F. Alauzet, P. J. Frey, P. L. George, and B. Mohammadi, 3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations, Journal of Computational Physics, vol.222, issue.2, pp.592-623, 2007.
DOI : 10.1016/j.jcp.2006.08.012

F. Alauzet and P. J. Frey, Estimateur d'erreur géométrique et métriques anisotropes pour l'adaptation de maillage. Partie I : aspects théoriques, 2003.

S. V. Apte, K. Mahesh, M. Gorokhovski, and P. Moin, Stochastic modeling of atomizing spray in a complex swirl injector using large eddy simulation, Proceedings of the Combustion Institute, vol.32, issue.2, pp.2257-2266, 2009.
DOI : 10.1016/j.proci.2008.06.156

URL : https://hal.archives-ouvertes.fr/hal-00461418

D. Barre, M. Kraushaar, G. Staffelbach, V. Moureau, and L. Y. , Compressible and incompressible les of a swirl experimental burner, 2011.

J. M. Beer and N. A. Chigier, Combustion aerodynamics, 1983.

T. and B. Benjamin, Theory of the vortex breakdown phenomenon, Journal of Fluid Mechanics, vol.48, issue.04, pp.593-629
DOI : 10.1017/S0022112062001482

P. Billant, J. Chomaz, and P. Huerre, Experimental study of vortex breakdown in swirling jets, Journal of Fluid Mechanics, vol.376, pp.183-219, 1998.
DOI : 10.1017/S0022112098002870

M. Boileau, S. Pascaud, E. Riber, B. Cuenot, L. Y. Gicquel et al., Investigation of Two-Fluid Methods for Large Eddy Simulation of Spray Combustion in Gas Turbines, Flow, Turbulence and Combustion, vol.27, issue.5, pp.291-321, 2008.
DOI : 10.1007/s10494-007-9123-1

S. T. Bose, P. Moin, and D. You, Grid-independent large-eddy simulation using explicit filtering, Physics of Fluids, vol.22, issue.10, p.22105103, 2010.
DOI : 10.1063/1.3485774

J. John, H. T. Cassidy, and . Falvey, Observations of unsteady flow arising after vortex breakdown, Journal of Fluid Mechanics, vol.41, issue.04, pp.727-736, 1970.

J. Cea, Approximation variationnelle desprobì emes aux limites, 1964.
DOI : 10.5802/aif.181

D. R. Chapman and G. D. Kuhn, The limiting behaviour of turbulence near a wall, Journal of Fluid Mechanics, vol.87, issue.-1, pp.265-292, 1986.
DOI : 10.1017/S0022112067001740

F. Katopodes, C. , and P. Moin, A further study of numerical errors in large-eddy simulations, Journal of Computational Physics, vol.184, issue.2, pp.366-380, 2003.

P. Dellenback, D. Metzger, and G. Neitzel, Measurements in turbulent swirling flow through an abrupt axisymmetric expansion, AIAA Journal, vol.26, issue.6, pp.669-681, 1988.
DOI : 10.2514/3.9952

C. Dobrzynski, Adaptation de Maillage anisotrope 3D et application a l'aerothermique des batiments, 2005.

J. Dombard, . Poinsot, . Moureau, . Savary, V. Staffelbach et al., Experimental and numerical study of the influence of small geometrical modifications on the dynamics of swirling flows, CTR, Proceedings of the Summer Program 2012

E. Bank, Mesh Smoothing Using A Posteriori Error Estimates, SIAM Journal on Numerical Analysis, vol.34, issue.3, pp.979-997, 1997.
DOI : 10.1137/S0036142994265292

M. P. Escudier and J. J. Keller, Vortex breakdown: a two stage transition, 1983.

J. H. Faler and S. Leibovich, Disrupted states of vortex flow and vortex breakdown, Physics of Fluids, vol.20, issue.9, pp.1395-1400, 1977.
DOI : 10.1063/1.862033

L. Freitag, M. Jones, and P. Plassmann, An efficient parallel algorithm for mesh smoothing, Proceedings of the 4th International Meshing Roundtable, Sandia National Laboratories, 1995.
DOI : 10.2172/414390

P. J. Frey and F. Alauzet, Anisotropic mesh adaptation for CFD computations, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.48-49, pp.48-495068, 2005.
DOI : 10.1016/j.cma.2004.11.025

