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Résumé v

Jeux combinatoires dans les graphes

Résumé : Dans cette thèse, nous étudions les jeux combinatoires sous
différentes contraintes. Un jeu combinatoire est un jeu à deux joueurs, sans
hasard, avec information complète et fini acyclique. D’abord, nous regardons
les jeux impartiaux en version normale, en particulier les jeux VertexNim

et Timber. Puis nous considérons les jeux partisans en version normale, où
nous prouvons des résultats sur les jeux Timbush, Toppling Dominoes

et Col. Ensuite, nous examinons ces jeux en version misère, et étudions
les jeux misères modulo l’univers des jeux dicots et modulo l’univers des
jeux dead-endings. Enfin, nous parlons du jeu de domination qui, s’il n’est
pas combinatoire, peut être étudié en utilisant des outils de théorie des jeux
combinatoires.

Mots-clés : jeux combinatoires, graphes, jeux impartiaux,

jeux partisans, version normale, version misère, jeu de domi-

nation



vi Abstract

Combinatorial games on graphs

Abstract: In this thesis, we study combinatorial games under different
conventions. A combinatorial game is a finite acyclic two-player game with
complete information and no chance. First, we look at impartial games
in normal play and in particular at the games VertexNim and Timber.
Then, we consider partizan games in normal play, with results on the games
Timbush, Toppling Dominoes and Col. Next, we look at all these games
in misère play, and study misère games modulo the dicot universe and modulo
the dead-ending universe. Finally, we talk about the domination game which,
despite not being a combinatorial game, may be studied with combinatorial
games theory tools.

Keywords: combinatorial games, graphs, impartial games,

partizan games, normal convention, misère convention, dom-

ination game
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Chapter 1. Introduction 1

Chapter 1

Introduction

Combinatorial games are games of pure strategy, closer to Checkers,
Chess or Go than to Dominion, League of Legends, or Rugby. They are
games satisfying some constraints insuring a player has a winning strategy.
Our goal here is to find which player it is, and even the strategy if possible.

There exist other game theories, such as economic game theory, where
there might be several players, who are allowed to play their moves at the
same time. There, the players’ ‘best’ strategies are often probabilistic, that
is for example a player would decide to play the move A with probability
0.3, the move B with probability 0.5, and the move C with probability 0.2,
because they do not know what their opponent might do and each of these
moves might be better than the other depending on the opponent’s move. In
combinatorial game, this does not happen, the ‘winning’ player always has
a deterministic winning strategy.

The first paper in combinatorial game theory was published in 1902 by
Bouton [5], who solved the game of Nim, game that would become the ref-
erence in impartial games thanks to the theory developed independently by
Grundy and Sprague in the 30s. For a few decades, researchers studied the
games where both players have the same moves and are only distinguished by
who plays first, games we call impartial. In the late 70s, Berlekamp, Conway
and Guy developed the theory of partizan games, where the two players may
have different moves. These games introduce many more possibilities, as for
example a player might have a winning strategy whoever starts playing. The
complexity of determining the winner of a combinatorial game was also con-
sidered, ranging from polynomial problems to exptime-complete problems.
Another topic in combinatorial game theory that has interested researchers
is the misère version of a game, that is the game where the winning con-
dition is reversed. These games were not well understood, mainly because
when they decompose, it is harder to put together the separate analysis of
the components, until Plambeck and Siegel proposed a way to make it sim-
pler in the beginning of the 21st century. References about the topic include
the books Winning Ways [4] and On Numbers and Games [10], and other
books that were published more recently, such as Lessons in Play [1], Games,
Puzzles, & Computation [11] and Combinatorial Game Theory [39].

Graph theory is more ancient, Euler was already looking at it in the 18th

century. A graph is a mathematical object that can be used to represent any
kind of network, such as computer networks, road networks, social networks,
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or neural networks.
Natural questions that arise on these networks can be translated under a

graph formalism. Among classic graph problems, one can mention colouring
and domination. These problems admit variants that are two-player games,
where the players may build an answer to the original problem.

In this thesis, we study combinatorial games, mostly games played on
graphs. We first give some basic definitions on games and graphs, before
presenting our results on games. We start with impartial games before going
to partizan games and continuing with games in misère play. We end with
a game that is not combinatorial but is more like a graph parameter.

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Combinatorial Games . . . . . . . . . . . . . . . . 2

1.1.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Definitions

1.1.1 Combinatorial Games

A combinatorial game is a finite two-player game with perfect information
and no chance. The players, called Left and Right, alternate moves until one
player has no available move. Under the normal convention, the last player
to move wins the game. Under the misère convention, that same player loses
the game. By convention, Left is a female player whereas Right is a male
player.

A position of a game can be defined recursively by its sets of options
G = {GL|GR}, where GL is the set of positions reachable in one move by
Left (called Left options), and GR the set of positions reachable in one move
by Right (called Right options). The word game can be used to refer to a
set of rules, as well as to a specific position as just described. A follower of
a game is a game that can be reached after a succession of (not necessarily
alternating) Left and Right moves. The zero game 0 = {·|·}, is the game
with no option (the dot indicates an empty set of options). The birthday of a
game is defined recursively as one plus the maximum birthday of its options,
with 0 being the only game with birthday 0. We say a game G is born on
day n if its birthday is n and that it is born by day n if its birthday is at
most n. The games born on day 1 are {0|·} = 1, {·|0} = 1 and {0|0} = ∗.
The games born by day 1 are the same with the addition of 0. A game G is
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0 1 1 ∗

Figure 1.1: Game trees of games born by day 1.

said to be simpler than a game H if the birthday of G is smaller than the
birthday of H.

A game can also be depicted by its game tree, where the game trees of
its options are linked to the root by downward edges, left-slanted for Left
options and right-slanted for Right options. For instance, the game trees of
games born by day 1 are depicted on Figure 1.1.

When the Left and Right options of a game are always the same and that
property is true for any follower of the game, we say the game is impartial.
Otherwise, we say it is partizan.

Given two games G = {GL|GR} and H = {HL|HR}, we recursively
define the (disjunctive) sum of G and H as G + H = {GL + H,G +
HL|GR + H,G + HR} (where GL + H is the set of sums of H and an
element of GL), i.e. the game where each player chooses on their turn
which one of G and H to play on. We write {GL1 · · ·GLk |GR1 · · ·GRℓ} for
{{GL1 · · ·GLk}|{GR1 · · ·GRℓ}} to simplify the notation. We denote by GL

any Left option of G, and by GR any of its Right options. The conjugate G
of a game G is defined recursively by G = {GR|GL} (where GR is the set of
conjugates of elements of GR), that is the game where Left and Right would
have switched their roles.

For both conventions, there are four possible outcomes for a game. Games
for which Left has a winning strategy whatever Right does and whoever plays
first have outcome L (for left). Similarly, N , P and R (for next, previous and
right) denote respectively the outcomes of games for which the first player,
the second player, and Right has a winning strategy. We note o+(G) the
normal outcome of a game G i.e. its outcome under the normal convention
and o−(G) the misère outcome of G. We also say for any outcome O, G ∈ O+

or G is a (normal) O-position whenever o+(G) = O, and H ∈ O− or H is
a (misère) O-position when o−(H) = O. Outcomes are partially ordered
according to Figure 1.2, with greater games being more advantageous for
Left. Note that there is no general relationship between the normal outcome
and the misère outcome of a game.

Given two games G and H, we say that G is greater than or equal to H
in normal play whenever Left prefers the game G rather than the game H in
any sum, that is G >+ H if for every game X, o+(G+X) > o+(H+X). We
say that G and H are equivalent in normal play, denoted G ≡+ H, when for
every game X, o+(G +X) = o+(H +X) (i.e. G >+ H and H >+ G). We
also say that G is (strictly) greater than H in normal play if G is greater than
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L

N P

R

Figure 1.2: Partial ordering of outcomes

or equal to H but G and H are not equivalent, that is G >+ H if G >+ H
and G 6≡+ H. We say that G and H are incomparable in normal play if
none is greater than or equal to the other, that is G �+ H if G �+ H and
H �+ G. Inequality, equivalence and incomparability are defined similarly
under misère convention, using superscript − instead of +. We reserved the
symbol = for equality between game trees, when used between games.

For normal play, there exist other characterisations for checking inequal-
ity:

G >
+ H ⇔ G+H ∈ P+ ∪ L+

⇔ (∀GR ∈ GR, GR 
 H) ∧ (∀HL ∈ HL, G 
 HL).

The last characterisation was actually the original definition given by Conway
in [10]. The second one tells us that for any games G and H, if G and H are
equivalent in normal play, then the sum of G and the conjugate of H is a
normal P-position and, as G is equivalent to itself, G+G is always a normal
P-position, which is actually easy to prove by mimicking the first player’s
move as the second player.

In normal play, finding the outcome of a game is the same as finding how
it is compared to 0:





G is a P-position if G ≡+ 0 : G is zero
G is an L-position if G >+ 0 : G is positive
G is an R-position if G <+ 0 : G is negative
G is an N -position if G �+ 0 : G is fuzzy

For example, 0 is zero, 1 is positive, 1 is negative, and ∗ is fuzzy.
As G +G ≡+ 0 for any game G, we call the conjugate of a game G the

negative of G and denote it −G in normal play.
We remind the reader that the order is only partial, in both conventions,

and many pairs of games are incomparable, such as 0 and ∗.
Siegel showed [38] that if two games are comparable in misère play, they

are comparable in normal play as well, in the same order, namely:

Theorem 1.1 (Siegel [38]) If G >− H, then G >+ H.
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However, the converse in not true, as {∗|∗} ≡+ 0 and {∗|∗} �− 0.
Some options are considered irrelevant, either because there is a better

move or because the answer of the opponent is ‘predictable’. We give here
the definition of these options, omitting the superscripts + and −, as they
are defined the same way for normal play and misère play.

Definition 1.2 (dominated and reversible options)
Let G be a game.

(a) A Left option GL is dominated by some other Left option GL′

if
GL′

> GL.

(b) A Right option GR is dominated by some other Right option GR′

if
GR′

6 GR.

(c) A Left option GL is reversible through some Right option GLR if
GLR 6 G.

(d) A Right option GR is reversible through some Left option GRL if
GRL > G.

In both normal and misère play, a game is said to be in canonical form
if none of its options is dominated or reversible and all its options are in
canonical form, and every game is equivalent to a single game in canonical
form [4, 10, 38]. To get to this canonical form, one may use two different
operations corresponding to the status of the option they want to get rid of:

• Whenever GL1 is dominated, removing GL1 leaves an equivalent game:
G ≡ {GL \ {GL1}|GR}

• Whenever GR1 is dominated, removing GR1 leaves an equivalent game:
G ≡ {GL|GR \ {GR1}}

• Whenever GL1 is reversible through GL1R1 , bypassing GL1 leaves an
equivalent game: G ≡ {(GL \ {GL1}) ∪GL1R1L|GR}

• Whenever GR1 is reversible through GR1L1 , bypassing GR1 leaves an
equivalent game: G ≡ {GL|(GR \ {GR1}) ∪GR1L1R}

Theorem 1.1 implies that if an option is dominated (resp. reversible) in
misère play, it is also dominated (resp. reversible) in normal play. Again,
the converse is not true: in {{∗|∗}, 0|{∗|∗}, 0}, all options are dominated in
normal play, but none is dominated in misère play; in {∗|∗}, both options are
reversible in normal play, but none is reversible in misère play. This implies
that the normal canonical form of a game and its misère canonical form may
be different: {∗|∗} is in misère canonical form, whereas its normal canonical
form is 0.
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a b
c

d e f

Figure 1.3: The undirected graph with

vertex set {a, b, c, d, e, f} and edge set

{(a, d), (b, c), (b, e), (b, f), (e, f)}

a b
c

d e f

Figure 1.4: The directed graph with

vertex set {a, b, c, d, e, f} and arc set

{(a, b), (c, b), (c, f), (e, d), (f, c)}

1.1.2 Graphs

A graph G consists of a set of vertices V (G) and a multiset of edges E(G)
representing a symmetric binary relation between the vertices. As the re-
lation is symmetric, the edge between two vertices u and v will be repre-
sented by (u, v) or (v, u) and the multiplicity of the edge between u and
v is the sum of the multiplicity of these edges in the multiset E(G). We
say a graph is simple if the relation represented by E(G) is irreflexive and
E(G) is a set, that is if no vertex is in relation with itself and the mul-
tiplicity of each edge is (0 or) 1. A directed graph G is a generalisation
of a graph, such that the relation represented by E(G) no longer needs to
be symmetric. We sometimes note A(G) rather than E(G) when G is a
directed graph, and we call directed edges or arcs the elements of A(G).
The underlying undirected graph und(G) of a directed graph G is the graph
obtained by considering arcs as edges, that is V (und(G)) = V (G) and
E(und(G)) = {(u, v)|(u, v) ∈ A(G) or (v, u) ∈ A(G)}. An oriented graph
is a directed graph whose underlying undirected graph is a simple graph.
An orientation

−→
G of a graph G is a directed graph such that the underly-

ing undirected graph of
−→
G is G. The number of vertices |V (G)| of a graph

G is called the order of G. A subgraph H of a graph G is a graph whose
vertex set is a subset of V (G) and whose edge set is a subset of E(G). An
induced subgraph H of G is a subgraph of G such that E(H) is the restric-
tion of E(G) to elements of V (H). The graph induced by a set of vertices
{v1 · · · vk} of a graph G is the induced subgraph G[{v1 · · · vk}] of G with
vertex set {v1 · · · vk}.

Example 1.3 Figure 1.3 gives an example of a graph. The graph is simple
as the multiplicity of each edge is at most one. Figure 1.4 gives an example
of a directed graph. The directed graph is simple as the multiplicity of each
edge is at most one. Nevertheless, it is not an oriented graph as it contains
both the arc (c, f) and the arc (f, c).
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A path (v1 · · · vn) of a graph G is a list of vertices of G such that for any
i in J2;nK, (vi−1, vi) is an edge of G. A directed path (v1 · · · vn) of a directed
graph G is a list of vertices of G such that for any i in J2;nK, (vi−1, vi) is an
arc of G. We say that (n − 1) is the length of the path, and that the path
is from v1 to vn. A cycle (v1 · · · vn) of a graph G is a path of G such that
(vn, v1) ∈ E(G). A circuit (v1 · · · vn) of a directed graph G is a directed path
of G such that (vn, v1) ∈ A(G). We also say that n is the length of the cycle.
A path or cycle is said to be simple if all its vertices are pairwise distinct. A
graph is said to be connected if for any pair u, v of vertices, there exists a path
from u to v. A connected component of a graph G is a maximal connected
subgraph of G. A directed graph is said to be strongly connected if for any
pair u, v of vertices, there exists a directed path from u to v and a directed
path from v to u. A strongly connected component of a directed graph G is
a maximal strongly connected subgraph of G. A connected component of a
directed graph G is a connected component of und(G). The distance d(u, v)
between two vertices u and v in a graph G is the length of the shortest path
between u and v in G if such a path exists, and infinite otherwise.

Example 1.4 Figure 1.5 gives an example of a path. Figure 1.6 gives an
example of a cycle. We can see that both graphs are connected. Figure 1.7
is an example of a non-connected graph having three connected components:
there is no path from a to b or to c, and there is none either from b to c.
Figure 1.8 is an example of a strongly-connected directed graph: given any
two vertices of the directed graph, one only needs to follow the grey arcs
from one to the other.

A subdivision of a graph G is a graph obtained from G by replacing some
edges by paths of any length. The intersection graph of a graph G is the
subdivision of G such that each edge of G has been replaced by a path with
two edges.

Example 1.5 Figure 1.9 gives an example of a graph (on the left) and its
intersection graph (on the right). Every edge of the first graph has been
replaced by a vertex incident to both ends of that edge.

A neighbour u of a vertex v in a graph G is a vertex such that
(u, v) ∈ E(G). When u is a neighbour of v, we say u and v are adja-
cent. The neighbourhood N(v) of a vertex v is the set of all neighbours of v.
The closed neighbourhood N [v] of a vertex v is the set N(v)∪{v}. The degree
dG(v) (or d(v)) of a vertex v in a graph G is the number of its neighbours.
An in-neighbour of a vertex v in a directed graph G is a vertex u such that
(u, v) ∈ E(G). An out-neighbour of a vertex u in a directed graph G is a
vertex v such that (u, v) ∈ E(G). We say (u, v) is an out-arc of u and an
in-arc of v. The in-degree d−G(v) (or d−(v)) of a vertex v in a directed graph
G is the number of its in-neighbours. The out-degree d+G(v) (or d+(v)) of
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Figure 1.5: The path on four vertices Figure 1.6: The cycle on six vertices

a b c

Figure 1.7: A graph with three con-

nected components

Figure 1.8: A strongly connected di-

rected graph

Figure 1.9: A graph and its intersection graph
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Figure 1.10: An independent set of a

graph

Figure 1.11: A clique of a graph

a vertex v in a directed graph G is the number of its out-neighbours. The
degree dG(v) (or d(v)) of a vertex v in a directed graph G is the sum of its
in-degree and its out-degree.

An independent set is a set of vertices inducing a graph with no edge.
A clique is a set of vertices inducing a graph where any pair of vertices
forms an edge. A proper colouring of a graph G over a set S is a function
c : V (G) → S such that for any element i of S, c−1(i) is an independent set.
A partial proper colouring of a graph G is a proper colouring of an induced
subgraph of G. A bipartite graph is a graph admitting a proper colouring
over a set of size 2. A planar graph is a graph one can draw on the plane
without having edges crossing each other.

Example 1.6 In Figure 1.10, the grey vertices form an independent set of
the graph: they are pairwise not adjacent. In Figure 1.10, the grey vertices
form a clique of the graph: they are pairwise adjacent.

The complement G of a simple graph G is the
graph with vertex set V (G) = V (G) and edge set
E(G) = {(u, v)|u, v ∈ V (G), u 6= v, (u, v) /∈ E(G)}. The disjoint union
G ∪ H of two graphs G and H (having disjoint sets of vertices, that is
V (G) ∩ V (H) = ∅) is the graph with vertex set V (G ∪H) = V (G) ∪ V (H)
and edge set E(G ∪H) = E(G) ∪ E(H). The join G ∨ H of two graphs G
and H is the graph with vertex set V (G ∨H) = V (G) ∪ V (H) and edge
set E(G ∨H) = E(G) ∪E(H) ∪ {(u, v)|u ∈ V (G), v ∈ V (H)}. The disjoint
union and the join operations are extended to more than two graphs,
iteratively, as the operation is both commutative and associative. The
Cartesian product G�H of two graphs G and H is the graph with vertex
set V (G�H) = {(u, v)|u ∈ V (G), v ∈ V (H)} and edge set

E(G�H) = {((u1, v1), (u2, v2))|(u1 = u2 and (v1, v2) ∈ E(H))
or (v1 = v2 and (u1, u2) ∈ E(G))}.
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Figure 1.12: A forest of three trees

Example 1.7 The complement of an independent set is a clique, and vice
versa. The join of n vertices is a clique. The disjoint union of n vertices is
an independent set. The complement of the join of k graphs is the disjoint
union of the complements of these graphs. The Cartesian product of two
single edges is a cycle on four vertices.

A tree is a connected graph with no cycle. A forest is a graph with no
cycle. A star is a tree where all vertices but one have degree 1. That vertex
with higher degree is called the center of the star. A subdivided star is any
subdivision of a star. A caterpillar is a tree such that the set of vertices of
degree at least 2 forms a path. A rooted tree is a tree with a special vertex,
called the root of the tree. In a rooted tree, a vertex u is a child of a vertex
v if u and v are adjacent and the distance between u and the root is greater
than the distance between v and the root; in this case, we say v is a parent
of u. In a tree, a vertex of degree 1 is called a leaf, and any other vertex is
called an internal node.

Example 1.8 Figure 1.12 is an example of a forest. As in any forest, each
connected component is a tree. The middle one is a subdivided star, where
the grey vertex is the center. The right one is a caterpillar, where the vertices
of degree at least two are circled in grey, while the edges connecting them
are grey too, highlighting the fact they form a path.

A split graph is a graph whose vertex set can be partitioned into a clique
and an independent set. The adjacency relation between these two sets might
be anything.

Example 1.9 Figure 1.13 gives an example of a split graph. The white
vertices induce a clique, and the black vertices induce an independent set.
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Figure 1.13: A split graph

The set of cographs is defined recursively as follows: the graph with one
vertex and no edge is a cograph; if G and H are cographs, then G ∪H and
G ∨H are cographs.
Given a rooted tree with all internal nodes labelled D or J , going from the
leaves to the root, we can associate to each node of the tree a graph as follows:
a leaf is associated to a single vertex; a node labelled D is associated to the
disjoint union of its children; and a node labelled J is associated to the join
of its children.
A cotree of a cograph is a labelled rooted tree such that: the leaves correspond
to the vertices of the cograph; the internal node are labelled D or J ; and the
graph associated to the root is the cograph.

Example 1.10 Figure 1.14 gives an example of a cograph, while Figure 1.15
gives a cotree associated with the cograph of Figure 1.14. The root is the
J vertex on the top. The two vertices labelled J on the right of the cotree
could be merged (into the root), but this is not necessary.
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a b c d e

f g h

Figure 1.14: A cograph

a c b d e f h g

D

J

D

J

J

D

J

Figure 1.15: An associated cotree
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Chapter 2

Impartial games

Impartial games are a subset of games in which the players are not distin-
guished, that is they both have the same set of moves through the whole
game. More formally, a game G is said to be impartial if GL = GR and all
its options are impartial.

As the players are not distinguished, the only possible outcomes are N
and P (the only difference between the players is who plays first). When we
deal with impartial games only, we refer to the first player as she and the
second player as he.

Sprague [41, 42] and Grundy [19] showed independently that any impar-
tial position is equivalent in normal play to a Nim position on a single heap.
The size of such a heap is unique, which induces a function on positions
that is called the Grundy-value and is noted g. An impartial game has out-
come P if and only if its Grundy-value is 0. The Grundy-value of a game
is the minimum non-negative integer that is not the Grundy-value of any
option of this game. The purpose of the Grundy-value is to give additional
information compared to the outcome. It is actually sufficient to know the
Grundy-values of two games to determine the Grundy-value of their sum:

g(G+H) = g(G)⊕ g(H)

where ⊕ is the XOR of integers (sum of numbers in binary without carrying).
That operation is also called the Nim-sum of two integers. It is known that
g(G) = g(H) ⇔ G ≡+ H when G and H are both impartial games (the
Grundy-value is not defined on partizan games), and two impartial games
having different Grundy-values are incomparable.

The impartial games we will present in this chapter are called Ver-

texNim and Timber. Both games are played on directed graphs, though
VertexNim is played on weighted directed graphs whereas having weights
would be irrelevant when playing Timber. In Section 2.1, we define the game
VertexNim and give polynomial-time algorithms for finding the normal
outcome of directed graphs with a self loop on every vertex and undirected
graphs where the self-loops are optional. In Section 2.2, we define the game
Timber, show how to reduce any position to a forest and give polynomial-
time algorithms for finding the normal outcome of connected directed graphs
and oriented forests of paths.
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The results presented in Section 2.1 are about to appear in [16] (joint
work with Éric Duchêne), and those presented in Section 2.2 appeared in [29]
(joint work with Richard Nowakowski, Emily Lamoureux, Stephanie Mellon
and Timothy Miller).

2.1 VertexNim . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Directed graphs . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Undirected graphs . . . . . . . . . . . . . . . . . . 21

2.2 Timber . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 General results . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . 40

2.1 VertexNim

VertexNim is an impartial game played on a weighted strongly-connected
directed graph with a token on a vertex. On a move, a player decreases the
weight of the vertex where the token is and slides the token along a directed
edge. When the weight of a vertex v is set to 0, v is removed from the
graph and all the pairs of arcs (p, v) and (v, s) (with p and s not necessarily
distinct) are replaced by an arc (p, s).

A position is described by a triple (G,w, u), where G is a directed graph,
w a function from V (G) to positive integers and u a vertex of G.

Example 2.1 Figure 2.1 gives an example of a move. The token is on the
grey vertex. The player whose turn it is chooses to decrease the weight of
this vertex from 5 to 2 and slide the token through the arc to the right. They
could have slid it through the arc to the left, but through no other arc.

Example 2.2 Figure 2.2 is an example of a move which sets a vertex to
0. The token is on the grey vertex. The player whose turn it is chooses to
decrease the weight of this vertex from 2 to 0 and move the token through the
arc to the right. New arcs are added from the bottom left vertex and middle
right vertex to the bottom middle vertex, top middle vertex and middle right
vertex, creating a self loop on the middle right vertex.

VertexNim can also be played on a connected undirected graph G by
seeing it as a symmetric directed graph where the vertex set remains the
same and the arc set is {(u, v), (v, u)|(u, v) ∈ E(G)}.



Chapter 2. Impartial games 15

2 3

3 5 1

2 3

3 2 1

Figure 2.1: Playing a move in VertexNim

2 3 5

7 2 2

4 2 5

2 3 5

7 2

4 2 5

Figure 2.2: Setting a vertex to 0 in VertexNim
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VertexNim can be seen as a variant of the game Vertex NimG (see
[43]), where the players cannot put the token on a vertex with weight 0 and
instead continue to move it until it reaches a vertex with positive weight,
though we only consider the Remove then move version.

Multiple arcs are irrelevant, so we can consider we are only dealing with
simple directed graphs.

Example 2.3 Figure 2.3 shows an execution of the game. The token is on
the grey vertex and the player whose turn it is moves it through the grey arc.
After 11 moves, all weights are set to 0, so the player who started the game
wins. Be careful that it does not mean the starting position is an N -position,
as the second player might have better moves to choose at some point in the
game.

In this section, we present algorithms to find the outcome of any directed
graph with a self loop on every vertex and the outcome of any undirected
graph.

2.1.1 Directed graphs

On a circuit, without any loop, the game is called Adjacent Nim. We first
analyse the case when the graph is a circuit and no vertex has weight 1, that
is w−1(1) = ∅. If the length of the circuit is odd, the first player can reduce
the weight of the first vertex to 1 then “copy” the moves of the second player
(reducing the weight of the vertex to 0 if he just did the same, and reducing
the weight to 1 otherwise) to force him to play on the vertices she leaves him
in a way so that he is forced to empty them (because she left the weight as
1), breaking the “symmetry” on the last vertex to save the last move for her.
When the length of the circuit is even, a player who would empty a vertex
while no 1 has appeared would get themself in the position of a second player
on an odd circuit, so it is never a good move and the two players will play on
distinct sets of vertices until a vertex is lowered to 1. Actually, we will see
that getting the weight of a vertex to 1 is not good either, so the minimum
weight of the vertices decides the winner.

Theorem 2.4 Let (Cn, w, v1) : n > 3 be an instance of VertexNim with
Cn the circuit of length n and w : V → N>1.

• If n is odd, then (Cn, w, v1) is an N -position.
• If n is even, then (Cn, w, v1) is an N -position if and only if the smallest

index of a vertex of minimum weight, that is min{argmin
16i6n

w(vi)}, is

even.

Note that when n is even, the above Theorem implies that the first player
who must play on a vertex of minimum weight will lose the game.
Proof.
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Figure 2.3: Playing VertexNim, the token being on the grey vertex
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• Case (1) If n is odd, then the first player can apply the following
strategy to win: first, she plays w(v1) → 1. Then for all 1 6 i < n−1

2 :
if the second player empties v2i, then the first player also empties
the following vertex v2i+1. Otherwise, she sets w(v2i+1) to 1. The
strategy is different for the last two vertices of Cn: if the second
player empties vn−1, then she plays w(vn) → 1, otherwise she plays
w(vn) → 0. As w(v1) = 1, the second player is now forced to empty
v1. Since an even number of vertices have been deleted at this
point, we have an odd circuit to play on. It now suffices for the
first player to empty all the vertices on the second run. Indeed, the
second player is also forced to set each weight to 0 since he has to
play on vertices having their weight equal to 1. Since the circuit is
odd, the first player is guaranteed to make the last move on vn or vn−1.

• Case (2) If n is even, we claim that who must play the first vertex of
minimum weight will lose the game. The winning strategy of the other
player consists in decreasing by 1 the weight of each vertex at their
turn. First assume that min{argmin

16i6n

w(vi)} is odd. If the strategy

of the second player always consists in decreasing the weight of the
vertices he plays on by 1, then the first player will be the first to
set a weight to 0 or 1. If she sets a vertex to 0, then the second
player now faces an instance (C ′

n−1, w
′, vi) with w′ : V ′ → N>1, which

is winning according to the previous item. If she sets a vertex to
1, then the second player will empty the following vertex, leaving to
the first player a position (C ′

n−1 = (v′1, v
′
2, . . . , v

′
n−1), w

′, v′2) with w′ :
V ′ → N>1 except on w′(v′1) = 1. This position corresponds to the
one of the previous item after the first move, and is thus losing. A
similar argument shows that the first player has a winning strategy if
min{argmin

16i6n

w(vi)} is even.

�

On a general strongly connected digraph, the problem seems harder.
Nevertheless, we manage to find the outcome of a strongly connected digraph
having the additional condition that every vertex has a self loop.

When the token is on a vertex with weight at least 2 and a self loop, we
give a non-constructive argument that the game is an N -position (though
from the rest of the proof, we can deduce a winning move in polynomial
time). Hence, when the token is on a vertex of weight 1, the aim of both
players is to have the other player be the one that moves it to a vertex with
weight at least 2. This is why we define a labelling of the vertices of the
directed graph that indicates if the next player is on a good position to have
her opponent eventually move the token to a vertex with weight at least 2.
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Definition 2.5 Let G be a directed graph. We define a labelling
loG : V (G) → {P,N} as follows :
Let S ⊆ V (G) be a non-empty set of vertices such that the graph induced by
S is strongly connected and ∀u ∈ S,∀v ∈ (V (G)\S), (u, v) /∈ E(G).
Let T = {v ∈ V (G)\S | ∃u ∈ S, (v, u) ∈ E(G)}.
Let Ge be the graph induced by V (G)\S and Go the graph induced by
V (G)\(S ∪ T ).
If |S| is even, we label N all elements of S and we label elements of V \ S
as we would have labelled them in the graph Ge.
If |S| is odd, we label P all elements of S, we label N all elements of T , and
we label elements of V \ (S ∪ T ) as we would have labelled them in the graph
Go.

When decomposing the graph into strongly connected components, S is one
of those with no out-arc. The choice of S is not unique, unlike the loG
function: if S1 and S2 are both strongly connected components without out-
arcs, the one which is not chosen as the first set S will remain a strongly
connected component after the removal of the other, and as it has no out-arc,
none of its vertices will be in the T set.

The labelled graph does not need to be strongly connected in that defi-
nition as we will use it on the subgraph of our position induced by vertices
of weight 1, where a path from some vertices might have to go through a
vertex of bigger weight to reach some other vertices of weight 1.

Example 2.6 Figure 2.4 gives the lo labelling of a directed graph. The
sets Si, Ti are pointed out to give the order in which we consider them. Note
that several orders are possible, but all return the same labelling. All vertices
belonging to S1 are labelled N because the size of S1 is even. As such, T1

is considered empty even though there are vertices having out-neighbours in
S1. All vertices belonging to S5 are labelled P because the size of S5 is odd.
As such, the two vertices belonging to T5 (because they are unlabelled at
that time and have an outneighbour in S5) are labelled N .

We now give the algorithm for finding the outcome of a strongly con-
nected directed graph with a self loop on every vertex.

Theorem 2.7 Let (G,w, u) be an instance of VertexNim where G is
strongly connected with a self loop on each vertex. Deciding whether (G,w,u)
is P or N can be done in time O(|V (G)||E(G)|).

Proof. Let G′ be the induced subgraph of G such that
V (G′) = {v ∈ V (G) | w(v) = 1}.
If G = G′, then (G,w, u) is an N -position if and only if |V (G)| is odd since
the problem reduces to “She loves move, she loves me not”. We will now
assume that G 6= G′, and consider two cases for w(u):
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Figure 2.4: lo-labelling of a directed graph

• Case (1) Assume w(u) > 2. If there is a winning move which reduces
the weight of u to 0, then we can play it and win. Otherwise, reducing
the weight of u to 1 and staying on u is a winning move. Hence
(G,w, u) is an N -position.

• Case (2) Assume now w(u) = 1, i.e., u ∈ G′. According to Definition
2.5, computing loG′ yields a sequence of couples of sets (Si, Ti) (which
is not unique). Note that we do not consider Ti when Si has an even
size. Thus the following assertions hold: if u ∈ Si for some i, then any
direct successor v of u is either in the same component Si (as there
are no out-arc) or has been previously labelled (is in ∪j<i(Sj ∪ Tj)),
and if u ∈ Ti 6= ∅ for some i, then there exists a direct successor v of
u in the set Si, with loG′(v) = P.
Our goal is to show that (G,w, u) is an N -position if and only
if loG′(u) = N by induction on |V (G′)|. If |V (G′)| = 1, then
V (G′) = {u} and loG′(u) = P. Since w(u) = 1, we are forced to
reduce u to 0 and go to a vertex v such that w(v) > 2, which we
previously proved to be a losing move. Now assume |V (G′)| > 2.
First, note that when one reduces the weight of a vertex v to 0, the
replacement of the arcs does not change the strongly connected com-
ponents (except for the component containing v of course, which loses



Chapter 2. Impartial games 21

one vertex). Consequently, if u ∈ Si for some i, then for any vertex
v ∈ ∪i−1

l=1(Tl∪Sl), loG′\{u}(v) = loG′(v) and for any vertex w ∈ Si\{u},
loG′\{u}(w) 6= loG′(w) since parity of Si has changed. If u ∈ Ti for some
i, then for any vertex v ∈ (∪i−1

l=1(Tl ∪ Sl)) ∪ Si, loG′\{u}(v) = loG′(v).
We now consider two cases for u: first assume that loG′(u) = P, with
u ∈ Si for some i. We reduce the weight of u to 0 and we are forced to
move to a direct successor v. If w(v) > 2, we previously proved this is
a losing move. If v ∈ ∪i−1

l=1(Tl ∪ Sl), then loG′\{u}(v) = loG′(v) = N (if
loG′(v) = P , we would have v ∈ Sl, and so u ∈ Tl) and it is a losing
move by induction hypothesis. If v ∈ Si, then loG′\{u}(v) 6= loG′(v)
and as loG′(v) = P , loG′\{u}(v) = N and the move to v is a losing
move by induction hypothesis.
Now assume that loG′(u) = N . If u ∈ Ti for some i, we can reduce
the weight of u to 0 and move to a vertex v ∈ Si, which is a winning
move by induction hypothesis. If u ∈ Si for some i, it means that
|Si| is even, we can reduce the weight of u to 0 and move to a vertex
v ∈ Si, with loG′\{u}(v) 6= loG′(v) = N . This is a winning move by
induction hypothesis. Hence, (G,w, u) is an N -position if and only if
loG′(u) = N . Figure 2.5 illustrates the computation of the lo function.

Concerning the complexity of the computation, note that when w(u) > 2,
the algorithm answers in constant time. The computation of loG′(u) when
w(u) = 1 needs to be analysed more carefully. Decomposing a directed graph
H into strongly connected components to find the sets S and T can be done
in time O(|V (H)| + |E(H)|), and both |V (H)| and |E(H)| are less than or
equal to |E(G)| in our case since H is a subgraph of G and G is strongly
connected. Moreover, the number of times we compute S and T is clearly
bounded by |V (G)|. These remarks lead to a global algorithm running in
O(|V (G)||E(G)|) time. �

The complexity of the problem on a general digraph where some of the
vertices with weight at least 2 have no self loop is still open (remark that
having a self loop on a vertex of weight 1 does not affect the game).

2.1.2 Undirected graphs

On undirected graphs with a self loop on each vertex, the computation of
the labelling is easier since any connected component is “strongly connected”.
Hence, the same algorithm gives a better complexity as the labelling of the
subgraph induced by the vertices of weight 1 becomes linear.

Proposition 2.8 Let (G,w, u) be a VertexNim position on an undirected
graph such that there is a self loop on each vertex of G. Deciding whether
(G,w, u) is P or N can be done in time O(|V (G)|).
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Figure 2.5: lo-labelling function of a subgraph induced by vertices of weight 1
assuming every vertex has an undrawn self loop

Proof. Let G′ be the induced subgraph of G such that
V (G′) = {v ∈ V (G) | w(v) = 1}.
If G = G′, then (G,w, u) is an N -position if and only if |V (G)| is odd since
the problem reduces to “She loves move, she loves me not”. In the rest of
the proof, assume G 6= G′.

• Case (1) We first consider the case where w(u) > 2. If there is a
winning move which reduces the weight of u to 0, then we play it and
win. Otherwise, reducing the weight of u to 1 and staying on u is a
winning move. Hence (G,w, u) is an N -position.

• Case (2) Assume w(u) = 1. Let nu be the number of vertices of the
connected component of G′ which contains u. We show that (G,w, u)
is an N -position if and only if nu is even by induction on nu. If nu = 1,
then we are forced to reduce the weight of u to 0 and move to another
vertex v having w(v) > 2, which we previously proved to be a losing
move. Now assume nu > 2. If nu is even, we reduce the weight of
u to 0 and move to an adjacent vertex v with w(v) = 1, which is a
winning move by induction hypothesis. If nu is odd, then we reduce
the weight of u to 0 and we are forced to move to an adjacent vertex v.
If w(v) > 2, then we previously proved it is a losing move. If w(v) = 1,
this is also a losing move by induction hypothesis. Therefore in that
case, (G,w, u) is an N -position if and only if nu is even.



Chapter 2. Impartial games 23

Concerning the complexity of the computation, note that when w(u) > 2,
the algorithm answers in constant time. When w(u) = 1, we only need to
find the connected component of G′ containing u and its order, which can
be done in O(|V (G)|) time. Thus, the algorithm runs in O(|V (G)|) time. �

We now focus on the general case where the self loops are optional. A
vertex of weight at least 2 with a self loop is still a winning starting point
for the same reason as in the previous studied cases, and lowering the weight
of a vertex to 0 gives a self loop to all its neighbours because the graph is
undirected, so the vertices of weight 1 are taken care of the same way as in
the above proposition. We show how to decide the outcome of a position in
the following theorem.

Theorem 2.9 Let (G,w, u) be a Vertexnim position on an undirected
graph. Deciding whether (G,w, u) is P or N can be done in O(|V (G)||E(G)|)
time.

The proof of this theorem requires several definitions that we present
here.

Definition 2.10 Let G be an undirected graph with a weight function
w : V → N>0 defined on its vertices.
Let S = {u ∈ V (G) | ∀v ∈ V (G), w(u) 6 w(v)}.
Let T = {v ∈ V (G)\S | ∃u ∈ S, (v, u) ∈ E(G)}.

Let G̃ be the graph induced by V (G) \ (S ∪ T ).
We define a labelling luG,w of its vertices as follows :

• ∀u ∈ S, luG,w(u) = P, ∀v ∈ T , luG,w(v) = N
• ∀t ∈ V (G)\(S ∪ T ), luG,w(t) = lu

G̃,w
(t).

Example 2.11 Figure 2.6 gives the lu labelling of an undirected weighted
graph. The lowest weight is 2, so all the vertices having weight 2 are labelled
P. Then we know we can label all their unlabelled neighbours with N .

Proof. Let Gu be the induced subgraph of G such that
V (Gu) = {v ∈ V (G) | w(v) = 1 or v = u}, and G′ be the induced
subgraph of G such that

V (G′) = {v ∈ V (G) |w(v) > 2
(v, v) /∈ E(G)
∀t ∈ V (G), (v, t) ∈ E(G) ⇒ w(t) > 2}.

If G = Gu and w(u) = 1, then (G,w, u) is an N -position if and only if
|V (G)| is odd since it reduces to “She loves move, she loves me not”.
If G = Gu and w(u) > 2, we reduce the weight of u to 0 and move to any
vertex if |V (G)| is odd, and we reduce the weight of u to 1 and move to
any vertex if |V (G)| is even; both are winning moves, hence (G,w, u) is an
N -position.
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Figure 2.6: lu-labelling function of an undirected graph

In the rest of the proof we will assume that G 6= Gu. In the first three cases,
we assume u /∈ G′.

• Case (1) Assume w(u) > 2 and there is a loop on u. If there is a
winning move which reduces the weight of u to 0, then we can play it
and win. Otherwise, reducing the weight of u to 1 and staying on u is
a winning move. Therefore (G,w, u) is an N -position.

• Case (2) Assume w(u) = 1.
Let n be the number of vertices of the connected component of
Gu which contains u. We show that (G,w, u) is an N -position if
and only if n is even by induction on n. If n = 1, then we are
forced to reduce the weight of u to 0 and move to another vertex
v, with w(v) > 2, which was proved to be a losing move since it
creates a loop on v. Now assume n > 2. If n is even, we reduce
the weight of u to 0 and move to a vertex v satisfying w(v) = 1,
which is a winning move by induction hypothesis (the connected
component of Gu containing u being unchanged, apart from the
removal of u). If n is odd, we reduce the weight of u to 0 and
move to some vertex v, creating a loop on it. If w(v) > 2, we
already proved this is a losing move. If w(v) = 1, it is a losing move
by induction hypothesis. We can therefore conclude that (G,w, u)
is an N -position if and only if n is even. Figure 2.7 illustrates this case.
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Figure 2.8: Case 3: an N -position

since u of weight w(u) > 1 has a neigh-

bour of weight 1.

• Case (3) Assume w(u) > 2 and there is a vertex v such that
(u, v) ∈ E(G) and w(v) = 1. Let n be the number of vertices of the
connected component of Gu which contains u. If n is odd, we reduce
the weight of u to 1 and we move to v, which we proved to be a winning
move. If n is even, we reduce the weight of u to 0 and we move to v,
which we also proved to be winning. Hence (G,w, u) is an N -position
in that case. Figure 2.8 illustrates this case.

• Case (4) Assume now u ∈ G′. We show that (G,w, u) is N if and only
if luG′,w(u) = N by induction on

∑
v∈V (G′) w(v). If

∑
v∈V (G′)w(v) =

2, we get G′ = {u} and we are forced to play to a vertex v such
that w(v) > 2 and v /∈ V (G′), which we proved to be a losing
move. Assume

∑
v∈V (G′)w(v) > 3. If luG′,w(u) = N , we reduce

the weight of u to w(u) − 1 and move to a vertex v of G′ such that
w(v) < w(u) and luG′,w(v) = P. Such a vertex exists by definition of
lu. Let (G1, w1, v) be the resulting position after such a move. Hence
luG′

1,w1
(v) = luG′,w(v) = P since the only weight that has been re-

duced remains greater or equal to the one of v. And (G1, w1, v) is a
P-position by induction hypothesis. If luG′,w(u) = P, the first player
is forced to reduce the weight of u and to move to some vertex v. Let
(G1, w1, v) be the resulting position. First remark that w1(v) > 2 since
u ∈ G′. If she reduces the weight of u to 0, she will lose since v now
has a self loop. If she reduces the weight of u to 1, she will also lose
since (u, v) ∈ E(G1) and w1(u) = 1 (according to case (3)).
Assume she reduced the weight of u to a number w1(u) > 2. Thus
luG′

1,w1
(u) still equals P since the only weight we modified is the one

of u and it has been decreased. If v /∈ G′, i.e., v has a loop or there
exists t ∈ V (G1) such that (v, t) ∈ E(G1) and w1(t) = 1, then the
second player wins according to cases (1) and (3). If v ∈ G′ and
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Figure 2.9: Case 4: lu-labelling of the subgraph G′

luG′,w(v) = N , then luG′

1,w1
(v) is still N since the only weight we

decreased is the one of a vertex labelled P being a neighbour of u.
Consequently the resulting position makes the second player win by
induction hypothesis. If v ∈ G′ and luG′,w(v) = P , then we necessarily
have w(v) = w(u) in G′. As luG′

1,w1
(u) = P and (u, v) ∈ E(G1), then

luG′

1,w1
(v) becomes N , implying that the second player wins by induc-

tion hypothesis. Hence (G,w, u) is N if and only if luG′,w(u) = N .
Figure 2.9 shows an example of the lu labelling.

Concerning the complexity of the computation, note that all the cases
except (4) can be executed in O(|E(G)|) operations. Hence the computation
of luG′,w(u) to solve case (4) becomes crucial. We just need to compute the
strongly connected component and the associated directed acyclic graph to
compute S and T , so in the worst case, it can be done in O(|E(G)|) time.
And the number of times where S and T are computed in the recursive
definition of lu is clearly bounded by |V (G)|. All of this leads to a global
algorithm running in O(|V (G)||E(G)|) time.

