if V=3 € Fgand #]¢,(Fy) = (g +1—tg)(q+1+1t,)
if V=3 ¢ .

2. Ifbis a square but not a third power then #]¢,(Fq) = q* — g + 1+ (1 + q + to)t,.

3. Ifbis a third power but not a square then #]c,(F,) = ¢* +1 — te.

4. If b is neither a cube nor a square then there exists n € N such that 2q —t,» = 3n? and #]c,(F,) =
P+q+1+(q+1+n)3nor#je,(Fy) =g*>+g+1—(q+1—n)3n.

This explicit point counting is used in Sec. 2.6 to construct pairing-friendly genus 2 curves of the form
C; over a prime field [F,.

Example 13. We consider the 127-bit Mersenne prime p = 2'27 — 1 which allows efficient implementation of the

modular arithmetic operations required in cryptography. Looking for a curve Cy over I, with small parameters a
and b and suitable for a cryptographic use, we find easily Co(F,) : Y? = X% — 3X> — 92 with b = —92 which
is neither a square nor a cube. Let F,, = Fy[X]/(X2+1) = Fplil, c = a/Vb € Fp2 \Fp and Ec(F ) :
Y2 + X3 +3(2c — 5)X + ¢ — 14c + 22. A few second computation gives us

tpz = 0x6089c0341eb5414a24beflala93c54£d2

and 2p — t,p = 373 as expected with 3 = +0x74269cde5282dbb6. Hence #]c, (Fy) = p*> + p+1+373(p +
1) + 373. Using few random points on the Jacobian, we find vz < 0 and that #]¢, (Fp) has a 250-bit prime factor:
r = 0x25ed097b425ed0974c75619931ea7£1271757b237c3££3c5c00a037e7906557 and provides a security
level close to 128-bits.
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2.4 Endomorphisms on the two families of elliptic curves and application to scalar
multiplication

2.4.1 Endomorphismson E; .

In this section we compute explicitly a fast endomorphism on the curve E; . defined over F, pre-
sented in Sec. 2.2.1. This endomorphism is different than the Complex Multiplication. We then construct
a curve Eq ¢ over F; with an efficient Complex Multiplication (we choose a small discriminant). These
two distinct, fast endomorphisms can be used for a four-dimensional GLV scalar multiplication. These
properties on such curves E; . where independently developed in [Smil3] from a different point of view
and for a different application.

We introduce the elliptic curve in reduced form

Eic:y? = x> 4+27(3c — 10)x + 108(14 — 9¢) (2.73)

defined over I », whose j-invariant is

We assume that ¢ € F» \ F) and ¢? € Fp. We denote a5 = —27(3c — 10) and a6 = 108(14 — 9c). We
will explain how to compute an endomorphism ¢, such that ¢3 +£2 = 0 on E1c(F,) in Sec. 2.4.1.1. If
the discriminant D of the curve is small enough, we will explain in Sec. 2.4.1.2 how to compute a second
endomorphism.

This curve is exactly the curve & A /Q(VA) : y? = x3 — 6(5 — 3sv/A)x + 8(7 — 95v/A) in [Smil3,
§5] with a change of variables of the form ¢ = 2sv/D. The author in [Smil3] proposes this curve for
fast 2-dimensional GLV. Since a Complex Multiplication by a small discriminant is not imposed, a prime
number p providing fast arithmetic in F), (with fast modular reduction) can be used, such as p = 217 — 1
orp = 2255 _ 19, In this thesis, we do not choose p a priori, we choose a small discriminant to get a second
endomorphism. The two methods may provide similar efficiency. More work is needed to benchmark
the two methods.

2.4.1.1 First Endomorphism from Vélu’s formulas

We aim to compute a 2-isogeny on Ej .. Note that we can write
Eic:y? = (x —12)(x* + 12x + 81c — 126). (2.74)

Hence there always exists a 2-torsion point P, = (12,0) on ELC(]sz). We apply Velu’s formulas to
compute the isogeny whose kernel is generated by P,. We obtain an isogeny from E; . into Ej, : y?> =

x3 4 byx + bg with by = —22-27(3¢ + 10), by = —22 - 108(14 + 9¢c). We observe that Ej, has j-invariant

(3c+10)3

) =2 )27

and is isomorphic over I » to the curve whose equation is
Ei_c:y* = x> +27(—3c — 10)x + 108(14 + 9¢) (2.75)

through (xp,yp) — (x4/(=2),ys/(—2v'—2)). Note that /=2 € F ,» and thus this isomorphism is defined
over F ». We define the isogeny

I : El,c — El,fc
(xy) — —X n 162 +8lc  —y 162 +81c
Y 2 T 2(x-12) 22 (x — 12)2
<x2—12x+162+81c x2—24x—18—81c>

—2(x —12) &4 —2y/=2(x —12)2

(2.76)
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We show that we can use this isogeny to get an efficiently computable endomorphism on E; .. Observe
that since ¢ € sz \F, and 2e [F,, we have that

tp(e) = ¥ = —¢, mp(j(Enc)) = j(E1,—c) (2.77)

hence the curves E; . and E; . (2.75) are isogenous over I
isomorphic, because they do not have the same j-invariant.
To sum up, we obtain an efficiently computable endomorphism ¢, by composing 7, o Z5 in this way:

p2 via the Frobenius map 7rp. They are not

¢2:E — Eq
(xy) —xP162—-8lc  —y¥ 162 —8lc
24 2 2(xF —12) 2y 2" (xp —12)2

(2.78)

_ (¥ —12xF +162—8lc X% —24xP — 18 4 8lc
—2(xF - 12) & —2v/=2" (xP — 12)2

If we compute formally ¢3 for points defined over IF» then we obtain exactly the formulas to compute
Ty o [=2] on Ey if /=2 € Fp, 72 0 [2] if /=2 ¢ F. This difference occurs because a term v/ —2/ —2F
appears in the formula. If p = 1,3 mod 8, v/ 2’ = y/=2andif p =5,7mod 8, v —2" = —\/=2. Hence

¢ restricted to points defined over F, verifies the equation

¢3+2=00verFpifp=13 modS8,

2.7
¢3—2=0overF,if p=57 mod8. @79)

We note that the above construction does not come as a surprise. Since 2End(J¢,) € End(E;¢ x Eq )
and since the Jacobian J¢, is equipped with a p-power Frobenius endomorphism, we deduce that there
are endomorphisms with inseparability degree p on the elliptic curve E; .. Our construction is simply an
efficient method to compute such an endomorphism.

2.4.1.2 Second endomorphism from complex multiplication

In the following, we suppose that the complex multiplication discriminant D of the curve E; . is small.
A natural way to obtain an efficiently computable endomorphism is to take ¢p the generator for the
endomorphism ring (i.e. v/—D). It was shown in [GV12, proof of Th. 1 (4.) §2.2] showed that D = 2D/,
for some integer D’. Let t,» be the trace of Eq ¢(F ). The equation of the complex multiplication is then

(t2)* —4p* = —2D'7?, (2.80)

for some y € Z. We prove that there is an endomorphism on E; . whose degree of separability is D’. In
order to do that, we will need to compute first the general equation of ¢, (given by (2.78)).

Lemma 4. There are integers m and n such that if p = 1,3 (mod 8), then
tye+2p=D'm?andt, —2p = —2n> (2.81)

and if p = 5,7 (mod 8), then
t+2p =2n*andt,p —2p = =D m?, (2.82)

Moreover, the characteristic equation of ¢, is

¢3—2n¢p+2pld=0. (2.83)

The endomorphism ¢, corresponds to the root 2="V=P if p = 1,3 mod 8 and to the root Z"V=DL if p =
5,7 mod 8.

Proof. We have that Tr(¢2) — Tr?(¢) + 2 deg(¢) = 0. We know that deg(¢») = 2p because ¢ = 71, 0 I,
and deg(7,) = p,deg(Zy) = 2, so Tr?(¢n) = Tr(¢3) +4p. Now, if p = 1,3 mod 8, Tr(¢3) = Tr(7,2 ©
[—2]) = —2t,» and we get T () = —2t,, +4p = —2(t,» — 2p). We may thus write t,, —2p = —2n?,

66



2.4. Endomorphisms on two families of elliptic curves

for some integer n. If p = 5,7 mod 8, Tr(¢3) = Tr(7,2 0 [2]) = 2t,2 and we get Tr? (¢n) = 2t +4p =
Z(tpz +2p). Hence e +2p = 2n? again. Using the complex multiplication equation (2.80), we have that
there is an integer m such that ¢, +2p :, D'm?,if p = 1,3, (mod 8) and £, —2p = —D'm?,if p /E 5,7
mod 8). As a consequence, p = M; to = =2m24Dm? gy — 1,3mod8 and t,, = w2-Dm? i
q p z p 2 p p 2
= 5,7 mod 8. Using these notations, the characteristic equation of ¢ is
p ) q

@3 —2n¢p+2pld=0.

We compute the two roots of the polynomial x> — 2nx +2p = 0. We start with A = 4n* — 8

2(2n% — 4p) and inject 4p = D'm? + 2n? in the expression to cancel the terms in n%. Then A = —2D'm?
and the two roots are @. We know that ¢3 = [—2] o m,2 if p=1,3 mod 8 and ¢3 = [2]o 7,2 if
p =5,7mod 8, with 77, = M. We compute
5 2ntvV2Dm\ 21— D'
4)2<—>< 5 ) = 5 +n-my-2D".

With the expression of t,,,, we conclude that

¢ corresponds to Mﬂ if p=1,3mod 8§, (2.84)

¢ corresponds to Mﬂ if p=>5,7 mod 8. '

O

Theorem 9. [GI13, Th. 1] Let E; ¢ be an elliptic curve given by equation (2.73), defined over F . Let —D be the
complex multiplication discriminant and consider D' such that D = 2D’. There is an endomorphism ¢ps of E ¢
with degree of separability D'. The characteristic equation of this endomorphism is

¢*, +D'm ¢y +Dpld=0. (2.85)

Proof. Since D = 2D’, we have that ¢p is the composition of a horizontal isogeny of degree 2 with a hor-
izontal! isogeny of degree D’. We denote by Z, : E;, — Ej_ the isogeny given by equation (2.76).
Note that 7, is a horizontal isogeny of degree 2. Indeed, since 71, : Ei . — Ej., it follows that
(End(Eq))2 =~ (End(Eq,—.))2. Since 2|D, there is a unique horizontal isogeny of degree 2 starting from
E; . Hence the complex multiplication endomorphism on E; . is ¢p = Zpy o Zp, with Iy : E; . — Eq .
a horizontal isogeny of degree D'. We define ¢pr = Zp: o 7}, with 71, : E1. — Ej . To compute the
characteristic polynomial of ¢/, we observe that

(PD/ o (PZ = (PD o 7Tp2 . (286)

By using equation (2.83), we obtained in Lem. 4 that ¢, seen as an algebraic integer in Z[\/—D] is

M_mf v =20’ ¢ p = 1,3mod 8 and Mmf /20" p = 57mod 8. Secondly ¢p corresponds to /—D

tpg-i—n-m\/fD . P
and 71,» to F——5——. We then solve the equality (2.86) and conclude that ¢ seen as algebraic inte-

ger in Z[v/—D] is % V=2D if p = 1,3 mod 8 and % V=2D" if ) = 5,7 mod 8. Hence we have
¢2, +D'm¢y +Dpld =0. O

We remark that if p = 1,3 mod 8 then (])ZD/ =[D']o 7, and if p = 5,7 mod 8 then cpzD/ = [-D']o T
as expected.

The endomorphism ¢ constructed in Theorem 9 is computed as the composition of a horizontal
isogeny with the p-power of the Frobenius. Since computing the p-power Frobenius for extension fields
of degree 2 costs one negation, we conclude that ¢,y may be computed with Vélu's formulee with half the
operations needed to compute ¢p over I ».

1. Anisogeny I : E — E’ of degree / is called horizontal if (End(E)), ~ (End(E’)),.
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2.4.1.3 Four dimensional Gallant-Lambert Vanstone method

Assume that Eq ¢ is such that #E; ((F,, ») is divisible by a large number of cryptographic size. Let

Y = ¢D/ and @ = ¢,. We observe that ® and ¥ viewed as algebraic integers are represented by 2ntm =

and M. These two numbers are linear combinations of v/—D (the Complex Multlphcatlon).
However the dependancy contains large coefficients: n,m with logn ~ logm ~ %log p~ }1 log r hence
they are large enough. Consequently, one may use 1, ®, ¥, Y to compute the scalar multiple kP of a
point P € ELC(sz) using a four dimensional GLV algorithm. We do not give here the details of the
algorithm which computes decompositions

k =k + koA +ksp + kaAy,
with A and p the eigenvalues of ® and ¥ and |k;| < Cr!/%. Such an algorithm is obtained by working
over Z[®,¥], using a similar analysis to the one proposed by Longa and Sica [LS12].
24.1.4 Eigenvalues

We deduce that the eigenvalue of ¢, is py/—2 if p = 1 mod 8 and pv/2 if p = 5 mod 8. We can
explicitly compute this eigenvalue mod #ELC(sz). We will use the formulas (2.81) and (2.82).
If p=1,3 mod 8, we obtain

#E1c(Fp2) = (p+1)2—D'm? — VD = (p+1)/m
= (p—1)72+2n? - V=2 = (p—1)/n, (2.87)
= (1—tp/2)? 42D (nm/2)? — V=2D" = (2—tgz)/(nm)
If p = 5,7 mod 8, we obtain
#E1c(F2) = (p—1)2+D'm? — D = (p—-1)/m
= (p+1)2-2n? — V2 = (p+1)/n, (2.88)
= (1—tp/2)>+2D (nm/2)> — V-2D" = (2—tp2)/(nm).

The eigenvalue of ¢ on E1¢(F,2) is V=2 = (p —1)/n mod #E;¢(F2) if p = 1,3 mod 8 or V2 =
(p+1)/nmod#E1(Fp)if p=57 mod 8.

The eigenvalue of ¢y on Eq ¢(F ) is v D' = (p+1)/m mod #E (F,2)ifp=1,3 mod 8or -D' =
(p—1)/m mod #Ey((F ) if p=5,7 mod 8.
Remark 1. There is no ambiguity on the endomorphism ring of E1 .. Note that the curve is ordinary. Its endo-

morphism ring is End(E1.) = Z[v/—D] with the complex multiplication corresponding to the endomorphism
¢p of eigenvalue \/—D. We obtained two other endomorphisms ¢, ¢y with eigenvalue V2 and V/-D' if

p = 1,3mod 8, resp. /=2 and VD' if p = 5,7 mod 8 (with —D = —2D') but these eigenvalues are ex-
pressions modulo #ELC(sz). Proof of Th. 9 tells that ¢, corresponds to (2n &= mv/—2D") /2 and ¢, corresponds

to (—mD' +nv/—2D") /2. For clarity, we explicit the relation between these generic eigenvalues and /+2,v/+D’
obtained in another way in egs. (2.87) and (2.88).
Ifp=13mod8thent, = (—2n% + D'm?)/2 according to eq. (2.81) of Lemma 4. Moreover, \/—D =

—-2D" = (2— t,2)/ (nm) mod #Eq o (F 2) from eq. (2.87). We obtain that ¢, has eigenvalue

(21

5| 2n—m—;;

(2n2 — 44 D'm?)/ (4n)

(p—1)/n =+ —2mod #E1 (F ) from (2.87).

Secondly if p = 5,7 mod 8 then the trace is t,, = (2n2 — D'm?)/2 (eq. (2.82) Lem. 4) and we obtain this
time

(2n —mv/—-2D")/2

(2.89)

2— t

(2n +mv/—2D") /2 : <2n—|—m
2n% + 4+ D'm?)/ (4n)

( (2.90)
(p+1)/n = V2 mod #E; (F 2) from (2.88).
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We conclude that ¢y has eigenvalue

o M=my/=D = /=2 mod #Eq¢(F,2) if p = 1,3 mod 8, (2.91)
P22 Agy tmy/=D — /3 mod #E1 (F ) if p = d '
S = mo LC( pz) lf‘p:5,7m0 8
We can do the same for the second endomorphism ¢ ;. We obtain that ¢ has eigenvalue
—D'm—ny/=D V=D — _ /D' mod #E; (F,2») if p = 1,3 mod 8
4)D/ I/\(PD/ = 5 o fp (292)

“Dminy=D — _\/=D" mod #E1(F ) if p=5,7 mod 8.

2.4.1.5 Example with —D = —40
By equations (2.81) and (2.82), we have that
4p =2n® + D/yz.
Using Magma, we computed an example with p =5 mod §, D' = 20.

Example 14. We first search 63-bit numbers n,y such that 4 | n,y =1 mod 4, p = (2n? + 20y?) /4 is prime
and #Eq . (]sz) is almost prime. We can expect an order of the form 4r, with r prime. In few seconds, we find the
following parameters.

n = 0xb5d23edfabalf7ed

Y = 0xb49906b3eca27851

tpz = —0xfaca844b264dfaa353355300f9ce9d3a
p = 0x9a2a8c914e2d05c3f2616cade9b911ad

= 0x1735ce0c4fbacd6c2245c3ce9d8da0244f9059ae9ae4784d6b2f65029¢c444309
2 = 0x40b634aec52905949ea0fe36099cb21a
with r, p prime and #E; ¢(F ,2) = 4r.

o =
|

We use Vélu's formulas to compute a degree-5 isogeny from E; . into Ej 5. We find a 5-torsion point
P5(X5,Y5)in Eq ¢ (F ). The function IsogenyFromKernel in Magma evaluated at (Eq¢(F s), (X — Xp;) (X —
X,p,)) outputs a curve Ej, 5 with bs g = —25-27(3c +10) = 5244 _ and bs g = 125-108(9c + 14) = 5346 .
Hence Ej 5 and Eq,_ are isomorphic over F, through i 5 : (x5 Yp5) = (xp,5/5,Y55/(5v/5)). The above
function outputs also the desired isogeny with coefficients in F -

I5:E1,C — Eb,S

(x,y) <x+ 2-3% (3(13c +40)x + 4(27c + 28))

X2 + %cx— %c+162

—23.3%((9c + 16)x2 + 211(27c + 64)x + 233(53¢ + 80)
(x2+ Zox — 8fc + 162)2

7

- —24.34((9c +16)x® + 211(27c + 64)x* + £3*(53c + 80)x + 53%(4419c + 13360))
Y (x2+ Zex — 8lc + 162)3

233 (3(13c + 40)x? + 23(27c + 28)x + 23 (369¢ + 1768))

+
(x2+ Zex — 8lc + 162)2

(2.93)

We finally obtain a second computable endomorphism ¢5 on E; ¢ in this example by composing 71, 0 sz o
Zs.

24.1.6 Example with —D = —4

Assume that curve is defined over F», with p = 1 mod 8. Our construction gives two endomor-
phisms ¢, ¢_» such that ¢3 — 2 = 0, ¢* , + 2 = 0. The discriminant of the curve is —D = —4. The curve
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is of the form E, : y> = x> + ax witha € F 2. A 2-torsion point is P5(0,0). Vélu's formulas applied to this
point give us an isogeny (x,y) — (x + %,y — y%) into Ej : y* = x* — 4ax. The j-invariant of this curve is
1728 hence the curves are isomorphic. Applying (xp,y;) — (xp/(2i),y5/(2i)(1+1)) (as (1 +i)* = —4) to
go back in E, does not give us the endomorphism we are looking for, this gives us [1 + v/—1] actually. We
use the same trick as previously. If « € I is such that 7, (a) = aP = —a (this is the case for example if
« = y/a with a € Fj a non-square) then (x;,y;) — (xZ/(—Z),yf/ (—2+/—2) gives us the endomorphism
¢o and (xp,p) — (x} /2,y /2V/2) gives us ¢_,. Note that v/—1,/2,1/=2 € F, since p = 1 mod 8. We
obtain

gbz :Ey, — E,
(x y) — { O( 2 lf (x/y) = (0/0)/
! ) a yP _ .
( I W (1 (xr’)2>> otherwise, o)
$¢2:Ex — Eq
(xvy) { v )2 . if (x,y) = (0,0),
/ <(x7%xj;a' ,zy\g (1 - ﬁ)) otherwise.

Since the j-invariant j = 1728 € [F,,, we observe that the curve E, is a GLS curve and is treated in [LS12,
App. B]. The 4 dimensional GLV algorithm of Longa and Sica on this curve uses an endomorphism ¥
such that ¥4 + 1 = 0. With our method we obtain two distinct endomorphisms but these three ones
¥, ¢2, ¢ are linearly dependent on the subgroup E(F2) \ E[2].

In this case the corresponding Jacobian splits into two isogenous elliptic curves over Fj,, namely the
two quartic twists defined over IF of Eq .

2.4.2 Endomorphisms on E;

The construction of two efficiently computable endomorphisms on E; ., with degree of inseparability
p, is similar to the one we gave for Eq ..

2.4.21 First endomorphism from Velu’s formulas
We consider the elliptic curve over I » given by eq. (2.22) in the reduced form:
Exe:y? =x343(2c—5)x+c* —14c +22. (2.95)

We assume that ¢ € F \ Fyp, ? € Fp, c is not a cube in F». In this case the isogeny (2.23) be-
tween Je, and Ep. x Ep . is defined over F 6. The 3-torsion subgroup Ezlc(sz) [3] contains the order
3 subgroup {O, (3,c +2),(3,—c —2)}. We compute an isogeny whose kernel is this 3-torsion sub-
group. With Vélu’s formulas we obtain the curve E, : y> = x> — 27(2c + 5)x — 27(c? + 14c + 22). The
curve Ej is isomorphic over F» to Ep ¢ = y? = x> —3(2c + 5)x + ¢? + 14c + 22, via the isomorphism

(x,y) — (x/(—3),y/(—3\/—73)). We define the isogeny

I?):EZ,C — Ey

12(c+2) | 4(c+2)?\ -y 12(c+2)  8(c+2)2 (2.96)

(xy) = (_Tl ("+ x5 T (x73)2)’3\/—73 (1_ (x=32 (xf3)3>) '

Finally, we observe that 71,(c) = —c and 71, (j(Ez,c)) = j(Ez,—c). This implies that E; . and E; . are
isogenous through the Frobenius map 77,. We obtain the endomorphism ¢3 = Z3 o 71, over I » which is
given by the following formula

¢3:Ezc — Epc . . 2.97)
-1 12(2—¢c) |, 4(2—¢) yP 12(2—¢c) _ 8(2—¢) :
(wy) = (3 (7 + B ER) Sl (- 85 - 555))
p2 © [£3]. There is a term / =3/ —3" in the y side of ¢3.
We observe thatif p =1 mod 3 then (‘73) =1and v—3y/—-3" = —3s0 ¢3 =m,po[-3].If p=2mod 3
then g5 = 7T

We compute formally ¢2 and obtain ¢3 = 7

p

p2 © [3]. We conclude that for points in E ¢(F ), we have

¢§+3:00veerz ifp=1 mod 3, (2.98)
¢§—3zOoveerzifp52 mod 3. '
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2.4.2.2 Second endomorphism from Complex Multiplication
With the same arguments as for E; ., we deduce this lemma.

Lemma 5. There are integers m and n such that if p =1 (mod 3), then

te+2p = D'm? and tp—2p = —3n?

and if p =2 (mod 3), then

!

t +2p = 3n? and ty2 —2p=-D m> .
The endomorphism ¢z has characteristic equation
¢3—3n¢3+3pld=0 (2.99)
and corresponds to the number *~"V=L if p = 1 mod 3 and V=L if p = 2 mod 3.

Proof. We start again from ¢3 — Tr(¢3)¢3 + deg(¢3)Id = 0. We have that Tr(¢3) — Tr?(¢3) +2 deg(¢3) = 0.
We know that deg(¢3) = 3p since ¢3 = 71, 0 Z3 with deg(7r,) = p and deg(Z3) = 3. Then the equation
is Te*(¢3) = Tr(¢2) + 6p. Now if p = 1mod 3 then Tr(¢3) = Tr(7,2 o [-3]) = —3t, and we get
Tr?(¢3) = —3t,» +6p = —3(t,2 — 2p). We may thus write t,, — 2p = —3n?, for some integer 1. Secondly
if p = 2 mod 3 then Tr(¢3) = Tr(7, 0 [3]) = 3t,2 and we get Tr? (¢3) = 3t,2 +6p = 3(t,2 +2p). We obtain

te+2p = 3n?, for some integer n. Using t/he complex multiplication equation ,(tpz)z —4p? = —3D'2,
there is an integer m such that t,» +2p = D'm?if p=1mod 3 or t,, —2p = —D m? if p =2 mod 3. As a
consequence, we can write 4p = 3n? + D'm? and 2t = —3n% + D'm? if p=1mod3,2t, = 3n2 — D'm?
if p =2 mod 3.

The characteristic equation of ¢3 is
¢3—3nds+3pld=0.

We also compute formally the two roots of the characteristic equation of ¢3. We start with A = 9n? —
12p = 3(3n? — 4p) and inject 4p = D'm? 4 3n? in the expression to cancel the terms in n2. Then A =
—3D'm? and the two roots of x> — 3nx + 3p are ¥EY S 3EMV =D “We know that ¢3 = [~3] o T
if p=1mod 3 and ¢35 = [3] o M2 if p = 2mod 3, with 71, = (t,2 +n - my/ —D)/2. We compute

2
_ / 2 o2
(3nj: 3Dm> :3<3n Dm? ﬁ_w,).

2 2 2

With the expression of £ 2, we conclude that

¢3 corresponds to 2—"Y 3D V=30 p=1mod3, (2.100)
¢3 corresponds to Mmf /3D i p =2 mod 3.
O

As a consequence, we have the following theorem, whose proof is similar to the proof of Th. 9.

Theorem 10. Let Ey be an elliptic curve given by equation (2.95), defined over F . Let —D be the complex
multiplication discriminant and consider D' such that —D = —3D'. There is an endomorphism ¢ of Ep . with
degree of separability D'. The characteristic equation of this endomorphism is

¢> —D'm¢, +Dpld=0. (2.101)

Remark 2. The eigenvalue of ¢3 is \/—3 and the eigenvalue of ¢y is VD' when p =1 mod 3, resp. V3,V =D’
when p = 2 mod 3. However these values are expressed modulo the elliptic curve order #E(sz). To obtain the

general expression, we compute the algebraic integer in End(Ey.) = Z[v/ —D] to which ¢3 and ¢ correspond,
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from their characteristic equation. We obtain that ¢ corresponds to =Y =30 V30" — /73 (mod #Ep¢(F2)) if
p = 1 mod 3 and ¥y 3D /=30 _ /3 if p = 2mod 3. In the same way, ¢, corresponds to M =
—vD'ifp=1mod 3 and "2 +1V 3D vVosD — /Ty if p =2 mod 3.