I. Fried, Condition of finite element matrices generated from nonuniform meshes., AIAA Journal, vol.10, issue.2, 1972.
DOI : 10.2514/3.6561

J. Frøhlich, C. P. Mellen, W. Rodi, L. Temmerman, and M. A. Leschziner, Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions, Journal of Fluid Mechanics, vol.526, pp.19-66, 2005.
DOI : 10.1017/S0022112004002812

M. García-villalba, J. Fröhlich, and W. Rodi, Identification and analysis of coherent structures in the near field of a turbulent unconfined annular swirling jet using large eddy simulation, Physics of Fluids, vol.18, issue.5, 2006.
DOI : 10.1063/1.2202648

M. Germano, U. Piomelli, P. Moin, and W. Cabot, A dynamic subgrid???scale eddy viscosity model, Physics of Fluids A: Fluid Dynamics, vol.3, issue.7, pp.1760-1765, 1991.
DOI : 10.1063/1.857955

B. J. Geurts and J. Fröhlich, A framework for predicting accuracy limitations in large-eddy simulation, Physics of Fluids, vol.14, issue.6, p.14, 2002.
DOI : 10.1063/1.1480830

A. K. Gupta, D. G. Lilley, and N. Syred, Swirl flows, 1984.

G. Wagdi, J. Habashi, Y. Dompierrea, D. Bourgaulta, M. Ait-ali-yahiaa et al., Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent cfd. part i: general principles, Int. J. Numer. Meth. Fluids, vol.32, pp.725-744, 2000.

M. G. Hall, Vortex Breakdown, Annual Review of Fluid Mechanics, vol.4, issue.1, pp.195-217, 1972.
DOI : 10.1146/annurev.fl.04.010172.001211

M. G. Hall, The structure of concentrated vortex cores, Progress in Aerospace Sciences, pp.53-110, 1966.
DOI : 10.1016/0376-0421(66)90006-6

G. Hannebique, P. Sierra, E. Riber, and B. Cuenot, Large Eddy Simulation of Reactive Two-Phase Flow in an Aeronautical Multipoint Burner, 7th Mediterranean Combustion Symposium, 2011.
DOI : 10.1007/s10494-012-9416-x

C. Hertel and J. Fröhlich, Error reduction in LES via adaptive moving grids, Quality and Reliability of Large-Eddy Simulations II, pp.309-318, 2011.
DOI : 10.1007/978-94-007-0231-8_28

J. Hoffman, Computation of Mean Drag for Bluff Body Problems Using Adaptive DNS/LES, SIAM Journal on Scientific Computing, vol.27, issue.1, pp.184-207, 2005.
DOI : 10.1137/040614463

J. Hoffman and C. Johnson, A new approach to computational turbulence modeling, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.23-24, pp.23-242865, 2006.
DOI : 10.1016/j.cma.2004.09.015

P. G. Huang and G. N. Coleman, Van driest transformation and compressible wallbounded flows, AIAA Journal, vol.32, issue.10, pp.2110-2113, 1994.

W. Huang, Variational Mesh Adaptation: Isotropy and Equidistribution, Journal of Computational Physics, vol.174, issue.2, pp.903-924, 2001.
DOI : 10.1006/jcph.2001.6945

Y. Huang, S. Wang, and V. Yang, Systematic Analysis of Lean-Premixed Swirl-Stabilized Combustion, AIAA Journal, vol.44, issue.4, pp.724-740, 2006.
DOI : 10.2514/1.15382

Y. Huang and V. Yang, Dynamics and stability of lean-premixed swirl-stabilized combustion, Proc. of the Summer Program, pp.293-364, 1988.
DOI : 10.1016/j.pecs.2009.01.002

A. K. Aziz and I. Babuska, On the angle condition in the finite element method, SIAM J. NUMER. ANAL, vol.13, issue.2, 1976.

A. K. Chesters, J. Chedaille, and W. , Aerodynamic studies carried out on turbulent jets by the international flame research, Journal of the institute of Fuel, vol.39, issue.311, pp.506-521, 1966.

. Jaegle, LES of two-phase flow in aero-engines, CERFACS -CFD Team, 2009.

