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R€sum€

La probl!matique «Big Data» peut "tre caract!ris!e par trois «V»:
- «Big Volume» se rapporte # l'augmentation sans pr!c!dent du 
volume des donn!es.
- «Big Velocity» se r!f$re # la croissance de la vitesse # laquelle 
ces donn!es sont d!plac!es entre les syst$mes qui les g$rent.
- «Big Variety» correspond # la diversi%cation des formats de ces 
donn!es.

Ces caract!ristiques imposent des changements fondamentaux 
dans l'architecture des syst$mes de gestion de donn!es. Les 
syst$mes de stockage doivent "tre adapt!s # la croissance des 
donn!es, et se doivent de passer # l'!chelle tout en maintenant 
un acc$s # hautes performances. Cette th$se se concentre sur 
la construction des syst$mes de gestion de grandes masses de 
donn!es passant # l'!chelle. 

Les deux premi$res contributions ont pour objectif de fournir 
un support e&cace des «Big Volumes» pour les applications 
data-intensives dans les environnements de calcul # hautes 
performances (HPC). Nous abordons en particulier les limitations 
des approches existantes dans leur gestion des op!rations 
d'entr!es/sorties (E/S) non-contigu*s atomiques # large !chelle. 
Un m!canisme bas! sur les versions est alors propos!, et qui peut 
"tre utilis! pour l'isolation des E/S non-contigu*s sans le fardeau 
de synchronisations co4teuses. Dans le contexte du traitement 
parall$le de tableaux multi-dimensionels en HPC, nous pr!sentons 
Pyramid, un syst$me de stockage large-!chelle optimis! pour 
ce type de donn!es. Pyramid revoit l'organisation physique 
des donn!es dans les syst$mes de stockage distribu!s en vue 
d'un passage # l'!chelle des performances. Pyramid favorise un 
partitionnement multi-dimensionel de donn!es correspondant 
le plus possible aux acc$s g!n!r!s par les applications. Il se 
base !galement sur une gestion distribu!e des m!tadonn!es 
et un m!canisme de versioning pour la r!solution des acc$s 
concurrents, ce a%n d'!liminer tout besoin de synchronisation.

Notre troisi$me contribution aborde le probl$me «Big Volume» 
# l'!chelle d'un environnement g!ographiquement distribu!. 
Nous consid!rons BlobSeer, un service distribu! de gestion de 
donn!es orient! «versioning», et nous proposons BlobSeer-WAN, 
une extension de BlobSeer optimis!e pour un tel environnement. 
BlobSeer-WAN prend en compte la hi!rarchie de latence et favorise 
les acc$s aux m!ta-donn!es locales. BlobSeer-WAN inclut la 
r!plication asynchrone des m!ta-donn!es et une r!solution des 
collisions bas!e sur des «vector-clock».

A%n de tra6ter le caract$re «Big Velocity» de la probl!matique 
«Big Data», notre derni$re contribution consiste en DStore, 
un syst$me de stockage en m!moire orient! «documents» 
qui passe # l'!chelle verticalement en exploitant les capacit!s 
m!moires des machines multi-coeurs. Nous montrons l'e&cacit! 
de DStore dans le cadre du traitement de requ"tes d'!critures 
atomiques complexes tout en maintenant un haut d!bit d'acc$s 
en lecture. DStore suit un mod$le d'ex!cution mono-thread qui 
met # jour les transactions s!quentiellement, tout en se basant 
sur une gestion de la concurrence bas!e sur le versioning a%n de 
permettre un grand nombre d'acc$s simultan!s en lecture.

Abstract

Big Data can be characterized by 3 V's. 
· Big Volume refers to the unprecedented growth in the amount of 
data.
· Big Velocity refers to the growth in the speed of moving data in 
and out management systems. 
· Big Variety refers to the growth in the number of di8erent data 
formats.

Managing Big Data requires fundamental changes in the 
architecture of data management systems. Data storage should 
continue being innovated in order to adapt to the growth of data. 
They need to be scalable while maintaining high performance 
regarding data accesses. This thesis focuses on building scalable 
data management systems for Big Data. 

Our %rst and second contributions address the challenge of 
providing e&cient support for Big Volume of data in data-intensive 
high performance computing (HPC) environments. Particularly, we 
address the shortcoming of existing approaches to handle atomic, 
non-contiguous I/O operations in a scalable fashion. We propose 
and implement a versioning-based mechanism that can be 
leveraged to o8er isolation for non-contiguous I/O without the need 
to perform expensive synchronizations.  In the context of parallel 
array processing in HPC, we introduce Pyramid, a large-scale, 
array-oriented storage system. It revisits the physical organization 
of data in distributed storage systems for scalable performance. 
Pyramid favors multidimensional-aware data chunking, that 
closely matches the access patterns generated by applications. 
Pyramid also favors a distributed metadata management and a 
versioning concurrency control to eliminate synchronizations in 
concurrency.

Our third contribution addresses Big Volume at the scale of the 
geographically distributed environments. We consider BlobSeer, 
a distributed versioning-oriented data management service, and 
we propose BlobSeer-WAN, an extension of BlobSeer optimized 
for such geographically distributed environments. BlobSeer-
WAN takes into account the latency hierarchy by favoring locally 
metadata accesses. BlobSeer-WAN features asynchronous 
metadata replication and a vector-clock implementation for 
collision resolution.

To cope with the Big Velocity characteristic of Big Data, our last 
contribution feautures DStore, an in-memory document-oriented 
store that scale vertically by leveraging large memory capability 
in multicore machines. DStore demonstrates fast and atomic 
complex transaction processing in data writing, while maintaining 
high throughput read access.  DStore follows a single-threaded 
execution model to execute update transactions sequentially, 
while relying on a versioning concurrency control to enable a large 
number of simultaneous readers.
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1.1 Context: Big Data management

TO date, more and more data are captured or generated than ever before. Accord-
ing to the 2011 Digital Universe study of International Data Corporation (IDC), the
amount of information the world produced in 2011 surpassed 1.8 Zettabytes (ZB),

which marks an exponential growth by a factor of nine in just ®ve years. Interestingly, the
study also shows that the amount of data generated by individual users such as documents,
photos, digital musics, blogs is far less than the amount of data being produced by applica-
tions and Internet services about their activities on their generated data (documents, photos,
blogs, etc.).

The sources of this data explosion can be easily identi®ed. Nowadays, the world has
approximately 5 billion mobile phones, millions of sensors to capture almost every aspect of
life. As a particular example on Facebook, over 900 million active users share about 30 billion
pieces of contents per month. Within the same time interval, over 20 billion Internet searches
are performed. In the world of Data-intensive High Performance Computing (HPC), Large
Hadron Collider (LHC) Grid[1] produces roughly 25 PB of data at the I/O rate of 300 GB/s
annually.

In this context, ªBig Dataº is becoming a hot term used to characterize the recent ex-
plosion of data. Everybody ranging from Information technology companies to business
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®rms is buzzing about ªBig Dataº. Indeed, Big Data describes the unprecedented growth
of data generated and collected from all kinds of data sources that we mentioned above.
This growth can be in the volume of data or in the speed of data moving in and out data-
management systems. It can also be the growth in the number of different data formats in
terms of structured or unstructured data.

Addressing the need of Big Data management highly requires fundamental changes in
the architecture of data-management systems. Data storage should continue innovating in
order to adapt to the growth of Big Data. They need to be scalable while maintaining high
performance for data accesses. Thus, this thesis focuses on building scalable data manage-
ment systems for Big Data.

1.2 Contributions

The main contributions of this thesis can be summarized as follows.

Building a scalable storage system to provide ef®cient support for MPI-I/O atomicity

The state of the art shows that current storage systems do not support atomic, non-
contiguous I/O operations in a scalable fashion. ROMIO, the MPI-I/O implementation,
is forced to implement this lacking feature through locking-based mechanisms: write oper-
ations simply lock the smallest contiguous regions of the ®le that cover all non-contiguous
regions that need to be written. Under a high degree of concurrency, such an approach is not
scalable and becomes a major source of bottleneck. We address this shortcoming of existing
approaches by proposing to support atomic, non-contiguous I/O operations explicitly at the
level of storage back-ends. We introduce a versioning-based mechanism that offers isolation
for non-contiguous I/O operations and avoids the need to perform expensive synchroniza-
tion. A prototype was built along this idea and was integrated with ROMIO in order to
enable applications to use our prototype transparently without any modi®cation. We con-
duct a series of experiments on Grid'5000 testbed and show that our prototype can support
non-contiguous I/O operations in a scalable fashion.

Pyramid: a large-scale array-oriented storage system

In the context of data-intensive High Performance Computing (HPC), a large class of ap-
plications focuses on parallel array processing: small different subdomains of huge multi-
dimensional arrays are concurrently accessed by a large number of clients, both for reading
and writing. Because multi-dimensional data get serialized into a ¯at sequence of bytes
at the level of the underlying storage system, a subdomain (despite seen by the applica-
tion processes as a single chunk of memory) maps to a series of complex non-contiguous
regions in the ®le, all of which have to be read/written at once by the same process. We
propose to avoid such an expensive mapping that destroys the data locality by redesigning
the way data is stored in distributed storage systems, so that it closely matches the access
pattern generated by applications. We design and implement Pyramid, a large-scale array-
oriented storage system that leverages an array-oriented data model and a versioning-based
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concurrency control to support parallel array processing ef®ciently. Experimental evalua-
tion demonstrates substantial scalability improvements brought by Pyramid with respect to
state-of-art approaches, both in weak and strong scaling scenarios, with gains of 100 % to
150 %.

Towards a globally distributed ®le systems: adapting BlobSeer to WAN scale

To build a globally scalable distributed ®le system that spreads over a wide area network
(WAN), we propose an integrated architecture for a storage system relying on a distributed
metadata-management system and BlobSeer, a large-scale data-management service. Since
BlobSeer was initially designed to run on cluster environments, it is necessary to extend
BlobSeer in order to take into account the latency hierarchy on multi-geographically dis-
tributed environments. We propose an asynchronous metadata replication scheme to avoid
high latency in accessing metadata over WAN interconnections. We extend the original Blob-
Seer with an implementation of multiple version managers and leverages vector clocks for
detection and resolution of collision. Our prototype, denoted BlobSeer-WAN is evaluated
on the Grid'5000 testbed and shows promising results.

DStore: an in-memory document-oriented store

As a result of continuous innovation in hardware technology, computers are made more and
more powerful than their prior models. Modern servers nowadays can possess large main
memory capability that can size up to 1 Terabytes (TB) and more. As memory accesses are
at least 100 times faster than disk, keeping data in main memory becomes an interesting de-
sign principle to increase the performance of data management systems. We design DStore,
a document-oriented store residing in main memory to fully exploit high-speed memory
accesses for high performance. DStore is able to scale up by increasing memory capabil-
ity and the number of CPU-cores rather than scaling horizontally as in distributed data-
management systems. This design decision favors DStore in supporting fast and atomic
complex transactions, while maintaining high throughput for analytical processing (read-
only accesses). This goal is (to our best knowledge) not easy to achieve with high perfor-
mance in distributed environments. DStore is built with several design principles: single
threaded execution model, parallel index generations, delta-indexing and bulk updating,
versioning concurrency control and trading freshness for performance of analytical process-
ing. This work was carried out in collaboration with Dushyanth Narayanan at Microsoft
Research Cambridge, as well as Gabriel Antoniu and Luc Boug , INRIA Rennes, France.

1.3 Publications

Journal:

� Towards scalable array-oriented active storage: the Pyramid approach.Tran V.-T., Nicolae
B., Antoniu G. In the ACM SIGOPS Operating Systems Review 46(1):19-25. 2012. (Ex-
tended version of the LADIS paper). http://hal.inria.fr/hal-00640900
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International conferences and workshops:

� Pyramid: A large-scale array-oriented active storage system.Tran V.-T., Nicolae B., Antoniu
G., Boug! L. In The 5th Workshop on Large Scale Distributed Systems and Middleware
(LADIS 2011), Seattle, September 2011.http://hal.inria.fr/inria-00627665

� Ef®cient support for MPI-IO atomicity based on versioning.Tran V.-T., Nicolae B., Antoniu
G., Boug! L. In Proceedings of the 11th IEEE/ACM International Symposium on Clus-
ter, Cloud, and Grid Computing (CCGrid 2011), 514 - 523, Newport Beach, May 2011.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5948642

� Towards A Grid File System Based on a Large-Scale BLOB Management Service.Tran V.-T.,
Antoniu G., Nicolae B., Boug! L. In Proceedings of the CoreGRID ERCIM Working
Group Workshop on Grids, P2P and Service computing, Delft, August 2009. http://
hal.inria.fr/inria-00425232

Posters:

� Towards a Storage Backend Optimized for Atomic MPI-I/O for Parallel Scienti®c Applica-
tions. Tran V.-T. In The 25th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2011): PhD Forum (2011), 2057 - 2060, Anchorage, May 2011.
http://hal.inria.fr/inria-00627667

Research reports:

� Ef®cient support for MPI-IO atomicity based on versioning.Tran V.-T., Nicolae B., Antoniu
G., Boug! L. INRIA Research Report No. 7787, INRIA, Rennes, France, 2010. http:
//hal.inria.fr/inria-00546956

� Un support ef®cace pour l'atomicit MPI bas sur le versionnage des donn esTran V.-T. INRIA
Research Report. INRIA, Rennes, France, 2011.http://hal.inria.fr/hal-00690562

1.4 Organization of the manuscript

The rest of this thesis is organized in ®ve parts, brie¯y described in the following.

Part I: Scalability in Big Data management systems

We discuss the context of our work by presenting the related research areas. This part con-
sists of Chapter 2, 3 and 4. Chapter 2 introduces Big Data and the state of the art of current
infrastructures for Big Data management. Particularly, we ®rst focus on distributed infras-
tructures that are designed to aggregate resources to scale such as clusters, grids, and clouds.
Secondly, we introduce a centralized infrastructure that attracted increasingly attention in
Big Data processing: a single server with very large memory and multi-core multiproces-
sor. Chapter 3 narrows the focus on the data-management systems, and the way they are
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designed to achieve scalability. We classify those systems in the catalogs presented in Chap-
ter 2. In Chapter 4, we study BlobSeer in deep, a large-scale data-management service. We
use BlobSeer as a reference system throughout this manuscript.

Part II: Scalable distributed storage systems for data-intensive HPC

This part consists of 3 chapters. In Chapter 5, we present some common I/O practices in
data-intensive high performance computing (HPC). We argue that data-intensive HPC is
one type of Big Data, and we highlight some challenges of scalable storage systems in such
an environment. We continue in Chapter 6 by presenting our ®rst contribution: design and
implement a scalable storage system to provide ef®cient support for MPI-I/O atomicity. Fi-
nally, this part ends with Chapter 7, where we introduce our second contribution in the
context of data-intensive HPC. This Chapter features the design, the architecture and then
the evaluations of Pyramid: a large-scale array-oriented storage system that is optimized for
parallel array processing.

Part III: Scalable geographically distributed storage systems

We present our contribution on building a scalable storage system in geographically dis-
tributed environments. Chapter 8 introduces our motivation to take BlobSeer as a building
block for a global distributed ®le system. We discuss how we re-architect BlobSeer to adapt
to WAN scale and then focus on the changes in the implementation of the new BlobSeer's
branch: BlobSeer-WAN. The chapter closes with a set of experiments that evaluate the scal-
able performance of the system in comparison with that of the original BlobSeer.

Part IV: Vertical scaling in document-oriented stores

In this part, we discuss our fourth contribution on designing a scalable data-management
system in centralized environments. Concretely, we present DStore: a document-oriented
store that leverages large main memory, multi-core, multiprocessor architecture to scale ver-
tically. We focus on giving out a clear motivation for the design and a clear description of
the system architecture. Evaluation of the work is then presented at the end of the chapter.

Part V: Achievements and perspectives

This part consists of Chapter 10. We summarize the contributions of this thesis, discuss the
limitations and a series of perspectives for future explorations.
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I N this Chapter, we aims at presenting readers a clear de®nition of Big Data and the evo-
lution of current infrastructures with regard to the need of Big Data management. First,
we survey distributed infrastructures such as Clusters, Grids, Clouds that aggregate the

resources of multiple computers. Second, we focus on centralized infrastructure that refers
to a single server with a very large main memory shared by possibly multiple cores and/or
processors. This centralized infrastructure is increasingly attractive for Big Data that requires
high speed of data processing/analyzing.
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2.1 De®nition of Big Data

According to M. Stonebreaker, Big Data can be de®ned as ªthe 3V's of volume, velocity and
varietyº [2]. Big Data processing refers to applications that have at least one of the following
characteristics.

BIG VOLUME. Big Data analysis often needs to process Terabytes (TBs) of data, and even
more. On a daily basis, Twitter users generate approximately 7 TBs of data, Facebook
users share one billion pieces of content that worth 10 TBs, etc. It is obvious that the
volume of data is the most immediate challenge for conventional data-management
and processing frameworks. This requires a fundamental change in the architecture
of scalable storage systems. In fact, many companies have archived a large amount of
data in form of logs, but they are not capable to process them due to a lack of appro-
priate hardware and software frameworks for Big Data.

Current state of the art highlights the increasing popularity of parallel processing
frameworks (e.g., Hadoop [3] with MapReduce [4] model) as ef®cient tools for Big
Data analytics. MapReduce is inspired by the Map and Reduce functions in functional
programing but it is still a novel approach for processing large amounts of information
using commodity machines. Thanks to MapReduce, the companies that have big vol-
ume of data can now quickly produce meaningful insights from their data to improve
their services and to direct their products better.

BIG VELOCITY. A conventional meaning of velocity is how quickly data are generated and
needs to be handled. To be able to deliver new insights from input data quickly, batch
processing such as in MapReduce is no longer the only preferred solution. There is an
increasing need to process Big Data ªon-lineº where data processing speed is needed
to be close to that of data ¯ows. One intuitive example is the following: if what we had
was only a 10 minutes old snapshot of traf®c ¯ows, we would not dare to cross the road
because the traf®c changes so quickly. This is one of many cases where MapReduce and
Hadoop can not ®t to the ªon-lineº speed requirements. We simply cannot wait for a
batch job on Hadoop to complete because the input data would change before we get
any result from the processing process.

BIG VARIETY. Nowadays, data sources are diverse. With the explosion of Internet-capable
gadgets, data such as texts, images are collected from anywhere and by nearly any
device (e.g., sensors, mobile phones, etc.) in terms of raw data, structured data and
semi-structured data. Data has become so complex that specialized storage systems
are needed to deal with multiple data formats ef®ciently.

Recent storage trends have shown the raise of NoSQL approaches and particularly the
emergence of graph databases for storing data of social networks. Although current
relational database management systems (DBMS) can be used as ªone-size-®t-allº for
just every type of data formats, doing so results in poor performance as proved by
a recent study [5]. By implementing the application-needed data models (e.g. Key/
Value, Document-oriented, Graph-oriented), NoSQL storage devices are able to scale
horizontally to adapt to the increasing workloads.

According to the above characteristics of Big Data, our contributions in this thesis can
be classi®ed as in the Table 2.1. We will present our arguments to support this classi®cation
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Contribution Big Volume Big Velocity Big Variety
Building a scalable storage system to provide
ef®cient support for MPI-I/O atomicity

p
Ð Ð

Pyramid: a large-scale array-oriented storage
system

p
Ð

p

Towards a globally distributed ®le systems:
adapting BlobSeer to WAN scale

p
Ð Ð

DStore: an in-memory document-oriented
store

Ð
p p

Table 2.1: Our contributions with regard to Big Data characteristics
(
p

= Addressed, Ð = not addressed).

further in the next chapters.

2.2 Clusters

Cluster computing is considered as the ®rst effort to build distributed infrastructures by in-
terconnecting individual computers through fast local area networks. The goal is to gain per-
formance and availability compared to the case when a high-end computer with comparable
performance or availability is less cost-effective or unfeasible. The simplicity of installation
and administration has made clusters become popular and important infrastructures.

There is no strict rules to build a cluster. An inexpensive cluster can be built from com-
modity computers, called nodes, connected through Ethernet networks, while a high-end
cluster built on expensive high-end computers with high speed interconnections. The most
basic cluster con®guration is Beowulf [6, 7], originally referred to a speci®c cluster built by
NASA in 1994. Beowulf cluster consists of normally identical cluster nodes in terms of both
hardware and software. Usually, they are equipped with a standardized software stack:
Unix-like operating system, Message Passing Interface (MPI [8]), or Parallel Virtual Machine
(PVM) [9]. Nowadays, cluster size ranges from a couple of nodes up to tens of thousands.

In the context of Big Data, clusters can be considered as the most popular infrastruc-
ture for Big Data management. By federating resources, a cluster can potentially provide a
decent amount of storage space for hosting Big Volume of data. In high-end clusters, data-
management systems obviously can take advantages of its powerful processing capability
of its cluster nodes as well as the high-speed interconnection among them to cope with the
Big Velocity characteristic.

2.2.1 Commodity clusters

The main goal of commodity cluster computing (or commodity computing) is to deliver
high computing power at low cost by federating already available computer equipments.
The idea consists in using more low-performance, low-cost hardware that work in parallel
rather than high-performance, high-cost hardware in smaller numbers. Therefore, commod-
ity hardware components are mostly manufactured by multiple vendors and are incorpo-
rated based on open standards. Since the standardization process promotes lower costs and
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identical products among vendors, building commodity cluster avoids the expenses related
to licenses and proprietary technologies.

Low-cost hardware usually comes along with low reliability. In a system made out of a
large number of poorly reliable components, failure is not an exception but the norm. For
this reason, middleware running on commodity cluster needs to deal with fault-tolerance by
design. A successful example of middleware for commodity cluster is MapReduce frame-
work, introduced by Google in [4, 10].

To date, the largest cluster systems are built by industry giants such as Google, Microsoft
and Yahoo! in order to cope with their massive data collections. Those clusters are made out
of commodity machines, running a MapReduce or MapReduce-like framework. Google has
not revealed the size of its infrastructures, but it is widely believed [11] that each cluster can
have tens of thousands nodes interconnected with just standard Ethernet links.

2.2.2 High performance computing (HPC) clusters (a.k.a. Supercomputers

In contrast to commodity computing, HPC clusters are made by high-cost hardware (e.g.,
IBM Power7 RISC) that are tightly-coupled by high-speed interconnection networks (e.g.,
In®niBand). Currently, the second fastest HPC cluster in the world is Japan's K computer[12].
K computer, produced by Fujitsu, consists of over 80,000 high-performance nodes (2.0 GHz,
8-core SPARC64 VIIIfx processors, 16 GB of memory), interconnected by a proprietary six-
dimensional torus network.

HPC clusters are actively used in different research domains such as quantum physics,
weather forecasting, climate research, molecular modeling and physical simulations. Those
problems are highly compute-intensive tasks which need to be solved in a bound completion
time. HPC cluster can offer an excellent infrastructure to dispatch a job over a huge number
of processes and guarantee ef®cient interconnection between them for each computation
step.

2.3 Grids

By de®nition in [13], the term ªthe Gridº refers to

a system that coordinates distributed resources using standard, open, general-
purpose protocols and interfaces to deliver nontrivial qualities of service.

In [14], Ian Foster differentiated ªGridsº from other type of distributed systems by a three-
point requirements checklist.

To coordinate distributed resources. A Grid must integrate and coordinate not only re-
sources but also Grid users within different administrative domains. This challenge
brings new issues of security, policy and membership administration which did not
exist in locally managed system.

To use standard, open, general-purpose protocols and interfaces. A Grid should be built
from standard, open protocols and interfaces to facilitate the integration of multiple
organizations and to de®ne a generic well-built framework for different kind of Grid
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applications. A Grid covers a wide range of fundamental issues such as authentication,
authorization, resource discovery, and resource access.

To deliver nontrivial quality of service. Grid resources should be used in a coordinated
fashion to deliver various qualities of services such as response time, throughput,
availability, and security. Grid allows co-allocation of various resource types to satisfy
complex user demands, so that the utility of combined system is signi®cantly better
than just a sum of its components.

The term ªGridº originates from an analogy between this type of distributed infrastruc-
ture and the electrical power Grid: any user of the Grid can access the computational power
at any moment in a standard fashion, as simple as plugging an electrical equipment into
an outlet. In other words, a Grid user can submit a job without having to worry about its
execution or even knowing the usage of resources in the computation. This de®nition has
been used in many contexts where it is hard to understand what a Grid really is.

One of the main powerful features of Grid is the introduction of ªvirtual organizationº
(VO), which refers to a dynamic set of disparate groups of organizations and/or individuals
agreed on sharing resources in a controlled fashion. VO clearly states under which condi-
tions resources including data, software, and hardware can be shared to the participants.
The reason behind is that the sharing resources will be seen transparently by applications to
perform tasks despite their geographically disparate providers.

In the context of Big Data, a Grid infrastructure has the potential to address (but is not
limited to) a higher scale of Big Volume than a cluster does. As a Grid can be built from
many clusters of different administration domains, it can expose an aggregate storage space
for storing a huge amount of data that cannot ®t to any participant clusters in the Grid.

2.3.1 Grid architecture

The goal of Grid is to be an extensible, open architectural structure that can adapt to the
dynamic, cross-organizational VO managements. Ian Foster argued on a generic design
that identi®es fundamental system components, the requirements for these components,
and how these components interact with each other [13]. Architecturally, a Grid organize
components into layers, as on Figure 2.1.

Grid Fabric provides the lowest access level to raw resources including both physical enti-
ties (clusters, individual computers, sensors, etc.) and logical entities (distributed ®le
systems, computational powers, software libraries). It implements the local, resource-
speci®c drivers and provides a uni®ed interface for resources sharing operations at
higher layers.

Connectivity guarantees easy and secure communication between fabric layer resources.
The connectivity layer de®nes core communication protocols including transport, rout-
ing, and naming. Authentication protocols enforce security of communication to pro-
vide single sign-on, user-based trust relationships, delegation and integration with lo-
cal security solutions. Those protocols must be based on existing standards whenever
possible.
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Figure 2.1: Generic Grid architecture.

Resource is built on top of connectivity layer using communication and authentication pro-
tocols provided to de®ne protocols that expose individual resources to the Grid par-
ticipants. The resource layer distinguishes two primary protocol classes: information
protocols and management protocols. Information protocols are used to query the
state of a resource such as its con®guration, current load, and usage policy. Manage-
ment protocols apply to negotiate access to a shared resource, and to specify resource
requirements.

Collective does not associate with any single speci®c resource but instead coordinate indi-
vidual resources in collections. It is responsible to handle resource discovery, schedul-
ing, co-allocation, etc.

Application consists of user applications that make use of all other layers to provide func-
tionalities within a VO environment.

2.3.2 Grid middleware

Grid middleware are general-purpose Grid software libraries that provide core components
and interfaces for facilitating the creation and management of any speci®c Grid infrastruc-
ture. A lot of effort from industrial corporations, research groups, university consortiums
has been dedicated to developing several Grid middleware.

Globus. The Globus Toolkit [15] has been developed by the Globus Allianceas a de-facto
standard Grid middleware for the construction of any Grid infrastructure. Following a
modular-oriented design, the Globus Toolkit consists of several core Grid components
made up a common framework to address security, resource management, data move-
ment, and resource discovery. The Globus Toolkit enables customization by allowing
users to expose only desired functionalities when needed. For this reason, the Globus
Toolkit has been widely adopted both in academia and industry such as IBM, Oracle,
HP, etc.

UNICORE. UNiform Interface to COmputing REsources (UNICORE)[16] is a Grid middle-
ware currently used in many European research projects, such as EUROGRID, GRIP,
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VIOLA, Open MolGRID, etc. UNICORE has been developed with the support of the
German Ministry for Education and Research (BMBF) to offer a ready-to-run Grid sys-
tem including both client and server software. Architecturally, UNICORE consists of
three tiers: user, UNICORE server and target system. The user tier provides a Graph-
ical User Interface (GUI) that enables intuitive, seamless and secure access to manage
jobs running on the UNICORE servers. The UNICORE servers implement services
based on the concept of Abstract Job Object (AJO). Such an object contains platform
and site-independent description of computational and data-related tasks, resource in-
formation and work¯ow speci®cations. The target tier provides resource-dependent
components that expose interface with the underlying local resource management sys-
tem.

gLite. The Lightweightmiddleware [17] was developed as part of the ¯agship European Grid
infrastructure project (EGEE) [18], under the collaborative efforts of scientists in 12 dif-
ferent academic and industrial research centers. The gLite middleware has been used
to build many large-scale scienti®c Grids, among them is the Worldwide LHC Com-
puting Grid deployed at CERN. gLite was initially based on the Globus toolkit, but
it eventually evolved into a completely different middleware specialized to improve
usability in production environments. To this end, users are supplied with a rich inter-
face to access to a variety of management tasks: submitting/canceling jobs, retrieving
logs about job executions, uploading/deleting ®les on the Grid, etc.