The two endomorphisms seen as algebraic integers do not generate an additional dimension of the endomorphism
ring. However the coefficients m,n involved in their expression in term of ¢p are large enough so that the lattice
reduction algorithm will succeed in the GLV-decomposition step. We obtain a four-dimensional GLV algorithm on
Ep..

2.4.2.3 Eigenvalues

To compute the eigenvalues of ¢, and ¢3, we write p = W, tp = M. We obtain
#Ec(F2) = (p—172—D'm? — VD' = (p—1)/m mod #Ey.(F2),
= (p+1)*+3n? = V=3 = (p+1)/n,
- (tpz/Z—1)2+3D/(nm/2)2 = V=3D" = (t,p—2)/nm.

The eigenvalue of ¢3, mod #E;(F2) is p(p +1)/n and the eigenvalue of ¢y, mod #E¢(F ) is p(p —
1)/m.

2.4.24 Example with D = 3.

This case is kind of a degenerate case. The curve E; . is a GLS curve Eg whose Weierstrass equation is
E‘B(]sz) : ]/2 =23+ B

where B ¢ F,, p* € Fp. Longa and Sica obtained two endomorphisms ®, ¥ such that the characteristic
polynomial of ® satisfies x> + x + 1 = 0 and the characteristic polynomial of ¥ is such that x> + 1 = 0.
Our construction yields the following efficiently computable endomorphism

oo~ (3+8)-50-))

When restricted to points defined over I, this endomorphism verifies the equation ¢3 — 3 = 0, while the
complex multiplication endomorphism @ has characteristic equation x> + x + 1 = 0. Longa and Sica’s
algorithm uses the complex multiplication ® and an endomorphism V¥ verifying ¥2 + Id = 0 for points
defined over I ,. We observe that 2¢3 0 ¥ —1 = 2®.

The costs of all these endomorphisms are comparable. The main difference is their characteristic
polynomial, thus their eigenvalue. It would be interesting to compare which choice of endomorphisms
give the best lattice reduction on average at the beginning of a scalar multiplication.

2.5 Two independent endomorphisms on the Jacobians J¢, and ¢, from the two
endomorphisms available on the isogenous elliptic curves

2.5.1 Endomorphisms on ¢,

The first endomorphism ¢ on J¢, is induced by the curve automorphism (x,y) — (—x,iy), with i a
square root of —1. The characteristic polynomial is x? + 1 = 1. The second endomorphism is constructed
asp=7To (¢p,¢y) o Z, where ¢, is the elliptic curve endomorphism constructed in Theorem 9. In or-
der to compute the characteristic equation for ¢, we follow the lines of the proof of Theorem 1 in [GLS09].
We reproduce the computation for the Jacobian of C;.

Theorem 11. Let C; : Y? = X° 4 aX® + bX a hyperelliptic curve defined over F, with ordinary Jacobian and let
r a prime number such that r||Je,(Fp). Let T : Jo, — Eic X Eq the (2,2)-isogeny defined by equation (2.6) and
assume T is defined over an extension field of degree k > 1. We define p = Z o (ppy X ¢py) o L where ¢y is the
endomorphism defined in Theorem 9. Then
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1. For D € J¢,[r](Fp), we have ¢(D) = AD, with A € Z.
2. The characteristic equation of ¢ is ¢ + 2D'm ¢+ 4D’ pld =0.

Proof. 1. Note that End(]c, ) is commutative, and ¢ is defined over I, (see [Bis11, Prop. II1.1.3]). Hence,
for D € J¢,(IFp), we have that (¢(D)) = ¢(m(D)) = ¢(D). Since there is only one subgroup of
order r in J¢, (F,), we obtain that ¢(D) = AD.

2. Since Z o Z = [2] then
¢*=Zo(ppy xpp)oLoLo(Ppy x¢y)ol=[2To(¢7,,¢%)0T. (2.102)

Since ¢ verifies the equation
¢2 +Dm¢, +Dpld=0, (2.103)

we have
RIZo ((¢3,,¢%,) + D'm (¢, ¢py) + D'p (1d,1d)) o T = Oy, . (2.104)

Using equation (2.102), we conclude that ¢ + 2D'm ¢+ 4D/p Id =0.
O

Remark 3. We compute the eigenvalue of this endomorphism ¢ = T o (¢, ¢py) © L. The two roots of the poly-
nomial x* + 2D myx + 4D’ p (Th. 11 (2)) are (—D'm & n\/—D). Note that the endomorphism ¢y on Eqe(F o)
has eigenvalue (—D'm + n\/—D) /2 (see (2.92)). The eigenvalue of ¢ is then twice the eigenvalue of Ppy-

We can also compute these values modulo the Jacobian order. It was shown in [GV12] that when p = 1 mod 4
and b (in the curve equation Cy) is not a square then the Jacobian order is equal to p*> +142n(p + 1) +2n* [GV12,
Th. 1 (4.) §2.2] with n such that t,, +2p = 2n? (this happens if p = 5 mod 8) or tp —2p = —2n? (if p =
1 mod 8). To simplify, we put the sign & in n € Z, then #]¢,(F,) = p* + 1+ 2n(p + 1) + 2n% We will compute
the eigenvalue of the endomorphisms whose characteristic equations are x> +1 = 0 and x> + 2D my + 4D’ p=0.
We know that 4p = 2n? + D'm?.

+n
#le,(Fp) = (p+n)?+(n+1) - V-1 = Ziﬂmod#jcl(lﬁ’p),
= (p+n+12—2D'm?/4 V2D = 2%’”1,
_ 2
= (—p+n2+n+12+2D (m(n+1)/2)? — V-2D = prpnntl

m(n+1)

(2.105)
Hence the eigenvalue of ¢_1 is /—1 = ii’f We can also compute the eigenvalue of ¢, modulo #]¢, (Fy) with the
values above in (2.105).

We detailed in Sec. 2.2.1.2 how to compute efficiently the (2,2)-isogeny from J¢, into Ej . x Ey .. We
briefly say that the composition of Z, ¢y and 7 is practical. Let D be a divisor on the Jacobian Je,(Fp).
We first compute ¢1,(D) = S1(x3,y3), with the notations of Sec. 2.2.1.2. We also denote S; = ¢2.(D).
We then apply the endomorphism ¢, on S1. As ¢y is defined over F ., it commutes with 77> hence
Py (S2) = ¢y (m,2(51)) = 72 (P (S1)) is free. Unfortunately Sy has coefficients in IF 4 hence we need
to perform some multiplications in F 4 to compute ¢ (S1). More precisely, y3 is of the form /b3 with
73 € Fpu. As the endomorphism is of the form ¢y (x,y) = (ng/,x(x),yq)D/,y(x)) the /b3 term is not
involved in the endomorphism computation.

We detailed in Sec. 2.2.1.3 how to compute efficiently the dual isogeny Z from E; . x Ep into Je,- We
concluded that applying @1, (P1) + ¢1.(P2) costs roughly as much as an addition on J¢, over Fp, ¢, (P;) +
¢2+(P2) is cost free. Then computing ¢, depends on the size of D' and costs few multiplications over
FF 4, for example if D' = 2,3,5. Finally adding @7 (¢ (51)) + @5(¢py (S2)) is simplified thanks to the
equality @3 (¢ (S2)) = 7,2 (97 (¢py (51))) and costs roughly an addition of divisors over F 2.
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2.5.1.1 Eigenvalues

As for the familly of elliptic curves studied in Sec. 2.4.1, we can compute explicitly the eigenvalues (as
in Sec. 2.4.1.4) of the two endomorphisms on J¢,. Since we want the first endomorphism to be defined
over 7, we set ¢ = 1 mod 4. We know from Th. 7 that when b is not a square in F; the Jacobian order
is equal to g% + 1 £ 27;(g 4+ 1) + 27? where ; € N such that either 2q + tp = 292 or 29 — tp = —293.
To simplify, we put the sign in ; € Z, then #J¢, (F;) = ¢*> + 1+ 27;(q + 1) + 272. We will compute the
eigenvalue of the endomorphisms whose characteristic equations are x> +1 = 0 and x> + 2D px +1=0.
We separate in two cases.

1. If tp + 2q = D/'y% and tp2 — 2q = —27% then we can write g = (D”y% + 27%)/4 and moreover,

+
#]Cl (Fq) = (q + 72)2 + (’YZ + 1)2 — \/j = Z/ZT,)? mod #]CI (Fq),
= (g+m2+1)2+2D'42/4 o VoD = 2‘7+Yy2+1’
1
2
! 7 p— 1
= (B m 1) 2D (1 +1)/2)? - V2D = 21 nEmd
71(72+1)

—tp +2(72+1)
11(12+1)
2)is V=2D" = (2~ t2)/(1172)-

2. 129+t = 292 and 2q — tp = —D/'y% then 1 and 1y, are simply swapped. We can compute the
eigenvalues in the same way.

we simplified with = (D”y% —292)/2 and obtained V2D’ = mod #J¢, (F;). We

recall from Sec. 2.4.1.4 that the eigenvalue of ¢ o ¢y on E; ¢ (]F‘7

2.5.2 Endomorphisms on ],

The first endomorphism ¢ on J¢, : Y? = X® +aX3 + b is induced by the curve automorphism (x,y) —
(C3x,y). Its characteristic equation is x*> + x +1 = 0. The second endomorphism is computed from a
Complex Multiplication available on E;.. The construction is very similar to the one in the previous
section (Sec. 2.5.1) for the other family of Jacobians. We briefly give some results. We assume that b is
not a square neither a cube in ;. The second endomorphism ¢ on Je, is constructed as Zo (pp, ¢py) oL
with ¢/ the endomorphism constructed in Sec. 2.4.2.2 on E; ., whose characteristic polynomial is x>+
D'my + D/p (and reduced to I, we have ¢2D , £ D' =0). We can compute accordingly the eigenvalue of
¢ modulo #]¢, (IF;) as previously in Sec. 2.5.1.1, this time from the expression of the Jacobian order given
in Th. 8.

2.6 Pairing-Friendly constructions for J¢, and ¢,

In this section we construct pairing-friendly genus-2 curves of the form C; and C; over a prime field.
After the recent work on endomorphisms on J¢, and J¢, we realized that the pairing computation on
these Jacobians can be speed-up. I would be also possible to construct pairing-friendly elliptic curves of
the form E; ¢ and E;, defined over a quadratic extension F ». The two endomorphisms would provide
an efficient decomposition of the Miller loop. However a construction of pairing-friendly elliptic curves
over I » with a large prime-order r subgroup such that p = 2log p/ logr < 2is not known at the moment.
The speed-up from the two endomorphisms will be completely offset because of the large parameter size.

We recall some basic facts on pairing-friendly constructions. We have several constraints for suitable
pairing-friendly constructions inherent to elliptic curves:

1. The embedding degree k must be small, in order to achieve the same security level in bits in the
elliptic curve r-torsion subgroup E(IF,)[r] and in the finite field extension F . In practice, this
means 6 < k < 60. More precise recommendations are given in [FST10, Tab. 1]. For a random
elliptic curve, we have usually k ~ r so this is a huge constraint.

2. The trace t of the curve must satisfy [t| < 2,/p.
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3. The determinant of the curve A = t> — 4p = —Dy? must have a very small square-free part D < 10’
in order to run the CM-method in reasonable time.

4. The size log r of the subgroup must be close to the optimal case, thatis p = glogp/logr ~ 1 with g
the genus of the curve. Quite generic methods for elliptic curves achieve 1 < p < 2. We will try to
find constructions for genus 2 curves with 2 < p < 4.

The two methods use the same shortcuts in formulas. Let E an elliptic curve and let #E(F) = p +1 —
t = hr with r a large prime and & the cofactor. Hence p = t —1 mod r. Let A = t> — 4p = —Dy?. The
second useful formula is Dy? = 4p — t*> = 4hr — (t — 2)?, hence —Dy? = (t — 2)? mod r.

2.6.1 Cocks-Pinch Method

We first recall the method proposed by Cocks and Pinch in 2001 to construct pairing-friendly elliptic
curves [CP01] (see also [BSS05, Algorithm IX.4]):

Algorithm 10: Cocks-Pinch method to find a pairing-friendly elliptic curve.

Input: Square-free integer D, size of r and embedding degree k to match the security level in bits,
knowing that p ~ 2.
Output: Prime order r, prime number p, elliptic curve parameters 4, b € I, such that
E(Fp) : Y? = X3 + aX + b has a subgroup of order r and embedding degree k with respect
tor.
1 repeat
2 Pick at random a prime r of prescribed size until —D is a square in the finite field I, and I,
contains a primitive k-th root of unity (, thatisr =1 mod k.
3 | Asrdivides @y (p), we can rewrite it as @y (p) =0 mod r. With properties of cyclotomic
polynomials, we obtain p = {; mod r with {; a primitive k-th root of unity. Furthermore,
t =1+ p mod r so this method chooses t =1+ (; inF,. Theny = (t —2)/+/—D inF,.
4 | Lifttand y from F, to Z and set p = 1(#2 + Dy?).
5 until p is prime.
6 returnr, p,a,b € F),

We propose to adapt this method to the Jacobian families of cryptographic interest presented above.
See the size recommendations in [BBC*11b, Tab. 3.1] depending on the security level in bits to choose
accordingly the embedding degree. First, we know explicitly the Jacobian order. Just as in the case of
elliptic curves, the definition of the embedding degree is equivalent to ask for r | #]¢(F,) and r | ®i(p).
We will use the property p = {; mod r as well. The aim is to express the other parameters, namely the
square part y and the trace of the elliptic curve isogenous to the Jacobian over some extension field, in
terms of {; mod r. We will use the same notations as previously, see Th.7 and Th.8. Let i be a primitive
fourth root of unity an w be a primitive third root of unity in F,.

2.6.1.1 Pairing-friendly Hyperelliptic curve C;

If b is not a square in F,, but v, Vb € F, (p =3 mod 4), then #]¢, (F,) = #E1(F2) = pP4+1-— tyo
(Th.7(2.)). A pairing-friendly Jacobian of this type has exactly the same order as the corresponding elliptic
curve Eq(F,2). Hence any pairing-friendly elliptic curve defined over a quadratic extension F > (and of
even order) will provide a pairing-friendly Jacobian of this type over the prime field F;,, with the same
order and the same p-value. Choosing the Jacobian instead of the elliptic curve will be appropriate only if
the group law on the Jacobian over I, is faster than the group law on the elliptic curve over F ». Note that
the methods described in [FST10] are suitable for generating pairing-friendly elliptic curves over prime
fields (in large characteristic), not over field extensions.

C1 with b a square but not a fourth power. This case is already almost solved in [FS11]. The Cocks-
Pinch method adapted with r | #]¢, (F,) = (p — 1)> + (if’p)2 instead of r | p+1 — t;? produces indeed the

same algorithm as [FS11, Alg. 5.5] followed by [FS11, Alg. 5.11] with = = (tlp —yv/—D)/2,d =4 We
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show that d | k is unnecessary. It is completely hopeless to expect a prime power g = 7t = p" hence we
assume that g4 = p is prime.

Definition 19. Embedding degree and embedding field[BCF09, Def. 2.1 and 2.2] Let A be an abelian variety
defined over ¥y, where q = p™ for some prime p and integer m. Let r # p be a prime dividing #A(FF,). The
embedding degree of A with respect to r is the smallest integer k such that r divides g* — 1.

The minimal embedding field of A with respect to r is the smallest extension of IF,, containing the rth roots
of unity p, C Fp.

Let k be the embedding degree of the Jacobian J¢, (Fp): r | #]¢, (Fp), 7 | @i (p). From the Jacobian point
of view, there is no security problem induced by a difference between embedding degree and embedding
field because I is a prime field. From elliptic curve side, the one-dimensional part of the r-torsion arises
in E/1 (JFP4 ), not below. An elementary observation about elliptic curve orders shows that

#E;(Fp) = p+1-t,
;(F,,z) = (pH1-t)(p+141) ,
H#E((Fa) = (p+1—t)(p+1+t,)((P+1)2+(£)?)

and the last factor of #E, 1(F ) is the Jacobian order. Hence r | #E, 1(Fpe) but not underneath. The full

r-torsion arises in E; (F s/ ged(4) ) but the embedding field is F ph- So the elliptic curve E (IF +) will not

p
be suitable for a pairing implementation when ged(k,4) € {1, 2} which does not matter because we are

interested in Jacobians suitable for pairing, not elliptic curves. See Fig. 2.1.

Figure 2.1: Difference between Jacobian and elliptic curve embedding degree

full G1 X Gy CE(FPkd)

r-torsion

2-dimensional Pairin iri
Je (IF )D Hj x Hy independent 4g> F Pairing
r-torsion k
k subgroup
of order r G1 cE (de)
dt
subgroup
]C(FP)D Hl of order r E(IFP)

Moreover we note that taking an even trace tlp and a prime p =1 mod 4 permits always to find valid
parameters, namely a ¢ € I}, satisfying the j-invariant equation, hence coefficients a,b € I, of C;.

C; with b not a square and p = 1 mod 4. In this case we have Vb ¢ Fp2, Vb € F 4 and #]c, (Fp) =
p2+1+2n2 -2n(1+p) = (p—n)?+ (n—1)> with 2p + t;[72 = 2n?. The isogenous elliptic curve is
defined over F .. We have A = (1?;72)2 —4p? = (t/pz + Zp)(t;72 —2p). With 2p — tlp2 = 2n® we obtain
2p + t;z = 4p —2n2 and find A = —4n%(2p — n?). With 2p + t; , = 2n? we obtain 2p — t’p , =4p—2n2and
find also A = —4n?(2p — n?). In both cases let Dy*> = 2p — n? thus A = —D(2ny)? and p = (Dy? +n?) /2.
The Jacobian order is a sum of two squaresin pand n hencen = (p+i)/(1+i) = (p+i)(1—1i)/2 mod r.
Furthermore y?> = (2p — n?)/D mod r with p = {; mod r and we find that

n=({+i)(1—1i)/2 mod randy = +(¢; —i)(1+i)/(2v/D) mod r.
The trace will be even by construction as t/p2 = 4(2p — 2n?) and to find valid parameters, p = 1 mod 4
is required. To find the coefficients of the curve C; (I, ), do the following (Alg. 11).

We adapt the program cm. cpp of Miracl? [Scol1] to compute the j-invariant of an elliptic curve de-
fined over I (instead of IFp). Indeed, it is not convenient for step 5 as it searches for an elliptic curve

2. We learned very recently that the MIRACL library status has changed. This library is now a commercial product of Certivox
[Cer12]. The CM software [Eng12] can be an even more efficient alternative to compute class polynomials.
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Algorithm 11: Pairing-friendly Jacobian of type J¢,, Th.7(3.)
Input: Square-free integer D, size of r and embedding degree k to match the security level in bits,
knowing that p ~ 4.
Output: Prime order r, prime number p, Jacobian parameters a,b € ), such that the Jacobian of the
curve C;(Fp) : Y2 = X° + aX? + bX has a subgroup of order r and embedding degree k
with respect to 7.

repeat
Choose a prime r of prescribed size with i, VD, Cx € F,.

1

2

3 | Letn=(g+i)(1—i)/2andy = +(g —i)(1+1)/(2VD) € F,.

4 | Liftnandy fromF, to Z and set p = (n> + Dy?)/2.

5 until p =1 mod 4 and p is prime.

6 Run the CM method to find the j-invariant of an elliptic curve El1 (sz) of trace itlpz and
A = —4D(ny)?.

7 Solve j (Ell) = 26% in F > and choose the solution satisfying 2 € Fp.

8 Choose a,b € Fp, such thata # 0 and b = (a/c)? (b is a square in F > butnotin IFy).

9 returnv, p,a,b € F),

defined over a prime field. We isolate parts of the program which compute the Weber polynomial of a
number field of discriminant D. Then we call the factor function but to find a factor mod p of degree
2 (instead of degree 1) of the Weber polynomial when D # 3 mod 8 and a factor of degree 6 (instead of
degree 3) when D = 3 mod 8. The papers [KSZ07, KKSZ10] contain efficient formulas to recover Hilbert
polynomial roots in ', from Weber polynomial roots in F, or I ;3. We find in F > or F s a root of the factor
of degree 2 or 6 of Weber polynomial and apply the corresponding transformation to get an element in

IF 2. We obtain the j-invariant of (an isogenous curve to) the curve El1 (Fp2). We solve ](E;) = ZG%

and find for various examples a solution ¢ € F  satisfying ¢ € Fp. It comes from the appropriate restric-
tions 2p + t‘/p2 =21, p =1 mod 4, n odd. Sometimes we have to choose a quadratic twist of Cy, of the
form Y2 = v(X° + aX?® 4 bX) with v € F, non-square.

Example 15. k = 6, D = 516505, p = 4.1
p = 0x9d3e97371e27d006£11762f0d56b4fbf2caca7d606e92e8b6£35189723£46£57ed46
€9650celccalbd90dc393db35cc38970cb0abbe236bf2c4ac2f65f1b50afb135 (528 bits),
= 0x679d8c817e0401203364615b9d34bdb3a0b89e70fa8d6807fab646e25140f25ad (255 bits),
0x28f34a88ab9271c2eabd70f4a3dc758a025ad6edee51c16867763e8d940022de5,
—0x65110defe8f4669a158149675afaa23dba326d49ce841d7e£f9855¢c7d8a65df 95,
1,
= 0x85eb6f5b5594c1bcab96a53066216ad79588c£39984314609bbd7a3a3022
41£c786703a19bclccb44fc9e09b9c17ac62fc38d6bf82851d3d8b753¢c79da7338ca56bo0,
Ci(Fp) : Y2 =2(X> +aX3 4+ bX) .

= 8 o3~
|

2.6.1.2 Pairing-friendly Hyperelliptic curve C;

If b is a cube but not a square then #]¢, (F,) = p*> +1 — t,» (Th.8(3.)). This case is close to the elliptic
curve case. Actually, this is the same construction as finding a pairing-friendly elliptic curve over a field

F 2. But in practice the methods to find such pairing-friendly elliptic curves over I, fail over I . Indeed,

the expression for p is p? = }1((1‘;2)2 + Dy?) but this is hopeless to find a prime square. We did not find

in the literature any such construction.

C, with b a square but not a cube. This case is treated in [FS11, Alg. 5.5, Alg. 5.11] and corresponds
tod = 3and m = (t, — yv/—D)/2. This is also a Cocks-Pinch-like method with r | p> — p+1+ (1 +
p)ty + (tp)? and r | Di(p). As above for Cy, the condition “3 | k” is not necessary since we consider the
embedding degree of the Jacobian, not the elliptic curve.

77
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We found that p =1 mod 3and p +1+t, =0 mod 3 are enough to find always valid parameters.
Freeman and Satoh pointed out that the equation j(E;) = 2833(2c —5)3/((c — 2)(c +2)?) has a solution
in [F, in only one third of the cases [FS11, § 6]. One can explain this phenomenon by simple arithmetic
considerations.

The elliptic curve E. has a 3-torsion point which means p +1 —t, = 0 mod 3, which happens one
third of the cases when p = 1 mod 3. Assuming that p =1 mod 3,if p +1+t, =0 mod 3 then E.(IF,)
has not 3-torsion point but its quadratic twist has. These two elliptic curves have the same j-invariant
and admit a 3-torsion subgroup over F . In practice we verify that the equation has a solution when
p+1+xt, =0 mod 3. Combining the two conditions p =1 mod 3 and p+1+1¢, = 0 mod 3, the
equation from j(E.) has indeed a solution one third of the time (% . %). When p =1 mod 3 and t, =2
mod 3, we can always find a solution in step 2 of [FS11, Alg. 5.11] and finish to run this algorithm. When
p =1 mod3andt, =1 mod 3, we can still find a solution in step 2 and construct the coefficients of
Cz(]Fp) in step 3 of [FS11, Alg. 5.11]. But in step 6, we have to choose not C; itself but its quadratic twist.

Cy with b neither a square nor a cube. #J¢,(F,) = p>+ p+1— (p + 1)3n + 3n. Here the parameters
satisfy 2p — e = 3n2. Let2p + tpz(: 4p — 3n?) = Dy?. Hence
_ 1 2 2
P=y (371 + Dy ) .

Note that 3 { D otherwise p would not be prime. Solving p?> + p +1— (p+1)3n +3n?> =0 mod r gives
p=(1—-w?)n+w?orp = (1-w)n+w with w a primitive third root of unity. As y*> = (4p —3n?)/D
mod r and with p = {; mod r we find

n=(—w)/(1-—w) modrandy= +(wl+w?)/VD modr.

The last version of the Cocks-Pinch method is presented in Alg. 12.

Algorithm 12: Pairing-friendly Jacobian of type J¢,, Th.8(4.)

Input: Square-free integer D, 3 t D, size of r and embedding degree k to match the security level in
bits, knowing that p ~ 4.
Output: Prime order r, prime number p, Jacobian parameters a,b € F), such that the Jacobian of the
curve C»(Fp) : Y2 = X® + aX® + b has a subgroup of order r and embedding degree k with
respect to .
repeat
Choose a prime r of prescribed size such that a third root of unity w, v/D and j € F,.
Letn = ({ — w)/(1 —w) and y = +(w; + w?)/V/D € F,.
Lift n and y from F, to Z and set p = (3n% + Dy?) /4.
until p =1 mod 3 and p is prime.
Run the CM method to find the j-invariant of an elliptic curve E(F ) of trace t,, and
A = —3D(ny)?. More precisely, run the CM method with 3D. Find a degree 2 or 6 factor of the
Weber polynomial mod p, then apply the right transformation from [KSZ07, KKSZ10] to obtain a
root in > of the corresponding Hilbert polynomial.