F. Jaegle, J. Senoner, M. Garcia, F. Bismes, R. Lecourt et al., Eulerian and Lagrangian spray simulations of an aeronautical multipoint injector, Proceedings of the Combustion Institute, vol.33, issue.2, pp.2099-2107, 2011.
DOI : 10.1016/j.proci.2010.07.027

J. Jimenez, On why dynamic subgrid-scale models work, 1995.

J. Jiménez, Turbulence and vortex dynamics, 2004.

J. Jiménez and R. D. Moser, Large-eddy simulations - Where are we and what can we expect?, AIAA Journal, vol.38, issue.4, pp.605-612, 2000.
DOI : 10.2514/3.14451

W. Kim and S. Syed, Large-Eddy Simulation Needs for Gas Turbine Combustor Design, 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004.
DOI : 10.2514/6.2004-331

M. Klein, J. Meyers, and B. J. Geurts, Assessment of LES Quality Measures Using the Error Landscape Approach, Quality and Reliability of Large-Eddy Simulations, pp.131-142, 2008.
DOI : 10.1007/978-1-4020-8578-9_11

A. N. Kolmogorov, The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.434, issue.1890, p.301, 1941.
DOI : 10.1098/rspa.1991.0075

M. Krausaar, Application of the compressible and low-Mach number approaches to Large-Eddy Simulation of turbulent flows in aero-engines, CERFACS, 2011.

A. G. Kravchenko and P. Moin, On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows, Journal of Computational Physics, vol.131, issue.2, pp.310-322, 1997.
DOI : 10.1006/jcph.1996.5597

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 1998.

E. Lamballais and J. P. Bonnet, DNS/LES data processing and its relation with experiment, VKI Lectures Series 2003-03 " Postprocessing of experimental and numerical data, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00148044

N. C. Lambourne and D. W. Bryer, The bursting of leading-edge vortices: Some observations and discussions of the phenomenon, 1961.

H. Liang and T. Maxworthy, An experimental investigation of swirling jets, Journal of Fluid Mechanics, vol.525, issue.1, pp.115-159, 2005.
DOI : 10.1017/S0022112004002629

T. Loiseleux, J. M. Chomaz, and P. Huerre, The effect of swirl on jets and wakes: Linear instability of the Rankine vortex with axial flow, Physics of Fluids, vol.10, issue.5, pp.1120-1134, 1998.
DOI : 10.1063/1.869637

A. Loseille and F. Alauzet, Continuous Mesh Model and Well-Posed Continuous Interpolation Error Estimation, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00370235

A. Loseille, A. Dervieux, P. Frey, and F. Alauzet, Achievement of Global Second Order Mesh Convergence for Discontinuous Flows with Adapted Unstructured Meshes, 18th AIAA Computational Fluid Dynamics Conference, 2007.
DOI : 10.2514/6.2007-4186

O. Lucca-negro and T. O. Doherty, Vortex breakdown: a review, Progress in Energy and Combustion Science, vol.27, issue.4, pp.431-481, 2001.
DOI : 10.1016/S0360-1285(00)00022-8

D. Lucor, J. Meyers, and P. Sagaut, Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos, Journal of Fluid Mechanics, vol.117, pp.255-279, 2007.
DOI : 10.1002/(SICI)1097-0363(19960229)22:43.0.CO;2-X

T. S. Lund, The use of explicit filters in large eddy simulation, Computers & Mathematics with Applications, vol.46, issue.4, pp.603-616, 2003.
DOI : 10.1016/S0898-1221(03)90019-8

K. Mahesh, G. Constantinescu, and P. Moin, A numerical method for large-eddy simulation in complex geometries, Journal of Computational Physics, vol.197, issue.1, pp.215-240, 2004.
DOI : 10.1016/j.jcp.2003.11.031

C. Martin, L. Benoit, Y. Sommerer, F. Nicoud, and T. Poinsot, Large-Eddy Simulation and Acoustic Analysis of a Swirled Staged Turbulent Combustor, AIAA Journal, vol.44, issue.4, pp.741-750, 2006.
DOI : 10.2514/1.14689

URL : https://hal.archives-ouvertes.fr/hal-00933165

C. Ollivier-gooch, M. Batford, and L. A. Freitag, Computational study of the effect of unstructured mesh quality on solution efficiency

C. Meneveau and J. Katz, Scale-Invariance and Turbulence Models for Large-Eddy Simulation, Annual Review of Fluid Mechanics, vol.32, issue.1, pp.1-32, 2000.
DOI : 10.1146/annurev.fluid.32.1.1