2.4 Clouds

Cloud computing is an emerging computing paradigm that has attracted increasing atten-
tion in recent years, especially in both Information technology and Economy community.
The media as well as computer scientists have a very positive attitude towards the opportu-
nities that Cloud computing is offering. According to [19], Cloud computing is considered
ªno less in¯uential than e-businessº, and it would be the fundamental approach towards
Green IT (environmentally sustainable computing).

Several authors tried to ®nd a clear de®nition of what Cloud computing is and how it is
positioned with respect to Grid computing [20, 19]. Although there are many different de®-
nitions, they share common characteristics. Cloud computing refers to the capability to de-
liver both software and hardware resources as services in a scalable way. Architecturally, the
core component of Cloud is the data center that contains computing and storage resources in
term of raw hardware, together with software for lease in a pay-as-you-go fashion. In [21],
Berkeley RAD lab de®ned Cloud computing as follows:

Cloud computing refers to both the applications delivered as services over the
Internet and the hardware and systems software in the datacenters that provide
those services. The services themselves have long been referred to as Software
as a Service (SaaS). The datacenter hardware and software is what we will call a
Cloud. When a Cloud is made available in a pay-as-you-go manner to the gen-
eral public, we call it a Public Cloud; the service being sold is Utility computing.
We use the term Private Cloud to refer to internal datacenters of a business or
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other organization, not made available to the general public. Thus, Cloud com-
puting is the sum of SaaS and Utility computing, but does not include Private
Clouds. People can be users or providers of SaaS, or users or providers of Utility
computing [21].

From a hardware point of view, Cloud computing distinguishes itself from other com-
puting paradigms in three aspects.

� There is no need for Cloud computing users to plan the future development of IT
infrastructure far ahead. Cloud offers the illusion of unlimited computing resources to
users.

� Cloud users can start renting a small amount of Cloud resources and increase the vol-
ume only when their needs increase.

� Cloud providers offer the ability to pay-as-you-go on a short-term basis. For instance,
processors and storage resources can be released if no longer useful in order to reduce
costs.

Regarding to Grid computing, Cloud computing is different in many aspects as secu-
rity, programming models, data models and applications, as argued by Foster et al. [22].
Cloud computing leverages virtualization to separate the logical layer from the physical
one, that consequently maximizes resource utilization. Whereas Grid achieves high utiliza-
tion through fair sharing of resources among organizations, Cloud potentially maximizes
resource usages by allowing concurrent isolated tasks running on one server, thank to vir-
tualization. Cloud gives users the impression that they are allocated dedicated resources
scaling on demand, even though in a shared environment.

In the context of Big Data, Cloud computing is a perfect match for Big Data since it
virtually provides unlimited resources on demand. Cloud computing opens the door to Big
Data processing for any user that may not have the possibility to build it-own infrastructures
such as Clusters, Grids, etc. By renting resources, Cloud users can potentially perform their
Big Data processing in an economic way.

2.4.1 Cloud Architecture

Architecturally, Cloud computing may consist of three layers, as illustrated on Figure 2.2.

Infrastructure as a Service (IaaS). IaaS offers on-demand raw hardware resources such as
computing power, network and storage in the form of virtualized resources. Users of
IaaS Clouds typically rent customized virtual machines in which they have the possi-
bility to select a desired Operating System (OS), and to deploy arbitrary software with
speci®c purposes. Fees are charged with a pay-as-you-go model that re¯ects the ac-
tual amount of raw resources consumption: storage space per volume, CPU cycles per
hour, etc. Examples of IaaS Cloud platforms include: Nimbus [23], Eucalyptus [24],
OpenNebula [25], and Amazon Elastic Compute Cloud [26].
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Figure 2.2: Cloud services and technologies.

Platform as a Service (PaaS). PaaS sits on top of IaaS to provide a high-level computing
platform typically including Operating System, database, programming and execu-
tion environment. PaaS targets software developers. Using PaaS, they can design
their applications using speci®c frameworks provided by the platform without the
need of controlling the underlying hardware infrastructure (IaaS). Examples of PaaS
are Google App Engine [27], Microsoft Azure [28], and Salesforce [29].

Software as a Service (SaaS). At the highest level, SaaS is the most visible layer for end-
users. It delivers software as a service by allowing users to directly use applications
deployed on Cloud infrastructure. Cloud users do not need to worry about installing
software on their own computer and managing updates and patches. Typically, any
Web browser can act as frontend of Cloud applications. Examples of SaaS Clouds are
Google Docs [30] and Microsoft Of®ce Live [31], etc.

2.4.2 Cloud middleware

As the most attractive computing technology in recent years, Cloud middleware have been
under heavy development in academia as well as in industry. Several Clouds offered by
industry giants such as Amazon, Google, IBM, Microsoft already matured as commercial
services under massive utilization. We survey some examples of Infrastructure as a Service
(IaaS) Cloud.

Amazon EC2. EC2 [26] is an Infrastructure as a Service (IaaS) Cloud that has become the
most widely-used commercial Cloud. It offers rich functionalities. Amazon EC2 pro-
vides resizable virtual computing environments by allowing user to rent a certain
amount of compute and storage resources, and dynamically resize them on demand.
Though a Web service interface, Amazon users can launch virtual machines with a
range of selected operating systems (OS). Then, users are capable to load customized
applications and run their own computations.

Amazon also delivers S3 [32], a Cloud storage service that offers a simple access inter-
face for data transfers in and out of the Cloud. S3 not only stores users' data but also
acts as a large pool of prede®nedAmazon Machine Images (AMIs). Upon requested, an
AMI will be load to run on allocated virtual machines, or be customized to form a new
AMI.
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Nimbus. Nimbus [23] is an open-source EC2/S3-compatible IaaS implementation that
speci®cally targets scienti®c community, with the purpose of being an experimental
testbed tailored for scienti®c users. Nimbus shares similar features with Amazon EC2
by exposing an EC2-like interface to enable the ease-of-use. The data-storage support
of Nimbus, Cumulus [33] is also compatible with the Amazon S3. Cumulus can access
various storage management systems and exposes S3-interface for storing users' data
and customized images of virtual machines.

Eucalyptus. Eucalyptus [24] stands for Elastic Utility Computing Architecture Linking Your
Programs To Useful Systems. Eucalyptus enables the creation of private IaaS Clouds with
minimal effort without the need for introducing any specialized hardware or retooling
existing IT infrastructure. By maintaining the de-factor Amazon Cloud API standards,
Eucalyptus supports the construction of hybrid IaaS Clouds to bridge private to public
Cloud infrastructures.

Additionally, Eucalyptus is one among the few Cloud middleware that feature a virtual
network overlayimplementation that provides network isolation. This design brings
two major bene®ts. First, network traf®c of different users is isolated to mitigate inter-
ference. Second, resources on different clusters are uni®ed to give users the impression
that they belong to the same Local Area Network (LAN).

2.5 Big memory, multi-core servers

As hardware technology is subject to continuous innovation, computer hardware are made
more and more powerful than their prior models in the past. One obvious demonstration
is the application of Moore's law. Gordon E. Moore, Intel co-founder, claimed in his 1965
paper [34] that the number of components in integrated circuits had doubled every two
years and predicted the trend would continue in the near future.

The relation of price versus capacity has decreased exponentially over time in storage
industry, not only in hard-drives but also in main-memory development. For example, 1 MB
of main memory dropped at US $0.01 in 2010, which is an impressive decrease in comparison
with the price at about US $100 in 1990. A similar observation can be also found in hard-
drive industry. In 2012, a typical high-end server could be equipped with 100 GB of main
memory and hundreds of TBs of storage space. The near future will see the existence of 1 TB
main memory and more in a single server.

In the processor industry of the past, the speed of Central Processing Units (CPUs) had
been doubled every 20 months on average. This brilliant achievement had been made pos-
sible thanks to two major factors. First, the creation of faster transistors results in increased
clock speed. Second, the increased number of transistors per CPU not only made proces-
sor production more ef®cient but also decreased material consumption. More speci®cally,
the number of transistors on a processor increased from 2300 transistors in 1971 to about
1.7 billion today at approximately the same price.

However, since 2002, the growth in clock speed stopped as it had done for almost
30 years. Moore's law on CPU speed has reached its limit due to power consumption, heat
distribution and speed of light [35]. As a result, latest trends on CPU design highlighted the
emergence of multi-core/many-core and multiprocessor architectures. The clock speed of



CPU is no longer on Moore's law, but the number of cores/processors on a single computer
is.

2.6 Summary

This chapter presented the explosion of Big Data and a survey of current infrastructures in
the context of Big Data management. First, we presented a clear de®nition of Big Data by
ªthe 3V characteristics of Volume, Velocity and Varietyº. Second, we introduced some of
current infrastructures that can be leveraged for Big Data management, including clusters,
Grids, Clouds, and multi-core, multiprocessor servers with large memory.

However, to be able to deliver high scalability for Big Data management, we need to
have a good understanding of how current storage systems have been designed and what
are the main approaches for scalability. These aspects are addressed in the next chapter.
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SCALABILITY is de®ned as the ability of a system, network, or process, to handle grow-
ing amount of work in a capable manner, or its ability to be enlarged to accommodate that
growth [36].

This de®nition of scalability can be applied to asset whether that a system is scalable
or not on a speci®c system property. For example, scalable data throughput refers to the
capability of a system to increase total throughput when resources are added in order to
handle an increased workload.
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A system that has poor scalability can result in poor performance. In many cases, adding
more resources to an unscalable system is an inef®cient investment that cannot lead to sub-
stantial improvements.

Obviously, scalability by design is needed, especially for Big Data management systems.
There are two ways to scale.

Scale horizontally. This approach is usually referred to as ªscale-outº, meaning to add more
nodes to a system, for instance new computing nodes to a cluster. As computer prices
drop, a powerful computing cluster can be built by aggregating low-cost ªcommodityº
computers connected via a local network. By following the ªdivide-to-conquerº model
where each node is assigned only a subset of the global problem, the cluster can be
easily scaled to a certain number of worker nodes, to adapt to each particular problem
size.

Scale vertically. In this approach, resources are added to some nodes in a system, typically
meaning to add more CPU and more memory to each node. This is usually referred
to as ªscale-upº, which enables running services, both user and kernel levels, to have
more resources to consume. For example, adding more CPUs allows more threads to
be run simultaneously. Adding more memory can enlarge the cache pool to reduce
accesses to secondary storage.

In this chapter, we present several existing approaches to scalable design of data-
management systems, whose goal is to store and retrieve data in an ef®cient way. Thus,
we will not go into details about other aspects such as fault-tolerant design of those systems.
We classify the mechanisms in three levels: cluster (horizontal scaling), geographically dis-
tributed sites (horizontal scaling) and single server (vertical scaling).

3.1 Scaling in cluster environments

3.1.1 Centralized ®le servers

In cluster environments, the most basic form of shared data storage among cluster nodes
is Network-Attached Storage (NAS). NAS refers to a single dedicated machine that directly
connects to block-based storage devices. It is responsible for all data accesses issued by
other machines in the cluster. In this setting, this dedicated machine communicates to block-
based storage devices through I/O bus protocols such as IDE, SATA, SCSI and Fiber channel,
while exposing a ®le system interface to ®le system clients. In order to do so, it has to
maintain a mapping between its ®le system's data structures (®les and directories) and the
corresponding blocks on the storage devices. This extra data for this mapping is commonly
named metadata and the dedicated machine is usually called a network ®le server.

In order to access anetwork ®le serverthrough the network, the network ®le serverand
®le system clients agree on standardized network protocols, such as theNetwork File System
protocol (NFS)for communication. By using such a protocol, the clients can access a remote
®le systems in the same way as accessing its local ®le systems.

The ®rst type of block-based storage devices that can be attached to network ®le servers is
Direct-attached storage (DAS)[37]. To be able to scale the system, either for storage capability
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or/and for performance, DAS can be employed within a RAID [38] (Redundant Array of
Independent Disk) setting.

RAID is capable to combine multiple block-based storage units into a single logical unit.
RAID can organize a distribution scheme in one of several ways called ªRAID levelsº, de-
pending on each user's particular requirements in terms of capacity, redundancy and per-
formance. For example, RAID 0 refers to a simple block-level striping over a number of
storage devices without any fault-tolerance mechanism such as parity or mirroring. Conse-
quently, RAID 0 offers the best performance but no fault-tolerance. Upon writing, data is
fragmented into same-size blocks that are simultaneously written to their respective drives.
Upon reading, data blocks are fed in parallel to achieve increasing data throughput.

Another technology to scale the storage capability in NAS con®gurations is to employ
a centralized server on top of a storage-area network (SAN). A SAN features a high perfor-
mance switched fabric in order to provide a fast, as well as scalable interconnect for a large
number of storage devices. One observation is that in both cases where NAS is implemented
on top of a SAN or DAS, the performance of the entire system is limited by the performance
of the single ®le server.

SAN ®le systems [39], have been introduced to address the aforementioned issues. In
a SAN ®le system setting, the clients are also connected to a SAN to directly access data
through block-based protocols (e.g., iSCSI). Hence, the ®le server is only responsible for
metadata management, reducing I/O overhead and increasing the overall performance. IBM
SAN ®le system [40], EMC High-Road [41] are good examples of existing SAN ®le systems.
Although the approach of SAN ®le systems seems to be scalable, it is practically hard and
expensive to build a SAN at a large-scale, compare to other cross-platform approaches such
as parallel ®le systems. In 2007, IBM discontinued selling the SAN ®le systems and replaced
it by IBM General Parallel ®le system (GPFS) [42].

3.1.2 Parallel ®le systems

Parallel ®le systems are the most appropriate solution for data sharing in a high-performance
computing (HPC) cluster, as they offer a higher level of scalability than centralized storage
solutions. Parallel ®le systems also have the advantage of transparency, which allows any
clients to access data using standardized network protocols. The clients do not have to pos-
sess a dedicated access to the underlying storage resources (e.g., Fiber channel).

To scale out, a parallel ®le system typically federates multiple nodes, each of which con-
tributes its individual storage resources. Those nodes are called I/O nodes serving data to
client/compute nodes on the cluster. Parallel ®le systems implement a well-known mecha-
nism, called data stripping, to distribute large ®les across multiple I/O nodes, which greatly
increases scalability in terms of both capacity and performance. First, it allows to store very
large ®les far than the capacity of any individual I/O node in the cluster. Second, reading
and writing can be served in parallel by multiple servers, which reduces the actual workload
on each particular server.

Another scalable design aspect in parallel ®le systems refers to breaking I/O in two
phases: metadata I/O and data I/O, so as to of¯oad data I/O totally to storage nodes. Meta-
data refer to the information about ®le attributes and ®le content locations on the I/O nodes.
Since this information is comparatively smaller than ®le data itself, metadata I/O workload
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can be handled in a centralized way in one special node, named Metadata server (MDS).

Recently, it is claimed that a centralized MDS can be a bottleneck at large-scale [43, 44].
Many novel parallel ®le systems moved forward to a distributed design MDS [45, 44]. How-
ever, scalable MDS approaches face bigger challenges and are still under active research. A
typical trade-off when designing a distributed MDS scheme is the need to choose between
POSIX [46] ®le access interface and scalable performance. The highly standardized interface
enables a high level of transparency, allowing clients to have the same I/O semantics as in
local ®le systems. On the other hand, its strict semantics is hard to guarantee in a distributed
environment, and limits the system scalability.

3.1.2.1 PVFS

Parallel virtual ®le system (PVFS) was ®rst introduced in 2000 [45] as a parallel ®le system
for Linux clusters. It is intended to provide high-performance I/O to ®le data, especially
for parallel applications. Like other parallel ®le systems, PVFS employs multiple user-level
I/O daemons, typically executed on separate cluster nodes which have local disks attached,
called I/O nodes. Each PVFS ®le is fragmented into chunks and distributed across I/O
nodes to provide scalable ®le access under concurrency. PVFS deploys one single manager
daemon to handle metadata operations, such as directory operations, distribution of ®le
data, ®le creation, open, and close. In this case, clients can perform ®le I/O without the
intervention of the metadata manager.

Although metadata I/O seems to be less heavy than ®le I/O, one manager daemon still
suffers from low performance under certain workloads, especially when dealing with mas-
sive metadata I/O on a huge number of small ®les. Therefore, a new version of PVFS was
released in 2003, featuring distributed metadata management and object servers. To scale
metadata on multiple servers, PVFS v2 does not implement a strict POSIX interface, it in-
stead implements a simple hash function to map ®le paths to server IDs. This may lead to
inconsistent states when concurrent modi®cations occur on the directory hierarchy.

3.1.2.2 Lustre

Lustre [47] was started in 1999 with the primary goal of addressing the bottlenecks tradi-
tionally found in NAS architectures, and of providing scalability, high performance, and
fault tolerance in cluster environments. Lustre is one of the ®rst ®le systems based on the
object storage device (OSD) approach. File data is striped across multipleobject storage servers
(OSSes), which have direct access to one or more storage devices (disks, RAID, etc.) called
object storage targets (OSTs)that manage ®le data.

Lustre exposes a standard POSIX access interface and supports concurrent read and write
operations to the same ®le using locking-based approach. Lustre is typically deployed with
two metadata servers (one active, one standby), sharing the same metadata target (MDT)
that hosts the entire metadata of the ®le system. In this setting, Lustre still manages metadata
in a centralized fashion, and uses the standby server just in case of failures.
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3.1.2.3 Ceph

Ceph [48], recently developed at University of California, Santa Cruz, is a distributed ®le
system that leverages the ªintelligentº and ªself-managedº properties of OSDs to achieve
scalability. Basically, Ceph delegates the responsibility for data migration, replication, failure
detection and recovery to OSDs. File data is fragmented into objects of separate placement
groups (PGs), which are self-managed.

One novel approach in Ceph is that metadata management is decentralized by an ap-
proach based on dynamic subtree partitioning [49]. This distributed management in a meta-
data cluster potentially favors workload balancing, and eliminates the single point of failure.
In contrast to existing object-based ®le systems [47, 50], Ceph clients do not need to access
metadata servers for object placement since this information can be derived by using a con-
®gured ¯exible distribution function. This design eliminates the need to maintain object
placement on metadata servers, and thus reduces metadata workload.

3.1.3 NoSQL data stores

Relational database management systems (RDBMS) have been considered a ªone size ®ts allº
model for storing and retrieving structured data along the last decades. RDBMS offer a pow-
erful relational data model which can precisely de®ne relationships between datasets. Under
ACID (atomicity, consistency, isolation, durability) semantics, RDBMS guarantee database
transactions are reliably processed. They release client applications from the complexity of
consistency guarantees: all read operations will always be able to have data from the latest
completed write operation.

There are several technologies to scale a DBMS across multiple machines. One of the
most well-known mechanisms is ªdatabase shardingº, which breaks a database into multi-
ple ªshared-nothingº ªshardsº and spread those smaller databases across a number of dis-
tributed servers. However, ªdatabase shardingº cannot provide high scalability at large
scale due to the inherent complexity of the interface and ACID guarantees mechanisms.

In 2005 [51], scientists claimed the ªone size ®ts allº model of DBMS had ended and
raised the call for new design of alternative highly scalable data-management systems.
Many NoSQL data stores have been introduced in recent years such as Amazon Dy-
namo [52], Cassandra [53], CouchDB [54], etc. They are found by industry to be good ®ts for
Internet workloads.

To be able to scale horizontally, NoSQL architectures differ from RDBMS in many key
design aspects as brie¯y presented below.

Simpli®ed data model. NoSQL data stores typically do not organize data in a relational for-
mat. There are three main types of data access models: key/value, document-oriented,
and column-based. Each the data model is appropriate to a particular workload so that
the data model should be carefully selected by the system administrators.

Key/value stores implement the most simpli®ed data model, which resembles the in-
terface of a hash table. Given a key, key-value stores can provide fast access to its
associate value through three main API methods: GET, PUT, and DELETE. Examples
of key-value stores include: Amazon Dynamo [52] and Riak [55].
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Document-oriented stores are designed for managing semistructured data organized
as a collection of documents. As in key-value stores, each document is identi®ed by its
unique ID, giving access to its content. One of the main de®ning characteristics that
differentiates document-oriented stores from key-value stores is that the interface is
enriched to allow the retrieval of documents based on their data ®elds. Examples are
CouchDB [54] and MongoDB [56].

In the column family approach, the data structure is described as ªa sparse, distributed,
persistent multidimensional sorted mapº as in Google's Bigtable. Data is organized in
rows as in RDBMS, but the rows do not need to have the same set of columns. Thus,
the data table represents a sparse table with gaps of NULL values. Examples include:
Google Bigtable [57] and Cassandra [53].

Complex queries such as JOIN are typically not supported in any of the three ap-
proaches.

Reducing unneeded complexity. Many Internet applications do not need rich interfaces
and the ACID semantics provided by relational databases. These features, which aim
at ªone size ®ts allº, are expensive to scale. RDBMS have to either scale vertically
(e.g., buy more powerful hardware), or suffer from distributed locking mechanisms
and high network latency while scaling horizontally (e.g., add more nodes to the clus-
ters). NoSQL approaches, on the other hand, typically sacri®ce ACID properties and
complex query support for high scalability. NoSQL usually supports only the eventual
consistency model, where read operations are allowed to return stale results but under
the guarantee that: all the readers will eventually get the fresh, last written data.

Horizontal scaling on commodity hardware. NoSQL data stores are designed to scale hor-
izontally on commodity hardware. They do not rely on highly reliable hardware. Stor-
age nodes can join and leave the storage clusters without causing the entire system to
stop functioning. In many NoSQL data stores, the key service to enable scalability is a
distributed hash table (DHT).

3.2 Scaling in geographically distributed environments

Scalable data-management systems in geographically distributed environments are needed
for many reasons. First, large datasets from various scienti®c disciplines have been growing
exponentially and cannot ®t in a centralized location. Second, the geographically distributed
users may want to share their own datasets without storing in a central repository. In this sec-
tion, we study the design of geographically distributed data-management systems, focusing
on the design for scalability with regard to several key characteristics of the environments:
interconnection latency, low bandwidth, heterogeneous resources, etc.

3.2.1 Data Grids

Data Grids were ®rst introduced in [58] in a collaborative effort to design and implement
an integrated architecture to manage large data that are distributed over geographically dis-
tant locations. Typically, this effort directly addressed the challenges of managing scienti®c
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data in many disciplines, such as high-energy physics, computational genomics and climate
research.

The architecture of a Data Grid consists of four layers. Each layer builds its functionality
based on the services provided by lower layers and by the components of the same level.
Those layers can be described in the following order from the lowest to the highest.

Data Fabric consists of the distributed storage resources that are owned by the grid partic-
ipants, but are aggregated to form a global storage space. Those participant resources
can be both software and hardware: ®le servers, storage area networks, distributed ®le
systems, relational database management systems, etc.

Communication provides a number of protocols used to transfer data among resources of
the fabric layer. These protocols are built on top of common communication protocols
such as TCP/IP and use authentication mechanisms such as the public key infrastruc-
ture (PKI). Further, SSL (Secure socket layer) can be used to encrypt the communication
to ensure security.

Data Grid Services consists of services enabling applications to discover, manage and
transfer data within the Data Grid. More precisely, end users are equipped with repli-
cation services, data discovery services, and job submission services, which cover all
aspects of ef®cient resource management while hiding the complexity of the Data Grid
infrastructure.

Applications consists of domain-speci®c services that facilitate and boost up Data Grid ex-
perience. Those services are highly customized and standardized tools for Grid partic-
ipants.

3.2.2 Scalability concerns and trade-offs

Scalability design in Data Grids faces many challenges due to high latency and low band-
width of interconnection between geographically distributed participants. We brie¯y survey
several design decisions, which address the ®nal goal of building scalable systems.

Replication is a well-known mechanism to increase performance by reducing latency, es-
pecially in wide-area networks (WAN), and to serve as a fault-tolerance technique by
creating multiple copies of the data. In Data Grids, replication is usually performed
in a simple way and on a per-request basis. This is done with the purpose of reduc-
ing the expensive cost of synchronization via low-bandwidth, high-latency networks
in geographically-distributed environments. To maintain the convergence of repli-
cas, Data Grids select a single data source to act as a primary copy of each particular
dataset. Upon request of grid participants, a copy of the dataset can be transferred to
their own sites. Any update is done on the primary copy and then is propagated to
Grid participants that subscribe to the updates on the primary copy.

Consistency de®nes the ªfreshnessº of data seen by applications. Obviously, Data Grids
do not provide ªstrong consistencyº guarantees because of their high cost. Strong
consistency explicitly requires locking on huge datasets and maintaining synchronous
replication, which are not scalable in practice as discussed above.
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Transaction support refers to the property that all of the processing operations of a transac-
tion are either all succeed together or all failed together. This necessity requires some
supports for checkpointing and rollback mechanisms similar to the ones in database
management systems (DBMS). However, those mechanisms are not ef®cient at large
scale. Therefore, Data Grids do not support transactions usually.

Moving computation close to data. When dealing with huge datasets, Data Grid scientists
proposed to move computation close to the data rather than moving the data itself.
One example of this interesting approach is the design and implementation of the
Gfarm ®le system [59].

3.2.3 Examples

Grid Data Farm. The Grid Datafarm (Gfarm) [59] is a distributed ®le system designed for
high-performance data access and reliable ®le sharing in large scale environments, in-
cluding grids of clusters. To facilitate ®le sharing, Gfarm manages a global namespace
which allows the applications to access ®les using the same path regardless of ®le loca-
tion. It federates available storage space of Grid nodes to provide a single ®le system
image. To enable high performance ®le I/O, ®les in Gfarm are fragmented into chunks
that are distributed over storage nodes in the grid. Applications can con®gure the
replication factor for each ®le individually to improve access locality, thus avoiding
bottlenecks to popular ®les on remote sites. Furthermore, Gfarm enables scheduling
computations close to data, as it explicitly exposes the location of chunks for each ®le
through a special API at application level.

XtreemFS. XtreemFS [60] is an open-source object-based, distributed ®le system for wide-
area deployments that enables ®le accesses over Internet. To mitigate security threats in
public insecure networking infrastructures, XtreemFS transparently relies on SSL and
X.509 to build secure communications channels between clients and XtreemFS servers.
As it is designed for WAN environment, XtreemFS implements ®le replication to pro-
vide fault-tolerance and to reduce data movement across data centers. Additionally,
it implements a metadata caching mechanism in order to improve performance over
high-latency networks.

3.3 Scaling in big-memory, multi-core servers

3.3.1 Current trends in scalable architectures

Currently, there are two major trends in designing scalable data management systems run-
ning on high-end servers.

In-memory storage systems. Modern servers nowadays are often equipped with large main
memory capability that can have a size up to 1 TB. Given this huge memory capability,
one question arises: do we need to store data on secondary storage, say hard drives?
According to a recent study [5], many data management systems are now able to ®t
entirely in main memory, so that disk-oriented storage becomes unnecessary (or just
useful for backup purposes). The trend of employing an in-memory design emerged
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as a result of the decreasing cost/size ratio of memory and the performance provided
when compared to the disk, as memory accesses are at least 100 times faster.

As in-memory design is becoming an attractive key principle to vertically scale data-
management systems, several commercial in-memory databases have recently devel-
oped. Systems such as Timesten [61], VoltDB (the commercial version of H-Store [62]),
SAP HANA [63], are able to provide faster, higher-throughput online analytical pro-
cessing (OLAP) and/or faster transaction processing (OLTP) than disk-based data-
management systems. The reason behind is that the performance of disk-based sys-
tems is actually limited because of the I/O bottlenecks on disk accesses. Of course,
disk-based data-management systems can leverage main memory as a big cache to im-
prove I/O performance. However, their architectures optimized to use only disks have
to implement complex mechanisms to keep data on cache and on disks consistent. This
limits the system scalability by design.

Single-threaded execution model. Apart from the in-memory approach, the search for ef-
®cient utilization of compute resources in multi-core machines triggered a new archi-
tecture for multi-threading applications. Previously, application design was relying on
multiple threads to perform tasks in parallel, in order to fully utilize CPU resources.
In reality, most of the tasks are not independent of each other, as they either access the
same part of data, or they need part of the results generated by the other tasks. This
well-known problem (concurrency control) made it nearly impossible to have paral-
lelization fully in a multi-threading environment.

Recent data-management systems are based on a single-threaded execution model [64]
where there is no need to worry about concurrency control. As long as one single
thread is performing data I/O, thread-safe data structures are not necessary. In other
words, no locking mechanism is needed, which results in less execution overhead.

In the context of multi-core machines, the single-threaded execution model called for
a shared-nothing architecture. CPU cores should be used in a way that pure paral-
lelization is guaranteed. The cores should work on unshared data. Examples are H-
Store [62], and HyPer [65], etc.

3.3.2 Examples

H-Store. H-Store [62] is an experimental row-based relational database management sys-
tem (DBMS) born from a collaboration between MIT, Brown University, Yale Univer-
sity, and HP Labs. H-Store aims at being optimized for online transaction processing
(OLTP) applications by leveraging main memory as the persistent storage for fast data
accesses. To avoid the overhead of using multi-threaded data structures, H-Store fol-
lows the single threaded-execution model where each data structure belongs to one
and only one thread.