S Ul R W N R

7 Solve j(E.) = 2833% in F» and choose a solution ¢ € F ,» such that c? € Fp. Choose

a,b € Fp, such that (a/c)? is not a cube and b = (a/c)?. Hence b is neither a square nor a cube.
8 returnr, p,a,b € Fy

2.6.2 Brezing-Weng Method

The method proposed by Brezing-Weng is to use a polynomial ring built with a cyclotomic polynomial
instead of a finite prime field F,. The parameters will be polynomials modulo a cyclotomic polynomial
instead of integers modulo a prime. But the choice of D is limited to few values. We tried with D
square-free in the range 1 - 35 according to the embedding degree 5 < k < 36. We ran a search (with
Magma [BCP97]) over different cyclotomic fields and with a change of basis as in [KSS508] and [Kac10].
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We obtained complete families with p ~ 3 and recover constructions already mentioned in previous
papers [KT08, FS11] and new complete families for other embedding degrees:

Example 16. k =22,D =2,p0 =28

ro= Ogg(x) = a0 — x4 332 28 42 204 x16 _y12 458 x4
n o= F(x®-—x2-x041)
v o= dre
tp2 }—1 (—x56 42290 — ¥ 4x3t p4x?2  x12 0y 1)
p = % (96 — 2x%0 4 x4 4+ 8x% + x12 — 2x6 4 1)
x = 1 mod?2

Example 17. k =26,D =2,p = 2.33

ro= ®Pa(x) =88 M0 1361532 328 24 20 1416 208 1
n = %(xzs—x26—x2+1)
v = b
tp2 = (2% +2x5 — x5 4 4x30 4 42260 — xt 4222 — 1)
p — % (x56 _ 2x54 _|_ x52 + 8x28 + x4 _ 2x2 + 1)
x = 1 mod?2

Some constructions (k € {7,17,19,23,29,31}) have a cyclotomic polynomial of too high degree for r.
Hence there are very few possibilities for choosing a suitable integer x such that p(x) and r(x) are prime
and of the desired size. Moreover the p-value is close to 4. It would be preferable to use the Cocks-Pinch-
like method.

2.6.3 More Pairing-Friendly constructions with D =1,2,3

We observed that when D = 1, the obtained genus 2 hyperelliptic curve of the form C;(F,) with b a
square splits actually into two non-isogenous elliptic curves over [F,. We observed the same decomposi-
tion for genus 2 hyperelliptic curve of the form C; obtained with D = 3 and b a square but not a cube. A
theoretical explanation can be found in [FS11, Proposition 3.10]. From Th. 7 2 we get the explicit decom-
position. We give here a practical point of view from explicit zeta function computation. Let E;(IF;) be
an elliptic curve defined over a finite field F, of trace , an satisfying (t,)> —4q = —y?,ie. D = 1. The

zeta function of Ey is Zg (T, Fy) = T> — t,T+q = (T — t"%)(T - tq%ly) with i € C such that i? = —1.
We will use the notation & = t”’# With the formula given in [FS11, Proposition 3.4] we find that the zeta
function of the order 4 Weil restriction of E; (IF,) is

Zj (T,Fq) = (T — i) (T +ia) (T — iw) (T + i@) = (T*> —yT +q)(T> + yT +¢) .

Note that g +1 — y and q + 1 + y are the orders of the two quartic twists of E; (F;). Hence the obtained
Jacobian always splits into the two quartic twists of Eq (IF;).
For J¢,(Fy) and D = 3 when b is a square but not a cube, a similar computation explains the matter.
Here E, is an elliptic curve defined over F, of trace #, and such that (t;)> — 49 = —3y?. Let us denote
_ tg+iv3y
=2

E.(F;) is

one of the two roots of its zeta function. The zeta function of the order 3 Weil restriction of
43 t—3
Zye, (T, Fg) = (T2 + =T +q) (T2 + T +9) .
We recognize the two cubic twists of E;(IF,;). Trying with an order 6 Weil restriction, we find
Zje, (T,Fq) = (17 = 54T +q) (17 = 74T +9) .

Hence the Jacobian splits into the two sextic twists of E.(IF;). Freeman and Satoh suggested to construct
an order 8 Weil restriction when D = 1,2 and an order 12 Weil restriction when D = 3. For k = 32,64, 88
and D = 2 this order 8 Weil restriction corresponds to families previously found by Kawazoe and Taka-
hashi.
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2.6.3.1 Order-8 Weil restriction when D =1

Let E(F,) an elliptic curve defined over a prime field F), of trace t, and satisfying (t,)* —4p = —y?
(thatis, D = 1). The two roots of its zeta function over C are &« = (t, +iy)/2 and @. Let (g denotes an
eighth root of unity. The zeta function of the order 8 Weil restriction of E(F) is

Z(T,Fp) = ((T-Zsw)(T—C50)(T—{3a) (T-{3m)) (T—Cae) (T—(3a) (T—C5e) (T—(s@)
= (T*+tyT? + p?)(T* — tyT? + p?)

We see this zeta function factors as two degree 4 zeta functions, that is into two genus 2 hyperelliptic
curve zeta functions. So we start from an elliptic curve E(F,) as above, with (t,)? — 4p = —y? and search
for suitable p,t,y such that there exists a genus 2 hyperelliptic curve of order #J¢(FF,) = p>+ 14ty
suitable for pairing-based cryptography.

To apply one of the two previous methods (Cocks-Pinch or Brezing-Weng), we have to find an expres-
sion of t and y in terms of p modulo r.

t={_g+ égék andy = —gg — (g mod r.
To finish, p = (£ + y?) /4.

Example 18. k =8,D =1,0 = 3.0
= 4202 4+4x+2

Il
alkat

3(—x3+2x% —3x +2)
= L (x® — 4x5 4 102 — 1633 + 2622 — 12x + 4)
= 4 mod6é6

R TR e N
|

2.6.3.2 Order-8 Weil restriction when D =2

Let E(F,) an elliptic curve defined over a prime field F), of trace t, and satisfying (t,)* — 4p = —2y°

(thatis, D = 2). The two roots of its zeta function over C are & = (t, + i \ﬁy) /2 and a. Let {g denotes an
eighth root of unity. The zeta function of the order 8 Weil restriction of E(F) is

Z(T,Fp) = ((T-Gsu)(T—Lgm) (T-G3a) (T—L5m) (T—G3e) (T—C30) (T—Gf) (T—Cs0)
= (T*—2yT% +2y*T* — 2ypT + p*)(T* + 2yT% + 20 T% + 2ypT + p?)
and #J¢(Fp) = p*>+1—2yp+2y*> —2y = (p —y)* + (y — 1)>. We recognize the order of J¢, (F,) when the

considered isogeny is defined over F 4 (and with n and y swapped). Hence it is the construction detailed
above in Alg. 11 with D = 2.

2.6.3.3 Order-12 Weil restriction when D =3

Let E(F,) an elliptic curve defined over a prime field F}, of trace t, and satisfying (t,)* — 4p = —3y?
(i.e. D = 3). The two roots of its zeta function over C are a = (t, +iv/3y)/2 and @. Let {1, denotes a

twelfth root of unity. The zeta function of the order 12 Weil restriction of E(IF,) is
Z(T,Fp) = (T—Groe) (T=02@) (T—1p0) (T—E0)) ((T—C1pe) (T—o) (T—{120) (T—=G1o%))
= <T4 - (—p + tp—t”;3y> T2 + pz) <T4 - (—p + tp—t*’fy) T2 + pz)
which can be interpreted as the zeta functions of two Jacobians of hyperelliptic curves defined over I,
of order p? + p + 1 — t,(t, & 3y) /2. For further simplifications, we can also write #J¢c(F,) = (p — 1)> +

((tp —3y)/2)* = (p+1)2 =3((t, +y)/2)*
To apply the Cocks-Pinch or Brezing-Weng method, we use

ty=—w(wp—1)/i modr, y=-w(wp+1)/v/3 modr

with w a third root of unity and 7 a fourth root of unity. We found new families with p = 3 (with Brezing-
Weng method). It would be interesting to know if these quite special curves provide more features such
as compression due to twists of higher degree.
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2.7 Conclusion

In this Chapter we studied widely two families of genus 2 hyperelliptic curves of the form Y? =
X5 +aX3 +bXand Y? = X6 +aX3 + b (with a, b € IF7). These curves are isogenous over a small degree
extension field to the product of two isogenous elliptic curves. We first computed these isogenies between
Jacobian and product of two elliptic curves. We then provided explicit formulas for the zeta function
of the Jacobians. We derived our formulas from careful decomposition of the zeta function from the
extension field where the isogeny is defined to the base field where the Jacobian is defined.

We also presented several algorithms to obtain pairing-friendly hyperelliptic curves families. The
constructions require to run the CM method to find a j-invariant in . We explained the differences
with a j-invariant in F, and gave references to fill the gap. It is worth noting that it is also possible to
adapt the Dupont-Enge-Morain technique [DEMO05] to our setting but unfortunately it provides curves
with p ~ 4. It remains open to construct pairing-friendly hyperelliptic curves with 1 < p < 2.

Our work is also about efficient scalar multiplication on these genus 1 and 2 curves with a 4-dimensional
GLV technique. We proposed for this purpose the construction of two independent endomorphisms both
on the Jacobians (defined over a field F;) and on the isogenous elliptic curves when they are defined
over a quadratic extension of the field ;. Surprisingly, Smith [Smi13] studied at the same time from a
different point of view the same two families of elliptic curves defined over quadratic extension of finite
fields. Smith observed that one can choose a prime p relevant for fast modular reduction, then build such
a curve over the field F , while still having an endomorphism on the curve, together with the fastest
possible finite field arithmetic. Smith proposed these curves for 2-dimensional GLV technique combined
with optimal finite field arithmetic. These two different applications of these families of curves seems
to be roughly equivalent in terms of performances. It would be interesting to investigate the running
time of these two methods and compare them with other popular elliptic curves such as Edwards or Huff
curves. Concerning genus 2 curves with 4-dimensional GLV scalar multiplication, it would be interesting
to apply the methods in [FHLS14] for protected scalar multiplications.
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Chapter 3

Pairing implementation on elliptic curves and
application to protocols

In this chapter we present the different state-of-the-art implementations of pairings developed for
the cryptographic library of Thales Communications & Security and their use in protocols. We explain
in Sec. 3.1 the the library structure and the finite-field extension arithmetic. We explain in Sec. 3.2 our
optimized implementation of an ate and an optimal ate pairing on a Barreto-Naehrig curve. In Sec. 3.3
we investigate pairings on composite-order elliptic curves. These pairings are used in protocols since
2005. They provide useful additional properties but they are much slower. These pairings need special
curves and dedicated pairing computation. We present the first implementation and benchmarks of such
pairings. We then chose two protocols based on such pairings and present timings. These results were
presented at the ACNS’2013 conference ([Guil3]). Our efficient pairing of Sec. 3.2 is used in Sec. 3.4 to
develop a prototype of a broadcasting scheme. Indeed the pairing development for Thales is part of an
ANR project on efficient broadcast protocols. We present the performances we obtained and show that
the chosen broadcast scheme is practical and almost ready for industrial use. The results were presented
at the Pairing’2012 conference [DGB12].

3.1 The Li1BCRYPTOLCH

The library of the Laboratoire Chiffre (LCH) is called LibCryptoLCH. It is written in C. It contains a civil
part which contains the contributions of this PhD thesis. The organization of the library is sketched in
Sec. 3.1.1. Then in Sec. 3.1.2 and 3.1.3 we explain how we designed finite-field arithmetic. This will be
needed for the pairing computation described in Sec. 3.2.

3.1.1 Organization of the LIBCRYPTOLCH

The library is organized in modules, as shown in Fig. 3.1 and 3.2. We present in Fig. 3.1 the main
modules on top of which the pairing module was developed. The modules are continually improved. In
2011 the Modular package was highly improved thanks to the work of F. de Portzamparc. At the moment,
the modular multiplication is written in assembly language for Sparc, ARM (work of Dubois) and Intel
x86-64 processors (work of F. de Portzamparc). The multiplication is almost 3 times faster in assembly
language compared to pure C language function. The x86-64 code is relevant for common PC and the
ARM implementation becomes very interesting at the moment for smartphones such as Samsung with
armeabi architecture. A work in progress is to adapt the library to such smartphones and activate the
ARM parts of the code to speed-up the pairings on such platforms. This is possible since December 2012
and the release of Android rd8 version of the development toolkit. The package Modular is generic and
valid for any modulus. In particular, this package is not optimized for a sparse prime number with fast
modular reduction such as p = 2% — 1 or p = 22% — 19. Though, we obtain acceptable performances
thanks to the assembly code.

The module E11ipticQuad is a duplicate of the module E11iptic in order to provide arithmetic of el-
liptic curves defined over quadratic extension fields. It uses Jacobian coordinates. This arithmetic is used
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(Elliptic

Elliptic Curve arithmetic
Weierstrafd representation
\Modiﬁed Jacobian coordinates

E11I0Tools
| Inputs / Outputs
conversions of points and related data

(Modular

Multiprecision integers
Multiprecision modular integers
Montgomery representation
\Multiplication in Sparcv8, ARMv7, x86-64 )

ModIOTools

Inputs-Outputs

Read from / Write to files,
byte/word array/string conversions

Figure 3.1: Important modules of the LibCryptoLCH, used for the pairing implementations

(this thesis

[ MAGMA

validation

[EXtFieldIOTools] [Degree 12 EXtN Pairing ]——»[ Broadcast ]

[ QuadIOTools ]4—[ Degree 2 Ext ]—»[ EllipticQuad ]

[ ModIOTools ]4—[ Modular J—»[ Elliptic J

Figure 3.2: Organization of the packages developed during this PhD (circled in red)

to perform the operations in G, for a pairing on a Barreto-Naehrig curve. This package is not directly
used for pairing computation but is needed for any protocol using BN curves. The modules of extension
fields F',» and F 1> are the two essential building blocks for the pairing package. The module Quadratic
was developed in internship in 2010. The module ExtField was started at the end of internship and
continually improved along this PhD. The arithmetic for extension fields is based on the work of Deveg-
ili, O hEigeartaigh, Scott and Dahab [DhSD06a]. They studied and compared the efficiency of various
formulas for multiplication and squaring in finite-field extensions of degree a multiple of 2 and 3. Based
on their results and recommendations, we designed very efficient arithmetic for I, and I ,1» extension
fields. We explain our arithmetic for degree-2 extensions in Sec. 3.1.2 and for degree-3 and 6 extensions
in Sec. 3.1.3.

In addition, we need an efficient inversion function. We expose a well-known formula for efficient
inversion in finite-field extensions based on a norm computation. We first recall the definition of the
norm.

Definition 20. [LN97, Def. 2.27 §2.3] Let ¥4 be a finite field and Fgn an extension of Fy. For a € Fym, the norm
Normg, /r, (a) of a over IFy is defined by

Normg,, /v, (a) =a-a?-- " = g1/ (3.1)
Moreover we have this useful theorem.
Theorem 12. [LN97, Th. 2.28 §2.3] The norm function Norqum /¥, satisfies the following properties:
1. Normg , /F, (ab) = Normg, /K, (@) -Normg, , s, () forall a,b € Fon;
2. Norm]qu /F, maps Fgm onto Fy;
3. Normg,, /w, (a) = a™ foralla € Fy;

4. Normg,,, /7, (a?) = Normg,_, /r, (a) foralla € Fym.
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Finally the norm is transitive:

Theorem 13. [LN97, Th. 2.29 §2.3] Let Ty be a finite field, let Fym be an extension of Fy and let Fymn be an
extension of Fym. Then

Norm]qu-n /Fyq (11) = Norqum /Fyq (Norqum-n /Iqu (ﬂ)) (32)

foralla € Fgmn.

To invert an element a € F;n we need an efficient method. Computing naively a~! = a7" "2 is very
costly since g — 2 is a large exponent. We use the following formula:

aq+q2+m+qul 1

-1 _ o < q qZ qm—l)
a = = ala® ---a 3.3
glHg+a2+. g1 Normg , /r, (a) (33)

performed with a norm computation, one inversion in Fq, several Frobenius and m — 2 multiplications.
The formula can be specifically optimized for any given degree m extension.

3.1.2 Quadratic extension field

The prime finite field we will denote by I, is simply implemented with the Modular package. The
modulus is set to p. The quadratic extension is built as F 2 [X]/ (X2 — «) with « a tiny non-residue in F),.
If p = 3mod 4 we set &« = —1, otherwise we choose a small non-residue such as 2,3, ... allowing fast
reduction modulo the irreducible polynomial X? — a. An element in F p2 is represented as a vector of two
coefficients in Fp: a = ag + a1 X with ag,a; € Fj. The reduction is

ag+ ;X 4+ axX? = (ag + aay) + a1 X .
If « = 2 for example, the reduction costs two additions: a9 + «ay = ag + a; + a,. The addition and sub-
traction are performed coefficient-wise. The well-known formula of Karatsuba is used for multiplication.
The squaring is performed with the Complex method advised in [DhSD06a, Tab. 2 and Tab. 16].

a=ay+mX, b=by+0X, r=rg+nrX

Multiplication: Karatsuba -2

r = a-b
vo = apbo
vp = ah
ro = Ug+ 0
11 = (ag+a1)(bo+b1)—vo—1v1

4
3M, + 5Add, + 1M, (34)

Squaring: Complex, & = —1 Squaring: Complex-like, & # —1

r o= a? r = a°
0o apay 0o apay
ro = (ao+a1)(ao —a1) ro = (ao+a1)(ao +ara) — (vo + vo)
rn = 2y rn = 2y
2Mp +3Add, 2Mp + 5Add, + 2M,

We now present the formulas to compute Frobenius, norm and inversion in . The Frobenius map
is almost free in a quadratic extension. It is computed as a” = ag — a1 X from a = ap + a1 X. This costs only
one subtraction. The norm is a map from IF > to Fp. The inversion needs these two previous operations.
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. . . -1 _ p
The inversion is computed asa™' = —&7 = a?/ Normez /F, ().

a=ag+mX,r=rog+rX

Frobenius N OTMF , /F, Inversion
r o= aPf ro = a-aP €F, r = al
ro = a ro = ai—aa v = Normp,/r,(a) (3.5)
no= —m=p-a v = o
ro = 0p-4ap
n = Vo4 =p—m
1Add, 25,4+ Addy +1My I, +2Mp + 25, +2Add, + 1M,

3.1.3 Degree 6 extension field

A Barreto-Naehrig curve has embedding degree k = 12. The pairing value is an element in a subgroup
of a finite field extension of degree 12. The degree 6 twist of E (Fpu) allow elements in G, to have their
coefficients in IF . In this pairing context, we have chosen to build F > as a degree 6 extension on top
of a degree 2 extension. The package ExtField implements this degree 6 extension in top of the package
Quadratic. In a later version of the LibCryptoLCH, a generic structure and package will be used to
construct any degree 2 or 3 extension in top of any similar extension. This is a work in progress. This is
planned to be finished for December 2013.

The degree 6 extension is a combination of a degree 2 extension on top of a degree 3 extension. We
will use these notations.

Fpo ~ FplU]/(U®-p) FP12| ~ FlZ]/(Z2>-Y)
‘| Fpo ~ FpY]/(Y3-p)
| or 3| (3.6)
Fpo =~ Fp[X]/(X?—a) Fo =~ Fp[X]/(X*—a)
2 ‘ P |
Fp F,

The polynomial X? — « is irreducible over F,, the polynomials Y* — g and U® — B are irreducible over F
(this is the same g € I») and 7% — Y is irreducible in F pe- The correspondence from a representation to
another one is the following. We represent an element in F 1> as

u = uy + ugU + upgU? + usU® + ugU* + usU° € ]sz[u]/(uﬁ — B ui €Fp.
WithY = U?and Z = U, u € F 6 [Z]/(Z% —Y) is also
u =199+ v1Zwithvg = ug+ upY + u4Y2 € Fpe,ui € sz and v1 = uq + uzY + u5Y2 e Fps,u,' c sz .

If g = 1 mod 3 then we can build a degree 3 extension with a binomial of the form Y3 — B. Since g = p?
we actually have g4 = 1 mod 3 and we build F 5 ~ Fy[Y]/ (Y3 — B). An element a € F s is of the form

a=ag+aY +aY?> mod Y3 — B witha; € IF 2. We use this theorem to find a tiny non-residue € F

in order to build F 1> = F [U]/(U® — B). Finding B is completely straightforward with Magma but we

need to be able to find it with the functions available in the LibCryptoLCH.

Theorem 14 ([BS10, Th. 4]). Let m > 1,n > 0 be integers, p an odd prime and a € IF;,,. The binomial X" — o
is irreducible in IF yn [X] if the following two conditions are satisfied:

1. Each prime factor d of m divides p — 1 and Normg , /r, (a) € Fp is not a d-th residue in Fp;

2. If m = 0mod 4 then p" = 1 mod 4.

Thanks to this theorem (with n = 2,m = 6), to test if for a given p € I, the polynomial us — Bis
irreducible, we need to
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— check that p = 1 mod 6;

— compute N = Norm]Fp2 s, (B);
-1

3

p-1
—check’chatNﬁ2 ;élandNﬁ # 1.

This is easily achieved with the LibCryptoLCH functions available in the Modular and Quadratic pack-
ages.

We now give our arithmetic for Fs ~ F 3.

a= a0+a1Y+a2Y2, b= b0+b1Y+b2Y2, r=rp +71Y+1’2Y2

Multiplication: Karatsuba—-3 Squaring: Chung-Hasan-2
r = a-b r = a2
0p = Ll()bo so — LI%
v = mb s1 = 2a0m
vy = @b so = (ap—ay+ax)? (3.7)
ro = vo+B((a+ax)(br+b)—v1—v2) 53 = 2ma
r1 = (ao+ay)(bo+by) —vo —v1 + P2 sy = a5
ro = (a0 +a2)(bo+b2) —vo+v1— 02 ro = So+pss
rn = S+ ,854
rp = S1+S2+83—5)— 84
6M,, + 15Addpz +2M, 2M2 +35,2 + 12Addpz +2Mg

The multiplication and squaring in IF ¢ are composed with the formulas for quadratic and cubic exten-
sions. The costs of these operations are explained in Tab. 3.1 and Tab. 3.2. Other implementations suggest
to use the Toom-Cook-3 method. This method is based on evaluation then interpolation. The drawback
of this method is the need of division by small constant numbers such as 2,3. We have chosen to use the
formulas which do not need divisions by small constants.

F 12 M2 M2
2| Karatsuba—2
]Fpe 3Mp6 + 5Ape + 1My Mpe Mpe
3| Karatsuba-3
sz 6Mp2 + 13Ap2 +2Mg Mpz
2 | Karatsuba-2
F, 3M, +5A, + 1M, | 54M, | 18M,
Table 3.1: Multiplication in ]Fpu and Fp6
IE‘;,)12 Sp12 Sp12
2 | Complex-2
Fpé ZMP6 + 4A}76 + 2My Sp6 Spﬁ
3| Chung-Hasan-2
]sz ZMpz + 35p2 + 10Ap2 +2Mg sz
2| Complex-2
F, 2M, +4A, +2M, | 36M, | 12M,

Table 3.2: Squaring in I 1 and IF 6

With this efficient arithmetic on extension fields we can now implement a pairing on a Barreto-Naehrig
curve. The pairing operations take place in Fy, F» and F 1o
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3.2 Implementation of ate and optimal ate pairing on a BN curve

In this section we explain step by step the implementation of a state-of-the-art pairing on a Barreto-
Naehrig curve. We recall in Sec. 3.2.1 the steps of the advances of the library development. Then we state
the general algorithm to compute a pairing. The two main parts of a pairing computation are the Miller
loop (Sec. 3.2.2) and the final exponentiation (Sec. 3.2.3). We finish with our timings in Sec. 3.2.4.

3.2.1 Starting point

The work presented in this section started in Master’s internship in 2010. A Tate pairing on a supersin-
gular elliptic curve and on a BN curve was implemented in the cryptographic library. The implementation
is explained in the introduction (see 1.4). The arithmetic efficiency of the extension field was improved,
as well as the Tate pairing computation and the final exponentiation. Finally an ate and an optimal ate
pairings were added to the LibCryptoLCH. Now the optimal ate pairing computation is four times faster
than the Tate pairing computation of 2010 (both on the same BN curve). The ate and optimal ate pairing
implementations are explained in the following.

12
Algorithm 13: Tate pairing erae (P, ¢6(Q)) %5 ona BN curve
Input: E(F,) : y> = x> +b, P(xp,yp) € E(F,)[m], Q(xq,yo) € E (Fp2)[m], m, t, x
Output: epye (P, ¢6(Q)) € p1,,, C IF;H

IS(X52Y52ZS)<—(JCP2]/IJ21>

2 f+1

3 fori < |log,(m)| —1,...,0do

s | (S,0) < g(S,Q) (see (1.33), (3.8)) 10M,, + 55,

5 | f < f%-{(see(3.15) and Alg. 15) S,12 +10M,2 +6Mp = 72M,

6 if m; = 1 then

7 (S,0) < (S, P,Q) (see (1.34), (3.9)) 11M, + 35,

8 f < f- £ (see (3.15) and Alg. 15) 10M},2 +6M, =36M,
Miller loop: log, m - (82M,, +5S;,) + HW (m) - (47M, + 3S)

9 f fr°-1 BM,s +2S 6 + 10M 2 + 35 2 + 2M), + 28, + I, = 116M,, + 25, + I,

10 f frrl 8My + M2 = 64M,

pr-p?+1
1 f< fm (see Alg. 16)
(54(HW(t) + HW(J6x +5])) 4 18(log(t) + log(|6x +5|)) + 763) M,
12 return f

The difference between Tate pairing and ate pairing is firstly the swap of the two inputs points. Instead
of computing a Miller function fp,,(Q) over P € Gy C E(Fy)[m] evaluated at Q € G, C E(F)[m], an ate
pairing consists of a Miller function f;_1(P) over the point Q, evaluated at P. We compute in particular
[t —1]Q with Q of coefficients in IF >, instead of [m]P with coefficients in ;. This function is nevertheless
more efficient because of the reduced length from m to t — 1. On a BN curve, the trace t has half the size of
m. In this section we will explain the line an tangent computations for ate pairing (variant of Alg. 13 line
4 and 4) and the line multiplication ¢ - f optimized for sparse elements £ of IF ;1> (variant of Alg. 13 line 5
and 8). The final exponentiation uses exactly the same exponent for Tate, ate and optimal ate pairings. A
practical improvement of this exponentiation was proposed in [G510, DSD07]. We will recall this faster
exponentiation and explain our implementation.