J. Meyers, B. J. Geurts, and P. Sagaut, A computational error-assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model, Journal of Computational Physics, vol.227, issue.1, pp.156-173, 2007.
DOI : 10.1016/j.jcp.2007.07.012

J. Meyers and P. Sagaut, Is plane-channel flow a friendly case for the testing of large-eddy simulation subgrid-scale models?, Physics of Fluids, vol.19, issue.4, p.48105, 2007.
DOI : 10.1063/1.2722422

R. Mittal and P. Moin, Suitability of Upwind-Biased Finite Difference Schemes for Large-Eddy Simulation of Turbulent Flows, AIAA Journal, vol.35, issue.8, pp.1415-1417698, 1997.
DOI : 10.2514/2.253

V. Moureau, P. Domingo, and L. Vervisch, From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling, Combustion and Flame, vol.158, issue.7, 2011.
DOI : 10.1016/j.combustflame.2010.12.004

V. Moureau, G. Lartigue, Y. Sommerer, C. Angelberger, O. Colin et al., Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids, Journal of Computational Physics, vol.202, issue.2, pp.710-736, 2005.
DOI : 10.1016/j.jcp.2004.08.003

J. Beer and N. Syred, Vortex core precession in high swirl flows, The second International JSME Symposium on Fluid Machinery and Fluidics, pp.111-120, 1972.

F. Nicoud and F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient, Flow, Turbulence and Combustion, vol.62, issue.3, pp.183-200, 1999.
DOI : 10.1023/A:1009995426001

URL : https://hal.archives-ouvertes.fr/hal-00910373

F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, Using singular values to build a subgrid-scale model for large eddy simulations, Physics of Fluids, vol.23, issue.8, 2011.
DOI : 10.1063/1.3623274

URL : https://hal.archives-ouvertes.fr/hal-00802472

K. Oberleithner, . Terhaar, C. Rukes, and . Paschereit, Why Non-Uniform Density Suppresses the Precessing Vortex Core, Volume 1B: Combustion, Fuels and Emissions, 2013.
DOI : 10.1115/GT2013-95509

F. Bismes-f, P. Simon, J. Gajan, and . Apeloig, Kiai deliverable d2.3.1: Experimental characterization of the injector, 2011.

P. Palies, Dynamique et instabilies de combustion de flammes swirlees, 2010.

N. Park and K. Mahesh, Analysis of numerical errors in large eddy simulation using statistical closure theory, Journal of Computational Physics, vol.222, issue.1, pp.194-216, 2007.
DOI : 10.1016/j.jcp.2006.07.016

P. Reynolds, W. C. Pauley, and L. L. Moin, The structure of two-dimensional separation, J. Fluid Mech, 1990.

U. Piomelli, W. H. Cabot, P. Moin, and S. Lee, Subgrid???scale backscatter in turbulent and transitional flows, Physics of Fluids A: Fluid Dynamics, vol.3, issue.7, pp.1766-1771, 1991.
DOI : 10.1063/1.857956

T. Poinsot and S. Lele, Boundary conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, vol.101, issue.1, pp.104-129, 1992.
DOI : 10.1016/0021-9991(92)90046-2

T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00270731

S. B. Pope, Turbulent flows, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00338511

S. B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows, New Journal of Physics, vol.6, p.35, 2004.
DOI : 10.1088/1367-2630/6/1/035

S. Roux, G. Lartigue, T. Poinsot, U. Meier, and C. Bérat, Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations, Combustion and Flame, vol.141, issue.1-2, pp.40-54, 2005.
DOI : 10.1016/j.combustflame.2004.12.007

M. Rudgyard, Integrated preprocessing tools for unstructured parallel cfd applications, CERFACS, 1995.

M. Rudgyard, T. Schoenfeld, R. Struijs, G. Audemar, and P. Leyland, A modular approach for computational fluid dynamics, CERFACS, 1995.