To scale the system in a multi-core server, H-Store relies on a shared-nothing archi-
tecture. Each CPU core is delegated onesite (a partition of the database) that is the
basic atomic entity in the system; each site runs a single-threaded daemon perform-
ing transactions independently on its own unshared part of the database stored in the
main memory. Additionally, H-Store introduces other optimizations, such as replica-



tion over sitesand ªpre-de®ned stored proceduresº, etc. Pre-de®ned stored procedures
potentially allow H-Store reducing the cost of SQL query analyzing.

HyPer. HyPer [65] is a main-memory database management system built to handle both
OLTP and OLAP simultaneously on a single multi-core server. HyPer follows the same
single-threading approach ®rst recommended in [64], where all OLTP transactions are
sequentially handled by one single-threaded daemon. This architecture mitigates the
need for concurrent data structures and expensive locking because only one thread
owns the entire database.

To support OLAP and OLTP simultaneously, HyPer relies on a virtual memory snap-
shot mechanism that is assisted in hardware by the Operating System (OS). It main-
tains consistent snapshots for both OLAP and OLTP queries. Upon OLAP request,
HyPer clones the entire database and forks a new process using kernel API methods of
the OS. This new process is then able to work on that consistent snapshot without any
interference with the main database. In multi-core machines, multi OLAP threads can
be launched simultaneously as long as they only read on a private snapshot. By relying
on hardware mechanisms, HyPer is demonstrated to be fast and high performance.

3.4 Summary

In this chapter, we studied the design of data-management systems, focusing on the scala-
bility aspects of their architectures. In order to cope with the increasing workloads, data-
management systems follow two approaches for scalability: scale horizontally (scale-out),
and scale vertically (scale-up). While most of the studied systems are designed to scale-
out in distributed environments, recent trends showed promising approaches based on big
memory and multi-core to scale-up.

Despite there is a huge effort on designing scalable data-management systems, existing
approaches face many limitations, especially when dealing with new challenges that arise in
the context of Big Data management. For instance, existing storage systems do not ef®ciently
support atomic non-contiguous I/O 1, which results in poor performance in processing of
Big Volume of data. Furthermore, in the context of Big Variety, we observe a shortcoming of
specialized storage systems optimized for array-oriented data model. This is also one of the
challenges that we will address in this thesis.

In the next chapter, we will discuss in detail BlobSeer [66] as an interesting case study
of a distributed data-management system. We select BlobSeer because it features several
novel key design principles that we rely on this thesis. Next, we present our contributions
on designing scalable data-management systems along the classi®cation introduced in this
chapter.

1Non-contiguous I/O refers to the access of non-contiguous regions from a ®le within a single I/O call
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BLOBSEER [66] is a versioning-oriented data sharing service. It is speci®cally designed
to meet the requirements of data-intensive applications that are distributed at a large
scale. (1)A scalable aggregation of storage spacefrom a large number of participating

machines with minimal overhead. (2) Support to store huge data objectswhile providing
ef®cient ®ne-grain accessto data subsets. (3) The ability to sustain a high throughput under
heavy access concurrency. We selected BlobSeer as a case study for this chapter, as it is the
building blocks for a part of our contributions in the context of scalable data storage.

4.1 Design overview

BlobSeer is the core project of KerData team, INRIA Rennes, Brittany, France. The main
features of BlobSeer areData as BLOBs, data striping, distributed metadata managementand
versioning-based concurrency controlto distribute the I/O workload at a large scale, and avoid
the need for access synchronization both at data and metadata level. As demonstrated by
Nicolae et al. [66, 44, 67], these features are crucial in achieving a high aggregated throughput
under concurrency.
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Data as BLOBs. Data is abstracted in BlobSeer as long sequences of bytes called BLOBs (Bi-
nary Large OBject). These BLOBs are manipulated through a simple access interface
that enables creating a BLOB, reading/writing a range of sizebytes from/to a BLOB
starting at a speci®edoffsetand appending a sequence ofsizebytes to the BLOB. Blob-
Seer addresses the management of huge BLOBs that may grow in size up to terabytes
(TB) but also allows ®ne-grained accessto small parts of each BLOB. Therefore, BlobSeer
can be a generic storage engine for managing any kind of un-structured data.

To facilitate data sharing, BlobSeer maintains a ¯at namespace in which each BLOB is
uniquely identi®ed by a globally shared identi®er (ID). Given a BLOB ID, users can
access the BLOB's data in adata-location transparentmanner, without being provided
the location of that speci®c BLOB.

Data striping. As a BLOB can go beyond TB size, it is impossible and/or inef®cient to store
each BLOB in a centralized fashion. To improve the performance of data accesses,
BlobSeer fragments each BLOB into equally-sizedchunksand distributes them across
multiple storage nodes. This mechanism is called data stripingand is widely used in
other distributed data-management systems. Data striping enables load-balancing by
directing accesses to different chunksto different storage nodes.

Because the value of the chunk size has a big impact on the performance of both writ-
ing and reading operations, BlobSeer allows users to con®gure this parameter indepen-
dently for each BLOB. The chunk size is speci®ed during the creation of the BLOB and
need to be ®ne-tuned according to the access patterns of the applications. If the chunk
size is too large, there is high chance that multiple concurrent readers and writers will
access the samechunks. This may create bottlenecks at the local level of the storage
servers being accessed. In the inverse case, too small chunk sizes lead to the overhead
of initiating many network connections and of transferring many small pieces of data.

Distributed metadata management. Since each BLOB is split into chunksstored on a large
number of storage nodes, metadata is needed in order to know which chunks belong
to which BLOB and where they are located. BlobSeer favors a distributed metadata-
management scheme based on a Distributed Hash Table (DHT). Metadata pieces are
distributed over a number of metadata providers, which alleviates pressure on each
particular metadata provider, while a higher aggregated metadata storage capability
can be achieved. Additionally, a standard replication mechanism can be built within a
DHT to enable higher metadata availability.

Versioning-based concurrency control. To achieve high throughput under heavy concur-
rency, BlobSeer relies on aversioning-based concurrency control. Instead of keeping only
the current state (latest version) of each BLOB, BlobSeer remembers any modi®cation
on any particular BLOB. Essentially, each modi®cation made by a new WRITEopera-
tion results in a new BLOB version. BlobSeer only stores the incremental update that
differentiates the current new version from the previous version. Thanks to versioning-
enabled metadata, each version can be seen as the whole BLOB obtained after a suc-
cessful WRITEoperation.

By isolating updates in different versions, concurrent readers and writers can work in-
dependently as long as they access distinct BLOB versions. BlobSeer guarantees that
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Figure 4.1: The architecture of BlobSeer.

a new version is unveiled to readers only when it is released by the writer. Concur-
rent writers are handled in a way that they can perform data I/O in parallel to create
various versions, while metadata management is ®nally responsible for serializing ver-
sions in a consistent order.

4.2 Architecture

The system consists of distributed processes (Figure 4.1), that communicate through remote
procedure calls (RPCs). A physical node can run one or more processes and, at the same
time, may play multiple roles from the ones mentioned below.

Data providers. The data providersphysically store the chunks. Each data provideris simply
a local key-value store, which supports accesses to a particular chunk given a chunk
ID. Data providerscan be con®gured to use different persistent layers such as Berke-
leyDB [68], an ef®cient embedded database, or just keepchunksin main memory. New
data providers may dynamically join and leave the system.

Provider manager. The provider managerkeeps information about the available storage
space and schedules the placement of newly generatedchunks. It employs a con®g-
urable chunk distribution strategy to maximize the data distribution bene®ts with re-
spect to the needs of the application. The default strategy implemented in BlobSeer
simply assigns new chunksto available data providersin a round-robin fashion.

Metadata providers. The metadata providersphysically store the metadata that allow iden-
tifying the chunksthat make up a snapshot version of a particular BLOB. BlobSeer
employs a distributed metadata management organized as a Distributed Hash Table
(DHT) to enhance concurrent access to metadata.
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Version manager. The version manageris in charge of assigning new snapshot version num-
bers to writers and to unveil these new snapshots to readers. It is done so as to offer the
illusion of instant snapshot generation, while guaranteeing total ordering and atomic-
ity. The version manageris the key component of BlobSeer, the only serialization point,
but is designed to not involve in actual metadata and data I/O. This approach keeps
the version managerlightweight and minimizes synchronization.

Clients. BlobSeer exposes a client interface to make available its data-management service
to high-level applications. When linked to BlobSeer's client library, application can
perform the following operations: CREATEa BLOB, READ, WRITE, and APPENDcontiguous
ranges of bytes on a speci®c BLOB.

4.3 Versioning-based access interface

Following the design principles mentioned in Section 4.1, BlobSeer provides a versioning-
based access interface to allow clients to manipulate BLOBs with respect to the versioning
features, including the creations of a new version and the possibility to read data content of
a speci®c BLOB version.

CREATE(id)

By invoking the CREATEprimitive, a new BLOB with size 0 is created in the system with
an identi®er id . The BLOB idmust be globally unique and is needed for further access oper-
ations.

WRITE(id, buffer, offset, size)
APPEND(id, buffer, size)

The WRITEor APPENDprimitives modify a BLOB identi®ed by the given id , by writing
contents of abuffer of length size at a speci®edoffset or the end of the BLOB. Each function
call generates a new version of the BLOB that is assigned a version number, incrementally
generated by the version manager. Remember that WRITEand APPENDonly allow updating a
contiguous range within a BLOB.

READ(id, v, buffer, offset, size)

A READoperation accesses a contiguous segment (speci®ed by anoffset and a size ) from
a BLOB (speci®ed by its id ) and copies it into a given buffer . The desired version of the
BLOB from which the segment must be taken can be provided in v. In case v is missing,
BlobSeer assumes by default that the latest version of the BLOB is accessed.

CLONE(id, v)

The CLONEprimitive enables users to create a new BLOB based on an existing one. The
new BLOB is a ªshadowº copy of the version v of the BLOB identi®ed by id . BlobSeer
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Figure 4.2: Metadata representation: whole subtrees are shared among snapshot versions.

implements the CLONEprimitive in a smart way that does not require a full copy of data form
the source BLOB to the destination BLOB. Instead,CLONEis done at metadata level by simply
duplicating the metadata of version v of BLOB id.

Furthermore, BlobSeer's client library also exposes additional primitives for other man-
agement purposes such as: switching between BLOB versions, requesting the size of a BLOB,
getting the latest available version of a BLOB, etc.

4.4 Distributed metadata management

BlobSeer organizes metadata as adistributed segment tree[69]: one such tree is associated
to each snapshot of a given BLOB id . A segment tree is a binary tree in which each node is
associated to a range of the BLOB, delimited by offsetand size. We say that the node coversthe
range (offset, size). The root covers the whole BLOB snapshot, while the leaves cover single
chunks (i.e., keep information about the data providers that store the chunk). Chunk size (in
the order of KBs) is a con®gurable parameter per BLOB. For each node that is not a leaf, the
left child covers the ®rst half of the range, and the right child covers the second half. The
segment tree itself is distributed at ®ne granularity among multiple metadata providers that
form a DHT (Distributed Hash Table). This is done for scalability reasons, as a centralized
solution becomes a bottleneck under concurrent accesses.

In order to avoid the overhead of rebuilding the whole segment tree for each new snap-
shot (which consumes both space and time), entire subtrees are shared among the snapshots,
as shown on Figure 4.2. Root 0 represents the initial metadata tree for a BLOB consisting of 4
chunks. In our example, chunk size is set to 1 so that the root covers the range (0,4) (offset = 0,
and size = 4 chunks). If we follow down the tree, each of the two inner nodes covers 2 chunks
while each leaf covers exactly only one chunk. Regarding the metadata trees represented by
root 1 and root 2, those trees belong to different snapshots but they shared leaves and inner
nodes between them and with root 0.

To understand how BlobSeer's metadata management gets involved in I/O operations,
especially in concurrency, we study two main cases: reading and writing.
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WRITE. On writing, the client ®rst contacts the provider manager to get a list of available
data providers. It then splits the data range in chunksand distributes them over the
given data providers in parallel. When chunksare written, the client contacts the ver-
sion manager to get a version for the new write. Next, the metadata tree for the new
snapshot is generated in a bottom-up fashion, starting from leaves to the new root.

Because of concurrency, multiple clients can simultaneously contact the version man-
ager. For example in Figure 4.2, let us assume that there are two concurrent writers
on the BLOB version identi®ed by root 0 (version 0). BlobSeer relies on the version
manager to decide upon the order of concurrent writers. Indeed, the version manager
is the single serialization point of BlobSeer where concurrent writes are assigned new
versions in a ®rst comes ®rst servedorder. In our example, the ®rst writer gets version
1, the second writer gets version 2. Since the metadata nodes are shared across three
versions 0, 1, and 2, we may think that concurrent writers cannot generate metadata
trees in parallel.

To enable the parallelization in generating metadata trees, the version manager not
only assigns a version for each writer, but also informs it about the given versions and
the access ranges of the possible concurrent writers with lower version numbers. Based
on this information, each writer can guess which the tree nodes will be generated by
other writers. It can be done by calculating the identity of a tree node, which is just
a triple of version, offset, size. Therefore, each writer can generate its metadata tree
in an isolated fashion on the assumption that the shared tree nodes will be eventually
generated by the other writers.

READ. On reading, the client ®rst contacts the version manager to specify which version of
which BLOB it wants to access. If that version exists, then the version manager sends
back the root of the corresponding metadata tree to the client. Starting from the given
root, the client can traverse down the metadata tree to the leaves that cover the desired
data range. The client can then use the information in tree leaves to know which data
providers it has to access for data.

Because metadata and data are never overwritten as explained in data writing, multi-
ple readers can read simultaneously even in parallel with writers, as long as BlobSeer
keeps writers and readers not accessing the same version. It is the role of the version
manager to unveil new version to readers only when the writer have ®nished to gen-
erate it.

4.5 Summary

This chapter describes the design and the architecture of BlobSeer, a versioning-oriented
large-scale data-management service. BlobSeer targets data-intensive distributed applica-
tions that need to manage massive unstructured data at large-scale. We focused on Blob-
Seer's distributed metadata management and its versioning-oriented interface as they are
the main novel features in comparison with other distributed storage systems. By using
BlobSeer as a building block for some of our systems, we were able to speed up the creation
of several prototypes in order to validate our contributions. These are discussed in the next
chapters.
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I N this chapter, we address the common practices in data-intensive HPC and highlight
some challenges in building scalable storage systems in such an environment.

High performance computing (HPC) plays an important role in our modern life nowa-
days. We depend on HPC for a wide range of activities in both nature and social sciences.
Researchers in institutes, universities and government labs use HPC systems and applica-
tions to study weather and climate, bioscience, chemistry, energy, etc. Engineers in industries
rely on HPC to design almost every product we use. HPC exists in mechanical simulation,
package design, automotive manufacturing, volcanic simulation, ®nancial simulation, etc.

There is no clear de®nition of HPC. It refers to the use of parallel processing on high
performance clusters for ef®ciently solving advanced problems that cannot be afforded by a
single machine. Those advanced problems often set strict constrains on timing and precision
so that a huge amount of resources is needed to address them.

Because of its nature to address big problems, HPC applications are increasingly becom-
ing data-intensive. High-resolution simulations of natural phenomena (Cloud Model 1 -
CM1 [70]), climate modeling (Weather Research and Forecasting Model - WRF [71]), large-
scale image analysis, etc. generate and consume large volumes of data. Such applications
currently manipulate data volumes in the Petabyte scale. With the growing trend of data
sizes, we are rapidly advancing towards the Exabyte scale. In the context of Big Data, data-
intensive HPC applications emphasize the Big Volumeaspect.
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Figure 5.1: Typical parallel I/O stack.

5.1 Parallel I/O

Data-intensive HPC applications typically consist of a massive number of processes de-
ployed on the compute nodes of HPC clusters. During each execution, those processes need
to coordinate for reading input data and writing output data. A typical execution may also
involve checkpointing where the intermediate data state is written to the underlying stor-
age systems after a number of iteration steps. In all of those cases, the I/O access pattern
exhibited by data-intensive HPC applications relies to parallel I/O.

5.1.1 Parallel I/O stack

A typical parallel I/O stack consists of 4 layers, as shown on Figure 5.1.

Parallel ®le systems. At the lowest level is the parallel ®le system that provides ef®cient
access to data ®les. Its role is to federate storage resources and to coordinate accesses to
®les and directories in a consistent manner. The parallel ®le system exhibits a global ®le
system namespace that is typically seen through a UNIX-like interface. Some parallel
®le systems such as PVFS allow users to access not only contiguous regions of ®les
but also non-contiguous regions. This extension is provided to favor access patterns
generated by parallel applications on upper layers.

I/O Middleware: MPI-I/O. On top of the parallel ®le system typically sits the MPI-I/O im-
plementation, whose interface is part of the MPI-2 interface speci®cation [72]. MPI-I/O
middleware de®nes a standard API and implements several optimizations such as col-
lective I/O and data caching. By providing a standard API, MPI-I/O can leverage ®le
system-speci®c interfaces and optimizations transparently to upper layers. The role of
MPI-I/O middleware is to translate accesses generated by applications or high-level
I/O libraries to ®le system-speci®c accesses that can be performed ef®ciently by the
underlying ®le systems.

High-level I/O library (data model). The MPI-I/O interface provides performance and
portability, but the interface is relatively limited as it only allows accesses to unstruc-
tured data. However most of data-intensive scienti®c applications work with struc-
tured data, and MPI-I/O is simply not suf®cient to represent those complex data mod-
els. For this reason, high-level I/O libraries installed on top of MPI-I/O middleware
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are necessary (e.g., Parallel HDF5 [73] or netCDF [74]). They allow applications to
describe easier complex data models.

Parallel applications. Parallel applications such as VisIt [75], Cloud Model 1 - (CM1) [70]
rely on the I/O interface provided by the MPI-I/O middleware or by a high-level I/O
library to access data in parallel ®le systems.

5.1.2 Zoom on MPI-I/O optimizations

MPI (Message Passing Interface) [8] is the dominant parallel programing model in HPC
environments. Among MPI components, MPI-I/O [76] was developed to standardize the
parallel I/O access interface with the goal to achieve portability and performance.

Non-contiguous I/O. MPI-I/O allows accessing non-contiguous regions from a ®le into
non-contiguous memory locations within a single I/O call. Although most parallel
®le systems do not implement this I/O functionality, non-contiguous I/O accesses are
common in many data-intensive HPC applications [77, 78]. Therefore, the ability to
specify non-contiguous accesses in MPI-I/O helps bridging the gap between parallel
®le system interface and application needs.

In the case parallel ®le system does not support non-contiguous I/O, one simple ap-
proach to implement a non-contiguous I/O is to access each contiguous portion sep-
arately by using regular I/O function calls of the ®le system. However, such imple-
mentation does not feature any optimization. It often results in a large number of
independent small I/O requests to the underlying ®le system, eventually degrading
drastically I/O performance.

ROMIO, a MPI-I/O implementation, performs an optimization for non-contiguous
I/O accesses by using a mechanism called data sieving. This mechanism tries to make
a single contiguous I/O request to the ®le system that covers the ®rst requested byte
up to the last requested byte. On reading, the output data is then stored in temporary
buffer in main memory, and only the requested non-contiguous portions are extracted
and copied to user's buffer. On writing, a read-before-write is performed in order to
make up a contiguous region to write to the ®le.

Collective I/O. Almost all parallel ®le systems only support independent I/O. As they pro-
vide only Unix-like interface, successive I/O requests are independently served in an
isolated fashion. In context of large parallel computing where multiple distributed pro-
cesses coordinate to solve a big problem, this form of I/O access does not capture the
global picture of the access patterns, ignoring precious information for optimization.

One of the most important access optimizations done in the MPI-I/O speci®cation is
collective I/O. In contrast to independent I/O, collective I/O leverages the global in-
formation about parallel processes to merge, to aggregate accesses in order to favor the
underlying storage system. Such optimizations can signi®cantly improve I/O perfor-
mance.

There are several advantages in performing I/O collectively. First, concurrent I/O
requests that are overlapped and redundant can be ®ltered. Second, collective I/O
can merge, aggregate many small and non-contiguous requests into smaller number
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of large and contiguous I/O calls. Although each individual process may perform
non-contiguous I/O, it is likely that the requests of multiple processes constitute one
or many larger contiguous portions of a ®le. In this sense, collective I/O eliminate
non-contiguous patterns on the underlying systems.

The default mechanism to implement collective I/O in ROMIO implementation refers
to a two-phase strategy [79]. A communication phase must happen before the I/O
phase. Its role is to aggregate I/O requests and to decide which processes will per-
form which parts of the aggregated I/O in the second phase. In other words, ROMIO
tries to propose an optimized I/O access strategy based on the global information of
concurrent accesses.

5.2 Storage challenges in data-intensive HPC

As I/O is the new bottleneck, storage system for HPC is becoming a critical factor of the
overall performance of applications. Unless using an appropriate storage architecture, ap-
plication performance will be disappointing regardless of how powerful the HPC cluster is.
This section presents several storage challenges that are critical and relevant to our contri-
bution.

Massive data size. Data-intensive HPC applications tend to generate and consume an
amount of data that is dramatically increasing. Such applications currently manip-
ulate data volumes in the Petabyte scale and with the growing trend of data sizes we
are rapidly advancing towards the Exabyte scale. Facing this rapid pace, current I/O
architectures and system designs are often overwhelmed by this immensity of data.
Obviously, the poor I/O throughput of the underlying storage systems creates bad im-
pacts on the overall performance of HPC environments. One question has been raised:
ªHow do we ef®ciently manage this huge amount of data that our current storage ar-
chitecture was not designed for?º

CHALLENGE: How to manage massive data size ef®ciently?

Massive parallelization. Together with the growth of the data volumes generated by appli-
cations, the number of parallel processes participating in the computation is increasing
dramatically. Today, scienti®c simulation applications such as cloud modeling CM1
easily scale to tens of thousand processes. During each computation iteration, those
processes perform I/O simultaneously, creating a massive number of concurrent I/O
operations that is proportional to the increasing number of client processes. While the
computational power of high-performance computing systems increases in Moore's
law, innovation in I/O systems does not make progress at the same rate. This fact
results in the new scalability challenges under massive parallelization within current
storage technologies: I/O jitter, poor I/O throughput in concurrency, etc.

Several approaches have been proposed to address those new challenges. Nawad et
al. [80], introduced a scalable I/O forwarding framework for HPC systems. Dorier et
al., introduced Damaris [81] (Dedicated Adaptive Module for Application's Resources
Inline Steering) that leverages dedicated cores for I/O services. The common point of
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both those approaches was to reduce ®le system traf®c under massive parallelization
by aggregating, rescheduling, and caching I/O requests. Basically, the dedicated I/O
nodes, or dedicated I/O cores take responsibility of performing I/O on behalf of the
compute nodes, thus consequently reducing the number of concurrent I/O requests to
the underlying storage systems.

CHALLENGE: How to deal with massive parallelization?

I/O atomicity. For concurrent I/O operations, atomicity semantics de®nes the outcome of
overlapping regions in the ®le that are simultaneously read/written by multiple pro-
cesses. Without atomic guarantees, the results state of the non-contiguous regions ac-
cessed by multiple processes may be inconsistent: the data of some contiguous parts
may come from one process whereas the data of some other parts may come from an-
other processes. When executing HPC scienti®c applications, guaranteeing atomicity
of I/O operations is a crucial issue because those applications often perform a large
number of overlapping I/O operations. Un-de®ned data at any intermediate iteration
step, means inaccurate input for the sub-sequential steps, creating inaccurate ®nal re-
sults. This consequence is undesired especially not only for the critical role of those
applications but also for the expensive of rerunning the entire calculation process in
the HPC environments.

The current approaches to implement I/O atomicity do not scale. Either storage sys-
tems compromise atomicity to get better performance, either they rely on locking
mechanism to ensure atomicity while performing poorly at large-scale. One question
should be addressed: ªWhat is the novel approach to guarantee I/O atomicity at min-
imal cost?º

CHALLENGE: How to guarantee I/O atomicity at minimal cost?

Array-oriented data organization model. Many established storage solutions such as par-
allel ®le systems and database management systems strive to achieve high-
performance at large scale. However, one major dif®culty is to achieve performance
scalability of data accesses under concurrency. One limitation comes from the fact
that most existing solutions expose data access models (e.g., ®le systems, structured
databases) that are too general and do not exactly match the natural requirements of
the application. This forces the application developer to either adapt to the exposed
data access model or to use an intermediate layer that performs a translation. In ei-
ther case, this mismatch leads to suboptimal data management: as noted in [51], the
one-storage-solution-®ts-all-needs has reached its limits.

The situation described above highlights an increasing need to specialize the I/O stack
to match the requirements of different types of applications. In scienti®c computing,
of particular interest is a large class of applications that represent and manipulate data
as huge multi-dimensional arrays [77]. Such applications typically consist of a large
number of distributed workers that concurrently process subdomains of those arrays.
In this context, an array-oriented data model will potentially help sustaining a high
throughput for such parallel array processing.



CHALLENGE: How to design storage systems optimized for parallel
array processing?

5.3 Summary

In this chapter, we have presented an overview of data-intensive HPC and argued that the
data-management systems required in data-intensive HPC are one type of Big Data man-
agement. Indeed, those applications process ªBig Volumeº of data that are growing towards
Exabyte scale. To be able to design scalable storage systems for data-intensive HPC, we
studied the current parallel I/O frameworks and pointed out some challenges that need to
be investigated. Our solutions to those challenges are then presented in the next chapters.
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W E consider the challenge of building data-management systems that meet an im-
portant requirement of today's data-intensive HPC applications: to provide a high
I/O throughput while supporting highly concurrent data accesses. In this context,

many applications rely on MPI-I/O and require atomic, non-contiguous I/O operations that
concurrently access shared data of the underlying storage systems.

Because many widely used storage back-ends for HPC systems such as Lustre [82] and
GPFS [83] strictly enforce the POSIX [46] access model, they do not support atomic, non-
contiguous I/O operations. As a result, ROMIO [76], the MPI-I/O implementation currently
in circulation is forced to implement this lacking features at MPI-I/O level through locking-
base schemes: writes simply lock the smallest contiguous region of the ®le that covers all
non-contiguous regions that need to be written. Under a high degree of concurrency, such
an approach is inef®cient and becomes a major source of bottleneck.

In this chapter, we address this shortcoming of existing approaches by optimizing the
storage back-end speci®cally for the access pattern mentioned above. We propose a novel
versioning-based scheme that offers better isolation and avoids the need to perform expen-
sive synchronization. The key idea is to use multiple snapshots of the same data. Those
snapshots offer a consistent view of the globally shared ®le, thanks to an ef®cient order-
ing and resolution of overlapping at metadata level. This enables high throughput under
concurrency, while guaranteeing atomicity.

The contributions in this chapter are summarized as follows.

� We introduce a set of generic design principles that leverage versioning techniques and
data striping to build a storage back-end that explicitly optimizes for non-contiguous,
non-con¯icting, overlapped I/O accesses under MPI atomicity guarantees.

� We describe a prototype built along this idea, based on BlobSeer, a versioning-enabled,
concurrency-optimized data management service that was integrated with ROMIO.

� We report on a series of experiments performed with custom as well as standard
MPI-I/O benchmarks speci®cally written for the applications that we target and show
improvements in aggregated throughput under concurrency between 3.5 to 10 times
higher than what state-of-art locking-based approaches can deliver.

6.1 Problem description

In a large class of scienti®c applications, especially large-scale simulations, input and out-
put data represents huge spatial domains made of billions of cells associated with a set of
parameters (e.g., temperature, pressure, etc.). In order to process such vast amounts of data
ef®ciently, the spatial domain is split into subdomains that are distributed and processed by
a large number of compute elements, typically MPI processes.

The computations performed on the subdomains are not completely independent: typi-
cally, the value of a cell throughout the simulation depends on the state of the neighboring
cells. Thus, cells at the border of subdomains (called ªghost cellsº) are shared by multiple
MPI processes. In order to avoid repeated exchanges of border cells between MPI processes
during the simulation, a large class of applications [77, 78, 84, 85] partition the spatial domain
in such way that the resulting subdomains overlap at their borders. Figure 6.1(a) depicts an
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example of a 2D space partitioned in 3 � 3 overlapped subdomains, each being handled by
one of processesP1, . . . ,P9.

At each iteration, the MPI processes typically dump their subdomains in parallel into a
globally shared ®le, which is then later used to interpret and/or visualize the results. Since
the spatial domain is a multi-dimensional structure that is stored as a single, ¯at sequence
of bytes, the data corresponding to each subdomain maps to a set of non-contiguous regions
within the ®le. This in turn translates to a write-intensive access pattern where the MPI
processesconcurrently write a set of non-contiguous, overlapping regions in the same ®le.