3.2.2 Line and Tangent Computation

In this section we explain the computations of lines and tangents. The intermediate functions denoted
g and h in Alg. 18 contain the doubling (g) and addition (k) of points and the coefficients of the line
through the considered points. We re-use the functions g and / of Tate pairing computation from Alg. 8
and Alg. 9 in Sec. 1.4.4.2. We denote by /1 the line through T € G, and Q € G; and by /7, the
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tangent line at T € G. The line is evaluated at P € Gy with coefficients in F,. We will use the twist
map to obtain for £ a sparse element in IF 1> and to save multiplications in the step following the line
computation. We now give the formulas for doubling T, with T in compressed form thanks to a degree-6
twist. We recall that two twists are possible for a BN curve E : y?> = x3 + b. Its degree-6 D-twist over F
isE : y? = x3 + b/ B (D stands for division by p). Its degree-6 M-twist is E': y? = x3 + bB (M stands for
multiplication by p) with p a non-square and non-cube in IF . With a D-twist and a twist map denoted ¢,

we have ¢4(T') = (X’T uz, Y’TUB’, Z’T) ~ (X’T, Y’T, Z’T/U) in Jacobian coordinates.

Doubling on the twist E with d = a/u4 # 0 and Doubling witha = 4 = 0 and
T(Xy, Yy, Z) 225 (X, Yy, Z0 /) T (X7, Yy, Z7) *;”)‘“ (X7, Yy, Zp/U)
f, = 2Y’T2 o= 207
o= 2Xph o= 2Xrh
t, = 2t7 ty = 267
! / ! ! o /2 /2 2
fy = ZT2 —>ZT2/U2 ty = Zf — Zf/U
t; = 3X7 +at2—>3XT+u/U4t2U4 3X7 +at? ts = 3Xf

Xop = 1221 Xop = 1221
/ ! ! / ! / ! / / !

Yor = ts(fz - Xor) ey Yor = t5(,t2 - Xor) ey

Tor = 2Y0Zp —2YpZn/U Zor = 2YpZp — 2YpZo/U

cost: 4Mp2 + 6sz + 11Addpz cost: 3Mpz + Ssz + 10Addpz

(3.8)

.. / / / / / / / t t / / /
Addition T' (X7, Y7, Z1), Q (X, ¥o) V;‘S (X7, Yy, Zp/U), Q (x U2,y UP)
= ZT — Z2/U?

t, = ZTt1—>Zt/U
t, = th1—>xQU tl/Uz—thl
!
tfl = yQt2—>yQU tz/LI —yQtz
s = XT
te = tf12 Y (3.9)
t, = f7
ty =I5ty
h = Xty

Xpop = 12— (tg+2t)

Yrip = toty = X, p) = Yrig

Zr.p = Zpts— Zpts/U

cost: 8Mpz + Bsz + 7Addpz

We now explain the line and tangent computation. We start from the same doubling and addition
formulas ((3.8) and (3.9)) and the line and tangent computations from (1.33) and (1.34). This time, the
line is through points in G, and evaluated at a point in G;. In the doubling and addition formulas we
represented the coefficients with U € F 12 but in practice these computations are entirely performed in
F,2. The computations in F 1, are for the line multiplication. The same font and color code is used.
Elements in the finite field F; are in black, those in IF > are in gray and bold font and the elements in F >
are in dark gray and bold font. We start with

o (xy) = 2V Ziy — 2V — (3X7 +a Z1) (Zfx — X7) .

The twist map is
4’6(T ) = 4’6(XT/ YT/ZT) = (XTUZ/YTU3,ZT) = (XT/ YT/ZT/U) .
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/ .
Moreover a = 0 so we obtain

’3 2

/ / ’ / Z
— T 2 3 27T
6476(,1,/),476(,’,/) (x, y) — ZYT my - ZYT + 3XT - 3xXT W
1 / / / 4 ! /
- 5 [2YTZT3]/ +(—2v2 4 3X2)UB — 3xXTZZT?U}
1

_ / / / / / 3 ’ !
= 5 {yt4ZZT—|—(—t1+t5XT)LI —t5t4xu} :

And we finally get after the final exponentiation
0= (t5Xp — £)UP — tstyxU + yty Zor . (3.10)

Note that if we use the second form of the twist, namely E’ (qu) : y?> = x% + bB instead of E (qu) :

y2 = x3 + b/ B, the computation of ¢ becomes ¢g(T" ) = (X;, Y;, Z;U) (we have Z;U instead of Z’T /)
and
o " " 3 - non 2 " " B "
€¢6(T/I)/(P6(T//)(x,y) — yt4 ZZTU t5 t4 XU + (tS XT tl ) . (311)
The line computation for an ate pairing is the following.

4

by oY) = Zpo/Ulyp - YoUP) — (Yo Z — Yp) (xp — X U?)
’ ) — Zi o Y’ 3\ / —Xl >
Z%(T )96(Q )(x’y) /l+/Q/2U(y / Ql{ )2 te(/x ‘?U )
teXoU" = Zp oYU — tgx + ZT+Q/U3/

’

= 1 [(t6XQ — Zyp Yo )UP — tall + ZHQy}
Then after the final exponentiation we get

R ’ ’ 3 ’ ’
E(Pé(T/),(Pﬁ(Q/)(x’y) = (t6XQ — ZT+QYQ)U — t6xU —+ ZT+Qy . (312)

If the second twist is used, we have ¢4 (T") = (X;, Y;, Z;U) and the line computation is

1 ’ ! ’ ’ ! 2 ’ 3
Lo (Y FY) = 1 [(t6XQ — Zy oY) — texU” + Zy oyl
Then after the final exponentiation,

. ’ ’ / ’ ’/ 2 ’/ 3
E%(T’),%(Q/)(x’y) = (t6XQ — ZT+QYQ) — t6xu + ZT+Qyu . (313)

In both cases (addition and doubling), the line £ is a sparse number of F,.; of the same form: ¢ =
o+ U+ zUP and ¢y = ¢y = 05 = 0 for a D-type twist. We implement a dedicated multiplication in
IF 12 of a line £ of this form and another element f € F 1> (not sparse). Instead of 18M,» this multiplication
costs 13M,,,. We save 5M,» = 15M,, at each line multiplication. We note that the line for the ate pairing on

a BN curve curve with a D-twist (i.e. E : y? = x> + b/ B) has the same sparse form ¢y + {1 U + ¢3U° as the
line for a Tate pairing on a BN curve but with an M-twist, i.e. E': y? = x3 + bB. In our implementation
we developed two specific line multiplication functions. We give the pseudo-code in Alg. 14 for a D-type
twist and Alg. 15 for an M-type twist. The only improvement compared to e.g. [GAL"12, Alg. 5] is the
number of additions. In our algorithm for a D-twist we perform 25 Add,» and 3 multiplications by S
followed by and addition, so 28 additions. In the above cited paper their Alg. 5 needs 44 additions in F .
Both algorithms need 13 multiplications in IF ».

The line multiplication for a Tate pairing computation with an M-type twist uses the same algorithm
(Alg. 14) but the coefficient {y is in I, instead of I ,», we need 2 M), to multiply ¢y by any f; (instead of
M,2). The final cost is 10M,,» 4+ 6M), instead of 13M ». We save 3M, assuming that M > ~ 3M,. We give
in eq. (3.14) the schedule of the function.
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{ = £0+€1U+€3U3
f = fo+f1U+f2u2+f3u3+f4u4+f5u5
h = f-€=ho+hU-+hU?+ haU® + hyU* + hsU®
l1fs
o fo
l3f3
hy = Lofo+ B(lifs +L3f3)
lf1
U314
hy = (bo+0)(fo+ fi) —Llofo—bifs+Blsfa (3.14)
lof2
l3fs
hy = lofa+4t1fir+ Blafs
l1f2
hs = bfr+ (bo+6)(fo+ f3) — lofo — lafs
bofa
hy = lofs+(b+0)(fr+f3) = lifi —laf3
lofa +lifo+Llifs +lafa+Lof2+ L3fs
hs = (bo+b+6) (ot fatf5) = (bofs+bfo+ bfs +lfa+lofa+ Usf5)

We found another optimized line multiplication for the second form of twist (denoted M-twist), in
13M,> 4 21Add + 4(Mg + Add). This function can be used to compute a line multiplication for a Tate
pairing with a D-twist, in 10M,> + 6M,, instead of 13M,» because in this case, (o is in ') instead of F .

0 = ly+ LU+ 6U°
f fo+ il + HLU? + f3U3 + fLU* + fsU°
h f -l =hy+h U+ hU? + h3U3 + hyU* + hsU®
o fo
1230
l3fs
hy = Blsfs+ (bo+L2)(fo+ f2) —bofo — L2f2
lofs
l3f3
ho = Llofo+ B(lafs+L3f3) (3.15)
b f
hy = bfi+ (lo+0)(fo+ f3) —lofo— ls3f3
o fy
l3f1
hy = lbfs+4lofs+ 3
bofs
hs = Lofs+ (la+43)(f2+ f3) — Lafo — {3 f3
(bo+ b+ L3)(fr +B(fa+ f5))
h = (bo+Lla+b)(fr+B(fat f5)) — Bllofa+ bofs + Lafa+ Usfs) — bafi — lafa

3.2.3 Final Exponentiation

We present the final exponentiation in Alg. 17. A well-known trick is to decompose the exponentiation
into 6
1o
— (péfl) p°+ lZ(P)

| — (b — 2 pt
p o) m PN

_P2+1
m

with ¢12(p) = p* — p? + 1 the 12-th cyclotomic polynomial. The computation of f (P°*=D(P*+1) is decom-

4_ 2
posed with the Frobenius map. The computation of f P2 is the most expensive part. Firstly we can
use the optimized squaring formulas of Granger and Scott [GS10] after performing f <« f (PP (p?+1),
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Algorithm 14: Line multiplication in ate pairing for a D-type twist E: v =x3+b/p

O NN U R WN =

R B W W W W W W W W W WN NN DNDNDNDNNRNDD = e e e e e e e e
N = © © 0 N & U kB W N = © O 0 N9 O U kB W IN =OCOW o N3 & U B W IN = O

Input: line £ = o + (1U + (3U° € F 12, with l; € F 2, element
f=fot+ AU+ LU + fUP + fLU* + fsU5 € F 2 with f; € F 2.

Output: h =/¢- f € Fplz.

so < Lo+ fo
s1 b fi
S3(—1€3~f3
Mo(*f1-f5
Uy < ug +s3
ho(—So-F,Bu]
Ml(—go—i‘gl
up < fo+ f1
Uz <— U1 - Up
Up < Uz — 5o
Uy < U1 — 51
up <3 fa
hleuz—i-,Bul
Uy < ug + Uy
Llo%fo'fz
Uy < ug+ 51
Uz < Ug + Up
up < 43 fs
h2<—u1+,8u0
Uq < Uy + Uz
ug < o+ 43
u2<—f[)+f3
Uz < Ug - Up
Ug < Uz — S
Uy < Uy — S3
M3%€1'f2
h3 < uy + us
Ug < Uz + Uy
Uy < 01+ 43
up < fi+f3
Uz <— U1 - Up
Uy <— U3z — 51
Uz < Uy — S3
up < Lo fa
hg < uz + up
Uz < Uy + U
ug < up + £y
u2<—f2+f4
u1<—u2+f5
Up < Up - Uq
h5<—u2—u3
return h

up =Llifs +43f3
ho = Lofo + Bl fs + laf3)

uz = (bo+ 1) (fo + f1)
uy = (o + 1) (fo+ f1) — Lofo
up = (o +£1)(fo+ f1) — lofo — t1f1 = Lof1 + Laifo

hy = lof1 + b1 fo + Blafs
uy = l1fs +03f4

‘Lll = €0f2 + Elfl
Uz = Kofz + €1f5 + f3f4

hy = Lofo + U1 f1 + Blafs
up = L3fs +Lofo + l1fs + {3 fs

uz = (o +£3)(fo+ f3)
up = (Lo +43)(fo+ f3) — Lofo
uy = (Lo +£3)(fo + f3) — Lofo — Lafs = Lofz + L3 fo

hs = lofs + L3 fo+ (i f2
Uy = fflfz + f3f5 + fofz + flf5 + fgf4

uz = (01 +43)(f1 + f3)
up = (b +43)(fi+ f3) = 1fi
ug = (b1 +0)(fi+ f3) = lifi — lafs = l1fzs +L3f1

hy = lofs + U1 f3 + (3 f1
us = Llofs +l1fo+lafs +lofo +l1fs + U3 fs
ug =y + 01+ 43

uy=fo+fa+ /s
up = (Lo + L1+ £3)(f2 + fa + f5)

13Mp2 + 3Mﬁ + 18Addpz + 7Subp2
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Algorithm 15: Line multiplication for an M-type twist E" : y2 = x3 + b - B

O 0 NN U R W N =

R B W W W W W W W W W WNNNDNRNDNNDNRNDD = e e e e e el e e
N = © O 0 N9 & U b W N = © O 0 N & U b W N = O VW 09 & U & W N = ©

Input: line £ = (o + LLU? + 43U° € Fplz, with ¢; € sz, element
f=/ +f1u+fzu2 —|—f3u3 +f4u4 —|—f5U5 € Fplz with f; € sz.

Output: h = (- f € Fpo.

ug < Lo+ 4
up < fo+ f2
U < Ug - Up
Mo(*go'fo
Uy <Ly fo
Uy < U1 — Up
Up < Uy — Up
u4<—€3-f5
hy < uy +,Bu4
Uuq <‘£2'f4
uz <Lz f3
Us < Uy + U3
hoy < ug + Bus
Us <— U+ Uy
uy < Lo+ 43
u4<—f0+f3
Ug <— U - Uy
Up < Ug — Up
Ug < U1 — U3
Uuq (*Ez'fl
h3 < u1 + ug
ug < Lo fa
Up < Us + Uy
Us < Uy + Uy
M4<*£3'f1
hy < ug + us
Us < Uy + Uy
uy <o+ fs
Uy < U1 — Up
Up < Uy — U3
u3<*f2+f3
uy <+ 43
Uy < U3 - Uy
hs < ug + us
Uy <— UL+ Ug
ug + Lo+ uy
u4<—f4+f5
up < f1+ Pug
Uy < Ug - U
Ug < Us + Pua
I’ll < Uy — Ug
return h

ur = (b + £2)(fo + f2)

ug = (bo + £2)(fo+ f2) = Lofo
uy = (bo+02)(fo + f2) — bofo — L2f2

hy = (Lo + 02) (fo + f2) — Lofo — Lofa + Blafs

Us = €2f4 + f3f3
ho = o fo+ B(lafs + 3f3)
= lofs+{3fs

ue = (bo+£3) - (fo+ f3)
ur = (bo+43)(fo+ f3) — lofo
ug = (Lo +£3)(fo+ f3) — lofo — laf3

hy = bft + (Lo +43)(fo + f3) — Lofo — L3 f3

ue = lofa +lofs +l3fs
us = lrfo + 4o fs

hy = lfi+ Lafs + Lo fa
Us = /’%fl + F/Zfl

ug = Llofs — lafs
up = lofs — lofs — l3f3

up = (fz +f3)(f2 + «ﬂg)

hs = lofs — Lafa — lafs + (fa + f3) (L2 + €3)
up =Lofs + lofs+ lofs + {3fs

ug = (Lo + lo + £3)

ug = f1+B(fa+ f5)
ug = (bo+ Lo+ 03)(f1 + B(fa+ f5))
ug = (lofi +Laf1) + B(lofs + Lofa+ laofs +f3f5g

hy = (bo+ o+ 6)(f1 + B(fa+ f5)) — B(lofs + Lofs + bafs + Usfs) — (bafi + L3 f1
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Secondly we use the decomposition of the exponent (p* — p? + 1)/m in terms of p(x), x developed in
[DSDO07]. We recall that for a BN curve, the parameters have the form

m(x) = 36x*436x3 +18x% +6x +1
p(x) = 36x* 4 36x> +24x% +6x +1

with x taking positive or negative values. Then

(p* —p*+1)/m P>+ (6x% +1)p? + (—36x% — 18x% — 12x + 1)p — 36x° — 30x% — 18x — 2
f(p4fp2+l)/m _ (fp3) . (fp2)6x2+1 . (fp>736x3718x2712x+1 _f736x3730x2718x72

(3.16)

and finally the two exponentiations with large exponent in the right-hand side are optimized as shown in
Alg. 16. A step-by-step description is given in Alg. 17 with the cost of each operation. The cost of this final
exponentiation is I,, +2S, + (872 + 54(HW(s) + HW(t)) + 18(log(s) + log(t))) M, with I, an inversion
inF, and s = |6x + 5|. For example at a 128-bit security level, the parameter x is 63-bit long. We can
approximate log(s) = 66 bits and log(t) = log(6x? + 1) = 128 bits. We can assume that the Hamming
weight is approximately half the size of the numbers s and t. Then the cost of the final exponentiation is
in average I + 2S5, + 9602M,,.

Algorithm 16: Final Exponentiation on a BN curve, last part, [DSD07]

Input: f € F 1o, xand p

pr-p?+1
1

Output: f
1 if x < 0 then
2 | ac ol

S ]Fplz

3 else
4 a4+ f6x+5
5 L a < a”’ (Frobenius, free)

log([6x + 5[) M 12 + HW([6x + 5[)S 12
6 b < a? (Frobenius) 5M,»
7 b+ ab Mplz
8 Compute fp,fi”2 and f"’3 (Frobenius) 5M,> +8M)p + 8M,

6x%+1

o f e (b (2] b (7 ) £ (54HW(£) + 18log(t) + 663) M,
10 return f

(54(HW(t) +HW(|6x +5|)) + 18(log(t) + log(|6x +5[)) + 763) Mp

3.2.4 Performances for Tate, ate and optimal ate pairings on BN curves

We can now present the complete optimal ate pairing algorithm in Alg. 18. The Miller loop needs the
functions f and g of line an tangent computation. The accumulation of lines is described step by step in
Alg. 14 and Alg. 15. The first algorithm is an optimization from 54M,, (generic multiplication in F 12) to
39M,,. Itis valid for a pairing with a compression of the second input point with a degree 6 twisted curve
of the form E' : y? = x3 + b/ B with B a non-square and non-cube in F 2. This twist is named D-twist (for

division by B). The second algorithm is designed for a twist of the other type, i.e. E' : y? = x> + bp.
This twist is named M-twist, for multiplication by B.

We present in Tab. 3.3 our running times for a Tate, an ate and an optimal ate pairing on the same BN
curve. The code was run on a Xeon E5530 PC with x86-64 Intel processor.
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Algorithm 17: Final exponentiation on a BN curve

Input: x defining the curve parameters, sign(x), t trace of the curve, f € F i

Output h f [
1 fo = [P

2f<_fp+1

EGT

I, +116M, + 25,
f=fP0EH: 8M, + Mo

Now we can use the optimized formula Sg, (,,2) ~ 18 M), instead of 5,12 ~ 36 M),

if x > 0 then Compute ( f6l+5) 1

4 s<6x+5

5 f3 ¢ f° fz = f0%"3: log, (6x + 5)Sq () T HW (6x +5)Mp
6 _‘”_f:f6 Norm(f)flthenf3 =

7 else (i.e. ¥ < 0) Compute f01¥1-5

8 | s« 6|x|—

o | acf a = %5 10gy (6] x| —5)Sg,(p2) + HW(6]x] — 5) M,
10 f3 < a” f3= f(éx—S)p: 5Mp2
1nb«a-f; b= fox=5. f6x=5)p — f(ex=5)(p+1); M,
12 f1 + fF 5M,,
1B fr <—fp2 8M,
u fo e f7 fs = f": 8M,
15 f4 «—a-b Mplz
6acb-f a=b-fr: My
v fo+ f fo= (") Say 2
18 b+ f1 f b= f f M p12
19 fis fora fi=(f7)? '(b'fpz)iMlz
0 a« f! = [(f")2- (b f7)]5+1: log, (H)S ey, ,2) + HW(£) M,
2 fatfoa fa= 7[R (b f7)0H: My
= fLefofi fr= AP (0 fPNE b My
23 fr + b? fo= (" )% So2)
u fy f? 5%(’72)
5 f3 f3 f3=(f7 - )% Soy2)
w1 e
27 fo <—f§ fr=(fP- £k 5%(’72)
28 fy < fi1-a fo= AP (P2 (b 7)) g b Mz
» fobfo fo= (70 (7P = (£ )’ Myra
0. fa fo B=(F7 )0 F2 F7 1) (b 7)) 0 b M

(HW(t) + 10)M,12 + (log t + 6)Sg, (2) + 10M2
h

+16M, = (54HW(t) + 18log(t) + 694) M, return

with s = |6x 45, I, + 25, + (872 4+ 54(HW(s) + HW(t)) + 18(log(s) + log(t))) M
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12

Algorithm 18: Optimal ate pairing eopt ate(P, ¢6(Q)) #  on a BN curve

Input: E(F,), P(xp,yp) € E(Fp)[n], Qxq,y0) € E (F,2)[n], ¢, x
Output: egpt ate(P,¢6(Q)) € p, C F;lz

1 R(XRZYR:ZR)%(XQ:]/QZZL)

2 f+1

354 6x+2

4 form < |log,(s)] —1,...,0do

5 (R,¢) < g(R,P) 6M,> 455> +4M), = 32M)

6 | fe f24 Sy +13M,2 = 36 +39 = 75M,

7 if s, = 1 then

8 L (R,¢) < h(R,Q,P) 10M,2 + 35,2 4 4M), = 40M)

9 ff0 I3M 2 = 39M),

10 Q1 < 7p(Q) M2 = 3M,

1 Q)+ ﬂpz(Q) 2M,

12 (R,¢) < h(R,Q1,P) 6M,> + 55> + 4M, = 32M,,

13 f fol 13M,> = 39M,

14 (R,¢) < h(R,Q,, P) 6M,2 + 55,2 +4M) = 32M)

15 f« f-4 13M,> = 39M,

line 10 to line 15: 147M,,

Miller Loop: 147M, + log, (6x + 2) - 107M, + HW (6x +2) - 79M,,

16 f fP6_1 3My6 + 25,6 +10M > 4 352 + 2M) + 25, + I = 116Mp + 25, + I

1 f frrl 8My + M2 = 62M,

18 if x < 0 then

19 L a < folI=5 10g, (6x + 5)Sg, (2) + HW(6x + 5)M 12

20 else (/" = 1)
21 L a4+ (fp6)6x+5

2 b af 5M,> = 15M,
23 b < ab Mpl2 = 54M,,
24 Compute f7, f** and f7° 5M,2 + 8M, + 8M, = 31M,
25 ¢ b (fP)2- fP° Sarg(p2) T 2M,12 = 126M,
26 ¢ < O +1 log, (6x2 + 1)Sapg(p2) + HW (6x? + DM,
27 f fPocb-(fP-f)°-a-fr TM o2 + 58 g, (2) = 468Mp

Exponentiation f < f<i’6_1)<P2+1)(}74—P2+1)/”:
(872 + 181og, (6x + 5) + 54HW (6x + 5) + 181og, (6x2 + 1) 4+ 54HW (6x% + 1)) M, +2S, + I,
28 return f

Table 3.3: Benchmarks for Tate, ate and optimal ate pairing on a BN curve, with F, ~ I, [X]/(X?+1),
F o ~F[U]/(U° - (X +2)).

p p
| log p, klog p, equiv. AES || 256, 3072, AES-128 | 640, 7680, AES-192 | 1280, 15360, AES-256 |
Miller Loop 2.35ms 18.4 ms 109.2 ms
Final Exp. 2.70 ms 15.8 ms 75.5 ms
Optimal ate pairing 5.05 ms 34.2 ms 184.7 ms

96



3.3. Pairings on Composite-order Elliptic Curves

3.3 Pairings on Composite-order Elliptic Curves

We presented our efficient implementation of pairings in Sec. 3.1. In this section we will study and
implement (based on the work of the preceding section) a new tool on pairing-friendly groups. This tool
uses composite-order pairing-friendly groups. We will outline the key ingredients of this tool. We then briefly
introduce three major protocols based on this tool we will more deeply study in this section. Finally we
will discuss about the parameter size issues in this setting.

We start by an analogy with Joux’s key agreement from Diffie-Hellman key exchange. These two key
exchanges are presented in the introduction in Sec. 1.1. The principle in Joux’s key agreement is to send
over an insecure channel only partial pieces of information, namely the g,, g5, 3 and compose the secret
e(g, )" thanks to the bilinear map. We denote the bilinear map by e : G x G, — Gr (as previously).
The new idea introduced in composite-order bilinear groups is that the three bilinear groups G; have a
composite-order N, however the factorization of N into p; - p> is a secret information. This permits to hide
an information into a prime-order subgroup G ;) of G;. Because the factorization of N is not publicly
available, the global information in G; cannot be decomposed into the private information in G,,) and
the hiding term in G ,,,).

We now present the three papers we will study and implement in the remainder of this section. In
2005, Boneh, Goh and Nissim [BGNO5] introduced the first public-key homomorphic encryption scheme
using composite-order groups equipped with a pairing. The scheme enables several homomorphic ad-
ditions and one multiplication on few bits. The security relies on the subgroup decision assumption.
Decryption time grows exponentially with respect to the input size so this approach for homomorphic
encryption is not yet very practical for large data. However the idea was developed for other interests.
We refer to Sec. 3.3.4.1 for more informations on BGN. In 2005, a Hierarchical Identity Based Encryption
(HIBE) was proposed by Boneh, Boyen and Goh [BBG05]. It relies on the ¢-bilinear Diffie-Hellman expo-
nent assumption. In 2009, Waters introduced the Dual System Encryption method [Wat09], resulting in
very interesting properties for security proofs. In 2011, Lewko and Waters published [LW11] a HIBE rely-
ing on the subgroup decision assumption. HIBE has become very practical in the sense that the maximal
hierarchy depth is not static i.e. can be augmented without resetting all the system parameters. We refer
to Sec. 3.3.4.2 for more details.