�

2.2 Timber

Timber is an impartial game played on a directed graph. On a move, a
player chooses an arc (x, y) of the graph and removes it along with all that is
still connected to the endpoint y in the underlying undirected graph where
the arc (x, y) has already been removed. Another way of seeing it is to put a
vertical domino on every arc of the directed graph, and consider that if one
domino is toppled, it topples the dominoes in the direction it was toppled
and creates a chain reaction. The direction of the arc indicates the direction
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x y

Figure 2.10: Playing a move in Timber

in which the domino can be initially toppled, but has no incidence on the
direction it is toppled, or on the fact that it is toppled, if a player has chosen
to topple a domino which will eventually topple it.

The description of a position consists only of the directed graph on which
the two players are playing. Note that it does not need to be strongly
connected, or even connected.

Example 2.12 Figure 2.10 gives an example of a move. The player whose
move it is chooses to remove the arc (x, y). The whole connected component
containing y in the underlying undirected graph without the arc (x, y) is
removed with it.

Example 2.13 Figure 2.11 shows an execution of the game. On a given
position, the player who is playing is choosing the dark grey arc, and all
that will disappear along with it is coloured in lighter grey. The xi and yi
indicate the endpoints of the chosen arc. After the fourth move, the graph
is empty of arcs, so the game ends. Note that some games can end leaving
several isolated vertices, as well as no vertex at all.

In this section, we present algorithms to find the normal outcome of any
connected directed graph, and the Grundy-value of any orientation of paths.

2.2.1 General results

First, we see how to reduce the problem to orientations of forests: playing
in a cycle removes the whole connected component, and playing on an arc
going out of a degree-1 vertex leaves only that vertex in the component. In
both cases there are no more move available in the component after they
have been played, so it is natural to aim at reducing the former to the latter.
The only issue is how to deal with the arcs which were going in and out the
cycle. This is what we present in Theorem 2.14. Note that the cycle does
not need to be induced, nor even elementary.
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Theorem 2.14 Let G be a directed graph seen as a Timber position such
that there exists a set S of vertices that forms a 2-edge-connected component
of G, and x, y two vertices not belonging to V (G). Let G′ be the directed
graph with vertex set

V (G′) = (V (G) \ S) ∪ {x, y}

and arc set

A(G′) = (A(G) \ {(u, v)|{u, v} ∩ S 6= ∅})
∪ {(u, x)|u ∈ (V (G) \ S),∃v ∈ S, (u, v) ∈ A(G)}
∪ {(x, u)|u ∈ (V (G) \ S),∃v ∈ S, (v, u) ∈ A(G)}
∪ {(y, x)}.

Then G =+ G′.

Proof. Let H be any game such that Left has a winning strategy on G+H
playing first (or second). On G′+H, she can follow the same strategy unless
it recommends to choose an arc between elements of S or Right chooses the
arc (y, x). In the first case, she can choose the arc (y, x), which is still on
play since any move removing (y, x) in G′ would remove all arc of S in G.
Both moves leave some H0 where Left has a winning strategy playing second
since the move in the first game was winning. In the second case, she can
assume he chose any arc of S and continue to follow her strategy. For similar
reasons, it is possible and it is winning.

The proof that Right wins G′+H whenever he wins G+H is similar. �

Using this reduction, the number of cycles decreases strictly, so after
repeating the process as many times as possible (which is a finite number of
times), we end up with a directed graph with no cycle, namely an orientation
of a forest.

Corollary 2.15 For any directed graph G, there exists an orientation of a
forest FG such that G =+ FG and such an FG is computable in quadratic
time.

In Corollary 2.15, the complexity is important, as it is easy to produce
an orientation of a forest (even an orientation of a path) with any Grundy-
value:
define Pn the oriented graph with vertex set

V (Pn) = {vi}06i6n

and arc set
A(Pn) = {(vi−1, vi)}16i6n.

Then the Timber position Pn has Grundy-value n.
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Example 2.16 Figure 2.12 shows an example of a directed graph (on top)
and a corresponding forest (on bottom), obtained after applying the reduc-
tion from Theorem 2.14. The cycles are coloured grey and reduced to the
grey vertices of the forest. The white vertices denote the vertices of degree 1
we add with an out-arc toward those grey vertices. There might be several
such forests depending on the choice of the component used for the reduction,
but they all share the same Grundy-value. Choosing maximal 2-connected
components when reducing leads to a unique forest with least number of
vertices.

The next proposition allows us another reduction. In particular, it gives
another proof that all forests that can be obtained from a graph G after the
reduction of Theorem 2.14 are equivalent (set k and ℓ to 0).

Proposition 2.17 Let T be an orientation of a tree such that there exist
three sets of vertices {ui}06i6k, {vi}06i6k, {wi}06i6ℓ ⊂ V (G) such that:

1. ({(ui−1, ui)}16i6k ∪ {(vi−1, vi)}16i6k ∪ {(wi−1, wi)}16i6ℓ) ⊂ A(G)

2. (uk, w0), (vk, wℓ) ∈ A(G).

3. u0 and v0 have in-degree 0 and out-degree 1.

4. for all 1 6 i 6 k, uk and vk have in-degree 1 and out-degree 1.

Let T ′ be the orientation of a tree with vertex set

V (T ′) = V (T ) \ {vi}06i6k

and arc set

A(T ′) = A(T ) \ ({(vi−1, vi)}16i6k ∪ {(vk, wℓ)}).

Then T =+ T ′.

Proof. The proof is similar to the one of Theorem 2.14: playing on (vi−1, vi)
or (ui−1, ui) is similar (as well as (vk, wℓ) and (uk, w0)), and no move apart
from some (vj−1, vj) (and (vk, wℓ)) would remove the arc (ui−1, ui) without
removing the arc (vi−1, vi).

�

Note that we never used the fact we were considering the normal version
of the game when we proved both the reductions from Theorem 2.14 and
Proposition 2.17. That means they can be used in the misère version as
well.
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Figure 2.12: A Timber position and a corresponding orientation of a forest
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Figure 2.13: A Timber position and its image after reduction having different

Grundy-values

2.2.2 Trees

Knowing we can consider only forests without loss of generality, we now focus
on trees. Though we are not able to give the Grundy-value of any tree, which
would have the problem completely solved (being able to find the outcome
of any forest is actually equivalent to being able to find the Grundy-value
of any tree), we find their outcomes using two more reductions, one of them
leaving the Grundy-value unchanged.

First, we note that if we can finish the game in one move, that is we can
remove all the arcs of the graph, the game is an N -position.

Lemma 2.18 Let T be an orientation of a tree such that there is a leaf v
of T with out-degree 1. Then o+(T ) = N , that is T is a next-player win
position.

Proof. Let x be the out-neighbour of v. The first player wins by toppling
the domino on the arc (v, x). �

The next lemma eliminates couples of moves that keep being losing moves
throughout the whole game as long as they are both available. Unfortunately,
though this reduction keeps the outcome of the position, it may change its
Grundy-value, and we know some cases where the Grundy-value is changed,
as well as some others where it is not:

• Figure 2.13 shows an example of a position which changes Grundy-
value after applying the reduction. On the left, the graph has Grundy-
value 3, and on the right, the reduced graph has Grundy-value 1.

• All P-positions have same Grundy-value (namely 0), so any P-position
that reduces keeps the Grundy-value unchanged. And Figure 2.14
shows an example of an N -position which keeps the Grundy-value
unchanged after applying the reduction: both positions have Grundy-
value 2.

Lemma 2.19 Let T1, T2 be two timber positions. Choose y ∈ V (T1),
z ∈ V (T2) and let x be a vertex disjoint from T1 and T2. Let T be the position
with vertex set

V (T ) = V (T1) ∪ {x} ∪ V (T2)

and arc set
A(T ) = A(T1) ∪ {(x, y), (x, z)} ∪A(T2).
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Figure 2.14: A Timber N -position and its image after reduction having the same

Grundy-value

Let T ′ be the position with vertex set

V (T ′) = V (T1) ∪ V (T2)

where y and z are identified, and arc set

A(T ′) = A(T1) ∪A(T2).

Then o+(T ) = o+(T ′).

Proof. We show it by induction on the number of vertices of T ′. If
V (T ′) = {y}, then there is no move in T ′ and T consists in two arcs
going out the same vertex. Hence o+(T ) = P = o+(T ′). Assume now
|V (T ′)| > 1. Assume the first player has a winning move in T . If the chosen
arc removes x from the game, choosing the same arc in T ′ leaves the same
position. Otherwise, choosing the same arc in T ′ leaves a position which has
the same outcome by induction. Hence the first player has a winning move
in T ′. The proof that she has a winning move in T if she has one in T ′ is
similar. �

Example 2.20 The reduction is from T to T ′. Figures 2.15 and 2.16 illus-
trate the reduction by giving an example of an orientation of a tree and its
image after reduction. The initial graph has no move that empties it, so we
try to find a smaller graph with the same outcome. The grey arcs are the
ones we contract, and the reduction cannot be applied anywhere else on the
first tree. However, the reduction can again be applied on the grey arcs of
the second tree (and only them).

The next lemma presents a reduction which preserves the Grundy-value.
When there are two orientations of paths directed toward a leaf from a
common vertex x, none of these paths affect the other, or the rest of the
tree. Hence we can replace them with just one path, whose length is the
Nim-sum of the lengths of the original paths.

Lemma 2.21 Let T0 be an orientation of a tree, w ∈ V (T0) a vertex, and
n,m ∈ N two integers. Let T be the position with vertex set

V (T ) = V (T0) ∪ {yi}16i6n ∪ {zi}16i6m
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Figure 2.15: An orientation of a tree seen as a Timber position

Figure 2.16: Its image after reduction, having the same outcome
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and arc set
A(T ) = A(T0) ∪{(yi, yi+1)}16i6n−1

∪{(zi, zi+1)}16i6m−1

∪{(w, y1), (w, z1)}.

Let T ′ be the position with vertex set

V (T ′) = V (T0) ∪ {xi}16i6n⊕m

and arc set

A(T ′) = A(T0) ∪ {(xi, xi+1)}16i6(n⊕m)−1 ∪ {(w, x1)}.

Then o+(T + T ′) = P and o+(T ) = o+(T ′).

Proof. We prove it by induction on |V (T0)| + n + m and show
that o+(T + T ′) = P which means g(T ) = g(T ′) and thus implies that
o+(T ) = o+(T ′). If n+m = 0, T = T0 = T ′.

Assume now |V (T0)| + n +m > 0. Any arc of T0 is in both T and T ′,
thus if the first player chooses such an edge in one of T or T ′ then the second
player can choose the corresponding arc in T ′ or T , which leaves a P-position
(either by induction or because the two remaining positions are the same).
Assume the first player chooses the arc (yi, yi+1) (or (w, y1) = (y0, y1)). If
(i ⊕ m) < (n ⊕ m), the second player can choose the arc (xi⊕m, x(i⊕m)+1)
(or (w, x1) if i⊕m = 0) which leaves a P-position by induction. Otherwise,
there exists j < m such that (i ⊕ j = n ⊕ m), and the second player can
choose the arc (zj , zj+1) which leaves a P-position by induction. Similarly,
we can prove that the second player has a winning answer to any move of
the type (xi, xi+1) or (zi, zi+1). �

Example 2.22 Again, the reduction is from T to T ′. Figures 2.17 and 2.18
illustrate the reduction by giving an example of an orientation of a tree
and its image after reduction. The initial graph has no move that empties
it, and the reduction from Lemma 2.19 cannot be applied, so we use the
other reduction to get a smaller tree having the same outcome (even better,
having the same Grundy-value). The grey arcs of the first tree are the ones
of the paths we merge, and the reduction cannot be applied anywhere else
on the first tree. The grey arcs of the second tree are the ones of the paths
we created by merging those of the first tree. The reduction can again be
applied on the second tree, where it is even possible to apply the reduction
from Lemma 2.19.

A position for which we cannot apply the reduction from Lemma 2.19 or
Lemma 2.21 is called minimal. A leaf path is a path from a vertex x to a
leaf y, with x 6= y, consisting only of vertices of degree 2, apart from y and
possibly x.
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Figure 2.17: An orientation of a tree seen as a Timber position

Figure 2.18: Its image after reduction, having the same outcome
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The coming lemma is important because it gives us the outcome of a
minimal position. Thus after having reduced our initial position as much as
we could, we get its outcome. Furthermore, if it is an N -position, it proposes
a winning move, that we can backtrack to get a winning move from the initial
position.

Lemma 2.23 A minimal position with outcome P can only be a graph with
no arc.

Proof. Let T be a minimal position with at least one arc. If it has exactly
one arc, it is obviously in N , so we can assume T has at least two arcs.
Then there exists a vertex w at which there are two leaf paths {xi}06i6n

and {yi}06i6m (x0 = w = y0). If (xn, xn−1) or (ym, ym−1) is an arc, the first
player can choose it and win. Now assume both (xn−1, xn) and (ym−1, ym)
are arcs. As T is minimal, it cannot be reduced using Lemma 2.19, so all
(xi, xi+1), (yi, yi+1), (w, x1) and (w, y1) are arcs. But then we can apply the
reduction from Lemma 2.21, which is a contradiction. �

Applying reductions from Lemma 2.19 and Lemma 2.21 leads us to a
position where finding the outcome is easy: either the graph has no arc left
and it is a P-position or there is a move that empties the graph and it is an
N -position. Note that the reduction from Lemma 2.19 decreases the number
of vertices without increasing the number of leaves, and the reduction from
Lemma 2.21 decreases the number of leaves without increasing the number
of vertices, so they can only be applied a linear number of times. As finding
where to apply the reduction can be done in linear time, this leads to a
quadratic time algorithm.

Theorem 2.24 We can compute the outcome of any connected oriented
graph G in time O(|V (G)|2).

Note that for a tree, the number of edges is equal to the number of vertices
minus one, and a connected graph containing a cycle is always an N -position.
Hence, we can consider O(|V (G)|) = O(|E(G)|) for the reduction part of the
algorithm since finding a cycle is linear in the number of vertices.

Though this is enough to compute the outcome of any orientation of
trees, it does not give us its Grundy-value, except when we are considering a
P-position as they all have Grundy-value 0. The first reduction we presented
in this subsection may change the Grundy-value of the position, but it is not
the case of the second reduction. Looking further on that direction, we tried
to find a more general reduction that takes two leaf paths out of the same
vertex and replace them with only one leaf path out of that vertex, leaving
the rest of the graph unmodified, and keeping the Grundy-value unchanged.
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With this, we would reduce the tree to a path, and as we can compute
the Grundy-value of a path relatively efficiently (see Theorem 2.26 below),
we would get an algorithm to compute the Grundy-value of any orientation
of trees, leading to an algorithm to compute the outcome (and even the
Grundy-value) of any orientation of forests, and thus of any directed graph.
Unfortunately, doing this on general leaf paths is not possible, as shown in
Example 2.25.

Example 2.25 Define P1 and P2 two orientations of paths with vertex set

V (Pi) = {xi, yi, zi}

and arc set
A(Pi) = {(xi, yi), (zi, yi)}

for both i ∈ {1, 2}. Consider that the vertices identified with a vertex of
the rest of the tree are x1 and x2. Assume there is an orientation of a path
P3 satisfying the above conditions. Identifying x1 and x2 without adding
anything leaves a path with Grundy-value 2, so P3 should have Grundy-
value 2. The moves that would remove the rest of the tree should each leave
the same value as one of the moves that would remove the rest of the tree in
our choice of P1 and P2, because we cannot ensure that these values would
appear in the rest of the tree, so they all should have Grundy-value 0, and
there should be at least one for each value left by a move that would remove
the rest of the tree in our choice of P1 and P2 for the same reasons, so there
should be at least one move in P3 that would remove the rest of the tree
and leave a position with Grundy-value 0. Among all those potential arcs,
we look at the one closest to the leaf of that leaf path, and call it a. If
there are any arcs closer to the leaf, they are all pointing towards the leaf,
and the Grundy-value of those arcs, that are left alone after a player would
have moved on a, is equal to the number of arcs. Hence there are no closer
arc. There cannot be any other arc in P3 that would remove the rest of
the tree, because it would leave the arc a that still could empty the graph,
which means it would leave a position with Grundy-value different from 0.
As the Grundy-value of P3 should be 2, the only possible P3 with the above
conditions is the graph with vertex set

V (P3) = {x3, y3, z3, t3}

and arc set
A(P3) = {(x3, y3), (y3, z3), (t3, z3)},

with the vertex we identify with a vertex of the rest of the tree being x3.
Unfortunately, if the rest of the tree is an isolated arc in which we identify

the endpoint to a vertex of P1, P2 or P3, the two graphs do not have the
same Grundy-value: the one with P1 and P2 has Grundy-value 1 while the
one with P3 has Grundy-value 3.
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2.2.2.1 Paths

In the case of paths, we can show additional results compared to trees.
The same algorithm may be used, and we can even spare the reduction of
Lemma 2.21.

Using CGSuite [37], we determined the number of P-positions on paths of
length 2n for small n’s. Imputing them in the On-line Encyclopedia of Integer
Sequences [40] suggested that it corresponds to the nth Catalan number,
and pointed at a reference [12], which led to the following representation. A
position can be represented visually on a 2-dimensional graph on a lattice:
watch the path horizontally from left to right, start at (0, 0) and let an arc
directed leftward be a line joining the lattice points (x, y) and (x+ 1, y + 1)
and an arc directed rightward be the line joining (x, y) and (x+ 1, y − 1).

We call that representation the peak representation of a Timber position
on an orientation of a path.

A Dyck path of length 2n is one of these paths that also ends at (2n, 0)
and which never goes below the x-axis. More formally, a Dyck path of length
2n is a path on a lattice starting from (0, 0) and ending at (2n, 0) which steps
are of the form ((x, y), (x + 1, y + 1)) and ((x, y), (x + 1, y − 1)) where the
second coordinate is never negative.

We note that an orientation of a path is a P-position if and only if its
peak representation is a Dyck path. This gives us the number of P-positions
that are paths of length 2k, the kth Catalan number ck = (2k)!

k!(k+1)! . And no
path of odd length is a P-position.

This is interesting since there are few games where the number of
P-positions is known depending on the size of the data. Even for Nim which
was introduced a century ago, no general formula is known yet.

We now look at the Grundy-values of paths. All followers of a position
of a Timber position are Timber positions whose graphs are induced sub-
graphs of the original one, where two vertices are in the same connected
component if and only if they were in the same connected component in the
original graph. When the graph is a path, the number of connected induced
subgraphs is quadratic in the length of the path (E(G) − i + 1 choices of
subgraphs with i edges, for any i). When you know the Grundy-values of
all the options of a game, the Grundy-value of this game can be computed
in linear time. The number of options of a Timber position is the number
of its edges. It therefore suffices to compute and store the Grundy-values of
all subpaths of an orientation of a path by length increasing order to get the
Grundy-value of the original path in cubic time.

Theorem 2.26 We can compute the Grundy-value of any orientation of
paths P in time O(|V (P )|3).
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Figure 2.19: Computing the Grundy-value of a path

Example 2.27 Figure 2.19 gives an example of a path and the Grundy-
value of all its subpaths, illustrating the algorithm: on the ith line are the
Grundy-values of subpaths of length i; on the jth column are the Grundy-
values of the subpaths whose leftmost arc is the jth of the original path. We
can consider there is a 0th line which only contains 0’s, but this is not nec-
essary as the first line always only contains 1’s. We underlined the Grundy-
value of the whole path.

To compute the value in case (i, j), that is the Grundy-value of the
subpath containing the kth arc for all k between i and i + j − 1, you look
at each of these edges and build the set of Grundy-values of the options of
the subpath: you start with an empty set of values; if the kth arc is directed
toward the right, you add the value in case (i, k − i) to your set; if the kth

arc is directed toward the left, you add the value in case (k+1, i+ j−k−1)
to your set. The value you put in case (i, j) is the minimum non-negative
integer that does not appear in the set you just built.

2.3 Perspectives

In this chapter, we looked at the games VertexNim and Timber.
In the case of VertexNim, we gave a polynomial-time algorithm to find

the normal outcome of any undirected graph with a token on any vertex,
as well as the outcome of any strongly connected directed graph with a self
loop on every vertex, and a token on any vertex. Then, we have a natural
question.
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Question 2.28 What is the complexity of VertexNim played on a general
directed graph?

Looking at another variant of Nim played on graphs, Vertex NimG

[9, 43], our results seem to apply to the variant where a vertex of weight 0
is not removed (see [16]), but they do not if it is removed. In particular, in
the latter case, the problem is pspace-complete on graphs with a self loop
on each vertex, even if the weight of vertices is at most 2.

In the case of Timber, we found the normal outcome of any orientation
of trees, which gives the normal outcome of any connected directed graph
in polynomial time, and gave an algorithm to find the Grundy-value of any
orientation of paths in polynomial time.

We are now left with the following problem.

Question 2.29 Is there a polynomial-time algorithm to find the Grundy-
value of any Timber position on orientations of trees?

Note that it would give the outcome of any Timber position on directed
graphs, as a directed graph reduces to an orientation of a forest having the
same Grundy-value by Theorem 2.14, and from that forest, we would be able
to compute the Grundy-value of each connected components as they are all
trees and we just need to sum the values to find the Grundy-value of the
original position, which also gives its outcome.

The complexity of the problem is the same as finding the outcome of any
Timber position on directed graphs, as a position has Grundy-value n if and
only if the second player wins the game made of the sum of that position
with the orientation of a path with n arcs, all directed toward the same leaf,
and the Grundy-value of a Timber position is bounded by its number of
arcs.
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Chapter 3

Partizan games

Partizan games are the natural extension of impartial games where the
players may have different sets of moves. We say that a game is partizan
whenever the moves are not necessarily equal for the two players, but parti-
zan games contain impartial games as well.

As with impartial games, there exists a function that assigns a value
to any partizan game. Two games having the same value are equivalent
under normal play, and vice versa. Hence, we identify those values with the
canonical forms of the games they represent. As an example, the canonical
forms of numbers are recursively defined as follows (with n, k being positive
integers and m any integer):

0 = {·|·}
n = {n − 1|·}

−n = {·| − n+ 1}
2m+1
2k

= {2m
2k

|2m+2
2k

}

The order between games represented by numbers is the same as in Q2.
Unfortunately, many values are not numbers. For example, an impartial
game with Grundy-value n would be denoted as having value ∗n, except
when n is 0 or 1, respectively denoted by 0 and ∗. Berlekamp, Conway and
Guy [4, 10] give a useful tool to prove some games are numbers:

Theorem 3.1 (Berlekamp et al. [4], Conway [10]) [Simplicity the-
orem] Suppose for x = {xL|xR} that some number z satisfies z 
 xL and
z � xR for any Left option xL ∈ xL and any Right option xR ∈ xR, but
that no (canonical) option of z satisfies the same condition (that is, for any
option z′ ∈ zL ∪ zR, there exists a Left option xL ∈ xL such that z′ 6 xL or
there exists a Right option xR ∈ xR such that z′ > xR). Then x = z.

In other words, if there is a number z satisfying z 
 xL and z � xR for
any Left option xL ∈ xL and any Right option xR ∈ xR, then x is equivalent
to the number with smallest birthday satisfying this property.

To simplify proofs, we often do not state results on the opposite of games
on which we proved similar results. This can be justified by the following
proposition.

Proposition 3.2 Let G and H be any two games. If G >+ H, then
−G 6+ −H. As a consequence, G ≡+ H ⇔ −G ≡+ −H.
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Proof. Assume G >+ H. Then Left wins G −H = (−H) − (−G) playing
second. Hence −H >+ −G. �

In this chapter, we consider three partizan games: Timbush, Toppling

Dominoes and Col. Timbush is the natural partizan extension of Timber,
where some arcs can only be chosen by one player. In section 3.1, we define
the game, prove that any position can be reduced to a forest, as in Timber,
and give an algorithm to compute the outcome of any orientation of paths
and any orientation of trees where no arc can be removed by both players.
Toppling Dominoes is a variant of Timbush, where the graph is a forest
of paths and all arcs are bidirectional. In section 3.2, we define the game,
prove the existence of some values appearing as connected paths, and give
a unicity result about some of them. Col is a colouring game played on an
undirected graph. In section 3.3, we define the game and give the values of
graphs belonging to some infinite classes of graphs.

The results presented in Section 3.1 are a joint work with Richard
Nowakowski, while the results presented in Sections 3.2 and 3.3 are a joint
work with Paul Dorbec and Éric Sopena [14].

3.1 Timbush . . . . . . . . . . . . . . . . . . . . . . . 44
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3.1 Timbush

Timbush is the natural partizan extension of Timber, played on a directed
graph with arcs coloured black, white, or grey. On her move, Left chooses
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x y t z

x’

y’

Figure 3.1: Playing a move in Timbush

a black or grey arc (x, y) of the graph and removes it along with all that is
still connected to the endpoint y in the underlying undirected graph. On his
move, Right does the same with a white or grey arc.

The description of a position consists of the directed graph on which the
two players are playing, and a colouring function from the set of arcs to the
set of colours {black,white, grey}. Note that the directed graph does not
need to be strongly connected, or even connected.

All Timber positions are Timbush positions: just keep the same directed
graph and consider all arcs are grey.

In all the figures, white arcs are represented with dashed arrows, and
black arcs are thicker, to avoid confusion between the colours.

Example 3.3 Figure 3.1 gives an example of a Left move. Left chooses to
remove the black arc (x, y). The whole connected component containing y
in the underlying undirected graph without the arc (x, y) is removed with
it. She could not have chosen the arc (z, t) because it is white, but the grey
arc (x′, y′) is allowed to her.

In this section, we present algorithms to find the normal outcome of
any coloured orientation of a path, and the normal outcome of any coloured
connected directed graph with no grey arc.

3.1.1 General results

First, we see how to adapt the results obtained on Timber to Timbush.
The reduction to get an orientation of a forest from a directed graph without
changing the value is the same, but we now have to take care of the colours
of the arcs too. We aim at keeping them the same, but we still need to find
the colour of the arc we add, and we choose the colour that gives the same
possibilities as those given by the cycle. The proof follows the same pattern
as the proof of Theorem 2.14.
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Theorem 3.4 Let G be a directed graph seen as a Timbush position such
that there exist a set of vertices S that forms a 2-edge-connected component
of G, and x, y two vertices not belonging to G. Let G′ be the directed graph
with vertex set

V (G′) = (V (G)\S) ∪ {x, y}

and arc set

A(G′) = (A(G) \ {(u, v)|{u, v} ∩ S 6= ∅})
∪ {(u, x)|u ∈ (V (G) \ S),∃v ∈ S, (u, v) ∈ A(G)}
∪ {(x, u)|u ∈ (V (G) \ S),∃v ∈ S, (v, u) ∈ A(G)}
∪ {(y, x)}.

keeping the same colours, where the colour of (y, x) is grey if the arcs in S
yield different colours, and of the unique colour of arcs in S otherwise. Then
G ≡+ G′.

Proof. Let H be any game such that Left has a winning strategy on G+H
playing first (or second). On G′+H, she can follow the same strategy unless
it recommends to choose an arc between elements of S or Right chooses the
arc (y, x). In the first case, she can choose the arc (y, x), which is still in
play since any move removing (y, x) in G′ would remove all arcs of S in G.
Both moves leave some H0 where Left has a winning strategy playing second
since the move in the first game was winning. In the second case, she can
assume he chose any arc of S and continue to follow her strategy. For similar
reasons, it is possible and it is winning.

The proof that Right wins G′+H whenever he wins G+H is similar. �

Again, we get the corollary that leaves us with a forest.

Corollary 3.5 For any directed graph G, there exists an orientation of a
forest FG such that G ≡+ FG and FG is computable in quadratic time.

Example 3.6 Figure 3.2 shows an example of a directed graph (on top) and
a corresponding forest (on bottom), obtained after applying the reduction
from Theorem 3.4. Light grey areas surround the cycles, which are reduced
to the grey vertices of the forest. The white vertices denote the vertices of
degree 1 we add with an out-arc toward those grey vertices. There might be
several such forests depending on the choice of the component used for the
reduction, but they all share the same value. Choosing maximal 2-connected
components when reducing leads to a unique forest with least number of
vertices.

We can also adapt the proposition giving us a reduction removing leaf-
paths with arcs directed from the leaf, but we also need to pay attention to
the colours, which gives extra conditions.
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Figure 3.2: A Timbush position and a corresponding orientation of a forest
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Proposition 3.7 Let T be an orientation of a tree such that there exist three
sets of vertices {ui}06i6k,{vi}06i6k,{wi}06i6ℓ ⊂ V (G) such that:

1. ({(ui−1, ui)}16i6k ∪ {(vi−1, vi)}16i6k ∪ {(wi−1, wi)}16i6ℓ ⊂ A(G).

2. {(uk, w0), (vk, wℓ)}) ⊂ A(G).

3. u0 and v0 have in-degree 0 and out-degree 1.

4. for all 1 6 i 6 k, ui and vi have in-degree 1 and out-degree 1.

5. for all 1 6 i 6 k, (ui−1, ui) and (vi−1, vi) have the same colour.

6. (uk, w0) and (vk, wℓ) have the same colour.

Let T ′ be the orientation of a tree with vertex set

V (T ′) = V (T )\{vi}06i6k

and arc set

A(T ′) = A(T )\({(vi−1, vi)}16i6k ∪ {(vk, wℓ)})

keeping the same colours. Then T ≡+ T ′.

Proof. The proof is similar to the one of Theorem 3.4, playing on (vi−1, vi)
or (ui−1, ui) is similar (as well as (vk, wℓ) and (uk, w1)), and no move apart
from some (vj−1, vj) (and (vk, wℓ)) would remove the arc (ui−1, ui) without
removing the arc (vi−1, vi). �

We now focus on trees again. Before going to specific cases, we give the
analog of Lemma 2.19 in the partizan version. Note again that it sometimes
changes the value of the game, and it sometimes does not, using the same
examples as in Figures 2.13 and 2.14 as all positions of Timber are positions
of Timbush.

Lemma 3.8 Let T1, T2 be two Timbush positions. Choose y ∈ V (T1),
z ∈ V (T2) and let x be a vertex not belonging to V (T1) or V (T2). Let T
be the position with vertex set

V (T ) = V (T1) ∪ {x} ∪ V (T2)

and arc set
E(T ) = E(T1) ∪ {(x, y), (x, z)} ∪E(T2)

where (x, y) and (x, z) are either both grey or of non-grey different colours
and the other arcs keep the same colours. Let T ′ be the position with vertex
set

V (T ′) = V (T1) ∪ V (T2)
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where y and z are identified, and arc set

E(T ′) = E(T1) ∪ E(T2)

keeping the same colours for all arcs. Then o+(T ) = o+(T ′).

Proof. We show it by induction on the number of vertices of T ′. If
V (T ′) = {y}, then there is no move in T ′ and T is either 1 + (−1) = 0 or
∗ + ∗ = 0. Hence o+(T ) = P = o+(T ′). Assume now |V (T ′)| > 1. Assume
Left has a winning move in T . This winning move cannot be by choosing
(x, y) or (x, z) because Right would choose the other move and win. If the
chosen arc removes x from the game, choosing the same arc in T ′ leaves
the same position. Otherwise, choosing the same arc in T ′ leaves a position
which has the same outcome by induction. Hence Left has a winning move
in T ′. The proof that Left has a winning move in T if she has one in T ′

and that Right has a winning move in T if and only if he has one in T ′ are
similar. �

Example 3.9 Again, the reduction is from T to T ′. Figures 3.3 and 3.4
illustrate the reduction by giving an example of an orientation of a tree and
its image after reduction. Not even one player has a move that empties the
initial graph, so we try to find a smaller graph with the same outcome. The
arcs in light grey areas are the ones we contract, and the reduction cannot be
applied anywhere else on the first tree. The dark grey area indicates a pair
of arcs going out a degree-2 vertex, which cannot be contracted because its
colours do not match the statement of Lemma 3.8. However, the reduction
can again be applied on the arcs in the light grey areas of the second tree
(and only on them).

3.1.2 Paths

Though finding an efficient algorithm which gives the normal outcome of any
orientation of trees has eluded us, we can determine the normal outcome of
any orientation of paths.

On paths, we can code the problem with a word. The letter K (resp. C,
Q) would represent a black (resp. grey, white) arc directed leftward, while
Y (resp. J , D) would represent a black (resp. grey, white) arc directed
rightward. Let w = w1w2 · · ·w|w|.

As in Section 2.2, we can see it as a row of dominoes, each coloured black,
grey or white, that would topple everything in one direction when chosen,
where chosen dominoes can only be toppled face up, with Left only being
allowed to choose black or grey dominoes, and Right only being allowed to
choose white or grey dominoes. The position is read from left to right.

Example 3.10 Figure 3.5 shows an orientation of a path, the row of domi-
noes and the word used for coding it.
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Figure 3.3: An orientation of a tree seen as a Timbush position

Figure 3.4: Its image after reduction, having the same outcome
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KQYJYQKJCKDKDJ
Figure 3.5: A Timbush position, the corresponding row of dominoes and the

corresponding word

We say a domino is right-topplable if it corresponds to an arc directed
rightward, that is if it is represented by a Y , a J or a D. Likewise, a domino
represented by a K, a C or a Q is said to be left-topplable.

The next lemma is quite useful as it tells us that if we have a winning
move for one player, then the only possible winning move going in the same
direction for the other player is the exact same move, if available. This is
natural as if they were different winning moves, one player would be able to
play their move after the other player, and leave the same position as if they
had played it first. Nevertheless, it is still possible for one player to have
several winning moves going in the same direction when their opponent has
no winning move going in that direction. And it is also possible that the two
players have different winning moves, if they topple in different directions.

Lemma 3.11 If both players have a winning move toppling rightward, then
these moves are on the same domino.

Proof. Assume Left has a winning move toppling the right-topplable domino
wi and Right has a winning move toppling the right-topplable domino wj.
If i < j, after Right topples wj , Left can topple wi, leaving the game in
the same position as if she had toppled wi right in the beginning, which is
a winning move, and toppling wj was not winning for Right. The proof is
similar if i > j. �

We define the following three sets of words:

L = {KY,KJ} ∪ {CY DnY,CY DnJ}n∈N
R = {QD,QJ} ∪ {CDY nD,CDY nJ}n∈N
E = {KD,CJ,QY }

The reader would have recognised E as the set of subwords that can be
deleted without modifying the normal outcome of the path using Lemma 3.8.
In the following, we then often assume the position does not contain any
element of E as a subword.
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The sets L and R would represent the sets of subwords that Left and
Right would need to appear first to have a winning move on a right-topplable
domino when the reduced word starts with a left-topplable domino, as we
prove in Lemma 3.13.

The next lemma gives information on subwords of a word representing a
Timbush position. In particular, it helps eliminating cases when we prove
Lemma 3.13.

Lemma 3.12 Let w be a word starting with a C and ending with a J such
that all dominoes are right-topplable except the first one. Then w contains a
subword in L ∪R ∪ E.

Proof. If w2 = J , then w1w2 = CJ ∈ E. Assume w2 = Y . Let
k = min{i > 3 | wi ∈ {Y, J}}. The index k is well-defined as w|w| = J , and
w1w2 · · ·wk ∈ L. We can prove that w contains a subword in R if w2 = D
in a similar way. �

The next lemma gives a winning move toppling right when it exists and
the word starts with a left-topplable domino (when the word starts with a
right-topplable domino, toppling that domino is a winning move). We here
assume the word contains no subword belonging to E, as removing them
does not change the outcome of the position.

Lemma 3.13 Let w be a word with no element of E as a subword, that
starts with a left-topplable domino. Let x be the leftmost occurrence of an
element of L ∪R as a subword of w if one exists. Then:

• if x ∈ L, Left is the only player having a winning move in w toppling
rightward

• if x ∈ R, Right is the only player having a winning move in w toppling
rightward

• if no such x exists, no player has a winning move in w toppling right-
ward.

Proof. First assume no element of L ∪ R appears as a subword of w. As
{KY,KJ,KD,QY,QJ,QD} ⊂ L∪R∪E, no K or Q domino can be followed
by a right-topplable domino in w. If there was a J domino, the rightmost
left-topplable domino at its left would be a C domino. But then, it would
contain a subword in L ∪R ∪ E by Lemma 3.12. And such a left-topplable
domino exists as w1 is left-topplable. So there are no J domino in w. If Left
topples a Y domino, the rightmost left-topplable domino at its left would be
a C domino. If that C domino is not immediately followed by the Y domino
Left toppled, it would be followed by a D domino, otherwise there would be
a subword of w which is in L. Then, toppling that C domino is a winning
move for Right. We can prove that toppling a D domino is not a winning
move for Right in a similar way.
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Now assume x exists and is in L. We show that toppling the rightmost
domino of x is a winning move for Left. Let w′ be the resulting position after
this move. The position w′ contains no element of L∪R∪E as a subword and
starts with a left-topplable domino, so Right has no winning move toppling
rightward. Hence, we can assume Right would topple a domino leftward.
If Right topples a domino which is not part of x, Left topples the leftmost
domino of x, which is a winning move. Otherwise, x = CY DiY or CYDiJ
for some i and Right would have toppled the C domino, which leaves an
L-position. We now show that no Right’s move toppling rightward in w is
winning. By Lemma 3.11, if Right has a winning move toppling rightward,
it would be by toppling the rightmost domino of x. But then, Left wins by
toppling the leftmost domino of x.

We can prove that Right is the only player having a winning move top-
pling rightward if x exists and is in L in a similar way. �

Example 3.14 Figure 3.6 gives three rows of dominoes, with the words
coding it, each of them starting with a left-topplable domino and having no
subword in E. On the first row, the leftmost apparition of a subword in L∪R
is KJ , so Left can win the game playing first by toppling that J domino. On
the second row, the leftmost apparition of a subword in L ∪R is CDY Y D,
so Right can win the game playing first by toppling that last D domino. On
the third row, the word contains no subword of L ∪ R, so no player has a
winning move toppling rightward. On the first two rows, that winning move
is underlined, and the domino corresponding is pointed at. Note that there
might be other winning moves toppling rightward, the second J of the first
row for instance.

When a word starts with a right-topplable domino, choosing it is a win-
ning move. Using that with Lemmas 3.11 and 3.13, we can find which player
can win toppling a domino rightward. As the same observations can be made
about left-topplable winning moves, we get the outcome of any word in linear
time.

Theorem 3.15 We can compute the outcome of any word w in time O(|w|).

We end this study on paths by giving a characterisation of Timbush

P-positions on paths.

Theorem 3.16 Let w be a word representing a Timbush P-position, such
that no subword of w is in E. Then w is the empty word.

Proof. Assume w is not the empty word. As it is a P-position, it starts
with a left-topplable domino, and it has no word of L or R as a subword.
Therefore, we can prove, as in the proof of Lemma 3.13, that it contains no
J domino. By symmetry, it does not contain any C domino. But neither
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CCDDYKJJCQQDKQCY

QKCDYYDYCKYDJDCCKQJ

KCYQQCKCDYYYCKQKQ

Figure 3.6: Words representing Timbush positions with a winning move toppling

rightward underlined when it exists

a K domino nor a Q domino can be followed by a right-topplable domino
without w having a subword belonging to L∪R∪E. Hence all dominoes are
left-topplable. But that would mean the last domino is left-topplable, and
whoever plays it wins the game, contradicting the fact that w is a P-position.

Hence w has to be the empty word. �

We can therefore count the number of Timbush path P-positions of
length 2n, given by the formula 3ncn, where cn is the nth Catalan number

(2n)!
n!(n+1)! , as well as conclude there would be no Timbush path P-positions
of odd length.

3.1.3 Black and white trees

We now look at general orientations of trees again, but add a restriction on
the colours used, by forbidding any arc to be coloured grey.

Note that directed graphs having no grey arc might have grey arcs that
appear when reduced to orientations of forests using Theorem 3.4, if they
contain a two-coloured cycle, but for such connected graphs, the outcome is
always N . It is also possible to get a black and white coloured orientation
of a forest equivalent to the original graph by duplicating each grey arc with
the leaf from which it originates, leaving a black arc and a white arc.

Example 3.17 Figure 3.7 shows an example of a directed graph (on the
left) and a corresponding forest (on the right), obtained after applying the
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reduction from Theorem 3.4 and replacing each grey arc by a black arc
and a white arc. Light grey areas surround the cycles, which are reduced
to the grey vertices of the forest. The white vertices denote the vertices
of degree 1 we add with an out-arc toward those grey vertices. When the
2-connected component is monochromatic, we only add one of these white
vertices, whereas we add two if it contains both black arcs and white arcs.
There might be several such forests depending on the choice of the component
used for the reduction, but they all share the same value. Choosing maximal
2-connected components when reducing leads to a unique forest with least
number of vertices.

Lemma 3.8 acts as Lemma 2.19, but we also need to find analogous of
Lemma 2.18 and 2.21 to find the outcome of a black and white tree.

We first recall the definition of a leaf-path: a leaf-path is a path from a
vertex x to a leaf y, with x 6= y, consisting only of vertices of degree 2, apart
from y and possibly x.

The next lemma is analogous to Lemma 2.18, that is a way to find a
winning move in a minimal position, though it may appear in non-minimal
positions as well. Nevertheless, in a non-minimal position, we would need to
find a winning move for each player to be able to stop the analysis without
reducing any more.

Lemma 3.18 Let T be a black and white coloured orientation of a tree such
that there is a leaf v of T with out-degree 1 or a vertex u with in-degree
0 and out-degree 2 from which there is a leaf-path in which all arcs are
directed toward the leaf. If all arcs incident with v or u are black, then
T ∈ L+ ∪ N+, that is Left wins the game playing first. If they are all white,
then T ∈ R+ ∪ N+.

Proof. Assume we are in the first case, with the arc incident to v being
black. Let x be the out-neighbour of v. If Left starts, she wins by toppling
the domino on the arc (v, x), as that move empties the graph.

Assume now we are in the second case, with the arcs incident to u being
black. Let x be the out-neighbour of u further from the leaf considered in
the leaf-path. If Left starts, she wins by toppling the domino on the arc
(u, x), as Right will never be able to remove the other arc incident to u and
Left empties the graph when she plays it.

The proof of the cases where the arcs incident to v or u are white is
similar. �

The next lemma is an analogous of Lemma 2.21, that is a way to trans-
form two leaf-paths with all arcs directed towards the leaves into only one
leaf-path. As in Lemma 2.21, the game after reduction is equivalent in nor-
mal play to the game before reduction.
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Figure 3.7: A black and white Timbush position and a corresponding black and

white orientation of a forest
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Lemma 3.19 Let T0 be a black and white coloured orientation of a tree,
u ∈ V (T0) a vertex, and n,m, ℓ ∈ N three integers. Let P1 (resp. P2, P3) be
a black and white coloured orientation of a path with vertex set

{xi}06i6n(resp. {yi}06i6m, {zi}06i6ℓ)

and arc set

{(xi, xi+1)}06i6(n−1)(resp. {(yi, yi+1)}06i6m−1, {(zi, zi+1)}06i6ℓ−1).

Let T be the position with vertex set

V (T ) = V (T0) ∪ V (P2) ∪ V (P3)

where u, y0 and z0 are identified and arc set

A(T ) = A(T0) ∪A(P2) ∪A(P3)

sharing the same colours as in T0, P2 or P3.
Let T ′ be the position with vertex set

V (T ′) = V (T0) ∪ V (P1)

where u and x0 are identified and arc set

E(T ′) = E(T ) ∪ E(P1)

sharing the same colours as in T0 or P1.
Then o+(T − T ′) = o+(P2 + P3 − P1).

Proof. We prove it by induction on |V (T0)|+ n+m+ ℓ. If n+m+ ℓ = 0,
T = T0 = T ′, P1 = P2 = P3 = {·|·} and o+(T −T ′) = P = o+(P2+P3−P1).

Assume now |V (T0)|+ n+m+ ℓ > 0. Assume Left has a winning move
in P2 +P3 −P1. She can play that move in T −T ′, which is a winning move
by induction hypothesis. Similarly, we can prove Right has a winning move
in T − T ′ if he has one in P2 + P3 − P1. Assume now Left has no winning
move in P2 + P3 − P1, i.e. P2 + P3 − P1 6 0. Any directed edge of T0 is
both in T and T ′, thus if Left chooses such an edge in one of T or −T ′ then
Right can choose the corresponding arc in −T ′ or T , which leaves either a
P-position if the move topples u or if P2 + P3 − P1 = 0 by induction, or an
R-position by induction otherwise. Assume Left chooses an arc of P2, P3 or
−P1 in the game T−T ′. As these paths are numbers that only have numbers
as options (by Berlekamp’s rule [4]), it can only decrease the value of the
remaining path, so it is a losing move by induction hypothesis. Similarly, we
can prove Right has no winning move in T − T ′ if he has no winning move
in P2 + P3 − P1. �
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By replacing two leaf-paths with all arcs directed towards the leaves by
one leaf-path having the value of the sum of their values and all arcs directed
towards its leaf, we therefore get an equivalent position. This replacement
is always possible as a path with all arcs directed toward the same leaf can
be seen as a Hackenbush string rooted on the vertex with in-degree 0 (and
this transformation is a bijection); all black and white Hackenbush strings
yield dyadic number values, and any dyadic number value can be obtained
by a unique black and white Hackenbush string using Berlekamp’s rule [4].