Ensuring a consistent output is not a trivial issue. If all processes independently write
the non-contiguous regions of their subdomains in the ®le, this may lead to a situation where
the overlapped regions are the result of an inconsistent interleaving. Such a case is depicted
on Figure 6.1(b), where two MPI processes, P1 and P2, concurrently write their respective
subdomains. Only two consistent states are possible, where all the non-contiguous regions
of P1 and P2 are atomicallywritten into the ®le. They only differ by the order in which this
happened, which for most applications is not important in practice: both results are accept-
able under the assumption that P1 and P2 are both able to compute consistent cell values
for the overlapped region, such that the difference between them does not affect the global
outcome of the simulation.

In an effort to standardize these access patterns, the MPI 2.0 standard [76] de®nes a spe-
cialized I/O interface, MPI-I/O , that enables read and write primitives to accept complex
data types as parameters. These data types can represent a whole set of non-contiguous
regions rather than a single contiguous region, as is the case of the POSIX read/write primi-
tives. Thus, the problem of obtaining a consistent output is equivalent to guaranteeing atom-
icity for the MPI-I/O primitives, which is referred to as MPI atomicity. More precisely, MPI
atomicity guarantees that in concurrent, overlapping MPI I/O operations, the results of the
overlapped regions shall contain data from only one of the MPI processes that participates
in the I/O operations.

Large-scale applications need to compute huge domains that are distributed among a
large number of processes. Under these circumstances, guaranteeing MPI atomicity in a
scalable fashion is dif®cult to achieve: there is a need to sustain a high data access through-
put despite a growing number of concurrent processes. This chapter addresses precisely
this problem, facilitating an ef®cient implementation of the MPI-I/O standard, which in
turn bene®ts a large class of MPI applications.

6.2 System architecture

6.2.1 Design principles

We propose a general approach to solve the issue of enabling a high throughput under con-
currency for writes of non-contiguous, overlapped regions under MPI atomicity guarantees.
This approach relies on three key design principles.
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(a) 2D array partitioning with overlap-
ping at the border.
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(b) An example of two concurrent over-
lapping writes.

Figure 6.1: Problem description: partitioning of spatial domains into overlapped subdo-
mains and the resulting I/O access patterns and consistency issues.

Dedicated API at the level of the storage back-end

Traditional approaches address the problem presented in Section 6.1 by implementing the
MPI-I/O layer on top of the POSIX access interface which does not provide access to non-
contiguous blocks. The rationale behind this is to be able to easily plug in various storage
back-ends without the need to rewrite the MPI-I/O layer. However, this advantage comes
at a high price: the MPI-I/O layer needs to guarantee MPI atomicity through the POSIX
consistency model, which essentially implies the need to build complex locking schemes.

Such approaches greatly limit the potential to introduce optimizations in our context,
because the POSIX access model was not originally designed for non-contiguous access pat-
terns. For this reason, we propose to extend the storage back-end with a data access interface
that closely matches the MPI-I/O read/write primitives. Using this approach circumvents
the need to translate to a different consistency model and enables designing a better concur-
rency control scheme.

Data striping

The need to process huge spatial domain leads to an increasing trend in data sizes. This in-
creasing trend can be observed not only on the total amount of data, but also on the data sizes
that need to be individually handled by each process. As a general rule, the computation-to-
I/O ratio is steadily decreasing, which means that the performance of the whole application
depends more and more on the performance of the I/O.

In this context, storing the input and output ®les in a centralized fashion clearly does
not scale. Data striping is a well-known technique to address this issue: the ®le where the
spatial domain is stored can be split into chunksthat are distributed among multiple storage
elements. Using a load-balancing allocation strategy that redirects write operations to differ-
ent storage elements in a round-robin fashion enables the distribution of the I/O workload
among the storage elements, which ultimately increases the overall throughput that can be
achieved.
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Versioning as a key to enable atomic data accesses under concurrency

Most storage back-ends manipulate a single version of the ®le at a time under concurrency.
For this reason, a locking-based mechanism is needed in order to synchronize accesses to
the ®le. In our context, locking can become a major source of overhead, even if the storage
back-end was designed to deliver high throughput under concurrency. The problem comes
from the fact that locking enables only one single writer at a time to gain exclusive access
to a region. Since there are many overlapped regions, this leads to a situation where many
writers sit idle while waiting for their turn to lock. This in turn greatly limits the potential to
achieve a globally high aggregated throughput.

In order to avoid this issue, we propose a versioning-based access scheme that isolates
writers to their own snapshot of the ®le. This avoids the need to guarantee exclusive access
to the same region and therefore the need for writers to wait for each other. Our approach
is based on shadowing[86]: for each update to the ®le, the illusion is offered that a new
standalone snapshot was created. Of course, only the differences are physically stored and
metadata is manipulated in such way that the aforementioned illusion is upheld.

Concretely, we propose to enable concurrent MPI processes to write their non-contiguous
regions in complete isolation, without having to care about overlapping and synchroniza-
tion, which is made possible by keeping data immutable: the new modi®cations are sepa-
rately registered without modifying the existing snapshot. It is at the metadata level where
the ordering is done and the overlapping are resolved in such way as to expose a snapshot
of the ®le that looks as if all modi®cations were applied in the sequential order of the version
numbers. A concrete proposal of how to achieve this in practice is detailed in Section 6.3.1.

6.2.2 A non-contiguous, versioning-oriented access interface

We introduce a series of versioning-oriented primitives that facilitate non-contiguous ma-
nipulations of data ®le.

id = CREATE(size)

This primitive creates a new data ®le and associates to it a zero-®lled snapshot whose
version number is 0 and is size bytes long. The data ®le will be identi®ed by its ®le handler
id (the returned value). The id is guaranteed to be globally unique.

vw = NONCONT_WRITE(id, buffers[], offsets[], sizes[])

A NONCONT_WRITEinitiates the process of generating a new snapshot of the data ®le (iden-
ti®ed by id ) starting from a list of memory buffers (pointed at in buffers[] ) that will be
written to the non-contiguous regions de®ned by the lists offsets[] and sizes[] .

The NONCONT_WRITEcommand does not ªknowº in advance which snapshot version it will
generate, as the updates are totally ordered and internally managed by the storage system.
However, after the primitive returns, the caller learns about its assigned snapshot version
by consulting the returned value vw. Snapshot versions are totally ordered: if the assigned
version is vw, then the ®nal result is the same as if applying all NONCONT_WRITEcalls in the
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Figure 6.2: Parallel I/O Software Architecture within versioning-based storages.

order of their assigned versions. The snapshot is generated in the background and is said
to be publishedwhen it becomes available to the readers. Note that the primitive may return
before snapshot version vw is published. The publication of vw is eventually done, but it is
guaranteed that the generated snapshot will obey MPI atomicity.

NONCONT_READ(id, v, buffers[], offsets[], sizes[])

A NONCONT_READresults in replacing the contents of the memory buffers speci®ed in the
list buffers[] with the contents of the non-contiguous regions de®ned by the lists offsets[]
and sizes[] from snapshot version v of the data ®le id . If v has not yet been published,
the read fails. If v is omitted, then it is automatically considered to be the latest published
version at the time when the read primitive was invoked.

The NONCONT_*primitives can be directly mapped to MPI-I/O read/write primitives at
higher level. Since MPI-I/O does not expose any versioning semantics, the versioning in-
formation is simply discarded. Figure 6.2 describes the integration of our versioning storage
back-end to the standard parallel I/O software architecture. Together with MPI I/O mid-
dleware and high-level data model interface, a subset of functionality is provided to enable
high-performance data access to parallel applications. Since we provide a versioning stor-
age back-end that can understand MPI-I/O atomicity, atomicity of I/O operations can be
brought to applications without any translation from/to different atomicity semantics. This
is our advantage with regard to the other storage back-ends.

6.3 Implementation

In this section, we describe how to implement this architecture in practice, such that we
achieve the design principles introduced in Section 6.2.1. Our approach is to extend a
versioning-oriented data sharing service such that it ®ts our needs as a storage back-end.
We have chosen to build our storage back-end on top of BlobSeer, a versioning-oriented data
sharing service presented previously in Chapter 4.

The choice of building the storage back-end on top of BlobSeer was motivated by two
factors. First, BlobSeer supports transparent striping of BLOBs into chunks and enables ®ne-
grain access to them. This in turn enables the storage of each spatial domain directly as a
BLOB, which avoids the need to perform data striping explicitly (chunk size is con®gurable
in BlobSeer). Second, BlobSeer offers out-of-the-box support for shadowing by generating a
new BLOB snapshot for each ®ne-grain update while physically storing only the differences.
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Figure 6.3: Metadata segment trees: whole subtrees are shared among snapshot versions.

This provides a solid foundation to introduce versioning as a key principle to support MPI
atomicity.

However, the versioning-oriented access interface as exposed by BlobSeer could not be
leveraged directly because it only supports atomic writes and appends of contiguous re-
gions. It would thus imply the need for locking at the level of the MPI-I/O layer in order to
support MPI atomicity. As discussed, we want to avoid locking and to introduce optimiza-
tions directly at the level of the storage back-end. Therefore, the ®rst step is to extend the
access interface of BlobSeer such that it can describe complex non-contiguous data access in
a single call. We introduce NONCONT_WRITE, NONCONT_READand the new CREATEprimitives in
BlobSeer as presented in Section 6.2.2

6.3.1 Adding support for MPI-atomicity

Our versioning-based approach to ensure MPI atomicity relies on the following idea that
non-contiguous regions can be written in parallel as a series of differences that are ordered
and consolidated into independent snapshots at the level of the metadata, such that the
result is equivalent to the sequential application of all differences in an arbitrary order. The
key dif®culty in this context is to consolidate the differences at metadata level ef®ciently
such that only consistent snapshots that obey MPI atomicity are published.

Since each massive BLOB snapshot is striped over a large number of storage space
providers, metadata enable to remember the location of each chunk in the snapshot, such
that it is possible to map non-contiguous regions of the snapshot to the corresponding
chunks.

Non-contiguous writes. A NONCONT_WRITEoperation ®rst stores all chunks that make up the
non-contiguous regions onto fresh memory areas on the data providers, after which
it builds the metadata segment tree that is associated to the snapshot in a bottom-up
manner: ®rst the leaves that hold information about where the chunks were stored and
then the inner nodes up towards the root. For example, a write of two non-contiguous
regions delimited by (offset, size) = (1, 2) and (4, 2) on a BLOB whose total size is 8
leads to the gray segment tree depicted on Figure 6.3.
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Non-contiguous reads. A NONCONT_READoperation ®rst obtains the root of the segment tree
that corresponds to the snapshot version from which it needs to read, after which it de-
scends in the segment tree towards the leaves that hold information about the chunks
that make up the non-contiguous regions. Once these chunks have been established,
they are fetched from the data providers and stored in the memory buffers supplied as
an argument.

6.3.1.1 Guaranteeing MPI atomicity ef®ciently under concurrency

Since an already published snapshot is never modi®ed, readers never have to synchronize
with writers. The case of concurrent writers is more delicate and needs closer consideration.
Concurrent writers can independently write their non-contiguous regions without any need
to synchronize, because the non-contiguous regions are ordered and consolidated into con-
sistent snapshots at metadata level. In order to perform this ef®ciently, we propose three
important optimizations.

Minimize ordering overhead. Since any arbitrary ordering that obeys MPI atomicity is
valid, our goal is to minimize the time taken to establish the order in which to ap-
ply the overlapping. To this end, the writers request a snapshot version to be assigned
only after they have successfully ®nished writing the chunks and need to build their
corresponding segment trees. The assignment process, which is the responsibility of
the version manager, is very simple and leads to a minimal overhead: versions are as-
signed on a ®rst-come, ®rst-served basis and practically involve only the atomic incre-
mentation of an internal variable on the version manager. For example, in Figure 6.3,
two concurrent writers, black and gray, wrote their non-contiguous regions. Assum-
ing gray ®nished ®rst, it was assigned version 1, while black was assigned version 2.
If black ®nished ®rst, the order of version assignment would have been the opposite.

Avoid synchronization for concurrent segment tree generation. Once the writer obtained
a new snapshot version number from the version manager, it needs to build the meta-
data segment tree such that it is ªweavedº in a consistent fashion with the segment
trees of the previous versions (i.e., the correct links to the nodes of the segment trees
of the previous versions are established). We call such nodes that are linked against by
the segment trees of higher versions border nodes. For example, the border nodes of the
®rst writer (gray) on Figure 6.3 are all belonging to the initial version (white). Under
concurrency, it can happen that the border nodes of a snapshot version v belong to
the segment tree of a lower version that is in the process of being generated itself by a
concurrent writer and therefore do not exist yet. For example, the border nodes of the
second writer (black) depend on gray nodes that have not necessarily been generated
yet.

In order to avoid waiting for such border nodes to be generated, we maintain the
list of all concurrent writers on the version manager and feed it as a hint to writers
when they request a new snapshot version. Using this information, writers can predict
what border nodes will eventually be written by the other concurrent writers and can
build virtual links (which we call metadata forward references) to them without caring
whether they exist or not yet, under the assumption that they will be eventually gen-
erated and the segment tree will then become complete. In our example, when black
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Figure 6.4: Lazy evaluation during border node calculation.

is assigned version number 2 it receives the hint about the existence of gray and the
non-contiguous regions that gray intends to write. Using this information, black can
establish the metadata forward references (dotted pattern) without waiting for gray to
®nish building the segment tree. When both gray and black ®nish, both segment trees
are in a consistent state.

BlobSeer was previously designed to compute metadata nodes on the version manager
and let the clients only need to send them over the DHT. In our prototype, the segment
tree generation is entirely moved from the version manager to the client side. This
optimization reduces the load on the version manager, especially for non-contiguous
accesses when the number of metadata nodes that needs to be generated is usually big-
ger than that in the case of contiguous accesses. As the optimization is very signi®cant,
it was even integrated back to BlobSeer in its later versions.

Lazy evaluation during border node calculation. The scheme presented above greatly im-
proves the scalability of concurrent segment tree generation, as it enables clients to
independently calculate the border nodes in isolation, without synchronizing.

However, in addition to scalability, we aim at high performance, too. To this end, we
optimized the border node calculation on the client-side by introducing a lazy evalua-
tion scheme. More precisely, we avoid pre-calculating the border nodes for each con-
tiguous region individually and rather delay their evaluation until the moment when
the new tree nodes are generated themselves and the links to their children need to be
established. This is particularly important in the context of non-contiguous accesses,
because the union of all border nodes taken from each region individually is much
larger that the set of border nodes that is effectively needed.

For example, on Figure 6.4 Writer A (black) writes two non-contiguous regions. If
each region is taken individually, the white node that covers (0, 4) is a border node
for the region delimited by (offset, size) = (4, 2). Similarly, the white node that covers
(4, 4) is a border node for the region delimited by (offset, size) = (1, 2). However,
neither of them are border nodes in the end result, because their gray counterparts will
eventually become the children of the gray root (0, 8).



54 Chapter 6± Providing ef®cient support for MPI-I/O atomicity based on versioning

Figure 6.5: Integrating our versioning-oriented storage back-end to ROMIO.

6.3.2 Leveraging the versioning-oriented interface at the level of the MPI-I/O
layer

Having obtained a storage back-end implementation that directly optimizes for MPI atom-
icity, the next step is to ef®ciently leverage this storage back-end at the level of the MPI-I/O
layer. To this end, we used ROMIO [76], a library that is part of popular MPICH2 [8] imple-
mentation.

The motivation behind this choice is the fact that ROMIO is designed in a modular fash-
ion, making it easy to plug-in new storage back-ends. Architecturally, ROMIO is divided
into three layers: (1) a layer that implements the MPI I/O routines in terms of an abstract
I/O device that exposes a generic set of I/O primitives, called Abstract Device interface for
parallel I/O (ADIO); (2) a layer that implements common MPI-I/O optimizations that are in-
dependent of the storage back-end (such as buffering and collective I/O); and ®nally (3) a
layer that partially implements the ADIO device and needs to be extended for each storage
back-end explicitly.

These layers provide a complete support for MPI-I/O at application level. The sepa-
ration between ROMIO code that is dependent and independent to storage back-end en-
abled us to build a lightweight ADIO module that maps the interface required by the ®rst
layer almost directly on top of the versioning-oriented access interface we introduced. More
precisely, an ADIO implementation needs to provide support for both contiguous and non-
contiguous writes under MPI atomicity guarantees (Figure 6.5). Our interface proposal is
generic enough to handle both scenarios ef®ciently (non-contiguous READand WRITE) using a
single primitive call.

6.4 Evaluation

We conducted three series of experiments.

� An evaluation of the scalability of our approach when the same amount of data needs
to be read/written into an increasing number of non-contiguous regions by the same
client.

� An evaluation of the scalability of our approach when increasing the number of clients
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that concurrently write non-contiguous regions in the same ®le. In this scenario,
we considered the extreme case where each of the clients writes a large set of non-
contiguous regions that are intentionally selected in such way as to generate a large
number of overlapping that need to obey MPI atomicity.

� An evaluation of the performance of our approach using a standard benchmark, MPI-
tile-IO, that closely simulates the access patterns of real scienti®c applications that split
the input data into overlapped subdomains that need to be concurrently written in the
same ®le under MPI atomicity guarantees.

In the second and the third series of experiments, we compare our approach to the
locking-based approach that leverages a POSIX-compatible ®le system at the level of the
MPI-I/O layer, which is the traditional way of addressing MPI atomicity.

In order to perform this comparison, we used two standard building blocks that are
available as open-source projects: (1) the Lustre parallel ®le system [47], version 1.6.4.1,
in its role as a high-performance, POSIX-compliant ®le system and (2) the default ROMIO
ADIO module, which is part of the standard MPICH2 release and was speci®cally written
for POSIX-compliant ®le systems.

Data sieving is a mechanism to handle non-contiguous I/O accesses in ROMIO. This
mechanism consists of accessing the smallest contiguous region of the ®le that covers the
non-contiguous I/O request. We turned off data sieving in our experiments. According to
the recommendations of Ching et al. [87], doing so greatly improves the performance of Lus-
tre for MPI-I/O. Without data sieving enabled, the ADIO module is able to take advantage
of standard POSIX byte-range ®le locking to lock the smallest contiguous region in the ®le
that covers all non-contiguous regions that need to be read/written. Once this is done, the
non-contiguous regions are read/written using a dedicated read/write call for each region
individually, after which the lock is released.

6.4.1 Platform description

We performed our experiments on the Grid'5000 [88] testbed, a recon®gurable, controllable
and monitor-able experimental Grid platform gathering 9 sites geographically distributed in
France. For these experiments we used the nodes of the Rennes cluster, which are out®tted
with x86_64 CPUs and 4 GB of RAM. All nodes are equipped with Gigabit Ethernet cards
(measured throughput: 117.5 MB/s for TCP sockets with a MTU of 1500 B; latency: 0.1 ms).
We invested a signi®cant effort in preparing the experimental setup, by implementing an
automated deployment process both for Lustre and BlobSeer.

Our experiments were performed on up to 80 nodes of the Rennes cluster in the following
fashion: Lustre (respectively BlobSeer) is deployed on 44 nodes, while the remaining 36
nodes are reserved to deploy a MPI ring where the MPI processes are running (each on a
dedicated node).

Lustre was deployed in the following con®guration: one metadata server and 43 object
storage servers, each on a dedicated machine. For BlobSeer we used the following deploy-
ment setup: one version manager and one provider manager deployed on dedicated ma-
chines, while the rest of 42 nodes was used to co-deploy the data and metadata providers in
pairs, one pair on each node.
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Figure 6.6: Scalability when the same amount of data needs to be written into an increasing
number of non-contiguous regions: throughput is maintained almost constant.

6.4.2 Increasing number of non-contiguous regions

In the ®rst series of experiments we evaluate the scalability of our approach when the
same amount of data needs to be read/written from/into an increasing the number of non-
contiguous regions by the same client.

To this end, we ®x the amount of data that is read/written by the client (using
NONCONT_READand NONCONT_WRITErespectively) at 1 GB. At each step, we double the amount
of non-contiguous regions into which this data is split and measure the throughput as ob-
served on the client side. We start with a single contiguous region and end up with 1024
non-contiguous regions.

The results are shown on Figure 6.6. As can be observed, both reads and writes achieve a
high throughput that reaches well over 80 MB/s. More importantly, the throughput does not
signi®cantly drop when increasing the number of non-contiguous regions, which demon-
strates excellent scalability of our approach.

6.4.3 Scalability under concurrency: our approach vs. locking-based

In this scenario we aim at evaluating the scalability of our approach when increasing the
number of clients that concurrently write non-contiguous regions in the same ®le, as com-
pared to the locking-based approach used by Lustre. To this end, we setup a synthetic MPI
benchmark that enables us to control the MPI-I/O access patterns generated by the applica-
tion in such way that we generate a large number of overlapping.

More speci®cally, the synthetic benchmark corresponds to a special case of the over-
lapped subdomains depicted in Figure 6.1(a): namely when the subdomains (that need to be
written under MPI atomicity guarantees) form a single row (sing column organization does
not expose non-contiguous accesses). Each subdomain is a matrix of 1024� 1024 elements,
with each element 1024 bytes large. This amounts to a total of 1 GB worth of data written
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Figure 6.7: Our approach vs. locking-based: completion time for an increasing number of
clients that concurrently write a large number of overlapping, non-contiguous regions that
are far apart (lower is better).

by each process into 1024 non-contiguous regions, each of which is 1 MB large. Since the
subdomains are arranged in a row, every MPI process (except the extremities) share a left
and right overlapped subdomain with its left and respectively right neighbor. The size of
the overlapping subdomain is ®xed at 128 � 1024 elements, such that each region in the set
of non-contiguous regions written by a process overlaps by 128 KB with two other regions
belonging to the neighboring processes. This choice leads to a scenario that pushes both ap-
proaches to their limits: every single region generates at least one overlapping that needs to
be handled in an MPI-atomic fashion.

We varied the number of MPI processes from 4 to 36 and ran the MPI benchmark both
for our approach and the locking-based approach using on Lustre. Results are shown on
Figure 6.7, where we measure the completion time to run the benchmark (i.e., the time taken
by the slowest process to ®nish), as well as in Figure 6.8, where we measure the total ag-
gregated throughput achieved by all processes (i.e., the total amount of data written by all
processes divided by the completion time).

As can be observed, the completion time in the case of Lustre grows almost linearly.
Since the processes are arranged in a row, the non-contiguous regions of each process are far
apart, which leads to the case in which almost the whole ®le needs to be locked. Thus, in
this extreme scenario, the accesses are practically serialized by the locking-based approach.
This trend is con®rmed by the total aggregated throughput as well: it remains constant at
114 MB, close to the maximal theoretical limit that can be achieved by a single client.

By contrast, the completion time in the case of our approach experiences a negligible
growth, thanks to the fact that it completely avoids synchronization. This trend is con®rmed
by the total achieved aggregated throughput too: we can observe an increasing trend from
about 300 MB/s to about 1500 MB/s for 36 concurrent clients, which more than 10 times
higher that the throughput obtained by using Lustre and demonstrates excellent scalabil-
ity. Obviously, the aggregated throughput does not linearly increase when increasing the
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Figure 6.8: Our approach vs. locking-based: aggregated throughput achieved by an increas-
ing number of clients that concurrently write a large number of overlapping, non-contiguous
regions that are far apart (higher is better).

number of concurrent clients. This can be explained as the cost of border nodes calculation
in each client also increases: more concurrent accesses, more time it takes to scan the list
of concurrent accesses sequentially in order to ®nd out which accesses are overlapped to a
particular access.

6.4.4 MPI-tile-IO benchmark results

As a last series of experiments we evaluate the performance of our approach using a stan-
dard MPI-I/O benchmarking application: MPI-tile-IO . This application closely simulates the
access patterns of real scienti®c applications described in Section 6.1: overlapped subdo-
mains that need to be concurrently written in the same ®le under MPI atomicity guarantees.

MPI-tile-IO sees the underlying data ®le as a dense two-dimensional set of subdomains
(referred to in the benchmark as tiles), each of which is assigned to an MPI process, as shown
in Figure 6.1(a). The benchmark consists in measuring the total aggregated throughput (total
data written by all processes divided by the total time to complete the benchmark) achieved
by all processes when they concurrently write their subdomains to the globally shared ®le
under MPI atomicity guarantees.

This benchmark is highly con®gurable, enabling ®ne tuning of the following parameters:

� nr-tile-x : number of subdomains in the X dimension;

� nr-tiles-y : number of subdomains in the Y dimension;

� sz-tile-x : number of elements in the X dimension of each subdomain;

� sz-tile-y : number of elements in the Y dimension of each subdomain;

� sz-element : size of an element in bytes;
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Figure 6.9: 1024� 1024� 1024 tile size.

� overlap-x : number of elements shared between adjacent subdomains in the X dimen-
sion;

� overlap-y : number of elements shared between adjacent subdomains in the Y dimen-
sion;

We ®xed the parameters of the MPI-tile-IO benchmark in such way as to resemble the
layout of real applications as closely as possible. More speci®cally, each subdomain is
a 1024� 1024 matrix of elements that are 1024 bytes large (i.e. sz-tile-x = sz-tile-y =
sz-element = 1024). Unlike the previous series of experiments, where the processes are ar-
ranged in a row to obtain an extreme case that pushes both approaches to their limits, this
time we use a realistic layout where the processes are arranged in such way that they form
a square (i.e. nr-tile-x = nr-tile-y = 2 . . . 6, which corresponds to 4 . . . 36 processes). The
size of the overlapping was ®xed at 128 � 128 (i.e. overlap-x = overlap-y = 128). Thus,
each process writes 1 GB worth of data, out of which 128 MB is overlapping with each of its
neighbors.

We ran the MPI-tile-IO benchmark for both our approach and the locking-based ap-
proach using Lustre. The experiment was repeated 5 times and the results were averaged.
We observed a very low standard deviation. Figure 6.9 depicts the total aggregated through-
put obtained for both approaches.

As can be observed, both approaches scale. Unlike the experiment presented in Sec-
tion 6.4.3, the choice of arranging the subdomains in such way that they form a square
leads to a situation where the non-contiguous regions are closer to each other, which in
turn means that a more compact contiguous region needs to be locked by the Lustre-based
approach. Under concurrency, this leads to a situation where different contiguous regions
of the ®les can be locked simultaneously, thus enhancing the degree of parallelism for the
locking-based approach. Nevertheless, even under such circumstances a signi®cant num-
ber of accesses need to be serialized, which in turn enables our approach to outperform the



60 Chapter 6± Providing ef®cient support for MPI-I/O atomicity based on versioning

locking-based approach by almost 6 times for 36 concurrent processes. Again the perfor-
mance of our system does not increase linearly due to the increment in the cost of border
nodes calculation.

6.5 Positioning of the contribution with respect to related work

Previous work has shown that providing MPI atomicity ef®ciently enough is not a trivial task
in practice, especially when dealing with concurrent, non-contiguous I/O, most of which
rely on locking-based techniques. Several approaches have been proposed at various levels:
at the level of the MPI-I/O layer, at the level of the ®le system and at the level of application.

A ®rst series of approaches assumes no speci®c support at the level of the parallel ®le
system This is typically the case of PVFS [89], a widely-used parallel ®le system which
makes the choice of enabling high-performance data access for both contiguous and non-
contiguous I/O operations without guaranteeing atomicity at all for I/O operations. For
applications where the MPI atomicity requirement needs to be satis®ed, a solution (e.g., il-
lustrated in [90]) consists in guaranteeing MPI atomicity at the level of the MPI-I/O layer in
a portable, generic way. The lack of guarantees on the semantics of I/O operations provided
by the ®le system comes however at a high cost introduced by the use of coarse-grain locking
at a higher level. Typically, the whole ®le is locked for each I/O request and thus concurrent
accesses are serialized, which is an obvious source of overhead.

To avoid the bottleneck in the case of concurrent non-overlapping accesses to the same
shared ®le, an alternative approach of Sehrish et al. [91] proposes to introduce a mecha-
nism for automatic detection of non-overlapping I/O and thus avoid locking in this case.
However, as acknowledged by the authors of this approach, the detection mechanism intro-
duces an unnecessary overhead for non-overlapping concurrent I/O. Further optimizations
are proposed in [87], where the authors propose a locking-based scheme for non-contiguous
I/O which aims to strictly reduce the scope of the locked regions to the areas that are actually
accessed. However, this approach cannot avoid serialization for applications which exhibit
concurrent overlapping I/O such as the ones described in Section 6.1.

In [92], the authors propose to use process handshaking to avoid/reduce interprocess
serialization. This approach enables processes to negotiate with each other who has the
right to write to the overlapped regions. However, such an approach can only be applied
when every process is aware of all other concurrent processes accessing the same ®le. This
is not suitable for non-collective concurrent I/O operations, where such an assumption does
not hold (concurrent I/O requests are typically not aware of each other in this case).