P. Sagaut, Large eddy simulation for incompressible flows, 2002.

M. Sanjosé, E. Riber, L. Gicquel, B. Cuenot, and T. Poinsot, Large Eddy Simulation of a Two-Phase Reacting Flow in an Experimental Burner, ERCOFTAC Workshop -DLES7, pp.251-263, 2008.
DOI : 10.1007/978-90-481-3652-0_51

T. Sarpkaya, On stationary and travelling vortex breakdowns, Journal of Fluid Mechanics, vol.34, issue.03, pp.545-559, 1971.
DOI : 10.1017/S0022112071000181

A. Scotti, C. Meneveau, and M. Fatica, Dynamic Smagorinsky model on anisotropic grids, Physics of Fluids, vol.9, issue.6, pp.1856-1858, 1997.
DOI : 10.1063/1.869306

A. Scotti, C. Meneveau, and D. K. Lilly, Generalized Smagorinsky model for anisotropic grids, Physics of Fluids A: Fluid Dynamics, vol.5, issue.9, pp.2306-2308, 1993.
DOI : 10.1063/1.858537

L. Selle, L. Benoit, T. Poinsot, F. Nicoud, and W. Krebs, Joint use of compressible large-eddy simulation and Helmholtz solvers for the analysis of rotating modes in an industrial swirled burner, Combustion and Flame, vol.145, issue.1-2, pp.194-205, 2006.
DOI : 10.1016/j.combustflame.2005.10.017

URL : https://hal.archives-ouvertes.fr/hal-00908256

L. Selle, G. Lartigue, T. Poinsot, R. Koch, K. Schildmacher et al., Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes, Combustion and Flame, vol.137, issue.4, pp.489-505, 2004.
DOI : 10.1016/j.combustflame.2004.03.008

URL : https://hal.archives-ouvertes.fr/hal-00271666

J. Senoner, Simulation aux GrandesÉchellesGrandes´GrandesÉchelles de l'´ ecoulement diphasique dans un brûleur aéronautique par une approche Euler-Lagrange, 2010.

N. Syred, A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems, Progress in Energy and Combustion Science, vol.32, issue.2, pp.93-161, 2006.
DOI : 10.1016/j.pecs.2005.10.002

L. Thobois, G. Rymer, and T. Souleres, Large-Eddy Simulation in IC Engine Geometries, SAE Technical Paper Series, 1854.
DOI : 10.4271/2004-01-1854

L. Thobois, G. Rymer, T. Souleres, T. Poinsot, and B. , Large-eddy simulation for the prediction of aerodynamics in IC engines, International Journal of Vehicle Design, vol.39, issue.4, pp.368-382, 2005.
DOI : 10.1504/IJVD.2005.008468

M. Vanierschot, E. Van-den, and . Bulck, Hysteresis in flow patterns in annular swirling jets. Experimental Thermal and Fluid Science, pp.513-524, 2007.

M. Vanierschot, E. Van-den, and . Bulck, INFLUENCE OF THE NOZZLE GEOMETRY ON THE HYSTERESIS OF ANNULAR SWIRLING JETS, Combustion Science and Technology, vol.39, issue.8, pp.1451-1466, 2007.
DOI : 10.1080/00102200302388

M. Vanierschot, T. Persoons, E. Van-den, and . Bulck, A new method for annular jet control based on cross-flow injection, Physics of Fluids, vol.21, issue.2, pp.25103-25112, 2009.
DOI : 10.1063/1.3037343

M. Vanierschot, E. Van-den, and . Bulck, Computation of a drastic flow pattern change in an annular swirling jet caused by a small decrease in inlet swirl, International Journal for Numerical Methods in Fluids, vol.7, issue.8, pp.577-592, 2009.
DOI : 10.1002/fld.1835

S. Wang, S. Hsieh, and V. Yang, Unsteady flow evolution in swirl injector with radial entry. I. Stationary conditions, Physics of Fluids, vol.17, issue.4, p.45106, 2005.
DOI : 10.1063/1.1874892

S. Wang and V. Yang, Unsteady flow evolution in swirl injectors with radial entry. II. External excitations, Physics of Fluids, vol.17, issue.4, p.45107, 2005.
DOI : 10.1063/1.1874932

S. Wang, V. Yang, G. Hsiao, S. Hsieh, and H. C. Mongia, Large-eddy simulations of gas-turbine swirl injector flow dynamics, Journal of Fluid Mechanics, vol.583, pp.99-122, 2007.
DOI : 10.1017/S0022112007006155

R. Wille and H. Fernholz, Report on the first European Mechanics Colloquium, on the Coanda effect, Journal of Fluid Mechanics, vol.23, issue.04, pp.801-819, 1965.
DOI : 10.1007/BF00531797

M. Vanierschot, E. Van-den, and . Bulck, Hysteresis in flow patterns in annular swirling jets, Experimental Thermal and Fluid Science, vol.31, issue.6, pp.513-524, 2007.
DOI : 10.1016/j.expthermflusci.2006.06.001