Example 3.20 Figures 3.8 and 3.9 illustrate the reduction by giving an ex-
ample of an orientation of a tree and its image after reduction. On the initial
graph, Left can win by playing the a arc, but we still need to know if Right
has a winning move to determine if it is an N -position or an L-position. The
reduction from Lemma 3.8 cannot be applied, so we use the other reduction
to get a smaller tree having the same outcome (even better, having the same
value). Light grey areas on the first tree surround the leaf-paths we merge,
and the reduction cannot be applied anywhere else on the first tree. Each
of these leaf-paths starts with a grey vertex and all other vertices are white.
The same pattern is used on the second tree to detect the new path obtained
by merging those of the first tree. The reduction can again be applied on the
second tree, on paths surrounded by light grey areas, and even the reduction
from Lemma 3.8 on the arcs surrounded by the dark grey area.

Lemma 3.19 is true even if some of the arcs are grey, but in this case, it
is not always possible to find a single leaf-path whose value is the sum of the
two original ones.

As in Section 2.2, a position for which we cannot apply the reduction
from Lemma 3.8 or Lemma 3.19 is called minimal. For the same reason as
in Lemma 3.11, to have both players having in the same leaf-path a winning
move toppling not toward the leaf of that leaf-path, it would have to be by
toppling the same domino, which is not possible here since we are dealing
with black and white Timbush positions. From Lemma 3.18, we know what
such a winning move looks like and Lemma 3.13 tells us that only leaf-paths
satisfying hypothesis of Lemma 3.18 may have a winning move toppling the
rest of the tree when the position is minimal. In a minimal position, a leaf-
path where no player has a winning move not toppling toward the leaf must
have all arcs directed toward the leaf, as otherwise we could reduce the game
using Lemma 3.8. Therefore, we get the following lemma about P-positions.

Lemma 3.21 A minimal position with outcome P can only be a graph with
no arc.

Proof. Let T be a minimal position with at least one arc. If it has exactly
one arc, it is obviously in L ∪ R, depending of the arc colour, so we can
assume T has at least two arcs. Then there exists a vertex w at which there
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a

Figure 3.8: An orientation of a tree seen as a Timbush position

Figure 3.9: Its image after reduction, having the same outcome
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are two leaf-paths {xi}06i6n and {yi}06i6m (x0 = w = y0). If (xn, xn−1) or
(ym, ym−1) is an arc, the player which can topple it can choose it and win
playing first. Now assume both (xn−1, xn) and (ym−1, ym) are arcs. As T
is minimal, it cannot be reduced using Lemma 3.8, so if one of (xi+1, xi),
(yi+1, yi), (x1, w) or (y1, w) is an arc, the one with vertices of greater index,
say (xi+1, xi), has to share the colour of the arc (xi+1, xi+2). Then the player
which can topple (xi+1, xi) can choose it and win playing first. Assume now
all (xi, xi+1), (yi, yi+1), (w, x1) and (w, y1) are arcs. Then we can apply the
reduction from Lemma 3.19, which is a contradiction. �

Finding the outcome of a minimal position now becomes a formality. If
there is no arc, we are dealing with a P-position. If there is just one arc, the
outcome is L if the arc is black and R if it is white. When there are two arcs
or more, we check in each leaf-path who has a winning move not toppling
the leaf of that leaf-path. If both players have such a move, we are dealing
with an N -position. Otherwise, the only player who has such a move, and
such a player exists since there is a vertex at which there are two leaf-paths
and one of these paths has to yield such a winning move for the same reason
as in the proof of Lemma 3.21 since the position is minimal, wins the game
whether they play first or second. Indeed, if the other player does not play
an arc of a leaf-path, it leaves a vertex at which there were two leaf-paths
which are still there and where the former player can win; if they play on an
arc of a leaf-path that topples toward the leaf of that leaf-path, the situation
is the same unless the tree was a path from the beginning and Lemma 3.13
(and its counterpart on left-topplable winning moves) could conclude even
before the move was played; if they play on an arc of a leaf-path that does
not topple toward the leaf of that leaf-path, it cannot be a winning move by
assumption. Note that the reduction from Lemma 3.8 decreases the number
of vertices without increasing the number of leaves, and the reduction from
Lemma 3.19 decreases the number of leaves without increasing the number
of vertices, so they can only be applied a linear number of times. As finding
where to apply the reduction can be done in linear time, this leads to a
quadratic time algorithm.

Theorem 3.22 We can compute the outcome of any black and white con-
nected oriented graph G in time O(|V (G)|2).

Note that for a tree, the number of edges is equal to the number of
vertices minus one, and the reduction to get an orientation of a tree from a
connected oriented graph containing a cycle can be done in time O(|V (G)|2).
Hence, we can consider O(|V (G)|) = O(|E(G)|) for the second part of the
algorithm.



Chapter 3. Partizan games 61

LLRELER
Figure 3.10: A row of dominoes and the corresponding Timbush position

3.2 Toppling Dominoes

Toppling Dominoes is a partizan game, introduced by Albert
Nowakowski and Wolfe in [1], played on one or several rows of dominoes
coloured black, white, or grey. On her move, Left chooses a black or grey
domino and topples it with all dominoes (of the same row) at its left, or
with all dominoes (of the same row) at its right. On his turn, Right does
the same with a white or grey domino.

To describe a one row Toppling Dominoes game, we just give the
word formed by the colours of its dominoes read from left to right. The
black, white and grey dominoes are also symbolised respectively by an L (for
Left or bLack), an R (for Right ≈ white) and an E (for Either or grEy). For
example, LLERR represents a Toppling Dominoes game with two black
dominoes followed by a grey then two white dominoes.

A Toppling Dominoes position with n dominoes can be seenas a Tim-

bush position on a path with 2n arcs, each domino being represented by
two arcs sharing the same colour (as the domino) pointing toward the same
vertex. See Figure 3.10 for an example.

A first easy observation on Toppling Dominoes is that the only game
on one row that has outcome P is the empty row. Indeed, if there is at least
one domino, any player who can play a domino at one end of the line can
win playing first. So if both extremities of the game are black, the game
has outcome L, if both are white, the game has outcome R, otherwise the
game has outcome N . This uniqueness of the 0 game is rather unusual, and
a natural question that arises is the following :

Question 3.23 In the game Toppling Dominoes, are there many equiva-
lence classes with a unique element consisting of only one row? Or are there
many games with few representations in a single row?

Some initial study of this question was given by Fink, Nowakowski, Siegel
and Wolfe in [17]. They gave much credit to this question with the following
result:

Theorem 3.24 (Fink et al. [17]) All numbers appear uniquely in Top-

pling Dominoes, i.e. if two games G and G′ have value a same number,
then they are identical.

A nice corollary of this result is that numbers in Toppling Dominoes

are necessarily palindromes, since they equal their reversal. In the following,
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for a given number x, we denote by x the unique Toppling Dominoes

game with value x.

Fink et al. conclude [17] with a series of conjectures, some of which
are inspired by Theorem 3.24. They reformulate Theorem 3.24 as follows,
explicitly describing for a number x the unique Toppling Dominoes games
with value x.

Theorem 3.25 (Fink et al. [17]) If a game G has value a number in
canonical form {a|b}, then G is the Toppling Dominoes game aLRb.

Their first conjecture was that a similar result is also true when a and b
are numbers but not the resulting game:

Conjecture 3.26 (Fink et al. [17]) Let a and b be numbers with a > b,
the game {a|b} is given (uniquely) by the Toppling Dominoes game aLRb.

In the following, we settle this conjecture. We first prove that the game
aLRb is indeed the game {a|b}, but we then show that aEb also has value
{a|b}. However, we prove that there are no other Toppling Dominoes

game with that value, namely:

Theorem 3.27 Let a > b be numbers and G be a Toppling Dominoes

game. The value of G is {a|b} if and only if G is aLRb, aEb or one of their
reversals.

The proof of this result is given in Subsection 3.2.2. Fink et al. proposed
two similar conjectures in [17], for the games

{
a
∣∣{b|c}

}
and

{
{a|b}

∣∣{c|d}
}
.

Conjecture 3.28 (Fink et al. [17]) Let a, b and c be numbers with
a > b > c. The game

{
a
∣∣{b|c}

}
is given (uniquely) by the Toppling Domi-

noes game aLRcRLb.

Conjecture 3.29 (Fink et al. [17]) Let a, b and c be numbers with
a > b > c > d. The game

{
{a|b}

∣∣{c|d}
}

is given (uniquely) by the Top-

pling Dominoes game bRLaLRdRLc.

We propose the following results to settle the conjectures.

Theorem 3.30 If a > b > c are numbers, then aLRcRLb has value{
a
∣∣{b|c}

}
. Moreover, if a > b, then aEcRLb also has value

{
a
∣∣{b|c}

}
.

Theorem 3.31 If a > b > c > d are numbers, then both bRLaLRdRLc
and bRLaEdRLc have value

{
{a|b}

∣∣{c|d}
}
.

The proofs of these results are given respectively in Appendices B.1
and B.2, as they use the same kind of argument as the proof of Theorem 3.27.

Note also that Conjecture 3.29 is not true when b = c. Indeed, the
game

{
{a|b}

∣∣{b|d}
}

has value b, and therefore has a unique representation
by Theorem 3.24.

In the following, we prove Theorem 3.27, but first we prove in Subsec-
tion 3.2.1 some useful preliminary results.
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3.2.1 Preliminary results

In the following, for a given Toppling Dominoes game G, we denote by
GL+

(respectively GR+

) any game obtained from G by a sequence of Left
moves (respectively of Right moves). We sometimes allow this sequence to
be empty, and then use the notations GL∗

and GR∗

. We also often denote
the canonical Left and Right options of a game x whose value is a number
by xL0 and xR0 respectively.

In [17], Fink et al. proved the following :

Theorem 3.32 (Fink et al. [17]) For any Toppling Dominoes game
G,

LG > G .

Actually, when the game is a number x, they also proved that xL+

< x.
We extend both their results for numbers to the following lemma, involving
a second number y not too far from x:

Lemma 3.33 Let x, y be numbers.

• If y < x+ 1, or y < xR0 when x is not an integer, then

{
y < Lx

y < xR+

for any game xR+

• If x− 1 < y, or xL0 < y when x is not an integer, then

{
xR < y

xL+

< y for any game xL+

Proof. We give the proof for y < x + 1 and for y < xR0 , the proof for
x− 1 < y and for xL0 < y being similar. We prove the result by induction
on the birthday of y, and the number of dominoes in x. When x = 0, the
result is obvious.

Consider first the case when x is an integer, and let y be a number
such that y < x + 1. Assume first x > 0. By Theorem 3.24, there is
a unique Toppling Dominoes game with value x, namely x = Lx. We
then get Lx = Lx+1 = x + 1 > y. Moreover, there is no Right option to
x. So the result holds. Assume now x < 0, that is x = R|x|. We have
Lx = LR|x| = {0|x + 1} which is more than y since both Left and Right
options are numbers and more than y. Moreover, any game xR+

is of the
form Rk = −k with x+1 ≤ −k ≤ 0 so any such xR+

is more than y. So the
result holds.

Consider now the case when x is a number but not an integer, of canonical
form {xL0 |xR0}. Let y be a number such that y < xR0 . Recall that by
Theorem 3.25, x = xL0LRxR0 . Note that xR0 − xL0 ≤ 1, and when defined,
(xL0)R0 > xR0 and (xR0)L0 ≤ xL0 .
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To prove Lx > y, we can just prove that whoever plays first, Left has a
winning strategy in Lx − y = LxL0LRxR0 − y. When Left starts, she can
move to LxL0 − y. Since xL0 is born earlier than x and y < xR0 ≤ (xL0)R0

(or y < xR0 ≤ xL0 +1 if xL0 is an integer), we can use induction and get y <
LxL0 . Thus LxL0 − y is positive and Left wins. Now consider the case when
Right starts; we list all his possible moves from Lx − y = LxL0LRxR0 − y.
If Right plays in −y, we get

• Lx + (−y)R0 . We have (−y)R0 = −(yL0) and yL0 < y < xR0 . Thus
applying induction, we get Lx > yL0 and thus Lx + (−y)R0 > 0, so
Left wins.

Suppose now Right moves in LxL0LRxR0 . Toppling rightward, Right can
move to:

• L(xL0)R− y. By Theorem 3.32, L(xL0)R− y > (xL0)R− y. Moreover,
since y < xR0 ≤ (xL0)R0 , we have by induction (xL0)R > y. Thus
L(xL0)R − y is positive and Left wins.

• LxL0L − y which is more that LxL0 − y by Theorem 3.32, which is
positive as proved earlier. Thus Left wins.

• LxL0LR(xR0)R − y. Then Left can answer to LxL0 − y which again
is positive as proved earlier, and win.

Toppling leftward, Right can move to:

• (xL0)RLRxR0−y. Then Left can answer to (xL0)R−y which is positive
as proved earlier.

• xR0 − y, positive by initial assumption.
• (xR0)R − y. We have (xR0)R0 > xR0 > y, so by induction (xR0)R > y

and Left wins.

We now prove by induction that xR+

> y for any xR+

. A game

xR+

=
(
xL0LRxR0

)R+

may take seven different forms, namely:

•
(
xL0

)R+

, larger than y by induction since
(
xL0
)R0

> xR0 > y.

•
(
xL0

)R+

L, which is larger than
(
xL0

)R+

, thus also larger than y.

• xL0L, larger than y by induction since
(
xL0
)R0

> xR0 > y.

•
(
xR0

)R+

, larger than y by induction since
(
xR0

)R0 > xR0 > y.
• xR0 , larger than y by our initial assumption.

•
(
xL0

)R+

LR
(
xR0

)R∗

. In this case, we show that Left has a win-

ning move in
(
xL0

)R+

LR
(
xR0

)R∗

− y. When playing first, she

can move to
(
xL0

)R+

− y that we already proved to be posi-
tive. When playing second, we may only consider Right’s move

to
(
xL0

)R+

LR
(
xR0

)R∗

+ (−y)R0 , to which she answers similarly to
(
xL0

)R+

+ (−y)R0 , also positive since (−y)R0 > −y.

• xL0LR
(
xR0

)R+

= x′. If y ≤ xL0 , then Left wins in x′ − y by playing
to xL0 − y or xL0 + (−y)R0 . Otherwise, we proceed by induction on
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the birthday of y and the number of dominoes in x′. If Right starts in
x′, we can use induction directly and get that Left wins. If he starts
in −y, since (−y)R0 > −y, we can also apply induction. Now if Left
cannot win when starting, we have x′ − y is P, so x′ = y. Yet, y is
a number such that xL0 < y < xR0 , so y is not born earlier than x.
So by Theorem 3.25, x is a subword of y and as x′ is a strict subword
of x, x′ 6= y. By unicity (Theorem 3.24), x′ 6≡+ y, which yields a
contradiction.

�

This gives us the following corollary.

Corollary 3.34 If a > b > c > d are numbers, then aR
+

> {a|b},
aR

+

>
{
a
∣∣{b|c}

}
, aR

+

>
{
{a|b}

∣∣c
}

and aR
+

>
{
{a|b}

∣∣{c|d}
}
.

Proof. By Lemma 3.33, we know that aR
+

> a+aR0

2 which itself is a number
larger than a, b, c and d. The inequalities follow. �

3.2.2 Proof of Theorem 3.27

We now characterise the positions on one row having value {a|b}, for any
numbers a > b. We start by proving that aLRb is among those positions,
and we first prove a preliminary lemma on options of aLRb.

Lemma 3.35 Let a, b be numbers such that a > b. For any Right option bR

obtained from b toppling rightward, we have aLRbR > b.

Proof. To prove that aLRbR > b, we can just prove that Left has a winning
strategy in aLRbR − b whoever plays first. When Left starts, she can move
to a− b, and since a− b > 0, reach a game which is P or L, thus win. Now
consider the case when Right starts, and his possible moves from aLRbR−b.
If Right plays in −b, we get

• aLRbR + (−b)R. Recall that since b is taken in its canonical form, −b
has at most one Right option, namely (−b)R0 . Here Left can answer
to a+ (−b)R0 which is positive since (−b)R0 > −b > −a. Therefore it
is a winning position for Left.

Consider now Right’s possible moves in aLRbR. Toppling rightward, Right
can move to:

• aR − b. Using Lemma 3.33 with x = y = a, we get aR > a, and since
a > b, aR − b > 0.

• aL− b. Again, by Lemma 3.33, aL− b > 0 and Left wins.
• aLR(bR)R − b. Then Left can answer to a− b, leaving a game in L or

in P since a− b > 0, thus win.

Toppling leftward, Right can move to:
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• aRLRbR − b. Then Left can answer to aR − b which is positive as
proved above.

• bR − b which is positive by Lemma 3.33.
• (bR)R − b, again positive by Lemma 3.33.

�

We can now state the following claim.

Claim 3.36 Let a, b be numbers such that a > b. We have aLRb = {a|b}.

Proof. To prove that aLRb = {a|b}, we prove that the second player has a
winning strategy in aLRb−{a|b}. Without loss of generality, we may assume
Right starts the game, and consider his possible moves from aLRb− {a|b}.
If Right plays in −{a|b}, we get

• aLRb− a. Then Left can answer to a− a which has value 0.
Consider now Right’s possible moves in aLRb. Toppling rightward, Right
can move to:

• aR − {a|b}. Then Left can answer to aR − b, which is positive.
• aL− {a|b}, which is positive by Corollary 3.34.
• aLRbR−{a|b}. Then Left can answer to aLRbR−b, which is positive

by Lemma 3.35.
Toppling leftward, Right can move to:

• aRLRb−{a|b}. Then Left can answer to aR−{a|b}, which is positive
by Corollary 3.34.

• b− {a|b}. Then Left can answer to b− b which has value 0.
• bR − {a|b}. Then Left can answer to bR − b which is positive.

�

As an example, here is a representation of {2|34}:

We now prove that aEb also has value {a|b}, and we again need to prove
first a preliminary lemma on options of aEb.

Lemma 3.37 Let a, b be numbers such that a > b. For any Right option bR

obtained from b toppling rightward, we have aEbR > b.

Proof. We prove that Left has a winning strategy in aEbR − b whoever
plays first. When Left starts, she can move to a− b, reaching a game that is
P or L, thus win. Now consider the case when Right starts, and his possible
moves from aEbR − b. If Right plays in −b, we get

• aEbR+(−b)R. Recall that since b is taken in its canonical form, there
is only one Right option to −b, namely (−b)R0 . Here Left can answer
to a+ (−b)R0 which is positive since (−b)R0 > −b > −a. Therefore it
is a winning position for Left.
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Consider now Right’s possible moves in aEbR. Toppling rightward, Right
can move to:

• aR − b, which is positive.
• a− b, which is positive.
• aE(bR)R−b. Then Left can answer to a−b which is positive and win.

Toppling leftward, Right can move to:

• aREbR − b. Then Left can answer to aR − b, which is positive.
• bR − b which is positive.
• (bR)R − b, again positive.

�

We can now state the following claim.

Claim 3.38 Let a, b be numbers such that a > b. We have aEb = {a|b}.

Proof. To prove that aEb = {a|b}, we prove that the second player has a
winning strategy in aEb−{a|b}. Without loss of generality, we may assume
Right starts the game, and consider his possible moves from aEb−{a|b}. If
Right plays in −{a|b}, we get

• aEb− a. Then Left can answer to a− a = 0.

Consider now Right’s possible moves in aEb. Toppling leftward, Right can
move to:

• aREb− {a|b}. Then Left can answer to aR − {a|b}, which is positive
by Corollary 3.34.

• b− {a|b}. Then Left can answer to b− b, which has value 0.
• bR − {a|b}. Then Left can answer to bR − b, which is positive.

Toppling rightward, Right can move to:

• aR − {a|b}. Then Left can answer to aR − b, which is positive.
• a− {a|b}. Then Left can answer to a− b, having value at least 0.
• aEbR − {a|b}. Then if a > b Left can answer to aEbR − b, which is

positive by Lemma 3.37. Otherwise, a = b and Left can answer to
bR − {a|b}, which is positive by Corollary 3.34.

�

As an example, here is a representation of {1
2 | −

5
4}:

We now start proving these two rows of dominoes (and their reversals) are
the only rows having the value {a|b}. The next four lemmas are preliminary
lemmas, proving some options may not occur for a player in a game having
value {a|b}.

First we prove that some of Left’s moves from aLRb cannot be available
for Right in a game having value {a|b}.
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Lemma 3.39 Let a, b be numbers such that a > b. For any Left option bL

obtained from b toppling rightward, we have aLRbL < {a|b}.

Proof. We prove that Right has a winning strategy in aLRbL − {a|b}
whoever plays first. When Right starts, he can move to bL −{a|b}, which is
negative by Corollary 3.34. Now consider the case when Left starts and her
possible moves to aLRbL − {a|b}. If Left plays in −{a|b}, we get

• aLRbL − b. Then Right can answer to bL − b, which is negative.

Consider now Left’s possible moves in aLRbL. Toppling rightward, Left can
move to:

• aL − {a|b}. Then Right can answer to aL − a, which is negative.
• a− {a|b}. Then Right can answer to a− a which has value 0.
• aLR(bL)L − {a|b}. Then Right can answer to aLR(bL)L − a, which

is negative by Lemma 3.35 since both moves in b were by toppling
rightward, allowing us to consider aLR(bL)L as some aLRbL.

Toppling leftward, Left can move to:

• aLLRbL−{a|b}. Then Right can answer to bL−{a|b} which is negative
by Corollary 3.34.

• RbL − {a|b} which is negative as RbL < bL by Lemma 3.33 and
bL − {a|b} is negative by Corollary 3.34.

• (bL)L − {a|b} which is negative by Corollary 3.34.

�

Now we prove that some of Right’s moves from aLRb cannot be available
for Left in a game having value {a|b}. Note that these moves are not the
reversal of moves considered in the previous lemma.

Lemma 3.40 Let a, b be numbers such that a > b. For any Right option bR

obtained from b toppling rightward, we have aLRbR > {a|b}.

Proof. We prove that Left has a winning strategy in aLRbR−{a|b} whoever
plays first. When Left starts, she can move to aLRbR − b, which is positive
by Lemma 3.35. Now consider the case where Right starts, and his possible
moves from aLRbR − {a|b}. If Right plays in {a|b}, we get

• aLRbR − a. Then Left can answer to a− a which has value 0.

Consider now Right’s possible moves in aLRbR. Toppling rightward, Right
can move to:

• aR − {a|b}. Then Left can answer to aR − b, which is positive.
• aL− {a|b}, which is positive by Corollary 3.34.
• aLR(bR)R − {a|b}. Then Left can answer to aLR(bR)R − b, which

is positive by Lemma 3.35 since both moves in b were by toppling
rightward, allowing us to consider aLR(bR)R as some aLRbR.

Toppling leftward, Right can move to:
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• aRLRbR−{a|b}. Then Left can answer to aR−{a|b}, which is positive
by Corollary 3.34.

• bR − {a|b}. Then Left can answer to bR − b, which is positive.
• (bR)R − {a|b}. Then Left can answer to (bR)R − b, which is positive.

�

Similarly, we prove that some of Left’s moves from aEb cannot be avail-
able for Right in a game having value {a|b}.

Lemma 3.41 Let a, b be numbers such that a > b. For any Left option bL

obtained from b toppling rightward, we have aEbL < {a|b}.

Proof. We prove that Right has a winning strategy in aEbL−{a|b} whoever
plays first. When Right starts, he can move to bL−{a|b}, which is negative
by Corollary 3.34. Now consider the case when Left starts, and her possible
moves from aEbL − {a|b}. If Left plays in −{a|b}, we get

• aEbL − b. Then Right can answer to bL − b, which is negative.

Consider now Right’s possible moves in aEbL. Toppling rightward, Left can
move to:

• aL − {a|b}. Then Right can answer to aL − a, which is negative.
• a− {a|b}. Then Right can answer to a− a which has value 0.
• aE(bL)L − {a|b}. Then Right can answer to aE(bL)L − b, which is

negative by Corollary 3.34 since both moves in b were by toppling
rightward, allowing us to consider aE(bL)L as some aEbL.

Toppling leftward, Left can move to:

• aLEbL−{a|b}. Then Right can answer to bL−{a|b}, which is negative
by Corollary 3.34.

• bL − {a|b}, negative by Corollary 3.34.
• (bL)L − {a|b}, negative by Corollary 3.34.

�

Finally we prove that some of Right’s moves from aEb cannot be available
for Left in a game having value {a|b}. Note that again these moves are not
the reversal of moves considered in the previous lemma.

Lemma 3.42 Let a, b be numbers such that a > b. For any Right option bR

obtained from b toppling rightward, we have aEbR > {a|b}.

Proof. We prove that Left has a winning strategy in aEbR−{a|b} whoever
plays first. When Left starts, she can move to aEbR−b, which is positive by
Lemma 3.37 if a > b and to bR − {a|b}, which is positive by Corollary 3.34
if a = b. Now consider the case when Right starts, and his possible moves
from aEbR − {a|b}. If Right plays in −{a|b}, we get

• aEbR − a. Then Left can answer to a− a which has value 0.
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Consider now Right’s possible moves in aEbR. Toppling rightward, Right
can move to:

• aR − {a|b}. Then Left can answer to aR − b, which is positive.
• a− {a|b}. Then Left can answer to a− a which has value 0.
• aE(bR)R−{a|b}. Then Left can answer to aE(bR)R−b, which is posi-

tive by Lemma 3.37 since both moves in b were by toppling rightward,
allowing us to consider aE(bR)R as some aEbR.

Toppling leftward, Right can move to:

• aREbR−{a|b}. Then Left can answer to aR−{a|b}, which is positive
by Corollary 3.34.

• bR − {a|b}. Then Left can answer to bR − b, which is positive.
• (bR)R − {a|b}. Then Left can answer to (bR)R − b, which is positive.

�

Though we want to deal with a game having value {a|b}, it might not
be in canonical form, that is its options and other proper followers might
not be numbers. As most known results in Toppling Dominoes are about
numbers, we get back there with the following lemma.

Lemma 3.43 Let a be a number and x be a game such that x > a. Then
there exists a number b > a such that b ∈ xL

∗

.

Proof. We prove it by induction on the birthdays of x and a.
If x = a, then a ∈ xL

∗

and a > a. Otherwise, x > a, so aR0 6 x or
a 6 xL for some xL. In both cases, we conclude by induction hypothesis,
since aR0 > a and (xL)L

∗

⊆ xL
∗

. �

To fully characterise Toppling Dominoes rows having value {a|b}, we
need another lemma from [17]:

Lemma 3.44 (Fink et al. [17]) [Sandwich Lemma] Let G be a Top-

pling Dominoes position with value α. From G − α, if the first player
topples dominoes toward the left (right) then the winning response is not to
topple a domino toward the left (right).

We now assume some Toppling Dominoes position x has value {a|b}
to force some properties on such positions.

Lemma 3.45 If a > b are numbers and x is a Toppling dominoes posi-
tion with value {a|b}, then

• a ∈ xL ∪ xL
2

,
• for any number a0 > a, a0 /∈ xL

∗

,
• b ∈ xR ∪ xR

2

,
• for any number b0 < b, b0 /∈ xR

∗

.
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Proof. As x = {a|b}, x − {a|b} is a second-player win. From x − {a|b},
Right can move to x − a, from which Left should have a winning move. It
cannot be to x+ (−a)L0 = {a|b} − aR0 as it is not winning since aR0 can be
written {r1|r2} with r1 > a and r2 > b. Hence there is a Left move x0 of x
such that x0 > a. By Lemma 3.43, there exists a number a0 > a such that
a0 ∈ xL

∗

0 ⊂ xL
+

. If a0 ∈ xL, then a0 = a as otherwise Left’s move from

x− {a|b} to a0 − {a|b} would be winning. As xL
>3

⊂ xL
2

, we do not need
consider that case. Thus we can assume a0 ∈ xL

2

\xL. We can then write
x = w1δ1a0δ2w2 with δ1, δ2 ∈ {L,E}. In the following, we use the fact that
Left has no winning first move in x−{a|b}. From x−{a|b}, Left can topple
δ2 rightward to w1δ1a0. If Right answers to w1δ1a0 − a, Left can topple
δ1 leftward to a0 − a and win. Hence Right’s winning answer has to be to
some (w1δ1a0)

R − {a|b} and can only be achieved by toppling leftward by
Lemma 3.44. If he moves to a0 or some aR0 , Left’s move to a0 − b or aR0 − b
is a winning move since aR0 > a0 > a > b. Hence his winning move is to
some wR

1 δ1a0 − {a|b}. But then Left can answer to a0 − {a|b} and we have
a0 = a or Right would have no winning strategy. This implies both that
a ∈ xL ∪ xL

2

, and that for any number a0 > a, a0 /∈ xL
∗

.
A similar reasoning would prove the last two stated items. �

Lemma 3.46 If a > b are numbers and x is a Toppling dominoes po-
sition with value {a|b}, then x has a Left option to a or a Right option to
b.

Proof. By Lemma 3.45, we know that a ∈ xL ∪ xL
2

and b ∈ xR ∪ xR
2

.
Assume that a only appears in xL

2

\xL and b only appears in xR
2

\xR.

We can write x = w1δ1aδ2w2 such that b /∈ wR
+

1 and δ1, δ2 ∈ {L,E}, or

x = w1δ1bδ2w2 such that a /∈ wL
+

1 and δ1, δ2 ∈ {R,E}. Consider the one
with w1 having the smallest length. Without loss of generality, we can
assume it is w1δ1aδ2w2, and consider Left’s move from x − {a|b} to
w1δ1a− {a|b}. We saw in the proof of Lemma 3.45 that Right’s win-
ning answer can only be to some wR

1 δ1a− {a|b}. Now Left can move to
wR

1 δ1a− b. If Right answers to wR
1 δ1a− bL0 , Left can move to a− bL0 and

win. Hence Right’s winning answer has to be to some (wR
1 δ1a)

R − b. For
this move to be winning, we have (wR

1 δ1a)
R 6 b, so by Lemma 3.43 we have

b0 ∈ ((wR
1 δ1a)

R)R
∗

for some number b0 6 b. If b0 < b, by Lemma 3.45 we
have b0 /∈ xR

∗

, so b0 has to be obtained from wR
1 δ1a by only toppling left-

ward. We have b0 < b 6 a, hence b0 cannot be some aR > a, nor some
(wR

1 )
Rδ1a since it would mean that a ∈ bL

0 and then a < b0. Hence b0 = b.
Again, b has to be obtained from wR

1 δ1a by only toppling leftward since

b /∈ aR
+

as b 6 a, and no b starts in x before w1 ends. In particular,
(wR

1 δ1a)
R is of the form wR

1 δ1a, a or aR. (wR
1 δ1a)

R cannot be of the form
aR, since aR > a > b. If (wR

1 δ1a)
R is of the form wR

1 δ1a, Left can move from
wR

1 δ1a− b to a− b and win. Hence (wR
1 δ1a)

R = a, since (wR
1 δ1a)

R 6 b 6 a,
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we have a = b and δ1 = E. w1 cannot be greater than or equal to a since
otherwise we would find a number a0 > a such that a0 ∈ wL

∗

1 . Similarly,
w1 cannot be less than or equal to b = a. As aL < a < aR, there exists a
Left move wL

1 of w1 that is greater than or equal to a and so we can find
a number a0 > a such that a0 ∈ (wL

1 )
L

∗

, which again is not possible. This
means there was no winning move for Right from wR

1 δ1a− b, which means
there was no winning move for Right from w1δ1a− {a|b}, which contradicts
the fact that x = {a|b}. Hence we have that a ∈ xL or b ∈ xR. �

We can now prove the following claim.

Claim 3.47 If a > b are numbers and x is a Toppling dominoes position
with value {a|b}, then x is either aLRb or aEb (or the reversal of one of
them).

Proof. By Lemma 3.46, we can assume without loss of generality that
x = aLx′ or x = aEx′ for some x′.
First assume x = aLx′. If x is a strict subword of aLRb, then x is an option
of aLRb, so they cannot be equal. For the same reason, aLRb cannot be
a strict subword of x. Looking from left to right, we find the first domino
where x differs from aLRb. If it is a white or grey domino instead of a
black one, then Right has a move from x−{a|b} to aLRbL −{a|b} which is
winning by Lemma 3.39. If it is a black or grey domino instead of a white
one, then Left has a move from x−{a|b} to aL−{a|b} or to aLRbR−{a|b}
which are winning by Corollary 3.34 and Lemma 3.40. So x cannot differ
from aLRb.
Now assume x = aEx′. If x is a strict subword of aEb, then x is an option of
aEb, so they cannot be equal. For the same reason, aEb cannot be a strict
subword of x. Looking from left to right, we find the first domino where
x differs from aEb. If it is a white or grey domino instead of a black one,
then Right has a move from x− {a|b} to aEbL − {a|b} which is winning by
Lemma 3.41. If it is a black or grey domino instead of a white one, then Left
has a move from x−{a|b} to aEbR−{a|b} which is winning by Lemma 3.42.
So x cannot differ from aEb.

�

3.3 Col

Col is a partizan game played on an undirected graph with vertices either
uncoloured or coloured black or white. A move of Left consists in choosing
an uncoloured vertex and colouring it black, while a move of Right would be
to do the same with the colour white. An extra condition is that the partial
colouring has to stay proper, that is no two adjacent vertices should have
the same colour.
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Uncoloured vertices are represented grey.
When a player chooses a vertex, they thus become unable to play on any

of its neighbours for the rest of the game. Hence, all these neighbours are
somehow reserved for the other player. Another way of seeing the game is
to play it on the graph of available moves: a position is an undirected graph
with all vertices coloured black, white or grey; a move of Left is to choose
a black or grey vertex, remove it from the game with all its black coloured
neighbours, and change the colour of its other neighbours to white; a move
of Right is to choose a white or grey vertex, remove it from the game with all
its white coloured neighbours, and change the colour of its other neighbours
to black. This means that black vertices are reserved for Left, white vertices
for Right, and either player can choose grey vertices. In the following, we
use that second representation.

The description of a position consists of the graph on which the two
players are playing, and a reservation function from the set of vertices to the
set of colours {black,white, grey}.

Example 3.48 Figure 3.11 shows an example of a Col position under the
two representations. On top is the first representation as in the original
definition of the game. On bottom is the second representation, that we use
in the following. Both represent the same game. To go from the original
representation to the second representation, we delete black vertices and
colour their neighbours white, delete vertices that were originally white and
colour their neighbours black, and delete vertices we gave both colours. We
can see the second representation seems simpler, and that is why we use it.

Example 3.49 Figure 3.12 gives an example of a Right move. Right chooses
the grey vertex x. That vertex is removed from the game. The white vertex
y also disappears. The grey vertex z becomes black. The black vertex t
stays black. The rest of the graph does not change as no other vertices are
neighbours of x.

We represent some graphs using words: each letter used in this repre-
sentation corresponds to a subgraph with a specific vertex being incident
with the edges connecting that subgraph to the subgraphs corresponding to
the letters before and after this one. The specific vertices corresponding to
the first letter and the last letter are not neighbours, unless the words has
length 2. An o represents a grey vertex, a B a black vertex and a W a white
vertex, the only vertex being the specific vertex. An x represents a path
with two grey vertices, anyone of them being the specific vertex. All the
graphs that can be represented by words using these letters are caterpillars
with maximum degree 3. We also note Cn the cycle on n grey vertices.

Example 3.50 Figure 3.13 shows a word and the unique graph that it en-
codes. You can see that for each x, there is a vertex whose degree remains
1.
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Figure 3.11: A Col position in its two representations
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y

x

z t

Figure 3.12: Playing a move in Col

xWooxxxoWoBxoWxooxWBoxBoxxo

Figure 3.13: Representation of a caterpillar by a word

We now introduce a few notation that we use in the following. We note
ℓG(v) the label of a vertex v ∈ V (G), that is B if the vertex is coloured
black, W if it is coloured white and o if it is uncoloured. Modifying the label
of a vertex is equivalent to modifying its colour. We say ℓG(u) = −ℓG(v)
if both ℓG(u) and ℓG(v) are o or if one is B and the other is W . Given a
Col position G, we note −G the Col position such that V (−G) = V (G),
E(−G) = E(G) and ∀v ∈ G, ℓ−G(v) = −ℓG(v). The reader would have
recognised that the game −G is the conjugate of the game G. Given two
Col positions G1, G2 and two vertices u1 ∈ V (G1), u2 ∈ V (G2) such that
ℓG1

(u1) = ℓG2
(u2), we note (G1, u1)⊙ (G2, u2) the Col position defined by:

V ((G1, u1)⊙ (G2, u2)) = V (G1) ∪ V (G2) \ {u2}
E((G1, u1)⊙ (G2, u2)) = E(G1) ∪ E(G2[V (G2) \ {u2}])

∪{(u1, v) | (u2, v) ∈ E(G2)})

ℓ(G1,u1)⊙(G2,u2)(v) =

{
ℓG1

(v) if v ∈ V (G1)
ℓG2

(v) otherwise

Given a vertex u in a Col position G, we note by G+
u (resp. G−

u ) the Col

position obtained from G by re-labelling B (resp. W ) the vertex u.
We note PB

n (resp PBB
n , PBW

n , PWB
n , PWW

n ) the Col position (Bon, u) (resp
(BonB,u), (BonW,u), (WonB,u), (WonW,u)) where the specific vertex u
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is such that ℓPB
n
(u) = B (resp ℓPBB

n
(u) = B, ℓPBW

n
(u) = B, ℓPWB

n
(u) = W ,

ℓPWW
n

(u) = W ).
In this section, we recall some results stated in [4] and [10] and give their

proofs, find the normal outcome of most caterpillars with no reserved vertex
and the normal outcome of any cograph with no reserved vertex. We present
some results that are already stated in [4] and [10] because most of them are
stated without proof, and though we trust the authors of these books, we
think it is interesting to have the proof written somewhere.

3.3.1 General results

First, we look at general graphs and give some tools that help the analysis.
The first theorem gives a winning strategy in specific situations: when

a position is symmetric, with no vertex being its own image, the second
player wins by always playing on the image of the vertex their opponent just
played. This is close to the ‘Tweedledum-Tweedledee’ strategy, except that
the position is not necessarily of the form G+ (−G).

Theorem 3.51 (Berlekamp et al. [4], Conway [10]) Let G be a Col

position such that there exists a fix-point-free involution f of V (G) such
that:

1. ∀u, v ∈ V (G), (u, v) ∈ E(G) ⇔ (f(u), f(v)) ∈ E(G)

2. ∀v ∈ V (G), lG(v) = −lG(f(v))

Then G ≡+ 0.

Proof. We show it by induction on |V (G)|.
If |V (G)| = 0, G = ∅ = {· | ·} = 0.
Assume now |V (G)| > 2. Let GL be the graph after a move of
Left on any vertex u from G. Let G′ be the graph after a move of
Right on the vertex f(u) from GL which is possible since u 6= f(u)
and lG(u) = −lG(f(u)). f|G′ is a fix-point-free involution of V (G′)
such that ∀v,w ∈ V (G′), (v,w) ∈ E(G′) ⇔ (f|G′(v), f|G′(w)) ∈ E(G′) and
∀v ∈ V (G′), lG′(v) = lG′(f|V (G′)(v)), so G′ ≡+ 0 by induction and is a sec-
ond player win. Hence Right has a winning strategy playing second.
A similar reasoning would show Left has a winning strategy playing second.
Hence G ≡+ 0. �

Example 3.52 Figure 3.14 shows an example of a Col position satisfying
the conditions of Theorem 3.51. The image of each vertex is the reflective
vertex through the dashed line.

The next theorem allows us to compare a position to the same position
in which we would have removed some edges, all of them incident to a black
vertex. This comparison seems natural as it seems to be an advantage when
a vertex reserved for you has a low degree.
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Figure 3.14: A symmetric Col P-position

Theorem 3.53 (Berlekamp et al. [4], Conway [10]) Let G and G′ be
two Col positions such that:

1. V (G) = V (G′),

2. ∀u ∈ V (G), lG(u) = lG′(u),

3. E(G′) ⊆ E(G),

4. ∀(u, v) ∈ E(G) \E(G′), (lG(u) = B or lG(v) = B).

Then G 6+ G′.

Proof. We show by induction on |V (G)| that G′ + (−G) >+ 0, that is Left
wins if Right starts.
If |V (G)| = 0, G′ + (−G) = ∅+ ∅ = 0 + 0 = 0.
Assume now |V (G)| > 2. Let f be the function which assigns a vertex of
V (G′) to its copy in V (−G) and vice versa. Let GR be the graph after a
move of Right on any vertex u from G′ + (−G). Let G0 be the graph af-
ter a move of Left on the vertex f(u) from GR. Let G1 be the subgraph
of G0 having its vertices corresponding to those of −G and G2 the sub-
graph of G0 having its vertices corresponding to those of G′. We have
V (−G1) = V (G2), ∀u ∈ V (−G1), l−G1

(u) = lG2
(u), E(G2) ⊆ E(−G1) and

∀(u, v) ∈ E(G1) \ E(G2), (l−G1
(u) = B or l−G1

(v) = B), so G2 +G1 >
+ 0

by induction. So G0 >+ 0 and Left wins G0 if Right starts, so she wins
GR if she starts. So G′ + (−G) >+ 0. Hence G 6+ G′. �

As we get a similar result if the removed edges are all incident to a white
vertex, we get the following corollary.

Corollary 3.54 (Berlekamp et al. [4], Conway [10]) Let G and G′ be
two Col positions such that:
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1. V (G) = V (G′)

2. ∀u ∈ V (G), lG(u) = lG′(u)

3. E(G′) ⊆ E(G)

4. ∀(u, v) ∈ E(G) \ E(G′), ((lG(u) = B and lG(v) = W )) or vice versa

Then G ≡+ G′.

Proof. We have G 6+ G′ and −G 6+ −G′, so G ≡+ G′. �

Actually, we even have G = G′ in this case.

Adding a black vertex or reserving a vertex for Left seems to be an
advantage for her. The next theorem shows that this intuition is correct.

Theorem 3.55 (Berlekamp et al. [4], Conway [10]) Let G be a Col

position and u a grey vertex of G. Then:

1. G+
u >+ G >+ G−

u

2. G+
u >+ G \ {u} >+ G−

u

Proof. We show by induction on |V (G)| that G+
u + (−G \ {u}) >+ 0, that

is Left wins if Right starts.
If |V (G)| = 0, G+

u + (−G \ {u}) = ∅+ ∅ = 0.
Assume now |V (G)| > 2. We define f the function which assigns a vertex
of V (G+

u ) \ {u} to its copy in V (−G \ {u}) and vice versa. Let GR be the
graph after a move of Right on any vertex v from G+

u + (−G \ {u}). Let G0

be the graph after a move of Left on the vertex f(v) from GR. Let G1 be
the subgraph of G0 having its vertices corresponding to those of G+

u and G2

the subgraph of G0 having its vertices corresponding to those of −G \ {u}.
If (u, f(v)) ∈ E(G+

u + (−G \ {u})), then G1 = −G2, so G0 = G1 +G2 = 0.
Otherwise, G1 = G+

1u and G2 = −G1 \ {u}, so G0 = G1 + G2 >+ 0 by
induction. Hence 0 6+ G0 and Left wins G0 if Right starts, so she wins GR

if she starts. So G+
u + (−G \ {u}) >+ 0. Hence G+

u >+ G \ {u}.
We show by induction on |V (G)| that G+

u +(−G) >+ 0, that is Left wins
it if Right starts.
If |V (G)| = 0, G+

u + (−G) = ∅+ ∅ = 0.
Assume |V (G)| > 2. We define f the function which assigns a vertex of
V (G+

u ) to its copy in V (−G) and vice versa. Let GR be the graph after
a move of Right on any vertex v from G+

u + (−G). Let G0 be the graph
after a move of Left on the vertex f(v) from GR. Let G1 be the subgraph
of G0 having its vertices corresponding to those of G+

u and G2 the subgraph
of G0 having its vertices corresponding to those of −G. If u = f(v) or
(u, v) ∈ E(G+

u + (−G \ {u})), then G1 = −G2, so G0 = G1 + G2 = 0. If
(u, f(v)) ∈ E(G+

u + (−G \ {u})), then G2 = G+
2u and G1 = G2 \ {u}, so

G0 = G1 + G2 >+ 0. Otherwise, G1 = (−G2)
+
u , so G0 = G1 +G2 >+ 0 by
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induction. Hence 0 6+ G0 and Left wins G0 if Right starts, so she wins GR

if she starts. So G+
u + (−G) >+ 0. Hence G+

u >+ G.
Finally, −(G−

u ) = (−G)+u , so −(G−
u ) >

+ −G and −(G−
u ) >

+ −G \ {u}.
Hence G >+ G−

u and G \ {u} >+ G−
u . �

The next theorem says that any Col position is equivalent under normal
play to a number or to the game ∗ added to a number, which makes finding
the outcome of a sum easier. In particular, it implies that the sum of two
Col N -positions is a P-position. Also, if we find a move to z for both
players, we know the value of the game is z + ∗ without having the need
to check other options. It also implies that if G is a Col position where
G = −G, which is the case when all vertices are grey, then G = 0 or G = ∗.
See [4], vol.1, p.47-48 for the proof.