Another class of approaches addresses the case where the underlying parallel ®le system
supports POSIX atomicity. Atomic contiguous I/O can then seamlessly be mapped to atomic
read/write primitives provided by the POSIX interface. However, POSIX atomicity alone
is not suf®cient to provide the necessary atomicity guarantees for applications that exhibit
concurrent, non-contiguous I/O operations.

Distributed ®le systems such as GPFS [83] and Lustre [82] provide POSIX atomicity se-
mantics using a distributed locking approach: locks are stored and managed on the storage
servers hosting the objects they control. Whereas POSIX atomicity can simply and directly
be leveraged for contiguous I/O operations using byte range locking, enabling atomic non-
contiguousI/O based on POSIX atomicity is not ef®cient. Consider a set of non-contiguous



byte ranges to be atomically accessed by an individual I/O request. In the default scheme,
it is then necessary to lock the smallest contiguous byte range that covers all elements of the
set of ranges to be accessed. This leads to unnecessary synchronization and thus to a poten-
tial bottleneck, since this contiguous byte range also covers un-accessed data that would not
need to be locked.

Finally, given the limitations of the approaches described above, an ultimate solution is
to design the parallel application in such a way that MPI atomicity is not required, e.g., by
enabling each process of the parallel application to write to a separate ®le at every itera-
tion. It can then manage this potentially large set of ®les with custom post-processing tools.
The CM1 [70] tornado simulation illustrates this approach. In a typical execution where
hundreds of thousands of cores iteratively run the simulation, each core generates a ®le at
every iterations: the total number of ®les is therefore extremely large. This creates a substan-
tial overhead for metadata management at the ®le system level and introduces too complex
post-processing. Scalability is thus negatively impacted even if the need for MPI-I/O atom-
icity is avoided by application design.

To summarize, MPI-I/O atomicity has mainly been enabled using locking-based ap-
proaches. By contrast, we propose a novel versioning-based mechanism that allows to han-
dle atomic non-contiguous, overlappingI/O more ef®ciently compared to such lock-based so-
lutions.

6.6 Summary

We proposed an original versioning-based mechanism that can be leveraged to ef®ciently
address the atomic I/O needs of data-intensive MPI applications. We are interested in appli-
cations involving data-partitioning schemes that exhibit overlapping non-contiguous I/O,
where MPI-I/O atomicity needs to be guaranteed under concurrency.

Traditional approaches leverage POSIX-compliant parallel ®le systems as storage back-
ends and employ locking schemes at the level of the MPI-I/O layer. In contrast, we propose
to use versioning techniques as a key principle to achieve high throughput under concur-
rency, while guaranteeing MPI atomicity. We implemented this idea in practice by extend-
ing BlobSeer with a non-contiguous data access interface that we directly integrated with
ROMIO.

We compared our BlobSeer-based implementation with a standard locking-based ap-
proach where we used Lustre as the underlying storage back-end. Our approach demon-
strated excellent scalability under concurrency when compared to the Lustre-based ap-
proach. It achieved an aggregated throughput ranging from 3.5 times to 10 times higher
in several experimental setups, including highly standardized MPI benchmarks speci®cally
designed to measure the performance of MPI-I/O for non-contiguous overlapped writes
that need to obey MPI-atomicity semantics.
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This chapter is mainly extracted from the paper: Towards scalable array-
oriented active storage: the Pyramid approach.Tran V.-T., Nicolae B., Anto-
niu G. In the ACM SIGOPS Operating Systems Review 46(1):19-25. 2012.

CHAPTER 6 presented our contribution on proposing an original versioning-based
mechanism to enable the atomicity of non-contiguous I/O without sacri®cing the
scalability under high concurrency. In this chapter, we investigate a further opti-

mization to develop specialized storage systems that are capable to deal with speci®c access
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patterns in a scalable fashion. The novel idea is to redesign the physical data organization in-
side distributed storage systems in such a way that it closely matches how data are accessed
by applications.

In the context of data-intensive HPC, a large class of applications focuses on parallel ar-
ray processing: small parts of huge multi-dimensional arrays are concurrently accessed by
a large number of clients, both for reading and writing. A specialized storage system that
deals with such an access pattern faces several challenges at the level of data/metadata man-
agement. We introduce Pyramid, an array-oriented storage system that addresses these chal-
lenges. Experimental evaluation demonstrates substantial scalability improvements brought
by Pyramid with respect to state-of-art approaches both in weak and strong scaling scenar-
ios, with gains of 100 % to 150 %.

In the context of Big Data, Pyramid addresses Big Volumeand Big Variety because it fea-
tures a novel array-oriented data model and provides support for massive data processing.

7.1 Motivation

Many established storage solutions such as parallel ®le systems and database management
systems strive to achieve high-performance at large-scale. However one major dif®culty
is to achieve performance scalability of data accesses under concurrency. One limitation
comes from the fact that most existing solutions expose data access models (e.g., ®le systems,
structured databases) that are too general and do not exactly match the natural requirements
of the application. This forces the application developer to either adapt to the exposed data
access model, or to use an intermediate layer that performs a translation.

Traditionally, data-intensive HPC applications access the underlying storage systems
through the parallel I/O stack. This stack consists of several layers as presented in Sec-
tion 5.1.1. The lowest layer is the parallel ®le systems. It is responsible to aggregate the
storage space of dedicated storage resources into a single common pool, which is exposed to
higher layers using a ®le access model, typically POSIX [46]. This ®le access model is lever-
aged by the I/O middleware (such as MPI-I/O [72]), the layer directly on top of the parallel
®le system. It is speci®cally designed to to coordinate and optimize the parallel access pat-
terns of HPC applications, acting as a bridge between these recurring patterns and the more
generic ®le-oriented I/O access model. At this level, data is still in a raw form and has no
structure attached to it. Since most HPC-oriented applications do not directly work with raw
data but tend to associate a multi-dimensional structure to it, a third layer in form of an I/O
library (such as netCDF [74], HDF5 [93], ADIOS [94]) provides the necessary mechanisms to
attach structure to the data an to perform multi-dimensional queries.

A major problem with this traditional three-layered I/O stack is the existence of a mis-
match between the access models expected at the lower layers. The I/O of the application is
funneled from the highest layer down to the parallel ®le system, at each step going through
a translation process that is necessary in order to adapt to the expected access model. These
access models (i.e. POSIX and MPI-I/O) are designed to handle the worst-case scenarios for
con¯icts, synchronization, and coherence of data that is represented in a linear fashion, ig-
noring the original structure and purpose of the I/O. Thus, the translation process between
the layers becomes very costly and incurs a major performance overhead.

One basic example is the presence of non-contiguous I/O at the level of the underlying
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storage systems. Consider the the I/O requirements of scienti®c applications [77, 78, 84, 85]
that partition multi-dimensional domains into subdomains that need to be processed in par-
allel and then stored in a globally shared ®le. Since the ®le is a ¯at sequence of bytes, a
subdomain (despite seen by application processes as a single chunk of memory) maps to a
series of non-contiguous regions in the ®le, all of which have to be read/written at once by
the same process. Therefore, non-contiguous I/O destroys the simplicity in data access pat-
terns generated by applications while exposing unpredictable and complex access patterns
at the level of the storage systems. In this situation, the storage systems are not provided
any information for doing any further optimization based on characteristics of applications.
As in the previous chapter, non-contiguous I/O are usually expensive, especially when the
atomicity of I/O accesses is required.

A stack-based design has its advantages as it is easier to design and to develop each layer
independently. Recent work in [95, 51] pointed out that a stack-based design has limited
potential for scalability at Exascale. The one-storage-solution-®ts-all-needs has reached its
limits.

The situation described above highlights an increasing need to specialize the I/O stack
to match the requirements of the applications. We argue in favor of a specialized storage
system that is designed from scratch to directly match the I/O needs of the application.
Such a design effectively ªshortcutsº through the I/O stack and gains direct control over the
storage resources, setting it free from any unnecessary constraints and enabling it to take
more informed decisions, which in turn provides better optimization opportunities.

We target the particular large class of applications that represent and manipulate data
as huge multi-dimensional arrays [77]. Such applications typically consist of a large num-
ber of distributed workers that concurrently process subdomains of those arrays. We intro-
duce Pyramid, a specialized array-oriented storage manager that features multi-dimensional-
aware data chunking that splits the initial data in multi-dimensional chunks to optimize
parallel array processing.

7.2 Related work

SciDB [96, 97] is an effort to design an open-source database system for scienti®c data analyt-
ics. SciDB departs from the relational database model, offering an array-oriented database
model that speci®cally targets multi-dimensional data. Notably, SciDB proposes two fea-
tures that are crucial in scienti®c data analytics: multi-dimensional-aware data striping and
data versioning. However, a concrete solution to implement these features is still on-going
work. Furthermore, with the upcoming Exascale age, scalable metadata management be-
comes a critical issue that is insuf®ciently addressed by SciDB. Our approach aims to ad-
dress these limitations by proposing a distributed data-management scheme rather than a
centralized approach.

Emad et al. introduced ArrayStore [98], a storage manager for complex, parallel array
processing. Similarly to SciDB, ArrayStore partitions large arrays into chunks and stores
them in a distributed fashion. ArrayStore organizes metadata as R-trees, which are main-
tained in a centralized fashion. At large scale, this inevitably leads a bottleneck with respect
to the scalability of metadata access, because it places a limit on the number of metadata
queries that can be concurrently served. Furthermore, ArrayStore is designed as a read-only
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storage system. The authors acknowledge that ArrayStore was not optimized to handle
updates to multi-dimensional data: this scenario can cause signi®cant performance degra-
dation due to design focus on read performance. Unlike ArrayStore, our Pyramid approach
is designed to ef®ciently support workloads that consist of any mix of concurrent reads and
writes.

7.3 General design

Pyramid is inspired by BlobSeer [44, 99], a versioning-oriented storage system speci®cally
optimized to sustain a high throughput under concurrency. BlobSeer, as presented in chap-
ter 4, focuses on unstructured Binary Large OBjects (BLOBs) that represent linear addressing
spaces, whereas Pyramid generalizes the same principles for multi-dimensional data and in-
troduces several new features.

7.3.1 Design principles

Our approach relies on a series of key design principles.

Multi-dimensional-aware data chunking

In the context of distributed data managements, the partitioning scheme plays a crucial role:
under unfavorable conditions, read and write queries may generate ªstridedº access pat-
terns (i.e., access small parts from a large number of chunks), which has a negative impact
on performance. Indeed, this problem is well-known in current parallel ®le systems. PVFS,
GPFS, and Lustre ®le systems allow system administrators to specify the stripe sizethat de-
termines how much data is contained in a chunk. If stripe sizeis too small, accessing certain
amount of data will involve transferring many small chunks from many different servers.
This results in poor performance. If stripe sizeis too large, many data accesses will end up
reading/writing small parts of chunks, leading to the need of synchronization within each
chunk in order to preserve data consistency.

Furthermore, current parallel ®le systems have not taken into account the data struc-
tures in the partitioning schemes. As data ®les are considered unstructured and stored as
sequences of bytes, each sub-domain of the initial multi-dimensional array data is serialized
into multiple non-contiguous ranges in the corresponding data ®le. This leads to a constrain
in parallel ®le system performance: the stripe sizeshould be equal to the size of contiguous
segments within the non-contiguous patterns. As a result, the stripe sizeis usually limited to
small sizes.

To reduce this effect, we propose to take into account the nature of multi-dimensional
data models by splitting the array into subdomains that are equally sized in each dimension.
By leveraging this multi-dimensional-aware chunking, the famous non-contiguous accesses
can be nearly avoidable at the level of the storage system. The neighbors of cells of the array
data have a higher chance of residing in the same chunk irrespective of the query type, which
greatly limits the number of chunks that need to be accessed. This also induces a side effect
on the stripe size: the storage system now can use a biggerstripe sizethat can ®t an entire
sub-domain, thus increasing the performance.
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Array versioning

Data versioning is a feature that is increasingly needed by users of scienti®c applications,
because of several reasons.

First, it provides a convenient tool to explore the history of changes to a dataset and at
the same time it avoids unnecessary data duplication by saving incremental differences only.
This is a scenario frequently encountered during the simulation of scienti®c phenomena,
where the result of each iteration usually corresponds to the changes in time observed during
the simulation. In such scenarios, changes are often localized and affect only small parts of
the data, making a full output of the state at each iteration both inef®cient and dif®cult to
track.

Second, versioning facilitates sharing of data sets among multiple users. For example,
consider a globally shared data set that is used as input for a series of experiments, each
of which is performed by a different scientist that is interested to manipulate the data in a
different fashion. In such a scenario, users want their own view of the data set. A simple
solution to this problem is to create a full copy of the data set for each user. However, such
an approach is expensive both in terms of performance and storage utilization. Using ver-
sioning, the illusion of a dedicated copy can be easily created for each user, while internally
optimizing performance and resource utilization.

Finally, versioning is a key tool that enables keeping track of data provenance [100]. This
is becoming a critical issue in scienti®c communities, as external data sources are increas-
ingly relied upon as an input to scienti®c applications. In this context, it is important to be
able to track the whole I/O work¯ow that produced a data set through all transformations,
analyzes, and interpretations, which enables better management, sharing and reuse of data
in a reliable fashion.

Targeting versioning as a ®rst-class feature, the core of our approach is built on the
idea of representing data updates using immutable data and metadata. Whenever a multi-
dimensional array needs to be updated, the affected cells are never overwritten, but rather a
new snapshot of the whole array is created, into which the update is applied. In order to offer
the illusion of fully-independent arrays with minimal overhead in both storage space utiliza-
tion and performance, we rely on differential updates: only the modi®ed cells are stored in
each new snapshot. Any unmodi®ed data or metadata is shared between the new snapshot
and the previous ones. The metadata of the new snapshot is generated in such way that
it seamlessly interleaves with the metadata of the previous snapshots to create incremental
snapshots that look and act as independent arrays (at application level).

Lock-free, distributed chunk indexing

Data is striped and stored in a distributed fashion, which implies that additional metadata is
necessary to describe the composition of arrays in terms of chunks and where these chunks
can be found. Since our system is designed to manipulate a large number of arrays and each
array can reach huge size, scalable metadata management becomes an critical challenge.

The problem of building spatial indexes has been studied extensively, with several spe-
cialized data structures proposed: R-trees, xd-trees, quad-trees, etc. Most of those structures
were originally designed and later optimized for centralized management.
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However, a centralized metadata-management scheme limits scalability as in distributed
®le systems. Even in the situation when enough storage is available to store metadata, the
metadata server can quickly become a bottleneck when attempting to serve a large number
of clients simultaneously. As discussed in Chapter 3, a distributed metadata-management
scheme offers the possibility to scale better than a centralized approach. Metadata I/O over-
head can be distributed among metadata servers, that results in a reduced pressure on each
metadata server. With respect to metadata availability, a distributed metadata management
scheme also implies better fault-tolerance: the failure of any metadata server impacts nega-
tively only on a partial part of the whole metadata-management system.

Regarding the aforementioned arguments, it is important to implement a distributed
metadata-management scheme. To this end, we propose a distributed quad-tree like struc-
ture that is used to index the chunk layout and is speci®cally optimized for concurrent up-
dates. Our scheme takes advantage of the fact that data and metadata remains immutable in
order to handle concurrent metadata updates ef®ciently without locking.

7.3.2 System architecture

Based on the design principles presented in Section 7.3.1, we designedPyramid, a complete
storage solution for multi-dimensional data. It is a distributed system consisting of the fol-
lowing components:

Version managers. Version managers are the core of Pyramid. They coordinate the process
of assigning new snapshot versions for concurrent writes such that total ordering is
guaranteed. At the same time, they wait for the moment when snapshots are consis-
tent and expose them to the readers in an atomic fashion. Pyramid can be con®gured
to use multiple version managers that collaborate to achieve the aforementioned ob-
jectives in a distributed fashion. This design favors scalability and fault tolerance over
centralized approaches. Version managers are organized in a distributed hash table
(DHT) to balance the workload.

Metadata managers. They implement the distributed quad-trees introduced in the previous
section. They are responsible for instructing the clients what chunks to fetch from what
location for any given subdomain. Metadata managers are organized in a dedicated
distributed hash table (DHT) for load-balancing.

Storage servers. These service components physically store chunks generated by creating
new arrays or updating existing arrays.

A storage manager. That is in charge of monitoring all available storage servers and
scheduling the placement of newly created chunks, based on the monitoring infor-
mation.

Figure 7.1 displays the architecture of Pyramid. As we can observe, Pyramid shares the
same architecture with BlobSeer. The main difference comes from the way that Pyramid
considers data as multi-dimensional structures. In contrast with BlobSeer, it reorganizes the
metadata-management scheme to host quad-tree like data structures rather than segment
tree ones.
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Figure 7.1: The architecture of Pyramid.

7.4 Implementation

7.4.1 Versioning array-oriented access interface

We propose an interface to handle multi-dimensional data that is speci®cally designed to
enable ®ne-grained versioning access to subdomains, while offering the aforementioned fea-
tures.

id = CREATE(n, sizes[], defval)

This function creates a n-dimensional array identi®ed by id and spanning sizes[i] cells
in each dimension 0 � i < n. By convention, the initial snapshot associated to the array
has version number 0 and all cells are ®lled with the default initial value defval . This is a
lazy initialization: no data and metadata is added until some cells of the array are actually
updated.

READ(id, v, offsets[], sizes[], buffer)

This primitive reads a subdomain from snapshot v of the array id. The subdomain is
delimited by offsets[i] and spanssizes[i] cells in each dimension 0 � i < n. The contents
of the subdomain is stored in the local memory region buffer .

w = WRITE(id, offsets[], sizes[], buffer)

This primitive writes the content of the local memory region buffer to the cells of the
subdomain delimited by offsets[i] and sizes[i] in each dimension 0 � i < n of the array
id. The result is a new snapshot whose version number is w.
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Figure 7.2: Metadata quad-trees by example: two chunks (dark color) of an initial array
(partitioned according to the left ®gure) are updated, leading to the additional tree nodes
and their links represented in the right ®gure.

7.4.2 Zoom on chunk indexing

In Section 7.3.1 we argued in favor of a distributed chunk indexing scheme that leverages
versioning to avoid potentially expensive locking under concurrency. In this section we
brie¯y describe how to achieve this objective by introducing a distributed tree structure
that is speci®cally designed to take advantage of the fact that data and metadata remains
immutable.

Our solution generalizes the metadata management proposed in BlobSeer [44], which
relies on the same principle to achieve high metadata scalability under concurrency. For
simplicity, we illustrate our approach for a two-dimensional array in the rest of this section,
a case that corresponds to a quad-tree (i.e., each inner node has four children). The same
approach can be easily generalized for an arbitrary number of dimensions.

Structure of the distributed quad-tree. We make use of a partitioning scheme that recur-
sively splits the initial two-dimensional array into four subdomains, each corresponding to
one of the four quadrants: Upper-Left (UL), Upper-Right (UR), Bottom-Left (BL), Bottom-
Right (BR). This process continues until a subdomain size is reached that is small enough
to justify storing the entire subdomain as a single chunk. To each subdomain obtained in
this fashion, we associate a tree node (said to ªcoverº the subdomain) as follows: the leaves
cover single chunks, i.e., they hold information about what storage servers store the chunks;
the inner nodes have four children and cover the subdomain formed by the quadrants UL,
UR, BL, BR; the root covers the whole array.

All tree nodes are labeled with a version number (initially 0) that corresponds to the
snapshot to which they belong. Updates to the array generate new snapshots with increas-
ing version numbers. Inner nodes may have as children nodes that are labeled with a smaller
version number, which effectively enables sharing of unmodi®ed data and their whole cor-
responding sub-trees between snapshots. Figure 7.2 illustrates this for an initial version of
the array to which an update is applied.

Since the tree nodes are immutable, they are uniquely identi®ed by their version num-
ber and the subdomain they cover. Based on this fact, we store the resulting tree nodes
persistently in a distributed fashion, using a Distributed Hash Table (DHT) maintained by
the metadata managers. For each tree node, a corresponding key-value pair is generated
and added to the DHT. Thanks to the DHT, accesses to the quad-tree are distributed under
concurrency, which eliminates metadata bottlenecks present in centralized approaches.
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Reading. A read query descends into the quad tree in a top-down fashion: starting from
the root, it recursively visits all quadrants that cover the requested subdomain of the
read query until all involved chunks are discovered. Once this step has completed, the
chunks are fetched from the corresponding storage servers and brought locally. Note
that the tree nodes remain immutable, which enables reads to proceed in parallel with
writes, without the need to synchronize quad tree accesses.

Writing. A write query ®rst sends the chunks to the corresponding storage servers, and then
builds the quad-tree associated to the new snapshot of the array. This is a bottom-up
process: ®rst the new leaves are added in the DHT, followed by the inner nodes up to
the root. For each inner node, the four children are needed: some may belong to earlier
snapshots. Under a concurrent write access pattern, this scheme apparently implies a
synchronization of the quad-tree generation, because of inter-dependencies between
tree nodes. However, we avoid such a synchronization by feeding additional informa-
tion about the other concurrent writers during the quad-tree generation. This enables
each writer to ªpredictº what tree nodes will be generated by the other writers and
use those tree nodes as children if necessary, under the assumption that the missing
children will be eventually added to the DHT by the other writers. This mechanism is
similar to the one in BlobSeer but for n-dimensional case.

7.4.3 Consistency semantics

Since readers always access snapshots explicitly speci®ed by the snapshot version, they are
completely separated from the writers. Writers do not access any explicitly speci®ed snap-
shot but can be thought of accessing an implicit virtual snapshot, which intuitively repre-
sents the most recent view of the multi-dimensional domain. Concurrent writes are guaran-
teed to be atomic and totally ordered from the user point of view. This guarantee is enforced
by the version managers, responsible to delay the publication of the new snapshots until the
moment when all metadata is consistent. Then readers can safely access the new snapshots.

An example of how this works is depicted in Figure 7.3. Client 2 ®nishes writing data
faster than client 1 and thus generates a snapshot that precedes the snapshot of client 1.
However, client 2 is slower at writing the metadata. Thus, the metadata of client 1 has
dependencies on client 2 and neither of them can be safely accessed before client 2 ®nishes
writing the metadata. When this happens, the version managers publish both the snapshot
of client 1 and the snapshot of client 2 in an atomic fashion, effectively enabling the readers
to access both snapshots.

7.5 Evaluation on Grid5000

We evaluated Pyramid through a set of experiments on the Grid'5000 [88] testbed. We aimed
to evaluate both the performance and the scalability of our approach under concurrent ac-
cesses. To this end, we simulated a common access pattern exhibited by scienti®c applica-
tions: 2D array dicing. This access pattern involves a large number of processes that read
and write distinct parts of the same large array in parallel.

We focus on two settings: a weak scalability setting and a strong scalability setting. In the
weak scalability setting, we keep the size of the subdomain that each client process accesses
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Figure 7.3: Total ordering of two concurrent updates: snapshots are published in the order
in which the data was written in order to guarantee metadata consistency.

constant, while increasing the number of concurrent clients. In the strong scalability setting,
we keep the total size of array constant while increasing the number of concurrent processes
that access increasingly smaller parts of the array.

Each setting uses at most 140 nodes of the Graphene cluster of the Grid'5000. We dedicate
64 nodes to deploy our client processes while the rest of the nodes are used to deploy Pyra-
mid in the following con®guration: 1 version manager, 1 storage manager. We co-deployed
on the 74 remaining nodes a metadata manager together with a storage server. We then com-
pare Pyramid to the case when a standard parallel ®le system is used to store the whole array
as a single sequence of bytes in a ®le. To this end, we deployed an instance of PVFS2 [45] on
the same 76 nodes used to evaluate Pyramid.

Weak Scalability. In this setting, each process reads and writes a 1 GB large subdomain
that consists of 32� 32 chunks (i.e. 1024� 1024 bytes for each chunk). We start with an array
that holds a single such subdomain (i.e. it corresponds to a single process) and gradually
increase its size to 2� 2, 3� 3, ... 7� 7 subdomains (which corresponds to 4, 9, ... 49 parallel
processes).

Results are shown in Figure 7.4. As can be observed, the throughput reaches 80 MB/s
for one single client, demonstrating high performance even for ®ne granularity decomposi-
tions. Furthermore, on increasing number of concurrent clients, the aggregated throughput
steadily grows up to 2.1 GB/s, which amounts to an increase of about 100% over PVFS. This
demonstrates a much better scalability for our approach, which is a consequence of both
the multi-dimensional-aware data striping and the distributed metadata management. On
the other hand, the scalability of PVFS2 suffers because the array is represented as a single
sequence of bytes, which leads to ®ne-grain, strided access patterns.
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Figure 7.4: Weak scalability: ®xed subdomain size, increasing number of client processes.
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Strong scalability In this setting, the domain size is ®xed at 64 GB (1024� 1024 chunks).
We start with one single process and gradually increase the number of processes up to 64
concurrent processes in a layout of 2 � 2, 2� 4, 4� 4, 4� 8, 8� 8. In this case, the size of the
subdomain for each client depends on the number of concurrent processes.

As can be observed in Figure 7.5, our approach demonstrates much higher strong scal-
ability than PVFS for both read and write workloads. More speci®cally, both Pyramid and
PVFS sustain a similar throughput for 1 process, both for read and write workloads. How-
ever, when increasing the number of concurrent processes, unlike for our approach, the
curves corresponding to PVFS rapidly ¯atten. In the extreme case of 64 concurrent pro-
cesses, Pyramid is able to sustain a total aggregated throughput of more than 2.5 GB/s,
which represents an increase of over 150 % over PVFS.

7.6 Summary

We introduced Pyramid, an array-oriented storage system that offers support for versioning.
Through striping techniques speci®cally optimized for multi-dimensional arrays combined
with a distributed metadata-management scheme, our approach addresses the I/O require-
ments of scalable I/O parallel processing and avoids the I/O bottlenecks observed with
centralized approaches.

Our evaluation shows promising results: our prototype demonstrates good performance
and scalability under concurrency, both for read and write workloads. In terms of weak
scalability of aggregated throughput, Pyramid outperforms PVFS by 100 %. As regards
strong scalability, the gain over PVFS reaches 150 % for 64 concurrent processes, for a total
aggregated throughput of more than 2.5 GB/s. As in BlobSeer and its extensions, Pyramid
currently cannot deliver linear scalability due to the way it calculate border nodes for each
particular access. We will investigate in ®nding an appropriate solution to speed up the
calculation in the near future.

In the next chapter, we will present our work on designing scalable storage systems in
geographically distributed environments. Our work addresses a crucial requirement to ex-
tend BlobSeer to take into account the latency hierarchy in an environment where multiple
geographically distributed sites are interconnected through high-latency WAN networks.



75

Part III
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This chapter presents a part of our on-going collaboration with a re-
search team lead by Osamu Tatebe at University of Tsukuba, in the con-
text of the ANR-JST FP3C project [101].

OUR contributions presented in Chapter 6 and Chapter 7 feature scalable storage sys-
tems for data-intensive HPC applications. First, we proposed a novel versioning-
based scheme to address the need for atomic, non-contiguous I/O support at ®le-

system level. Second, we proposed Pyramid, a large-scale, array-oriented storage system
optimized for parallel array processing. Pyramid revisits the physical organization of data
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in distributed storage systems and proposes to leverage multidimension-aware data chunk-
ing in order to achieve scalable performance.

Both our ®rst and second contributions share the focus on HPC environments. In this
chapter, we address the challenge of building scalable storage systems, which target Big Vol-
umein geographically distributed environments. Unlike HPC environments, geographically
distributed environments usually exhibit high-latency along the connections between geo-
graphically distributed sites. We consider BlobSeer, a distributed, versioning-oriented data-
management service, and propose BlobSeer-WAN, an extension of BlobSeer optimized for
such geographically distributed environments. BlobSeer-WAN takes into account the high-
latency feature of WAN and strives at reducing metadata accesses across geographically re-
mote sites. It features asynchronous metadata replication and a vector-clock implementation
for collision resolution.

8.1 Motivation

More and more applications in many areas (nuclear physics, health, cosmology, etc.) gen-
erate larger and larger volumes of data that are geographically distributed. Appropriate
mechanisms for storing and accessing data at a global scale thus become increasingly neces-
sary. Grid ®le systems (such as LegionFS [102], Gfarm [59], etc.) prove their utility in this
context, as they provide a means to federate a large number of large-scale distributed stor-
age resources. Thereby, they achieve a large storage capacity and good persistence through
®le-based storage.

Beyond these properties, grid ®le systems have the important advantage of offering a
transparent access to data through the abstraction of a shared ®le namespace, in contrast to
explicit data transfer schemes (e.g., GridFTP-based [103], IBP [104]) currently used on some
production grids. Transparent access greatly simpli®es data management by applications,
which no longer need explicitly to locate and transfer data across various sites, as data can
be accessed the same way from anywhere, using globally shared identi®ers. However, im-
plementing transparent access at a global scale naturally leads to a number of challenges
related to scalability and performance, as the ®le system is put under pressure by a very
large number of concurrent, largely distributed accesses.