The subgroup decision assumption is that given a group G of composite order p;p» = N (e.g. an
RSA modulus), it is hard do decide whether a given element ¢ € G is in the subgroup of order p;
without knowing p; and p,. N must be infeasible to factor to achieve this hardness. This results in
very large parameter sizes, e.g. log, N = 3072 or 3248 for a 128-bit security level, according to NIST
or ECRYPT II recommendations. Moreover, the pairing computation is much slower in this setting but
exact performances were not given yet. To reduce the parameter sizes, Freeman [Frel0] proposed to use
a copy of the (e.g. 256-bit) same prime-order group instead of a group whose order (of e.g. 3072 bits) has
two or more distinct primes. His paper provides conversions of protocols and in particular of the BGN
scheme, from the composite-order to the prime-order setting. Then Lewko at EUROCRYPT'2012 [Lew12]
provided a generic conversion. These conversions achieve much smaller parameter sizes but have a
drawback: they no longer require only one but several pairings. More precisely, Lewko’s conversion
for the HIBE scheme needs at least 21 pairings over a prime order group (of e.g. 256-bit) instead of one
pairing over a n-prime composite order group (of e.g. 3072-bit).

The translated protocols remain interesting because it is commonly assumed that a pairing is much
slower over a composite-order than over a prime-order elliptic curve. An overhead factor around 50 (at
an estimate attributed to Scott) was given in [Frel0, §1] for a 80-bit security level. A detailed and precise
comparison would be interesting and useful to protocol designers and application developers.

Composite-order pairing-friendly groups require larger parameter sizes because they rely on the dif-
ficulty of the factorization problem and there are specific methods to attack it. The Number Field Sieve
(NFS) algorithm is the fastest method to factor a two-prime modulus. Lenstra studied carefully its com-
plexity and made recommendations. Lenstra stated that at a 128-bit security level, an RSA modulus can
have no more than 3 prime factors of the same size, 4 factors at a 192-bit level and 5 at a 256-bit level
[Len01, §4]. We complete his work to obtain the modulus sizes with more than two prime factors, at these
three security levels. We then find supersingular elliptic curves of such orders and benchmark a Tate pair-
ing over these curves. We also implemented an optimal ate pairing over a prime-order Barreto-Naehrig
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curve, considered as the fastest pairing (at least in software). With these timings, we are able to estimate
the total cost of the protocols in composite-order and prime-order settings. We then compare the BGN
protocol [BGNO5] in the two settings and do the same for the unbounded HIBE protocol of Lewko and
Waters [LW11] and its translation [Lew12, §B].

Sec. 3.3.1 presents our results on the modulus sizes with more than two prime factors, at the 128, 192
and 256-bit security level. In Sec. 3.3.2, we present the possibilities to construct pairing-friendly elliptic
curves of composite order and our choice for the implementation. We develop a theoretical estimation of
each pairing in Sec. 3.3.3. Our implementation results are presented in Sec. 3.3.4. This work was presented
at the ACNS’2013 conference [Guil3]. Updated key size and benchmarks are reported here.

3.3.1 Parameter sizes

In this section, we extend Lenstra’s estimates [Len01] to RSA modulus sizes with up to nine prime
factors. We present in Tab. 3.4 the usual key length recommendations from http://www.keylength. com.
The NIST recommendations are the less conservative ones. A modulus of length 3072 is recommended
to achieve a security level equivalent to a 128 bit symmetric key. The ECRYPT II recommendations are
slightly larger: 3248 bit modulus are suggested.

Table 3.4: Cryptographic key length recommendations, January 2013. All key sizes are provided in bits.
These are the minimal sizes for security.

Sym- Discrete Log | Elliptic | Hash

Method Date . | Asymmetric .

metric Key | Group | curve | function
Lenstra / Verheul [LV01] 2076 129 6790-5888 | 230 | 6790 245 257
Lenstra Updated [Len04] 2090 128 4440-6974 256 | 4440 256 256
ECRYPTII (EU) [oEiCI11] | 20312040 | 128 3248 256 | 3248 256 256
NIST (US) [NIS11] > 2030 128 3072 256 | 3072 256 256
FNISA (France) [FNI10] > 2020 128 4096 200 | 4096 256 256
NSA (US) [NSA10] - 128 - - - 256 256

RFC3766 [OH04] - 128 3253 256 | 3253 242 -

We explain here where these key sizes come from. The running-time complexity of the most effi-
cient attacks on discrete logarithm computation and factorization are considered and balanced to fit the
last records. We consider the Number Field Sieve attack (NFS, see e.g. [LL93] for an overview) whose
complexity is given by the L-function [Len01, §3.1]:

Lia =1, c = (8)V3(N) = exp(((64/9)1/3 +0(1)) (log N)'/3(log log N)2/3) (NFS) (3.17)

and we consider its logarithm in base 2:
log, L{w, c](n) = (c +0(1)) n*logy *(n1n2) (3.18)

with n = log, N. We also consider the Elliptic Curve Method (ECM) that depends on the modulus size
and on the size of the smallest prime p; in the modulus. This attack is less efficient for a modulus of only
two prime factors but become competitive for more prime factors. We consider that all the prime factors
pi have the same size. The ECM complexity is [Len01, §4]

Ela = %,c = \@}(N, pi) = (log, N)2 exp<(\@+ 0(1)) (log pi)1/2(loglog pi)l/2> (ECM). (3.19)
We have also

log, Ela, c](n,£) = 2log, n + (c +0(1)) *logs *(£In2) (3.20)

with n = log, N and ¢ = log, p;. To estimate the required modulus size, we compute the logarithm in
base 2 of the L-function (3.18) and translate it such that log, L[c, «](512) = 56 (estimations in [Len01, §3])
or log, L[c,a](512) = 50 (Ecrypt recommendations [0EiCI12, §6.2.1]). We obtain é = —14 for the first and
6 = —8 for the second. Fig. 3.3.
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RSA Modulus size 7 in bits

Figure 3.3: Estimated complexity of RSA modulus factorization with NFS method
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Figure 3.4 presents the records of RSA modulus factorization and an interpolation according to [Len01,
§3] by a Moore Law doubling every nine months.

We translate slightly the results on ECM complexity with recent records. We take the record of R.
Propper of September 2013 (http://www.loria.fr/~zimmerma/records/top50.html). A 274-bit (83 dig-
its) was factored from the 946-bit (285 digits) composite number 7% + 1. We assume that a effort of
order 270 was provided so we adjust a constant J such that log, E[1/2, 1/2](946,274) — 6 = 70. We obtain
6 = 36. As before we denote by n the size in bits of the modulus to be factored and we denote by ¢ the
size of the considered prime factor.

ECM complexity in bits = 2log, 1 + v/2 £1/% log}/?(£1n2) — 36 .

ns.t. ¢ =log, E[1/2,v/2](n,n/d) — Sgcm
ns.t. ¢ =log, L[1/3,(64/9)Y%](n) — ongs
6,144 ‘ ‘

4,09 -

3,072 -

— 1, NFS s.t. 512 <+ 50 bits (6 = 14)
—— 1, NFS s.t. 768 ¢ 67 bits (6 = 8)

RSA Modulus size 7 in bits

2,048 - ECM, n of 2 primes
ECM, n of 3 primes
1,536 - ECM, n of 4 primes

1,280 |- ECM, n of 5 primes
1,024 |- ECM, n of 6 primes
768 |- / ECM, n of 7 primes
512 / ‘ ‘ ECM, n of 8 primes

| |
64 80 96 112 128 144 160 176 192

Equivalent symmetric security in bits

Figure 3.5: Estimated complexity of RSA modulus factorization with ECM method

To sum up, we obtain the two following formulas.
1. A two-prime RSA modulus N of n bits has a security equivalent to an s-bit symmetric key, with s =

1/3 1/3
log, L[}, (%) |(n)—14 = (69—4) nl/3 log%/3(n In2) — 14 according to Ecrypt recommendations

[0EiCI12, §6.2.1], assuming that a 512-bit RSA modulus is equivalent to a 50-bit symmetric key.

2. A k-prime RSA modulus N of n bits has a security equivalent to an s-bit symmetric key, with s =
log, E [%, V/2](n,£) — 36 assuming that a 274-bit prime was factored from a 946-bit number in time
complexity 270 (http://www.loria.fr/~zimmerma/records/ecmnet.html).

The first line in Tab. 3.5 corresponds to ECRYPT recommendations. The threshold between NFS and
ECM is represented through bold font. We do not consider security levels under 128 bits. For a 128-bit
security level, a modulus of 3248 bits with two prime factors (of 1624 bits) is enough to prevent the NFS
attack and the attack with ECM is much slower. This attack becomes slightly more efficient than the NFS
one against a modulus with 6 prime factors (each of the same size). A modulus of 3664 bits instead of
3248 bits can be considered. For 8 primes in the modulus, the size is enlarged by 50%: 4840 bits instead
of 3248 bits and each prime factor is 605-bit long. Table 3.5 could be used by protocol designers to set the
size of the security parameter A. Our Tab. 3.5 can also be used when setting the parameter sizes for proto-
cols (or security proofs) relying on the ®-hiding assumption. In 2010 at CRYPTO, Kiltz, O’Neill and Smith
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[KOS10] used this assumption to obtain a nice result about RSA-OAEP. Then at AFRICACRYPT’2011 Her-
rmann [Her11] explained new results about the security of this assumption. We emphasize that setting
the security parameter A in protocols is not completely straightforward if the modulus contains more
than 5 prime factors. The NIST recommendations are also well known and the most widely used. The

Table 3.5: RSA-Multi-Prime modulus size from two up to nine prime factors, according to ECRYPT rec-
ommendations for the two prime factor case

Security Equivalence AES-128 AES-192 AES-256
Nb of primes in the modulus || logp: | log N || logp: | logN [[ 1ogpi [ log N
2 1624 | (ECRYPT) 3248 || 3968 | 7936 || 7724 | 15448
3 1083 3248 2646 7936 5150 | 15448
4 812 3248 1984 7936 3862 | 15448
5 650 3248 1587 7936 3090 | 15448
6 611 3664 1323 7936 2575 | 15448
7 608 4256 1147 8024 2207 | 15448
8 605 4840 1143 9144 1931 | 15448
9 603 5424 1140 | 10256 1829 | 16456

three main RSA modulus length are 3072, 7680 and 15360 to match respectively an AES-128, AES-192 and
AES-256. We observe that to obtain an equivalence between a 3072 bit RSA modulus and an AES-128,
the same equation 1 is used with § = 10.7 this time (instead of § = 14). So we translate also by —3.3 our
computations with the ECM complexity and we obtain Tab. 3.6.

Table 3.6: RSA-Multi-Prime modulus size from two up to nine prime factors, according to NIST recom-
mendations for the two-prime factor case

Security Equivalence AES-128 AES-192 AES-256
Nb of primes in the modulus || logp; | logN [[ 1ogpi | log N [[ 1ogpi [ logN
2 1536 | (NIST) 3072 || 3840 | 7680 7680 | 15360
3 1024 3072 2560 | 7680 5120 | 15360
4 768 3072 1920 7680 3840 | 15360
5 615 3072 1280 | 7680 2560 | 15360
6 588 3528 1536 7680 3072 | 15360
7 584 4088 1115 | 7808 2194 | 15360
8 581 4648 1111 8888 1920 | 15360
9 579 5208 1108 | 9976 1789 | 16104

The conclusion is exaclty the same: up to 5 prime factors of same size un the modulus, at a 128-bit
security level, the ECM method does not induces any consequence on the modulus size. Beyond that, the
modulus size must be enlarged.

3.3.2 Composite-order elliptic curves

We introduced the pairings in the chapter 1, in Sec. 1.4. Let E be an elliptic curve defined over a
prime field IF,. A pairing is a bilinear, non-degenerate and efficient map e : G; x G — Gr. From an
algebraic point of view, G; and G, are two distinct subgroups of E(F,), of same order n. If n | #E(IF})
then G; C E(F,), this is the common setup. Let k be the smallest integer such that n | p¥ — 1, k is the
embedding degree. Then G, C E (Fpk) and Gt C ]F;k. For supersingular or some of the k = 1 curves, an
efficient isomorphism is available from G into G,. This gives a symmetric pairing and we can use the
notation G; = G, to implicitly denote the use of the isomorphism in the pairing computation. In the
remaining of this section, we will consider G; and G, as two distinct subgroups of E, of same order .
The target group Gr is the order-n (multiplicative) subgroup of F; - G1 and G, have to be strong enough
against a generic attack to a discrete logarithm problem. The third group G is more vulnerable because
computing a discrete logarithm in a finite field is easier with the index calculus attack. Its size has to be
enlarged.
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Finding optimal pairing-friendly elliptic curves is an active field of research (see the survey [FST10]).
At a 128-bit security level, the optimal choice would be to construct an elliptic curve whose order is a
prime of 256 bits and over a prime finite field of the same size. For an embedding degree k = 12, an
element in the third group is 3072 bit long in order to match the NIST recommendations. Such optimal
pairing-friendly curves exist [BNO5] (Barreto-Naehrig (BN) curves), but have a special form: the parame-
ters p (defining the finite field), n (elliptic curve order) and t (trace) are given by degree 4 polynomials. We
have p(x) = 36x* +36x + 24x2 + 6x + 1, n(x) = 36x* 4 36x3 + 18x% 4 6x + 1 and t(x) = 6x% + 1. These
BN curves are presented in Sec. 1.4.3.4 and their related pairing computation is explained in Sec. 3.2.

3.3.2.1 Issues in composite-order elliptic curve generation

For our particular purpose, the pairing-friendly elliptic curve order needs to contain a composite-
order modulus N. Hence the order is chosen before the other curve parameters and no special form can
be imposed to N. For example, finding such an elliptic curve over a non-prime field (e.g. in characteristic
2 or 3) is completely infeasible at the moment. As for BN curves, all the complete pairing-friendly elliptic
curve families in the survey [FST10], defined by polynomials, are not convenient.

Secondly, the parameter sizes of composite-order elliptic curves are not optimal. The curve order is
preferably chosen of the form #N with h a cofactor as small as possible. Due to the Hasse bound, the
size of p (defining FF),) is the same as the size of 1N. This means that the prime field I, already achieves
the recommended size (say, 3072) to avoid an index calculus attack. Consequently, an embedding degree
k = 1is enough. As Gq and G; are distinct, an embedding degree of 1 means that both G, and G are
subgroups of E(F;), then N? | E(F,) and log, p > 2log, N. This mean that for a 3072 bit modulus N, p
will have more than 6144 bits. Such curves exist, for example see [KMO05, §6] or more recently [BRS11].
The elliptic curve point coordinates are more than 6144 bit long.

Tate pairing computation is described in Alg. 7. It consists in a Miller loop over the considered elliptic
curve group order. A final exponentiation in [F*, at the end is performed to obtain a unique pairing value.
Optimal ate pairing computation on a BN curve is detailed in Alg. 18. Convenient supersingular curves
do not benefit from pairing optimization such as #r pairing, as the trace is zero (in large characteristic),
or decomposition of the Miller loop length, as there is no efficiently computable endomorphism over F),
on such curves, except the scalar multiplication. For ordinary curves with 6 | k and D = 3 (BN curves) or
4 | kand D = 1, the complex multiplication induces an easy computable endomorphism thus permits to
reduce the Miller loop length up to a factor 4.

Pairing computation over curves of embedding degree 2 needs multiplications over I, and I,» with
log, p = 1536. Pairing computation over curves of embedding degree 1 needs multiplications over F,
with log, p = 3072. Recently in [ZZX12] it was shown that self-pairings on these particular curves may
be speed-up thanks to the distortion map. Zhao et. al. gave efficient formulas of Weil pairing with
denominator elimination thanks to the distortion map, although k = 1 instead of k = 2. Such ordinary
k = 1 curves with efficient endomorphisms are rare. Few constructions are proposed in [BRS11]. More
work is needed to determine in which cases pairings on these curves are competitive with k = 2 curves.

As mentioned in recent works, some properties (canceling, projecting) are achieved with only composite-
order elliptic curves or only asymmetric pairings. More precisely, at ASTACRYPT’2012, Seo [Seol2] pre-
sented results on the impossibility of projecting pairings in certain cases. An ordinary composite-order
elliptic curve is the only choice in this case. Such constructions are possible, see e.g. Boneh, Rubin and
Silverberg paper [BRS11] but this seems to be the worst case in terms of parameter sizes and efficiency.

3.3.2.2 Our choices

If we want to reduce the size of p (hence of G1), we can choose a supersingular elliptic curve of
embedding degree k = 2. This means that G; C E(F,), G» € E(F,) and both G; and G, are subgroups
of E(F2).

Grand Gy, C E(Fp) | N> | #E(F,)
|
Gy C E(F,) | N | #E(F,), N>t#E(F))

A supersingular elliptic curve of given subgroup order and embedding degree 2 is easy to construct:
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3.3. Pairings on Composite-order Elliptic Curves

1. Let N be a composite-order modulus.
2. Find the smallest integer h, 4 | h, such that AN — 1 is prime.

3. Let p = hN — 1. The elliptic curve E(F;) : y* = x*> — x is supersingular, of order htN = p + 1 and
embedding degree 2.

As p = 3mod 4, —1 is not a square in F. If F, = F) [Z]/(Z?* + 1), a distortion map is available:
¢ : E(F,2) = E(F2), (x,y) — (—x,Zy). In particular, ¢(G1) = G and the pairing is symmetric. As
mentioned above, the improved pairing variant denoted #t is not possible as this supersingular curve
has trace 0 (#E(Fp) = p +1). We implemented a Tate pairing on this curve. The parameter sizes for a
security level equivalent to AES-128 are summarized in Tab. 3.7. We assume that the points on the elliptic
curves are in compressed representation.

Table 3.7: Parameter sizes for prime order and composite order pairing-friendly elliptic curves, minimum
and maximum in theory, according to Tab. 3.5 and Tab. 3.6

Elliptic curve, size of G size of elts in G | emb. size of size of elts in Gt
order order log, N log, p deg. | eltsin G, klog, p

min — max min — max k min — max

BN, prime order 256 256 — 269 12 | 512-538 3072 - 3248

o Prime order 256 1468 — 1624 2936 — 3248
2, . 2 primes | 3072 -3248 | > 3074 - > 3250 ) > 6148 — > 6500
3 & | 3primes | 3072-3248 | > 3074 - > 3250 5 > 6148 — > 6500
S8 [4 primes | 3072 -3248 | > 3074 - > 3250 5 @0 > 6148 — > 6500
B £ [ 5primes | 3072-3248 | > 3074 - > 3250 E > 6148 — > 6500
% g 6 primes | 3528 -3664 | > 3530 - > 3666 £ > 7060 - > 7332
g % 7 primes | 4088 —4256 | > 4090 - > 4258 < > 8180 - > 8516
2 8 8 primes | 4648 —4840 | > 4650 — > 4842 >9300 - > 9684

9 primes | 5208 - 5424 | > 5210 - > 5426 > 10420 - > 10852

3.3.3 Theoretical estimation

In this section we will estimate the number of multiplications over the base field for each pairing in
Tab. 3.7.

3.3.3.1 Prime order BN curve

We aim to implement a state of the art optimal ate pairing on a BN curve. We use various techniques
described e.g. in [NNS10, BGDM*10]. A careful operation count is detailed in Alg. 18 (see Sec. 3.2). We
use the finite field arithmetic described in [DhSD06b] and [GS10] for speeding up the pairing final ex-
ponentiation and exponentiations in G. Operation counts in Tab. 3.8 describe our choices according to
recommendations made in [DhSD06b]. The arithmetic operations in [, are denoted M), for a multiplica-
tion, S, for a square, I, for an inversion and HW denotes the Hamming weight. We build the extensions
asFp = F,[X]/(X*—w), Fpe = Fp [Y]/(Y? - B), Foi2 = Fpe [Z]/(Z* — 7). My, Mg and M., denote resp.
a multiplication by «, B and -, performed with few additions if &, § and vy are well chosen. For exponenti-
ation in ', S¢,(,2) denotes the improved squaring formula from [GS10]. Details are provided in Alg. 18

12 _
which computes eoptate (P, $6(Q)) = f P with

f = foxrops0)(P) - 5[6”2]%@),%(%@))(P) . €[6x+2]%(Q)+np(%(Q))’_ﬂ%(%(@) (P) with g the sextic twist
map, 71, the p-power Frobenius and 77, the p?-power Frobenius.

Table 3.8: Approximation of arithmetic operations in finite field extensions

Mplz = 3Mp6 + 5Ap6 +1M, — 54M, Spu = ZMP6 + 4AP6 +2M, — 36M,
Mpe = 6Mp2 + 13Ap2 + ZMﬁ — 18M,, Spe = ZMpz + 3Sp2 + 10Ap2 + ZMﬁ — 12M,,
Mpz = 3M,+5A,+ 1M, — 3M, sz = 2M, +4Ap +2M, — 2M,,
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3.3.3.2 Supersingular curve

A Tate pairing may not benefit from the previous optimizations. We can still simplify the Miller loop
thanks to the even embedding degree (k = 2). The denominators cancel in the final exponentiation thus
we can remove them in the computations. Details are provided in Alg. 7 (see Sec. 1.4.4.2) with ¢ the
distortion map from G; into Go.

The algorithm for a supersingular elliptic curve of composite order is the same as Alg. 7. In addition,
we take m = N the modulus, hence log, m = 3072 for example. By construction, the cofactor & will be as
small as possible, resulting in very cheap final exponentiation, e.g. log, = 12. We detail in Tab. 3.9 the
different estimations for a pairing computation.

Table 3.9: Estimations for pairings on prime-order and composite-order elliptic curves, assuming that for
a composite-order supersingular curve, log, N is as in Tab. 3.7, HW(N) = log, N/2, log,h = 12 and
HW(h) = 5 and we use Alg. 7, and for a BN curve, log, n = log, p = 256, HW(x) = 4, HW(6x +5) =
10, HW(6x% + 1) = 33.

Curve | Pairing pb Mi-ller loop Final. exp. (+ 1)
primes min — max min — max
BN | opt. ate 1 7204 M, 6669 M,
. 1 4224M,, + 17285, 3730M, — 4745M,,
G 2 61440M,, + 230405,/ 64960M,, + 243605,
U:)/ 3 61440M, + 230405,/ 64960M,, + 24360S,
;; Tate 4 61440M,, + 230405,/ 64960M,, + 243605,
50 5 61440M, + 230405,/ 64960M,, + 243605, 41M, + I
. 6 70560M), + 264605,/ 73280M, + 274805,
g 7 81760M, + 306605,/ 85120M,, + 319205,
2 8 92960M, + 348605,/ 96800M,, + 36300S,
9 104160M, + 390605, /108480M, + 40680S,

3.3.4 Implementation results

We implemented in C the above pairings (Tab. 3.7), we compiled with gcc 4.4.3 and ran the software
implementation on a 2.6 GHz Intel Celeron 64 bits PC with 1 GB RAM and Ubuntu 10.04.4 LTS OS. The
developed code is part of a proprietary library, the LibCryptoLCH developed at Thales Communications
& Security (France). The finite field arithmetic uses the Montgomery representation and the modular
multiplication is written in x86-64 assembly language. Our timings are competitive compared to oth-
ers proprietary generic libraries such as the one used at Microsoft Research [ALNS12]. The Authors in
[ALNS12] develop a C library then add different optimized assembly part of code for x86 or ARMv7
processors. They run their library on a x86-64, Intel Core2 E6600 @ 2.4 GHz, Windows 7 (64-bit) and on
a ARM, dual-core Cortex A9 @ 1GHz, Windows device. They obtain a pairing on average at 55.19 ms
(ARM) and 6.31 ms (x86-64) in projective coordinates and 51.01 ms (ARM) and 5.92 ms (x86-64) in affine
coordinates, over a BN curve of 254 bit prime order group. Our timings are slower than other state-of-the-
art ones can be ([INNS10, AKL*11]) because our software is not optimized for a particular sparse prime
number which might result in very specific and optimized modular reduction.

Results are presented in Fig. 3.6. We present in Tab. 3.10 our results for a BN curve, a prime-order and
a composite two-prime order supersingular curve. The first line shows our results of an implementation
of an optimal ate pairing on a Barreto-Naehrig curve. See for example [Ver10, BGDM 10, NNS10] on how
to implement it efficiently. We choose a quite sparse but still random parameter x = 0x580000000000100d
resulting in quite sparse prime order and prime field. Our modular reduction is not optimized for this
value. Our extension field is optimized for towers built with binomials with small coefficients. For
instance the first extension is builtas ¥ » ~ I, [X]/(X?+1) as p = 3 mod 4 which allows a fast reduction
modX? + 1 in the Karatsuba multiplication. The second extension is built as Foo =~ FpY]/ (Y6 —2)
resulting in fast polynomial reduction too. Our implementation perform a pairing in 5.05 ms in average
which is comparable to the 5.73 ms over an x86-64 Intel Core2 E6600 of the Microsoft Research Team
[ALNS12, Tab.2].
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3.3. Pairings on Composite-order Elliptic Curves

Table 3.10: Timings for exponentiation in milliseconds (ms), Ate and Tate pairings on prime order n and
composite order n = n; - - - n; elliptic curves for different security levels.

k- Miller E

Pairing | log,n | log,n; | log, p log, p Loop | Exp. Pairing
BN, 0.ate 256 - 256 | 3072 235 | 270 5.05

269 - 269 | 3228 322 | 3.80 7.29
(1), Tate 256 - | 1536 | 3072 19.70 | 20.50 40.20

(2), Tate 1024 512 1036 | 3072 56.88 | 0.10 56.98
(2), Tate 2048 1024 | 2059 | 4118 || 39250 | 040 | 392.90
(2), Tate 3072 1536 | 3083 | 6166 || 1295.6 0.7 | 1296.3
(3), Tate 3072 1024 | 3083 | 6166 || 1275.6 0.7 | 1276.3

Exp. gPi | Exp. Exp. | gFi

Pairing G, G, G, Gr | Gr
BN, o0.ate 0.55 -1 191 5.16 -

0.77 - | 2.56 5.98 -
(1), Tate 8.30 - - 2.20 -
(2), Tate | 24.38 | 13.12 - 781 | 3.9
(2), Tate | 1725 | 86.25 - | 50.63 | 25.8
(2), Tate | 586.2 | 301.8 - | 166.10 | 81.9
(3), Tate | 556.9 | 222.5 — | 174.88 | 60.1

In 2012 Zhang et al. in [ZXW112] published an optimized implementation of composite-order bilinear
pairings on GPU. They obtained a very efficient execution time of 17.4 ms, 11.9 ms and 8.7 ms per pairing
in average with a 1024 bit modulus on three different GPU [ZXW 12, §8]. With PBC library [Lyn14] on an
Intel Core 2 E8300 CPU at 2.83 GHz and 3GB RAM they obtained 171.1 ms. With our library on an Intel
Celeron as specified above, we obtain 57 ms for a pairing over a 1024 bit modulus order elliptic curve and
393 ms for a 2048 bit modulus order. This means our library is two times faster than PBC in this setting,
mostly because of our x86-64 implementation of the multiplication in F,. We present in Fig. 3.6 our
timings for pairing and scalar multiplication on supersingular composite-order elliptic curves. We also
present in Fig. 3.7 our benchmark results, plotted with a logarithmic scale to visualize also the timings for
pairings on BN curves.