Theorem 3.56 (Berlekamp et al. [4], Conway [10]) For any Col po-
sition G, there exists a number z such that G = z or G = z + ∗.

In a Col position, if there is a vertex for which the position has the
same value when the colour of the vertex is switched to black and when the
colour of the vertex is switched to white, it seems no player wants to play
on that vertex, whether it is reserved or not. The intuition is correct, and
the following theorem shows a result even stronger: even if you identify that
vertex to any vertex of another position, keeping the first position as it was,
with no other vertex adjacent to a vertex of the added position, no player
wants to play on that vertex, whether it is reserved or not.

Theorem 3.57 (Berlekamp et al. [4], Conway [10])

1. Let G be a Col position and u a grey vertex of G such that G+
u ≡+ G−

u ,
G′ any Col position and v a grey vertex of G′. Then
(G+

u , u)⊙ (G′+
v , v) ≡+ (G,u) ⊙ (G′, v) ≡+ (G \ {u}) + (G′ \ {v}) ≡+ (G−

u , u)⊙ (G′−
v , v).

2. Let G be a Col position and u a vertex of G such that G+
u ≡+ G \ {u},

G′ any Col position and v a vertex of G′ sharing the colour of u. Then
(G+

u , u)⊙ (G′+
v , v) ≡+ (G \ {u}) + (G′ \ {v}).

Proof. 1. We have G+
u ≡+ G−

u , so 0 ≡+ G+
u + (−G−

u ) ≡+ G+
u + (−G)+u .

Moreover,

0 ≡+ G \ {u}+ (−G \ {u}) +G′ \ {v}+ (−G′ \ {v})
≡+ G \ {u}+G′ \ {v} + (−G) \ {u}+ (−G′) \ {v}
6

+ (G+
u , u)⊙ (G′+

v , v) + ((−G)+u , u)⊙ ((−G′)+v , v)
6

+ G+
u +G′ \ {v} + (−G)+u + (−G′) \ {v}

≡+ (G+
u + (−G)+u ) + (G′ \ {v}+ (−G′ \ {v}))

≡+ 0

Hence
0 ≡+ (G+

u , u)⊙ (G′+
v , v) + ((−G)+u , u)⊙ ((−G′)+v , v)

≡+ (G+
u , u)⊙ (G′+

v , v) + (−((G−
u , u)⊙ (G′−

v , v)))
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From Theorem 3.55, we get

(G+
u , u)⊙ (G′+

v , v) ≡+ (G,u) ⊙ (G′, v)
≡+ (G \ {u}) + (G′ \ {v}
≡+ (G−

u , u)⊙ (G′−
v , v)

2. We have G+
u ≡+ G \ {u}, so 0 ≡+ G+

u + (−G \ {u}).

0 ≡+ G \ {u} +G′ \ {u}+ (−G \ {u}) + (−G′ \ {u})
6+ (G+

u , u)⊙ (G′+
v , v) + (−((G \ {u}) + (G′ \ {v})))

6+ G+
u +G′ \ {v} + (−G \ {u}) + (−G′ \ {v})

≡+ 0

Hence

0 ≡+ (G+
u , u)⊙ (G′+

v , v) + (−((G \ {u}) + (G′ \ {v})))
(G+

u , u)⊙ (G′+
v , v) ≡+ (G \ {u}) + (G′ \ {v})

�

We immediately get the following corollary, that we use frequently in the
following of the section.

Corollary 3.58 (Berlekamp et al. [4], Conway [10]) For any Col po-
sition G, and any vertex v of G such that ℓG(v) = B, we have

(G, v) ⊙ PBB
0 ≡+ (G \ {v}) +B.

Proof. We have B = {∅ | ·} = BB. �

3.3.2 Known results

We now focus on some classes of trees. Though we want to find the outcomes
of Col positions where all vertices are grey, we need intermediate lemmas
where some vertices are black or white.

We first prove that cycles and paths having only grey vertices all have
value 0, apart from the isolated vertex which has value ∗. We separate the
proof with two lemmas, covering all possible maximal connected subpositions
that may appear throughout such a game, as the disjunctive sum of numbers
and ∗ is easy to determine, before Theorem 3.61 ends the proof.

The first lemma gives the values of all paths where each leaf is either
black or white, and all internal nodes are grey.

Lemma 3.59 (Berlekamp et al. [4], Conway [10])

1. ∀n > 0, B ≡+ BonB ≡+ 1.
2. ∀n > 0, BonW ≡+ 0.
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Proof. We show the results simultaneously by induction on n.
B = {∅ | ·} = {0 | ·} ≡+ 1. BB = {∅ | ·} = {0 | ·} ≡+ 1.
BW = B +W ≡+ 0.
Let n > 1 be an integer.

BonB = {Won−1B,Won−2B,

n−3

2⋃

i=0

(BoiW +Won−i−3B)

| (B +Bon−2B),

n−3⋃

i=0

(BoiB +Bon−i−3B)}

≡+ {0, 0, (0 + 0) | 2, (1 + 1)} by induction
≡+ 1.

BonW = {Won−1W,Won−2W, (Bon−2W +W ),

n−3⋃

i=0

(BoiW +Won−i−3W )

| Bon−1B,Bon−2B, (B +Bon−2W ),
n−3⋃

i=0

(BoiB +Bon−i−3W )}

≡+ {−1,−1, (0 + (−1)), (0 + (−1)) | 1, 1, (1 + 0), (1 + 0)}
by induction

≡+ 0.

�

The following lemma gives the values of all paths where exactly one leaf
is either black or white, and all other vertices, including the other leaf, are
grey.

Lemma 3.60 (Berlekamp et al. [4], Conway [10]) ∀n > 1, Bon ≡+ 1
2 .

Proof. We show the result by induction on n.
Bo = {W, ∅ | B} = {−1, 0 | 1} ≡+ 1

2 .
Boo = {Wo,W,BW | (B +B), BB} ≡+ {−1

2 ,−1, 0 | (1 + 1), 1} ≡+ 1
2 .

Let n > 3 be an integer.

Bon = {Won−1,Won−2,

n−4⋃

i=1

(BoiW +Won−i−3, (Bon−3W +W ), Bon−2W

| (B +Bon−2),
n−4⋃

i=0

(BoiB +Bon−i−3), (Bon−3B +B), Bon−2B}

≡+ {−
1

2
,−

1

2
, (0−

1

2
), (0 + (−1)), 0 | (1 +

1

2
), (1 +

1

2
), (1 + 1), 1}

by induction

≡+ 1

2
.

�
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We are now able to state the result giving the value of any grey path and
any cycle, as mentioned above.

Theorem 3.61 (Berlekamp et al. [4], Conway [10])

1. ∀n > 2, on ≡+ 0, and o = ∗.
2. ∀n > 3, Cn ≡+ 0.

Proof. o = {∅ | ∅} = {0 | 0} = ∗. oo = {W | B} = {−1 | 1} ≡+ 0.
ooo = {Wo, (W +W ) | Bo, (B +B)} ≡+ {−1

2 ,−2 | 1
2 , 2} ≡+ 0.

oooo = {Woo, (W +Wo) | Boo, (B +Bo)} ≡+ {−1
2 ,−

3
2 | 1

2 ,
3
2} ≡+ 0.

Let n > 5 be an integer.

on = {Won−2, (W +Won−3),

n−3

2⋃

i=1

(oiW +Won−i−3)

| Bon−2, (B +Bon−3)

n−3

2⋃

i=

(oiB +Bon−i−3)}

≡+ {−
1

2
,−

3

2
,−1 |

1

2
,
3

2
, 1}

≡+ {0}.

Cn = {Won−3W | Bon−3B} ≡+ {−1 | 1} ≡+ 0. �

The next theorem gives a useful tool on how to shorten long paths leading
to a degree 1 vertex in a general position, while keeping the value unchanged.
We prove that result using the original definition of comparison and equiva-
lence between games, as defined in [10]:

G >
+ H ⇔ ((∀GR ∈ GR, GR 
 H) ∧ (∀HL ∈ HL, G 
 HL)).

Theorem 3.62 (Berlekamp et al. [4], Conway [10])

1. ∀G, u ∈ V (G) such that ℓG(u) = B, n > 1,
(G,u) ⊙ PB

n+2 ≡
+ (G,u) ⊙ PBB

n − 1
2 ≡+ (G,u) ⊙ PBW

n + 1
2 .

2. ∀G, u ∈ V (G) such that ℓG(u) = B, n > 1,
(G,u) ⊙ PBB

n ≡+ (G,u)⊙ PBB
1 .

3. ∀G, u ∈ V (G) such that ℓG(u) = B, n > 1,
(G,u) ⊙ PBW

n ≡+ (G,u) ⊙ PBW
1 .

4. ∀G, u ∈ V (G) such that ℓG(u) = B, n > 3, (G,u) ⊙ PB
n ≡+ (G,u) ⊙ PB

3 .

Proof. For most of the proof, we list the set of options of both games.
Options on the same line are equal, as explained on the third column of that
line. Having Left options of two games equal is enough to conclude none of
these options is greater than or equal to any of these two games (that follows
from G >+ G for any game G).

We show 1. by induction on the birthday of G.
If G = ∅, then it follows immediately from Lemma 3.59 and 3.60. Assume
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G is a non-empty position. Let GL
3 be the position after a move of Left on

u from G, GL
2 the position after a move of Left on a neighbour of u from G,

GL
1 the position after a move of Left on any other vertex from G, and GR

the position after a move of Right on any vertex from G.
We get

Left options of
(G,u) ⊙ PBB

n

Left options of
(G,u) ⊙ PBW

n + 1

(GL
1 , u)⊙ PBB

n (GL
1 , u)⊙ PBW

n + 1 by induction
GL

2 + onB GL
2 + onW + 1 by Lemma 3.60

GL
3 +Won − 1B GL

3 +Won − 1W + 1 by Lemma 3.59
(G \ {u}) +Won−2B (G\{u})+Won−2W+1 by Lemma 3.59
((G,u) ⊙ PBW

i ) +
Won−i−3B

((G,u) ⊙ PBW
i ) +

Won−i−3W + 1
∀i ∈ J0;n − 3K by
Lemma 3.59

(G,u) ⊙ PBW
n−2 (G,u)⊙PBW

n−2 +W +1

(G,u) ⊙ PBW
n−1

(G,u) ⊙ PBW
n

We can see almost all of them are one-to-one equal. We assure no Left
option of (G,u)⊙PBB

n is greater than or equal to (G,u)⊙PBW
n +1 and no

Left option of (G,u)⊙PBW
n +1 is greater than or equal to (G,u)⊙PBB

n for
the others as follows:

(G,u) ⊙ PBW
n−1 6+ ((G \ {u}) +Bon−1W )

≡+ ((G \ {u}) +Won−1W + 1)

�+ (G,u) ⊙ PBW
n + 1

(G,u) ⊙ PBW
n 6

+ ((G \ {u}) +BonW )

≡+ ((G \ {u}) +Won−1B)

�+ (G,u) ⊙ PBB
n

We also get

Right options of
(G,u) ⊙ PBB

n

Right options of
(G,u) ⊙ PBW

n + 1

(GR, u)⊙ PBB
n (GR, u)⊙ PBW

n + 1 by induction
G+Bon−2B G+Bon−2W + 1 by Lemma 3.59
((G,u) ⊙ PBB

i ) +
Bon−i−3B

((G,u) ⊙ PBB
i ) +

Bon−i−3W + 1
∀i ∈ J0;n − 3K by
Lemma 3.59

((G,u) ⊙ PBB
n−2) +B ((G,u) ⊙ PBB

n−2) + 1

((G,u) ⊙ PBB
n−1) + 1

We can see almost all of them are one-to-one equal. We assure no Right
option of (G,u) ⊙ PBB

n is less than or equal to (G,u) ⊙ PBW
n + 1 and no

Right option of (G,u) ⊙ PBW
n + 1 is less than or equal to (G,u) ⊙ PBB

n for
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the other as follows:

((G,u) ⊙ PBB
n−1) + 1 >+ ((G \ {u}) + on−1B + 1)

>+ ((G \ {u}) +BonB)

>+ (G,u) ⊙ PBB
n

Hence we have (G,u) ⊙ PBB
n ≡+ (G,u) ⊙ PBW

n + 1.
We get

Left options of
(G,u) ⊙ PBB

n − 1
2

Left options of
(G,u) ⊙ PB

n+2

(GL
1 , u)⊙ PBB

n − 1
2 (GL

1 , u)⊙ PB
n+2 by induction

GL
2 + onB − 1

2 GL
2 + on+2 by Lemma 3.60

GL
3 +Won − 1B − 1

2 GL
3 +Won+1 by Lemma 3.60

(G\{u})+Won−2B− 1
2 (G \ {u}) +Won

by Lemma 3.59 and
3.60

((G,u) ⊙ PBW
i ) +

Won−i−3B − 1
2

((G,u) ⊙ PBW
i ) +

Won−i−1
∀i ∈ J0;n − 3K by
Lemma 3.59 and 3.60

(G,u) ⊙ PBW
n−2 − 1

2 (G,u) ⊙ PBW
n−2 +Wo by Lemma 3.60

(G,u) ⊙ PBW
n−1 +W

(G,u) ⊙ PBW
n−1 − 1

2

(G,u) ⊙ PBB
n − 1 (G,u) ⊙ PBW

n

We can see almost all of them are one-to-one equal. We assure no Left
option of (G,u) ⊙ PBB

n − 1
2 ) is greater than or equal to (G,u) ⊙ PB

n+2 and
no Left option of (G,u)⊙PB

n+2 is greater than or equal to (G,u)⊙PBB
n − 1

2
for the others as follows:

(G,u) ⊙ PBW
n−1 +W <+ (G,u) ⊙ PBW

n−1 −
1

2

�+ (G,u) ⊙ PBB
n −

1

2

(G,u) ⊙ PBW
n−1 −

1

2
6+ (G \ {u}) +Bon−1W −

1

2
≡+ (G \ {u}) +Won

�+ (G,u) ⊙ PB
n+2

We also get
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Right options of
(G,u) ⊙ PBB

n − 1
2

Right options of
(G,u) ⊙ PB

n+2

(GR, u)⊙ PBB
n − 1

2 (GR, u)⊙ PB
n+2 by induction

G+Bon−2B − 1
2 G+Bon

by Lemma 3.59 and
3.60

((G,u) ⊙ PBB
i ) +

Bon−i−3B − 1
2

((G,u) ⊙ PBB
i ) +

Bon−i−1
∀i ∈ J0;n − 3K by
Lemma 3.59 and 3.60

((G,u)⊙PBB
n−2)+B− 1

2 ((G,u) ⊙ PBB
n−2) +Bo

by Lemma 3.59 and
3.60

((G,u) ⊙ PBB
n−1) +B

(G,u) ⊙ PBB
n + 0 (G,u) ⊙ PBB

n

We can see almost all of them are one-to-one equal. We assure no Right
option of (G,u) ⊙ PBB

n − 1
2 is less than or equal to (G,u) ⊙ PB

n+2 and no
Right option of (G,u) ⊙ PB

n+2 is less than or equal to (G,u) ⊙ PBB
n − 1

2 for
the other as follows:

((G,u) ⊙ PBB
n−1) +B >

+ (G \ {u}) + on−1B +B

>+ (G \ {u}) +BonB −
1

2

>
+ (G,u)⊙ PBB

n −
1

2

Hence we have (G,u) ⊙ PBB
n ≡+ (G,u) ⊙ PB

n+2.

We show 2. by induction on the birthday of G and on n.
If G = ∅, then it follows immediately from Lemma 3.59. If n = 1, there is
nothing to show.
Assume G is a non-empty graph and n > 2. Let GL

3 be the graph after a
move of Left on u from G, GL

2 the graph after a move of Left on a neighbour
of u from G, GL

1 the graph after a move of Left on any other vertex from G,
and GR the graph after a move of Right on any vertex from G.

We get

Left options of
(G,u) ⊙ PBB

n

Left options of
(G,u) ⊙ PB

1

(GL
1 , u)⊙ PBB

n (GL
1 , u)⊙ PBB

1 by induction
GL

2 + onB GL
2 + oB by Lemma 3.60

GL
3 +Won − 1B GL

3 +WB by Lemma 3.59
(G \ {u}) +Won−2B (G \ {u}) by Lemma 3.60
((G,u) ⊙ PBW

0 ) +
Won−3B

((G,u) ⊙ PBW
0 ) by Lemma 3.59

((G,u) ⊙ PBW
i ) +

Won−i−3B
∀i ∈ J0;n− 3K

(G,u) ⊙ PBW
n−2

(G,u) ⊙ PBW
n−1
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We can see almost all of them are one-to-one equal. We assure no Left
option of (G,u) ⊙ PBB

n is greater than or equal to (G,u) ⊙ PB
1 and no Left

option of (G,u)⊙PB
1 is greater than or equal to (G,u)⊙PBB

n for the others
as follows:

((G,u) ⊙ PBW
i ) +Won−i−3B 6

+ (G \ {u}) +BoiW +Won−i−3B
≡+ G \ {u}
�+ (G,u)⊙ PB

1

(G,u) ⊙ PBW
n−2 6+ (G \ {u}) +Bon−2W

≡+ G \ {u}

�+ (G,u)⊙ PB
1

(G,u) ⊙ PBW
n−1 6

+ (G \ {u}) +Bon−1W
≡+ G \ {u}
�+ (G,u)⊙ PB

1

We also get

Right options of
(G,u) ⊙ PBB

n

Right options of
(G,u) ⊙ PBB

1

(GR, u)⊙ PBB
n (GR, u)⊙ PBB

1 by induction
G+Bon−2B G+B by Lemma 3.59
((G,u) ⊙ PBB

0 ) +
Bon−3B

((G,u) ⊙ PBB
i ) +

Bon−i−3B
∀i ∈ J1;n − 3K

((G,u) ⊙ PBB
n−2) +B

We can see almost all of them are one-to-one equal. We assure no Right
option of (G,u)⊙PBB

n is greater than or equal to (G,u)⊙PB
1 and no Right

option of (G,u)⊙PB
1 is greater than or equal to (G,u)⊙PBB

n for the others
as follows:

((G,u) ⊙ PBB
0 ) +Bon−3B ≡+ ((G \ {u}) +B +B)

>
+ ((G,u) ⊙ PBB

1 +B)


+ (G,u)⊙ PBB
1

((G,u) ⊙ PBB
i ) +Bon−i−3B ≡+ ((G,u) ⊙ PBB

1 +B)


+ (G,u)⊙ PBB
1

((G,u) ⊙ PBB
n−2) +B ≡+ ((G,u) ⊙ PBB

1 +B)


+ (G,u)⊙ PBB
1

Hence we have (G,u) ⊙ PBB
n ≡+ (G,u) ⊙ PBB

1 .

3. and 4. follow from 1. and 2.
�
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We now get back to smaller sets of positions, leading to an algorithm to
find the outcome of any grey tree with at most one vertex having degree at
least 3, that is Theorem 3.77.

We start with two simple positions for which we give the value.

Lemma 3.63 (Berlekamp et al. [4], Conway [10])

1. oBo ≡+ 0.
2. ooBoo ≡+ 0.

Proof. oBo = {o, (W +W ) | Bo} = {∗,−1 + (−1)12} ≡+ 0.
ooBoo = {WBoo, (W + oo), (oW +Wo) | BBoo, (B +Boo)}

≡+ {−
1

2
,−1 + 0,−

1

2
−

1

2
| 1, 1 +

1

2
}

≡+ 0

�

These two positions are now candidates for applying Theorem 3.57: con-
sidering the middle vertex as u, we now have ooo+u = 0 = −ooo+u = ooo−u
and ooooo+u = 0 = −ooooo+u = ooooo−u .

A similar result on arbitrarily long path would help too, and that is
Lemma 3.66. To get there, we find the values of any maximal connected
subpositions of positions we can reach from the original positions, which are
given in the two following lemmas, following the same pattern as for Lemmas
3.59, 3.60 and Theorem 3.61.

First, we see the values of paths whose leaves are reserved, having exactly
one extra reserved vertex. If that extra reserved vertex was adjacent to a leaf
reserved for the same player, we could use Corollary 3.58 and then conclude
with Lemma 3.60, to get a value which is actually different from the general
pattern. Hence, we only consider the other cases.

Lemma 3.64

1. ∀n > 1,m > 1, BonBomB ≡+ 1.
2. ∀n > 0,m > 0, WonBomW ≡+ −1.
3. ∀n > 0,m > 1, WonBomB ≡+ 0.

Proof.
1.
BoBoB = {WBoB, oB, (BW +WB) | (B +BoB)}

≡+ {0,
1

2
, (0 + 0) | (1 + 1)}

≡+ 1
When n > 2 or m > 2, it follows from Theorem 3.62.
2.
WBW = (W +B +W ) = −1 + 1 + (−1) ≡+ −1.
WBoW = (W +BoW ) ≡+ −1 + 0 = −1.
WoBoW = {(W + oW ), (WW +WW ) | BBoW,BoW}

≡+ {−1−
1

2
,−1 + (−1) |

1

2
, 0}

≡+ −1
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When n > 2 or m > 2, it follows from Theorem 3.62.
3.
WBoB = (W +BoB) ≡+ −1 + 1 ≡+ 0.
WoBoB = {(W + oB), (WW +WB),Wo,WoBW

| BBoB,BoB, (WoB +B)}

≡+ {−1 +
1

2
,−1 + 0,−

1

2
,−1 |

3

2
, 1, 0 + 1}

≡+ 0
When n > 2 or m > 2, it follows from Theorem 3.62. �

We now see the values of paths where exactly one leaf is reserved, as
well as exactly one extra vertex. Again, if that extra reserved vertex was
adjacent to a leaf reserved for the same player, we could use Corollary 3.58
and conclude with Lemma 3.60, to get a value which is actually different
from the general pattern. Hence, we again only consider other cases.

Lemma 3.65

1. ∀n > 1,m > 3, BonBom = 1
2 .

2. ∀n > 0,m > 3, WonBom = −1
2 .

Proof. BonBom = (BonBoW +Bo) ≡+ 0 + 1
2 = 1

2 .
WonBom = (WonBoW +Bo) ≡+ −1 + 1

2 ≡+ −1
2 . �

Finally, we get the pattern on arbitrary long paths, where reserving ex-
actly one vertex for a player does not give them an advantage, provided there
are at least three vertices on each side of this vertex.

Lemma 3.66 (Berlekamp et al. [4], Conway [10])
∀n > 3,m > 3, onBom ≡+ 0.

Proof.

onBom ≡+ (onBoW+Bo) ≡+ (WoBoW+Bo+Bo) ≡+ −1+ 1
2+

1
2 ≡+ 0

by Theorem 3.62. �

We now find the outcome of the set of positions we cannot solve using
only Lemmas 3.63 and 3.66 before applying Theorem 3.57, that are stated
in Theorem 3.75: positions of the form onxoo with n at least 3. As before,
we analyse the values of all maximal connected subpositions that players can
reach from the initial position, which we are able to sum, but as there are
more kinds of these positions, we need more intermediate lemmas.

First, we look at positions where a player would have played on the non-
special vertex of x, and a player, not necessarily the other player, would have
played on the farther leaf from the special vertex of x.

Lemma 3.67

1. ∀n > 0, BonBoo ≡+ 1.
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2. ∀n > 1, WonBoo ≡+ 0.

Proof. BBoo ≡+ B + oo ≡+ 1.
BoBoo = {WBoo, oo, (B +Wo), (Bo+W ), BoBW

| (B +Boo), (BoB +B), BoBB}

≡+ {−
1

2
, 1 −

1

2
,
1

2
+ (−1), 0 | 1 +

1

2
, 1 + 1,

3

2
}

≡+ 1

WoBoo = {(W + oo), (WW +Wo), (Wo+W ),WoBW
| BBoo,Boo, (WoB +B),WoBB}

≡+ {−1 + 0,−1−
1

2
,−

1

2
+ (−1),−1 | 1,

1

2
, 0 + 1,

1

2
}

≡+ 0
When n > 2, it follows from Theorem 3.62. �

We now find the value of a game where a player would have played on
the non-special vertex of x, using the result we just got from Lemma 3.67.

Lemma 3.68 ∀n > 3, onBoo ≡+ 1
2 .

Proof. onBoo ≡+ (WoBoo+Bo) ≡+ 0 + 1
2 = 1

2 by Theorem 3.62. �

We now consider paths where exactly two vertices are reserved, one being
a leaf and the other being the neighbour of the other leaf. If those two
vertices were neighbours, we could either use Corollary 3.58 and conclude
with Theorem 3.61 or use Corollary 3.54 and conclude with Lemma 3.60,
both giving values different from the general pattern. Hence, again, we only
consider other cases.
Lemma 3.69

1. ∀n > 1, BonBo ≡+ 3
4 .

2. ∀n > 1, WonBo ≡+ −1
4 .

Proof.
BoBo = {WBo, o, (BW +W ), Bo | (B +Bo), BoB}

≡+ {−
1

2
, ∗, 0 + (−1),

1

2
| 1 +

1

2
, 1}

≡+ 3

4
WoBo = {(W + o), (WW +W ),Wo | BBo,Bo,WoB}

≡+ {−1 + ∗,−1 + (−1),−
1

2
| 1∗,

1

2
, 0}

≡+ −
1

4
When n > 2, it follows from Theorem 3.62. �

We now use Lemma 3.69 to find the value of a path where exactly one
vertex is reserved, provided one of its neighbours is a leaf and there are at
least two vertices in the other direction, the cases where there is one or none
having been solved earlier and yielding different values.
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Lemma 3.70 ∀n > 2, oBon ≡+ 1
4 .

Proof.
oBoo = {oo, (W +Wo), (o+W ), oBW | Boo, (oB +B), oBB}

≡+ {0,−1 −
1

2
, ∗+ (−1),−

1

2
|
1

2
,
1

2
+ 1, 1∗}

≡+ 1

4
Let n > 3 be an integer.
oBon ≡+ (oBoW +Bo) ≡+ −1

4 +
1
2 ≡+ 1

4 by Theorem 3.62. �

The next lemma gives the value of two small positions: BxB and BxW ,
as they do not follow the rule we state in Lemma 3.72.

Lemma 3.71

1. BxB ≡+ 3
2 .

2. BxW ≡+ ∗.

Proof.

BxB = {oWB,W,BWB | (B +B +B), BBB}

≡+ {−1,
1

2
, 1 | 2, 3}

≡+ 3

2

BxW = {oWW, (W +W ), BWW | oBB, (B +B), BBW}
≡+ {−2,−1∗, 0 | 0, 1∗, 2}
≡+ ∗

�

We can use these results to find the value of the game after the players
have played from onxoo on the two leaves not in the x, where n is at least 3.

Lemma 3.72

1. ∀n > 1, BonxB ≡+ 5
4 .

2. ∀n > 1, BonxW ≡+ −1
4 .

Proof. We show the results simultaneously by induction on n.
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BonxB = {Won−1xB,Won−2xB,

n−3⋃

i=0

(BoiW +Won−i−3xB),

(Bon−2W + oWB), (Bon−1W +W ), BonWB,BonWo

| (B +Bon−2xB),

n−i−3⋃

i=0

(BoiB +Bon−i−3xB),

(Bon−2B + oBB), (Bon−1B +B +B), BonBB}

≡+ {−1, ∗,
1

4
,
1

2
, 1 |

3

2
, 2∗,

9

4
,
5

2
, 3} by induction

≡+ 5

4
.

BonxW = {Won−1xW,Won−2xW,
n−3⋃

i=0

(BoiW +Won−i−3xW ),

(Bon−2W + oWW ), (Bon−1W +W +W ), BonWW

| (B +Bon−2xW ),
n−i−3⋃

i=0

(BoiB +Bon−i−3xW ),

(Bon−2B + oBW ), (Bon−1B +B), BonBW,BonBo}

≡+ {−2,−
3

2
,−

5

4
,−1∗,−

1

2
| 0,

1

2
,
3

4
, 1∗, 2} by induction

≡+ −
1

4
.

�

Now we give the value of the game after they have only played on one of
these two leaves, starting with the one closer to the vertices represented by
the x.

Lemma 3.73 ∀n > 2, onxB ≡+ 3
4 .

Proof.

onxB = {Won−2xB,

n−3⋃

i=0

(oiW +Won−i−3xB), (on−2W + oWB),

(on−1W +W ), onWB, onWo

| Bon−2xB,

n−3⋃

i=0

(oiB +Bon−i−3xB), (on−2B + oBB),

(on−1B +B +B), onBB}

≡+ {−
3

2
,−

3

4
,−

1

2
∗,−

1

4
, 0,

1

4
,
1

2
| 1,

5

4
,
3

2
∗
7

4
,
9

4
,
5

2
}

≡+ 3

4
.

�

Finally, we give the value of the game after they have only played on the
leaf farther to the x.
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Lemma 3.74 ∀n > 1, Bonxoo ≡+ 1
2 .

Proof. We show the results by induction on n.

Bonxoo = {Won−1xoo,Won−2xoo,

n−3⋃

i=0

(BoiW +Won−i−3xoo),

(Bon−2W + oWoo), (Bon−1W +W +Wo),
BonWoo, (BonWo+W ), BonxW

| (B +Bon−2xoo),

n−3⋃

i=0

(BoiB +Bon−i−3xoo),

(Bon−2B + oBoo), (Bon−1B +B +Bo),
BonBoo, (BonBo+B), BonxB}

≡+ {−
3

2
,−

3

4
,−

1

2
,−

1

4
, 0 | 1,

5

4
,
3

2
,
7

4
,
5

2
} by induction

≡+ 1

2
.

�

With all these values, we are able to give the value of any position of the
form onxoo, with n being at least 3.

Theorem 3.75 (Berlekamp et al. [4], Conway [10])
∀n > 3, onxoo ≡+ 0.

Proof.

onxoo = {Won−2xoo,
n−3⋃

i=0

(oiW +Won−i−3xoo), (on−2W + oWoo),

(on−1W +W +Wo), onWoo, (onWo+W ), onxW

| Bon−2xoo,
n−3⋃

i=0

(oiB +Bon−i−3xoo), (on−2B + oBoo),

(on−1B +B +Bo), onBoo, (onBo+B), onxB}

≡+ {−2,−
3

2
,−

5

4
,−1,−

3

4
,−

1

2
|
1

2
,
3

4
, 1,

5

4
,
3

2
, 2}

≡+ 0.

�

Example 3.76 Figure 3.15 gives an example of such a tree, representing
o5xoo.

We now state the general theorem about grey subdivided stars.

Theorem 3.77 (Berlekamp et al. [4], Conway [10]) Let T be a tree
where all vertices are grey, and exactly one vertex has degree at least 3.
We call that vertex v and we root T at v.
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Figure 3.15: A subdivided star where removing the center changes the value

(i) If there are exactly three leaves, one at depth 1, another at depth 2 and
the last at depth at least 3, or there are an odd number of leaves at
depth 1, then the game has value 0.

(ii) Otherwise, the game has value ∗.

Proof. The first case stated, with three leaves, corresponds exactly to posi-
tions of the form onxoo, that we proved have value 0 in Theorem 3.75. On
any other case, we can use either Lemma 3.63 or 3.66 together with Theo-
rem 3.57 to remove the vertex v from the graph without changing the value
of the position. As we only leave a disjunctive sum of paths, which all have
value 0 apart from isolated vertices, all we need to know is the parity of
the number of these isolated vertices to get the value of the position. These
isolated vertices were exactly the leaves at depth 1, so if they are in odd
number, the value is ∗, and otherwise it is 0. �

Example 3.78 Figures 3.16 and 3.17 give examples of subdivided stars
where the central vertex can be removed without changing the value: one
can apply Theorem 3.57 together with Lemma 3.63 or 3.66 in both cases,
on paths ending on leaves of the same depth status, that is the number in-
dicated next to it. In Figure 3.16, the number of leaves at distance 1 from
the central vertex, that become isolated vertices after the central vertex is
removed, is odd, so the position has value ∗. In Figure 3.17, that number is
even, so the position has value 0. There are 9 paths on Figure 3.16 and 8 on
Figure 3.17 where we can apply Theorem 3.57 to remove the central vertex.

3.3.3 Caterpillars

We now work on finding the outcome of grey caterpillars. Recall that a
caterpillar is a tree such that the set of vertices of degree at least 2 forms a
path. Recall that since all vertices are grey, the position is its own opposite,
and has value 0 or ∗. We here focus on caterpillars of the form xn.

First, when n is even, the position is symmetric, so it fulfils the conditions
of Theorem 3.51.

Theorem 3.79 ∀n > 0, x2n ≡+ 0.
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3+

3+

3+ 1

3+ 1 1 2

Figure 3.16: A subdivided star with

value ∗

3+ 3+

3+

3+

1 2

1 2

Figure 3.17: A subdivided star with

value 0

When n is odd, any of the two involutions on the vertices keeping edges
between the images of adjacent vertices would have at least two fixed points:
the two central vertices. This is why we need intermediate lemmas. Consid-
ering all maximal connected subpositions that players can reach from such a
caterpillar seems tedious as they do not seem to simplify as easily as before,
so we use a different approach: we find good enough answer for one player
and state the other player cannot do better than some value to ensure some
bounds on the values of some positions leading to the value of the very first
game.

First, we find such values and bounds on a few sets of positions, all stated
in a single lemma as the proofs are intertwined.

Lemma 3.80

1. ∀n > 1, x2nB ≡+ 3
4 and x2n−1B ≡+ 1

2 .

2. ∀n > 0, Bx2nB ≡+ 1 and Bx2n+1B ≡+ 3
2 .

3. ∀n > 0, Bx2nW ≡+ 0 and Bx2n+1W ≡+ ∗.

4. ∀n > 0,m > 0, x2nBx2mB >+ 1, x2n+1Bx2m+1B >+ 1,
x2n+1Bx2mB >+ 3

4 and x2nBx2m+1B >+ 3
4 .

5. ∀n > 0,m > 0, x2nBx2mW >+ −1
4 , x

2n+1Bx2m+1W >+ −1
4 ,

x2n+1Bx2mW >+ −1
2 and x2nBx2m+1W >+ −1

2 .

6. ∀n > 0,m > 0, Bx2nBx2mB >+ 3
2 , Bx2n+1Bx2m+1B >+ 3

2 ,

Bx2n+1Bx2mB >+ 3
2 and Bx2nBx2m+1B >+ 3

2 .

7. ∀n > 0,m > 0, Bx2nBx2mW >+ 0, Bx2n+1Bx2m+1W >+ 0,
Bx2n+1Bx2mW >+ 1

2 and Bx2nBx2m+1W >+ 1
2 .

The proof of this lemma can be found in Appendix B.3. The idea is to
list possible moves. Then, we use Theorems 3.53 and 3.55 and induction to
give a bound to the value of the position or to the value of a possible answer.
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We now show that the answer we propose for Left after some move of
Right is winning.

Lemma 3.81 ∀n > 0,m > 0, x2n+1Bx2m+1Wx >+ 0.

Proof. We prove Left has a winning strategy in x2n+1Bx2m+1Wx if Right
starts. Consider his possible moves from x2n+1Bx2m+1Wx. He can move to:

• B+oBx2n−1Bx2m+1Wx, having value at least B+x2nBx2m+1W +x,
which has value at least 1

2 .
• xiBo+B + oBx2n−i−2Bx2m+1Wx, having value at least 1

2 or 1
2∗.

• x2n−1Bo+B +Bx2m+1Wx, having value at least 1 or 1∗.
• x2n+1B +B + oBx2m−1Wx, having value at least 3

4 .
• x2n+1BxiBo+B + oBx2m−i−2Wx, having value at least 1

4 or 1
4∗.

• x2n+1Bx2m−1Bo+B + x, having value at least 1 or 1∗.
• x2n+1Bx2mBo+Bo, having value at least 1

2 or 1
2∗.

• x2n+1Bx2m+1 +B, having value at least 1 or 1∗.
• xiBx2n−iBx2m+1Wx. Then Left can answer to xiBx2n−iBWx2mWx,

which has value at least 0.
• x2n+1BBx2mWx, having value at least x2n+1 + Bx2m + Wx, which

has value at least 1
4 or 1

4∗.
• x2n+1BxiBx2m−iWx. Then left can answer to

x2n+1BxiBWx2m−i−1Wx, which has value at least 0 when i is
odd, or to x2n+1Bxi−1WBx2m−iWx, which has value at least 0 when
i is even.

• x2n+1Bx2mBWx, having value more than 3
4 .

• x2n+1Bx2m+1WB, having value at least 1
4 .

�

We now state the theorem, that almost all caterpillars of the form xn

have value 0.

Theorem 3.82 ∀n 6= 3, xn ≡+ 0, and xxx ≡+ ∗.

Proof. When n is even, it is true by Theorem 3.79. When n 6 3, it is true
by Theorem 3.77. Now assume n > 5 is odd. We prove the second player has
a winning strategy in xn. Without loss of generality, we may assume Right
starts the game and consider his possible moves from xn. He can move to:

• B + oBxn−2, having value at least 1.
• xiBo+B + oBxn−i−3, having value at least 1 or 1∗.
• x2iBxn−2i−1. Without loss of generality, we may assume 2i > n−1

2 > 2.
Then Left can answer to x2i−1WBxn−2i−1, which has value 1

4 .
• x2i+1Bxn−2i−2. Without loss of generality, we may assume

2i+ 1 > n−1
2 > 2 . Then Left can answer to xWx2i−1Bxn−2i−2, which

has value at least 0.
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�

We now consider other caterpillars. Whenever one vertex is adjacent to
two leaves or more, we can remove that vertex for the game without changing
its value, using Lemma 3.63 and Theorem 3.57. Theorems 3.61 and 3.82 are
then enough to conclude most cases, but the value of arbitrary caterpillars
is still an open problem.

Example 3.83 Figure 3.18 shows an example of a “more general” caterpillar
of which we can determine the value using our results. On each step, the
vertex we can remove using Theorem 3.57 is all grey (without the black line
surrounding it like the other vertices). We added a 1 close to its neighbouring
leaves, to see where the theorem can be applied. The dashed line is there to
ensure that anyone, by moving the incident vertex through it, sees that last
component as x4. On the resulting graph, there are five isolated vertices,
each having value ∗, an x3 and an x4, having respectively value ∗ and 0, so
the position has value 0. We get that 0 is the value of the original position,
on a connected caterpillar.

Example 3.84 Figure 3.19 shows an example of a caterpillar which is not
of the form xn and that cannot be simplified using Lemma 3.63 and Theo-
rem 3.57. Therefore, our results are not sufficient to give the value of this
position.

3.3.4 Cographs

We give an algorithm for computing in linear time the value of a cograph
where no vertex is reserved. First, we build the associated cotree. Then, at
each node u of the cotree starting from the leaves, we label the node by the
size of the maximum independent set and the value of the graph below it as
follows:

1. If u is a leaf, then the maximum independent set has size 1 and the value
is ∗.

2. If u corresponds to a disjoint union of two cographs, the size of the max-
imum independent set and the value are the sum of the values of these
two cographs.

3. Otherwise, u corresponds to a join of two cographs, the size of the maxi-
mum independent set is the maximum of the ones of these two cographs,
and the value is the value of the cograph which has the maximum inde-
pendent set of greater size, except that the value is 0 when their respective
maximum independent sets have the same size.
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1

1 1

1

1

Figure 3.18: Finding the value of a caterpillar by removing vertices according to

Lemma 3.63 and Theorem 3.57

Figure 3.19: A caterpillar where our results cannot conclude alone
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Proof. We only need to ensure by induction that if the value of the graph is
∗, any player who starts the game has a winning strategy such that their first
move is on a vertex contained in a maximum independent set. When the
graph is a single vertex the result is true. When the graph is a disjoint union
of two cographs, the first player has a winning move only if one component
has value ∗ and the other component has value 0. A winning move is to move
the component of value ∗ to value 0, and there exists such a move on a vertex
contained in a maximum independent set of that component by induction.
That vertex is also contained in a maximum independent set of the whole
graph, so the result is true. When the graph is a join of two cographs, the
first player has a winning move only if the component having the maximum
independent set of greater size has value ∗. A winning move is to move that
component of value ∗ to value 0, and there exists such a move on a vertex
contained in a maximum independent set of that component by induction.
That vertex is also contained in a maximum independent set of the whole
graph, so the result is true. �

Example 3.85 Figures 3.20 and 3.21 illustrate the algorithm. Figure 3.20
is a cograph with all vertices grey. Figure 3.21 is the associated cotree:
the leaves correspond to the vertices of the cograph; the D internal nodes
indicate when two cographs are gathered into one through disjoint union; the
J internal nodes indicate when two cographs are gathered into one through
join. Next to each node, there is a couple indicating the value and the size of
a maximum independent set of the subgraph induced by the vertices below
that node.

3.4 Perspectives

In this chapter, we considered the games Timbush, Toppling Dominoes

and Col.
In the case of Timbush, we gave an algorithm to find the outcome of any

orientation of paths with coloured arcs and an algorithm to find the outcome
of any directed graph with arcs coloured black or white.

Note that if the connected directed graph we consider contains a 2-edge-
connected component, any arc of that component is a winning move, but if
all these arcs are black, or they are all white, we do not know if the other
player have a winning move.

Hence we ask the following questions.

Question 3.86 Can one find a polynomial-time algorithm which gives the
outcome of any Timbush position on directed graphs with coloured arcs?

Another difference in result with Timber is that we do not give the value
of any orientation of paths. That problem is already non-trivial if we only
look at orientation of paths with arcs coloured black or white.
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Figure 3.21: Its corresponding cotree, labelled by our algorithm
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Question 3.87 Is there a polynomial-time algorithm for finding the value of
any Timbush position on directed paths with arcs coloured black or white?

In the case of Toppling Dominoes, we proved that for any value of
the form {a|b} with a > b, {a||b|c} with a > b > c, and {a|b||c|d} with
a > b > c > d, there exists a Toppling Dominoes position on a single row
that have this value. We even found all representatives of positions of the
form {a|b}, which leads us to the following conjectures.

Conjecture 3.88 Let a > b > c be numbers and G a Toppling Dominoes

position with value {a|{b|c}}. Then G is aLRbRLc, aEbRLc or one of their
reversal. Furthermore, if a = b, then G is aLRbRLc or its reversal.

Conjecture 3.89 Let a > b > c > d be numbers and G a Toppling

Dominoes position with value {{a|b}|{c|d}}. Then G is bRLaLRdRLc,
bRLaEdRLc or one of their reversal.

In the case of Col, we restated some known results and went further in
finding the values of most grey caterpillars and all grey cographs. Neverthe-
less, the problem on general trees is still open.

Question 3.90 What is the complexity of finding the outcome of any Col

position on a tree?
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Chapter 4

Misère games

The misère version of a game is a game with the same game tree where the
victory condition is reversed, that is the first player unable to move when it is
their turn wins. Under the misère convention, the equivalence of two games
is very limited, as proved by Mesdal and Ottaway [25] and Siegel in [38]. In
particular, the equivalence class of 0 is restricted to 0 itself, which shows a
serious contrast with the normal convention where any game having outcome
P is equivalent to 0. This is probably why Plambeck and Siegel defined in
[32, 34] an equivalence relationship under restricted universes, leading to a
breakthrough in the study of misère play games.

Definition 4.1 (Plambeck and Siegel [32, 34]) Let U be a universe of
games, G and H two games (not necessarily in U). We say G is greater
than or equal to H modulo U in misère play and write G >− H (mod U)
if o−(G +X) > o−(H +X) for every X ∈ U . We say G is equivalent to H
modulo U in misère play and write G ≡− H (mod U) if G >− H (mod U)
and H >− G (mod U).

For instance, Plambeck and Siegel [32, 33, 34] considered the universe of
all positions of given games, especially octal games. Other universes have
been considered, including the universes A of sums of alternating games [27],
I of impartial games [4, 10], D of dicot games [2, 26, 24], E of dead-ending
games [28], and G of all games [38]. These classes are ordered by inclusion
as follows:

I ⊂ D ⊂ E ⊂ G .

To simplify notation, we use from now on >
−
U and ≡−

U to denote superi-
ority and equivalence modulo the universe U . Observe also that if U and U ′

are two universes with U ⊆ U ′, then for any two games G and H, G 6
−
U H

whenever G 6
−
U ′ H.