Recent research [39] emphasizes a clear move currently in progress in storage architec-
tures from a block-based interface to a object-based interface. The goal is to enable high-
scalable, self-managed storage networks by moving low-level functionalities such as space
management to storage servers, accessed through a standard object interface. This move has
a direct impact on the design of today's distributed ®le systems: object-based ®le system
would then store data as objects rather than as unstructured data blocks. According to Fac-
tor et al. [105], this move may eliminate nearly 90 % of management workload which was
the major obstacle limiting ®le-system scalability and performance at a large scale.

Most object-based ®le systems exhibit a decoupled architecture that generally consists
of two layers: a low-level object management service, and a high-level ®le-system meta-
data management. Therefore, we decided to explore how this two-layer approach could be
used in order to build a scalable, object-based grid ®le system for applications that need to
manipulate huge data, distributed and concurrently accessed in geographically distributed
environment, especially over a wide area network (WAN). We investigated this approach
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Figure 8.1: HGMDS architecture.

by designing an integrated architecture for a storage system relying on HGMDS [106], a
distributed metadata-management system for global ®le systems developed at the Univer-
sity of Tsukuba, and BlobSeer [44], a large-scale BLOB management service currently being
developed at KerData, INRIA Rennes. Thus, the joint architecture delegates ®le metadata
management to HGMDS and data management to BlobSeer.

The HGMDS/BlobSeer integration targets at a large-scale distributed environment
where multiple sites in different administrative domains interconnect with each other to
form a global network. Since BlobSeer was initially designed to run on cluster environments,
the integration with HGMDS requires extending BlobSeer for geographically distributed en-
vironments. The main idea is to favor I/O operations locally within each site to mitigate
the high latency of WAN interconnections. We thus introduce an asynchronous metadata
replication scheme across sites, and use vector clocks to detect and resolve collisions. This
extended version, called BlobSeer-WAN, shares the sameeventual consistency modelas HG-
MDS, which allows them to be easily coupled.

8.2 State of the art: HGMDS and BlobSeer

8.2.1 HGMDS: a distributed metadata-management system for global ®le sys-
tems

HGMDS [106] is a recent project developed at the university of Tsukuba as a metadata-
management system for the next version of the Gfarm ®le system [59]. HGMDS relies on
multiple metadata servers (MDSs) to manage the ®le system namespace. Figure 8.1 illus-
trates a typical deployment of HGMDS over multi-geographical sites interconnected by a
WAN: one MDS is deploy on each Grid site, handling metadata operations issued by ®le
system clients located on the site. Therefore, HGMDS reduces remote metadata operations
over WAN interconnections, minimizing the effect of the long network latency. To guarantee
the global namespace consistency, MDSs are synchronized asynchronously.
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Architecturally, HGMDS organizes metadata that are inode data structures as a key-value
store. Each unique inode number (key) is mapped to an inode structure (value) which con-
tains all the information about a ®le system object such as ®le, directory, etc. Since some
metadata operations such as ªmkdirº and ªrmº affect multiple inodes, HGMDS ensures
those multi-key transactions to be performed in an atomic fashion. It implements metadata
versioning and uses vector clocks for collision detection.

8.2.2 BlobSeer in WAN context

As presented in detail in Chapter 4, BlobSeer addresses the problem of storing and ef®-
ciently accessing very large, unstructured data objects. It focuses on heavy access concur-
rency where data is huge, mutable and potentially accessed by a very large number of con-
current processes. BlobSeer introduces a versioning scheme which not only allows clients
to roll back data changes when desired, but also enables access to multiple versions of the
same BLOB within the same computation.

Although BlobSeer is proved to be a scalable data-management service under massive
concurrency, it is more suitable for a cluster environment whose machines are interconnected
by a low-latency network. As for read/write operations, a metadata I/O phase is needed
that involves transferring metadata from the client to metadata servers. In WAN environ-
ments, the completion time of these operations are costly, as many sockets are opened just to
transfer small pieces of metadata.

In order to deploy BlobSeer ef®ciently on geographically distributed environments, we
need to redesign it to take into account the latency hierarchy. Indeed, intra-cluster la-
tency may be hundreds to thousands times lower than inter-cluster latency. We devel-
oped BlobSeer-WAN as an extension of BlobSeer for geographically distributed environ-
ment. BlobSeer-WAN features distributed version managers and a synchronization scheme
to maintain BLOB consistency while keeping as good performance as the original BlobSeer.

8.3 BlobSeer-WAN architecture

BlobSeer-WAN is designed for large-scale distributed environments, where multiple geo-
graphically distributed sites interconnect with each other to form a global computing envi-
ronment. Therefore, it is vital that our design is consistent with this setting. As shown on
Figure 8.2, BlobSeer-WAN differs from BlobSeer in its deployment setting. BlobSeer-WAN
components are organized in site-oriented groups.

Multiple version managers. BlobSeer-WAN has multiple version managersrather than only
one as in the original BlobSeer. Eachversion manageris deployed on one site and is
dedicated to register update requests (APPEND and WRITE) issued by the clients of
this site. At the global level, the version managerscoordinate together asynchronously.

Metadata providers. On each site, a number of metadata providersis deployed to store meta-
data, which allows for ®nding all the chunks of a speci®c BLOB. Clients of the site only
access themetadata providerson its site to avoid high latency connections. To replicate
metadata across sites,metadata providersperform synchronization asynchronously.
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Figure 8.2: BlobSeer-WAN architecture.

Multiple provider managers. Each provider managerkeeps information about the available
data providersdeployed on its local site. They are responsible for scheduling the place-
ment of newly created chunks on data providersunder their control.

Data providers. BlobSeer-WAN organizes data providersin different groups, each group is
under the management of the provider managerdedicated to the local site.

The design goal of BlobSeer-WAN is to localize data and metadata operations on each
site as much as possible. By implementing multiple version managers and organizing the
system components in site-oriented groups, clients can perform most metadata I/O and data
I/O operations locally within their own site, avoiding high latency in sites interconnections.
From the point of view of a particular client, BlobSeer-WAN components on its site are called
as local version manger, local metadata providers, local provider manager, and local data providers.
Other BlobSeer-WAN components on the other sites are considered asremote version manager,
remote metadata servers, remote provider manager, and remote data providersrespectively.

Writing

For a WRITErequest (Figure 8.2), the client contacts thelocal provider managerto obtain a list
of data providers, one for each chunk of the BLOB that needs to be written. Since the local
provider manageronly manages providers on its site, the client always receives a list of local
data providers. Therefore, that data I/O will be carried out in parallel within the local site.
When the client ®nishes the data I/O phase, it contacts the local version managerto request
a new version for the BLOB. This version is then used by the client to generate the corre-
sponding new metadata, then to send them to local metadata servers.

From the perspective of a client, there is virtually no difference between a WRITEoperation
in BlobSeer-WAN and in BlobSeer. The client sees BlobSeer-WAN components on its site as
if they made an isolated BlobSeer. It is the local version managerthat propagates updates to
version managerson other sites. Metadata is also replicated to other sites asynchronously by
local metadata serverswhen a new update arrives from a client.
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Reading

To READdata (Figure 8.2), the client ®rst contacts itslocal version manager: it needs to provide
a BLOB id, a speci®c version of that BLOB, and a range, speci®ed by an offset and a size. If
the speci®ed version exists, then the client will traverse downward the metadata tree that
was built for that version. It does so by sending requests to its local metadata providers. If any
metadata providercannot ®nd a requested tree node in its local storage, it means that metadata
piece has not been replicated to the local site, yet. In this situation, the metadata provider
will have to pull that metadata piece from other sites of the BlobSeer-WAN deployment.
Fortunately, this process is transparent to the client. Finally, after reaching the appropriate
metadata leaves, the clients will know which data providersstore the corresponding chunks.
Note that BlobSeer-WAN does not replicate chunks, so that accessing data providersmay
involve contacting remote sites.

8.4 Implementation

Following the proposed design, we cloned BlobSeer to create BlobSeer-WAN: a variant of
BlobSeer specialized for WAN environment. BlobSeer-WAN features an optimistic repli-
cation scheme, distributed multi-version managers, and an asynchronous synchronization
scheme based on vector clocks.

8.4.1 Optimistic metadata replication

One important design principle of BlobSeer is to keep data and metadata ªimmutableº.
Upon each update, new metadata are generated and ªweavedº with the metadata of previ-
ous versions in order to re¯ect updates in consistent snapshots. Obviously, this design prin-
ciple facilitates our design regarding metadata replication over multiple distributed sites.
There is no need to care about collision detection and resolution, because no update ever
occur on metadata.

BlobSeer-WAN implements an optimistic metadata replication scheme among metadata
providersof different sites. The idea of the optimistic replication is to not wait till the whole
replication process is done. It aims at being transparent from the clients point of view. When-
ever a local metadata providerreceives new metadata, it forwards them asynchronously to the
appropriate metadata providerson other sites. Thanks to asynchrony, replication is kept trans-
parent to clients, thus adding very little overhead to the overall performance of metadata
I/O in WRITEoperations. Nevertheless, as replication is done in an asynchronous fashion, we
can not guarantee that the metadata providerson other sites will immediately receive repli-
cated metadata. In the situation where a metadata providerdoes not own a metadata piece
upon receiving the reading request from a reader, that metadata providerwill have to query
the other sites to locate the missing metadata piece, and to pull it proactively.

Each site organizes itsmetadata providersin an independent, dedicated DHT ring. Thus,
the replication operations are mere DHT PUT requests. To avoid re-replicating metadata
in an in®nite loop among metadata providers, there should be a mechanism to differentiate
metadata sent by clients from metadata replicated by metadata providers. To this end, sender
information in each DHT PUT request will be examined. If the metadata came from a client
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process, it is forwarded. Otherwise, the metadata provideronly need to save that metadata
piece into its storage space.

8.4.2 Multiple version managers using vector clocks

BlobSeer-WAN features multiple distributed version managersto avoid clients contacting a
version managerover a high-latency network. Each version manageris dedicated to handling
all version-related requests coming from clients on its local site. Beside the functionalities of
the version managerin BlobSeer, theversion managersin BlobSeer-WAN need to synchronize
with others to keep each BLOB in a consistent state (a BLOB is consistent if each version of
the BLOB contains the same data contents across the whole system).

Assume that a particular BLOB is concurrently updated by multiple clients on different
sites. Those clients will contact different version managersin order to get new version identi-
ties for their updates. When a version managerreceives a request from a client, it issues a new
version identity for the requested BLOB and then asynchronously inform the other version
managers. In this situation, each version managerwill soon come to the point that it receives
multiple new version identities for a speci®c BLOB and it has to decide which is the order of
these new versions. The common order must be agreed by all the version mangersin order to
keep the BLOB in a consistent state across the system

To be able to order different updates in such a distributed environment, BlobSeer-WAN
uses a variant of vector clocks [107] implementation. In BlobSeer-WAN, a vector clock is a
list of local counters in which each counter represents the local counter of the corresponding
version manager. Thus, each version of a BLOB is associated with a vector clock rather than
an integer in the original BlobSeer.

To determine whether two versions of the BLOB are in con¯ict or have a causal ordering,
the version managerhas to compare the two vector clocks which are associated with the two
version identities. A vector clock is an ancestor of another vector clock if all the local counters
of the former vector clock are less than the corresponding counters of the latter one, and
at least one of the local counters is strictly smaller. Otherwise, the two vector clocks are
considered to be concurrent and in con¯ict. In the ®rst case where the order of the two vector
clocks are determined, BlobSeer-WAN knows which version happened before the other one.
In the other case, the two are in con¯ict.

For each update to a speci®c BLOB, a client has to request its localversion managerfor a
new version identity. Upon receiving the request, the version managercreates a new version
identity by incrementing its own counter in the vector clock of that BLOB. The new version
identity is then sent back to the client and is asynchronously propagated to the other version
managers. Each time aversion managerreceives a new version identity of a BLOB, it updates
all the counters in the vector clock for that BLOB by taking the maximum of the value in its
own vector clock and in the new version identity it received.

Furthermore, the version manageralso has to compare the latest version of the BLOB to
the received version. If the two versions are not con¯ict and the received version is newer
in the sense of vector clock comparison, then the version managerpromotes it to be the latest
version. If the two versions are in con¯ict, the received version is marked as a pending
version, which means that the version is not visible to clients yet. The version managerneeds
to rely on subsequent updates in order to execute a reconciliation scheme that is able to
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Figure 8.3: Vector clocks and optimistic metadata replication.

merge the update in the con¯ict version to the next versions of the BLOB.

To illustrate how vector clocks work in BlobSeer-WAN, let us consider a small example
as shown in Figure 8.3. We assume that BlobSeer-WAN is deployed on two sites: VM1 and
VM2 are the version manageron the ®rst site, and on the second site, respectively. At the
beginning, the latest version of a speci®c BLOB is associated to version (1,1) by both VM1
and VM2. Thus, the BLOB is in a consistent state. Now, two clients on the respective sites si-
multaneously perform updates to the BLOB. On the ®rst site, VM1 increases its local counter
for the BLOB and assigns version (2,1) to the new update. On the second site, VM2 follows
the same procedure and assigned version (1,2) to re¯ect the other new update. As VM1 and
VM2 are synchronized asynchronously, they are eventually aware of both two versions (1,2)
and (2,1). Because version (1,2) and version (2,1) are in con¯ict, neither VM1 nor VM2 can
immediately decide upon the order of the updates. In other words, no consistent state which
merges the two updates to the base version (1,1) is determined.

In this con¯ict situation, BlobSeer-WAN relies on the subsequent updates to decide upon
the causal order. In our example, VM2 gets a subsequent update request to the BLOB, cre-
ating a new version (2,3). Since (2,3) should contain the updates made by both (1,2) and
(2,1), VM2 arbitrarily decides the latest state of the BLOB is a result of applying sequentially
updates re¯ected in version (1,2), version (2,1), and version (2,3) to the based version (1,1),
in that order. Upon synchronization, VM1 will be eventually informed of the new version
(2,3). Because that version is greater than any version of the BLOB seen at the moment, VM1
promotes version (2,3) to be the BLOB latest version and also publishes version (1,2). As this
state, the BLOB is in the consistent state and is the same on both two sites. With respect to
the consistent state in version (1,1), the versions (1,2) and (2,1) are in con¯ict and they do not
contain updates made by each other. With respect to the consistent state in version (2,3), the
ordering of (1,2) and (2,1) is determined.

It may happen the case that a new version (3,2) is created by VM1 before the VM1 gets
to know the version (2,3) created by VM2. In this case, VM1 also has to decide the order
of two versions (1,2) and (2,1) with respect to the version (3,2). Therefore, the latest state of
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the BLOB seen by VM1 is a result of applying sequentially updates re¯ected in version (2,1),
version (1,2), and version (3,2) to the based version (1,1), in that order. As (3,2) and (2,3) are
still in con¯ict, both VM1 and VM2 will have to wait again for the subsequent updates in
order to reach to a consistent state of the BLOB.

8.5 Evaluation on Grid'5000

To evaluate BlobSeer-WAN, we conducted several preliminary experiments on the Grid'5000
testbed. Our experiments were carried on at most 60 nodes of the Nancy site and 40 nodes of
the Grenoble site. Regarding the network connections, Intra-cluster measured bandwidth is
117.5 MB/s for TCP sockets with MTU set at 1500 B. Nancy and Grenoble are linked through
the Grid'5000 backbone, featuring a 10 Gb/s ®ber channel.

BlobSeer-WAN vs. BlobSeer in local site accesses

In the ®rst series of experiments, we aim at assessing the overhead of the multiple version
managers implementation and the metadata replication scheme in BlobSeer-WAN. To this
end, we compared the performance of BlobSeer-WAN to the original BlobSeer in the set-
ting where BlobSeer is deployed on a cluster environment. Speci®cally, we used 40 nodes
of Nancy cluster to deploy BlobSeer: 1 version manager, 1 provider manager, 10 metadata
providers and 28 data providers. On the same nodes, we deployed BlobSeer-WAN daemons
that share similar functionalities with those of BlobSeer. We used another 40 nodes of Greno-
ble cluster to deploy the rest of BlobSeer-WAN daemons for Grenoble site. The number of
each type of daemons is the same as for Nancy cluster, and thus the same as for the original
BlobSeer instance.

We reserved 20 nodes of Nancy cluster to deploy clients, each of them appends 512 MB
to the same BLOB with 1 MB con®gured chunk size. As clients reside in Nancy cluster, they
are on the same site as the BlobSeer instance. In this setting, clients only perform I/O over
Nancy local networks in our experiments with BlobSeer.

We measured the aggregated throughput achieved when we progressively increase the
number of concurrent clients. As shown on Figure 8.4, both BlobSeer-WAN and BlobSeer
demonstrated excellent scalability. The achieved throughput on BlobSeer-WAN was similar
to that of the original BlobSeer, proving that the additional overhead due to multiple version
managers implementation and a replication scheme is minimal. This can be explained as
version vectors and metadata are asynchronously replicated at the server side to Grenoble,
thus these replication processes are transparent to the clients.

BlobSeer-WAN vs. BlobSeer in remote site accesses

In this series of experiments, we demonstrate the advantage of BlobSeer-WAN over the orig-
inal BlobSeer in geographically distributed environments. We deployed BlobSeer-WAN on
80 nodes of 2 sites Nancy and Grenoble as in the ®rst experiment. Regarding BlobSeer, we
deployed one BlobSeer instance on Grenoble cluster. The BlobSeer instance consists of 40
nodes in which there are 1 version manager, 1 provider manager, 10 metadata providers and
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Figure 8.4: BlobSeer-WAN vs. BlobSeer in local-site accesses scenario.

28 data providers. As can be observed, we have the BlobSeer instance used the same amount
of resources as a part of BlobSeer-WAN on each cluster.

To force BlobSeer clients to use the interconnection between Nancy and Grenoble, we
reserved 20 nodes only in Nancy for client processes. Thus, our experiment will demon-
strate the advantages of BlobSeer-WAN over the original BlobSeer in its extreme deployment
where BlobSeer clients have to access BlobSeer over inter-sites connections. The results are
shown on Figure 8.5. We progressively increase the number of concurrent appending clients,
in this scenario, BlobSeer-WAN provides a better aggregated throughput with a gain of 15 %
for 20 clients. Interestingly, remote site accesses in BlobSeer still achieve good aggregated
throughput, which is made possible by the excellent 10 Gb/s interconnection of between
Nancy and Grenoble.

8.6 Summary

In this chapter, we have presented BlobSeer-WAN, an extension of BlobSeer optimized
for geographically-distributed environments. BlobSeer-WAN is designed to take into ac-
count the latency hierarchy exhibited in such distributed environments. It features an asyn-
chronous metadata replication scheme and implementation of multiple version managers to
hide high latency on WAN interconnections. In the BlobSeer-WAN setting, clients only con-
tact their site-local BlobSeer-WAN servers to perform I/O and it is the role of the BlobSeer-
WAN servers on different sites to synchronize asynchronously among them. To resolve col-
lisions, we introduced an implementation of vector clocks that allows BlobSeer-WAN to de-
termine the order of concurrent updates. After ordering, each BLOB is in a consistent state
even if it is globally shared on multiple distributed sites.

Several experiments were performed on the Grid'5000 testbed demonstrating that
BlobSeer-WAN can offer scalable aggregated throughput under heavy concurrency. We also
compared BlobSeer-WAN to the original BlobSeer to observe the overhead of the multiple
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Figure 8.5: BlobSeer-WAN vs. BlobSeer in remote-site accesses scenario.

version managers implementation and the metadata replication scheme in BlobSeer-WAN.
Our results shown that BlobSeer-WAN can provide a comparable throughput as of the orig-
inal BlobSeer.
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I N the previous chapters, we have presented our work on building scalable distributed
storage systems that canscale out (horizontally)by adding more storage servers to the
systems. In this chapter, we explore an alternative approach to build a scalable sys-

tem for multi-core machines with large main memory. The proposed solution, DStore, is
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designed to scale up (vertically)by adding more CPU cores and more memory, rather than
adding more servers like in distributed systems.

DStore targets the Big Velocity characteristic of Big Data, where data ¯ows in and out
at high speed. DStore aims at providing fast, atomic complex transaction processing that
refers to the update rate in data writing, while it also delivers high throughput read accesses
for analytical purposes. In the context of Big Variety, DStore addresses a document-oriented
data model which is optimized for popular Internet applications.

9.1 Introduction

NoSQL movement

Over the past few years, NoSQL data stores have been widely adopted by major Internet
companies, such as Amazon, Facebook, and Google. NoSQL rose in response to the obser-
vation that current relational database management systems (RDBMS) are not a good ®t for
storing and retrieving Internet-speci®c data. First, RDBMS have been built along the rela-
tional model that is considered to poorly meet the requirements of the current data models
found in popular Internet applications. In some cases, the relational model is too power-
ful for data that have no associative relationship among them. For example when what is
needed is simply to access a piece of data given a key (key-value model). In other cases, data
from social network services rely on graph structures withs nodes, edges and properties
to represent their complex relationships: the relational model becomes insuf®cient in this
situation. Second, most RDBMS sacri®ces scalability for ACID semantics, whereas popular
Internet applications don't often need ACID for their data. For instance, Facebook status up-
dates or tweets can be stale and there is no penalty to propagate those updates later under
the guarantee that the propagation is done eventually.

NoSQL data stores trade the complexity of having ACID semantics and a relational data
model for higher performance and higher scalability. Among different types of NoSQL data
stores, document-oriented storesoffer an interesting compromise between the system perfor-
mance and the rich functionality on a document-oriented data model. While key-value
stores operate on independent key-value pairs and RDBMS are optimized for structured
data having associative relationships, document-oriented stores fall in the middle: data is
packed in documents, which are similar to data rows in RDBMS but they are very ¯exible
and self-organized. Each document consists of multiple data ®elds, but it does not need to
follow a ®xed schema that de®nes the structure of the document. Therefore, a document-
oriented store can be considered as a semi-structured database.

Compared to key-value stores, document-oriented stores can be seen as the next logical
step from storing simple key-value pairs to more complex and meaningful data structures
that are encapsulated in documents. Similarly to key-value stores, each document can be
accessed given a globally shared document ID. Moreover, document-oriented stores provide
the capacity to query a document not only based on the document ID but also based on the
document content itself.
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Trending towards vertically scaling by leveraging large memory

As hardware technology is subject to continuous innovation, computer hardware has be-
come more and more powerful than the prior model. Modern servers are often equipped
with large main memory capabilities, which can have sizes up to 1 TB. Given this huge mem-
ory capability, data-management systems are now able to store their data in main memory,
so that hard disks become unnecessary [5]. While memory accesses are at least 100 times
faster than disk, keeping data in main memory becomes an obvious trend to increase the
performance of data-management systems.

In a recent study conducted by Microsoft Research [108], memory is at an in¯ection point
where 192 GB of memory cost only $2640. Further, the decreasing cost/size ratio of memory
still bene®ts from the Moore's law, this resulting in the possibility to double the memory
size with the same cost every 18 months. In this context, vertically scaling data management
systems by using bigger memory is cost-effective.

Current disk-based data-management systems only leverage main memory as a caching
mechanism. One way to scale those systems vertically (scale-up) is to increase the cache
size so that more data can be cached in main memory for faster accesses. However, this
optimization is suboptimal, as it cannot fully exploit the potential of large memory. The
scalability is limited as disk-based data-management systems have to implement complex
mechanisms to keep data on cache and on disks consistent.

9.2 Goals

In the following section, we explore the potential bene®ts of the ªscale-upº approach to the
design of a scalable system. DStore aims to be able to scale up by adding more memory
rather than scaling horizontally by adding more servers as in distributed data management
systems. We design and implement DStore, a document-oriented store with the following
goals.

Fast and atomic complex transaction support. Various document-oriented stores such as
CouchDB [54] and MongoDB [56] offer only support for atomic access at the granu-
larity of a single document. Complex transactions that access multiple documents are
not guaranteed to be atomic. Because documents are distributed across different stor-
age servers, support for atomicity of multiple document access may require distributed
locks, which results in poor system performance.

Atomic complex transactions are required in various scenarios in many current appli-
cations. Consider a bank company where each user account is represented by a docu-
ment in a document-oriented store. In order to complete a bank transfer, the following
operations in multiple documents must be done in a single atomic query: (1) verifying
if there are suf®cient funds in the source account in the ®rst document, (2) decreasing
the balance of the source account, and (3) increasing the balance of the destination ac-
count in the second document. Without atomic guarantees, the database will fall in an
inconsistent state. Similarly, multiple operations in a single document also need to be
atomic such as conditional update, read before write, etc.
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The main design goal of DStore is to support atomicity for complex transactions and
to do so with low additional overheads.

High throughput for analytical processing. Analytical processing refers to read queries
that may access multiple documents or the entire data store in order to get a summary
report for analytic purposes. One typical example of analytical processing in DBMS is
the scan query whose goal is to select any data records that satisfy a particular condi-
tion. In the situation where concurrent update and read queries may access the same
pieces of data, synchronization for data consistency is unavoidable, which leads to a
slow update rate and a low-throughput analytical processing.

To deliver high throughput for analytical processing without interfering with update
queries, DStore must be able to isolate both types of workloads with low overhead.

Achieving these two goals, we thus claim that DStore can provide fast,
atomic complex transaction processing that refers to the update rate in
data writing, while it also delivers high throughput read accesses for
analytical purposes. This claim will be validated through the design of
DStore and some preliminary synthetic benchmarks at the end of this
chapter. In the future, we plan to reenforce our claim by performing
more benchmarks on real-life workloads.

9.3 System architecture

9.3.1 Design principles

In order to achieve the aforementioned goals, we design DStore with the following princi-
ples:

Single threaded execution model

To date, the search for ef®cient utilization of compute resource in multi-core machines trig-
gered a new architecture for multi-threading applications. Previous application designs rely
on multiple threads to perform tasks in parallel in order to fully utilize CPU resources. In
reality, most of the tasks are not independent of each other, as either they access the same
part of data, or some tasks need part of the results from another task. This well-known prob-
lem (concurrency control) made it nearly impossible to have full parallelization in multi-
threading environments.

DStore targets complex transactions where each transaction consists of several update/
read operations on multiple different documents. Let us consider the following example:
Transaction T1 updates 3 documents A, B and C. Transaction T2 updates 3 documents B,
C and D. Another transaction T3 has to read documents B and C and update document D.
Since T1, T2 and T3 are not mutually independent, it is impossible to perform these trans-
actions concurrently using multiple threads without synchronization with exclusive locks.
Obviously, in the case of more complex transactions, there is a higher possibility that those
transactions are not independent of each other.
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As a result, DStore relies on a single-threaded execution model to implement only one
thread (called the master thread) for executing all update transactions sequentially. This ap-
proach is ®rst advocated in [64] as a result of trending in in-memory design. As long as one
single thread is performing data I/O, thread-safe data structures are not necessary. In other
words, the code for locking mechanisms in concurrency control can be completely removed
without loosing correctness, which results in less execution overhead. A recent study in [5]
showed that locking and latching mechanisms in the multi-threading model create nearly
30% overhead in data-management systems.

Parallel index generations

With its rich document-oriented data model, a document-oriented store can offer an interface
that can be close to that of RDBMS. One of the nice features is the possibility to query a
document not only based on the document ID but also based on the document contents
itself. To enhance the query performance, both RDBMS and document-oriented stores such
as CouchDB [54] and MongoDB [56] rely on indexes. Maintaining indexes allows fast lookup
to desired documents, but usually creates a certain amount of overhead for updates and
deletes. Particularly, if indexes are built by the same thread for update transactions (the
master thread) in a synchronous fashion, the system performance will be reduced twice when
doubling the number of indexes.

To speed up index generation and to reduce overhead on the master threadfor update
transactions, DStore assigns index generation task to dedicated background threads, called
slave threads. Eachslave threadmanipulates one index by maintaining a data structure such as
the B+treedata structure that we will present further in Section 9.4 . B+treeallows searches
in O( log(n)) logarithmic time. Because DStore resides in main memory, all indexes keep
only pointers to the actual documents in order to minimize memory consumption. In this
setting, an in-place data modi®cationwhen updating a particular document is very expensive.
Locking and synchronization among slave threadsand with the master threadare needed to
keep all indexes in consistent states.

To avoid such a synchronization and to keep all the indexes independent from each other
(even when they share the documents), in-place data modi®cationshave to be avoided. DStore
keeps each document immutable. Update transactions will not modify document contents,
but rather create new documents and rely on indexes to commit the changes back to DStore.
This mechanism is referred to as copy-on-writein the data-management community.

Delta-indexing and bulk updating

Since indexes are maintained by slave threads, the master threadthat executes update transac-
tions needs only to write new documents (in case of an update or an insert) to the memory
space (part of the main memory reserved for holding DStore data), and to push an index
request in the waiting queues of each index. This mechanism is referred to as differential
®lesor delta-indexing[109] (Figure 9.1). DStore names the waiting queues asthe delta buffers.
Each queued element is typically a key-value pair, where the key is the indexed document
attribute and the value is the pointer to the created document.

