On Spectral Learning of Mixtures of Distributions, Learning Theory, pp.458-469, 2005. ,
DOI : 10.1007/11503415_31
On density estimation from ergodic processes. The Annals of Probability, pp.794-804, 1998. ,
Uniform approximation of Vapnik???Chervonenkis classes, Bernoulli, vol.18, issue.4, pp.1310-1319, 2012. ,
DOI : 10.3150/11-BEJ379
Event detection in time series of mobile communication graphs, Proceedings of the of Army Science Conference, pp.1-8, 2010. ,
Universal schemes for prediction, gambling and portfolio selection. The Annals of Probability, pp.901-941, 1992. ,
Universal schemes for learning the best nonlinear predictor given the infinite past and side information. Information Theory, IEEE Transactions on, vol.45, issue.4, pp.1165-1185, 1999. ,
Robust hierarchical clustering, The 23rd Annual Conference on Learning Theory (COLT), p.36, 2010. ,
Detection of abrupt changes: theory and application ,
URL : https://hal.archives-ouvertes.fr/hal-00008518
Assessing a mixture model for clustering with the integrated completed likelihood, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.7, pp.719-725, 2000. ,
DOI : 10.1109/34.865189
Statistical Methods in Markov Chains, The Annals of Mathematical Statistics, vol.32, issue.1, pp.12-40, 1961. ,
DOI : 10.1214/aoms/1177705136
Ergodic theory and information, p.42, 1965. ,
Statistical fraud detection: A review, Statistical Science, vol.17, p.21, 2002. ,
Online clustering via finite mixtures of Dirichlet and minimum message length, Engineering Applications of Artificial Intelligence, vol.19, issue.4, pp.371-379, 2006. ,
DOI : 10.1016/j.engappai.2006.01.012
Non-parametric methods in change-point problems Mathematics and its applications, p.32, 1993. ,
Non-parametric statistical diagnosis: problems and methods, p.32, 2000. ,
DOI : 10.1007/978-94-015-9530-8
Sequential change-point detection for mixing random sequences under composite hypotheses, Statistical Inference for Stochastic Processes, pp.35-54, 2008. ,
DOI : 10.1007/s11203-006-9004-6
A general probabilistic framework for clustering individuals and objects, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '00, pp.140-149, 2000. ,
DOI : 10.1145/347090.347119
Non-parametric Change-Point Estimation. The Annals of Statistics, pp.188-197, 1988. ,
Non-parametric change-point estimation for data from an ergodic sequence. Teorya Veroyatnostei i ee Primeneniya, pp.910-917, 1993. ,
Prediction, Learning, and Games, pp.31-104, 2006. ,
DOI : 10.1017/CBO9780511546921
Parametric statistical change point analysis, p.32, 2012. ,
Notes on information theory and statistics, Foundations and Trends in Communications and Information Theory, pp.30-42, 2004. ,
Limit Theorems in Change-Point Analysis (Wiley Series in Probability & Statistics), p.32, 1998. ,
Learning mixtures of Gaussians, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), pp.634-644, 1999. ,
DOI : 10.1109/SFFCS.1999.814639
The asymptotic behavior of some non-parametric change-point estimators. The Annals of Statistics, pp.1471-1495, 1991. ,
A sticky HDP-HMM with application to speaker diarization, The Annals of Applied Statistics, vol.5, issue.2A, pp.1020-1056, 2011. ,
DOI : 10.1214/10-AOAS395SUPP
The change-point problem for dependent observations, Journal of Statistical Planning and Inference, vol.53, issue.3, pp.1-15, 1995. ,
DOI : 10.1016/0378-3758(95)00148-4
Probability, Random Processes, and Ergodic Properties, pp.27-43, 1988. ,
Optimal rate of convergence for nonparametric change-point estimators for nonstationary sequences, The Annals of Statistics, vol.35, issue.4, pp.1802-1826, 2007. ,
DOI : 10.1214/009053606000001596
Data clustering: 50 years beyond K-means, Pattern Recognition Letters, vol.31, issue.8, pp.31-651, 2010. ,
DOI : 10.1016/j.patrec.2009.09.011
Spectral Clustering and Embedding with Hidden Markov Models, European Conference on Machine Learning (ECML) 2007, pp.164-175, 2007. ,