Given a universe U , we can determine the equivalence classes under ≡−
U

and form the quotient semi-group U/ ≡−
U . This quotient, together with the

tetra-partition of elements into the sets L, N , P and R, is called the misère
monoid of the set U , denoted MU . It is usually desirable to have the set of
games U closed under disjunctive sum, taking options and conjugates; when
a set of games is not already thus closed, we often consider its closure under
these three operations, that we call the closure of the set.



102

A Left end is a game where Left has no move, and a Right end is a
game where Right has no move. In misère play, end positions are important
positions to see for a set of games if their conjugates are their opposites, that
is if G+G ≡−

U 0.

Lemma 4.2 Let U be any game universe closed under conjugation and
followers, and let S be a set of games closed under followers. If
G+G+X ∈ L− ∪ N− for every game G ∈ S and every Left end X ∈ U ,
then G+G ≡−

U 0 for every G ∈ S.

Proof. Let S be a set of games with the given conditions. Since U is closed
under conjugation, by symmetry we also have G + G + X ∈ R− ∪ N− for
every G ∈ S and every Right end X ∈ U . Let G be any game in S and
assume inductively that H +H ≡−

U 0 for every follower H of G. Let K be
any game in U , and suppose Left wins K. We must show that Left can win
G+G+K. Left should follow her usual strategy in K; if Right plays in G
or G to, say, GR +G +K ′, with K ′ ∈ L− ∪ P−, then Left copies his move
and wins as the second player on GR+G

L
+K ′ = GR+GR+K ′ ≡−

U 0+K ′,
by induction. Otherwise, once Left runs out of moves in K, say at a Left
end K ′′, she wins playing next on G+G+K ′′ by assumption. �

The universes we focus on in this chapter are the dicot universe, denoted
D, and the dead-ending universe, denoted E . A game is said to be dicot
either if it is {·|·} or if it has both Left and Right options and all these
options are dicot. A Left (Right) end is a dead end if every follower is also
a Left (Right) end. A game is said to be dead-ending if all its end followers
are dead ends.

As with normal games, to simplify proofs, we often do not state results
on the conjugates of games on which we proved similar results. With the
following proposition, we justify this possibility and we observe that passing
by conjugates in the universe of conjugates, any result on the Left options
can be extended to the Right options, and vice versa.

Proposition 4.3 Let G and H be any two games, and U a universe. Denote
by U the universe of the conjugates of the elements of U . If G >

−
U H, then

G 6
−
U
H. As a consequence, G ≡−

U H ⇐⇒ G ≡−
U
H.

Proof. For a game X ∈ U , suppose Left can win G + X playing first
(respectively second). We show that she also has a winning strategy on

H +X. Looking at conjugates, Right can win G+X = G+X. As X ∈ U

and G >
−
U H, Right can win H +X . Thus Left can win H +X = H +X

and G 6
−
U
H. �

Relying on this proposition, we often give the results only on Left options
in the following, keeping in mind that they naturally extend to the Right
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options provided the result holds on the universe of conjugate. This is always
the case in the following since we either prove our results on all universes,
or on the universe D of dicots or E of dead-endings which are their own
conjugates.

Considering a game, it is quite natural to observe that adding an option
to a player who already has got some can only improve his position (hand-
tying principle). It was already proved in [25] in the universe G of all games.
As a consequence, this is true for any subuniverse U of G.

Proposition 4.4 Let G be a game with at least one Left option, S a set
of games and U a universe of games. Let H be the game defined by
HL = GL ∪ S and HR = GR. Then H >

−
U G.

In this chapter, we frequently use the fact that, when H has an additive
inverse H ′ modulo U , G >

−
U H if and only if G + H ′ >

−
U 0 when all these

games are elements of U .

Proposition 4.5 Let U be a universe of game closed under disjunctive sum,
H,H ′ ∈ U be two games being inverses to each other modulo U . Then for
any game G ∈ U , we have G >

−
U H if and only if G+H ′ >

−
U 0.

Proof. Assume first G >
−
U H. Let X ∈ U a game such that Left wins X.

Then, as H+H ′ ≡−
U 0, Left wins H+H ′+X. As H ′+X ∈ U and G >

−
U H,

Left wins G+H ′ +X. Hence G+H ′ >
−
U 0.

Assume now G+H ′ >
−
U 0. Let X ∈ U a game such that Left wins H+X.

As H + X ∈ U and G + H ′ >
−
U 0, Left wins G + H ′ + H + X. Then, as

G+X ∈ U and H +H ′ ≡−
U 0, Left wins G+X. Hence G >

−
U H. �

In this chapter, we first consider the games we studied previously, now
under misère convention, and study some misère universes. Section 4.1 is
dedicated the specific games we mentioned, on which we give complexity
results and compare them with their normal version counterparts. In Sec-
tion 4.2, we study the universe of dicot games, define a canonical form for
them, and count the number of dicot games in canonical form born by day
3. In Section 4.3, we study the universe of dead-ending games, in particular
dead ends, normal canonical-form numbers and a family of games that would
be equivalent to 0 modulo the dead-ending universe.

The results presented in Subsection 4.1.1 are a joint work with Sylvain
Gravier and Simon Schmidt. The results presented in Section 4.1.2 are about
to appear in [16] (joint work with Éric Duchêne). The results presented
in Subsection 4.1.3 appeared in [29] (joint work with Richard Nowakowski,
Emily Lamoureux, Stephanie Mellon and Timothy Miller). The results pre-
sented in Subsection 4.1.6 are a joint work with Paul Dorbec and Éric Sopena.
The results presented in Section 4.2 are a joint work with Paul Dorbec, Aaron
Siegel and Éric Sopena [15]. The results presented in Section 4.3 appeared
in [28] (joint work with Rebecca Milley).
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4.1 Specific games

We start by looking at the games we studied in the previous chapters, with
the addition of one game, Geography, and give some results about their
misère version. In particular, we see that some games, such as VertexNim,
behave similarly in their misère and normal version, while others, such as
Col, ask for a different strategy from the players. The complexity of finding
the outcome of a position might also be different in some games.

In this section, we define the impartial game Geography and show the
pspace-completeness of its variants under the misère convention. We then
tract our results on VertexNim from normal play to misère play, find the
misère outcome of Timber positions on oriented paths, reduce Timbush

positions to forests, give the misère outcome of any single row of Toppling

Dominoes and the misère monoid of Toppling Dominoes positions with-
out grey dominoes, and the misère outcome of any Col position on a grey
subdivided star.
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Figure 4.1: Playing a move in Vertex Geography

4.1.1 Geography

Geography is an impartial game played on a directed graph with a token
on a vertex. There exist two variants of the game: Vertex Geography

and Edge Geography. A move in Vertex Geography is to slide the
token through an arc and delete the vertex on which the token was. A move
in Edge Geography is to slide the token through an arc and delete the
edge on which the token just slid. In both variants, the game ends when the
token is on a sink.

A position is described by a graph and a vertex indicating where the
token is.

Example 4.6 Figure 4.1 gives an example of a move in Vertex Geogra-

phy. The token is on the white vertex. The player whose turn it is chooses
to move the token through the arc to the right. After the vertex is removed,
some vertices (on the left of the directed graph) are no longer reachable.
Figure 4.2 gives an example of a move in Edge Geography. The token is
on the white vertex. The player whose turn it is chooses to move the token
through the arc to the right. After that move, it is possible to go back to
the previous vertex immediately as the arc in the other direction is still in
the game.

Geography can also be played on an undirected graph G by seeing it
as a symmetric directed graph where the vertex set remains the same and
the arc set is {(u, v), (v, u)|(u, v) ∈ E(G)}, except that in the case of Edge

Geography, going through an edge (u, v) would remove both the arc (u, v)
and the arc (v, u) of the directed version.

Example 4.7 Figure 4.3 gives an example of a move in Edge Geography

on an undirected graph. The token is on the white vertex. The player whose
turn it is chooses to move the token through the arc to the right. After that
move, it is not possible to go back to the previous vertex immediately as the
edge between the two vertices has been removed from the game.



106 4.1. Specific games

Figure 4.2: Playing a move in Edge Geography

Figure 4.3: Playing a move in Edge Geography on an undirected graph

A Geography position is denoted (G,u) where G is the graph, or the
directed graph, on which the game is played, and u is the vertex of G where
the token is.

Lichtenstein and Sipser [22] proved that finding the normal outcome of
a Vertex Geography position on a directed graph is pspace-complete.
Schaefer proved that finding the normal outcome of an Edge Geogra-

phy position on a directed graph is pspace-complete. On the other hand,
Fraenkel, Scheinerman and Ullman [18] gave a polynomial algorithm for find-
ing the normal outcome of a Vertex Geography position on an undirected
graph, and they also proved that finding the normal outcome of an Edge

Geography position on an undirected graph is pspace-complete.

We here look at these games under the misère convention, and show
the problem is pspace-complete both on directed graphs and on undirected
graphs, for both Vertex Geography and Edge Geography.

First note that all these problems are in pspace as the length of a game
of Vertex Geography is bounded by the number of its vertices, and the
length of a game of Edge Geography is bounded by the number of its
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edges.
We start with Vertex Geography on directed graphs, where the re-

duction is quite natural, we just add a losing move to every position of the
previous graph, move that the players will avoid until it becomes the only
available move, that is when the original game would have ended.

Theorem 4.8 Finding the misère outcome of a Vertex Geography po-
sition on a directed graph is pspace-complete.

Proof. We reduce the problem from normal Vertex Geography on di-
rected graphs.

Let G be a directed graph. Let G′ be the directed graph with vertex set

V (G′) = {u1, u2|u ∈ V (G)}

and arc set

A(G′) = {(u1, v1)|(u, v) ∈ A(G)} ∪ {(u1, u2)|u ∈ V (G)}

that is the graph where each vertex of G gets one extra out-neighbour that
was not originally in the graph. We claim that the normal outcome of (G, v)
is the same as the misère outcome of (G′, v1) and show it by induction on
the number of vertices in G.

If V (G) = {v}, then both (G, v) and (G′, v1) are P-positions. Assume
now |V (G)| > 2. Assume first (G, v) is an N -position. There is a winning
move in (G, v) to (G̃, u). We show that moving from (G′, v1) to (Ĝ′, u1) is a
winning move. We have V (Ĝ′) = V (G̃′) ∪ {v2} and A(Ĝ′) = A(G̃′). As the
vertex v2 is disconnected from the vertex u1 in Ĝ′, the games (Ĝ′, u1) and
(G̃′, u1) share the same game tree, and they both have outcome P by induc-
tion. Hence (G′, v1) has outcome N . Now assume (G, v) is a P-position.
For the same reason as above, moving from (G′, v1) to any (Ĝ′, u1) would
leave a game whose misère outcome is the same as the normal outcome of a
game obtained after playing a move in (G, v), which is N . The only other
available move is from (G′, v1) to (Ĝ′, v2), which is a losing move as it ends
the game. Hence (G′, v1) has outcome P. �

The proof in [22] actually works even if we only consider planar bipartite
directed graphs with maximum degree 3. As our reduction keeps the pla-
narity and the bipartition, only adds vertices of degree 1 and increases the
degree of vertices by 1, we get the following corollary.

Corollary 4.9 Finding the misère outcome of a Vertex Geography po-
sition on a planar bipartite directed graph with maximum degree 4 is pspace-
complete.

For undirected graphs, adding a new neighbour to each vertex would work
the same, but the normal version of Vertex Geography on undirected
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Figure 4.4: The arc gadget

graph is solvable in polynomial time, so we reduce from directed graphs, and
replace each arc by an undirected gadget. That gadget would need to act
like an arc, that is a player who would want to take it in the wrong direction
would lose the game, as well as a player who would want to take it when the
vertex at the other end has already been played, and we want to force that
a player who takes it is the player who moves the token to the other end, so
that it would be the other player’s turn when the token reach the end vertex
of the arc gadget, as in the original game.

Theorem 4.10 Finding the misère outcome of a Vertex Geography po-
sition on an undirected graph is pspace-complete.

Proof. We reduce the problem from normal Vertex Geography on di-
rected graphs.

We introduce a gadget that will replace any arc (u, v) of the original
directed graph, and add a neighbour to each vertex to have an undirected
graph whose misère outcome is the normal outcome of the original directed
graph.

Let G be a directed graph. Let G′ be the undirected graph with vertex
set

V (G′) = {u, u′|u ∈ V (G)}
∪ {uvi|(u, v) ∈ A(G), i ∈ J1; 8K}

and edge set

E(G′) = {(u, uv1), (uv1, uv2), (uv1, uv3), (uv1, uv6), (uv2, uv4), (uv3, uv5),
(uv3, uv6), (uv4, uv5), (uv4, uv6), (uv5, uv6), (uv6, uv7), (uv7, uv8),
(uv7, v)|(u, v) ∈ A(G)}

∪ {(u, u′)|u ∈ V (G)}

that is the graph where every arc (u, v) of G has been replaced by the gadget
of Figure 4.4, identifying both u vertices and both v vertices, and each vertex
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of G gets one extra neighbour that was not originally in the graph. We
claim that the normal outcome of (G,u) is the same as the misère outcome
of (G′, u) and show it by induction on the number of vertices in G.

If V (G) = u, then (G,u) is a normal P-position. In (G′, u) the first
player can only move to (Ĝ′, u′) where the second player wins as he cannot
move.

Now assume |V (G)| > 2.
We first show that no player wants to move the token from v to any wv7,

whether w has been played or not. We will only prove it for moving the
token from v to some wv7 where w is still in the game, as the other case is
similar. First note that if w is removed from the game in the sequence of
move following that first move, as v is already removed, all vertices of the
form wvi would be disconnected from the token, and therefore unreachable.
Hence whether the move from wv1 to w is winning does not depend on the
set of vertices deleted in that sequence, and it is possible to argue the two
cases. Assume the first player moved the token from v to any wv7. Then
the second player can move the token to wv6. From there, the first player
has four choices. If she goes to wv1, the second player answers to wv2, then
the rest of the game is forced and the second player wins. If she goes to
wv4, he answers to wv2 where she can only move to wv1, and let him go to
wv3 where she is forced to play to wv5 and lose. The case where she goes to
wv5 is similar. In the case where she goes to wv3, we argue two cases: if the
move from wv1 to w is winning, he answers to wv5, where all is forced until
he gets the move to w; if that move is losing, he answers to wv1, from where
she can either go to w, which is a losing move by assumption, or go to wv2
where every move is forced until she loses.

We now show that no player wants to move the token from v to any vw1

where w has already been played. Assume the first player just played that
move. Then the second player can move the token to vw3. From there, the
first player have two choices. If she plays to vw6, he answers to vw4, where
she can only end the game and lose. If she plays to vw5, he answers to vw4,
where the move to vw2 is immediately losing, and the move to vw6 forces
the token to go to vw7 and then vw8 where she loses.

Assume first that (G,u) is an N -position. There is a winning move in
(G,u) to some (G̃, v). We show that moving the token from u to uv1 in G′ is
a winning move for the first player. From there, the second player has three
choices. If he moves the token to uv6, the first player answers to uv3, then
the rest of the game is forced and the first player wins. If he moves the token
to uv2, the first player answers to uv4, where the second player again has two
choices: either he goes to uv6, she answers to uv5 where he is forced to lose
by going to uv3; or he goes to uv5, she answers to uv6 where the move to uv3
is immediately losing and the move to uv7 is answered to a game (Ĝ′, v). As
u′ and all vertices of the form uvi are either played or disconnected from v
in Ĝ′, the only differences in the possible moves in (followers of) the games
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(Ĝ′, v) and (G̃′, v) are moves from a vertex w to wu1 or to wu7, so they both
have outcome P by induction. The case where he chooses to move the token
to uv3 is similar. Hence (G′, u) is an N -position.

Now assume (G,u) is a P-position. Then any (G̃, v) that can be obtained
after a move from (G,u) is an N -position. Moving the token to u′ in G′ is
immediately losing, so we may assume the first player moves it to some uv1,
where the second player answers to uv3. From there the first player has two
choices. If she goes to uv6, the second player answers by going to uv4, where
both available moves are immediately losing. If she goes to uv5, he answers
to uv4, where the move to uv2 is immediately losing, and the move to uv6 is
answered to uv7, where again the move to uv8 is immediately losing, so we
may assume he moves the token to v. As u′ and all vertices of the form uvi
are either played or disconnected from v in Ĝ′, the only differences in the
possible moves in (followers of) the games (Ĝ′, v) and (G̃′, v) are moves from
a vertex w to wu1 or to wu7, so they both have outcome N by induction.
Hence (G′, u) is a P-position. �

Again, using the fact that the proof in [22] actually works even if we
only consider planar bipartite directed graphs with maximum degree 3, as
our reduction keeps the planarity since the gadget is planar with the vertices
we link to the rest of the graph being on the same face, only adds vertices
of degree at most 5 and increases the degree of vertices by 1, we get the
following corollary.

Corollary 4.11 Finding the misère outcome of a Vertex Geography po-
sition on a planar undirected graph with degree at most 5 is pspace-complete.

Though misère play is generally considered harder to solve than normal
play, the feature that makes it hard is the fact that disjunctive sums do not
behave as nicely as in normal play, and Geography is a game that does
not split into sums. Hence the above result appears a bit surprising as it was
not expected.

We now look at Edge Geography where the reductions are very similar
to the one for Vertex Geography on directed graphs.

We start with the undirected version.

Theorem 4.12 Finding the misère outcome of an Edge Geography po-
sition on an undirected graph is pspace-complete.

Proof. We reduce the problem from normal Edge Geography on undi-
rected graphs.

Let G be an undirected graph. Let G′ be the undirected graph with
vertex set

V (G′) = {u1, u2|u ∈ V (G)}
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and edge set

E(G′) = {(u1, v1)|(u, v) ∈ E(G)} ∪ {(u1, u2)|u ∈ V (G)}

that is the graph where each vertex of G gets one extra neighbour that was
not originally in the graph. We claim that the normal outcome of (G, v) is
the same as the misère outcome of (G′, v1) and show it by induction on the
number of vertices in G. The proof is similar to the proof of Theorem 4.8 �

We now look at Edge Geography on directed graphs.

Theorem 4.13 Finding the misère outcome of an Edge Geography po-
sition on a directed graph is pspace-complete.

Proof. We reduce the problem from normal Edge Geography on directed
graphs.

Let G be a directed graph. Let G′ be the directed graph with vertex set

V (G′) = {u1, u2|u ∈ V (G)}

and arc set

A(G′) = {(u1, v1)|(u, v) ∈ A(G)} ∪ {(u1, u2)|u ∈ V (G)}

that is the graph where each vertex of G gets one extra out-neighbour that
was not originally in the graph. We claim that the normal outcome of (G, v)
is the same as the misère outcome of (G′, v1) and show it by induction on the
number of vertices in G. The proof is similar to the proof of Theorem 4.8 �

4.1.2 VertexNim

In VertexNim, the misère version seems to behave like the normal version.
The results we obtained in Section 2.1 are extensible to misère games.

First we look at Adjacent Nim, that is VertexNim on a circuit. Again,
we only consider positions with no 1 occurring as initial positions. We get a
result similar to the one in the normal version.

Theorem 4.14 Let (Cn, w, v1), n > 3 be an instance of Vertexnim with
Cn the circuit of length n and w : V → N>1.

• If n is odd, then (Cn, w, v1) is an N -position.
• If n is even, then (Cn, w, v1) is an N -position if and only if the smallest

index of a vertex of minimum weight, that is min{argmin
16i6n

w(vi)}, is

even.

Proof.
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• Case (1) If n is odd, then the first player can apply the following
strategy to win: first, she plays w(v1) → 1. Then for all 1 6 i < n−1

2 :
if the second player empties v2i, then the first player also empties
the following vertex v2i+1. Otherwise, she plays w(v2i+1) → 1. This
time, the strategy is not different for the last two vertices of Cn. As
w(v1) = 1, the second player is now forced to empty v1. Since an
odd number of vertices was deleted since then, we now have an even
circuit to play on. It now suffices for the first player to empty all the
vertices on the second run. Indeed, the second player is also forced to
set each weight to 0 since he has to play on vertices satisfying w = 1.
Since the circuit is even, the first player is guaranteed to leave the
last move to the second player.

• Case (2) If n is even, we claim that who must play the first vertex
of minimum weight will lose the game. The winning strategy of the
other player consists in decreasing by 1 the weight of each vertex at
their turn. Assume that min{argmin

16i6n

w(vi)} is odd. If the strategy of

the second player always consists in moving w(vi) → w(vi) − 1, then
the first player will be the first to set a weight to 0 or 1. If she sets the
weight of a vertex to 0, then the second player now faces an instance
(C ′

n−1, w
′) with w′ : V ′ → N>1, which is winning according to the

previous item. If she sets the weight of a vertex to 1, then the second
player will empty the following vertex, leaving to the first player a
position (C ′

n−1 = (v′1, v
′
2, . . . , v

′
N−1), w

′) with w′ : V ′ → N>1 except on
w′(v′n−1) = 1. This position corresponds to the one of the previous
item after the first move, and is thus losing. A similar argument shows
that the first player has a winning strategy if min{argmin

16i6n

w(vi)} is

even.

�

The reader would have seen the similarity between the proofs of normal
version and misère version. The following results are even more similar in
their proof, this is why we do not recall the proofs in their entirety.

We now state how to find the misère outcome of a VertexNim position
on any undirected graph.

Theorem 4.15 Let (G,w, u) be an instance of VertexNim, where G is an
undirected graph. Deciding whether the misère outcome of (G,w, u) is P or
N can be done in O(|V (G)||E(G)|) time.

Proof. If all vertices have weight 1, then (G,w, u) is an N -position if and
only if |V (G)| is even since it reduces to the misère version of “She loves
move, she loves me not”. Otherwise, we can use the same proof as the one
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of Theorem 2.9 to see that (G,w, u) is N in the misère version if and only if
it is N in the normal version. �

Finally, we state how to find the misère outcome of a VertexNim posi-
tion on any directed graph with a self loop on each vertex.

Theorem 4.16 Let (G,w, u) be an instance of VertexNim, where G is
strongly connected, with a loop on each vertex. Deciding whether the misère
outcome of (G,w, u) is P or N can be done in time O(|V (G)||E(G)|).

Proof. If all vertices have weight 1, then (G,w, u) is an N position if and
only if |V (G)| is even since it reduces to the misère version of “She loves
move, she loves me not”. Otherwise, we can use the same proof as the one
of Theorem 2.7 to see that (G,w, u) is N in the misère version if and only if
it is N in the normal version. �

4.1.3 Timber

In Timber, going to misère is already harder. Though we can still reduce
the game to an oriented forest, which happens to be the same forest as for
normal play, we can only give a polynomial algorithm for finding the misère
outcome of an oriented path.

Theorem 4.17 Let G be a directed graph seen as a Timber position such
that there exist a set S of vertices that forms a 2-edge-connected component
of G, and x, y two vertices not belonging to G. Let G′ be the directed graph
with vertex set

V (G′) = (V (G)\S) ∪ {x, y}

and arc set

A(G′) = (A(G) \ {(u, v)|{u, v} ∩ S 6= ∅})
∪ {(u, x)|u ∈ (V (G) \ S),∃v ∈ S, (u, v) ∈ A(G)}
∪ {(x, u)|u ∈ (V (G) \ S),∃v ∈ S, (v, u) ∈ A(G)}
∪ {(y, x)}.

Then G =− G′.

Proof. The proof is identical to the proof of Theorem 2.14 as we never used
the fact we were under the normal convention. �

As in normal play, we get the following corollary.

Corollary 4.18 For any directed graph G, there exists an oriented forest FG

such that G =+ FG and G =− FG. Moreover, FG is computable in quadratic
time.

The following proposition remains true as well for the same reason.
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Proposition 4.19 Let T be an oriented tree such that there exist three sets
of vertices {ui}06i6k, {vi}06i6k, {wi}06i6ℓ ⊂ V (G) such that:

1. ({(ui−1, ui)}16i6k ∪ {(vi−1, vi)}16i6k ∪ {(wi−1, wi)}16i6ℓ) ⊂ A(G),

2. (uk, w0), (vk, wℓ) ∈ A(G),

3. u0 and v0 have in-degree 0 and out-degree 1,

4. for all 1 6 i 6 k, uk and vk have in-degree 1 and out-degree 1.

Let T ′ be the oriented tree with vertex set

V (T ′) = V (T ) \ {vi}06i6k

and arc set

A(T ′) = A(T ) \ ({(vi−1, vi)}16i6k ∪ {(vk, wℓ)}).

Then T =− T ′.

Proof. The proof is identical to the proof of Proposition 2.17 as we never
used the fact we were under the normal convention. �

On paths, we can use the peak representation as defined in Section 2.2,
but we can also code the problem with a word: L would represent an arc
directed leftward while R would represent an arc directed rightward. As in
Sections 2.2 and 3.1, we can see it as a row of dominoes that would topple
everything in one direction when chosen, where chosen dominoes can only
be toppled face up. The position is read from left to right.

Given the alphabet {L,R}, for a word w, let |w|L be the num-
ber of L’s in w, |w|R the number of R’s in w and w[i,j] the subword
wiwi+1 · · ·wj . Let WP be the set of words w such that for any i,
|w[0,i]|L > |w[0,i]|R and |w|L = |w|R; and SWP be the set of words
w such that w ∈ WP and ∀w1, w2 ∈ WP , w 6= w1LRw2. We define
X = (SWP\{∅}) ∪ {Rw | w ∈ SWP} ∪ {wL | w ∈ SWP} ∪ {RwL | w ∈ SWP}.
We note w̃ the word obtained from w after removing the first character if it
is an R and the last one if it is an L.

The reader would have recognised WP as the set of normal P-positions
of Timber on a path. We now prove that misère P-positions of Timber on
a path are those belonging to X, that is all words w such that w̃ ∈ SWP
but the empty word.

Theorem 4.20 In misère play, the P-positions of Timber on a path are
exactly those which correspond to words of X.
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Proof. Let w ∈ X be a position. Assume w ∈ (SWP\{∅}). From the
normal play analysis, we know that the first player cannot move to a position
in SWP ⊂ WP . Assume the first player can move to a position Rw0 with
w0 ∈ SWP . Then it follows that w = w1LRw0 for some w1. As w,w0 ∈ WP
then w1 ∈ WP , which is not possible since w ∈ SWP . Similarly, we can
prove the first player has no move to a position of the form w0L or Rw0L
with w0 ∈ SWP . Similarly, we can prove the first player has no move to a
position in X from a position in X.

Let w /∈ X ∪ {∅}. Assume w ∈ WP . Then there exist w1, w2 ∈ WP
such that w = w1LRw2, and we can choose them such that w2 ∈ SWP .
From w, the first player can move to Rw2 ∈ X. Similarly, we can
prove the first player has a move to a position in X from a position in
({Rw | w ∈ WP} ∪ {wL | w ∈ WP} ∪ {RwL | w ∈ WP})\X .

Now assume w[0,1] = RR. The first player can move to R ∈ X.

Now assume w is none of the above forms. Thus w̃ starts with an L and
ends with an R, and is not in WP , so the first player has a move from w̃
to a position w0 ∈ WP\{∅}. Without loss of generality, we can assume it is
by toppling a domino leftward. If w0 ∈ SWP , the same move from w leaves
the position w0 ∈ X or w0L ∈ X. Otherwise, there exist w1, w2 ∈ WP such
that w0 = w1LRw2 and we can choose w2 ∈ SWP . The first player can
then move from w to Rw2 ∈ X or Rw2L ∈ X. �

SWP is the set of Timber positions whose peak representations are Dyck
paths without peaks at height 1. The number of such Dyck paths of length
2n is the nth Fine number Fn = 1

2

∑−2
i=0(−1)icn−i

(
1
2

)i
, where ck = (2k)!

k!(k+1)!

is the kth Catalan number [31]. This gives us the number of Timber misère
P-positions on paths of length n: there are no Timber misère P-positions
on paths of length 0; there are 2Fn =

∑−2
i=0(−1)icn−i

(
1
2

)i
Timber misère

P-positions on paths of length 2n+ 1; there are Fn + Fn−1 Timber misère
P-positions on paths of length 2n.

That last number is also the number of Dyck paths of length 2n with no
peak at height 2 before the first time the path returns at height 0. We can
define a bijection between Timber misère P-positions on paths of length 2n
and Dyck paths of length 2n with no peak at height 2 before the first time
the path returns at height 0 as follows (using their word representation): if
the word can be written w1Lw2R with both w1 and w2 representing Dyck
paths (note that w1 might be empty, but not w2), its image is Lw1Rw2.
otherwise, the word can be written RwL with w representing a Dyck path,
and its image is LwR. Figure 4.5 gives examples of the bijection, using the
peak representation. The Timber misère P-positions are on the left, and at
their right are their images through the bijection.
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→

→

→

Figure 4.5: Timber misère P-positions and their images, Dyck paths with no

peak at height 2 before the first return to 0

4.1.4 Timbush

For Timbush, we still reduce the directed graph to an oriented forest, but
our knowledge stops there. Even on an oriented path, finding the misère
outcome seems challenging.

Theorem 4.21 Let G be a directed graph seen as a Timbush position such
that there exist a set S of vertices that forms a 2-edge-connected component
of G, and x, y two vertices not belonging to G. Let G′ be the directed graph
with vertex set

V (G′) = (V (G)\S) ∪ {x, y}

and arc set

A(G′) = (A(G) \ {(u, v)|{u, v} ∩ S 6= ∅})
∪ {(u, x)|u ∈ (V (G) \ S),∃v ∈ S, (u, v) ∈ A(G)}
∪ {(x, u)|u ∈ (V (G) \ S),∃v ∈ S, (v, u) ∈ A(G)}
∪ {(y, x)},

keeping the same colours, where the colour of (y, x) is grey if the arcs in
S yields different colours, and of the unique colour of arcs in S otherwise.
Then G =− G′.

Proof. The proof is identical to the proof of Theorem 3.4 as we never used
the fact we were under the normal convention. �

As in normal play, we get the following corollary.

Corollary 4.22 For any directed graph G, there exists an oriented forest
FG such that G =+ FG and G =− FG and FG is computable in quadratic
time.

The following proposition is true as well, for the same reason.
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Proposition 4.23 Let T be an oriented tree such that there exist three sets
of vertices {ui}06i6k,{vi}06i6k,{wi}06i6ℓ ⊂ V (G) such that:

1. ({(ui−1, ui)}16i6k ∪ {(vi−1, vi)}16i6k ∪ {(wi−1, wi)}16i6ℓ ⊂ A(G),

2. {(uk, w0), (vk, wℓ)}) ⊂ A(G),

3. u0 and v0 have in-degree 0 and out-degree 1,

4. for all 1 6 i 6 k, uk and vk have in-degree 1 and out-degree 1,

5. for all 1 6 i 6 k, (uk−1, uk) and (vk−1, vk) have the same colour.

6. (uk, w0) and (vk, wℓ) have the same colour.

Let T ′ be the oriented tree with vertex set

V (T ′) = V (T )\{vi}06i6k

and arc set

A(T ′) = A(T )\({(vi−1, vi)}16i6k ∪ {(vk, wℓ)}),

keeping the same colours, apart from (uk, w0) which becomes grey when
(uk, w0) and (vk, wℓ) had different colours in T . Then T =− T ′.

Proof. The proof is identical to the proof of Proposition 3.7 as we never
used the fact we were under the normal convention. �

4.1.5 Toppling Dominoes

In Toppling Dominoes, the misère outcome of a single row is easy to
determine, but finding equivalence classes in the general case has eluded us
for now.

Proposition 4.24 The misère outcome of a Toppling Dominoes position
on a single row is determined by its end dominoes and the dominoes right
next to them. For any string x,

• L,ERE,LxL,ERxL,LxRE,ERxRE ∈ R−,
• R,ELE,RxR,ELxR,RxLE,ELxLE ∈ L−,
• E ∈ P−,
• ∅, EL, LE, ER, RE, LxR, RxL, EEx, xEE, ELxL, LxLE, ERxR,

RxRE, ELxRE, ERxLE ∈ N .

In particular, we note that there is only one Toppling Dominoes po-
sition on a single row that is a misère P-position.

Nevertheless, when allowing a game on several rows, the set of Toppling

dominoes misère P-positions is infinite, as all Nim positions are equal to a
Toppling dominoes position using only grey dominoes.
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However, if we restrict ourselves to black and white dominoes (excluding
grey dominoes), we prove that no position is a misère P-position, no mat-
ter the number of rows of the position. We actually fully characterise the
outcome of any set of rows of black and white dominoes.

Before stating the theorem, we define a pair of functions on sets of rows
of dominoes. For any set of rows G of black and white dominoes, we define
ltd(G) the number of rows of dominoes in G that start and end with a black
domino. Similarly, we define rtd(G) the number of rows of dominoes in G
that start and end with a white domino.

Theorem 4.25 Let G be a set of rows of black and white dominoes. Then

o−(G) =





N− if ltd(G) = rtd(G)

L− if ltd(G) < rtd(G)

R− if ltd(G) > rtd(G)

Proof. We prove the result by induction on the number of dominoes in G.
If there is no domino, the outcome is trivially N .

Assume now there is at least one domino. Assume first ltd(G) = rtd(G).
If ltd(G) > 0, Left can play a domino on the edge of a row that starts and ends
with a black domino to remove it from the game, moving to a position G′ such
that ltd(G′) = ltd(G)−1 = rtd(G)−1 = rtd(G

′)−1, which is an L-position by
induction. Otherwise, we may assume without loss of generality that there is
a row that starts with a black domino and ends with a white domino. Left can
choose the rightmost black domino of that row and topple it leftward, moving
to a position G′ such that rtd(G

′) = rtd(G) + 1 = ltd(G) + 1 = ltd(G
′) + 1,

which is an L-position by induction. A similar argument on Right moves
shows that G is an N -position. Assume now ltd(G) < rtd(G). Then
there exists a row that starts and ends with a white domino. If that
row contains a black domino, Left can choose the rightmost black domino
of that row and topple it leftward, moving to a position G′ such that
rtd(G

′) = rtd(G) > ltd(G) = ltd(G
′), which is an L-position by induction.

Otherwise, that is if all rows that start and end with a white domino con-
tain no black domino, either she has no move and wins, or she can choose a
black domino at an end of a row and topple it toward the other ends, mov-
ing to a position G′ such that rtd(G

′) = rtd(G) > ltd(G) > ltd(G
′), which is

an L-position by induction. Whatever Right does, he can only change the
status of one row, and only change one of the end dominoes of this row or
empty it, moving to a position G′ where rtd(G

′)− ltd(G
′) = rtd(G)− l(tdG)

or rtd(G
′)− ltd(G

′) = rtd(G)− ltd(G) − 1, which is either an L-position or
an N -position by induction. Hence G is an L-position.

The case when ltd(G) > rtd(G) is similar. �

This implies that any row of black and white dominoes starting and end-
ing with a black domino is equivalent to a single black domino modulo the
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universe of LR-Toppling Dominoes positions. Also any row of black and
white dominoes starting and ending with a white domino is equivalent to a
single white domino modulo the universe of LR-Toppling Dominoes po-
sitions and any row of black and white dominoes starting and ending with
dominoes of different colours is equivalent to an empty row modulo the uni-
verse of LR-Toppling Dominoes positions. Note that this equivalence is
not true in the universe of all Toppling Dominoes positions. For example,
the position LL and L are not equivalent in this universe: L + E + E is a
misère P-position, while LL+ E + E is a misère L-position.

This equivalence allows us to completely describe the misère monoid of
LR-Toppling Dominoes positions, which we present in Theorem 4.26.

Theorem 4.26 Under the mapping

G 7→ αltd(G)−rtd(G),

the misère monoid of LR-Toppling Dominoes positions is

MZ = 〈1, α, α−1 | α · α−1 = 1〉 ∼= (Z,+)

with outcome partition

N− = {1},L− = {α−n|n ∈ N∗},R− = {αn|n ∈ N∗}

and total ordering

αn > αm ⇔ n < m.

This result is quite surprising as in general, the misère version of a game
is harder than its normal version, and LR-Toppling Dominoes has not
been solved under normal convention. From what we saw in Section 3.2 and
results from [17], the structure is richer in normal play than in misère play.

4.1.6 Col

Notice first that all Col positions are dead-ending.
On Col, we give the outcome of some classes of graphs, and even equiv-

alence class modulo the dead-ending universe for some of them.
We use the same notation as in Section 3.3.
First, we present some features participating in explaining why misère

play seems harder than normal play for the game of Col.
Adding a black vertex or reserving a vertex for Left would seem to be an

advantage for Right in misère play. Unfortunately, that intuition is false:

o−(o+ o) = N ; o−(oBo) = L

o−(ooo) = N ; o−(oBo) = L
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A theorem such as Theorem 3.51 cannot be stated: the second player
would never use such strategy as they would be sure to lose this way, and
the first player cannot force such a choice.

Now we are back with finding misère outcomes of positions.
We start with paths. The following lemma gives the equivalence class

modulo the dead-ending universe of paths whose end vertices are black or
white and all internal vertices are grey.

Lemma 4.27

1. for any non-negative integer n, BonB ≡−
E B.

2. for any non-negative integer n, BonW ≡−
E ∅.

Proof. We show simultaneously that G+B and G+BonB have the same
outcome, as well as G and G+BonW , by induction on n ∈ N and the order
of G ∈ E .
By playing on any vertex of BonB, Left goes to a game which is equivalent
to ∅ modulo E , either by induction or because it is ∅. By playing on any
vertex of BonB, Right goes to a game which is equivalent to B +B modulo
E by induction or because it is B + B. By playing on any vertex of BonW ,
Left goes to a game which is equivalent to W modulo E by induction or
because it is W . By playing on any vertex of BonW , Right goes to a game
which is equivalent to B modulo E by induction or because it is B.
Let G be a dead-ending game such that Left wins G + B playing first (or
second). On G + BonB, Left can follow her G + B strategy, unless Right
plays from some G′ + BonB to G′ + (BonB)R or the strategy recommends
her to play from some G′+B to G′. In the former case, Right has just moved
BonB to a game equivalent to B + B modulo E and she can put the game
on G′ + B which she wins a priori. In the latter case, she can move from
G′ +BonB to a game equivalent to G′ modulo E and continue as if she had
just moved from B to ∅.
Let G be a dead-ending game such that Right wins G + B playing first (or
second). On G + BonB, Right can follow his G + B strategy, unless Left
plays from some G′+BonB to G′+(BonB)L or he has no more move. In the
former case, Left has just moved BonB to a game equivalent to ∅ modulo E
and he can assume she had just moved from B to ∅. In the latter case, he
can move from G′ + BonB to a game equivalent to G′ + B + B modulo E
where he has no move and wins as he will never get any.
Hence, BonB ≡−

E B.
Let G be a dead-ending game such that Left wins G playing first (or second).
On G+BonW , Left can follow her G strategy, unless Right plays from some
G′ +BonW to G′ + (BonW )R or she has no more move. In the former case,
Right has just moved BonW to a game equivalent to B modulo E and she
can put the game on G′ which she wins a priori. In the latter case, she can
move from G′ +BonW to a game equivalent to G′ +W modulo E where he
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has no move and wins as she will never get any.
A similar argument would show that when White has a winning strategy on
G, he has one on G+BonW .
Hence, BonW ≡−

E ∅. �

This implies the following result on cycles, where all moves are equivalent,
leading to a position we just analysed.

Theorem 4.28 For any integer n greater than or equal to 3, we have
Cn ≡−

E ∅.

Proof. The only Left option of Cn is Won−3W , which is equivalent to W
modulo E and the only Right option of Cn is Bon−3B, which is equivalent
to B modulo E . Hence Cn is equivalent to {W |B} = BW modulo E , and as
BW is equivalent to ∅ modulo E , Cn is as well. �

We now look at sums of paths as it gives us the misère outcome of any
grey path, and helps find the misère outcome of bigger positions.

Lemma 4.29

1. For any non-negative integer l, any non-negative integers ni (i ∈ J1; lK),
we have Σl

i=1Woni ∈ N− ∪ L−, that is Left has a winning strategy if she
plays first.

2. For any non-negative integer l, any non-negative integers ni (i ∈ J1; lK),
we have (W +Σl

i=1Woni) ∈ L−, that is Left has a winning strategy who-
ever plays first.

Proof. We show the results simultaneously by induction on n = Σl
i=1ni.

If n = 0, Left has no move on either Σl
i=1Woni or (W +Σl

i=1Woni), and as
Right has at least one move on (W +Σl

i=1Woni), the results hold.
Assume n > 1. Without loss of generality, we may assume nl > 1. If Left
plays on the non-reserved leaf of Wonl in Σl

i=1Woni , it becomes equivalent
to W+Σl−1

i=1Woni modulo E , where Left has a winning strategy by induction.
Hence Left has a winning strategy on Σl

i=1Woni if she plays first.
We notice (W + Σl

i=1Woni) = Σl
i=0Woni with n0 = 0, so if Left is the

first player on (W + Σl
i=1Woni), then she has a winning strategy from 1.

Assume Right is the first player on (W +Σl
i=1Woni). If Right plays on W ,

then the game becomes (Σl
i=1Woni) where we just saw Left has a winning

strategy playing first. Otherwise, we may assume Right plays on a vertex
of Wonl without loss of generality. If this vertex is the non-reserved leaf,
then the game becomes equivalent to (W +Σl−1

i=1Woni) modulo E where Left
has a winning strategy by induction. Otherwise, Left can answer on this
leaf, leaving a game equivalent to (W + Σl−1

i=1Woni) modulo E where she
has a winning strategy by induction. Hence Left has a winning strategy on
(W +Σl

i=1Woni). �

As expected, we can use this result to find the outcome of any grey path.
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Theorem 4.30 For any integer n greater than or equal to 2, we have
on ∈ N− that is the first player has a winning strategy.

Proof. o2 and BW have the same options, so are equivalent modulo E ,
hence o2 is equivalent to ∅ modulo E .
Assume n > 3. Without loss of generality, we can assume that Left is the
first player. By playing on a vertex next to a leaf, Left leaves the game as
W +Won−3, where she has a winning strategy by Lemma 4.29. Hence the
first player has a winning strategy on on. �

We now find the outcome of any tree with at most one vertex having
degree at least 3. Before that, we need to find the outcome of positions that
players might reach from these trees. We do not consider all such positions
as we did in normal play, since we only need to consider positions that occur
under one player’s winning strategy. We look again at sums of path, where
we refine the previous results. First, we add a path having exactly one
black leaf and all other vertices being grey to a sum of paths considered in
Lemma 4.29, assuming there are at least two single white vertices.

Lemma 4.31 For any non-negative integer l, any non-negative integers ni

(i ∈ J1; l + 1K), we have (W +W +Bonl+1 +Σl
i=1Woni) ∈ L−, that is Left

has a winning strategy whoever plays first.

Proof. We show the result by induction on Σl+1
i=1ni. If Left is

the first player, she can play on the vertex reserved for her, leaving
(W +W +Wonl+1−1 +Σl

i=1Woni) where she has a winning strategy by
Lemma 4.29.
Assume now Right is the first player. If he plays on a W , then Left can play
on the vertex reserved for her, leaving (W +Wonl+1−1 + Σl

i=1Woni) where
she has a winning strategy by Lemma 4.29. If he plays on a vertex of Bonl+1 ,
Left can play on the vertex reserved for her, leaving a game equivalent to
(W +W +Bon

′

l+1 +Σl
i=1Woni) modulo E , where she has a winning strategy

by induction. Otherwise, we can assume without loss of generality that Right
plays on a vertex of Wonl and that nl > 1. If it is on the non-reserved leaf,
the game becomes equivalent to (W +W +Bonl+1 +Σl−1

i=1Woni) modulo E ,
where Left has a winning strategy by induction. Otherwise, Left can answer
on this leaf, leaving a game equivalent to (W + W + Bonl+1 + Σl−1

i=1Woni)
modulo E , where she has a winning strategy by induction.
Hence Left has a winning strategy on (W +W +Bonl+1 +Σl

i=1Woni). �

We are now back to paths where exactly one leaf is white and all other
vertices are grey, but we add the extra condition that at least two of these
paths each contain at least three vertices.