For this 128-bit security level, a pairing on an elliptic curve of composite order with two primes is 254
times slower than over a prime-order elliptic curve (1.27 s compared to 5.05 ms). The Miller loop is very
expensive, indeed it runs over N. The only possible optimizations may use techniques such as sliding-
window. The final exponentiation is very cheap because it consists in f(P~D" = (f7 . f~1)" computed
with one inversion, one multiplication, one Frobenius map and one very small exponentiation (% is only
a dozen bits) in ]sz.

3.3.4.1 Application to BGN cryptosystem

In 2005, Boneh, Goh and Nissim published in [BGN05] a somewhat homomorphic encryption scheme
which can add several times different ciphertexts, perform one multiplication then continue to add ci-
phertexts. Freeman proposed a conversion to a prime-order setting in [Frel0]. We compare the two set-

tings. Our results show that the protocol is much slower on a composite-order elliptic curve, as presented
in Tab. 3.11.

Protocol Setup(7)
1. Generate two random t-bit primes p1, p2 and set N = p;ps.
2. Generate a (symmetric) bilinear pairing e : G; x G; — Gt with G and G of order N.

3. Pick two random generators g1, 11 <— Gy and set uy(,) = ufz = Uly(p,) is a random generator of the
subgroup of order p; of G;. We denote by Gy, this subgroup. Set g7 = e(g1,81) as generator of
Grand hr = e(g1,u1(p,)) = g? as generator of the subgroup Gr(,,) of order p; of Gr.
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Figure 3.6: Average execution time (s) for a scalar multiplication on E(IF,), an exponentiation in pp; C F 2
and a Tate pairing over a composite-order supersingular curve, with modulus sizes from Tab. 3.6 col. 1.
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Figure 3.7: Average execution time (ms) for a scalar multiplication on E(IF}), an exponentiation in gy, C
IF», an opt. ate pairing on a BN curve and a Tate pairing over a composite-order supersingular curve. We
can see the gap from prime-order to composite-order groups in terms of efficiency.
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4. PK = (N,(Gq,GT,e,gl, ul(p]),gT,hT). SK = p1-
Encrypt(PK, m): m € N,m < p,. Pickarandom r <- {0,1,...,N — 1}. The ciphertext is

c=g1 Uy, €G1.

Homomorphic Addition (c1,c;) mod N, € Gq. Pickarandom r « {0,1,..., N —1}.

o r _ m+mymod N ¢/
C=ce i) =8 () €G-

Decrypt(SK,c € G1): We have cP1 = (g]" - ug(p]))pl = (g}")™. Compute the discrete log of ¢! in base

gt'. This is very slow or m must be very small (few bits). Since the discrete logarithm value is in a small
interval, one may use the method described in [BL12].
Homomorphic Multiplication (c3, c4) mod N (once). Pick a random r + {0,1,...,N —1}.

o r __ _mz-m mod N v
c=e(c3,c4) - hp =g -ht € Gr.

Homomorphic Addition (c5,cg) mod N € Gr. Pick arandom r + {0,1,...,N —1}.

/
C:CS.Cé.h%:g?S‘FmemOdN.h? EGT

Decrypt(SK, c € Gr). Compute c! then its discrete log in base g’

Implementation. In the Encrypt step of the BGN protocol, a random r is picked in {0,1,...,N — 1}
with N = pjpy the RSA modulus. Then uq(pl) is computed. The size of r is up to 3072 bits. We used
the same curve as in Tab. 3.10, the line with log, N = 3072 and log, p; = 1536. We assumed that to
compute several pairings on the same curve, we compute each Miller loop, then multiply the outputs
and apply a single final exponentiation. There are four distinct products of two or three pairings in the
second protocol.

Table 3.11: Timings for the BGN protocol over a composite order elliptic curve and its equivalent over a
prime order elliptic curve for a security level equivalent to AES-128. We don’t consider the discrete log
computation, see e.g. [BL12] for efficient DL computation in this particular setting.

Operation Composite-order E.C. [BGNO5, §3] Prime-order E.C. [Frel0, §5]
Encrypt or Add 1 exp. in Gy 1300 ms | 1 exp. in Gy and G, 3.8 ms
m1: 4 exp. in Gy 4.0 ms
p
Decrypt ety 645 ms mp: 4 exp. in Gy 11.2 ms
. 1 pairing 1 exp. in G1 and G,
Multiply +1exp. in Gy 3364 ms + 4x (3 pairings) 119.8 ms
Encrypt . 1 exp. in G1 and G,
or Add lexp. in Gt 409 ms + 4x (2 pairings) 87.8 ms
Decrypt (without DL) Ch e Gr 204 ms | ¢(C) 16 exp. in G | 108.8 ms

The arithmetic on the composite-order elliptic curve E(IF,) is more than 3 times slower than in Gt C
F 2, this means that the encryptions and exponentiations for decryption in Gr are more efficient. The
converse is observed over a prime-order elliptic curve. This protocol over an optimal prime-order elliptic
curve is dramatically faster than over a composite-order elliptic curve. More precisely, the exponentiation
in the decryption step is 161 times faster in Gq, 57 times faster in G, and 2 times faster in Gt over a prime-
order elliptic curve than over a composite-order one.
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3.3.4.2 Application to Hierarchical Identity Based Encryption

In this section, we detail and implement the Hierarchical Identity Based Encryption (HIBE in the fol-
lowing) of Lewko and Waters published at EUROCRYPT'2011 [LW11] and compare it with its translation
in the prime-order setting due to Lewko [Lew12]. Any random value is picked uniformly at random from
the considered set.

Lewko-Waters HIBE scheme. We only recall the Setup, KeyGen, Encrypt, Delegate and Decrypt steps.
The complete description of the scheme with the security proofs are available in [LW11].

Setup(A — PP, MSK). The setup algorithm takes as input the security parameter A (e.g. see Tab. 3.5
to select an appropriate A) and chooses a bilinear group G; of order N = pjpaps, where p1, p2, p3 are
distinct primes. Let Gy(,,) denote the subgroup of order p; in G1. The algorithm then picks g, u,h, v, w
from Gy, ), and a from Zy. It sets the public parameters as:

PP = {NrGllgl u,h,v,w,f/’(g,g)a} :

The master secret key is a.

KeyGen((Zy,...,Z;), MSK, PP) — SKf. The key generation algorithm picks at random values 1, .. ., ri,
Y1,...,yj from Zy. 1t also picks random values Ay,...,A; € Zy subject to the constraint that &« = A1 +
Az + ...+ Aj. The secret key is computed as:

Kio:= ghwYi, K;1:= g%, Kjp := o¥i(uih)"i, K3 := g1 Vi€ {1,...,j}.

EncryptM, (Zy,...,Z;), PP), — CT. The encryption algorithm picks s, t1, ..., t randomly from Zy. It
creates the ciphertext as:
C:=M-e(8,8)", Co=¢g",
Ciq:=w'dh, Cio:=g", Ciz:= (ulih)ivie {1,...,j}.
Delegate(PP, SK, Z;,1) — SK'. Z;.1 denotes the identity of a group under Z; in the hierarchy. The
delegation algorithm takes in a secret key SK = {Kj, K1, Ki2,Kj3 Vi € {1,...,j}} for (Z1,Iy,...,Z;) and
alevel j + 1 identity 7; 1. It produces a secret key SK' for (Z1,.-.,Zj;1) as follows. It picks y’l, . .,y}H

and rll, cee, r}H € Zp atrandom, )\’1, eery /\;-Jrl € Zy randomly up to the constraint that )\/1 +...+ /\;-Jrl =0
and computes:

Kig=Kig-ghi-wh, Ky =K1 g,
K., = Kip- o (uBih)i, Kyi=Kis-g, Wie{l...j+1},

where K11, Kjy12,Kji1,3 are defined to be the identity element in G;.

Decryption(CT, SK) — M. The decryption algorithm takes in a secret key SK = {K;,K;1,K;2, Ki3
Vie{l,...,j}}for (I1,Zy,...,Z;) and a ciphertext CT encrypted to (Zy, ..., Z;). Assuming (Zy,...,Z;) is
a prefix of (7, ...,Z;), the message is decrypted as follows. The decryption algorithm computes:

L e(Co, Kip) - e(Cin, Kin)

B := .
,11 e(Cip, Kin) -e(Cis, Kig)

The message is then computed as M = C/B.

Lewko HIBE translation in prime order bilinear group. We also studied the Lewko HIBE translation
in prime order bilinear group. We only consider in Tab. 3.13 the Setup, Encrypt, KeyGen, Delegate and
Decrypt steps writen only from practical point of view, with m = 6 the dimension of the group G used
(G = GT"). For a complete description of the scheme with m = 10 for the security proof, see [Lew12, §B.3]
and [Lew12, §2.2] for notations. Moreover the scheme in [Lew12] is described with a symmetric pairing.
We apply the protocol to an asymmetric pairing to improve its practical efficiency. There are two possible
approaches. We can set the secret keys in G and the ciphertexts in G, to optimize the needs in secured
memory which can be quite expensive in constrained devices. Or we can set in G, the secrets keys (with
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Table 3.12: Lewko and Waters HIBE scheme over a composite order bilinear group.

. Randomness . Timing j =3
Operation complexity Computation Tab. 3.10
N = p1paps, Selts . .

Setup € Gy(yy, Telt € Zy 1 pairing 1.27 s
KeyGen 3j—1leltsin Zy 7j exp. in Gy 11.55s
. 4 4 4jexp. in Gy,

Encrypt j+1leltse Zy 1exp. in Gr 8.96s
?ie]'gj_tel 3j+2eltsinZy 7(j+1) exp. in G4 15.40s
Decryption - 4j pairings 5.08s

double secured memory) and set in G; the ciphertexts to improve the bandwidth. We will choose this
second option.

Vectors of group elements are considered and denoted 7 = (vy,...,v,) € F* (with r the subgroup of
prime order of an elliptic curve), and for g1 € G (we recall that this is an elliptic curve and not a finite
field despite the multiplicative notation),

gy = (g8 ...,80m) e G (3.21)
Moreover, for any a € F, and 7, w € F}, we have:

U1 t+wWq

81

Uy +Wyp

,g2 L gy (3.22)

( avy avy avm )

81 /81 81 v+w_(

g 81

The corresponding pairing is defined as follows, with e a bilinear pairing e : Gy x Gp = G7:

m

em(87,85) = [ Te(s)",85") = e(g1,82)"7 € Gr C Fyy. (3.23)
i=1

The pairing e;; costs m pairings e. More precisely, as e, is a product of m pairings, it costs m Miller loops
then one final exponentiation if we set e to be a (variant of a) Tate pairing.
Setup(A — PP, MSK). The setup algorithm takes in the security parameter A and chooses a bilinear group
G of sufficiently large prime order r and a generator g;; G, of same prime order r with a generator g,
and finally Gt of same order r. Let g1 = e(g1, §2) be a generator of Gr. Lete : G; x G, — Gt denote the
bilinear map. We set m = 6. Hence

€m=€6:G?AX(G:g - Gr
(85,89) — TI;e(gy, &)

The algorithm samples random dual orthonormal bases, (D, D*) < Dual(F). Let dl, ..., dg denote the
elements of D and d7, . . d* denote the elements of D*. They satisfy the property d; - d* =y € F; Viand
El- . cij‘ = 0 (modr) for i # j. It also picks random exponents wy,a5,6,0,7,¢ € F,. The public parameters
are

PP = {GllGZ/GT/rre(gl/gz)“ldl.d}kle<gl/g2>a2d2 2,89 ,~--,g§76}, (3.24)

and the master secret key is

s dk &ds ody ed; od: ody
MSK = {le,zxz,gzl,gzz,gz /85 218 18 418 18 6} . (3.25)
KeyGen((Il, .., Z;), MSK, PP) — SK3. The key generation algorithm picks at random values rt,rh €T,
for 1 < i < j. It also picks random values vy, ... Yj € F, and w1, . LW E F, up to the constraint
that 11 —i—yz—i- +y] = ap and wy +wy + ... + w; = ap. Foreach 1 < i < jit computes K; :=
g%idﬁwidﬁrlzied SO Lo —rao € Gy. The secret key is created as:

d* Gd* Gd* d d
SK7 := {g2 ,gg /8 ,g2 ,gg ,gg , ,...,K-EGz}. (3.26)
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Encrypt(M, (Zy,...,Z;), PP), — CT. The encryption algorithm picks s, s and ti, th for 1 <i < jrandomly
from IF,. It computes
Co = M-e(g1,82) 151 - e(g1,82)22%% € Gr (3.27)

(note that e(g1, gz)"‘l‘f1 4} and e(g1, gz)“z’fz"f; are precomputed and stored in PP). It computes also

$1dy+sody+H dy+ Tt dy+ ds+TH d
Ci3:g1ll 2+ d3+ 1t dy+1hds+THds (3.28)

for1 <i <j. The ciphertext is CT := {Co €Gr,G,...,C € Gl}.

Delegate(PP, SK3, Z;.1) — SKf\I]-H' The delegation algorithm picks random values w!,w) € F, for

1 < i < j+ 1. It also picks random values y/l,. . .,y} € F, and wll,. . w; € F, up to the constraint that
]/1 + y’z +.o+ y;. 41 =0and u/1 + w/2 +...+ w; +1 = 0. The delegation algorithm takes in a secret key SK»

Do
. / yd; +w, ¢ds 4wl 7;0d5 —w' 0d +wh Liods —whody

with elements denoted as above. It computes K := K; - g5 ! Gt TOB — BT TIoIE— W0l ¢ G, for

Y7+ 85 0] T 08— o] T 0df + ) T T o dE - ) o

2

1<i<jandKjyq:=g ! € G,. SK=

is formed as
2|Zja

vt Edy 0dr od:  od:  ody / /
{gz 1,85 2:8 18 /8 .8 *(from SKz), Ky,..., K, Kji1 € Gz} . (3.29)

Decryption(CT, SK3) — M. Assuming (Z4, . ..,Ij) is a prefix of (Z;,...,Zy), the decryption algorithm

computes B := Hﬁ:l em(Co, K;) . The message is then computed as M = Cy/B.

Table 3.13: Lewko HIBE scheme translation over prime order bilinear group.

Operation Randomn.ess Computation Tlmlpg Tab. 3.10
complexity j=3m=6

pJ : — - .
Setup r, 2m* elts in IF; for 1 pairing ¢, 2 exp. in Gr, m 127 ms

(D, D*), 6 elts € F, exp. in Gy, m(m + 2) exp. in Gp
j-m?exp. in Gy,

KeyGen 2j+2(j—1)eltse F, some mult, in F, and G, 206 ms
. 2 .
) . j-m* exp. in Gy, 2 exp.
Encrypt 24 2jeltsin IF, in Gr, some mult. in F, 70 ms
Delegate . . . . 2 .
it 2(j+1) +2jeltsinF, (j + 1)m* exp. in G 80 ms
Decryption - j - m pairings e 45.0 ms

Each step is summarized in Tab. 3.13. We choose a hierarchy depth of j = 3. This instantiation
(Tab. 3.13) is 10 times more efficient than with a composite-order elliptic curve (Tab 3.12) for Setup, 56
times for KeyGen, 128 times for Encrypt, 192 times for Delegate and 112 times for Decryption. In other
words, the important operations of delegation, encryption and decryption are more than a hundred times
faster over a prime-order bilinear curve with an asymmetric pairing compared to a composite-order su-
persingular curve with a symmetric pairing.

3.3.5 Conclusion

We studied well-known protocols based on composite-order or prime-order elliptic curves. We jus-
tified the sizes of the composite orders when more than two primes are present in the modulus. We
analyzed the Number Field Sieve complexity and the Elliptic Curve Method to find the size bounds.
We then compared the cost of the homomorphic encryption scheme of Boneh, Goh and Nissim over a
composite-order and the corresponding scheme over a prime-order pairing-friendly elliptic curve given
by Freeman. In the former case, a pairing took 3 seconds, compared to 13 ms in the latter case. Even with
12 pairings instead of one in the Multiply step of the protocol, the prime-order translation remained 28
times faster. We also compared the unbounded HIBE protocol of Waters and Lewko and its translation
given by Lewko. The prime-order setting is between 10 times to 192 times faster than the composite-order
setting. Despite useful properties of bilinear composite-order structures to design new protocols, the re-
sulting schemes are not very competitive compared to protocols relying on other assumptions which in
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particular, need prime-order bilinear structures with asymmetric pairings. Some special protocols need
extra properties such as canceling and projecting pairings. Only composite-order groups or supersingular
curves achieve these properties.

We recommend to avoid composite-order groups whenever possible. Moreover, we did not inves-
tigate multi-exponentiation techniques to compute simultaneously several pairings on the same elliptic
curve, neither did we use the Frobenius map to decompose exponents when performing exponentiation
in I 12. Hence some speed-ups are still available for protocols in the prime-order setting.

3.4 The BGW and PPSS broadcast protocols in practice

In this section, we first recall the general principles of a broadcast encryption scheme and the common
notations in Sec. 3.4.1. Then we present in Sec. 3.4.2 the BGW protocol and its PPSS improvement. In
Sec. 3.4.3 we expose our implementation.

This section is about a practical implementation of two pairing-based broadcast encryption protocols.
The first one [BGWO05] was published in 2005 at the Crypto conference by Boneh, Gentry and Waters. This
pairing-based protocol achieves very efficient overhead size. The second one is a security improvement
by Phan, Pointcheval, Strefler and Shahandashti. This improvement was designed for the needs of a
project on broadcast encryption launched in 2009. This project [ENSC*09] is funded by the french Agence
Nationale de la Recherche and lead by Ecole Normale Supérieure, Université Paris 8, Thales, Nagra and
Cryptoexperts. The aim is to identify new interesting protocols for the future generations of pay-TV
systems on one side, and positioning systems and military telecommunications on the other side.

3.4.1 Preliminaries

We state some basic facts about broadcast encryption. A broadcast encryption system is deployed so
send securely and efficiently digital content from a service center to a large set of users, over an insecure
channel. This is widely used for e.g. Pay-TV systems, wireless networks, military radio communications
and positioning systems (GPS, Galileo).

We enumerate the common words used in broadcast encryption.

Set of users: set of people who subscribed to a pay-TV service, or set of radios deployed on the battle-
field, etc. Depending on the context, this is the set of all the persons/devices able to (physically)
receive the encrypted data. We denote by U this set and by n the number of users in the system. In
any system, the maximal number of users is usually bounded by at most 232 & 4.2 - 10? since there
are around six billion of people living on the earth.

Session: a time period when the secret key used to encrypt the data is valid.

Session key: the secret key (generated at random) used to encrypt the data broadcasted during the cor-
responding session.

Authorized user, privileged user, member: a user e.g. who has paid his subscription, who is allowed to
decipher the encrypted data. The set of authorized users is denoted by S. The set is fixed for one
session and can change at the next session.

Revoked user: a user who is not allowed to decrypt sensitive data at some point, because he has not paid
for it, or he has shared his secret keys with unauthorized users. In military context, the device is
compromised (stolen by the enemy). We denote by r the number of revoked users in the system.
The set of authorized users is denoted by R.

Broadcaster: the center delivering encrypted data.
Receiver: any user device, revoked or not.

Overhead: the header added to the encrypted data. We denote it by Hdr. It contains informations to
decrypt the data. In particular it contains a description of the authorized (or revoked) users hence
its length is at least O log(n).

(t,n)-collusion secure: a broadcast protocol is secure under (¢, n)-collusion if for all subset R C U with
r = #R < t, the revoked users from R are not able to decipher the data. Fully collusion-secure
protocols are mostly appreciated.
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Hybrid encryption is commonly used. This is a very basic trick in cryptography. We describe it in
Fig. 3.8.

Broadcaster

[Broadcast encryption scheme]

Ky

[Symmetric encryption}—[ data J

[[Hdr] [encrypted data]]

P T AN N
L, [ ‘\ S
P ’ ] \ N N
Pis ’ 1 \ N S
s ,/ ' \ \\ N
.7 ’ ! \ N \\
P , 1 \ N N
,/ ’/ 1 \ N \\
P . ! \ \\ N
. , 1 \ R ~
. v R N
‘
" "2 o Ti o "j o In 'n
SK1 SK» SK; SKj SK,_1 SK,,
Decsi, (Hdr) | Decs (Hdr) | | Decs, , (Hdr)
K;, data K;, data K;, data

Figure 3.8: Broadcast scheme with hybrid encryption

When the set of users is quite small (e.g. less than a thousand of receivers), a naive method may be
the best solution to broadcast encrypted content. We describe it in Fig. 3.9. Each receiver has a personal
private key (stored in secured memory such as a smart card). At each session, the broadcaster generates
at random a private session key K; and encrypts the data with it. He encrypts the session key K; with
the private key SK;c s of each authorized user. He adds in the header Hdr this list and a description of
the set of authorized users (or a list of index). This is sketched in Fig. 3.9. In this setting, the bandwidth
consumption is linear in the number of authorized users.

Broadcaster

[S, Hdr = [EncSK2 (Ky), ... ,EncSKf (K¢),...,Encsy,, | (Kt)] , data encrypted with Kt]

PR [N
e . 1 \ N So
e ,/ 1 \ \\ o
// ’, 1 \ N \\
. , 1 \ N ~
-7 /, ! \ N S
P . ! ' \\ N
s , ] \ N S

'y
"1 UL Ti "j N "'n
ki | | SKa SK; SK; SKy1| | SKu

DeCSKz (Hdr) l DecSKj (Hdr) l lDeCSKn—l (Hdr)
K, data K}, data K}, data

Figure 3.9: Naive broadcast encryption scheme for few users
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The system constraints are

— the bandwidth consumption, related to the overhead size w,

— the sender computation time 7, public key (resp. secret key) memory PK; (resp. SKy),

— the users (receivers) computation time 7, public key (resp. secret key) memory PK, (resp. SKy).

There was a lot of tree-based improvements, where the users are sorted in different groups and a certain
set of secret keys is attributed to each group. More formally, lots of them are combinatorial tree-based
schemes using the subset cover framework [NNLO1]. However the overhead size is the minimal number
of primary blocks used to cover the set. In other words, for the worst case of r = %, i.e. half the users are
revoked ones, the others are members, the overhead size is the same as in the naive solution.

Boneh, Gentry and Waters introduced in [BGWO05] two versions (denoted BGW; and BGW,, in the
following) of a pairing based protocol. This solve the problem of the bandwidth consumption when
half the users are revoked and randomly distributed in the tree of users. The overhead size is in O(1)
(plus the description of S) for BGW; and in O(y/n) in BGW), for n users in the system. This comes at a
time complexity expanse, as given in the table 3.14. Indeed, this protocol uses asymmetric cryptography.
Delerablée, Paillier and Pointcheval described another scheme in [DPP07], reducing the time complexity.
However the implementation is more complex, as it requires to handle formal sums of points.

Reference w T PK, SK;
Complete Subtree [NNLO01] | O(rlog(%)) O(loglogn) - O(log(n))
Subset difference [NNLO1] O(r) O(log(n)) - O(log?(n))

BGW, [BGWO05] o) Oln —1) On) o)
BGW, [BGW05] O(vn) O(vn) O(vn) o)
DPP; [DPP07] o(1) Oo(r?) O(n) o(1)
DPP, [DPP07] O(r) o(r) o(1) O(1)
Sec.3.4.2.1 O(1) min(O(r),0(n—r)) | O(n) O(1)

Sec. 3.4.2.2 O(y/n) min(O(\;ﬁ), (”—\/%’)) O(y/n) 0(1)

Table 3.14: Complexities of well known broadcast encryption schemes

To our knowledge, there is very few commercial products using pairings (some for IBE, see [Vol]),
and none for broadcast. Despite there are several software and hardware pairing implementations with
precise benchmarks, to our knowledge, there is not yet an entire broadcast protocol based on pairings
implemented and presented with precise timings.

Our contributions. A practical instantiation was not explained in [BGWO05]. A straightforward imple-
mentation of the protocol uses a symmetric pairing e : G x G — Gr. This results in quite large size for
the bandwidth elements. Each element (in G) is of size half an RSA modulus size. For a 128-bit security
level, this means 1536 bits per element instead of 128 in a combinatorial tree based protocol. We propose
to design BGW with an appropriate asymmetric pairing e : G; x G, — Gr. In this way, the elements in
G1 have a size close to the optimal case in public key cryptography, i.e. 256 bits for the example above,
rather than half a RSA modulus size. We adapt the protocol and set in the right groups G; or G; the
different elements (public and private keys, bandwidth elements), knowing that the elements in G have
the smallest size, those of G, have quite medium size (at most half an RSA modulus) and those of Gt are
close to an RSA modulus size. The resulting bandwidth consumption is divided by 6 at a 128-bit security
level. We adapt accordingly the security proof.

The protocol security relies on the difficulty of a non-standard problem, the /-BDHE (/-Bilinear Diffie-
Hellman Exponent problem). About one year after the publication in 2005 of BGW, Cheon proposed
attacks in [Che06, Chel0] against the family of Diffie-Hellman related problems used in the public key
based protocols, including the /-BDHE. More recently at the PKC’2012 conference, an implementation of
such an attack was presented at a security level of 80 bits [SHI"12]. We analyze the impact of Cheon’s
attacks on the size of the three groups G, G and G7. We propose a resistant elliptic curve.