DOI : 10.1007/978-3-540-74958-5_18
Locating changes in highly-dependent data with unknown number of change points, Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada, United States, p.49, 2012. ,
URL : https://hal.archives-ouvertes.fr/hal-00765436
Non-parametric multiple change point estimation in highly dependent time series, Proceedings of the 24th International Conference on Algorithmic Learning Theory (ALT'13), p.49 ,
Asymptotically consistent estimation of the number of change points in highly dependent time series, Proceedings of the 31st International Conference on Machine Learning, p.49, 2014. ,
URL : https://hal.archives-ouvertes.fr/hal-01026583
Online clustering of processes, the international conference on Artificial Intelligence & Statistics (AI & Stats), pp.601-609 ,
URL : https://hal.archives-ouvertes.fr/hal-00765462
An impossibility theorem for clustering, 15th Conference Neiral Information Processing Systems (NIPS'02), pp.446-453, 2002. ,
Detection and estimation of changes in regime. Long-Range Dependence: Theory and Applications, pp.325-337, 2002. ,
Clustering seasonality patterns in the presence of errors, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, pp.557-563, 2002. ,
DOI : 10.1145/775047.775129
Detection of multiple changes in a sequence of dependent variables. Stochastic Processes and their Applications, pp.79-102, 1999. ,
Using penalized contrasts for the change-point problem, Signal Processing, vol.85, issue.8, pp.1501-1510, 2005. ,
DOI : 10.1016/j.sigpro.2005.01.012
URL : https://hal.archives-ouvertes.fr/inria-00070662
Adaptive Detection of Multiple Change-Points in Asset Price Volatility, Long memory in economics, pp.129-156, 2007. ,
DOI : 10.1007/978-3-540-34625-8_5
Detecting multiple change-points in the mean of Gaussian process by model selection, Signal Processing, vol.85, issue.4, pp.717-736, 2005. ,
DOI : 10.1016/j.sigpro.2004.11.012
URL : https://hal.archives-ouvertes.fr/inria-00071847
Detection and localization of change-points in highdimensional network traffic data. The Annals of Applied Statistics, pp.637-662, 2009. ,
Applying the hidden markov model methodology for unsupervised learning of temporal data, International Journal of Knowledge Based Intelligent Engineering Systems, vol.6, issue.3, pp.152-160, 2002. ,
Time series clustering: Complex is simpler, the 28th International Conference on Machine Learning (ICML'11), pp.118-119, 2011. ,
Robust retrospective multiple change-point estimation for multivariate data, 2011 IEEE Statistical Signal Processing Workshop (SSP), pp.405-408, 2011. ,
DOI : 10.1109/SSP.2011.5967716
URL : https://hal.archives-ouvertes.fr/hal-00564410
Distributed detection/localization of change-points in high-dimensional network traffic data, Statistics and Computing, vol.3, issue.3, pp.485-496, 2012. ,
DOI : 10.1007/s11222-011-9240-5
URL : https://hal.archives-ouvertes.fr/hal-00420862
A discriminative framework for clustering via similarity functions, Proceedings of the fourtieth annual ACM symposium on Theory of computing, STOC 08, pp.23-98, 2008. ,
DOI : 10.1145/1374376.1374474
The planar k-means problem is nphard, WALCOM '09: Proceedings of the 3rd International Workshop on Algorithms and Computation, pp.274-285, 2009. ,
A Non-asymptotic Theory for Model Selection, European Congress of Mathematics, pp.309-323, 2005. ,
DOI : 10.4171/009-1/20
How many clusters? Bayesian Analysis, pp.101-120, 2008. ,
Non-parametric inference for ergodic, stationary time series, Annals of Statistics, vol.24, issue.1, pp.370-379, 1996. ,
Weakly convergent non-parametric forecasting of stationary time series Information Theory, IEEE Transactions on, vol.43, issue.2, pp.483-498, 1997. ,
Weakly convergent non-parametric forecasting of stationary time series. Information Theory, IEEE Transactions on, vol.43, issue.2, pp.483-498, 1997. ,