Lemma 4.32 For any non-negative integer k, any integer l greater than or
equal to 2, any integers ni greater than or equal to 2 (i ∈ J1; lK), we have
(Σk

j=1Wo+Σl
i=1Woni) ∈ L−, that is Left has a winning strategy.
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Figure 4.6: The tree SiW6 Figure 4.7: The tree WSio3

Proof. We show the result by induction on k. If Left is the first player,
then she has a winning strategy by Lemma 4.29.
Assume now Right is the first player. If he plays on the reserved ver-
tex of some Wo, Left can answer on the other vertex, leaving the game
as (Σk−1

j=1Wo + Σl
i=1Woni), where she has a winning strategy by induc-

tion. If he plays on the non-reserved vertex of some Wo, the game be-
comes (Σk−1

j=1Wo + Σl
i=1Woni), where Left has a winning strategy by in-

duction. Otherwise, we can assume without loss of generality that Right
plays on a vertex of Wonl . Left can answer on the vertex next to the
non-reserved end of Wonl−1 , leaving a graph equivalent modulo E to ei-
ther (W +W +Σk

j=1Wo+Σl−2
i=1Woni), where she has a winning strategy by

Lemma 4.29, or (W +W +Bom +Σk
j=1Wo+ Σl−2

i=1Woni) for some m 6 nl,
where she has a winning strategy by Lemma 4.31. Hence, Left has a winning
strategy on (Σk

j=1Wo+Σl
i=1Woni). �

We now introduce some more notation, that we use in the following:

(i) Sicn is the intersection graph of a star with n leaves, that is the tree
with exactly one vertex of degree at least 3 and n leaves all at distance
exactly 2 from this vertex, such that the center, that is the vertex of
degree n, is labelled c and all other vertices are labelled o.

(ii) c1Si
c2
n is the intersection graph of a star with n leaves, such that the

center is labelled c2, to which we add a vertex labelled c1 that we link
to the center, and all other vertices are labelled o.

Example 4.33 Figure 4.6 is the coloured graph SiW6 . All its vertices are
grey but the center, which is white. Figure 4.7 is the coloured graph WSio3.
All its vertices are grey but the leaf at distance 1 from the center, which is
white.

We now find the outcome, nay the equivalent class, of these positions we
just introduced, starting with the equivalent class of SiWn .
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Lemma 4.34 For any integer n greater than or equal to 2, we have
SiWn ≡−

E ∅.

Proof. Let G be a dead-ending game that Left wins playing first (or second).
On G + SiWn , Left can follow her G strategy, unless Right plays from some
G′ + SiWn to G′ + (SiWn )R or she has no more moves. In the former case,
there are three cases. If Right plays on a leaf of SiWn , Left can answer on
the other leaf if n = 2, leaving a game equivalent to G modulo E , where she
has a winning strategy if she plays second, or on the vertex next to the one
Right just played on otherwise, leaving the game as G + SiWn−1 where she
has a winning strategy if she plays second by induction. If Right plays on a
non-leaf non-reserved vertex of SiWn , Left can answer on the leaf next to it,
leaving a game equivalent to G modulo E , where she has a winning strategy
if she plays second. If Right plays on the reserved vertex of SiWn , Left can
answer on a leaf, leaving the graph as G + Σn−1

i=1 Bo >
−
E G where she has a

winning strategy if she plays second. In the latter case, she can move from
G′+SiWn to a game equivalent to G′+W modulo E by induction by playing
on a non-leaf of SiWn , where she has no move and wins as she will never get
any.
Let G be a dead-ending game that Right wins playing first (or second).
On G + SiWn , Right can follow his G strategy, unless Left plays from some
G′ + SiWn to G′ + (SiWn )L or he has no more moves. In the former case,
there are two cases. If Left plays on a leaf of SiWn , Right can answer on the
vertex next to the one Left just played on, leaving a game equivalent to G′

modulo E , where he has a winning strategy if he plays second. If Left plays
on a non-leaf non-reserved vertex of SiWn , Right can answer on a non-leaf
non-reserved vertex of SiWn , leaving a game equivalent to G modulo E , where
he has a winning strategy if he plays second. In the latter case, he can move
from G′ + SiWn to a game equivalent to G′ + B modulo E by playing on a
non-leaf of SiWn , where he has no move and wins as he will never get any.
Hence, SiWn ≡−

E ∅. �

We now give the outcome of WSion, which corresponds to a position
where Left would have played on a leaf of Sion+1.

Lemma 4.35 For any integer n greater than or equal to 2, we have
WSion ∈ L−, that is Left has a winning strategy whoever plays first.

Proof. If Left is the first player, she can play on the central vertex, leaving
the game as W +Σn

i=1Wo, where she has a winning strategy by Lemma 4.29.
Assume Right is the first player. If Right plays on the reserved vertex, the
game becomes equivalent to ∅ modulo E , where Left has a winning strategy
if she plays first. If Right plays on the central vertex, the game becomes
Σn
i=1Bo >

−
E ∅, where Left has a winning strategy if she plays first. If Right

plays on any non-reserved leaf, Left can answer on the central vertex, leaving
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the game as W+Σn−1
i=1 Wo, where she has a winning strategy by Lemma 4.29.

If Right plays on any other vertex, the game becomes either equivalent to ∅
modulo E , where Left has a winning strategy if she plays first, or, if n = 2,
B+WBoo, where Left can play on the non-reserved non-leaf vertex, leaving
a game equivalent to W modulo E , where she has a winning strategy.
Hence, Left has a winning strategy on WSion. �

Now we sum these positions with paths and find the outcome of such
sums, as they appear in the strategy we propose.

Lemma 4.36 For any integer n greater than or equal to 2 and any non-
negative integer k, we have (Wok +WSion) ∈ L−, that is Left has a winning
strategy.

Proof. If Left is the first player, she can play on the central vertex, leav-
ing the game as W +Wok +Σn

i=1Wo, where she has a winning strategy by
Lemma 4.29.
Assume now Right is the first player. If Right plays on the non-reserved
leaf on Wok, the game becomes equivalent to WSion modulo E , where Left
has a winning strategy by Lemma 4.35. If Right plays on any other ver-
tex of Wok, Left can answer on that leaf, leaving a game equivalent to
WSion modulo E , where she has a winning strategy by Lemma 4.35. If
Right plays on the reserved vertex of WSion, the game becomes equivalent
to Wok modulo E , where Left has a winning strategy if she plays first by
Lemma 4.29. If Right plays on the central vertex of WSion, the game becomes
Wok +Σn

i=1Bo >
−
E Wok, where Left has a winning strategy if she plays first

by Lemma 4.29. If Right plays on any non-reserved leaf of WSion, Left can
answer on the central vertex, leaving the game as W + Wok + Σn−1

i=1 Wo,
where she has a winning strategy by Lemma 4.29. If Right plays on any
other vertex, the game becomes either equivalent to Wok modulo E , where
Left has a winning strategy if she plays first by Lemma 4.29, or, if n = 2,
Wok +B+WBoo, where Left can play on the non-reserved non-leaf vertex,
leaving a game equivalent to W +Wok modulo E , where she has a winning
strategy by Lemma 4.29.
Hence, Left has a winning strategy on (Wok +WSion). �

We now state the theorem on the outcome of any grey subdivided star:
all these positions are misère N -positions.

Theorem 4.37 The first player has a winning strategy on any tree with
exactly one vertex having degree at least three, with all vertices being coloured
grey.

Proof. We call v the vertex having degree l > 3, vi (1 6 i 6 l) the leaves
of the tree, ni (1 6 i 6 l) the distance between v and vi. Without loss of
generality, we can assume that Left is the first player.
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If at least one of the ni’s is equal to 1, Left can play on v, leaving the graph
as Σl

i=1Woni−1 where she has a winning strategy by Lemma 4.29. Assume
such ni does not exist. If at least two of the ni’s are greater than or equal
to 3, Left can play on v, leaving the graph as Σl

i=1Woni−1 where she has a
winning strategy by Lemma 4.32. If all ni’s are equal to 2, Left can play on
a leaf, leaving the graph as WSiol−1, where she has a winning strategy by
Lemma 4.35. If all but one ni are equal to 2, Left can play on the non-leaf
vertex at distance 2 from v, leaving the graph as Womax16i6l(ni−3)+WSiol−1,
where she has a winning strategy by Lemma 4.36.
Hence, the first player has a winning strategy on any tree with exactly one
vertex having degree at least three. �

4.2 Canonical form of dicot games

We now look at a more general universe of games, namely the universe of
dicot games. Recall that a game is said to be dicot either if it is {·|·} or if it
has both Left and Right options and all these options are dicot.

Example 4.38 Figure 4.8 gives three examples of games that are dicot. The
first game has both a Left option and a Right option, and both these options
are 0, so are dicot. One may recognise the game ∗ = {0|0} introduced in the
introduction. The second game has two Left options and a Right option, and
all these options are 0 or ∗, so are dicot. The third game has a Left option
and two Right options, and we can see all these options are dicot. Figure 4.9
gives three examples of games that are not dicot. The first game has a Left
option but no Right option. The second game has both a Left option and a
Right option, but, though the Right option is dicot, the Left option is not
dicot as it has a Right option but no Left option. The third game has both
a Left option and a Right option, but none of these options is dicot as they
are numbers in normal canonical form.

The universe of dicots contains all impartial games as well as many par-
tizan games such as all Clobber positions.

In normal play, dicot games are called all-small, because if a player has
a significant advantage in a game, adding any dicot position cannot prevent
them from winning. In misère play, this is not the case, as Siegel proved in
[38] that for any game G, there exists a dicot game G′ such that G + G′ is
a misère P-position.

In this section, we define a reduced form for dicot games, prove that it is
actually a canonical form, and count the number of dicot games in canonical
form born by day 3.
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Figure 4.8: Some dicot positions

Figure 4.9: Some positions that are not dicot

4.2.1 Definitions and universal properties

We start by giving some more definitions and stating results valid for any
universe, but before that, we prove the closure of the dicot universe under the
three aspects we mentioned in the introduction of this chapter: it is closed
under followers, closed under disjunctive sum, and closed under conjugates.

Lemma 4.39 If G is dicot then every follower of G is dicot.

Proof. We prove the result by induction on the birthday of G. If G = 0, G
is its only follower, and is dicot, so the result holds. Let H be a follower of
G. If H is G or an option of G, then it follows from the definition of dicots.
Otherwise, H is a follower of an option G′ of G, and as G′ is dicot with a
birthday smaller than the birthday of G, it follows by induction. �

Lemma 4.40 If G and H are dicot then G+H is dicot.

Proof. We prove the result by induction on the birthdays of G and H. If
G = H = 0, then G + H = 0 is dicot. Otherwise, we can assume without
loss of generality that G 6= 0. Then, from the definition of dicot, we find Left
options of G+H, namely GL +H and possibly G+HL. Similarly, we find
Right options of G + H, namely GR + H and possibly G + HR. All these
options are dicot by induction. Hence G+H is dicot. �

Lemma 4.41 If G is dicot, then G is dicot.

Proof. We prove the result by induction on the birthday of G. If G = 0,
then G = 0 is dicot. Otherwise, we find Left options of G, namely GR.
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Similarly, we find Right options of G, namely GL. All these options are
dicot by induction. Hence G is dicot. �

In [38], Siegel introduced the notion of the adjoint of a game. Recall that
a Left end is a game with no Left option, and a Right end is a game with no
Right option.

Definition 4.42 (Siegel [38]) The adjoint of G, denoted Go, is given by

Go =





∗ if G = 0 ,

{(GR)o|0} if G 6= 0 and G is a Left end,

{0|(GL)o} if G 6= 0 and G is a Right end,

{(GR)o|(GL)o} otherwise.

where (GR)o denotes the set of adjoints of elements of GR.

Observe that we can recursively verify that the adjoint of any game is
dicot. In normal play, the conjugate of a game is considered as its opposite
and is thus denoted −G, since G+G ≡+ 0. The interest of the adjoint of a
game is that it plays a similar role as the opposite of a game in normal play,
to force a win for the second player recursively, as the following proposition
suggests:

Proposition 4.43 (Siegel [38]) For any game G, G + Go is a misère P-
position.

The following proposition was stated in [38] for the universe G of all
games. Mimicking the proof, we extend it to any universe.

Proposition 4.44 Let U be a universe of games, G and H two games (not
necessarily in U). We have G >

−
U H if and only if the following two condi-

tions hold:

(i) For all X ∈ U with o−(H +X) > P, we have o−(G+X) > P; and

(ii) For all X ∈ U with o−(H +X) > N , we have o−(G+X) > N .

Proof. The sufficiency follows from the definition of >. For the converse,
we must show that o−(G+X) > o−(H +X) for all X ∈ U . Since we always
have o−(G+X) > R, if o−(H +X) = R, then there is nothing to prove. If
o−(H+X) = P or N , the result directly follows from (i) or (ii), respectively.
Finally, if o−(H+X) = L, then by (i) and (ii) we have both o−(G+X) > P
and o−(G+X) > N , hence o−(G+X) = L. �

To obtain the canonical form of a game, we generally remove or bypass
options that are not relevant. These options are of two types: dominated
options can be removed because another option is always a better move
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for the player, and reversible options are bypassed since the answer of the
opponent is ‘predictable’. Under normal play, simply removing dominated
options and bypassing reversible options is sufficient to obtain a canonical
form. Under misère play, Mesdal and Ottaway [25] proposed definitions of
dominated and reversible options under misère play in the universe G of all
games, proving that deleting dominated options and bypassing reversible
options does not change the equivalence class of a game in general misère
play, then Siegel [38] proved that applying these operations actually defines a
canonical form in the universe G. Hence the same method may be applied to
obtain a misère canonical form. However, modulo smaller universes, games
with different canonical forms may be equivalent. In the following, we adapt
the definition of dominated and reversible options to restricted universes
of games. We show in the next subsection that a canonical form modulo
the universe of dicots can be obtained by removing dominated options and
applying a slightly more complicated treatment to reversible options.

Definition 4.45 (U-dominated and reversible options)
Let G be a game, U a universe of games.

(a) A Left option GL is U -dominated by some other Left option GL′

if
GL′

>
−
U GL.

(b) A Right option GR is U -dominated by some other Right option GR′

if
GR′

6
−
U GR.

(c) A Left option GL is U -reversible through some Right option GLR if
GLR 6

−
U G.

(d) A Right option GR is U -reversible through some Left option GRL if
GRL >

−
U G.

To obtain the known canonical forms for the universe G of all games [38]
but also for the universe I of impartial games [10], one may just remove dom-
inated and bypass reversible options as defined. The natural question that
arises is whether a similar process gives canonical forms in other universes.
Indeed, it is remarkable that in all universes closed by followers, dominated
options can be ignored, as shown by the following lemma.

Lemma 4.46 Let G be a game and let U be a universe of games closed by
taking option of games. Suppose GL1 is U-dominated by GL2 , and let G′ be
the game obtained by removing GL1 from GL. Then G ≡−

U G′.

Proof. By Proposition 4.4, we have G′ 6
−
U G. We thus only have to show

that G′ >
−
U G. For a game X ∈ U , suppose Left can win G + X playing

first (respectively second), we show that she also has a winning strategy in
G′+X. Actually, she can simply follow the same strategy on G′+X, unless
she is eventually supposed to make a move from some G + Y to GL1 + Y .
In that case, she is supposed to move to the game GL1 + Y and then win,
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so o−(GL1 + Y ) > P. But GL2 >
−
U GL1 and Y ∈ U , thus o−(GL2 + Y ) > P.

Therefore, Left can win by moving from G′ + Y to GL2 + Y , concluding the
proof. �

Note that in the case that interest us here, that is when G is dicot, the
obtained game G′ stays dicot.

Unfortunately, the case involving reversible options is more complex.
Nevertheless, we show in the next subsection how we can deal with them
in the specific universe of dicot games. Beforehand, we adapt the definition
of downlinked or uplinked games from [38] to restricted universes.

Definition 4.47 Let G and H be any two games. If there exists some T ∈ U
such that o−(G + T ) 6 P 6 o−(H + T ), we say that G is U -downlinked to
H (by T ). In that case, we also say that H is U -uplinked to G by T .

Note that if two games are U -downlinked and U ⊆ U ′, then these two
games are also U ′-downlinked. Therefore, the smaller the universe U is, the
less ‘likely’ it is that two games are U -downlinked.

Lemma 4.48 Let G and H be any two games and U be a universe of games.
If G >

−
U H, then G is U-downlinked to no HL and no GR is U-downlinked

to H.

Proof. Let T ∈ U be any game such that o−(G+T ) 6 P. Since G >
−
U H and

T ∈ U , o−(H +T ) 6 P as well. Hence for any HL ∈ HL, o−(HL +T ) 6 N ,
and G is not U -downlinked to HL by T . Similarly, let T ′ ∈ U such that
o−(H + T ′) > P. Then o−(G + T ′) > P and therefore, for any GR ∈ GR,
o−(GR + T ′) > N and GR is not U -downlinked to H by T ′. �

4.2.2 Canonical form of dicot games

In this subsection, we consider games within the universe D of dicots, and
show that we can define precisely a canonical form in that context. In or-
der to do so, we first describe how to bypass the D-reversible options in
Lemmas 4.49 and 4.50.

Lemma 4.49 Let G be a dicot game. Suppose GL1 is D-reversible through
GL1R1 and either GL1R1 6= 0 or there exists another Left option GL2 of G
such that o−(GL2) > P. Let G′ be the game obtained by bypassing GL1 :

G′ = {(GL1R1)L, GL \ {GL1}|GR} .

Then G′ is a dicot game and G ≡−
D G′.

Proof. First observe that since G is dicot, all options of G′ are dicot, and
under our assumptions, G′ has both Left and Right options. Thus G′ is a
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dicot game. We now prove that for any dicot game X, the games G+X and
G′ +X have the same misère outcome.

Suppose Left can win playing first (respectively second) on G+X. Among
all the winning strategies for Left, consider one that always recommends a
move on X, unless the only winning move is on G. In the game G′ +X, let
Left follow the same strategy except if the strategy recommends precisely
the move from G to GL1 . In that case, the position is of the form G′ + Y ,
with o−(GL1 + Y ) > P. Thus o−(GL1R1 + Y ) > N .

Suppose Left has a winning move in Y from GL1R1 + Y , i.e. there
exists some Y L such that o−(GL1R1 + Y L) > P . But then by reversibil-
ity, o−(G+ Y L) > P, contradicting our choice of Left’s strategy. So either
Left has a winning move of type GL1R1L + Y , which she can play directly
from G′ + Y , or she wins because she has no possible moves, meaning that
GL1R1 = 0 and Y = 0. In that case, she can also win in G′ + Y = G′ by
choosing the winning move to GL2 .

Now suppose Right can win playing first (respectively second) on G+X.
Consider any winning strategy for Right, and let him follow exactly the
same strategy on G′ + X unless Left moves from some position G′ + Y to
GL1R1L + Y . First note that by our assumption, G′ is not a Left end, thus
if Right follows this strategy, Left can never run out of move prematurely.

Suppose now that Left made a move from some position G′ + Y to
GL1R1L + Y . Until that move, Right was following his winning strat-
egy, so o−(G + Y ) 6 P. Since GL1R1 6

−
D G and Y is a dicot, we have

o−(GL1R1 + Y ) 6 P. Thus GL1R1L + Y 6 N and Right can adapt his
strategy. �

With the previous lemma, we do not bypass reversible options through
0 when all other Left options have misère outcome at most N . Such re-
versible options cannot be treated similarly, as shows the example of the
game {0, ∗|∗}. Note that as shown in [2] and [3], {∗|∗} = ∗ + ∗ ≡−

D 0 and
thus, by Proposition 4.4, {0, ∗|∗} >

−
D 0. Therefore, the Left option ∗ is

D-reversible through 0. However, {0, ∗|∗} 6≡−
D {0|∗} since the first is an N -

position and the second is an R-position. Yet, we prove with the following
lemma that all reversible options ignored by Lemma 4.49 can be replaced by
∗ without changing the equivalence class of the game.

Lemma 4.50 Let G be a dicot game. Suppose GL1 is D-reversible through
GL1R1 = 0. Let G′ be the game obtained by replacing GL1 by ∗:

G′ = {∗, GL \ {GL1}|GR} .

Then G′ is a dicot game and G ≡−
D G′.

Proof. First observe that since G and ∗ are dicots, all options of G′ are
dicots, and G′ has both Left and Right options. Thus G′ is a dicot game.
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We now prove that for any dicot game X, the games G+X and G′+X have
the same misère outcome.

Suppose Left can win playing first (respectively second) on G+X. Among
all the winning strategies for Left, consider one that always recommends a
move on X, unless the only winning move is on G. In the game G′ +X, let
Left follow the same strategy except if the strategy recommends precisely
the move from G to GL1 . In that case, the position is of the form G′ + Y ,
with o−(GL1 + Y ) > P. Thus o−(GL1R1 + Y ) > N .

Suppose Left has a winning move in GL1R1 + Y = 0 + Y = Y , i.e.
there exists some Y L such that o−(Y L) > P. But then by reversibility,
o−(G + Y L) > P, contradicting our choice of Left’s strategy. So Left has
no winning move in Y , and she wins because she has no possible moves, i.e.
Y = 0. In that case, she can also win in G′+Y = G′ by choosing the winning
move to ∗.

Now suppose Right can win playing first (respectively second) on G+X.
Consider any winning strategy for Right, and let him follow exactly the same
strategy on G′ +X unless Left moves from some position G′ + Y to ∗+ Y .
First note that by our assumption, G′ is not a Left end, thus if Right follows
this strategy, Left can never run out of move prematurely.

Suppose now that Left made a move from some position G′ + Y to
∗ + Y . Until that move, Right was following his winning strategy, so
o−(G + Y ) 6 P. Since 0 = GL1R1 6

−
D G and Y is dicot, we have

o−(Y ) = o−(0 + Y ) 6 o−(G+ Y ) 6 P . So Right can move from ∗ + Y to
Y and win. �

Note that some reversible options may be dealt with using both Lem-
mas 4.49 and 4.50. Yet, it is still possible to apply Lemma 4.49 and remove
such an option after having applied Lemma 4.50.

At this point, we want to define a reduced form for each game obtained
by applying the preceding lemmas as long as we can. In addition, it was
proved by Allen in [2] and [3] that the game {∗|∗} is equivalent to 0 modulo
the universe of dicot games, and we thus reduce this game to 0. Therefore,
we define the reduced form of a dicot game as follows:

Definition 4.51 (Reduced form) Let G be a dicot. We say G is in re-
duced form if:

(i) it is not {∗|∗},
(ii) it contains no dominated option,
(iii) if Left has a reversible option, it is ∗ and no other Left option has

outcome P or L,
(iv) if Right has a reversible option, it is ∗ and no other Right option has

outcome P or R,
(v) all its options are in reduced form.
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Observe first the following:

Theorem 4.52 Every game G is equivalent modulo the universe of dicots
to a game in reduced form H whose birthday is no larger than the birthday
of G.

Proof. To obtain a game H equivalent to G in reduced form, we can apply
iteratively Lemmas 4.46, 4.49 and 4.50. Applying these lemmas, we never
increase the depth of the corresponding game tree, thus the birthday of the
reduced game H is no larger than the birthday of G. �

We now prove that the reduced form of a game can be seen as a canonical
form. Before stating the main theorem, we need the two following lemmas.

Lemma 4.53 Let G and H be any games. If G �−
D H, then:

(a) There exists some Y ∈ D such that o−(G+Y ) 6 P and o−(H+Y ) > N ;
and

(b) There exists some Z ∈ D such that o−(G+Z) 6 N and o−(H+Z) > P.

Proof. Negating the condition of Proposition 4.44, we get that (a) or (b)
must hold. To prove the lemma, we show that (a) ⇒ (b) and (b) ⇒ (a).

Consider some Y ∈ D such that o−(G + Y ) 6 P and o−(H + Y ) > N ,
and set

Z = {(HR)o, 0|Y } .

First note that since Z has both a Left and a Right option, and all its options
are dicots, Z is also dicot. We now show that Z satisfies o−(G + Z) 6 N
and o−(H +Z) > P, as required in (b). From the game G+Z, Right has a
winning move to G+Y , so o−(G+Z) 6 N . We now prove that Right has no
winning move in the game H+Z. Observe first that H+Z is not a Right end
since Z is not. If Right moves to some HR +Z, Left has a winning response
to HR+(HR)o. If instead Right moves to H+Y then, since o−(H+Y ) > N ,
Left can win. Therefore o−(H + Z) > P, and (a) ⇒ (b).

To prove (b) ⇒ (a), for a given Z we set Y = {Z|0, (GL)o} and prove
similarly that Left wins if she plays first on H+Y and loses if she plays first
on G+ Y . �

Lemma 4.54 Let G and H be any games. The game G is D-downlinked to
H if and only if no GL >

−
D H and no HR 6

−
D G.

Proof. Consider two games G and H such that G is D-downlinked to H
by some third game T , i.e. o−(G + T ) 6 P 6 o−(H + T ). Then Left
has no winning move from G + T , thus o−(GL + T ) 6 N and similarly
o−(HR + T ) > N . Therefore, T witnesses both GL �−

D H and G �−
D HR.

Conversely, suppose that no GL >
−
D H and no HR 6

−
D G. Set

GL = {GL
1 , . . . , G

L
k } and HR = {HR

1 , . . . ,H
R
ℓ }. By Lemma 4.53, we can
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associate to each GL
i ∈ GL a game Xi ∈ D such that o−(GL

i +Xi) 6 P and
o−(H +Xi) > N . Likewise, to each HR

j ∈ HR, we associate a game Yj ∈ D

such that o−(G+Yj) 6 N and o−(HR
j +Yj) > P. Let T be the game defined

by

TL =

{
{0}
(GR)o ∪ {Yj | 1 6 j 6 ℓ}

if both G and H are Right ends,
otherwise.

TR =

{
{0}
(HL)o ∪ {Xi | 1 6 i 6 k}

if both G and H are Left ends,
otherwise.

If HR (respectively GR) is non-empty, then so is {Yj | 1 6 j 6 ℓ}
(respectively (GR)o), and T has a Left option. If both GR and HR are
empty, then TL = {0}, so T always has a Left option. Similarly, T also
always has a Right option. Moreover, all these options are dicots, so T is
dicot. We claim that G is D-downlinked to H by T .

To show that o−(G + T ) 6 P, we just prove that Left loses if she plays
first in G+T . Since T has a Left option, G+T is not a Left end. If Left moves
to some GL

i + T , then by our choice of Xi, Right has a winning response
to GL

i +Xi. If Left moves to some G + (GR)o, then Right can respond to
GR+(GR)o and win (by Proposition 4.43). If Left moves to G+Yj, then by
our choice of Yj, o−(G + Yj) 6 N and Right can win. The only remaining
possibility is, when G and H are Right ends, that Left moves to G+0. But
then Right cannot move and wins.

Now, we show that o−(H + T ) > P by proving that Right loses playing
first in H + T . If Right moves to some HR

j + T , then Left has a winning
response to HR

j +Yj. If Right moves to H+(HL)o, then Left wins by playing
to HL + (HL)o, and if Right moves to H + Xi, then by our choice of Xi,
o−(H +Xi) > N and Left can win. Finally, the only remaining possibility,
when G and H are Left ends, is that Right moves to 0. But then Left cannot
answer and wins. �

We now prove the main theorem of the section.

Theorem 4.55 Consider two dicot games G and H. If G ≡−
D H and both

are in reduced form, then G = H.

Proof. If G = H = 0, the result is clear. We proceed by induction on the
birthdays of the games. Assume without loss of generality that G has an
option. Since G is dicot, it has both a Left and a Right option.

Consider a Left option GL. Suppose first that GL is not D-reversible.
Since H ≡−

D G, H >
−
D G and Lemma 4.48 implies that H is not downlinked

to GL. Then by Lemma 4.54, either there exists some HL >
−
D GL, or there

exists some Right option GLR of GL with GLR 6
−
D H. The latter would

imply that G >
−
D GLR and thus that GL is D-reversible, contradicting our

assumption. So we must have some option HL such that HL >
−
D GL. A
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similar argument for HL gives that there exists some Left option GL′

of G
such that GL′

>
−
D HL. Therefore GL′

>
−
D HL >

−
D GL. If GL′

and GL are two
different options, then GL is dominated by GL′

, contradicting our assumption
that G is in reduced form. Thus, GL′

and GL are the same option, and
GL ≡−

D HL. But GL and HL are in reduced form, so by induction hypothesis,
GL = HL. The same argument applied to the Right options of G and to
the options of H shows the pairwise correspondence of all non-D-reversible
options of G and H.

Assume now that GL is a D-reversible option. Then GL = ∗ and for all
other Left options GL′

, we have o−(GL′

) 6 N , and by reversibility, there
exists some Right option GLR of GL such that GLR 6

−
D G. Since the only

Right option of ∗ is 0, G >
−
D 0. Thus H >

−
D 0, so either H = 0 or Left has a

winning move in H, namely a Left option HL such that o−(HL) > P. First
assume H = 0. Then by the pairwise correspondence proved earlier, G has
no non-D-reversible options. Yet it is a dicot and must have both a Left and
a Right option, and since it is in reduced form, both are ∗. Then G = {∗|∗}, a
contradiction. Now assume H has a Left option HL such that o−(HL) > P.
If HL is not D-reversible, then it is in correspondence with a non-D-reversible
option GL′

, but then we should have o−(HL) = o−(GL′

) 6 N , a contradic-
tion. So HL is D-reversible, and HL = GL = ∗. The same argument applied
to possible Right D-reversible options concludes the proofs that G = H. �

This proves that the reduced form of a game is unique, and that any two
D-equivalent games have the same reduced form. Therefore, the reduced
form as described in Definition 4.51 can be considered as the canonical form
of the game modulo the universe of dicot games.

Siegel showed in [38] that for any games G and H, if G >− H, then
G >+ H also in normal play. This result can be strengthened as follows :

Theorem 4.56 Let G and H be any games. If G >
−
D H, then G >+ H.

Proof. Consider any two games G and H such that G >
−
D H. We show that

G+H >+ 0, i.e. that Left can win G+H in normal play when Right moves
first [4], by induction on the birthdays of G and H. Suppose Right plays to
some GR +H. Since G >

−
D H, Lemma 4.48 implies GR is not D-downlinked

to H. By Lemma 4.54, either there exists some Left option GRL of GR with
GRL >

−
D H, or there exists some Right option HR of H with GR >

−
D HR.

In the first case, we get by induction that GRL >+ H and Left can win
by moving to GRL + H. In the second case, we get GR >+ HR, and Left
can win by moving to GR +HR. The argument when Right plays to some
G+HL is similar. �

Theorem 4.56 implies in particular that if two games are equivalent in
misère play modulo D, then they are also equivalent in normal play. It allows
us to use any normal play tools to prove incomparability or distinguishability
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0 ∗ α α s s

z z ∗2

Figure 4.10: Game trees of the 9 dicot games born by day 2

(i.e. non equivalence) to deduce it modulo the universe of dicot games.
Moreover, a corollary of Theorem 4.56 is that its statement is also true for
any universe containing D, in particular for the universe G of all games
(implying the result of [38]) and for the universe E of dead-ending games we
study in the next section.

Corollary 4.57 Let G and H be any games, U a universe containing all
dicot positions. If G >

−
U H, then G >+ H.

4.2.3 Dicot misère games born by day 3

We now use Theorem 4.55 to count the dicot misère games born by day 3.
Recall that the numbers of impartial misère games distinguishable modulo
the universe I of impartial games that are born by day 0, 1, 2, 3 and 4 are
respectively 1, 2, 3, 5 and 22 (see [10]). Siegel [38] proved that the numbers
of misère games distinguishable modulo the universe G of all games that are
born by day 0, 1 and 2 are respectively 1, 4 and 256, while the number of
distinguishable misère games born by day 3 is less than 2183. Notice that
since impartial games form a subset of dicot games, the number of dicot
games born by day 3 lies between 5 and 2183. Before showing that this
number is exactly 1268, we state some properties of the dicot games born by
day 2.

Proposition 4.58 There are 9 dicot games born by day 2 distinguishable
modulo the universe D of dicot games, namely 0, ∗, α = {0|∗}, α = {∗|0},
s = {0, ∗|0}, z = {0, ∗|∗}, s = {0|0, ∗}, z = {∗|0, ∗}, and ∗2 = {0, ∗|0, ∗} (see
Figure 4.10). They are partially ordered according to Figure 4.11. Moreover,
the outcomes of their sums are given in Table 4.12.
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s z

∗ α
∗2

α 0

s z
Figure 4.11: Partial ordering of dicot games born by day 2

0 ∗ α α s z s z ∗2

0 N P R L L N R N N
∗ P N N N N L N R N
α R N P N N P R R R
α L N N P L L N P L
s L N N L L L N P L

z N L P L L L P N L
s R N R N N P R R R
z N R R P P N R R R
∗2 N N R L L L R R P

Table 4.12: Outcomes of sums of dicots born by day 2

Proof. There are 10 dicot games born by day 2, of which 0 and {∗|∗} are
equivalent. We now prove that these nine games are pairwise distinguishable
modulo the universe D of dicot games1. First note that these games are all
in reduced form. Indeed, since all options are either 0 or ∗ which are not
comparable modulo D, there are no dominated options. Moreover, ∗ might
be reversible through 0, but since there are no other option at least P, it
cannot be reduced. Thus, by Theorem 4.55, these games are pairwise non-
equivalent.

The proof of the outcomes of sums of these games (given in Table 4.12)
is tedious but not difficult, and omitted here.

We now show that these games are partially ordered according to Fig-
ure 4.11. Using the fact that {∗|∗} ≡−

D 0 and Proposition 4.4, we easily
infer the relations corresponding to edges in Figure 4.11. All other pairs are
incomparable: for each pair (X,Y ), there exist Z1, Z2 ∈ {0, ∗, α, α, s, s, z, z}
such that o−(X + Z1) 66 o−(Y + Z1) and o−(X + Z2) 6> o−(Y + Z2) (see
Table 4.13 for explicit such Z1 and Z2). �

1Milley gave an alternate proof of this fact in [26].
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X Y
Z1 such that

o−(X + Z1) 66 o−(Y + Z1)
Z2 such that

o−(X + Z2) 6> o−(Y + Z2)

s z s s
s α α α
s 0 z z
z ∗ 0 0
z α α α
∗ α α α
∗ 0 0 0
∗ ∗2 0 0
α ∗2 0 α
α 0 ∗ ∗
α α α α
∗2 0 ∗ ∗

Table 4.13: Incomparability of dicots born by day 2

We now start counting the dicot games born by day 3. Their Left and
Right options are necessarily dicot games born by day 2. We can consider
only games in their canonical form, so with no D-dominated options.

Using Figure 4.11, we find the following 50 antichains:





all 32 subsets of {0, ∗, α, α, ∗2},
{s, z} and {s, z},
4 containing s and any subset of {0, α}
4 containing z and any subset of {∗, α}
4 containing s and any subset of {0, α}
4 containing z and any subset of {∗, α}

Therefore, choosing GL and GR among these antichains, together with
the fact that G is dicot, we get 492 + 1 = 2402 dicot games born by day 3
with no D-dominated options.

To get only games in canonical form, we still have to remove games with
D-reversible options. Note that an option from a dicot game born by day 3
can only be D-reversible through 0 or ∗ since these are the only dicot games
born by day 1. To deal with D-reversible options, we consider separately the
games with different outcomes. If Left has a winning move from a game G,
namely a move to ∗, α or s, or if she has no move from G, then o−(G) > N .
Otherwise, o−(G) 6 P. Likewise, if Right has a winning move from G,
namely a move to ∗, α or s, or if he has no move from G, then o−(G) 6 N .
Otherwise, o−(G) > P. From this observation, we infer the outcome of any
dicot game born by day 3.
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Consider first the games G with outcome P, i.e. GL ∩ {∗, α, s} = ∅
and GR ∩ {∗, α, s} = ∅. Since o−(0) = N , G and 0 are D-incomparable,
so no option of G is D-reversible through 0. The following lemma allows to
characterise dicot games born by day 3 whose outcome is P and that contain
D-reversible options through ∗.

Lemma 4.59 Let G be a dicot game born by day 3 with misère outcome P.
We have G >

−
D ∗ if and only if GL ∩ {0, z} 6= ∅.

Proof. First suppose that GL∩{0, z} 6= ∅. Let X be a dicot game such that
Left has a winning strategy on ∗+X when playing first (respectively second).
Left can follow the same strategy on G+X, unless the strategy recommends
that she plays from some ∗+Y to 0+Y , or Right eventually plays from some
G+Z to some GR +Z. In the first case, we must have o−(0+Y ) > P. Left
can move from G + Y either to 0 + Y or to z + Y , which are both winning
moves. Indeed, since z >

−
D 0, we have o−(z+Y ) > o−(0+Y ) > P. Suppose

now that Right just moved from G + Z to some GR + Z. By our choice
of strategy, we have o−(∗ + Z) > P. If GR = 0, then Left can continue
her strategy since 0 + Z is also a Right option of ∗ + Z. Otherwise, since
GR ∩ {∗, α, s} = ∅, GR is one of α, s, z, z, ∗2 and ∗ is a Left option of GR.
Then Left can play from GR+Z to ∗+Z and win. Thus, if Left wins ∗+X,
she wins G+X as well and thus G >

−
D ∗.

Suppose now that GL ∩ {0, z} = ∅, that is GL ⊆ {α, s, z, ∗2}. Let
X = {s|0}. In ∗+X, Left wins playing to 0 +X and Right wins playing to
∗+ 0, hence o−(∗ +X) = N . On the other hand, in G+X, Right wins by
playing to G + 0, but Left has no other option than α +X, s +X, z +X,
∗2 +X, G + s. In the last four, Right wins by playing to 0 +X or G + 0,
both with outcome P. In α+X, Right wins by playing to α+ 0 which has
outcome R. So o−(G+X) = R, and since o−(∗+X) = N , we have G �−

D ∗.
�

We deduce the following theorem:

Theorem 4.60 A dicot game G born by day 3 with outcome P is in canon-
ical form if and only if

{
GL ∈

{
{α}, {α, ∗2}, {∗2}, {s}, {s, z}, {z}, {α, z}, {0}

}
, and

GR ∈
{
{α}, {α, ∗2}, {∗2}, {s}, {s, z}, {z}, {α, z}, {0}

}
.

This yields 8 · 8 = 64 dicots non equivalent modulo D.

Proof. Let G be a dicot game born by day 3 with misère outcome
P, in canonical form. By our earlier statement, GL ⊆ {0, α, s, z, z, ∗2}.
By Lemma 4.59, options α, s, z, z, ∗2 are reversible through ∗ whenever
GL ∩ {0, z} 6= ∅. So z is not a Left option of G, and if 0 is, there
are no other Left options. Thus the only antichains left for GL are
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{
{α}, {α, ∗2}, {∗2}, {s}, {s, z}, {z}, {α, z}, {0}

}
. A similar argument with

conjugates gives all possibilities for GR. �

Now we consider games G with outcome L, i.e. GL ∩ {∗, α, s} 6= ∅ and
GR ∩ {∗, α, s} = ∅. Since G 
 0 and G 
 ∗, no Right option of G is
D-reversible. The two following lemmas allow us to characterise dicot games
born by day 3 whose outcome is L and that contain D-reversible Left options.
First, we characterise positions that may contain D-reversible Left options
through ∗.

Lemma 4.61 Let G be a dicot game born by day 3 with misère outcome L.
We have G >

−
D ∗ if and only if GL ∩ {0, z} 6= ∅.

Proof. The proof that if GL ∩ {0, z} 6= ∅, then Left wins G +X whenever
she wins ∗+X is the same as for Lemma 4.59.

Consider now the case when GL ∩ {0, z} = ∅, that is
GL ⊆ {∗, α, s, α, s, z, ∗2}. Assume first that {0, z} ∩ GR 6= ∅ and let
X = {s|0}. Recall that in ∗+X, Left wins playing to 0+X and Right wins
playing to ∗+0, hence o−(∗+X) = N . On the other hand, in G+X, Left has
no other option than α+X, ∗+X,α+X, s+X, s+X, z+X, ∗2+X,G+s. In
α+X, Right wins by playing to α+0, whose outcome is R. In G+s, by our
assumption, Right can play either to 0 + s or to z + s, with outcome R and
P respectively, and thus wins. In all other cases, Right wins by playing to
0+X, whose outcome is P. Thus o−(G+X) 6 P, and since o−(∗+X) = N ,
we have G �−

D ∗.
Now assume {0, z}∩GR = ∅, that is GR ⊆ {α, s, z, ∗2}. Let X ′ = {z|0}.

In ∗ + X ′, Left wins playing to 0 + X ′ and Right wins playing to ∗ + 0,
hence o−(∗ + X ′) = N . On the other hand, in G + X ′, Left has no other
option than G + z, α + X ′, ∗ + X ′, α + X ′, s + X ′, s + X ′, z + X ′, ∗2 + X ′.
In α +X ′, Right wins by playing to α + 0 whose outcome is R. In G + z,
Right wins by playing either to α+ z or s + z, both with outcome P, or to
z + z or ∗2 + z, both with outcome R. In the remaining cases, Right wins
by playing to 0 +X ′ whose outcome is P. Thus o−(G+X ′) 6 P, and since
o−(∗+X ′) = N , we have G �−

D ∗. �

Now, we characterise games that may contain D-reversible Left options
through 0. The following lemma can actually be proved for both games with
outcome L or N , and we also use it for the proof of Theorem 4.64.

Lemma 4.62 Let G be a dicot game born by day 3 with misère outcome L
or N . We have G >

−
D 0 if and only if GR ∩ {0, α, z} = ∅.

Proof. Suppose first that GR ∩ {0, α, z} = ∅. Then every Right option of
G has 0 as a Left option. Let X be a dicot such that Left has a winning
strategy on 0 +X when playing first (respectively second). Left can follow
the same strategy on G + X until either Right plays on G or she has to
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move from G+ 0. In the first case, she can answer in GR + Y to 0 + Y and
continue her winning strategy. In the second case, she wins in G + 0 since
o−(G) > N . Therefore, G >

−
D 0.

Consider now the case when GR ∩ {0, α, z} 6= ∅. Let X = {α|0}, note
that o−(X) = P. When playing first on G+X, Right wins by playing either
to 0 + X with outcome P, or to α + X or z + X, both with outcome R.
Hence o−(G+X) 6 N so G �−

D 0. �

We now are in position to state the set of dicots born by day 3 with
outcome L in canonical form. Given two sets of sets A and B, we use the
notation A ⊎B to denote the set {a ∪ b|a ∈ A, b ∈ B}.

Theorem 4.63 A dicot game G born by day 3 with outcome L is in canon-
ical form if and only if either





GL ∈
({

{∗}, {α}, {∗, α}
}
⊎
{
∅, {0}, {α}, {∗2}, {α, ∗2}

})

∪
{
{s}, {α, s}, {α, s}, {∗, z}, {s, 0}, {∗, α, z}

}
, and

GR ∈
{
{0}, {α}, {0, α}, {0, ∗2}, {α, ∗2}, {0, α, ∗2}, {z}, {α, z}, {0, s}

}
,

or {
GL ∈

{
{∗}, {∗, 0}, {∗, α}

}
, and

GR ∈
{
{∗2}, {s}, {z}, {s, z}

}
.

This yields 21 · 9 + 3 · 4 = 201 dicots non equivalent modulo D.

Proof. Let G be a dicot game born by day 3 with outcome L, in canonical
form. By our earlier statement, GL ∩{∗, α, s} 6= ∅. By Lemma 4.61, options
α, s, z, z, ∗2 are reversible Left options through ∗ whenever GL ∩ {0, z} 6= ∅.
Thus, we have 21 of the 50 antichains remaining for GL, namely:




15 containing {∗}, {α} or {∗, α} together with {0} or any subset of {α, ∗2}
{s}, {s, 0} and {s, α},
{s, α}
{z, ∗} and {z, ∗, α}

Now, by Lemma 4.62, options ∗, α, s, s, z, and ∗2 are reversible through
0 whenever GR ∩ {0, α, z} = ∅. By Lemma 4.50, these options should
then be replaced by ∗. Thus the only antichains remaining for GL when
GR ∩ {0, α, z} = ∅ are {∗}, {∗, 0} and {∗, α}.

Consider now Right options. By our earlier statement,
GR ⊆ {0, α, s, z, z, ∗2}, and no Right option is reversible. Intersecting
{0, α, z}, we have the antichains: {0}, {α}, {0, α}, {0, ∗2}, {α, ∗2},
{0, α, ∗2}, {z}, {α, z} and {0, s}. Non intersecting {0, α, z}, we have {∗2},
{s}, {z} and {s, z}. Combining these sets, we get the theorem. �

The dicot games born by day 3 with outcome R in canonical form are
exactly the conjugates of those with outcome L.
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Now consider dicot games with outcome N . By our earlier statement,
we have GL ∩ {∗, α, s} 6= ∅ and GR ∩ {∗, α, s} 6= ∅. Note that G and ∗ are
D-incomparable since o−(∗) = P. Therefore no option of G is D-reversible
through ∗. Recall also that by Lemma 4.62, we can recognise dicot games
born by day 3 whose outcome is N and that may contain D-reversible options
through 0.