This delta-indexingmechanism allows DStore to potentially sustain high update rates un-
der the expectation that pushing an index request to the delta bufferis faster than updating
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Figure 9.1: Delta indexing mechanism.

the data structure for the index itself. This expectation is obviously made possible as fol-
lowing: The delta buffercan be a simple queue that has the complexity of O(1) for push
operations whereas data structures for indexing such as B+treeneed O( log(n)) for every in-
sert of lockup. Even when the delta bufferis a B+tree, the time to insert in the delta bufferis
still lower due to its small size.

Moreover, one novel design choice we make is to leverage bulk updatingto maintain in-
dexes in background. This technique allows us to achieve three goals in DStore:

� First, bulk inputs in delta buffersare sorted before inserting into the indexes in order to
better leverage cache behavior. As data is sorted, there is a high chance that inserting
a new element in the B+treewill follow the same path from the B+treeroot to the leaf
or a partial path that was already cached in previous accesses.

� Second, merging the delta bufferto the index data structure in bulk avoids readers to
read partial updates of a multi-key complex transaction. Thus, it guarantees trans-
action atomicity. DStore implements a versioning mechanism to control the moment
when the new versions of indexes are revealed to readers. In our design, this happens
after all updates in the delta bufferare merged to the previous index.

� Third, the delta buffercan be compacted before being processed. As a sequence of in-
serts and deletes on the same documents may exist in thedelta buffer, DStore can re-
move obsolete updates and keep only the latest update for each particular document.
Therefore, DStore potentially minimizes the number of modi®cations to the persistent
index data structure.

Versioning for concurrency control

Even if DStore has one master threadto execute update transactions sequentially, it allows
multiple reader threads to run analytical processing concurrently. DStore relies on version-
ing for concurrency control to be able to deliver high-throughput for reading while minimiz-
ing interference with the master threadand with the slave threadsbuilding indexes.
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DStore uses B+treeas the data structure for indexes and leverages shadowing (copy-
on-write) [86] to guarantee that a set of updates are isolated in a new snapshot. Before a
slave threadupdates its index, it clones the index to create a newer snapshot and applies
the updates only to that snapshot. When this process is completed, the new snapshot will
be revealed to readers. Since theslave threadsand readers access different snapshots of the
indexes, they can work concurrently without locking.

Moreover, the novel idea in DStore is to merge updates to each index in bulk where
only one new snapshot represents all the updates in the delta buffer. This approach has the
advantage of reducing the number of intermediate snapshots in order to reduce memory
consumption. This is clearly the difference between our approach and a pure copy-on-write
implementation in B+tree[86], in which each update requires cloning an entire path from the
B+treeroot to the corresponding leaf to create a new snapshot.

Stale read for performance

Analytical processing can accept a certain level of staleness [110]. Results from a read query
can be slightly out-of-date if they are used for analytic purposes. For example, social network
websites such as Facebook allow users to write messages on their wall and get updates from
other users. It is acceptable for such a query for all recent updates to return stale data which
contain updates performed seconds to minutes ago.

To take advantage of the above property, DStore gives users the choice to decide the
freshness level of an analytic query on a per-query basis. Instead of returning up-to-date
data, astale readonly accesses the latest snapshot of the indexes. This choice leavesstale reads
to be executed independently in an isolated fashion, at the cost of not being able to query
data in the delta buffers. For a fresh read, locking is needed before scanning eachdelta bufferto
avoid threading exceptions. Of course, this will impact negatively on the update rate of the
master threadand also on the slave threads.

9.3.2 A document-oriented data model

Documents are the main data abstraction in DStore. Each document consists of multiple
data ®elds but it does not need to follow a ®xed schema that de®nes the structure of the
document. Thus, it is very ¯exible and self-organized. For example, here is a document
holding an employee information:

ID: int
Name: char[30]
Address: char[60]

Because a document is ¯exible, it can contain more data ®elds for another employee as
shown below:

ID: int
Name: char[30]
Address: char[60]
Passport: int
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Figure 9.2: DStore service model.
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Figure 9.3: Zoom on the delta bufferimplementation.

DStore allows users to access a document not only by the document ID, but also through
several indexes. Assuming that Name, Addressare globally unique, DStore can build three
indexes for ID, Name, and Address.

9.3.3 Service model

As discussed in Section 9.3.1, DStore is built on the idea of having only one master thread
to process update transactions sequentially but to allow concurrent analytical processing.
Figure 9.2 represents the service model of DStore.

DStore executesslave threadsin background for maintaining the B+treeindexes, where
eachslave threadis responsible for one index. Once the slave threadstarts, it checks if the delta
buffer is not empty, then it pushes all elements in the delta bufferto a new snapshot of its
B+treeindex. Only when ®nished, this snapshot is revealed for reading and the slave thread
can then repeat the whole process for subsequent data updates.

Actually, each delta bufferconsists of two parts: an in-coming queuefor input coming from
the master threadand a readonly queueholding updates that are under processing by the slave
thread(Figure 9.3). When the slave threadstarts building a new snapshot, the in-coming queue
is ¯agged to be the readonly queueand a new in-coming queueis created. Basically, this mecha-
nism is done to favor bulk processing and to minimize locking overheads on the delta buffer.
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DStore allows users to con®gure which data structures will be used for the delta buffers.
For instance, the delta buffercan be aB+treethat provides O( log(n)) for both lookup and
insertion. By default, DStore uses the vector datatype, as it allows faster insertion of O(1)
at the cost of slower lookup O(n). This design decision favors the implementation of one
master threadfor updates in DStore.

9.4 DStore detailed design

9.4.1 Shadowing B+tree

DStore usesB+treedata structures for the indexes. The B+treeis a tree data structure for
keeping data sorted for fast retrieval in logarithmic time. Each B+treeinner node contains
entries that are mappings between keys and their children, while a B+treeleaf node contains
key-value pairs. Keys in a B+treefollow a minimum-key rule: If a node N2 is a child of node
N1, then any key in the child node N2 is bigger or equal to the key in N1 pointing to N2.
Figure 9.4 represents a concrete example of aB+treewhere each node has maximum 3 keys.

To favor concurrent accesses without using a locking mechanism, DStore B+treeimple-
mentation is inspired by the work presented in [86]. Unlike the original work, our B+treeis
designed for one writer and many readers in order to eliminate locking overheads entirely
in case of concurrent writers. DStore ensures that only one slave threadmodi®es the B+tree,
so that there is no need to lock B+treenodes during tree traversals and during the cloning
process, as discussed in their paper.

B+treein DStore is con®gured to have between b and 2b + 1entries per node and uses a
proactive approach for rebalancing. During a tree traversal from root to leaves in an INSERT
or a DELETEoperation, a node with 2b + 1entries is split before examining its child. When a
node with b entries is encountered, either it has to be merged with its siblings or keys have
to be moved from siblings into it. This proactive approach simpli®es tree modi®cations as
nodes will not be modi®ed after visited. When shadowing, nodes are cloned in the order
that the downward traversal is done from root to the leaves.

To enable shadowing in which different snapshots share B+treenodes, eachB+treenode
has an internal reference counter that records how many parent nodes currently point to it.
Figure 9.5 represents the example of the aforementioned B+treewith a reference counter in
each node.
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B+tree operations

Create. To create a newB+tree, a root node is initialized with zero entries and its reference
counter is set to 1. The root node can contain less thanb entries while all other nodes
have to consist of b to 2b + 1entries.

Clone. To clone a B+treehaving the root node V1, the contents of V1 will be copied into a
new root V2. This operation leads to the fact that any child of V1 is also referenced by
the new root V2. Therefore, the reference counter in each child node of V1 has to be
increased.

An example of this cloning process is presented in Figure 9.6. The reference counters
of two nodes [0, 6, 10] and [13, 20] are set to 2.

Select. To lookup for a key in a B+tree, a downward tree traversal is needed. The algorithm
starts examining the B+treeroot of the desired snapshot and follows the appropriate
inner node that covers the input key. When it reaches the leaf, the associate value
of the selected key is returned if the key exists. Furthermore, during this downward
traversal, no locking is required because tree nodes are immutable, except those of the
snapshot under modi®cation. DStore guarantees only read-only snapshots are visible
for Select operations.

Insert. An Insert operation requires a lookup for the corresponding leaf while it has to
clone all the nodes in the downward tree traversal. When a node N is encountered, the
following procedure is executed:

� The reference counter is examined. If it is 1, meaning it only belongs to the current
snapshot, there is no need to clone the node. Otherwise, the reference counter is
greater than 1 and that node has to be cloned. This is done in order to avoid
modifying nodes that also belong to other snapshots. The contents of this node
are copied to a new node N' with the reference counter set to 1. The reference
counter of the node N is decremented becauseNno longer belongs to the current
snapshot. In addition, the reference counters in children of Nare incremented to
re¯ect the change that they have another new parent N' . The pointer in the parent
node of N is now pointing to N' .

� N' is then examined under the proactive split policy. If it is full with 2b + 1entries,
it has to be split. If it has only b entries, it has to be merged with its siblings or
some keys have to be moved from its siblings into it. As discussed, the proactive
split policy prevents modi®cations from propagating up to parent nodes.

For example, Figure 9.6 shows two snapshotsV1and V2share tree nodes. When insert-
ing a key 15 to the snapshot V2, the node [13, 20] is cloned ®rst as shown in Figure 9.7.
At the end, the leaf [13, 14, 16] is cloned and key 15 is added to the new leaf (Fig-
ure 9.8).

Delete. To delete a key, the same procedure as inInsert is executed. Nodes in the down-
ward tree traversal are cloned and examined under a proactive merge policy. If a node
that has the minimum number of b entries is encountered, the algorithm merges it with
its sibling or moves entries into it. This policy guarantees that a node modi®cation due
to a Delete affects only its immediate parent.
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Figure 9.5: Initial B+treeV1.
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Figure 9.6: Creating a clone V2 ofB+treeV1.
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Figure 9.7: Node [13, 20] is cloned.
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Figure 9.8: Leaf [13, 14, 16] is cloned. The
new leaf is modi®ed to host a new key 15.

9.4.2 Bulk merging

Using a B+treeimplementation with a shadowing mechanism as presented in the previous
section, it is easy to implement bulk mergingin DStore. For each index, aslave threadcreates
a new clone of the latest snapshot of the B+treeindex by using the B+treeClone functionality.
This operation is fast, as only a new root is created as a copy of the sourceB+treeroot. Then,
the slave threadstarts examining all elements in the delta bufferto run the corresponding
Insert or Delete operations on the new clone. When this process is done, the new clone is
read-only and is revealed to readers. The slave threadthen creates a new snapshot based on
the new clone and the whole procedure loops again.

Our bulk mergingapproach reduces the number of intermediate snapshots and is po-
tentially faster than a copy-on-write approach. In fact, our approach generates one single
snapshot for multiple updates while a copy-on-write approach needs to clone the entire tree
traversal from root to leaf for each Insert or Delete .

9.4.3 Query processing

We now discuss how DStore handles different kinds of queries.

Insert and Delete. Insert and Delete queries are executed sequentially by the master thread.
Each Insert or Delete operation is translated into a series of messages that are fed into
the delta buffers. Each message consists of aMESSAGE_TYPEthat de®nes if it is an Insert
or a Delete to the index, the value of the index key and a pointer to the new Inserted
document or NULLin case of aDelete .

By default, DStore uses a vector datatype for delta buffer. When the delta buffersare not
full, the cost for the master threadto ®nish one Insert or Delete is m � O(1) where m
is the number of indexes. This is expected to be faster than m � O( log(n)) in case the
master threadhas to manipulate the indexes himself ( B+treehasO( log(n)) complexity).
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Read. DStore supports the following two types of Readqueries.

Stale Read. DStore favors Stale Read operations in order to achieve high performance
for analytic processing. A Stale Read accesses only the latest snapshots of the
B+treeindexes that are generated by the slave threads. Thanks to the shadowing
mechanism that ensures snapshot isolation, eachStale Read can be performed
independently without any interference with the slave threads. Obviously, the slave
threadsare working on the newer snapshots of the indexes and will reveal them
to readers only when ®nished.
Stale Reads achieve high performance at the cost of not accessing unindexed up-
dates in the delta buffers. Thus, the staleness of results depends on thedelta buffers
sizesand the disparity between the update rate of the master threadand the pro-
cessing rates ofslave threads.
Obviously, Stale Reads on different indexes are independent and are executed in
parallel.

Fresh Read. To guarantee the results of Fresh Readare up-to-date, both the delta buffer
and the latest snapshot of the appropriate B+treeindex needs to be accessed. Com-
pared to Stale Read, a Fresh Read requires a lock on the delta bufferfor scanning
unindexed updates, thus it negatively impacts on the update rate of the master
thread. However, we expect the cost for locking is minimal as the delta bufferis
small size, the readonly queueis immutable, and only the in-coming queueneeds to
be locked.

Update. To perform this kind of query in DStore, a Fresh read is needed to select the desired
document. This operation includes two steps: scanning the delta bufferand lookup
the B+treestructure of the appropriate index. When it is done, the master threadcan
transform the original update query into a series of Delete and Insert pairs, one for
each index. Its purpose is to delete the old index entry and insert a new one to re¯ect
the update in the new snapshots.

Because only themaster threadexecutes queries sequentially and any index is updated
in bulk, update query is guaranteed to be atomic. For each index, a Delete and Insert
pair is put atomically to the delta bufferso that any concurrent Fresh read will be aware
of the atomic update. Additionally, since an Update is translated to a Delete , Insert
pair, DStore avoids in-place data modi®cationas Delete and Insert only affect an index.
Therefore, DStore can achieve parallel index generation in which indexes are built in-
dependently by a number of slave threads.

One particular case is that some indexes may be updated faster than the others and
thus Readquery on those indexes may return more up-to-date results. However, this is
not a problem because it does not break out the atomicity guarantee in DStore.

Complex queries. Complex query is a query involving more than one operation ( Read,
Insert and Delete , etc.) on more than one document. NoSQL stores often do not sup-
port this kind of queries in an atomic fashion [111]. DStore, on the other side, is capable
of atomically handing any complex query, which is a combination of aforementioned
Read, Insert and Delete operations. This guarantee is simply achieved through two
mechanisms: (1) Insert multiple operations to delta buffersis atomic. (2) Every B+tree
index structure is updated in bulk thanks to shadowing. Therefore, a Stale read will
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Figure 9.9: Impacts of B+treeslot size on DStore performance.

not see partial updates as long as it accesses a read-only snapshot. AFresh read will
not see partial updates either as long as themaster threadcan put updates of a complex
query to each delta bufferatomically.

9.5 Evaluation

DStore is implemented from scratch in C++, using the Boost library [112] for threading and
memory management.

We evaluate DStore through a series of synthetic benchmarks, focusing on its design
principles presented in Section 9.3.1. Our experiments were carried out on the Grid'5000
testbed, on one node of the Parapluie cluster located in Rennes. The node is out®tted with
AMD 1.7 Ghz (2 CPUs, 12 cores per CPU) and 48 GB of main memory.

Impact of the B+tree slot size on performance

In DStore, the B+treeslot size refers to the number of entries con®gured per B+treenode.
Changing this value has an impact on the B+treeheight, which de®nes the number of steps
for a downward traversal from the root to a leaf (the B+treeheight is equal to log m n where m
is the slot size and n is the total number of keys). If the slot size is too small, examining
a tree node to ®nd the pointer to the appropriate child is fast (binary lookup) but more
nodes will be accessed before reaching the appropriate leaf. If the slot size is too big, tree
traversal from root to leaf is fast as the tree height reduced but it will increase the time to
access aB+treenode. Especially for Insert or Delete operations, modi®cations on tree nodes
that require merging or shifting keys are slower for bigger slot size .

Furthermore, the performance of the B+treeimplementation with a shadowing mecha-
nism in DStore is heavily in¯uenced by the slot size . A bigger slot size means bigger
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Figure 9.10: A Zoom in the impacts of B+treeslot size for large number of Insert operations.

B+treenodes need to be cloned during shadowing. Thus, it increases the memory consump-
tion as well as the time to copy contents from one node to another. As the slot size impacts
the B+treeperformance, it impacts directly the performance of DStore as well.

In the ®rst experiment, we aim to evaluate the impact of the slot size on the perfor-
mance of DStore. To this end, we con®gure DStore to build only one index. We start by
inserting from 1 to 2 24 distinct random integer key-value pairs to DStore and measure the
completion time. We take the total number of Insert operations and divide it by the mea-
sured completion time to get the insert rate in terms of operations per second. The experi-
ment was done for different slot sizes which are 5, 17, 33 and 63 entries. Each test has been
executed 3 times and the average was taken into consideration.

The results are shown in Figure 9.9. As observed, DStore with slot size 17 achieves the
best performance. Figure 9.10 is a zoom in for a clearer view of the impact. When slot size
is bigger than 17, the cost for shadowing, merging B+treenodes, shifting keys is getting to
be higher than what is gained from reducing the tree traversal path. Thus, the performance
of DStore did not increase when increasing the slot size .

Impact of sorted delta buffers

In this experiment, we evaluate an optimization we introduced in DStore when merging
updates in delta buffersto the corresponding indexes. As discussed, the delta bufferis sorted
in order to better leverage caching effects. With a sorted delta buffer, there is a higher chance
that inserting or deleting an element in a B+treewill follow the same traversal path from the
B+treeroot to a leaf or a partial path that was already cached in previous accesses.

We conduct the same tests as in the previous experiment. We keep theslot size to be 17
and a maximum delta buffer sizeof 524288 elements. We measure the operations per second
when we insert 1 to 224 randomly distinct integer key-value pairs to an empty DStore with
only one index. Two cases are examined:sorted delta buffervs non-sorted delta buffer.
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Figure 9.11: Performance of DStore in two cases: Sorted vs non-sorted delta buffers.

As represented in Figure 9.11, DStore with sorted delta bufferperforms less fast in the
beginning, but outperforms the case of non-sorted delta bufferwhen B+tree size increases.
This can be explained by the cost to sort the delta buffer. When the B+treeindex is small, the
caching effect is not signi®cant, such that sorting the input ends up making DStore slower.
When the B+treeis big, the bene®ts of caching effects are more signi®cant than the initial
effort to sort the delta buffer.

Comparing DStore to a pure B+tree implementation

We now aim to get a hint of how DStore performs compared to a pure B+treeimplemen-
tation. Our third experiment measures the insert rate in terms of operations per second
when we insert from 1 to 2 24 randomly distinct integer key-value pairs to DStore and to a
B+treestructure. Again, each test was run 3 times and the average of the results is taken into
consideration (the standard deviation was low). Both the pure B+treestructure and B+tree
implementation in DStore were con®gured to use a slot size of 17.

We can observe on Figure 9.12 that DStore performs slightly better. In the beginning,
DStore outperformed the B+treeapproach and this result is due to the delta buffer. Internally,
each index of DStore is implemented in a producer-consumer model where the master thread
keeps putting new operations in the delta bufferand the slave threadin turn takes all opera-
tions from the delta bufferto update its B+treestructure. Consequently, when the delta buffer
is not full, the master threadcan ®nish one insert operation in O(1) time which is far better
than O( log(n)) in case of a pure B+treeimplementation.

Further, as the slave threadcannot keep up with the master thread, the delta buffergets full
in a long-term run. This situation is shown in the right part of the Figure 9.12 where DStore
performs only slightly better than the pure B+treestructure. Obviously, the B+treeimplemen-
tation with shadowing mechanism in DStore should be slower than a pure B+treedue to the
cost for shadowing. However, the obtained results can be explained by two reasons. First,
DStore sorts the delta bufferbefore merging to the B+treeso that it can leverage better the
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Figure 9.12: B+tree vs DStore: Slot size = 17.
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caching effects, as demonstrated in the previous experiment. Second, DStore performs the
merging in bulk that creates only one new snapshot to re¯ect all updates in the delta buffer.
This minimizes the number of B+treenodes to be cloned and thus increases the shadowing
performance.

Figure 9.13 gives more details with regard to the above arguments. When inserting 2 24

randomly distinct key-value pairs to DStore, only 44 snapshots were created. The curve
also shows the evolution of the delta buffer size. The delta bufferincreased to the maximal
con®gured value, when the speed of the master threadcannot be faster than that of the slave
thread.

DStore performance under concurrency

One of the design goal of DStore is to provide high performance for both update queries
in transactional processing and read queries in analytical processing. DStore supports one
master threadfor updates, but allows multiple read queries to be processed concurrently with
the master threadas well. The idea is to leverage a shadowing mechanism to isolate read
queries and update queries (Insert and Delete ) in different snapshots, so that they can be
processed independently in a lock-free fashion.

To evaluate DStore performance under concurrency, we design one experiment that starts
by a warm-up phrase: 224 distinct key-value pairs are inserting to DStore with one index.
Then, we launch concurrent readers (up to 14), each of them performing Stale read opera-
tions that request 224 keys from DStore. In the meantime, the master threadkeeps inserting
and deleting random keys with the purpose of constantly having 2 24 records in DStore. We
measure the number of operations per second for both the master threadand the readers.

As expected, Figure 9.14 demonstrates that DStore achieves a good scalability when in-
creasing the number of concurrent readers. Moreover, there is very little overhead on the
master threadas its performance does not decrease, but remains constant at about 600,000 op-
erations per second.

Impact of building multiple indexes

DStore supports multiple indexes and it provides a mechanism to build those indexes in par-
allel. In this experiment, we measure the impact of building many indexes on the insert rate
in terms of operations per second. For each test, we ®x the number of indexes to be built in
DStore and start inserting randomly-distinct 2 24 key-value pairs to DStore. The completion
time is measured and the insert rate in operations per second is calculated.

Figure 9.15 shows the insert rate decreases when increasing the number of indexes. The
result was anticipated, as the more indexes have to be built, the more work the master thread
has to do to ®nish one insert operation. In fact, it has to transform each operation into a
series of corresponding operations for each delta buffer.

However, the performance of DStore in building multiple indexes is good as compared
to the case where the indexes are built sequentially. In that setting, the performance must
drop by a factor of 2 when doubling the number of indexes. DStore performance, on the
other hand, decreased less than 50 % thanks to the delta indexing mechanism.
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Figure 9.14: DStore performance in concurrency: Multiple readers and one master thread for
inserts and deletes.
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Figure 9.15: DStore performance when building multiple indexes.

Features DStore H-Store HyPer CouchDB
Document-oriented Yes Ð Ð Yes
In-memory Yes Yes Yes Ð
Versioning Yes Ð Ð Ð
Atomic complex query Yes Yes Yes Ð
Concurrent readers Yes Ð Yes Yes
Fresh Read Yes Yes Unknown No/Eventual Consistency
Stale Read Yes Ð Yes Yes
Bulk merging Yes Ð Unknown Ð

Table 9.1: A comparison between DStore, H-Store, HyPer and CouchDB.
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9.6 Related work

There are several related work as below.

H-Store. H-Store [62] is an experimental row-based relational database management system
(DBMS) born in a collaboration between MIT, Brown University, Yale University, and
HP Labs. H-Store supports fast transaction processing by leveraging main memory
for storing data. To avoid the overhead of locking in multi-threading environments,
H-Store follows single-threaded execution model where only one thread is used to
execute transactions sequentially.

Compared to our approach, H-Store does not support high-throughput analytical pro-
cessing. It is only optimized for online transaction processing (OLTP) and cannot ex-
ecute read queries in parallel. Our approach serializes transaction processing on one
single master thread, but allows multiple readers to access DStore concurrently without
any interference with the master thread. Therefore, DStore has the potential to handle
ef®ciently both fast update transactions and high-throughput analytic read queries.

Hyper. HyPer [65] is a main-memory database management system built with the purpose
of being able to handle both online transaction processing (OLTP) and online analytical
processing (OLAP) simultaneously. HyPer relies on a virtual memory snapshot mecha-
nism that is assisted in hardware by the Operating System (OS) to maintain consistent
snapshots for both OLAP and OLTP queries. Upon an OLAP request, HyPer clones
the entire database and forks a new process using kernel APIs in the OS. This new
process is then able to work on that consistent snapshot without any interference with
the main database. In multi-core machines, multiple OLAP threads can be launched
simultaneously as long as they only read a private snapshot.

HyPer shares many similarities with our system, but DStore differentiates from Hy-
Per in many aspects. First, DStore is a document-oriented data store rather than a
RDBMS. Its simpli®ed document-oriented interface, which is close to the actual data
models found in popular Internet applications, allows the system to achieve higher
performance under that particular Internet workload [113]. Second, both DStore and
HyPer leverage shadowing to separate transactional processing from analytical pro-
cessing, but DStore does not clone the entire database. DStore implements aB+tree
shadowing mechanism to clone only indexes and does so in a way that index cloning
operations are done in parallel. Thus, our scheme minimizes memory consumption
and is potentially faster than that of HyPer.

Moreover, DStore fully supports versioning as the direct result of its shadowing mech-
anism. DStore maintains all generated snapshots of each index and allows selecting
any snapshot for reading purposes. Regarding HyPer, it does not provide a versioning
functionality due to an expensive cost of cloning the entire database.

CouchDB. CouchDB [54] is a document-oriented store under the Apache License. Unlike
our system, CouchDB does not leverage main memory. It was designed to scale out
in distributed environments, not to scale up. CouchDB supports ACID semantics with
eventual consistency, but only for single document access. Complex transactions that
update multiple documents are not guaranteed to be atomic.
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Moreover, CouchDB leverages Multi-version Concurrency Control (MVCC) to avoid
locking on writes. This mechanism is known as copy-on-write that clones the entire
traversal path from root to an appropriate leaf of the B+treefor each update. As dis-
cussed, our cloning scheme is expected to be faster and better in memory consumption.

A comparison between DStore, H-Store, HyPer and CouchDB is summarized in Table 9.1.
Because DStore is in an early prototype state rather than a fully implemented system, we
cannot perform any performance comparison between DStore and the presented systems.
In the near future, we will ®nalize our comparison by performing more experiments on real-
life workloads.

9.7 Summary

In this chapter, we have introduced DStore, a document-oriented store. It is designed to scale
up (vertically) in single server by adding more CPU resources and increasing the memory
capacity. DStore targets the Big Velocity characteristic of Big Data that refers to the high
speed of data accessing in storage system. DStore demonstrates fast and atomic transaction
processing re¯ected in the update rate in data writing, while it also delivers high-throughput
read accesses for analytical purposes. DStore adds support for atomicity for complex queries
and does so with low overheads, property that has not been possible in document-oriented
stores designed to scale-out.

In order to achieve its goals, DStore relies entirely on main memory for storing data. It
leverages several key design principles, such as: single threaded-execution model, parallel
index generation to leverage multi-core architectures, shadowing for concurrency control,
and Stale Read support for high performance.

Our preliminary synthetic benchmarks demonstrate that DStore achieves high perfor-
mance even under concurrency, where Read queries, Insert queries and Delete queries are
performed in parallel. The experiments show low overheads for both reading and writing
when increasing the number of concurrent readers. The measured processing rate was about
600,000 operations per second for each process. Moreover, DStore demonstrates good sup-
port for parallel index generations. Indeed, the processing rate does not drop down by a
factor of 2 when doubling the number of indexes.
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BIG Data calls for fundamental changes in the architecture of data-management systems.
Big Data characterizes the unprecedented growth of all kinds of data that are too ªBigº
to be managed by traditional data-management systems. These ªBigº challenges are

Big Volume, Big Velocityand Big Variety. While Big Volumedescribes the huge amount of data
that are generated or collected by users or applications, Big Velocityrefers to the frequency
at which the data are generated and need to be handled. As a result of the explosion in data
sources,Big Variety refers to the growth in the number of data formats that exist more than
ever before.

This thesis was carried out in the context of Big Data, focusing on building scalable data-
management systems. First, we targeted data-intensive HPC in the sense of Big Volume.
Such data-intensive HPC applications must manage huge volumes of data with high per-
formance at the level of storage systems. Second, we targeted geographically distributed
environments where the storage systems can aggregate storage resources from everywhere
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in order to provide a single storage space, whose capability cannot be achieved in smaller
scales. Finally, we targeted the Big Velocity, Big Variety characteristics of Big Data by design-
ing DStore, an in-memory document-oriented store for fast and atomic data update and high
throughput data read accesses.

10.1 Achievements

We can describe our achievements in three main research directions as follows.

10.1.1 Scalable distributed storage systems for data-intensive HPC

In the context of data-intensive HPC, we studied the current parallel I/O frameworks. We
pointed out the challenges to designing scalable storage systems, that can support ef®ciently
massive data volume, massive parallelization, atomicity of non-contiguous I/O, and parallel array
processing.