The BGW scheme relies on public key tools. Hence the computation time is quite slower than in
a symmetric key based protocol, especially for decryption. We provide an efficient trade-off between
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memory and precomputation. Finally our practical implementation on a smartphone shows that with
all our improvements, this BGW broadcast encryption scheme can be efficiently used for commercial
applications.

The remaining of this section is organized as follows: in Sec. 3.4.2 we describe how BGW can benefit
from the use of an asymmetric pairing and adapt the security proof. In Sec. 3.4.3, we detail our choice
of a pairing-friendly elliptic curve and consider modifications due to Cheon’s attacks. In Sec. 3.4.4, we
describe how to use well chosen precomputation to dramatically reduce the computation cost. Finally, in
Sec. 3.4.5 we give our results of a complete implementation of the protocol on a smartphone.

3.4.2 BGW with an asymmetric pairing

Boneh, Gentry and Waters [BGW05] describe a scheme with a minimal overhead. The scheme uses
a bilinear pairing e : G; x Go — Gt. We presented the properties of pairings commonly used in cryp-
tography in Sec. 1.4 and their state-of-the-art implementation in Sec. 3.2. We will start by presenting the
BGW protocol adapted to an asymmetric pairing. Then we will propose a re-writing of the security jus-
tification. We will also investigate Cheon’s attack on the underlying /-BDHE problem. We will use the
additive notation for both G; and G; and the multiplicative notation for Gr.

In the original paper, the scheme is described with a symmetric pairing: G; = G that is, we can swap
the inputs e(P, Q) = e(Q, P). In practice, the third group Gr is a finite field extension of the form (IFpk)*,
of size klog p an RSA modulus. To use a symmetric pairing, supersingular or embedding-degree 1 curves
shall be used (as shown in Sec. 1.4.3.1), which is inefficient. G; and G; have the same size, an explicit
isomorphism exists between these two groups and their size is half the size of G (in large characteristic).
For a justification, see Sec. 3.4.3. We propose to adapt the scheme to an asymmetric pairing in order to
have a group G; with smaller coefficients. We reorganize the elements and set in G those on which the
bandwidth depends. Let n be the total number of users and r the number of revoked users. To remove
confusion with the finite field characteristic (used later) commonly denoted p, we will denote by m the
groups order.

3.4.2.1 First version of the scheme

We start by re-writing from [BGWO05] the special case where the ciphertexts and private keys are of
constant size. The n users are considered globally. The number of revoked users is ¥ hence n — r users
must be able to decipher. Figure 3.10 presents this first version of BGW.

Setup(n). Let G; and G, be two groups of prime order m with an asymmetric pairing e from G; x G,
onto Gt. Let P be a random generator for G; and Q for G;. Let & be a random element in Z,,. The set-up
step computes P; = a'P e Gqfori=1,2,...,n,n+2,...,2n. Note that P41 is missing. It also computes
Qi =a'Qe Gy fori=1,2,...,n Thenit picks at random 7y < Z;, and set V = P € G. The broadcaster
public key is

PKs = (P,Pi,..., Py, Puia ..., Py, V,Q,Q1) € G x G3. (3.30)

Each user i receives an additional public key Q;. The additional public key (Q1,...,Q,) € G% is dis-
patched among all users. The complete public key PK is in G%"H X Gg“. The secret key for user i is
SKyi = 7P € Gy; its public key is PKy; = (Qi, (Pi)1<icon, izns1)- Let S = U\ R be the subset of
authorized users and #S =n —r.

Encrypt(S,PK;). The encryption step picks at random k; < Z,, and compute the session key K; =
E(Pn+1,Q)k’ = e(Pn, Ql)k’ € Gr. It sets

Hdr = (th, k(V+ Y Pn+1_]-)> € Gy x Gy (3.31)
jes

and outputs (Hdr, K;).
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Decrypt(i, S, Hdr,SK,, ;, PK,, ;). Let Hdr = (Cy, Cy). The i-th user computes

e(C1, Qi)

Kt =
e (5 Kui+ Yjes Pov1—j+is Co)
J#

The blue elements are broadcasted, the bandwidth depends on them. The user secret key is in red. The
other elements on black are parameters and public keys. The verification uses the relation e([i]P, [j]Q) =
e(P,Q)¥ = e([j]P, [i]Q). We have chosen to set C; in G to save bandwidth, as the elements in G; have
coefficients a least twice as small as those in G,. It would be great to set Cy in G as for C;. Unfortunately
in this case the user would have to compute the sum over all authorized users in G, which is more time
consuming than in Gy. The storage size needed for a user i would be increased too. Our chosen trade-off
will appear more natural through the generalized version of the scheme.

Broadcaster
Public key: P, Py, Py, ..., Py, Pyy2, Put3, ..., Pon, Q,0Q1,Q2,...,Qunand V = 4P

random k; < Z*, K; = e(P,41, Q)% = e(P,, Q1)"
session key

Hdr = <th/ kt<v + ZjES Pn+1—j>)

.,
.
,

, N

g S,Hdr:E(C(J,Q) Y
" ; A -
Receiver 1 Receiver i Rece.wer n'
Public key: Public key: Pub1131c key:
Qu, (P)i<i<on o Qi, (Pi)1<i<an s Qn, ( z)ﬁﬁz{,
i7nt1 iz ntl Secret key: SK,, = P
Secret key: SKy = Py Secret key: SK; = 7P Y- oRhn =Ttn
e(C’l/Ql) E(C], QZ) e(C’l/Qn)
e (5 Ki+ Yjes Put1-jt1, Co) e <S Ki+ Ljes Pny1—j+is Co) e (SKn + Yjes Puti—jins Co)
j#1 j#i j#n

Figure 3.10: BGW protocol, first version, for a medium number of users.

3.4.2.2 General scheme

To reduce the public key size, the n users are organized into A groups of B users with AB > n. In
[BGWO05] the authors suggest to choose B = |/n| and A = [%§]. We can also divide users into groups
according to their country, subscription or other criterion due to the system (Pay-TV, OTAR). A user i
is referenced by its group number (say a) and its range in that group (say b). Hence i = {a,b} with
1<a< Aand1 < b < B. The header Hdr will contain A public elements (instead of a unique C;), each
one dedicated to a determined group of users. Here we see relevant to set all these elements in G;. There
is still the Cp element that we need to set in G, in order to keep in G; the user public and private keys
and a part of the decryption. The scheme is sketched in Fig. 3.11.

Setupp(n). Let G1, Gy, G, P,Q be as in the previous section (3.4.2.1). Let a be a random element in
Zy,. This step computes P; = a'P € Gy fori = 1,2,...,B,B+2,...,2B. These elements belong to
the common public key. For each group of users, the user number i = {a,b} receives the set of (P)
and an additional public key Q, = «’Q € G,. The setup phase then picks uniformly at random the
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elements ¥q,72,...,74 < Zy and sets Vi = 11P,..., V4 = 4P € Gj. The centralized public key
is PKg = (P, P, Py, ..., P, Pgin,...,Pog, V1,...,V4,Q,Q1) € G%BJFA X G%. The secret key for the user
number b in the group a is SK,, 1,1 = 72Py € G1. Tts public key is PK,, 5y = (Qu, (P))1<i<28, i#B+1)-
The user does not need the others Q, hence to save memory on his constrained device (e.g. smartphone,
set-up box) we don’t add them. Note that this scheme is relevant even for unbalanced group sizes. For
larger groups, the computation time will increase, but the bandwidth consumption will be the same: one
group element (in G1) per group of users, whatever the size of the group is.

Encrypt(S, PK;). For each group a of users, we denote by S, the set of authorized users in this group.
The encryption step picks a random k; in Z, and computes the session key as K; = e(Pgy1, Q)% =
e(Pg, Q1) € Gr. The overhead is

Har = (keQ ki (Vi + ¥ Poar ), ki(Va+ X Poia ), ke(Va+ X Poinj)) €Gax Gf . (332)
j€ST j€SH j€ESA

Decrypt (z’ = {a,b}, Sy, Hdr, SKu, {ap}s PKu,{u,b}) Let denote Hdr = (Cy, Cy,...,C4). A user i is indexed

by a number b in a group a. The user i = {a,b} computes the session key as

e(Cﬂ/ Qb)

K = )
e(SKzz,{a,b} +Yjes, Ppr1—jrb Co)
j#b

The verification uses the same bilinearity property as previously:

e([i1P, [11Q) = e(P, Q)" = e([j]P, []Q) -

Broadcaster
Public key: (Py)1<p<28, (Qb)1<pen (Va)i<aca
b£B+1

random k; < Z,, K; = e(Pg41, Q)" = e(Pg, Q1) session key

Hdr = <ka, kt<Vl + ) PB+1b)r-~~rkt<Va + ) PB+1b),--~, kt<VA + ) PB+117>>

beS, beS, beSy

’,
,
.,
’

_.#Hdr = (Co,Cy, 1., Caye oy CaPe

T
1
1
1
1
1
1
1
1
. 1

y 4 Y RN
Subset number 1 Subset number a Subset number A
users of index N users of index e users of index
{1, bh<p<n {a,b}i<p<n {A, bhi<p<n
e(C1,Qp) e(Cs, Qp) e(Ca, Qp)
e (SKl,b + Ljes; Ppr1—j+bs Co) e (SKa,b + Yjes, Pp+1—j+bs Co) e <5KA,1; + YjeSy PB1—jtbs Co)
j#b j#b j#b

Figure 3.11: BGW protocol, second version, for a large number of users.

Table 3.15 gives the protocol complexity with an asymmetric pairing. BGW; denotes the one instance
version described in the previous section (Sec. 3.4.2.1), BGW, denotes the parallel instance version ex-
plained in this section. w is the bandwidth consumption, PK; denotes the sender’s memory for the
public key, T; the time computation and respectively PK;, 7, denote the receiver’s ones. r, is the number
of revoked users in the group a. Note that they are at most B users in a group 4.
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Scheme w PK; Ts PK, T
BGW1 Gz X G1 G%nJrl X Gngl (11 — }’)Add([;l G%nil X GQ (1’1 — T)Add@l
BGW2 G2 X G{k G%BJrA X Gngl (Tl — F)Add@l G%371 X GZ (B — Ta)Add(G,l

Table 3.15: Theoretical complexity for BGW protocol, asymmetric pairing

3.4.2.3 Security proof

In [BGWO05, §3.3], the authors prove the semantic security of the general system. We faced some
trouble when adapting the security proof to an asymmetric pairing in the setting above. We need to add
a copy in Gy of the inputs elements in G to the problem. This difficulty rises in the challenge phase. To
generate a consistent input for the adversary, the challenger must have a copy in G, of the inputs in G;.
This is transparent with a symmetric pairing (in which case an isomorphism from G, into G; is available).
This is also quite easy if an isomorphism from G; into G; is available.

More precisely, let G1, Gy, G three cyclic groups of prime order together with an asymmetric pairing
e: Gy x Gy — Gr. Let P a generator for G; and Q for G,. Let Ql arandom element in G;. In the challenge
phase, the challenger must compute a corresponding P’ € G such that logp(P') = logQ(Q/) without

knowing logQ(Q,). In other words, in this construction there is some k; € Z,, such that Q' = [k:]Q

and we have to find a corresponding P e Gq such that P = [k;]P with the same k; € Z,,, without
knowing k;. Therefore we need an explicit isomorphism ¢ which maps the generator Q € G, to P € G;.
With this map we can compute ¢(Q,) = P, In this way we can end the security proof as in the original
paper. Such a map usually does not exists for ordinary pairing-friendly elliptic curves. For supersingular
(and embedding degree one) curves, there is a distortion map from G; to G, which provides an explicit
isomorphism, thus a symmetric pairing. For ordinary elliptic curves, the trace map [BSS05, IX.7.4] is
degenerated, as G, is commonly built as the trace-zero subgroup. With the notations from [GPS08], the
security proof must be written assuming that the pairing is of Type 3 : G1 # G; and there is no efficiently
computable homomorphism between G; and G;. Hence the adversary needs to receive P', that is why it
must appears in the challenger inputs.
Let start with an asymmetric variant of /-BDHE problem:

Definition 21 (-BDHEasym). Let G, Gy, Gt be three cyclic groups of prime order together with an asymmetric
pairing e : G1 X Gy — Gr. Given (P,Py,..., Py, Pyin,...,Py) € G%E, (Q,0Q1,...,Qy) € Ggﬂ such that
P = [&/]P, Q; = [']Q, and (P',Q’) € Gy x Gy such that log, P' = log, Q', compute

e(Ppyq, Q/) which is the same as computing e(P/, Qri1) -

Definition 22 (Decisional £ — BDHEasym). Let G1, Gy, Gt be three cyclic groups of prime order together with
an asymmetric pairing e : Gy x Gy — Gr. Let Ypour = (Pi,Po ..., Py, Pryo, ..., Py, Q1,Q2, ..., Qo).
An algorithm B that outputs b € {0,1} has advantage € in solving the decisional { — BDHEasym in G if
‘Pr [B(P,Q,P,Q,YpgueePri1,Q)) =0 —Pr[B(P,Q,P,Q, YpgusT) = O]‘ > ¢ where the probability is over

the random choice of generators P € Gy, Q € Gy, of random point P' € Gy, the random choice of & € Ly, the ran-
dom choice of T € G and the random bits consumed by B. The distribution on the left is denoted by PBDHEasym
and the distribution on the right by RppHEasym-

The decision (7,¢,¢) — BDHEasym assumption holds in Gr if no t-time algorithm has advantage at
least ¢ in solving the decision /-BDHE problem in Gr.

According to the definitions in [PPS11], BGW and the variants presented here are asymmetric broad-
cast encryption with a static set of users (the joint is made at setup only) and stateless users (the public
and private keys do not evolve from a session to another). A selective security for key indistinguishability
is proven (the target set is chosen before the setup phase).

Suppose there exists a T-time adversary, A, who receives an instance of the protocol. The adversary is
able to distinguish between a valid and a random session key with advantage AdvBr 4 g > € for a system
parameterized with a given B. One build an algorithm, B, that has advantage ¢ in solving the decision
B—BDHEasym problem in Gr.
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Algorithm  takes as input a random decision B—BDHEasym challenge (P,Q, P, Q’, Y P,Q,x,B, Z) Where
Yp,0a8 = (P1,P2,...,Pg,Ppys, ..., Pap,Q1,Qo,...,Qp) and Z is either e(Ppq, Q,) or a random element
in Gr. The aim of B is to decide if Z is valid or random. For doing that, B simulates a session of the broad-
cast protocol and submits it to A. Then B uses A’s answer to decide if Z is valid or random. Algorithm
B proceeds as follows.

Init. Algorithm B runs A and receives the set S = U1<;<a S, of users that A wishes to be challenged
on.

Setup. B needs to generate a public key PK and private keys SK,, ; for users i ¢ S. We can use the same
idea as in the original proof. Algorithm B chooses uniformly at random u, € Z,, for 1 < a < A. The users
are divided into A groups of at most B users. A user i is number b in a precise group a. Fora =1,..., A,
algorithm B sets V; = [ua]P — Ljes, Pp1+1-j- It gives A the public key

PK = (Pl,...,PB,PB+2,...,PZB, Q1/~--/QB/ Vl/"'IVA)

which is in G%B_l x G§ x G£.
Boneh, Gentry and Waters note in their paper [BGWO05] that since P, « and the u, values are chosen
uniformly at random, the public key

PKoriginal = (P, P1, ..., Pg, Ppya,..., Pap, Vi,...,Va) € GPH4

has an identical distribution to that in the actual construction. Here it is necessary to give (Q1,...,Qp) €
Gg too. If we assume that P is a generator chosen at random in G; and Q (which generates Gy) is
also chosen at random and independent from P, we can consider that all these elements are uniformly
distributed at random.

Next the adversary needs all private keys that are not in the target set S. For each useri = {a,b} ¢ S,
algorithm B computes the corresponding private key

SKu,qapy = [4alPo = ) Ppi1-jsb -
JESa

The same equality holds as in the original proof

SKy {ap) = [tta][@"]P = [a"] ) Ppia-j = [a"]Va.
j€Sa

The authors in [BGWO05] note that the unknown value Pp 1 is not involved in the sum, as 7 is a revoked
user (i = {a,b} with b € S,).

Challenge. To generate the challenge, B computes Hdr as

/! / /

(Q,[u1]P,..., [ualP).

B then randomly chooses a bit b € {0,1} and sets K, = Z and picks a random K;_; in Gr. It gives
(Hdr, Ko, K1) as the challenge to A.

We use the same justification as in the above cited paper. The algorithm knows both Q' and P such
that logp(P') = logQ(Q/) hence can compute a valid Hdr. When the input to B is a B-BDHEasym tuple,
Z = e(Pgy1, Q') and (Hdr, Ko, K1) is a valid challenge to A as in a real attack. Let k; such that P' = [k]P.
P’ and Q' are bound together in the sense that P = [k]P and Q = [k]Q with the same k; € Z.
(1] P' = [ke][a] P = [ke] ([ta] P — Ljes, Ps1j + Ljes, Prs1) = [ke](Va + Ljes, Ppr1-;). We can see in
this form that (Q', [i]P, ..., [ua]P') is a valid encryption of the key e(Pp_1, Q)¥. Then e(Pg,q, Q)% =
e(Ppy1, Q/) = Z = K;. Hence (Hdr, Ko, K3) is a valid challenge to .A. On the other hand, when the input
to B is a random tuple, Z is a random element from Gr, and Ky, K; are random elements from Gr.
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Guess This last step is the same as in the paper [BGWO05]. The adversary A outputs a guess b ofb. Ifb =
b the algorithm B outputs 0, i.e. it guesses that Z = e(Pp.1, Q, ). Otherwise, it outputs 1,i.e. Z is arandom
elementin Gr. If (P,Q, P, Q, Yp,0,4,8, Z) is sampled from RppHEasym then Pr [B(P,Q, P,Q, Yp0u8 Z) =
0] =1/2.1 (P,Q,P,Q, Yp 0,8 Z) is sampled from PBDHEasym then

’Pr [B(P, Q.P,Q, Ypous Z) = 0} - 1/2) = AvdBrp > €.

It follows that B has advantage at least ¢ in solving the B-BDHEasym problem in Gt. This conclude the
security proof.

3.4.2.4 Attacks on Diffie-Hellman problem with auxiliary inputs

The security relies on the ¢-Bilinear Diffie-Hellman Exponent assumption (defined in Def. 21) which
is a weaker problem than the Diffie-Hellman one. The difficulty of this problem was first studied in
[Che06]. See also improvements in [KKMO07, Chel0] and the implementation in [SHIT12]. We state here
the results on the complexities of these attacks and explain the possibilities to avoid as much as possible
these attacks when choosing a pairing-friendly elliptic curve.

Theorem 15 ([KKMO07, Theorem 1°]). Let P be an element of prime order m in an abelian group G. Suppose
that d is a positive divisor of m — 1. If P, [«] P, [a4] P are given, a can be computed within O(y/m/d + \/d) group
operations using space for O(max(y/n/d,\/d)) groups elements.

Theorem 16 ([KKMO07, Theorem 2’]). Let P be an element of prime order m in an abelian group G. Suppose that
d is a positive divisor of m + 1 and [a']P are given for 1 < i < 2d. Then a can be computed within O(v/m/d + d)
group operations using space for O(max(y/m/d,\/d)) groups elements.

The main idea for the first theorem is to find a divisor d of m — 1 in the range2 < d < Bor B+2 <
d < 2B to reduce the complexity from O(y/m) to O(y/n/d + /d). A decomposition of the classical Baby
Step Giant Step (BSGS) algorithm in two phases reduces the complexity of BSGS from O(y/m) to two
BSGS running, the first in O(y/m/d) and the second in O(+/d). We have to take into account this attack
to choose properly a convenient elliptic curve when setting the system parameters.

1. We can enlarge the parameters in order to prevent the system from these attacks and match the
previously chosen security level. Assuming that B < m, we consider that the attack is in at most
O(v/m/2B). For a 128-bit security level, instead of a prime order group G of size logm = 256, we
have to set logm = 256 + log(2B). If the system is designed for 10° users and B = 103, enlarging
log m with at least 12 bits is enough and quite cheap if it does not affect considerably the size of G7.

2. If enlarging m with a few bits will enlarge the size of Gt of a few hundred bits (because of the gap
caused by the embedding degree), we may prefer to choose directly a safe prime order m, such that
m — 1 and m + 1 are not divisible by factors smaller than 2B. Of course either m — 1 or m + 1 will be
a multiple of 4 but we loose only 2 bits.

3.4.3 Choice of the pairing-friendly elliptic curve

The two instantiations are the Weil pairing and the Tate pairing over elliptic curves (defined over
finite fields). They can be quite efficiently computed with the algorithm due to Miller and the various
improvements described in Sec. 1.4 and 3.2. Let p be a large prime and E(IF,) an elliptic curve defined by
a reduced Weierstra8 equation y? = x® + ax + b. Remember that G; and G, are subgroups of prime order
m of the elliptic curve and G is a multiplicative subgroup of order m of an extension field F;k. The main
difficulty is to find suitable elliptic curves for pairings. An almost exhaustive study of known pairing-
friendly elliptic curves can be found in [FST10]. If the protocol relies exclusively on the Diffie-Hellman
problem, to achieve the same complexity in the three groups G1, G, and Gt we must choose carefully
the size of the groups as following. If we consider a non-pairing-friendly elliptic curve (i.e. of large
embedding degree), ordinary, over a prime field in large characteristic, of trace # 0 mod p and # 1 then
up to now, only generic attacks such as Pohlig-Hellman exists for solving the Diffie-Hellman problem in
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such a curve. If the protocol relies exclusively on the Diffie-Hellman problem (without pairings), for a
N-bit security level, a prime order group G of size log m = 2N bits is convenient.

In a pairing-based context, the group Gt C F;k is exposed to the less difficult index calculus attack.
Hence the size klogp of Gr is greater than those of G; and G,. An RSA modulus size is commonly
considered to be safe. We emphasize that since 2012, crazy improvements were achieved to compute
discrete logarithm problems in finite field extensions in small and medium characteristic. We can cite
a few: a Japanese team [HSST12, SHI"12] broke records in Fss97, we can also cite the recent work in
[AMORH13], an Irish team [GGMZ13a, GGMZ13b] improved the FFS algorithm, then French people
announced fantastic records, from [Joul2, DGV13, Joul3b, BBD"13] to [BGJT13]. This comes from a
powerful improvement of the Function Field Sieve method. These improvements do not apply to the
Number Field Sieve method used to compute discrete logarithms in small extensions of large prime fields.
In other words, the pairing-friendly curves in small characteristic, over Fy« or 31, shall be avoided. Up
to now the pairing-friendly curves in large characteristic such as the BN curves are not concerned with
these attacks.

The following key-size (Tab. 3.16) are recommended by the ECRYPT II research group [oEiCI11, Tab.
7.2].

. . Discrete Logarithm L
Security (bits) | RSA field S fb field Elliptic curve
80 1248 | 1248 160 160
112 2432 | 2432 224 224
128 3248 3248 256 256
160 5312 | 5312 320 320
192 7936 | 7936 384 384
256 15424 | 15424 512 512

Table 3.16: Ecrypt Il key-size recommendations

We have chosen a 128-bit security level. A supersingular curve (over a prime field in large char-
acteristic) has an embedding degree k at most 2 resulting in logp = 1624, logm = 256+ 6 and p =
log p/logm ~ 6. The notation +J means that enlarging m by a few bits will not impact on log p, hence
on the size of Fpk. The well-known Barreto-Naehrig curves (BN, [BN05]) fit almost exactly the recom-
mended sizes of G and Gr, taken into account Cheon’s attack. Indeed, for these curves, k = 12 and
logm = log p. Hence with klogp = 3264 and logm = logp = 272, the parameters are strong enough
against the /-BDHE problem for a 128-bit security level and a BGW protocol with at most 2B users per
group and log(2B) = 16.

If we prefer to follow NIST recommendations, the k = 12 embedding degree is exactly what we need :
logm = 256 and as p = log p/ logm = 1.0, klog p = 3072 as expected. In particular, for a 128 bit security
level, using an asymmetric pairing decreases the size of the element in the group G; by a factor of 6. To
prevent from Cheon’s attacks, we can increase the size of m by 12 bits but it results in increasing the size
of I x by 144 bits. To avoid this, we must generate a strong BN curve, without any integer d dividing
m and less than 2!2. We heard about this attack after launching the prototype development. Hence the
benchmarks were computed for this curve.

= - 0x400000000000031C (which defines p, m and t)
0x24000000000006FE700000000082705C800000043937699E80000D20DA314BD9
0x24000000000006FE700000000082705C200000043937604A80000D20D9F74979

= 0x600000000000095400000000003A0261

= 0x17

S T S

The elliptic curve defined over the prime field [, with parameter equation 2 = 0 and b above has
prime order m and trace ¢. The three numbers x, m — 1 and m + 1 are smooth.
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x 22.52.43 139 757 - 10192497083,

m—1 = 23.3.52.23.43.71.139-757 -338172217 - 10192497083
-1065629744969022147085838680434831409024186859,
2-7-11-31-67-179-1297 - 839731 - 15999517 - 282551569
-35836294153183 - 251224184937629 - 6415963443272843.

Assuming that there are around 2'° users per group, we have log(2B) < 12 and the security for this
curve is 116 bits instead of 128 bits. Then we heard about Cheon’s attack and tried to find a "strong"
curve. Because of the parameter structure, the curve order m is such that 12 divides m — 1 and 2 divides
m + 1. We ran a search over almost prime x to find an m such that no divisor less than 2! divides either
m — 1 or m+ 1 (except 12 for m — 1 and ones less than 16 for m 4 1). We found a few appropriate curves,
for example

m—+1

X = 0x4000000000087F7F = 248861 - 18531172093771
p = 0x2400000000131EDE500003CEEC974A28964D2C8BEE1F7C511355420E690A2713
m = 0x2400000000131EDE500003CEEC974A28364D2C8BEEOSFDD41355405D1C6EA10D

m—1 = x-12-757798571 - 431644596110779526675237 - 899539747440060915487289

m+1 = 2-480707 420180967 - 107234028019 - 1416027609325038349
-265454606642679936569002939766381

t = 0x6000000000197E7D000001B14C9B8607

b = 0xC

For this curve, 12 | m — 1 and the next divisor is 248861; 2 | m + 1 and the next divisor is 480707.
Because of the 12, we loose 4 bits. Our implementation doesn’t depends on a particular p or m hence
changing their value will not infer on the timings if their size remains the same.