Theorem 4.64 A dicot game G born by day 3 with outcome N is in canon-
ical form if and only if either G = 0 or

or





GL ∈
{
{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}

}

∪
{
{s}, {α, s}, {∗, z}

}
, and

GR ∈
{
{0, ∗}, {∗, α}, {0, ∗, α}, {∗, z}

}
,

or





GL ∈
{
{0, ∗}, {∗, α}, {0, ∗, α}, {∗, z}

}
, and

GR ∈
{
{∗}, {z}, {∗, z}, {∗, ∗2}, {z, ∗2}, {∗, z, ∗2}

}

∪
{
{s}, {α, s}, {∗, z}

}
,

or





GL ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{0}, {α}, {0, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, 0}, {s, α}, {s, α, 0}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, 0}, {∗, z, α}

}
, and

GR ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{0}, {α}, {0, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, 0}, {s, α}, {s, α, 0}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, 0}, {∗, z, α}

}
.

This yields 1 + 9 · 4 + 4 · 9 + 27 · 27 = 802 dicots non equivalent modulo D.

Proof. Recall that by Lemma 4.62, if GR ∩ {0, α, z} = ∅, then Left options
∗, α, s, s, z, ∗2 are reversible through 0 and get replaced by ∗. Similarly, if
GL ∩ {0, α, z} = ∅, then Right options ∗, α, s, s, z, ∗2 are reversible through
0 and get replaced by ∗.

Consider first the case when GR ∩ {0, α, z} = ∅ and GL ∩ {0, α, z} = ∅.
Then GL ∩ {α, s, s, z, ∗2} = ∅ and GR ∩ {α, s, s, z, ∗2} = ∅. So G = 0 or
{∗|∗} which reduces to 0.

Now, suppose GR ∩ {0, α, z} 6= ∅ but GL ∩ {0, α, z} = ∅. Then
GR ∩ {α, s, s, z, ∗2} = ∅. Recall that since o−(G) = N , GR ∩ {∗, α, s} 6= ∅.
So GR ∈ {{0, ∗}, {∗, α}, {0, ∗, α}, {∗, z}}. On the other hand, GL can be any
antichain containing one of {∗, α, s} and possibly some of {s, z, ∗2}. Thus
GL ∈ {{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}, {s}, {α, s}, {∗, z}}. When
GL∩{0, α, z} 6= ∅ and GR∩{0, α, z} = ∅, we get GL and GR by conjugating
the previous GR and GL respectively.

Finally, when GR ∩ {0, α, z} 6= ∅ and GL ∩ {0, α, z} 6= ∅, no option is
reversible. Therefore, the antichains for GR are those containing at least one
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Figure 4.14: Partial ordering of dicot games born by day 2 in the general universe

of {0, α, z} and one of {∗, α, s}. There are 27 of them, namely:





18 containing some subset of {∗, α}, some subset of {0, α} andpossibly {∗2}
{s, z}
{0, s}, {α, s} and {0, α, s},
{∗, z}, {α, z} and {∗, α, z},
{0, α, s}
{∗, α, z}

The antichains for GL are the conjugates of the antichains for GR. �

Adding the number of games with outcome P, L, R, and N , we get:

Theorem 4.65 There are 1268 dicots born by day 3 non equivalent modulo D.

4.2.3.1 Dicot games born by day 3 in the general universe

Comparing the number of dicot games born by day 3 in canonical form to
the number of games born by day 3 in canonical form is not that relevant,
as there are only 1046530 game trees of depth 3 representing dicot games,
which is far from the 21024 game trees representing all games born by day 3,
or even the (slightly less than) 2183 with no dominated option. This is why
we count the number of dicot games born by day 3 in their general canonical
form modulo the universe of all games.

Recall that a game is in canonical form if and only if all its options are
in canonical form and it has no dominated option nor reversible option.

We first recall a result from [38].

Theorem 4.66 If H is a Left end and G is not, then G �− H.

This gives us the following corollary, when we only consider dicot games.

Corollary 4.67 If G is a dicot game which is not 0, then G and 0 are
incomparable.
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Proposition 4.68 There are 10 dicot games born by day 2 distinguishable
modulo the universe of all games, namely 0, ∗, ∗ + ∗ = {∗|∗} α = {0|∗},
α = {∗|0}, s = {0, ∗|0}, z = {0, ∗|∗}, s = {0|0, ∗}, z = {∗|0, ∗}, and
∗2 = {0, ∗|0, ∗}. They are partially ordered according to Figure 4.14.

Proof. The proof is similar to the proof of Proposition 4.58. �

We now start counting the dicot games born by day 3. Their Left and
Right options are necessarily dicot games born by day 2. We can consider
only games in their canonical form, so with no dominated option.

Using Figure 4.14, we find the following 100 antichains:





all 64 subsets of {0, ∗ + ∗, ∗, α, α, ∗2},
{s, z}, {0, s, z}, {s, z} and {0, s, z},
8 containing s and any subset of {0, ∗ + ∗, α}
8 containing z and any subset of {0, ∗, α}
8 containing s and any subset of {0, ∗ + ∗, α}
8 containing z and any subset of {0, ∗, α}

Therefore, choosing GL and GR among these antichains, together with
the fact that G is dicot, we get 992 + 1 = 9802 dicot games born by day 3
with no dominated option.

To get only games in canonical form, we still have to remove games with
reversible options. Note that an option from a dicot game born by day 3
can only be reversible through 0 or ∗ since these are the only dicot games
born by day 1. As no dicot game is comparable with 0, no option can be
reversible through 0. Note that as o−(∗) = P, no game with outcome N
may have a reversible option through ∗, and no game with outcome R may
have a Left option reversible through ∗. Again, if Left has a winning move
from a game G, namely a move to ∗, α or s, or if she has no move from G,
then o−(G) > N . Otherwise, o−(G) 6 P. Likewise, if Right has a winning
move from G, namely a move to ∗, α or s, or if he has no move from G, then
o−(G) 6 N . Otherwise, o−(G) > P.

We now characterise dicot games having reversible options.

Lemma 4.69 Let G be a dicot game born by day 3 with misère outcome P
or L. We have G >− ∗ if and only if 0 ∈ GL.

Proof. First suppose 0 ∈ GL. Let X be a game such that Left has a winning
strategy on ∗ +X when playing first (respectively second). Left can follow
the same strategy on G+X, unless the strategy recommends that she plays
from some ∗ + Y to 0 + Y , or Right eventually plays from some G + Z to
some GR + Z. In the first case, she can just play from G + Y to 0 + Y .
Suppose now that Right just moved from G + Z to some GR + Z. By our
choice of strategy, we have o−(∗+Z) > P. If GR = 0, then Left can continue
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her strategy since 0 + Z is also a Right option of ∗ + Z. Otherwise, since
GR ∩ {∗, α, s} = ∅, GR is one of ∗+ ∗, α, s, z, z, ∗2 and ∗ is a Left option of
GR. Then Left can play from GR + Z to ∗+ Z and win. Thus, if Left wins
∗+X, she wins G+X as well and thus G >− ∗.

Assume now 0 /∈ GL. Let X = {·|{·|3}}. In ∗+X, Left wins by moving
to X, so o−(∗ +X) > N . On the other hand, in G +X, Left has to move
to some GL + X, where GL is a non-zero dicot. Then Right can move to
GL + {·|3}, where Left has to play in GL, to GLL + {·|3}, where GLL is a
dicot born by day 1. Right’s move to GLL+3 is then a winning move. hence
o−(G+X) 6 P, and we have G �− ∗. �

We now are in position to state the set of dicot games born by day 3 in
canonical form (modulo the universe of all games) with any outcome.

Theorem 4.70 A dicot game G born by day 3 with outcome P is in canon-
ical form if and only if





GL ∈
{
{∗+ ∗}, {α}, {∗2}, {∗ + ∗, α}, {∗ + ∗, ∗2}, {α, ∗2}, {∗ + ∗, α, ∗2}

}

∪
{
{0}, {s, z}, {z}, {s}, {s, ∗ + ∗}, {z}, {z, α}

}

GR ∈
{
{∗+ ∗}, {α}, {∗2}, {∗ + ∗, α}, {∗ + ∗, ∗2}, {α, ∗2}, {∗ + ∗, α, ∗2}

}

∪
{
{0}, {s, z}, {z}, {s}, {s, ∗ + ∗}, {z}, {z, α}

}

This yields 14 · 14 = 196 non-equivalent dicot games.

Theorem 4.71 A dicot game G born by day 3 with outcome L is in canon-
ical form if and only if





GL ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗+ ∗}, {α}, {∗ + ∗, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, ∗ + ∗}, {s, α}, {s, α, ∗+ ∗}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, ∗ + ∗}, {∗, z, α}, {s}, {α, s}, {∗, z}

}

∪
{
{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}

}

∪
{
{0, ∗}, {0, α}, {0, ∗, α}, {0, s}

}
, and

GR ∈
{
{∗+ ∗}, {α}, {∗2}, {∗ + ∗, α}, {∗ + ∗, ∗2}, {α, ∗2}, {∗ + ∗, α, ∗2}

}

∪
{
{s, z}, {z}, {s}, {s, ∗ + ∗}, {z}, {z, α}, {0}, {0, ∗ + ∗}, {0, α}

}

∪
{
{0, ∗2}, {0, ∗ + ∗, α}, {0, ∗ + ∗, ∗2}, {0, α, ∗2}, {0, ∗ + ∗, α, ∗2}

}

∪
{
{0, s, z}, {0, z}, {0, s}, {0, s, ∗ + ∗}, {0, z}, {0, z, α}

}

This yields 40 · 27 = 1080 non-equivalent dicot games.

The dicot games born by day 3 with outcome R in canonical form are
exactly the conjugates of those with outcome L.

Theorem 4.72 A dicot game G born by day 3 with outcome N is in canon-
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ical form if and only if either G = 0 or





GL ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗+ ∗}, {α}, {∗ + ∗, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, ∗ + ∗}, {s, α}, {s, α, ∗+ ∗}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, ∗+ ∗}, {∗, z, α}, {s}, {α, s}, {∗, z}

}

∪
{
{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}

}

∪
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗ + ∗}, {α}, {∗ + ∗, α}

}
⊎
{
{0}, {0, ∗2}

}

∪
{
{0, s, z}, {0, s, ∗ + ∗}, {0, s, α}, {0, s, α, ∗+ ∗}

}

∪
{
{0, z, ∗}, {0, z, α}, {0, z, α, ∗}

}

∪
{
{0, α, s, ∗+ ∗}, {0, ∗, z, α}, {0, s}, {0, α, s}, {0, ∗, z}

}

∪
{
{0, ∗}, {0, α}, {0, ∗, α}, {0, ∗, ∗2}, {0, α, ∗2}, {0, ∗, α, ∗2}

}

GR ∈
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗+ ∗}, {α}, {∗ + ∗, α}

}
⊎
{
∅, {∗2}

}

∪
{
{s, z}, {s, ∗+ ∗}, {s, α}, {s, α, ∗ + ∗}, {z, ∗}, {z, α}, {z, α, ∗}

}

∪
{
{α, s, ∗ + ∗}, {∗, z, α}, {s}, {α, s}, {∗, z}

}

∪
{
{∗}, {α}, {∗, α}, {∗, ∗2}, {α, ∗2}, {∗, α, ∗2}

}

∪
{
{∗}, {α}, {∗, α}

}
⊎
{
{∗ + ∗}, {α}, {∗ + ∗, α}

}
⊎
{
{0}, {0, ∗2}

}

∪
{
{0, s, z}, {0, s, ∗+ ∗}, {0, s, α}, {0, s, α, ∗ + ∗}

}

∪
{
{0, z, ∗}, {0, z, α}, {0, z, α, ∗}

}

∪
{
{0, α, s, ∗+ ∗}, {0, ∗, z, α}, {0, s}, {0, α, s}, {0, ∗, z}

}

∪
{
{0, ∗}, {0, α}, {0, ∗, α}, {0, ∗, ∗2}, {0, α, ∗2}, {0, ∗, α, ∗2}

}

This yields 72 · 72 + 1 = 5185 non-equivalent dicot games.

Adding the numbers of games with outcome P, L, R and N , we get:

Theorem 4.73 There are 7541 non-equivalent dicot games born by day 3.

4.2.4 Sums of dicots can have any outcome

In the previous subsection, we proved that modulo the universe of dicots,
there were much fewer distinguishable dicot games under misère convention.
A natural question that arises is whether in this setting, one could sometimes
deduce from the outcomes of two games the outcome of their sum. This
occurs in normal convention in particular with games with outcome P. In
this subsection, we show that this is not possible with dicots. We first prove
that the misère outcome of a dicot is not related to its normal outcome.

Theorem 4.74 Let A,B be any outcomes in {P,L,R,N}. There exists a
dicot G with normal outcome o+(G) = A and misère outcome o−(G) = B.

Proof. In Figure 4.15, we give for any A,B ∈ {P,L,R,N} a dicot G such
that o+(G) = A and o−(G) = B. �

Theorem 4.75 Let A,B and C be any outcomes in {P,L,R,N}. There
exist two dicots G1 and G2 such that o−(G1) = A, o−(G2) = B and
o−(G1 +G2) = C.
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Figure 4.15: Normal and misère outcomes of some dicots

Proof. In Figure 4.16, we give for any A,B, C ∈ {P,L,R,N} two games
G1 and G2 such that o−(G1) = A, o−(G2) = B and o−(G1 +G2) = C. �

4.3 A peek at the dead-ending universe

In many combinatorial games, players place pieces on a board according to
some set of rules. Usually, these rules imply that the board space available
to a player at their turn are a subset of those available on the previous turn.
Among games fitting that description, we can mention Col, Domineering,
Hex, or Snort. One can also see it as a board where pieces are removed,
with rules implying that the set of pieces removable is decreasing after each
turn. Among games fitting that description, we can mention Hackenbush,
Nim or any octal game, or Timbush. A property all these games share in
contrast with Partizan Peg Duotaire or Flip the coin is that no player
can ‘open up’ moves for themself or for their opponent; in particular, a player
who has no available move at some position will not be able to play for the
rest of the game. This is the property we call dead-ending.

We recall the more formal definition of dead-ending: A Left (Right) end
is a dead end if every follower is also a Left (Right) end. A game is said to
be dead-ending if all its end followers are dead ends.

Note that dicot games, studied in Section 4.2, are all dead-ending, as the
only end follower of a dicot is 0, which is a dead end.

Example 4.76 Figure 4.17 gives three examples of games that are dead-
ending. The first game is a dead end. The second game is dead-ending as its
end followers are either 0 or 1, which are both dead ends. The third game is
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P L
R N

P + P:

+ + + +

+ +

P + L:
+

P +N :

L+ L:

+

L+R:

+ +

+

L+N :

N +N :

Figure 4.16: Sums of dicots can have any outcome
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Figure 4.17: Some dead-ending positions

Figure 4.18: Some positions that are not dead-ending

a dicot game, hence a dead-ending game. Figure 4.18 gives three examples
of games that are not dead-ending. The first game is a Right end that is not
a dead end as Right can move from one of Left’s options. The second game
is not dead-ending because its Left option is a Left end that is not a dead
end. The third game is not dead-ending because both its Left option and its
Right option are ends that are not dead ends.

In the following, we look at numbers under their normal canonical form.
Since, among other shortcomings, 1 ≮−

E 2 or 1

2
+ 1

2
6≡−

E 1 as games, to avoid
confusion, we distinguish between the game a and the number a. For the
rest of this section, we use the notation 0 for the game {·|·} too.

In this section, we find the misère monoid of dead ends, the misère monoid
of normal-play canonical form numbers, give their partial order modulo the
dead-ending universe and discuss other dead-ending games, in the context
of equivalency to zero modulo the universe of dead-ending games.

4.3.1 Preliminary results

We start by proving the closure of the dead-ending universe under the three
aspects we mentioned in the introduction of this chapter: it is closed under
followers, closed under disjunctive sum, and closed under conjugates.

Lemma 4.77 If G is dead-ending then every follower of G is dead-ending.
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Proof. If H is a follower of G, then every follower of H is also a follower of
G; thus if G satisfies the definition of dead-ending, then so does H. �

Lemma 4.78 If G and H are dead-ending then G+H is dead-ending.

Proof. Any follower of G+H is of the form G′ +H ′ where G′ and H ′ are
(not necessarily proper) followers of G and H, respectively. If G′ +H ′ is a
Left end, then both G′ and H ′ are Left ends, which must be dead, since G
and H are dead-ending. Thus, any followers G′′ and H ′′ are Left ends, and
so all followers G′′ + H ′′ of G′ + H ′ are Left ends. A symmetric argument
holds if G′ +H ′ is a Right end, and so G+H is dead-ending. �

Lemma 4.79 If G is dead-ending, then G is dead-ending.

Proof. Any follower of G is the conjugate of a follower of G. If H is an end,
so is H, hence assuming H is a follower of G, H is a dead end, and so is H.

�

Under misère play, Left wins any Left end playing first as she already has
no move. In a general context, she might lose playing second, for example
in the game {·|∗}, which is both a Left end and a misère N -position. In the
dead-ending universe, however, Left wins any non-zero Left end playing first
or second.

Lemma 4.80 If G 6= 0 is a dead Left end then G ∈ L−, and if G 6= 0 is a
dead Right end then G ∈ R−.

Proof. A Left end is always in L− or N−. If G is a dead Left end then
any Right option GR is also a Left end, so Right has no good first move.
Similarly, a dead Right end is in R−. �

In the following of this section, we refer to two game functions defined
below, which are well-defined for our purpose, namely for numbers and ends.

Definition 4.81 The left-length of a game G, denoted l(G), is the minimum
number of consecutive Left moves required for Left to reach zero in G. The
right-length r(G) of G is the minimum number of consecutive Right moves
required for Right to reach zero in G.

In general, the left- and right-length are well-defined if G has a non-
alternating path to zero for Left or Right, respectively, and if the shortest
of such paths is never dominated by another option. The latter condition
ensures l(G) = l(G′) when G ≡− G′. As suggested above, both of these
conditions are met if G is a (normal-play) canonical-form number or if G is
an end in E . If l(G) and l(H) are both well-defined then l(G+H) is defined
and l(G+H) = l(G) + l(H). Similarly, when the right-length is defined for
G and H, we have r(G+H) = r(G) + r(H).
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It would be possible to extend these functions to all games by replacing
“zero” by “a Left end” for the left-length, and by “a Right end” for the right-
length, but we want to insist here that in the cases we use it, the end we
reach is zero.

4.3.2 Integers and other dead ends

We first look at dead ends, with some focus on integers.
Recall that n denote the game {n − 1|·} when n is positive, where 0 =

{·|·}. Considering two positive integers n and m, their disjunctive sum has
the same game tree as the integer n + m. This is not true if n is negative
and m positive, and the two games (the disjunctive sum and the integer) are
not even equivalent in general misère play.

Any integer is an example of a dead end: if n > 0, then Right has no
move in n, and we inductively see that he has no move in any follower of n;
similarly, if n < 0, then n is a dead Left end. Thus, the following results for
ends in the dead-ending universe are also true for all integers, modulo E .

Our first result shows that when all games in a sum are dead ends, the
outcome is completely determined by the left- and right-lengths of the games.
As a sum of Left ends is a Left end and a sum of Right ends is a Right end,
we only consider two games in a sum of ends, one being a Left end and the
other a Right end.

Lemma 4.82 If G is a dead Right end and H is a dead Left end then

o−(G+H) =





N− if l(G) = r(H)

L− if l(G) < r(H)

R− if l(G) > r(H)

Proof. Each player has no choice but to play in their own game, and so the
winner will be the player who can run out of moves first. �

We use Lemma 4.82 to prove the following theorem, which demonstrates
the invertibility of all ends modulo E , even giving the corresponding inverse.

Theorem 4.83 If G is a dead end, then G+G ≡−
E 0.

Proof. Assume without loss of generality that G 6= 0 is a dead right
end. Since every follower of a dead end is also a dead end, Lemma 4.2
applies, with S the set of all dead Left and Right ends. It therefore suf-
fices to show G+G+X ∈ L− ∪ N− for any Left end X in E. We have
l(G) = r(G) and r(X) > 0, so l(G) 6 r(G) + r(X) = r(G+X), which gives
G+G+X ∈ L− ∪ N− by Lemma 4.82. �

We immediately get the following corollary by recalling that integers are
dead ends.
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Corollary 4.84 If n is an integer, then n+ n ≡−
E 0.

This implies the following corollary about any sum of integers.

Corollary 4.85 If n and m are integers, then n+m ≡−
E n+m.

Recall that equivalency in E implies equivalency in all subuniverse of E .
Thus, in the universe of integers alone, every integer keeps its inverse.

Lemma 4.82 shows that when playing a sum of dead ends, both players
aim to exhaust their moves as fast as possible. This suggests that longer
paths to zero would be dominated by shorter paths; in particular, this would
give a total ordering of integers among dead ends, as established in Theo-
rem 4.86 below. Note that this ordering only holds in the subuniverse of the
closure of dead ends, that is the universe of sums of dead ends, and not in
the whole universe E . Actually, we show right in Theorem 4.87 that distinct
integers are incomparable modulo E , just as they are in the general misère
universe.

Theorem 4.86 If n < m ∈ Z, then n >−
m modulo the closure of dead

ends.

Proof. By Corollary 4.84, it suffices to show n + m >− 0 (equivalently,
k > 0 for any negative integer k), modulo the closure of dead ends. Let X
be any game in the closure of dead ends; then X = Y + Z where Y is a
dead Right end and Z is a dead Left end. Suppose Left wins X playing first;
then by Lemma 4.82, l(Y ) 6 r(Z). We need to show Left wins k + X, so
that o−(k +X) > o−(X). Since k is a negative integer, r(k) is defined and
r(k) = −k > 0. Thus l(Y ) 6 r(Z) < r(Z) + r(k) = r(Z + k), which gives
k + Y + Z = k+X ∈ L− ∪ N−, by Lemma 4.82. �

In general, an inequality under misère play between games implies the
same inequality under normal play between the same games [38]. This is
also true for some specific universes, as we have seen with the dicot universe
in Section 4.2. Theorem 4.86 shows this is not always true for any universe.

We now show that integers, despite being totally ordered in the closure
of dead ends, are pairwise incomparable in the dead-ending universe.

Theorem 4.87 If n 6= m ∈ Z, then n ‖−E m.

Proof. Assume n > m.
Define two families of games αk and βk by

α1 = {0|0};αk = {0|αk−1};βk = {αk|αk}.

Note that o−(βk) = N and o−(k + βk) = P for all pos-
itive k. Thus m + m + βn−m ≡−

E βn−m ∈ N− and
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n + m + βn−m ≡−
E n−m + βn−m ∈ P−, and m + βn−m witnesses

both n �−
E m and n 
−

E m. �

As integers are pairwise incomparable, a dead end having several options
might have no E-dominated option. Thus, in the dead-ending universe, there
exists ends that are not integers. However, when restricting ourselves to the
subuniverse of the closure of dead ends, the ordering given by theorem 4.86
implies that every end reduces to an integer. This fact is presented in the
following lemma.

Lemma 4.88 If G is a dead end then G ≡−
n modulo the closure of dead

ends, where n = l(G) if G is a Right end and n = −r(G) if G is a Left end.

Proof. Let G be a dead Right end (the argument for Left ends is sym-
metric). Assume by induction that every option GLi of G (necessarily a
dead Right end) is equivalent to the integer l(GLi). Modulo dead ends, by
Theorem 4.86, these Left options are totally ordered; thus G = {GL1 |·} for
GL1 with smallest left-length. Then G is the canonical form of the integer
l(GL1) + 1 = l(G). �

Lemma 4.88 shows that the closure of dead ends has precisely the same
misère monoid as the closure of integers. The game of Domineering on
1 × n and n × 1 board is an instance of these universes. We are now able
to completely describe the misère monoid of the closure of dead ends, which
we present in Theorem 4.89.

Theorem 4.89 Under the mapping

G 7→

{
αl(G) if G is a Right end

α−r(G) if G is a Left end
,

the misère monoid of the closure of dead ends is

MZ = 〈1, α, α−1 | α · α−1 = 1〉

with outcome partition

N− = {1},L− = {α−n|n ∈ N∗},R− = {αn|n ∈ N∗}

and total ordering

αn > αm ⇔ n < m.

4.3.3 Numbers

4.3.3.1 The misère monoid of Q2

We now look at all numbers under their normal canonical form.
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We say a game a is a non-integer number if it is the normal-play canonical
form of a (non-integer) dyadic rational, that is

a =
2∗m+1

2k
=

{
2∗m

2k

∣∣2∗m+2

2k

}
,

with k > 0. The set of all integer and non-integer (combinatorial game)
numbers is thus the set of dyadic rationals, which we denote by Q2. As we
did for integers previously, we now determine the outcome of a general sum
of dyadic rationals and thereby describe the misère monoid of the closure of
numbers.

Note that the sum of two non-integer numbers (even if both are positive)
is not necessarily another number. For example, 1

2
+ 1

2
6= 1. We see in the

following that, unlike integers, the set of dyadic rationals is not closed under
disjunctive sum even when restricted to the dead-ending universe; however,
closure does occur when we restrict to numbers alone.

Lemma 4.92 below, analogous to Lemma 4.82 of the previous section,
shows that the outcome of a sum of numbers is determined by the left-
and right-lengths of the individual numbers. To prove this, we require
Lemma 4.91, which establishes a relationship between the left- or right-
lengths of numbers and their options; and to prove Lemma 4.91, we need
the following proposition.

Proposition 4.90 If a ∈ Q2\Z then at least one of aRL and aLR exists, and
either a

L = a
RL or a

R = a
LR.

Proof. Let a = 2∗m+1

2k
with k > 0. If m ≡ 0( mod 2) then

a
L =

2∗m

2k
;aR =

2∗m+2

2k
=

2∗m+2

2

2k−1
=

{
2∗m

2

2k−1

∣∣
2∗m+4

2

2k−1

}
,

so a
L = a

RL. Otherwise, m ≡ 1( mod 2) and then

a
L =

2∗m

2k
=

2∗m

2

2k−1
=

{
2∗m−2

2

2k−1

∣∣
2∗m+2

2

2k−1

}
;aR =

2∗m+2

2k
,

so a
R = a

LR. �

Note that if a > 0 is a dyadic rational, then l(a) = 1 + l(aL), and
if a < 0 is a dyadic rational, then r(a) = 1 + r(aR). We also have the
following inequalities for left-lengths of right options and right-lengths of
left options, when a is a non-integer dyadic rational.

Lemma 4.91 If a ∈ Q2\Z is positive, then l(aR) 6 l(a); if a is negative,
then r(aL) 6 r(a).
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Proof. Assume a > 0 (the argument for a < 0 is symmetric). Since a is in
canonical form, both a

L and a
R are positive numbers. If aL = a

RL, then
l(aR) = 1 + l(aRL) = 1 + l(aL) = l(a). Otherwise a

R = a
LR, by Proposi-

tion 4.90; then a
L is not an integer because a

LR exists, so by induction we
obtain l(aR) = l(aLR) 6 l(aL) = l(a)− 1 < l(a). �

We can now determine the outcome of a general sum of numbers, both
integer and non-integer.

Lemma 4.92 If {ai}16i6n and {bi}16i6m are sets of positive and negative
numbers, respectively, with k =

∑n
i=1 l(ai)−

∑m
i=1 r(bi), then

o−

(
n∑

i=1

ai +

m∑

i=1

bi

)
=





L− if k < 0

N− if k = 0

R− if k > 0.

Proof. Let G =
∑n

i=1 ai+
∑m

i=1 bi. All followers of G are also of this form,
so assume the result holds for every proper follower of G. Suppose k < 0. If
n = 0 then Left will run out of moves first because Left cannot move last in
any negative number. So assume n > 0. Left moving first can move in an ai

to reduce k by one (since l(ai
L) = l(ai) − 1), which is a Left-win position

by induction. If Right moves first in an ai then k does not increase, since
l(ai

R) 6 l(ai) by Lemma 4.91, so the position is a Left-win by induction; if
Right moves first in a bi then k does increase by one, but Left can respond in
an ai (since n > 0) to bring k down again, leaving another Left-win position,
by induction. Thus G ∈ L− if k < 0.

The argument for k > 0 is symmetric. If k = 0 then either G = 0 is
trivially next-win, or both n and m are at least 1 and both players have a
good first move to change k in their favour. �

Lemma 4.92 shows that in general misère play, the outcome of a sum of
numbers is completely determined by the left-lengths and right-lengths of the
positive and negative components, respectively. From this we can conclude
that, modulo the closure of canonical-form numbers, a positive number a is
equivalent to every other number with left-length l(a). In particular, every
positive number a is equivalent to the integer l(a). This is Corollary 4.93
below; together with Theorem 4.96, it will allow us to describe the misère
monoid of canonical-form numbers.

Corollary 4.93 If a is a number, then

a ≡−
Q2

{
l(a) if a > 0

−r(a) if a < 0

As examples, the dyadic rational 3

4
is equivalent to 2, and −11

8
is equiv-

alent to −3, modulo Q2. Note that these equivalencies do not hold in the
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larger universe E , as we see in the following that if a 6= b are numbers, then
a 6≡−

E b.
We see then that the closure of numbers is isomorphic to the closure of

just integers; when restricted to numbers alone, every non-integer is equiva-
lent to an integer. Thus the misère monoid of numbers, given below, is the
same monoid presented in Theorem 4.89.

Theorem 4.94 Under the mapping

a 7→

{
αl(a) if a is positive

α−r(a) if a is negative
,

the misère monoid of the closure of canonical-form dyadic rationals is

MZ = 〈1, α, α−1 | α · α−1 = 1〉

with outcome partition

N− = {1},L− = {α−n|n ∈ N∗},R− = {αn|n ∈ N∗}.

As with integers, some of the structure found in the number universe is
also present in the larger universe E . We now give a proof that all numbers,
and not just integers, are invertible in the universe of dead-ending games,
having their conjugates as inverses. We require the following lemma, an
extension of Lemma 4.92.

Lemma 4.95 If {ai}16i6n and {bi}16i6m are sets of positive and negative
numbers, respectively, and

∑n
i=1 l(ai)−

∑m
i=1 r(bi) < 0, then

o−

(
n∑

i=1

ai +
m∑

i=1

bi

)
= L−

for any dead Left end X.

Proof. The argument from Lemma 4.92 works again, since if Right uses his
turn to play in X then Left responds with a move in a1 to decrease k by 1,
which is a win for Left by induction. �

We can now apply Lemma 4.2 to conclude on the invertibility of all
numbers.

Theorem 4.96 If a ∈ Q2, then a+ a ≡−
E 0.

Proof. Without loss of generality we can assume a is positive. Since every
follower of a number is also a number, we can use Lemma 4.2. That is, it suf-
fices to show a+ a+X ∈ L− ∪ N− for any Left end X ∈ E . If X = 0, this is
true by Lemma 4.92. If X 6= 0, then we claim a+ a+X ∈ L−; assume this
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1

2
−

1

2

Figure 4.19: Canonical form of 1

2
and −

1

2
in Hackenbush

holds for all followers of a. Left can win playing first on a+ a+X by mov-
ing to a

L , since l(aL)− r(a) = l(aL)− l(a) < 0 implies a
L + a+X ∈ L−

by Lemma 4.95. If Right plays first in X, then again Left wins by mov-
ing a to a

L ; if Right plays first in a, then Left copies in a and wins on
a
L + a

L +X ∈ L− by induction. �

Theorem 4.96 shows that in dead-ending games like Col, Domineering,
etc., any position corresponding to a normal-play canonical-form number
has an additive inverse under misère play. So, for example, the positions in
Figure 4.19 would cancel each other in a game of misère Hackenbush.

We now look at sums of dead ends with numbers, and start by giving the
misère outcome of such a sum.

Lemma 4.97 If {ai}16i6n is a set of positive numbers and Left ends,
and {bi}16i6m is a set of negative numbers and Right ends, with
k =

∑n
i=1 l(ai)−

∑m
i=1 r(bi), then

o−

(
n∑

i=1

ai +

m∑

i=1

bi

)
=





L− if k < 0

N− if k = 0

R− if k > 0.

Proof. The argument from Lemma 4.92 works again, a move from Right
may increase k by at most 1, while a move from Left may decrease k by at
most 1. �

This gives us the misère monoid of the closure of dead ends and numbers.

Theorem 4.98 Under the mapping

G 7→

{
αl(G) if G is a Left end or the canonical form of a positive number

α−r(G) if G is a Right end or the canonical form of a negative number
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the misère monoid of the closure of dead ends and canonical-form dyadic
rationals is

MZ = 〈1, α, α−1 | α · α−1 = 1〉

with outcome partition

N− = {1},L− = {α−n|n ∈ N∗},R− = {αn|n ∈ N∗}.

4.3.3.2 The partial order of numbers modulo E

Previously, we found that all integers were incomparable in the dead-ending
universe. We will see now that non-integer numbers are a bit more coop-
erative; although not totally ordered, we do have a nice characterisation of
the partial order of numbers in the universe E . First note that from Corol-
lary 4.57, we get the following result.

Theorem 4.99 If G >
−
E H, then G >+ H

This gives us the following corollary on numbers.

Corollary 4.100 If a, b ∈ Q2 and a > b, then a 
−
E b.

Theorem 4.99 says that if a >
−
E b, then a > b as real numbers (or as

normal-play games). The converse is clearly not true for integers, by Theo-

rem 4.87; it is also not true for non-integers, since 1

2
+ 1

2
is a misère N -position

while 3

4
+ 1

2
is a misère R-position, so that 1

2

−

E
3

4
. Theorem 4.103 shows

that the additional stipulation l(a) 6 l(b) is sufficient for a >
−
E b. To prove

this result we need the following lemmas. As before, non-bold symbols rep-
resent actual numbers, so that ‘a < b’ indicates inequality of a and b as
rational numbers, and aL means the rational number corresponding to the
left-option of the game a in canonical form. Recall that if x = {xL|xR} is in
(normal- play) canonical form then x is the simplest number (i.e., the num-
ber with smallest birthday) such that xL < x < xR. Thus, if xL < x, y < xR

and x 6= y, then x is simpler than y.

Lemma 4.101 If a and b are positive numbers such that aL < b < a, then
l(aL) < l(b).

Proof. We have aL < b < a < aR, so a must be simpler than
b. Thus bL > aL, since otherwise bL < aL < b < bR would imply
that b is simpler than a

L, which is simpler than a. Now, if bL = aL

then l(aL) = l(bL) = l(b)− 1 < l(b), and if bL > aL then by induction
aL < bL < b < a gives l(aL) < l(bL) = l(b)− 1 < l(b). �

Lemma 4.101 is now used to prove Lemma 4.102 below, which is needed
for the proof of Theorem 4.103. Note that in the following two arguments we
frequently use the fact that, if a >

−
E b, then Left wins the position a+b+X

whenever she wins X ∈ E .
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Lemma 4.102 If a and b are positive numbers such that aL < b < a, then
a >−

E b.

Proof. Note that b /∈ Z since there is no integer between aL and a if a is in
canonical form. We must show that Left wins a+ b+X whenever she wins
X ∈ E .

Case 1: bR = a.
Left can win a+b+X by playing her winning strategy on X. If Right moves

in a+ b to a
R+ b+X ′, then Left responds to a

R + b
R+X ′ = a

R+a+X ′,
which she wins by induction since aRL 6 aL (see Proposition 4.90) gives

aRL < a < aR. If Right moves to a + b
R
+ X ′ = b

R + b
R
+ X ′, with

X ′ ∈ L− ∪P− (since Left is playing her winning strategy in X), then Left’s
response depends on whether bRL = bL or bLR = bR: in the former case,
Left moves to b

RL + b
R
+X ′ = b

L + b
L +X ′ ≡−

E X; in the latter case, Left

moves to b
R + b

L
L
+X ′ = b

R + b
LR +X ′ = b

R + b
R +X ′ ≡−

E X ′. In either
case, Left wins as the previous player on X ′ ∈ L− ∪ P−.

When Left runs out of moves in X, she moves to a
L + b + X ′′. By

Lemma 4.101 we know l(aL) < l(b), and this gives o−(aL + b +X ′′) = L−

by Lemma 4.95.
Case 2: bR 6= a.

Note that bR cannot be greater than a, since aL < b < a < aR implies a is
simpler than b, while bL < b < a < bR would imply that b is simpler than
a. So bR < a, and together with aL < b < bR this gives aL < bR < a, which
shows a >

−
E b

R by induction. Similarly bRL 6 bL < b < bR implies bR >
−
E b,

by Case 1. Then by transitivity we have a >
−
E b. �

With lemma 4.102, we can now prove Theorem 4.103 below. The sym-
metric result for negative numbers holds as well.

Theorem 4.103 If a and b are positive numbers such that a > b and
l(a) 6 l(b), then a >−

E b.

Proof. By Corollary 4.100, we have a 6≡−
E b, and so it suffices to show

a >
−
E b. Again we have b /∈ Z. Since a > b, if b > aL, then Lemma 4.102

gives a >
−
E b as required. So assume b 6 aL. Again, let X ∈ E be a game

which Left wins playing first; we must show Left wins a+b+X playing first.
Left should follow her winning strategy from X. If Right plays to a+b

L+X ′,
where X ′ ∈ L−∪P−, then Left responds with a

L+ b
L+X ′, which she wins

by induction: bL < b 6 aL and l(bL) = l(b) − 1 > l(a) − 1 = l(aL) implies
a
L >−

E b
L.

If Right plays to a
R + b + X ′ (assuming this move exists), then

Left’s response is a
RL + b + X ′ if aRL > b, or a

R + b
R + X ′ if

aRL 6 b. In the first case, Left wins by induction because aRL > b and
l(aRL) = l(aR)− 1 6 l(a)− 1 < l(b) implies a

RL >−
E b. In the latter case,
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note first that in fact aRL 6= b, since we have already seen that as games
they have different left-lengths. Then we see aRL < b < a < aR < aRR,
which shows a

R must be simpler than b. This gives bR 6 aR, as otherwise
bL < b < a < aR < bR would imply that b is simpler than a

R. If bR = aR,
then b

R = a
R, and if bR < aR, then we can apply Lemma 4.102 to conclude

that a
R >−

E b
R. In either case, Left wins a

R + b
R +X ′ with X ′ ∈ L− ∪ P−

as the second player.
Finally, if Left runs out of moves in X, then she moves to a

L + b+X ′′

where X ′′ is a dead Left end; then Left wins by Lemma 4.95 because
l(aL) < l(a) 6 l(b) = r(b). �

Corollary 4.104 For positive numbers a, b ∈ Q2, a >−
E b if and only if

a > b and l(a) 6 l(b).

Proof. We need only prove the converse of Theorem 4.103. Suppose a > b
and l(a) > l(b); then by Theorem 4.99, it cannot be that a 6

−
E b, so we need

only show a �−
E b. We have o−(b+ b) = N , while o−(a + b) = R, since in

isolation the latter sum is equivalent to the positive integer l(a) − l(b), by
Theorem 4.94. Thus a �−

E b. �

To completely describe the partial order of numbers within E , it remains
to consider the comparability of a and b when a > 0 and b < 0 (or, sym-
metrically, when a < 0 and b > 0). As before, by Corollary 4.100, we cannot
have a 6

−
E b, and the same argument as above (b+b ∈ N− and a+b ∈ R−)

shows a � b. The results on the order between numbers are summarised
below.

Theorem 4.105 The partial order of Q2, modulo E, is given by

a ≡−
E b if a = b,

a >−
E b if 0 < a < b and l(a) 6 l(b)

or b < a < 0 and r(b) 6 r(a),
a ‖−E b otherwise.

4.3.4 Zeros in the dead-ending universe

We have found that integer and non-integer numbers, as well as all ends,
satisfy G+G ≡−

E 0. It is not the case that every game in E has its conjugate
as inverse; for example, ∗ + ∗ 6≡−

E 0, although the equivalence does hold in
the universe of dicot games. Milley [26] showed that no dicot game born on
day 2 is its conjugate inverse modulo the dead-ending universe, despite six
out of the seven of them being their conjugate inverses in the dicot universe.

The following lemma describes an infinite family of games that are not
invertible in the universe of dead-ending games.

Lemma 4.106 If G = {n1, . . . ,nk|m1, . . . ,mℓ}, with each ni,mi ∈ N,
then G+G 6≡−

E 0.
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GLk GL2 GL1 GR1 GR2 GRℓ

Figure 4.20: An infinite family of games equivalent to zero modulo E

Proof. Let X = {n1, . . . ,nk,m1, . . . ,mℓ|·} ∈ R−. We describe a winning
strategy for Left playing second in the game G+G+X. Right has no first
move in X, so Right’s move is of the form G+ni+X or mi+G+X. Left can
respond by moving X to ni or mi, respectively, leaving a game equivalent to
G or G modulo E . Now Right plays there to a non-positive integer, which
as a Right end must be in L− or N−. �

We conclude with an infinite family of games that are equivalent to zero
in the dead-ending universe, which are not of the form G + G for some G,
apart from {1|1} = 1+ 1.

Theorem 4.107 If G is a dead-ending game such that every GL has a Right
option to 0 and at least one GL, say GL1 , is a Left end, and every GR has a
Left option to 0 and at least one GR, say GR1 , is a Right end, then G ≡−

E 0.

Proof. Let X be any game in E and suppose Left wins X. Then Left wins
G + X by following her strategy in X. If Right plays in G then he moves
to some GR + X ′ from a position G + X ′ with X ′ ∈ L− ∪ P−; Left can
respond to 0 + X ′ and win as the second player. If both players ignore G
then eventually Left runs out of moves in X and plays to GL1 +X ′′, where
X ′′ is a Left end. But GL1 is a non-zero Left end, so the sum is a Left-win
by Lemma 4.80. �

Example 4.108 Figure 4.20 illustrates the games considered in Theo-
rem 4.107. Dashed lines indicate that options are present a natural number
of times, including 0, and dashed vertices indicate there might be a tree of
any size from this vertex, as long as the whole game stays dead-ending.

4.4 Perspectives

In this chapter, we looked at particular games, and took a step into the theory
of misère quotients introduced by Plambeck and Siegel, with the universe of
dicot games and the dead-ending universe.

In the games we studied, results are mixed.
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The misère version of Geography is pspace complete even for some
‘small’ class of graphs, but even if the problem Edge Geography on undi-
rected graph is pspace complete in its normal version on general graphs,
there exists an algorithm that solves it in the restricted case of bipartite
undirected graphs [18].

Question 4.109 What is the complexity of finding the misère outcome of
any Vertex Geography position on bipartite undirected graphs?

In normal version, our results on VertexNim extended to Stockman’s
version of Vertex NimG, where a vertex of weight 0 is not removed. This
does not seem true in its misère version.

As all our results under the misère convention are directly deduced from
our results under the normal convention, we make the following conjecture.

Conjecture 4.110 The complexity of finding the misère outcome of any
VertexNim position on directed graphs with a token on a vertex is the same
as the complexity of finding the normal outcome of any VertexNim position
on directed graphs with a token on a vertex.

On Timber, we only reduced the problem to oriented forests and found
the outcome of any oriented path. As Timber is not a game that separates
in several components, being able to find the outcome of any connected
component would already be interesting.

Question 4.111 Is there a polynomial-time algorithm that gives the misère
outcome of any Timber position on connected directed graphs?

On Timbush, we only reduced the problem to oriented forests, but the
problem is an extension of Timber, on which we do not know much.

On Toppling Dominoes, we gave the misère outcome of a single row,
and found the misère monoid of Toppling Dominoes positions without
grey dominoes. Unexpectedly, the problem seems easier than its normal
version. Hence, we ask the following question.

Question 4.112 Can one find a polynomial-time algorithm that gives the
misère outcome of any Toppling Dominoes position (on several rows)?

On Col, we gave the misère outcome of any grey subdivided star.

In the case of dicot games, we defined a reduced form and proved it
was unique, before using this result to count the number of dicot games in
canonical form born by day 3.

One problem of this canonical form is that one needs first to detect D-
dominated and D-reversible options to be able to delete or bypass them,
which we do not known whether it is solvable in polynomial time. Hence,
we have the following question.
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Question 4.113 What is the complexity of computing the canonical form of
any dicot?

It would also be interesting to find a canonical form for other universes.
Some of the proofs presented in that section were true for any universe, most
others would need the universe to be closed by adjoint, but the hard case
to adapt seems to be the case of reversible options through any end. The
universe of dead-ending games is closed by adjoint, and though we found
some way to deal with reversible options through dead ends, it was not
enough to give a unique form for each equivalent class modulo the dead-
ending universe.

Question 4.114 Is there a natural way to define a canonical form for dead-
ending games?

We know we can still bypass most reversible options thanks to the fol-
lowing lemma.

Lemma 4.115 Let U be a universe and G be a game. Suppose GL1 is
U-reversible through GL1R1 , such that GL1R1 is not a Left end. Let G′ be
the game obtained by bypassing GL1 :

G′ = {(GL1R1)L, GL \ {GL1}|GR} .

Then G ≡−
U G′.

The problem is to deal with options reversible through ends.

In the case of dead-ending games, we found the misère monoid of ends
and numbers, and gave the partial order of numbers modulo the dead-ending
universe.