Providing ef®cient support for MPI-I/O atomicity based on versioning

Typically, the support for atomic, non-contiguous I/O operations is only provided at the
level of MPI-I/O implementation. We argued that atomic, non-contiguous I/O operations
should be directly supported at the parallel ®le-system level. To this end, we proposed a
versioning-based mechanism that can be leveraged to address the needs of atomic I/O ef-
®ciently. This mechanism offers atomicity for non-contiguous I/O without the need to per-
form expensive synchronizations. We implemented this idea in practice by extending Blob-
Seer with a non-contiguous data access interface that we directly integrated with ROMIO.
Our implementation optimizes the generation of metadata trees so that non-contiguous re-
gions are consolidated into a new independent snapshot, which results in the atomicity of
the non-contiguous I/O. In order to perform this ef®ciently, we proposed two main opti-
mizations. First, we introduced a lazy evaluation scheme to reduce the completion time
when building a metadata tree in a bottom-up fashion. Second, we reduced the load on the
version manager by moving the metadata node's computation to the clients. This optimiza-
tion is signi®cant so that it was integrated back to the original BlobSeer.

We conducted 3 series of experiments that compared our BlobSeer-based implementa-
tion with a standard locking-based approach where we used Lustre as the underlying stor-
age backend. Our approach demonstrated excellent scalability under concurrency when
compared to the Lustre ®le system. We achieved an aggregated throughput ranging from
3.5 times to 10 times higher in several experimental setups, including highly standardized
MPI benchmarks speci®cally designed to measure the performance of MPI-I/O for non-
contiguous overlapped writes that need to obey MPI-atomicity semantics.

Pyramid: a large-scale array-oriented storage system

We have proposed Pyramid, a large-scale, array-oriented storage system optimized for par-
allel array processing. Our proposal leverages the idea of redesigning the physical data or-
ganization inside distributed storage systems in such a way that it closely matches the access
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patterns generated by applications. In the context of parallel array processing, we proposed
the multidimension-aware data chunkingmodel that takes into account the nature of multi-
dimensional data models by splitting the array into subdomains. The multi-dimensional
chunks are then distributed among the storage servers, which results in a distribution of
the I/O workload. Using this approach, related data cells of the initial array have a higher
change of residing in the same chunk irrespective of the query type, which greatly favors
accessing entire chunks to increase the I/O throughput. Together with the multidimension-
aware data chunkingmodel, we proposed a distributed metadata-management scheme that
avoids potential I/O bottlenecks observed with centralized approaches. Concretely, we in-
troduced a distributed quad-tree like structure that is used to index the chunk layout. Quad-
tree nodes are distributed over a DHT implementation for better load balancing. Finally,
we proposed to leverage array versioning as a key design principle for ef®cient concurrency
control and for manipulating critical data.

We evaluated Pyramid for highly concurrent data access patterns. Our prototype demon-
strates good performance and scalability, both for read and write workloads. It outperforms
PVFS in both weak scalability and strong scalability scenarios, by a factor of 100 % to 150 %.

10.1.2 Scalable geographically distributed storage systems

We proposed BlobSeer-WAN, an extended branch of BlobSeer optimized for geographi-
cally distributed environments. BlobSeer-WAN was built as part of an integrated archi-
tecture comprising a distributed ®le metadata-management system and a large-scale data-
management service. Our work addressed a crucial requirement to extend BlobSeer to take
into account the latency hierarchy in an environment where geographically distributed sites
are interconnected through WAN networks. First, in order to keep metadata I/O local to
each site as much as possible, we proposed an asynchronous metadata replication scheme
at the level of metadata providers. As metadata replication is asynchronous, we guaran-
tee a minimal impact on the writing clients that generate metadata. Second, we introduced
a distributed version management in BlobSeer-WAN by leveraging an implementation of
multiple version managers and using vector clocks for detection and resolution of collision.
This extension to BlobSeer keeps BLOBs consistent while they are globally shared among
distributed sites under high concurrency.

Several experiments were performed on the Grid'5000 testbed demonstrated that
BlobSeer-WAN can offer scalable aggregated throughput when concurrent clients append
to one BLOB. The aggregated throughput reached to 1400 MB/s for 20 concurrent clients.
Due to the high-speed 10 Gb/s between Nancy and Grenoble, BlobSeer-WAN only achieved
the aggregated throughput 15 % higher than the BlobSeer with remote site accesses. Fur-
ther, we compared BlobSeer-WAN and the original BlobSeer in local site accesses. The ex-
periments shown that the overhead of the multiple version managers implementation and
the metadata replication scheme in BlobSeer-WAN is minimal, thanks to our asynchronous
replication scheme.

10.1.3 Scalable storage systems in big memory, multi-core machines

To cope with the Big Velocitycharacteristic of Big Data, we have designed and implemented
DStore, an in-memory, document-oriented store that scales vertically by leveraging large
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memory capability in multi-core machines. DStore demonstrated fast and atomic complex
transaction processing in data writing while maintaining high throughput read accesses for
analytical purposes. DStore exposes a document-oriented data model that is favored by
Internet-speci®c applications. The data model offers an interesting compromise between the
potential system performance and the rich functionality that its interface can deliver. While
key-value stores only allow accesses to independent key-value pairs and relational databases
are optimized for structured data having associative relationships, document-oriented stores
fall in the middle: they organized data in documents that are similar to data rows in RDBMS
but they are very ¯exible and are self-organized.

To achieve its goals, DStore resides in main memory to leverage fast memory accesses. It
is built with several design principles. DStore follows a single threaded execution model to
execute update transactions sequentially by one master threadwhile relying on a versioning
concurrency control to enable multiple reader threadsrunning simultaneously. DStore builds
indexes for fast document lookups. Those indexes are built using the delta-indexingand
bulk updatingmechanisms for faster indexes maintenance and for atomicity guarantees of
complex queries. Moreover, DStore is designed to favor stale reads that only need to access
isolated snapshots of the indexes. Thus, it can eliminate interference between transactional
processing and analytical processing.

We conducted multiple synthetic benchmarks on the Grid'5000 to evaluate the DStore
prototype. Our preliminary results demonstrated that DStore achieved high performance
even in scenarios where Read, Insert and Deletequeries were performed simultaneously. In
fact, the processing rate measured was about 600,000 operations per second for each concur-
rent process.

10.2 Perspectives

This manuscript presented our contributions in several directions towards building scalable
data-management systems for Big Data. Each direction addressed some particular chal-
lenges in the global context of Big Data management. In this section, we describe several
new research directions brought forth by our work.

10.2.1 Exposing versioning at the level of MPI-I/O

Our ®rst contribution is demonstrated in a prototype that explicitly exposes a non-
contiguous, versioning-oriented access interface to ef®ciently address the need of atomic
I/O operations. However, this versioning-oriented interface remained hidden to applica-
tions when we integrated our prototype with ROMIO, a MPI-I/O implementation.

As an interesting future work direction, we aim at exposing the versioning interface di-
rectly at application level by extending the MPI-I/O implementation. The ability to make
use of versioning at application level brings several potential bene®ts. To take an exam-
ple, consider the case of producer-consumer workloads where the output of simulation is
concurrently used as the input of visualization. Using versioning at application level could
avoid expensive synchronization schemes, which is an acknowledged problem of current
approaches.
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10.2.2 Pyramid with active storage support

Many datacenters nowadays consist of machines equipped with commodity hardware that
often act as both storage elements and compute elements, called active storage servers. In
this context, it is highly desirable to be able to move the computation to the data rather than
the other way around, for two reasons: (1) it saves bandwidth, which is especially important
when data transfers are expensive (e.g., because of cost concerns or because of high latency/
low bandwidth); (2) it enables better workload parallelization, as part of the work can be
delegated to the storage elements (e.g., post-processing ®lters, compression, etc.).

Pyramid favors a multi-dimensional aware data chunking. Pyramid splits each array
into subdomains that are equally sized in each dimension and distributes them across stor-
age servers. This scheme brings an important advantage for active storage support. Data
is distributed among multiple storage elements in a way that the neighbors of cells have a
higher chance of residing in the same chunk. Thus any computation based only on cell data
and its neighbors can be delegated to the chunks, leading to an ef®cient implicit paralleliza-
tion. This is a promising research direction for the future versions of Pyramid.

10.2.3 Leveraging Pyramid as a storage backend for higher-level systems

Another future direction concerning Pyramid is to explore the possibility of using Pyramid
as a storage backend for SciDB [96] and HDF5 [93]. This direction has a high potential to
improve I/O throughput of those systems while keeping compatibility with standardized
data access interfaces. Further, Pyramid can be used for scienti®c applications that process
arrays at different resolutions: It is often the case that large subdomains can be easily de-
scribed implicitly, for instance many times whole subdomains (e.g. zero-®lled regions) can
be characterized by simple summary information. In this context, our distributed metadata
scheme can be enriched to hold such summary information about the subdomains in the tree
nodes, which can be relied upon to avoid deeper ®ne-grain accesses when possible.

10.2.4 Using BlobSeer-WAN to build a global distributed ®le system

BlobSeer-WAN is a part of an integrated architecture comprising a distributed ®le metadata-
management system and a large-scale data management service. As we ®nished implement-
ing BlobSeer-WAN, we plan to integrate it to HGMDS in the next step. BlobSeer-WAN will
be a low-level object management service, while HGMDS will provide a high-level ®le sys-
tem metadata management. The resulting global ®le system is expected to exhibit scalable
®le access performance in scenarios where huge ®les are globally shared among geographi-
cally distributed sites.

Furthermore, we plan to run extensive experiments for the integrated system on the
infrastructure that features high-latency WAN networks. To this end, we will consider a
multiple-site deployment that involves both Grid'5000 and the grid at University of Tsukuba.
This work will allow us to providing enough convincing arguments in the performance of
the proposed system.
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10.2.5 Evaluating DStore with real-life applications and standard benchmarks

We have evaluated DStore with synthetic benchmarks on the Grid'5000 testbed. To provide
more convincing results, we plan to evaluate DStore with real-life applications and standard
benchmarks. This work will probably require a signi®cant effort either to develop a fully-
functional document-oriented interface for DStore or to hard-code the benchmarks with cur-
rent DStore primitives. We estimate both directions would take 3 to 6 person-months and
that is the reason why we could not implement them in the scope of this thesis.
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11.1 Context: Big Data management

 ce jour, les donn€es sont captur€es and g€n€r€es plus que jamais auparavant. Selon l'€tude
de l'International Data Corporation (IDC), la quantit€ d'informations cr€€es et reproduites
mondialement en 2011 a d€pass€ 1,8 Zettabytes (ZB), ce qui marque une croissance expo-
nentielle par un facteur de neuf en seulement cinq ans. En plus, l'€tude montre €galement
que la quantit€ de donn€es g€n€r€es directement par les utilisateurs individuels tels que des
documents, des photos, num€riques musiques, blogs est beaucoup moins que la quantit€ de
donn€es reproduites par les applications et les services d'Internet au sujet de leurs activit€s
en ligne.

Les sources de cette explosion des donn€es peuvent !tre facilement identi®€s. Au-
jourd'hui, le monde compte environ 5 milliards de t€l€phones mobiles, des millions de cap-
teurs pour capturer quasiment tous les aspects de la vie. Comme un exemple particulier de
Facebook, plus de 900 millions d'utilisateurs actifs partage environ 30 milliards de morceaux
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de contenu par mois. Dans la m!me dur€e d'intervalle, plus de 20 milliards de recherches
sont effectu€es sur Internet.

Dans ce contexte, le terme ªBig Dataº est utilis€ pour caract€riser l'explosion r€cente
des donn€es. Dans ce contexte, le terme ªBig Dataº est utilis€ pour caract€riser l'explosion
r€cente des donn€es. Selon M. Stonebreaker, Big Data peut !tre d€®ni comme ª l'a 3V du
volume, de la vitesse et de la vari€t€º [2]. Le traitement des donn€es de Big Data se r€f•re ‚
des applications qui ont au moins une des caract€ristiques suivantes.

Big Volume. L'analyse de Big Data doit souvent traiter des T€raoctets (TBs) des donn€es, et
m!me plus. Quotidiennement, les utilisateurs de Twitter produisent approximative-
ment de 7 TBs des donn€es, celles de Facebook partagent un milliard d'€l€ments de
contenue qui valent 10 TBs. It est €vident que le volume de donn€es est le d€® le plus
imm€diat pour les syst•mes conventionnelles de gestion de donn€es. Cela n€cessite
un changement fondamental dans l'architecture des syst•mes de stockage €volutif. En
fait, de nombreuses entreprises ont archiv€ une grande quantit€ de donn€es sous forme
de logs, mais ils ne sont pas capables de les traiter en raison d'un manque de cadres
appropri€s de mat€riel et de logiciel pour Big Data.

L'€tat de l'art souligne la popularit€ des cadres de traitement en parall•le comme des
outils ef®caces pour analyser Big Data (par exemple, le cadre Hadoop avec la mod•le
de programmation MapReduce qui est inspir€ par le Map et la reduction de la pro-
grammation fonctionnelle). Gr ce ‚ MapReduce, les soci€t€s qui ont un grand volume
de donn€es peuvent maintenant produire rapidement des analyses signi®catifs ‚ partir
de leurs donn€es a®n d'am€liorer leurs services et de diriger leurs produits mieux.

Big Velocit . A signi®cation conventionnelle de la v€locit€ est la rapidit€ avec laquelle les
donn€es sont g€n€r€es et doivent •tre trait€es. A ®n de fournir rapidement des nou-
velles connaissances ‚ partir des donn€es d'entr€e, le traitement par lots comme dans
MapReduce n'est plus la seule solution pr€f€r€e. Il est de plus en plus n€cessaire de
traiter les donn€es ªen-ligneº, o! la vitesse du traitement doit •tre proche de celle des
¯ux de donn€es d'entr€e. Un exemple intuitive est la suivante: si ce que nous avions
€tait seulement un instantan€ datant de 10 minutes des ¯ux de tra®c, nous n'aurions
pas os€ traverser la route parce que l'€tat du tra®c change si rapidement. C'est un des
nombreux cas o! la MapReduce et l'Hadoop ne peuvent pas tenir la vitesse exig€e du
traitement des donn€es. On ne peut pas attendre pour un travail par lots sur l'Hadoop
se termin€ si les donn€es d'entr€e changerait avant que nous obtenions le r€sultat des
traitements par lots pr€c€dents.

Big Vari t . De nos jours, les source de donn€es sont diverses. Avec l'exposition des gad-
gets Internet-capables, des donn€es tell que les textes, les images sont collect€s ‚ par-
tir de n'importe o! par n'importe quel dispositif (par exemple, les capteurs, les t€l€-
phones mobiles, etc.). Elles sont en termes de donn€es non-structur€es, structur€es et
semi-structur€es. Donc, les donn€es sont devenues si complexes que les syst•mes de
stockage sp€cialis€s sont n€cessaires pour faire face aux multiples formats de donn€es
ef®cacement.

La tendance r€cente de stockage a montr€ l'augmentation des approaches NoSQL. Bien
que les bases de donn€es relationnelles peuvent •tre utilis€s dans n'importe quelle
circonstance, pour tous les formats de donn€es, elles ne sont que performantes pour
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les donn!es relationnelles []. En mettant en úuvre seulement des mod les de donn!es
qui sont indispensables pour les applications (par exemple, la mod le orient!e cl!-
valeur ,la mod le orient!e document, la mod le orient!e graphie), NoSQL est capables
d'!voluer horizontalement pour s'adapter " la augmentation des charges de travail.

Pour r!pondre aux besoins de la gestion de Big Data, il faut des changements fondamen-
taux dans l'architecture des syst mes de stockage des donn!es. Les stockages de donn!es de-
vraient continuer d'innover a®n de s'adapter " la croissance de Big Data. Ils ont besoin d'‚tre
!volutive, tout en maintenant de hautes performances pour l'acc s aux donn!es. Donc, cette
th se se concentre sur le renforcement des syst mes !volutives de gestion des donn!es pour
Big Data.

11.2 Contributions

Nous pouvons d!crire nos contributions dans trois principaux axes de recherche dans ce qui
suit.

11.2.1 Syst mes de stockage scalable, distribu!s pour la calcul haute perfor-
mance (HPC) de donn!es " forte intensit!

Dans le context de HPC de donn•es  forte intensit•, nous •tudions les cadres actuels des
E/S (entr•es-sorties) parall!les. Nous soulignons les dif®cult•s  concevoir des syst!mes de
stockage •volutives, qui peuvent soutenir ef®cacement le volume massive de donn es, la paral-
l lisation massive, l'atomicit d'acc s d'E/S non-contigu!et le traitement en parall le des matrices de
donn•es.

Fournir un support ef®cace pour l'atomicit! MPI bas! sur le versionnage des donn!es

Typiquement, le support pour les op•rations d'E/S atomiques, non-contigu"s n'est fourni
qu'au niveau de MPI I/O. Nous soutenons que l'atomicit• des op•rations d'E/S non-
contigu"s doivent #tre directement pris en charge sur le niveau des syst!mes de gestion
de ®chiers parall!les. Donc, nous proposons un m•chanisme bas• sur le versionnage, qui
peut #tre utilis• pour satisfaire les besoins des op•rations atomiques de maniere ef®cace.
Ce m•canisme assure l'atomicit• pour les op•rations d'E/S non-contigu"s sans la n•cessit•
d'effectuer des synchronisations qui peuvent #tre tr!s co$teux. Il s'appuie sur l'id•e que
les modi®cations d'un ®chier par une •criture non-contigu" engendre un nouveau snapshot
ind•pendant. Nous basons sur les m•ta-donn•es pour m•moriser les donn•es dans chaque
snapshot, m#me si les donn•es viennent d'un •criture non-contigu".

Nous mettons en úuvre cette id•e en pratique en •tendant BlobSeer avec une interface
d'acc!s non contigu". En plus, nous int•grons notre prototype avec ROMIO, une implemen-
tation de MPI I/O. Nous proposons deux principales optimisations dans notre prototype
bas• sur BlobSeer. Tout d'abord, nous avons mis en place un sch•ma d'•valuation paresseuse
pour r•duire le temps d'ex•cution lors de la construction d'un arbre de m•ta-donn•es pour
un snapshot particulier. Deuxi!mement, nous r•duisons la charge sur le serveur gestion-
naire de versions en d•pla%ant le calcul des núuds des m•ta-donn•es aux clients. Cette
optimisation est signi®catif de telle sorte qu'il est int•gr• au retour  la BlobSeer originale.
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Nous avons effectu• 3 s•ries d'exp•riences pour comparer notre prototype bas•e sur
BlobSeer et une approche de verrouillage o€ nous avons utilis• Lustre. Notre prototype
a d•montr• une scalabilit• excellente sous les acc!s concurrentiels par rapport au syst!me
de ®chiers Lustre. Nous avons atteint un d•bit agr•g• allant de 3,5 fois  10 fois plus
dans plusieurs con®gurations exp•rimentales, y compris des rep!res hautement standard-
is•s sp•cialement con%us pour mesurer la performance de MPI-I/O pour les op•rations non-
contigu"s.

Pyramid: un syst!me de stockage " grande  chelle, orient matrice

Dans le contexte du calcul haute performance (HPC) de donn•es  forte intensit•, d'une
large classe d'applications n•cessite un traitement des matrices en parall!le : les petits sous-
domaines diff•rents d'un seul tableaux multi-dimensionnels sont acc•d• concurremment
par un grand nombre de clients, tant pour la lecture et l'•criture. Parce que les donn•es mul-
tidimensionnelles sont s•rialis•s en une s•quence d'octets au niveau du syst!me de stock-
age, un sous-domaine (malgr• vue par les processus applicatifs comme un seul bloc de m•-
moire) correspond  une s•rie de complexes r•gions non-contigu"s du ®chier de donn•es,
qui doivent  tre lues/•crites ensemble par le m me processus. Nous proposons d'•viter une
telle s•rialisation co!teuse qui d•truit la localit• des donn•es en red•®nissant la faƒon dont
les donn•es sont stock•es dans les syst•mes de stockage distribu•, pour qu'elle corresponde
au mod•le d'acc•s g•n•r• par les applications. Nous concevons et r•alisons Pyramid, un
syst•me de stockage ‚ grande •chelle, orient• matrice, qui exploite un mod•le d'acc•s ori-
ent• matrice et un contr"le de concurrence bas• sur le versionnage pour pouvoir soutenir le
traitement des matrices en parall•le de mani•re ef®cace. L'•valuation exp•rimentale d•mon-
tre des am•liorations importantes sur la scalabilit• apport•es par Pyramide par rapport aux
approches de l'•tat de l'art, avec des gains de 100 % ‚ 150 %.

11.2.2 Syst!mes de stockage scalables, distribu s g ographiquement

Nous proposons BlobSeer-WAN, une extension de BlobSeer optimis• pour les environ-
nements r•partis g•ographiquement. BlobSeer-WAN est construit dans le cadre d'une ar-
chitecture int•gr•e comprenant un syst•me de gestion de m•tadonn•es r•partis et un service
de gestion de donn•es ‚ grande •chelle. Notre travail r•pond ‚ une exigence cruciale pour
•tendre BlobSeer de prendre en compte la hi•rarchie de latence dans un environnement
o€ des sites distribu•s g•ographiquement sont interconnect•s par des r•seaux WAN. Tout
d'abord, a®n de conserver les op•rations sur les m•ta-donn•es locales dans chaque site, au-
tant que possible, nous proposons un sch•ma de r•plication de m•ta-donn•es asynchrone
au niveau des serveurs de gestion de m•tadonn•es. Comme la r•plication des m•tadonn•es
est asynchrone, nous garantissons un impact minimal sur les op•rations d'•criture chez les
clients. Deuxi•mement, nous introduisons un syst•me de gestion de version distribu• dans
BlobSeer-WAN et utilisons des horloges vectorielles pour la d•tection et la r•solution de
collision. Cette extension de BlobSeer maintient BLOBs coh•rentes tandis qu'ils sont glob-
alement partag•es entre les sites distribu•s, et sous une forte concurrence.

Plusieurs •valuations exp•rimentales r•alis•es sur le testbed Grid'5000 ont d•montr• que
BlobSeer-WAN peut offrir un d•bit agr•g• •volutive lorsque les clients •crivent simultan•-
ment sur un BLOB particulier. Le d•bit agr•g• a atteint ‚ 1400 Mo/s pour 20 clients concur-
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rentes. En raison d'un haut-d•bit de 10 Gb/s entre Nancy et Grenoble, le d•bit agr•g• de
BlobSeer-WAN n'a atteint que 15 % plus que ceci de BlobSeer avec les acc s " site distance.
De plus, nous avons compar! BlobSeer-WAN et le BlobSee dans le mode d'acc s locals. Les
exp!riences montrent que le surco‚t de la gestion des versions distribu e et du syst€me de
r plication des m tadonn es dans BlobSeer-WAN est minimal, grƒce • notre sch ma de r -
plication asynchrone.

11.2.3 Syst mes de stockage scalables pour les machines multi-cúur avec de
grande m!moire

 la suite de l'innovation continue dans la technologie du mat•riel, les ordinateurs sont de
plus en plus puissants que leurs mod€les pr•c•dents. Les serveurs modernes de nos jours
poss€dent une grande capacit• de m•moire vide dont la taille est jusqu'• 1 t•ra-octets (To)
et plus. Puisque les acc€s en m•moire vide sont au moins 100 fois plus rapide que sur le
disque dur, conserver les donn•es dans la m•moire vide devient un principe de conception
int•ressant pour augmenter la performance des syst€mes de gestion des donn•es. Nous
d•signons DStore, un stockage orient• documents r•sidant en m•moire vide pour tirer parti
de la haute vitess des acc€s en m•moire vide. DStore peut se mettre • l'•chelle en augmen-
tant la capacit• de m•moire vide et le nombre de cúurs de CPU au lieu de faire mettre •
l'•chelle horizontalement comme dans les syst€mes de gestion de donn•es r•partis. Cette
d•cision de conception favorise DStore • soutenir des transactions complexes en assurant la
rapidit• et l'atomicit•, tout en conservant un haut d•bit •lev• pour le traitement analytique
(seulement des lectures). Cet objectif est (• notre connaissance) pas facile • atteindre dans
les environnements distribu•s.

DStore est construit avec plusieurs principes de conception. DStore suit un mod€le
d'ex•cution utilis•e un seul thread ( master thread) qui ex•cute des transactions de mise • jour
de mani€re s•quentielle. It s'appuie •galement sur un contr!le de concurrence bas• sur le
versionnage a®n de permettre multiples reader threads• lire simultan•ment. DStore construit
des indices pour acc•l•rer la recherche des documents. Ces indices sont construits en util-
isant des m•canismes de delta indexinget bulk updatingpour maintenir ef®cacement et bien
pour garantir l'atomicit• des requ"tes complexes. De plus, DStore est con#u pour favoriser
des lectures stales qui ont seulement besoin d'acc•der • des clich•s isol•s des indices. It peut
donc •liminer l'interf•rence entre le traitement transactionnel et le traitement analytique.

Nous avons effectu• plusieurs benchmarks synth•tiques sur le Grid'5000 a®n d'•valuer
le prototype DStore. Nos r•sultats pr•liminaires ont d•montr• que DStore a obtenu de bons
r•sultats m"me dans des sc•narios o$ les op•rations lire, Ins rer et Supprimeront •t• ex•cut•es
simultan•ment. En fait, la cadence de traitement est mesur•e d'environ 600.000 op•rations
par seconde pour chaque processus concurrent.
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11.4 Organisation du manuscrit

Le reste de cette th!se est organis en cinq parties, bri!vement d crites ci-apr!s.

Partie I: La scalabilit des des syst!mes de gestion de Big Data

Nous discutons le contexte de notre travail en pr sentant les domaines de recherche relis.
Cette partie est constitu e du chapitre 2, 3 et 4. Chapitre 2 introduit Big Data et l' tat de l'art
des infrastructures de gestion de Big Data actuelles. En particulier, nous nous concentrons
tout d'abord sur des infrastructures distribu es qui sont con"us pour agr ger les ressources
tels que les clusters, les grilles, et les clouds. Deuxi!mement, nous introduisons une in-
frastructure centralis e qui a attir de plus en plus l'attention dans le monde du traitement
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de Big Data: un seul serveur avec un processeur multi-cúur et une tr!s grande m moire
vide. Chapitre 3 restreint la focalisation sur les syst!mes de gestion des donn es actuels,
et la fa"on dont ils sont con"us pour accomplir la scalabilit . Nous classons ces syst!mes
dans les catalogues pr sent s dans le chapitre 2. Dans le chapitre 4, nous  tudions en pro-
fondeur BlobSeer, une service de gestion de donn es ‚ grande  chelle puisque nous utilisons
BlobSeer comme syst!me de r f rence tout au long de ce manuscrit.

Partie II: Syst mes de stockage scalables, repartis pour HPC de donn!es " forte
intensit!

Cette partie se compose de 3 chapitres. Dans le chapitre 5, nous pr sentons quelques pra-
tiques communes pour les op rations d'E/S dans l'HPC de donn es ‚ forte intensit . Nous
af®rmons que l'HPC de donn es ‚ forte intensit poss!de Big Data, et nous soulignons cer-
tains d ®s dans la conception des syst!mes de stockage scalables dans un tel environnement.
Nous continuons dans le chapitre 6 en pr sentant notre premi!re contribution: la conception
et la mise en úuvre d'un syst!me de stockage scalable pour fournir un support ef®cace pour
l'atomicit MPI-I/O. Cette partie se termine par le chapitre 7, o nous pr€sentons notre con-
tribution seconde dans le contexte de HPC de donn€es ‚ forte intensit€. Ce chapitre consiste
de la conception, l'architecture et les €valuations de Pyramid: un syst•me de stockage ‚
grande €chelle, orient€ matrice qui est optimis€ pour le traitement des matrices en parall•le.

Partie III: Syst mes de stockage scalables, distribu!s g!ographiquement

Nous pr€sentons notre contribution ‚ la cr€ation d'un syst•me de stockage scalable dans les
environnements r€partis g€ographiquement. Chapitre 8 introduit notre motivation de pren-
dre BlobSeer comme un bloc de construction pour la construction d'un syst•me de ®chiers
distribu€ globalement. Nous discutons la fa•on dont nous re-architecturons BlobSeer pour
s'adapter ‚ l'€chelle WAN, et ensuite nous se concentrons sur les changements introduits
dans la mise en úuvre d'une extension de BlobSeer: BlobSeer-WAN. Le chapitre se termine
par une s€rie d'exp€riences qui €valuent la performance du syst•me par rapport ‚ celle de
la BlobSeer.

Partie IV: Un syst me de stockage orient! documents

Dans cette partie, nous discutons de notre quatri•me contribution ‚ la conception d'un sys-
t•me de gestion des donn€es scalable dans les environnements centralis€s. Concr•tement,
nous pr€sentons DStore: un stockage orient€ documents qui tire parti de la grande m€moire
vide, multi-cúur pour se mettre ‚ l'€chelle verticalement. Nous donnons une motivation
claire pour la conception et une description de l'architecture du syst•me. l'€valuation du
travail est ensuite pr€sent€ ‚ la ®n du chapitre.

Partie V: Conclusions et perspectives

Cette partie est constitu€e du chapitre 10. Nous r€sumons les contributions de cette th•se,
discutons des limites et une s€rie de perspectives pour des futures explorations.
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