S. B. Pope, Turbulent Flows, p.9780521598866
URL : https://hal.archives-ouvertes.fr/hal-00338511

P. Billant, J. Chomaz, and P. Huerre, Experimental study of vortex breakdown in swirling jets, Journal of Fluid Mechanics, vol.376, pp.183-219, 1998.
DOI : 10.1017/S0022112098002870

O. Lucca-negro and T. , Doherty Vortex breakdown: a review

J. J. Cassidy, . Falvey, and T. Henry, Observations of unsteady flow arising after vortex breakdown, Journal of Fluid Mechanics, vol.14, issue.04, pp.727-73610, 1970.
DOI : 10.1017/S0022112070000873

M. Rudgyard, T. Schoenfeld, R. Struijs, G. Audemar, and P. Leyland, A Modular Approach for Computational Fluid Dynamics, CERFACS report, 1995.

M. Rudgyard, Integrated Preprocessing Tools for Unstructured Parallel CFD Applications, CERFACS report, 1995.

V. Moureau, P. Domingo, and L. Vervisch, Design of a massively parallel CFD code for complex geometries, Comptes Rendus M??canique, vol.339, issue.2-3, pp.2-3141, 2011.
DOI : 10.1016/j.crme.2010.12.001

F. Bismes, F. Simon, P. Gajan, and J. Apeloig, Experimental characterization of the injector, 2011.

A. K. Gupta, D. G. Lilley, and N. Syred, Swirl flows, 1984.

J. Chedaille, AK Chesters Aerodynamic studies carried out on turbulent jets by the international flame research, Journal of the institute of Fuel, vol.39, issue.311, pp.506-521, 1966.

M. Vanierschot, T. Persoons, and E. M. Van-den-bulck, A new method for annular jet control based on cross-flow injection, Physics of Fluids, vol.21, issue.2, 2009.
DOI : 10.1063/1.3037343

M. García-villalba, J. Fröhlich, and W. Rodi, Identification and analysis of coherent structures in the near field of a turbulent unconfined annular swirling jet using large eddy simulation, Physics of Fluids, vol.18, issue.5, 2006.
DOI : 10.1063/1.2202648

F. Nicoud, H. Toda, O. Cabrit, S. Bose, and J. Lee, Using singular values to build a subgrid-scale model for large eddy simulations, Physics of Fluids, vol.23, issue.8
DOI : 10.1063/1.3623274

URL : https://hal.archives-ouvertes.fr/hal-00802472

. Cabot, A dynamic subgrid-scale eddy viscosity model, Physics of Fluids, vol.3, issue.7, pp.1760-1765, 1991.

S. Wang, V. Yang, G. Hsiao, S. Y. Hsieh, and H. C. Mongia, Large-eddy simulations of gas-turbine swirl injector flow dynamics, Journal of Fluid Mechanics, vol.583, pp.99-122, 2007.
DOI : 10.1017/S0022112007006155

M. Vanierschot, E. Van-den, and . Bulck, INFLUENCE OF THE NOZZLE GEOMETRY ON THE HYSTERESIS OF ANNULAR SWIRLING JETS, Combustion Science and Technology, vol.39, issue.8, pp.1451-1466, 2007.
DOI : 10.1080/00102200302388

M. Kraushaar, Application of the compressible and low-Mach number approaches to Large-Eddy Simulation of turbulent flows in aero-engines
URL : https://hal.archives-ouvertes.fr/tel-00711480

D. R. Chapman, . Kuhn, and D. Gary, The limiting behaviour of turbulence near a wall, Journal of Fluid Mechanics, vol.87, issue.-1, pp.265-292, 1986.
DOI : 10.1017/S0022112067001740

C. Figure, Axial velocity RMS and pressure distribution measured along the centerline of the geometry. Results are plotted against normalized axial distance (X/R 0 ) from the swirler ending plate, for the full swirler case simulations

C. Figure, Jet separation and reattachment inside the nozzle for LES of table C.4. The jet dynamics are made evident by the zero velocity isoline in the streamwise direction. Grey line, LES basic in the AJ state, Black line, LES high in the BB state

C. Figure, Jet separation and reattachment to the side walls for LES of table C.4. The jet dynamics are made evident by the zero velocity isoline in the streamwise direction. Grey line, LES basic in the AJ state, Black line