Change-point problems. Ims, p.32, 1994. ,
Ergodic Theory, Randomness, and Dynamical Systems, p.46, 1974. ,
A hidden markov modelbased approach to sequential data clustering, pp.734-742, 2002. ,
Robust Sequential Algorithms for the Detection of Changes in Data Generating Processes, Journal of Intelligent & Robotic Systems, vol.13, issue.1, pp.3-17, 2010. ,
DOI : 10.1007/s10846-010-9405-z
A statistical approach for array cgh data analysis, BMC Bioinformatics, vol.6, issue.1, pp.27-48, 2005. ,
DOI : 10.1186/1471-2105-6-27
URL : https://hal.archives-ouvertes.fr/hal-00427846
Prediction of random sequences and universal coding. Problems of Information Transmission, pp.87-96, 1988. ,
Clustering processes, Proceedings of the the 27th International Conference on Machine Learning (ICML 2010), pp.919-926, 2010. ,
URL : https://hal.archives-ouvertes.fr/inria-00477238
Discrimination Between B-Processes is Impossible, Journal of Theoretical Probability, vol.44, issue.6, pp.565-575, 2010. ,
DOI : 10.1007/s10959-009-0263-1
URL : https://hal.archives-ouvertes.fr/hal-00639537
Sequence prediction in realizable and non-realizable cases, Proceedings of the the 23rd Conference on Learning Theory (COLT 2010), pp.119-131, 2010. ,
URL : https://hal.archives-ouvertes.fr/inria-00440669
On the relation between realizable and non-realizable cases of the sequence prediction problem, Journal of Machine Learning Research (JMLR), vol.12, pp.2161-2180, 2011. ,
URL : https://hal.archives-ouvertes.fr/hal-00639474
Testing composite hypotheses about discrete ergodic processes, TEST, vol.56, issue.3, pp.317-329, 2012. ,
DOI : 10.1007/s11749-011-0245-3
URL : https://hal.archives-ouvertes.fr/hal-00639477
Reducing statistical time-series problems to binary classification, Neural Information Processing Systems (NIPS), pp.2069-2077, 2012. ,
URL : https://hal.archives-ouvertes.fr/hal-00675637
Nonparametric Statistical Inference for Ergodic Processes, IEEE Transactions on Information Theory, vol.56, issue.3, pp.1430-1435, 2010. ,
DOI : 10.1109/TIT.2009.2039169
URL : https://hal.archives-ouvertes.fr/inria-00269249
A unified framework for model-based clustering, Journal of Machine Learning Research, vol.4, pp.1001-1037, 2003. ,
The Ergodic Theory of Discrete Sample Paths, AMS Bookstore, vol.13, issue.46, pp.20-112, 1996. ,
DOI : 10.1090/gsm/013
Clustering sequences with hidden Markov models, Advances in Neural Information Processing Systems, pp.648-654, 1997. ,
Complexity-based induction systems: Comparisons and convergence theorems, IEEE Transactions on Information Theory, vol.24, issue.4, pp.422-432, 1978. ,
DOI : 10.1109/TIT.1978.1055913
String searching algorithms, World Scientific publishing company, vol.3, p.28, 1994. ,
DOI : 10.1142/2418
List decoding, Theoretical Computer Science: Exploring New Frontiers of Theoretical Informatics, pp.25-41, 2000. ,
DOI : 10.1145/346048.346049
Structural learning with time-varying components: tracking the cross-section of financial time series, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.12, issue.3, pp.321-341, 2005. ,
DOI : 10.1214/aos/1069362315
A novel approach to detection of intrusions in computer networks via adaptive sequential and batch-sequential change-point detection methods, IEEE Transactions on Signal Processing, vol.54, issue.9, pp.3372-3382, 2006. ,
DOI : 10.1109/TSP.2006.879308
On-line construction of suffix trees, Algorithmica, vol.10, issue.3, pp.249-260, 1995. ,
DOI : 10.1007/BF01206331
Fast detection of multiple change-points shared by many signals using group lars, NIPS, pp.2343-2351, 2010. ,
Detecting disorder in multidimensional random processes, Soviet Mathematics Doklady, vol.24, pp.55-59, 1981. ,
Estimating the number of change-points via Schwarz' criterion, Statistics & Probability Letters, vol.6, issue.3, pp.181-189, 1988. ,
DOI : 10.1016/0167-7152(88)90118-6