The possible choice are presented in Tab. 3.17. The notation +J means that enlarging m by a few bits
will not impact on log p, hence on the size of IF ;.

Recommendations Curve k | klogp | logp | p=logp/logm logm
Ecrvot II Supersingular | 2 | 3248 | 1624 | not fixed, ~ 6 here | 256 +J
P Barreto-Naehrig | 12 | 3264 | 272 1.0 272
NIST Supersingular 2 | 3072 | 1536 | not fixed, ~ 6 here | 256 + ¢
Strong BN 12 | 3072 | 256 1.0 256

Table 3.17: Parameters size depending on the embedding degree

This work and the benchmarks presented in Sec. 3.4.5 were done in 2011 (this was a joint work with
Dubois and Sengelin Le Breton). At that time, the efficient ate and optimal ate pairings presented in
Sec. 3.2 were not yet available in the cryptographic library used in the lab. Only a Tate pairing was
implemented. We give in Tab. 3.18 the timings of the library in 2011.

Curve k | logm | logp | Miller’s Loop | Exponentiation | Pairing
Supersingular 2 256 | 1536 29.88 ms 2599 ms | 55.87 ms
Barreto-Naehrig | 12 256 | 256 14.51 ms 5.18 ms | 19.69 ms

Table 3.18: Our Implementation of pairing computation on a AMD64 3Ghz (Ubuntu 10.10), LibCryp-
toLCH, 2011

3.4.4 Reducing Time Complexity

In this section we present a way to reduce the complexity of the decryption step. We recall that the
decryption computes the sum
Y Pt
JES, j#i
with i the index of the user, S the set of authorized users and # the total number of users in the system.
This sum is linear in (n — r) with r the number of revoked users. This becomes very time consuming with
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a system of a large number of users. We propose a method to precompute a table of values involved in
this sum in order to speed-up the decryption step.

The public keys are points on an elliptic curve hence addition is as cheap as subtraction. If the number
of revoked users is small (r < n/2), the initial computation in O(n — r) is quite slow. We can instead
consider that the value £ = } 1< zi<; Put1-j+i is precomputed for each user i. Then

S=X{~ ) Put1-jui
jER

with R the set of revoked users. Now the complexity is O(min(r,n — r)) (where O is the cost of a point
addition, EllAdd). We can do better with a precomputed tree.

3.4.4.1 Binary public key tree precomputation

In this section we describe how to decrease the computation time from O(min(r,n — r)) using only
twice memory. The tweak consists in two modifications.

1. We expend the public key into a binary public key tree T twice long obtained by
— sorting all users in a binary tree whose leaves are the users;
— precomputing for each node in the tree from the leaves to the root the sum over each public key
of the nodes below.

2. For each encryption and decryption step, choose the optimal including/excluding tree to compute
the sum. For example, for each decryption, we use Alg. 19 if r < n/2 or its variant if ¥ > n/2 to
compute the value of the sum S.

Let consider a user i in a system of at most 1 users. This user needs the elements P, 1 i, 1 < j #
i < n of the publickey Py, ..., Py, Pyt2,. .., Py, thatis, n — 1 elements in G;. The user needs also Q; € Gy
(which does not need to appear in the tree). Each user computes a different (translated by i) tree. We
assume that the nodes are labeled in the same way for each user. The difference from a user to another is
only the initialization of the leaf values.

Example 19 (Precomputing the tree). Suppose that n = 16. The user i = 9 computes the tree represented in
Fig. 3.12. The leaves are the Py y1_j1o with 1 < j # i < n. We represent two lines : the users and then +1 —j+9
index. For each node in the tree, the user computes the sum of the two children. The value P, 11 = Py7 is missing,
the user sets O instead on the corresponding leaf. The user 9 does not need the values Py, . .., Py and Py, ..., P3.
The value stored at node 31 is the sum of all public keys from Py to Pss, except Pi7 (replaced by O). The value
stored at node 25 is the sum of the public keys Pa to Pos.

17/ \18 19/ \ 21/ \22 / \
A A A A AN AN
i © e 60060660600660.0

Figure 3.12: Public keys and precomputation with n = 16, for user i = 9

users j

Example 20 (Computing S quickly with the tree). We consider the same set of n = 16 users, indexed from 1 to
16. We assume that at the current session, the users 1, 13 and 14 are revoked (r = 3 < n/2 = 8). They are in red
on Fig. 3.12. For user 9, using algorithm 19, the sum S is computed by summing the following elements of T:

S=T3 —T1 —Tp3
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Algorithm 19: Improved computation of S when r < n/2

Input: The user ID i, the set of privileged users S, the precomputed public tree T (for user i)
Output: The sum of points on the elliptic curve S =} ic5 i Puy1—j+i

Let T' be the binary tree whose nodes are those of T. for each node of T, from the leafs do the root do
if it is the leaf of an authorized user or if there exists a green node below then
| color the node in green

W N =

else
L color the node in red

(S

S« Troat
for each red node with a green parent do
L subtract the related public value from S

@® 9 o

9 return S

Note that a subtraction is as cheap as an addition on an elliptic curve. The resulting cost is only 2 EIlAdd, while it
would have been 13 on the original scheme.

When r > n/2, we can apply the same method but instead of covering the revoked users and sub-
tracting the corresponding public keys from X, we cover the members and add the corresponding public
keys, starting from S = O. In [BGWO05] the authors propose to store the previous sum S from a session to
the next, subtract the new revoked users and add the no-longer revoked ones. This is efficient only if the
proportion of newly revoked and re-authorized users is very small.

3.4.4.2 Complexity analysis

29/31\30
25/ \26 27/ \28
/ /N /N /

dhdbebdbdhdbdh

(a) Random distribution of users

29/ \
N & e &
o6 dbdb b

(b) Sorted distribution of users

Figure 3.13: Examples of a random and an sorted distribution of users

Example 21 (Computing S quickly in a tree). We consider a set of n = 16 users, indexed from 1 to 16 as
illustrated in the two figures 3.13a and 3.13b. (revoked users are in black). For the user "2’ the session key is
computed by subtracting the values in the nodes '1,3,4,8,9,12,24’ thus the cost is 6 EIIAdd. Note that in Fig. 3.13b
(the kind of sorted tree) the cost is only 3 EIIAdd (we subtract the node '30" and '6’; and add the node '9’). The cost
would have been 8 EIlAdd in the original scheme.
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Algorithm 19 has something common with the Subset Cover computation. However here there is
no need to store extra secrets elements, as the difference of the subset is done by a simple elliptic point
subtraction. It is obvious that the number of operations is always lower than the number r of revoked
users in Alg. 19 and lower than the number of members n — r in its variant (r > n/2). It can be equal in
the worst case: in this case S is just a difference (r operations) or just a sum (1 — r operations).

The average case is hard to analyze [AKO08] as it strongly depends on the distribution of revoked users
in the tree. When r or (n — r) is small, with a uniform distribution, the complexity will be close to it. In
practice the users are sorted by behavior so that nodes that are close are mostly to be revoked together.
In a real world application the behavior is the subscription date or product. However some random
revocations (rare events) appear with compromising, expiration, etc.

3.4.5 Implementation on a smartphone

In this last section we present our implementation results of BGW. The broadcaster is hosted on a PC
and some users a simulated on smartphones.

For any implementation a trade-off between specificity (using a sparse modulus for quick reduction,
using very specific curves) and performances has to be done. We chose to develop a very generic library
in C language which can use any modulus and any type of pairing-friendly elliptic curve in Weiertraf3
representation over a prime finite field (i.e. in large characteristic). The BN curves and supersingular
curves have been implemented. The library LIBCRYPTOLCH [Thal3] is a proprietary industrial library
using a modular approach as in OpenSSL. It implements arithmetic over F), using Montgomery multipli-
cation, elliptic curve computation over I, and F» using the modified Jacobian coordinates. The pairing
computation is specific for each IF  field. The construction of the extension field F x and its arithmetic is
quite automated by using macros in C. The implementation details are presented in Sec. 3.2.

We now present some computational results of our improved implementation for 128-bit security
level. Our proof of concept consists in a standard PC to represent the sender, and a smartphone to repre-
sent the receiver. The smartphone can be personalized with any secret key of the system. Thus the given
results for decryption step on one receiver device are the same as would be in a real system with a million
smartphones. The smartphone is a dual core 1.2 Ghz Samsung Galaxy II with Android OS. The PC is
a 3Ghz Intel(R) Core(TM)2 Duo CPU with 2.9 Gio RAM. The last improvements described in Sec. 3.4.4
where unfortunately not yet implemented.

The broadcaster runs the system initialization, the key attribution to a new user and the session key
encryption. First, we simulate the decryption time for an authorized user on the PC to estimate the
growing cost of decryption with respect to the total number of users #, see Tab. 3.19.

Smartphones with Android platform use the Java programming language. Thanks to the Java Native
Interface, we can load the library in C language, run the decryption on the smartphone and measure
its timing. For doing that, we call the currentTimeMillis() function of the system class. Results are
presented in Tab. 3.19 and Tab. 3.21. We measure the worst case r = n/2 of BGW; so the improvements
described in Sec. 3.4.4 are not visible. The users are divided in A parallel groups of B users with B =

[Vn].

Number of | Setup User | Encryption || Decryption Decryption
users n init. r=mn/2 (simulation) || (smartphone)
50000 22.15s | 0.03s 3.58s 1.10s 1.44s
100000 40.45s | 0.03s 7.03s 1.13s 1.79s
200000 1m16s | 0.03s 14.72 s 1.14s 2.08s
500000 3m07s | 0.05s 32.97 s 1.16s 2.65s
1000000 6m09s | 0.07s | 1mO04s 1.18s 3.33s
3000000 | 18 m24s | 0.12s | 3m07s 1.23s 4.96 s
5000000 | 30m42s | 0.16s | 5m1lls 1.27s 6.09 s

Table 3.19: Computation time obtained on a 3 Ghz PC (encryption) and a smartphone Samsung Galaxy
SII1.20 Ghz Android (decryption)
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The decryption time depends on the total number of users and on the ratio of revoked users. The
Tab. 3.20 and Tab. 3.21 show the increasing encryption and decryption times when r decreases from 87.5%
to 0%.

Members |15 50, | 25% 50% 100%
Number 7 of users
50000 2.46s 2.62s 3.58s 717 s
100000 3.11s 4.10s 7.03s 13.84 s
200000 3.74 s 727 s 14.72 s 26.28 s
500000 9.65s 16.46 s 32.97 s I1mO03s
1000000 16.99 s 3346s | Im04s | 2mO06s
3000000 49.67s | 1m36s | 3m07s | 6mlls
5000000 I1m20s | 2m37s | 5m1ls | 1I0m18s

Table 3.20: Encryption time with respect to the authorized user percentage obtained on the 3Ghz PC

An acceptable decryption time on the smartphone must be less than 2 seconds from our point of
view. Here this correspond to less than 200 000 users according to Tab. 3.21. For larger n, we need to
reduce this time. The pairing computation is not very time consuming. The sum }Jjcs, iy Pp+1-j+p is the
most important part of the computation time. With a first trick: addition over S; when n —r < n and
subtraction over R, (the revoked users of group a) when r < n, the worst case of ¥ = 1/2 become the
upper bound. This means still at most 3.33s when r = n/2. With a precomputed tree, the average case
will have faster encryption and decryption times than those presented in Tab. 3.21.

Members | 15 50, | 250 | 50% | 100%
Number # of users

50000 118s | 1.20s | 1.44s | 1.93s

100000 1.28s | 1.46s | 1.79s | 2465

200000 1.36s | 1.60s | 2.08s | 3.03s

500000 155s | 1.91s | 2.65s | 4.15s

1000000 1.75s | 225s | 333s | 5465

3000000 223s | 315s | 496s | 8.63s

5000000 2.65s | 378s | 6.09s | 10.84 s

Table 3.21: Decryption time with respect to the authorized user percentage obtained on the smartphone

We manage to develop a functional prototype based on improved state-of-the-art broadcast proto-
col with a relative effectiveness. This provides consistent simulation time. In a real system, a dedicated
Android implementation of the finite field arithmetic, the elliptic curve arithmetic and the pairing com-
putation will certainly improve by a factor 2 or 3 our results, leading to less than 2 seconds to decipher,
even for 5 000 000 users in the worth case of r = n/2.

3.4.6 Perspectives

We presented an improved version of BGW suitable for use with a pairing on one of the fastest pairing-
friendly elliptic curves. Our presentation can be easily adapted to other well-suited pairing friendly
elliptic curves. We considered the attacks on the underlying non-standard problem. We also provided
computation time on a prototype, the broadcaster hosted on a standard PC and each receiver hosted on
a Samsung Galaxy II smartphone with Android operating system. For large groups of users (more than
200000), the decryption time is up to 2 seconds which can be too slow. Hence we proposed improvements
based on a time-memory trade-off. Because of the use of an asymmetric pairing, the public key size
remains reasonable, hence doubling this size is feasible in order to reduce under 2 seconds the decryption
time.
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3. PAIRING IMPLEMENTATION ON ELLIPTIC CURVES AND APPLICATION TO PROTOCOLS

Since the new release of the Android Development Toolkit rd8 of December 2012, it is possible to
write some parts of (inline) code in ARM assembly language inside our C functions, then thanks to the
Java Native Interface, the assembly and C codes are compiled to build an Android class. This is a work
in progress. The results are expected to be available before the end of 2013. To finish, the PPSS protocol is
a security improvement of BGW. We expect similar performances. The final results will appear in the last
version of the ANR VERSO-(09 project report.

3.5 Conclusion

In this chapter we presented our state-of-the-art implementation of pairings. The last gap to fill in
order to break records is to design a dedicated assembly code for modular reduction for a given p, such
asa p(x) of a BN curve with x = 262 — 254 4+ 24 [BGDM*10]. At the moment, dedicated implementation
for ARM architectures is very popular [SRH13]. Retrospectively, it was a good idea to focus on pairing-
friendly curves over large characteristic fields. Indeed the new records announced since December 2012
have convinced the community to bannish the use supersingular pairing-friendly curves in small charac-
teristic, because the new improved versions of the Function Field Sieve attack are prodigious.

The elliptic curves in large characteristic are still various enough to fill completely a 3-year PhD. Since
2005 supersingular and embedding-degree one curves are used to construct composite-order pairing-
friendly groups. These curves are quite different than the ordinary ones. These is still some work to do to
obtain an optimized pairing on these curves. Whatever happens these curves will remain much slower
than curves such as Barreto-Naehrig curves.

Until December 2013 and the end of this PhD, some work still remains to do. For example we would
like to link the ARM assembly code (for the modular multiplication) to the C code in the Android Devel-
opment Toolkit in order to obtain a factor 3 speed-up on ARM smartphones for a pairing computation.
Then we would have a much faster timing for any step of the BGW and PPSS broadcast encryption
scheme we implemented.
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Conclusion

In this thesis we discussed efficient arithmetic and pairing computation on elliptic curves for use in
cryptographic protocols. We studied how to do efficient arithmetic on two families of elliptic curves and
two other families of genus 2 hyperelliptic curves, isogenous to each other over an extension field. We can
perform efficiently a scalar multiplication on these genus 2 curves with a 4-GLV decomposition method.
The curve is naturally equipped with a first endomorphism. We showed an explicit way of constructing
a second endomorphism from complex multiplication. Since the genus 2 curve is isogenous over some
small extension field to the product of two elliptic curves, we first construct the elliptic curve with an
endomorphism from complex multiplication and transport this endomorphism on the Jacobian of the
genus 2 curve. We can do that for the two families we studied. We then know an second endomorphism
on the genus 2 curve, an explicit way to compute its expression and its eigenvalue.

We discovered that the isogenous elliptic curve when defined over a quadratic extension of a finite
field has anyway an endomorphism, different than the complex multiplication, coming from the compo-
sition the isogeny with the genus 2 curve and a Frobenius on this genus 2 curve. The same method of
efficient scalar multiplication with a 4-dimensional GLV decomposition is available on this elliptic curve
too. Previously known such elliptic curves with two distinct endomorphisms appear as a degenerate case
of our construction. These results were discovered together with Ionica and presented at the ECC'2013
workshop and ASIACRYPT’2013 conference.

We also proposed an improvement of point-counting method, then pairing-friendly constructions on
our two families of genus 2 curves. However we did not manage to construct interesting curves with
optimal parameter sizes, in other words with p = 1. We only found constructions with 2 < p < 4, ie.
the prime subgroup order considered for a pairing implementation is between a quarter and a half of the
curve order. Finding such optimal genus 2 curves over prime fields or elliptic curves over a quadratic
extension of a prime field with almost optimal parameter size seems a very hard task. No known such
construction exists at the moment and the known methods for elliptic curves defined over prime fields
fail to generalize to extension fields. Our results were presented at the PAIRING’2012 conference.

We also presented in the second part of this thesis our efficient implementation of pairings in the
cryptographic library of Thales and their application in a broadcast protocol. This is a joint work with
Dubois and Sengelin Le Breton [DGSLB12] in a more general context of a project on broadcast encryption
funded by the french ANR. This work was presented at the PAIRING’2012 conference and was continued
with Perez and Dugardin.

We also used our pairing implementation to compare two different instantiations (on different curves,
with a different hard problem) of a HIBE protocol. The first version proposed by Lewko and Waters
[LW11] uses composite-order pairing-friendly groups. The second version proposed by Lewko [Lew12] is
a translation of the first protocol on a vector space over pairing-friendly prime-order groups. Our results
show definitively that pairings on composite-order pairing-friendly groups are much slower, around a
hundred time slower than pairings over prime-order groups. In protocols, this results in a slow-down of
a factor 10 to 30, depending on the cryptographic operation (e.g. encryption, delegation). These results
were presented at the ACNS2013 conference.
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Résumé

Depuis 2000 les couplages sont devenus un trés bon outil pour la conception de nouveaux protocoles
cryptographiques. Les signatures courtes et le chiffrement basé sur l'identité sont devenus réalisables
grace aux couplages.

Les travaux réalisés dans cette thése comprennent deux aspects complémentaires. Une partie consiste
enl'implémentation optimisée de couplages sur différentes courbes elliptiques, en fonction des protocoles
visés. Une implémentation sur des courbes supersinguliéres en grande caractéristique et sur des courbes
de Barreto-Naehrig est détaillée. La bibliothéque développée au Laboratoire Chiffre de Thales est utilisée
avec des courbes de Barreto-Naehrig dans un protocole de diffusion chiffrée. La seconde application
évalue la différence de temps de calcul pour des protocoles utilisant les couplages sur des courbes d’ordre
composé (un large module RSA) et la traduction de ces protocoles qui utilise plusieurs couplages sur des
courbes plus habituelles. Les résultats montrent une différence d’un facteur de 30 a 250 en fonction des
étapes des protocoles, ce qui est trés important.

Une seconde partie porte sur deux familles de courbes de genre deux. Les jacobiennes de ces courbes
sont isogenes au produit de deux courbes elliptiques sur une extension de corps de petit degré. Cette
isogénie permet de transférer les propriétés des courbes elliptiques vers les jacobiennes. Le comptage
de points est aisé et ne requiert qu'un comptage de points sur une des courbes elliptiques isogenes,
plus quelques ajustements. On présente aussi la construction de deux endomorphismes a la fois sur
les jacobiennes et sur les courbes elliptiques. Ces deux endomorphismes permettent des multiplications
scalaires efficaces en suivant la méthode de Gallant, Lambert et Vanstone, ici en dimension quatre.

mots-clés : courbes elliptiques, courbes de genre 2, endomorphismes, couplages, implémentation,
groupes d’ordre composé.

Abstract

Since 2000 pairings became a very useful tool to design new protocols in cryptography. Short signatures
and identity-based encryption became also practical thanks to these pairings.

This thesis contains two parts. One part is about optimized pairing implementation on different ellip-
tic curves according to the targeted protocol. Pairings are implemented on supersingular elliptic curves
in large characteristic and on Barreto-Naehrig curves. The pairing library developed at Thales is used
in a broadcast encryption scheme prototype. The prototype implements pairings over Barreto-Naehrig
curves. Pairings over supersingular curves are much slower and have larger parameters. However these
curves are interesting when implementing protocols which use composite-order elliptic curves (the group
order is an RSA modulus). We implement two protocols that use pairings on composite-order groups
and compare the benchmarks and the parameter size with their counterpart in a prime-order setting. The
composite-order case is 30 up to 250 times much slower according to the considered step in the protocols:
the efficiency difference in between the two cases is very important.

A second part in this thesis is about two families of genus 2 curves. Their Jacobians are isogenous
to the product of two elliptic curves over a small extension field. The properties of elliptic curves can
be translated to the Jacobians thanks to this isogeny. Point counting is as easy as for elliptic curves in
this case. We also construct two endomorphisms both on the Jacobians and the elliptic curves. These en-
domorphisms can be used for scalar multiplication improved with a four-dimensional Gallant-Lambert-
Vanstone method.

keywords: elliptic curves, genus 2 curves, endomorphisms, pairings, implementation, composite-
order groups.



	Introduction à la cryptographie bilinéaire
	La cryptographie asymétrique
	Le problème du logarithme discret
	L'introduction des courbes elliptiques et hyperelliptiques en cryptographie
	Utilisation des couplages en cryptographie et cryptanalyse
	Implémentation des couplages en cryptographie
	Construction de courbes appropriées aux couplages
	Bibliothèques de calculs de couplages

	Travaux réalisés
	Implémentation de couplages
	Recherches de nouvelles propriétés sur des courbes de genre 1 et 2
	Publications
	Présentation

	Contents
	Introduction
	Background on elliptic and hyperelliptic curves in cryptography
	Motivation
	Elliptic curves
	Definitions
	Addition law
	Points of order 2 and 3
	Scalar multiplication
	Group of m-torsion points
	Elliptic curve order and characteristic polynomial of the Frobenius endomorphism
	Isogenies and endomorphisms
	Isogenies with Vélu's formulas
	Gallant-Lambert-Vanstone method for scalar multiplication
	Endomorphisms on elliptic curves: two examples
	Endomorphisms constructed from a degree-2 isogeny
	Endomorphisms constructed from a degree-3 isogeny


	Genus 2 hyperelliptic curves
	Divisors and Jacobian of a genus 2 curve
	Mumford representation of divisors
	Characteristic polynomial of the Frobenius endomorphism

	Pairings
	Black-box properties
	Weil and Tate pairings
	Pairing-friendly curves
	Supersingular curves
	Cocks-Pinch Method
	Brezing-Weng and Scott-Barreto methods
	Barreto-Naehrig Construction of Pairing-Friendly Elliptic Curves

	Tate pairing: Miller algorithm and improvements
	Miller's algorithm
	Example: Tate pairing on a supersingular curve
	Twists of curves
	Implementation of a Tate pairing on a BN curve
	The ate pairing
	The optimal ate pairing



	Genus 2 Jacobians: isogenies, point counting and endomorphisms
	Preliminaries
	Two splitting Jacobians
	Isogeny from JC1 into two elliptic curves E1,c E1,c
	Maps between genus 2 curves
	Computing I(2,2) on JC1(Fq).
	Computing (2,2) from E1,c E1,c to JC1.

	Isogeny from JC2 into two elliptic curves E2,c E2,-c

	Point counting on two families of genus 2 splitting Jacobians
	Point Counting on JC1(Fq)
	1 and 2 are defined over Fq.
	1 is defined over Fq and 2 over Fq2.
	1 and 2 are defined over Fq2.
	1 and 2 are defined over Fq4.
	1 and 2 are defined over Fq8.

	Point Counting on JC2(Fq)
	c and -c are defined over Fq.
	c and -c are defined over Fq3.
	c and -c are defined over Fq2.
	c and -c are defined over Fq6.


	Endomorphisms on two families of elliptic curves
	Endomorphisms on E1,c
	First Endomorphism from Vélu's formulas
	Second endomorphism from complex multiplication
	Four dimensional Gallant-Lambert Vanstone method
	Eigenvalues
	Example with -D=-40
	Example with -D=-4

	Endomorphisms on E2,c
	First endomorphism from Velu's formulas
	Second endomorphism from Complex Multiplication
	Eigenvalues
	Example with D=-3.


	Endomorphisms on the two families of Jacobians
	Endomorphisms on JC1
	Eigenvalues

	Endomorphisms on JC2

	Pairing-Friendly constructions for JC1 and JC2
	Cocks-Pinch Method
	Pairing-friendly Hyperelliptic curve C1
	Pairing-friendly Hyperelliptic curve C2

	Brezing-Weng Method
	More Pairing-Friendly constructions with D = 1,2,3
	Order-8 Weil restriction when D = 1
	Order-8 Weil restriction when D = 2
	Order-12 Weil restriction when D = 3


	Conclusion

	Pairing implementation on elliptic curves and application to protocols
	The LibCryptoLCH
	Organization of the LibCryptoLCH
	Quadratic extension field
	Degree 6 extension field

	Implementation of ate and optimal ate pairing on a BN curve
	Starting point
	Line and Tangent Computation
	Final Exponentiation
	Performances for Tate, ate and optimal ate pairings on BN curves

	Pairings on Composite-order Elliptic Curves
	Parameter sizes
	Composite-order elliptic curves
	Issues in composite-order elliptic curve generation
	Our choices

	Theoretical estimation
	Prime order BN curve
	Supersingular curve

	Implementation results
	Application to BGN cryptosystem
	Application to Hierarchical Identity Based Encryption

	Conclusion

	The BGW and PPSS broadcast protocols in practice
	Preliminaries
	BGW with an asymmetric pairing
	First version of the scheme
	General scheme
	Security proof
	Attacks on Diffie-Hellman problem with auxiliary inputs

	Choice of the pairing-friendly elliptic curve
	Reducing Time Complexity
	Binary public key tree precomputation
	Complexity analysis

	Implementation on a smartphone
	Perspectives

	Conclusion

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