The original motivation of studying dead-ending games is to give a nat-
ural universe for the specific games we mentioned (Col, Domineering,
Hackenbush. . . ), games where the players place pieces on a board never
to remove them, that we call placement games. A formal definition of a
placement game is the following.

Definition 4.116 Define a game with a set M = ML ∪ MR of Left and
Right moves and a forbidding function φ : 2M → 2M such that we have for
any subset X of 2M,

⋃
Y⊂X φ(Y ) ⊆ φ(X) and X ⊆ φ(X) as follows: a posi-

tion is a subset of M; from a position M , Left can move to M ∪ {m} for any
m ∈ ML\φ(M), and Right can move to M ∪ {m} for any m ∈ MR \ φ(M).
Then a game G is a placement game if there exist a set M, a function φ and
a subset M of M such that G is the position obtained from M and φ on the
subset M as defined above, modulo the multiplicity of options.
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Figure 4.21: A dead-ending game which is not a placement game

Being a placement game is stronger than being a dead-ending game. For
example, the position on Figure 4.21 is a dead-ending game, and even a dicot
game, which is not a placement game. We can actually prove that if you
define recursively the function rb such that rb(G) = 0 if G is a Right end
and rb(G) = 1+maxGR∈GR rb(GR), a placement game satisfies the condition
rb(GL) 6 rb(G) for any Left option GL of G (which is not the case for the
position on Figure 4.21).

Among properties we naturally consider, the universe of placement games
is closed under followers, disjunctive sum and conjugates.

Question 4.117 What more can be said about placement games?

We can also look on a more general context of misère games.
In all examples of games we have seen having an inverse, the conjugate

of the game is an inverse. A natural question is: is this always true? Milley
[26] proved it is not, giving an example in a universe which is not closed
under conjugates. In [34], Plambeck and Siegel gives an example of an im-
partial universe, disproving even the case where the universe is closed under
followers, disjunctive sum and conjugates. This example was not highlighted
in the paper as it is prior to the question. Having some answer for the above
question, we now ask the following question.

Question 4.118 For which universes U do we have G + H ≡−
U 0 implies

H ≡−
U G?

We know it is true for the universe G of all games, as the only way to
have G+G ≡−

U 0 is to have G = 0, and we have examples of universes where
it is not, but even without asking for a characterisation, it would be nice to
know if universes such as impartial games, dicot games, dead-ending games,
or even placement games have this property.

Another fact one may notice in this chapter is that in all universes we pre-
sented where there is no P-position, such as the universe of LR-Toppling

Dominoes and the closure of dead-ends and numbers, all elements are in-
vertible, sometimes even in a bigger universe. This was conjectured by Milley.
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Conjecture 4.119 (Milley (personal communication)) In any uni-
verse U closed under followers, disjunctive sum and conjugates, if U contains
no P-position, then every element of U has an inverse modulo U in U .

For example, the outcome of a position in the closure of LR-Toppling

Dominoes, dead-ends and canonical-form dyadic rationals is given by the
following proposition.

Proposition 4.120 If G is an LR-Toppling Dominoes posi-
tion, {ai}16i6n is a set of positive numbers and Left ends, and
{bi}16i6m is a set of negative numbers and Right ends, with
k = ltd(G) − rtd(G) +

∑n
i=1 l(ai)−

∑m
i=1 r(bi), then

o−

(
G+

n∑

i=1

ai +

m∑

i=1

bi

)
=





L− if k < 0

N− if k = 0

R− if k > 0.

This gives a misère monoid isomorphic to both the misère monoid of
LR-Toppling Dominoes positions, and to the monoid of the closure of
dead ends and canonical-form dyadic rationals, which raises the following
conjecture.

Conjecture 4.121 If U and U ′ are two universes closed under followers,
disjunctive sum and conjugates having misère monoids isomorphic to MZ,
then the misère monoid of the closure of positions of U and U ′ is also iso-
morphic to MZ.

This might even be strengthened as follows.

Conjecture 4.122 If U and U ′ are two universes closed under followers,
disjunctive sum and conjugates having isomorphic misère monoids, then the
misère monoid of the closure of positions of U and U ′ is also isomorphic to
their common misère monoid.

In the last two conjectures, we consider the outcome partition as part of
the misère monoid, that is we consider they should be isomorphic as well.
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Chapter 5

Domination Game

The domination game is not a combinatorial game. Nevertheless, some
tools used in its study are quite similar to some combinatorial tools. For
example, the imagination strategy method proposed in [7] is similar to the
stealing strategy argument stating the player having a winning strategy in
Hex. We here show another parallel by considering the game on a non-
connected graph as a disjunctive sum.

Recall that a vertex is said to dominate itself and its neighbours, and that
a set of vertices is a dominating set if every vertex of the graph is dominated
by some vertex in the set.

The Domination game was introduced by Brešar, Klavžar and Rall in
[7]. It is played on a finite graph G by two players, Dominator and Staller.
They alternate turns in choosing a vertex that dominates at least one new
vertex. The game ends when there is no possible move anymmore, that is
when the chosen vertices form a dominating set. Dominator’s goal is that
the game finishes in as few moves as possible while Staller tries to keep the
game going as long as she can. There are two possible variants of the game,
depending on who starts the game. In Game 1, Dominator starts, while in
Game 2, Staller starts. The game domination number, denoted by γg(G),
is the total number of chosen vertices in Game 1 when both players play
optimally. Similarly, the Staller-start game domination number γ′g(G) is the
total number of chosen vertices in Game 2 when both players play optimally.

Variants of the game where one player is allowed to pass a move once
were already considered in [20] (and possibly elsewhere). In the Dominator-
pass game, Dominator is allowed to pass one move, while in the Staller-pass
game, Staller is. We denote respectively by γg

dp and γ′g
dp the size of the set

of chosen vertices in game 1 and 2 where Dominator is allowed to pass one
move, and by γg

sp and γ′g
sp the size of the set of chosen vertices in game 1

and 2 where Staller is allowed to pass a move. Note that passing does not
count as a move in the game domination number, as the value is the number
of chosen vertices.

We say that a graph G realises a pair (k, ℓ) ∈ N × N if γg(G) = k and
γ′g(G) = ℓ. For a graph G = (V,E) and a subset of vertices S ⊆ V , we
denote by G|S the partially dominated graph G where the vertices of S are
dominated. Kinnersley, West and Zamani [20] proved what is known as the
continuation principle:
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Theorem 5.1 (Kinnersley et al[20]) [Continuation Principle] Let G
be a graph and A,B ⊆ V (G). If B ⊆ A, then γg(G|B) > γg(G|A) and
γ′g(G|B) 6 γ′g(G|A).

This very useful principle to prove inequalities involving γg and γ′g has
the following corollary, part of which was already proved in [7].

Theorem 5.2 (Brešar et al. [7], Kinnersley et al. [20]) For any
graph G, |γg(G)− γ′g(G)| 6 1

As a consequence of this theorem, we have that realisable pairs are nec-
essarily of the form (k, k+1), (k, k) and (k, k−1). It is known that all these
pairs are indeed realisable, examples of graphs of each of these three types
are given in [7, 8, 20, 21]. We say a partially dominated graph G is a (k,+)
(resp. (k,=), (k,−)) if γg(G) = k and γ′g(G) = k + 1 (resp. γg(G) = k and
γ′g(G) = k, γg(G) = k and γ′g(G) = k−1). Additionally, we say that a graph
G is a plus (resp. equal, minus) if G is (k,+) (resp. (k,=), (k,−)) for
some k > 1.

Observation 5.3 If a partially dominated graph G|S is a (k,−), then for
any legal move u in G|S, the graph G|(S ∪N [u]) is a (k − 2,+).

Proof. Let G|S be a (k,−) and u be any legal move in G|S. By definition
of the game domination number, we have k = γg(G|S) 6 1+γ′g(G|S∪N [u]).
Similarly, k − 1 = γ′g(G|S) > 1 + γg(G|S ∪ N [u]). By Theorem 5.2, we get
that

k − 1 6 γ′g(G|S ∪N [u]) 6 γg(G|S ∪N [u]) + 1 6 k − 1

and so equality holds throughout this inequality chain. Thus G|(S ∪N [u] is
a (k − 2,+), as required. �

We say that a graph G is a no-minus graph if for any subset of vertices S,
γg(G|S) 6 γ′g(G|S). Intuitively, it seems that no player getd any advantage
to pass in a no-minus graph.

In this chapter, we are interested in no-minus graphs and possible reali-
sations of unions of graphs. In Section 5.1, we prove that tri-split graphs and
dually chordal graphs are no-minus graphs. In Section 5.2, we give bounds
on the game domination number of the union of two graphs, given that we
know the game domination number of each component of the union, first
when both graphs are no-minus graphs, then in the general case.

The results presented in this chapter are a joint work with Paul Dorbec
and Gašper Košmrlj [13].

5.1 About no-minus graphs . . . . . . . . . . . . . . . 169
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5.1 About no-minus graphs

In this section, we consider no-minus graphs. We first prove the following
proposition on no-minus graphs, showing that being allowed to pass is not
helpful in such graphs.

Proposition 5.4 If G is a no-minus graph, then
γg

sp(G) = γg
dp(G) = γg(G) and γ′g

sp(G) = γ′g
dp(G) = γ′g(G).

Proof. First, note that a player would pass a move only if it bene-
fits them, so for any graph G (even if not a no-minus graph), we have
γg

dp(G) 6 γg(G) 6 γg
sp(G) and γ′g

dp(G) 6 γ′g(G) 6 γ′g
sp(G). Now, suppose

a no-minus graph G satisfies γgdp(G) < γg(G). We use the imagination strat-
egy to reach a contradiction.

Consider a normal Dominator-start game played on G where Dominator
imagines he is playing a Dominator-pass game, while Staller plays optimally
in the normal game. Since γg

dp(G) < γg(G), the strategy of Dominator
includes passing a move at some point, say after x moves have been played.
Let S be the set of dominated vertices at that point. Since Dominator played
optimally the Dominator-pass domination game (but not necessarily Staller),
if he was allowed to pass that move the game should end in no more than
γg

dp(G). We thus have the following inequality:

x+ γ′g(G|S) 6 γg
dp(G)

Now, remark that since Staller played optimally in the normal game, we have
that

x+ γg(G|S) > γg(G)

Adding the fact that G is a no-minus, so that γg(G|S) 6 γ′g(G|S), we reach
the following contradiction:

γg(G) 6 x+ γg(G|S) 6 x+ γ′g(G|S) 6 γg
dp(G) < γg(G) .

Similar arguments complete the proof for the Staller-pass and/or Staller-
start games. �

The next lemma also expresses an early property of no-minus graphs. It
is an extension of a result on forests from [20], the proof is about the same.
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Lemma 5.5 Let G be a graph, S ⊆ V (G), such that for any S′ ⊇ S,
γg(G|S′) 6 γ′g(G|S′). Then we have γg(G ∪K1|S) > γg(G|S) + 1 and
γ′g(G ∪K1|S) > γ′g(G|S) + 1.

Proof. Given a graph G and a set S satisfying the hypothesis, we use
induction on the number of vertices in V (G) \S. If V (G) \ S = ∅, the claim
is trivial. Suppose now that S  V (G) and that the claim is true for every
G|S′ with S  S′.

Consider first game 1. Let v be an optimal first move for
Dominator in the game G ∪ K1|S. If v is the added ver-
tex, then γg(G ∪K1|S) = γ′g(G|S) + 1 > γg(G|S) + 1 by our assumption
on G|S, and the inequality follows. Otherwise, let S′ = S ∪N [v].
By the choice of the move and induction hypothesis, we have
γg(G ∪K1|S) = 1 + γ′g(G ∪K1|S

′) > 1 + γ′g(G|S′) + 1. Since v is not nec-
essarily an optimal first move for Dominator in the game on G|S, we also
have that γg(G|S) 6 1 + γ′g(G|S′) and the result follows.

Consider now game 2. Let w be an optimal first move for Staller in
the game G|S, and let S′′ = S ∪N [w]. By optimality of this move, we
have γ′g(G|S) = 1 + γg(G|S′′). Playing also w in G ∪ K1|S, Staller gets
γ′g(G ∪K1|S) > 1 + γg(G ∪K1|S

′′) > 2 + γg(G|S′′) by induction hypothe-
sis. The required inequality follows. �

It is known that forests are no-minus graphs [20]. We now propose two
other families of graphs that are no-minus. The first is the family of tri-split
graphs, a generalisation of split graphs and pseudo-split graph (except it
does not contain C5) inspired by [23]. A graph is tri-split if its set of vertices
can be partitioned into three disjoint sets A 6= ∅, B and C with the following
properties:

∀u ∈ A, ∀v ∈ A ∪C : uv ∈ E(G),

∀u ∈ B, ∀v ∈ B ∪ C : uv /∈ E(G).

We prove the following.

Theorem 5.6 Connected tri-split graphs are no-minus graphs.

Proof. Let G be a tri-split graph with the corresponding partition (A,B,C),
let S ⊆ V (G) be a subset of dominated vertices, and consider the game
played on G|S. If the game on G|S ends in at most two moves, then clearly
γg(G|S) 6 γ′g(G|S). From now on, we assume that γg(G) > 3.

Observe that Dominator has an optimal strategy playing only in A (in
both game 1 and game 2). Indeed, any vertex u in B dominates only itself
and some vertex in A (at least one by connectivity). Any neighbour v of u
in A dominates all of A and v, so is a better move than u for Dominator
by the continuation principle. Similarly, the neighbourhood of any vertex in
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C is included in the neighbourhood of any vertex in A. So we now assume
Dominator only plays in A in the rest of the proof.

Suppose we know an optimal strategy on Game 2 for Dominator, we
propose an (imagination) strategy for Game 1 guaranteeing it will finish no
later than Game 2. Let Dominator imagine a first move v0 ∈ B ∪ C from
Staller and play the game on G|S as if playing in G|(S ∪N [v0]). Staller plays
optimally on G|S not knowing about Dominator’s imagined game. Note that
after Dominator’s first move, the only difference between the imagined game
and the real game is that v0 is dominated in the first but possibly not in the
second. Indeed, all the neighbours of v0 belong to A∪C, which are dominated
by Dominator’s first move (in A by our assumption). Therefore, any move
played by Dominator in his imagined game is legal in the real game, though
Staller may eventually play a move in the real game that is illegal in the
imagined game, provided it newly dominates only v0. If she does so and the
game is not finished yet, then Dominator imagines she played any legal move
v1 in B instead and continues. This may happen again, leading Dominator
to imagine a move v2 and so on. Denote by vi the last such vertex before
the game ends, we thus have that vi is the only vertex possibly dominated
in the imagined game but not in the real game.

Assume now that the imagined game is just finished. Denote by kI the
total number of moves in this imagined game. Note that the imagined game
looks like a Game 2 where Dominator played optimally but possibly not
Staller. We thus have that kI 6 γ′g(G|S). At that point, either the real
game is finished or only vi is not yet dominated. So the real game finishes
at latest with the next move of any player, and the number of moves in the
real game kR satisfies kR 6 kI − 1 + 1. Moreover, in the real game, Staller
played optimally but possibly not Dominator, so kR > γg(G|S). We can
now conclude the proof bringing together all these inequalities into

γg(G|S) 6 kR 6 kI 6 γ′g(G|S) .

�

The second family of graphs we prove to be no-minus is the family of
dually chordal graphs, see [6]. Let G be a graph, v one of its vertices. A
vertex u in N [v] is a maximum neighbour of v if for all w ∈ N [v], we have
N [w] ⊆ N [u]. A vertex ordering v1, . . . , vn is a maximum neighbourhood
ordering if for each i 6 n, vi has a maximum neighbour in G[{v1, . . . , vi}]. A
graph is dually chordal if it has a maximum neighbourhood ordering. Note
that forests and interval graphs are dually chordal [35].

Theorem 5.7 Dually chordal graphs are no-minus graphs.

Proof. We prove the result by induction on the number of non-dominated
vertices. Let G be a dually chordal graph with v1, . . . , vn a maximum neigh-
bourhood ordering of V (G). Let S ⊆ V (G) be a subset of dominated vertices
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and denote by j the largest index such that vj is not in S. We suppose by
way of contradiction that G|S is a (k,−), note that necessarily k > 3. Let vi
be a maximum neighbour of vj in G[{v1, . . . , vj}]. Let u be an optimal move
for Staller in G|(S∪N [vi]) and let S′ = S∪N [vi]∪N [u]. By Observation 5.3,
G|(S ∪N [u]) and G|(S ∪N [vi]) are both (k−2,+), so γg(G|S∪N [u]) = k−2
and γ′g(G|S ∪N [vi]) = k − 1. By optimality of u, we get that

k − 1 = γ′g(G|S ∪N [vi]) = γg(G|S′) + 1 .

The vertex u is not a neighbour of vj, or its closed neighbourhood in
G[{v1, . . . , vj}] would be included in N [vi] and {vj+1, . . . , vn} ⊆ S, so playing
u would not be legal in G|(S ∪N [vi]). Therefore, by continuation principle
(Theorem 5.1),

γg(G|S ∪N [u]) > γg(G|S′ \ {vj}) .

Moreover, because all vertices at distance at most 2 from vj are dominated
in G|S′, we get that γg(G|S′ \ {vj}) = γg(G ∪K1|S

′). Now using induction
hypothesis to apply Lemma 5.5, we get

γg(G|S′ \ {vj}) > γg(G|S′) + 1 .

We thus conclude that

k − 2 = γg(G|S ∪N [u]) > γg(G|S′ \ {vj}) > γg(G|S′) + 1 = k − 1,

which leads to a contradiction. Therefore, G|S is not a minus and this
concludes the proof. �

5.2 The domination game played on unions of
graphs

5.2.1 Union of no-minus graphs

In this subsection, we are interested in the possible values that the union of
two no-minus graphs may realise, according to the realisations of its com-
ponents. We in particular show that the union of two no-minus graphs is
always a no-minus graph.

We first prove a very general result that will allow us to compute almost
all the bounds obtained later.

Theorem 5.8 Let G1|S and G2|S
′ be two partially dominated graphs and x
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be any legal move in G1|S. We have

γg(G1 ∪G2|S ∪ S′) > min

(
γg(G1|S) + γg

dp(G2|S
′)

γg
dp(G1|S) + γg(G2|S

′)

)
(5.1)

γg(G1 ∪G2|S ∪ S′) 6 1 + max

(
γ′g(G1|S ∪N [x]) + γ′g

sp(G2|S
′)

γ′g
sp(G1|S ∪N [x]) + γ′g(G2|S

′)

)
(5.2)

γ′g(G1 ∪G2|S ∪ S′) 6 max

(
γ′g(G1|S) + γ′g

sp(G2|S
′)

γ′g
sp(G1|S) + γ′g(G2|S

′)

)
(5.3)

γ′g(G1 ∪G2|S ∪ S′) > 1 + min

(
γg(G1|S ∪N [x]) + γg

dp(G2|S
′)

γg
dp(G1|S ∪N [x]) + γg(G2|S

′)

)
(5.4)

Proof. To prove all these bounds, we simply describe what a player can do
by using a strategy of following, i.e. always answering to his opponent moves
in the same graph if possible.

Let us first consider Game 1 in G1 ∪G2|S ∪ S′ and what happens when
Staller adopts the strategy of following. Assume first that the game in G1

finishes before the game in G2. Then Staller is sure with her strategy that
the number of moves in G1 is at least γg(G1|S). However, when G1 fin-
ishes, Staller may be forced to play in G2 if Dominator played the final
move in G1. This situation somehow allows Dominator to pass once in G2,
but no more. So we can ensure that the number of moves in G2 is no
less that γg

dp(G2|S
′). Thus, in that case, the total number of moves is no

less than γg(G1|S) + γg
dp(G2|S

′). If on the other hand the game in G2 fin-
ishes first, we get similarly that the number of moves is then no less than
γg

dp(G1|S) + γg(G2|S
′). Since she does not decide which game finishes first,

Staller can guarantee that

γg(G1∪G2|S ∪S′) > min
(
γg(G1|S)+γg

dp(G2|S
′), γg

dp(G1|S)+γg(G2|S
′)
)
.

The same arguments in Game 2 with Dominator adopting the strategy of
following ensures that

γ′g(G1∪G2|S∪S′) 6 max
(
γ′g(G1|S)+γ′g

sp
(G2|S

′), γ′g
sp
(G1|S)+γ′g(G2|S

′)
)
.

Let us come back to Game 1. Suppose Dominator plays some vertex x in
V (G1) and then adopts the strategy of following. Then he can ensure that
γg(G1 ∪G2|S ∪ S′) 6 1 + γ′g(G1 ∪G2|S ∪ S′ ∪NG1

[x]) and thus that

γg(G1 ∪G2|S ∪ S′) 6 1 + max

(
γ′g(G1|S ∪N [x]) + γ′g

sp(G2|S
′)

γ′g
sp(G1|S ∪N [x]) + γ′g(G2|S

′)

)
.

The same is true for Staller in Game 2 to obtain Inequality (5.4). �

In the case of the union of two no-minus graphs, these inequalities allow
us to give rather precise bounds on the possible values realised by the union.
The first case is when one of the components is an equal.
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a

T3

c
d

e

b

T4 P3 leg

Figure 5.1: The trees T3 and T4, the graph P3 and the leg

Theorem 5.9 Let G1|S and G2|S
′ be partially dominated no-minus graphs.

If G1|S is a (k,=) and G2|S
′ is a (ℓ, ⋆) (with ⋆ ∈ {=,+}), then the disjoint

union G1 ∪G2|S ∪ S′ is a (k + ℓ, ⋆).

Proof. We use inequalities from Theorem 5.8. Note that since G1 and G2

are no-minus graphs, we can apply Proposition 5.4 and get that the Staller-
pass and Dominator-pass games on any partially dominated G1 and G2 is
the same as the corresponding game.

For Game 1, let Dominator choose an optimal move x in G2|S
′, for

which we get γ′g(G2|S
′ ∪N [x]) = ℓ− 1. Applying Inequalities (5.1) and (5.2)

interchanging the role of G1 and G2, we then get that

k + ℓ 6 γg(G1 ∪G2|S ∪ S′) 6 1 + k + ℓ− 1 .

For Game 2, Staller can also choose an optimal move x in G2|S
′ for which

γg(G2|S
′ ∪N [x]) = γ′g(G2|S

′)− 1, and applying Inequalities (5.3) and (5.4),
we get that γ′g(G1 ∪G2|S ∪ S′) = γ′g(G1|S) + γ′g(G2|S

′). �

We are now left with the case where both components are plus.

Theorem 5.10 Let G1|S and G2|S
′ be partially dominated no-minus graphs

such that G1|S is (k,+) and G2|S
′ is (ℓ,+). Then

k + ℓ 6 γg(G1 ∪G2|S ∪ S′) 6 k + ℓ+ 1,

k + ℓ+ 1 6 γ′g(G1 ∪G2|S ∪ S′) 6 k + ℓ+ 2.

In addition, all bounds are tight.

Proof. Similarly as in the proof before, taking x an optimal first move for
Dominator in G1|S and applying Inequalities (5.1) and (5.2), we get that
k + ℓ 6 γg(G1 ∪ G2|S ∪ S′) 6 k + ℓ+ 1. Also, taking for x an optimal first
move for Staller in G1|S and applying Inequalities (5.3) and (5.4), we get
that k + ℓ+ 1 6 γ′g(G1 ∪G2|S ∪ S′) 6 k + ℓ+ 2.

We now propose examples showing that these bounds are tight. Denote
by Ti the tree made of a root vertex r of degree i+ 1 adjacent to two leaves
and i − 1 paths of length 2. Figure 5.1 shows the trees T2 and T3. Note
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that the domination number of Ti is γ(Ti) = i. For the domination game,
Ti realises (i, i + 1). We claim that for any k, ℓ, γg(Tk ∪ Tℓ) = k + ℓ+ 1.
Note that if x is a leaf adjacent to the degree i + 1 vertex r in some Ti,
then i vertices are still needed to dominate Ti|N [x]. Then a strategy for
Staller so that the game does not finish in less than k + ℓ + 1 moves is to
answer to any move from Dominator in the other tree by such a leaf (e.g. in
Figure 5.1, answer to Dominator’s move in a with b). Then two moves are
played already and still k + ℓ − 1 vertices at least are needed to dominate
the graph. The upper bound is already known. Similarly, if k > 2, for
any ℓ, γ′g(Tk ∪ Tℓ) = k + ℓ+ 2. Staller’s strategy would be to start on a leaf
adjacent to the root of Tk (e.g. b in Figure 5.1). Then whatever Dominator’s
answer (optimally a), Staller can play a second leaf adjacent to a root (d).
Then either Dominator answers to the second root (c) and at least k+ ℓ− 2
moves are required to dominate the other vertices, or he tries to dominate a
leaf already (say e) and Staller can still play the root (c), leaving k + ℓ− 3
necessary moves after the five initial moves.

To prove that the lower bounds are tight, it is enough to consider the
path on three vertices P3 and the leg drawn in Figure 5.1, that is the tree
consisting in a claw whose degree three vertex is attached to a P3. The path
P3 realizes (1, 2), the leg realizes (3, 4), checking that the union is indeed a
(4, 5) is left to the reader. �

The next corollary directly follows from the above theorems.

Corollary 5.11 No-minus graphs are closed under disjoint union.

Note that thanks to that corollary, we can extend the result of Theo-
rem 5.6 to all tri-split graphs.

Corollary 5.12 All tri-split graphs are no-minus graphs.

5.2.2 General case

In this subsection, we consider a union of any two graphs.
Depending on the parity of the length of the game, we can refine Theo-

rem 5.8 as follows:

Theorem 5.13 Let G1|S1 and G2|S2 be partially dominated graphs.

• If γg(G1|S1) and γg(G2|S2) are both even, then

γg(G1 ∪G2|S1 ∪ S2) ≥ γg(G1|S1) + γg(G2|S2) (5.5)

• If γg(G1|S1) is odd and γ′g(G2|S2) is even, then

γg(G1 ∪G2|S1 ∪ S2) ≤ γg(G1|S1) + γ′g(G2|S2) (5.6)
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• If γ′g(G1|S1) and γ′g(G2|S2) are both even, then

γ′g(G1 ∪G2|S1 ∪ S2) ≤ γ′g(G1|S1) + γ′g(G2|S2) (5.7)

• If γ′g(G1|S1) is odd and γg(G2|S2) is even, then

γ′g(G1 ∪G2|S1 ∪ S2) ≥ γ′g(G1|S1) + γg(G2|S2) (5.8)

Proof. The proof is similar to the proof of Theorem 5.8. For inequal-
ity (5.5), let Staller use the strategy of following, assume without loss of
generality that G1 is dominated before G2. If Dominator played opti-
mally in G1, by parity Staller played the last move there and Dominator
could not pass a move in G2, thus he could not manage less moves in G2

than γg(G2|S2). Yet Dominator may have played so that one more move
was necessary in G1 in order to be able to pass in G2. Then the num-
ber of moves played in G2 may be only γg

dp(G2|S2), but this is no less
than γg(G2|S2) − 1 and overall, the number of moves is the same. Hence
we have γg(G1 ∪G2|S1 ∪ S2) ≥ γg(G1|S1) + γg(G2|S2). The same argument
with Dominator using the strategy of following gives inequality (5.7).

Similarly, for inequality (5.6), Let Dominator start with playing an op-
timal move x in G1|S1 and then apply the strategy of following. Then
Staller plays in G1 ∪ G2|(S1 ∪ N [x]) ∪ S2, where γ′g(G1|S1 ∪ N [x]) =
γg(G1|S1)− 1 is even, as well as γ′g(G2|S2). Then by the previous argument,
γg(G1 ∪G2|S1 ∪ S2) ≤ γg(G1|S1) + γ′g(G2|S2). Inequality (5.8) is obtained
with a similar strategy for Staller. �

Using Theorem 5.8 and 5.13, we argue the 21 different cases, according to
the type and the parity of each of the components of the union. To simplify
the computation, we simply propose the following corollary of Theorem 5.8

Corollary 5.14 Let G1|S1 and G2|S2 be two partially dominated graphs.
We have

γg(G1 ∪G2|S1 ∪ S2) ≥ γg(G1|S1) + γg(G2|S2)− 1 , (5.9)

γg(G1 ∪G2|S1 ∪ S2) ≤ γg(G1|S1) + γ′g(G2|S2) + 1 , (5.10)

γ′g(G1 ∪G2|S1 ∪ S2) ≤ γ′g(G1|S1) + γ′g(G2|S2) + 1 , (5.11)

γ′g(G1 ∪G2|S1 ∪ S2) ≥ γ′g(G1|S1) + γg(G2|S2)− 1 . (5.12)

Proof. To prove these inequalities, with simply apply inequalities of The-
orem 5.8 in a general case. We choose for the vertex x an optimal move,
getting for example that γ′g(G1|S1 ∪ N [x]) = γg(G1|S1) − 1. We also use
Lemma ?? and get for example γg

dp(G2|S2) ≥ γg(G2|S2)− 1. �

We now present the general bounds in Table 5.2, which should be read as
follows. The first two columns give the types and parities of the components
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of the union, where e, e1 and e2 denote even numbers and o, o1, and o2 denote
odd numbers. The next two columns give the bounds on the domination
game numbers of the union. In the last two columns, we give the inequalities
we use to get these bounds. We add a ∗ to the inequality number when the
inequality is used exchanging G1 and G2.

G1 G2 γg γ′g for γg for γ′g

(o1,−) (o2,+) γg = o1 + o2 − 1 γ′g = o1 + o2 (5.9),(5.6*) (5.12*),(5.7)
(e1,−) (e2,+) γg = e1 + e2 γ′g = e1 + e2 + 1 (5.5),(5.10*) (5.8*),(5.11)
(o1,−) (o2,−) γg = o1 + o2 − 1 γ′g = o1 + o2 − 2 (5.9),(5.6) (5.12),(5.7)
(e1,−) (e2,−) γg = e1 + e2 γ′g = e1 + e2 − 1 (5.5),(5.10) (5.8),(5.11)
(o1,=) (o2,−) γg = o1 + o2 − 1 o1 + o2 − 1 ≤ γ′g ≤ o1 + o2 (5.9),(5.6) (5.12*),(5.11)
(e1,=) (e2,−) γg = e1 + e2 e1 + e2 − 1 ≤ γ′g ≤ e1 + e2 (5.5),(5.10) (5.12),(5.11)
(e,=) (o,−) e+ o− 1 ≤ γg ≤ e+ o γ′g = e+ o− 1 (5.9),(5.10) (5.12),(5.7)
(o,=) (e,−) e+ o− 1 ≤ γg ≤ e+ o γ′g = e+ o (5.9),(5.10) (5.8),(5.11)
(e,=) (o,+) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (5.9),(5.6*) (5.12*),(5.11)
(o,−) (e,+) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (5.9),(5.10*) (5.12*),(5.11)
(e,−) (o,+) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (5.9),(5.10*) (5.12*),(5.11)
(e,=) (o,=) e+ o− 1 ≤ γg ≤ e+ o e+ o ≤ γ′g ≤ e+ o+ 1 (5.9),(5.6*) (5.8*),(5.11)
(o,−) (e,−) e+ o− 1 ≤ γg ≤ e+ o e+ o− 2 ≤ γ′g ≤ e+ o− 1 (5.9),(5.10) (5.12),(5.11)
(e1,=) (e2,=) e1 + e2 ≤ γg ≤ e1 + e2 + 1 e1 + e2 − 1 ≤ γ′g ≤ e1 + e2 (5.5),(5.10) (5.12),(5.7)
(e1,=) (e2,+) e1 + e2 ≤ γg ≤ e1 + e2 + 1 e1 + e2 + 1 ≤ γ′g ≤ e1 + e2 + 2 (5.5),(5.10*) (5.8*),(5.11)
(o,=) (e,+) e+ o− 1 ≤ γg ≤ e+ o+ 1 e+ o ≤ γ′g ≤ e+ o+ 2 (5.9),(5.10*) (5.8),(5.11)
(o1,+) (o2,+) o1 + o2 − 1 ≤ γg ≤ o1 + o2 + 1 o1 + o2 ≤ γ′g ≤ o1 + o2 + 2 (5.9),(5.6) (5.12),(5.7)
(e1,+) (e2,+) e1 + e2 ≤ γg ≤ e1 + e2 + 2 e1 + e2 + 1 ≤ γ′g ≤ e1 + e2 + 3 (5.5),(5.10) (5.8),(5.11)
(o1,=) (o2,=) o1 + o2 − 1 ≤ γg ≤ o1 + o2 + 1 o1 + o2 − 1 ≤ γ′g ≤ o1 + o2 + 1 (5.9),(5.10) (5.12),(5.11)
(o1,=) (o2,+) o1 + o2 − 1 ≤ γg ≤ o1 + o2 + 1 o1 + o2 ≤ γ′g ≤ o1 + o2 + 2 (5.9),(5.10*) (5.12*),(5.11)
(e,+) (o,+) e+ o− 1 ≤ γg ≤ e+ o+ 2 e+ o ≤ γ′g ≤ e+ o+ 3 (5.9),(5.10) (5.12),(5.11)

Table 5.2: Bounds for general graphs.

Using the inequalities of Theorems 5.8 and 5.13, we get the following
results.

Theorem 5.15 The bounds from Table 5.2 hold.

Note that only in the first four cases in Table 5.2 the exact game dom-
ination number as well as the Staller-start game domination number are
determined, while in the next four cases this is the case for exactly one of
these two numbers. In all other cases, the difference between the lower and
upper bound is at least one and at most three.

We managed to tighten all these bounds but five, on infinite families of
graphs.

Recall that the Cartesian product G�H of two graphs G and H is the
graph with vertex set V (G�H) = {(u, v)|u ∈ V (G), v ∈ V (H)} and edge set

E(G�H) = {((u1, v1), (u2, v2))|(u1 = u2 and (v1, v2) ∈ E(H))
or (v1 = v2 and (u1, u2) ∈ E(G))}.

Table 5.3 gives examples of graphs that tighten all but five bounds. The
graphs that are not built from paths and cycles by disjoint unions and/or
Cartesian products are represented on Figure 5.4. Examples listed in this
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G1 G2 lower on γg upper on γg lower on γ′g upper on γ′g

(o1,−) (o2,+) C6 ∪ P3 C6 ∪ P3 C6 ∪ P3 C6 ∪ P3

(e1,−) (e2,+) P2�P4 ∪ T2 P2�P4 ∪ T2 P2�P4 ∪ T2 P2�P4 ∪ T2

(o1,−) (o2,−) C6 ∪ C6 C6 ∪ C6 C6 ∪C6 C6 ∪ C6

(e1,−) (e2,−) P2�P4 ∪ P2�P4 P2�P4 ∪ P2�P4 P2�P4 ∪ P2�P4 P2�P4 ∪ P2�P4

(o1,=) (o2,−) K1 ∪ C6 K1 ∪ C6 ? K1 ∪ C6

(e1,=) (e2,−) P8 ∪ P2�P4 sp ∪ P2�P4 P8 ∪ P2�P4 sp ∪ P2�P4

(e,=) (o,−) NE ∪ C6 P8 ∪ C6 P8 ∪ C6 P8 ∪C6

(o,=) (e,−) P10 ∪ P2�P4 ? P10 ∪ P2�P4 P10 ∪ P2�P4

(e,=) (o,+) NE ∪W no-minus NE ∪W no-minus
(o,−) (e,+) C6 ∪BLPK C6 ∪ T4 C6 ∪BLPK C6 ∪ T4

(e,−) (o,+) P2�P4 ∪ P11 P2�P4 ∪ PCs P2�P4 ∪ P11 P2�P4 ∪ PCs

(e,=) (o,=) NE ∪ P6 sp ∪BLCK NE ∪ P6 sp ∪BLCK

(o,−) (e,−) C6 ∪ (3P2�P4) (3C6) ∪ P2�P4 C6 ∪ (3P2�P4) (3C6) ∪ P2�P4

(e1,=) (e2,=) NE ∪NE sp ∪ sp ? sp ∪ sp

(e1,=) (e2,+) no-minus sp ∪ T4 no-minus sp ∪ T4

(o,=) (e,+) CPP ∪BLPK K1 ∪BLP CPP ∪BLPK K1 ∪BLP

(o1,+) (o2,+) PC ∪ PC T5 ∪ T5 PC ∪ PC T5 ∪ T5

(e1,+) (e2,+) BLPK ∪BLPK BLP ∪BLP BLPK ∪BLPK BLP ∪BLP

(o1,=) (o2,=) CPP ∪ CPP ? ? NEsp ∪NEsp

(o1,=) (o2,+) BLCK ∪ PC BLCK ∪ PCs BLCK ∪ PC BLCK ∪ PCs

(e,+) (o,+) BLWK ∪ PC T4 ∪ (C6 ∪ P3) BLWK ∪ PC T4 ∪ (C6 ∪ P3)

Table 5.3: Examples of graphs that tighten bounds.

table are small and can be verified by hand or programming. To get bigger
examples, one can just add an even number of isolated vertices to one or both
of the components. When the bound in general is the same as for no-minus
graphs, we just wrote ‘no-minus’ as we know they yield examples reaching
the bound.

The following graphs with pairs they realise are used in Table 5.3 as
examples that make bounds in Table 5.2 tight.

• PC is (5,+)
• PCs is (3,+)
• sp is (4,=)
• NE is (6,=)
• NEsp is (5,=)
• CPP is (7,=)
• Tk is (k,+)
• BLP = P3 ∪ P2�P4 is (4,+)
• BLC = P2�P4 ∪C6 is (6,=)
• BLCK = P2�P4 ∪ C6 ∪K1 is (7,=)
• BLPK = P2�P4 ∪ P3 ∪K1 is (6,+)
• BLWK = P2�P4 ∪W ∪K1 is (8,+)
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k − 1

Figure 5.4: From top to bottom, left to right: PC, PCs, sp, NE, NEsp, CPP ,

W , Tk

5.3 Perspectives

In this chapter, we looked at the domination game.
First, we took an interest in no-minus graphs, that are graphs in which

no player ever gets any advantage passing, no matter which set of vertices is
dominated. We proved that both tri-split graphs and dually chordal graphs
are no-minus graphs. Chordal graphs are another generalisation of split
graphs, interval graphs and forests, so we pose the following conjecture.

Conjecture 5.16 Partially dominated chordal graphs are no-minus graphs.

The classes of graphs that we proved to be no-minus are recognisable in
polynomial time. Hence the following question is natural.

Question 5.17 Can no-minus graphs be recognised in polynomial time?

Note that a naive algorithm that would consist in checking the values of
γg and γ′g would not work. First because no polynomial algorithm is known
to compute γg or γ′g. And second because we would have to compute these
values for all sets of initially-dominated vertices of the graph, and there are
an exponential number of such sets.

Then we considered the game played on disjoint unions of graphs, where
we bounded the possible values of γg and γ′g. Notice that our results hold
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even when the graphs are not connected, so they can be applied recursively,
though then the difference between the lower bound and the upper bound
may increase. Note that the strategy we propose is not always optimal,
however we think it gives the optimal bound in general.

Conjecture 5.18 All bounds from Table 5.2 are tight.
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Chapter 6

Conclusion

This thesis has examined games under both normal and misère conven-
tion, and even a graph parameter seen as a game.

In Chapter 2, we studied two impartial games under normal convention.
The first is a generalisation of Adjacent Nim, close to Vertex NimG, but
which forces the players to lower all the weights to 0. We found a polynomial-
time algorithm that gives the outcome of a large class of positions, and as
our class is closed under followers, this lets us find a strategy for the winning
player. Nevertheless, we did not solve the problem entirely. It would be
interesting to find an efficient algorithm that would solve the general problem
on directed graphs where the self-loops are optional. The problem on directed
graphs with no self-loop is not closed under followers, so we do not think it
is the right problem to look at first.

The second impartial game we studied can be seen as a generalisation
of Nim, as there is a bijection between Nim positions and orientations of
subdivided stars where all arcs are directed away from the center, but was
actually derived from Toppling Dominoes, through a version where only
paths were considered. We found the outcome of any position on a connected
directed graph, and the algorithm is actually able to keep track of ‘equivalent’
arcs throughout the reduction, so it is possible to backtrack any winning arc
from a minimal position to the original directed graph. As the game does
not split in different components, we could be satisfied with this result, but
it still feels like the game is not solved yet until one find a way to give the
Grundy-value of any position. We partially answered this question by giving
a cubic-time algorithm that finds the Grundy-value of any orientation of a
path. However, it would be interesting to have a more efficient algorithm
that gives such Grundy-values, even for orientations of paths only.

In Chapter 3, we studied three partizan games under normal convention.
The first is a generalisation of Timber, that we studied in Chapter 2. We
gave polynomial-time algorithms to find the outcome of any orientation of
paths with coloured arcs, and of any connected directed graph with arcs
coloured black or white. Notwithstanding, the general problem is far from
solved. Even though the game does not split in different components, we
do not know of an efficient algorithm that would give the outcome of any
coloured connected directed graph. Finding the value of a position, even on
orientations of paths, seems like a hard problem, especially since there could
be many different values.
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The second partizan game we studied is a coarsening of the first (though
it was defined earlier). The interest of our study was to characterise positions
having some values, or prove the existence of some values, on positions on a
single row. We completely characterised the positions on a single row having
value {a|b} with a > b, and provided examples of positions on a single row
having value {a|{b|c}} for a > b > c or {{a|b}|{c|d}} for a > b > c > d. It
would be interesting to complete the characterisation of these last two sets
of positions. Other interesting conjectures on the game can be found in [17].

The last partizan game we looked at is a colouring game. Though any
position on a grey graph has value 0 or ∗, and the value of other positions is
restricted to numbers and sums of numbers and ∗, finding the outcome of a
position is quite complex. We gave the outcomes of grey positions belonging
to some subclasses of trees, and the outcomes of grey cographs. It would be
interesting to find an algorithm that would give the outcome of any grey tree,
and maybe put it together with the algorithm we propose for grey cographs
to find the outcome of any distance-hereditary graph.

In Chapter 4, we switched to the misère convention. First, we described
the misère version of the games we studied earlier. We provided results on
a complexity level as well as on finding algorithms that give the outcome of
position, and results on reducing the problem to positions that seem simpler.
There are games on which we did not say much, but the misère version of
a game is in general harder to solve than its normal version, as highlighted
with Vertex Geography, where one can find the normal outcome of any
position on an undirected graph G in time O(|E(G)|

√
|V (G)|) whereas find-

ing the misère outcome of a position, even on planar undirected graphs of
maximum degree 5, is pspace-complete. In contrast, we gave a solution
to find the misère outcome of any LR-Toppling Dominoes position in a
linear time. However, there is still a lot to search on the general version of
Toppling Dominoes under misère convention, where we allow grey domi-
noes. The other games we studied are not completely solved either, and
could be subject to future research.

Then we looked at misère universes. The first we consider is a well-
known set of games. Under the normal convention, these games are called
all-small because they all are infinitesimal, that is they are smaller than any
positive number and greater than any negative number. Under the misère
convention, we gave them a canonical form. However, there is no efficient
way to compute this canonical form as it requires to detect dominated and
reversible options, and we do not know of an efficient way of comparing any
two games. In practice, though, there are situations where it is possible to
compare games, and we hope our analysis of games born by day 3 can help
in the endgames of dicot positions.

Next, we looked at a second universe in misère play. Though this universe
is somehow new, it contains many games that have been studied before. In
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particular, it contains the universe of dicot games, studied in the previous
section. We analysed ends and numbers. Ends might appear quite often in
games, but numbers in normal canonical form are less frequent. Nonetheless,
it is still interesting to know there are quite many games admitting an inverse
modulo the dead-ending universe, and that even some games not being of
this kind of sum are equivalent to 0 in this universe.

In Chapter 5, we left combinatorial games to study the domination game.
We found some classes of graphs where the analysis should be easier, and
looked at what value the parameter of the disjoint union of two graphs may
have considering the values of the parameter of these two graphs and the
process can be repeated on more than two components. It is interesting
to see how this vision from combinatorial games, seeing the game as a dis-
junctive sum, helps highlighting how interesting no-minus graphs are for the
domination game. We also used the imagination strategy which, without
being defined as a combinatorial games tool, may remind us of the stealing
strategy argument used to find the winning player in some combinatorial
games. No-minus graphs are interesting because they are somewhat more
predictable, so it would be nice to be able to characterise them, or find other
classes of graphs having this property.
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Appendix A

Appendix: Rule sets

• Clobber is a partizan game played on an undirected graph with
vertices coloured black or white. At her turn, Left chooses a white
vertex she colours black and a black vertex she removes from the game
provided the two vertices were adjacent. At his turn, Right chooses a
black vertex he colours white and a white vertex he removes from the
game provided the two vertices were adjacent.

• Col is a partizan game played on an undirected graph with vertices
either uncoloured or coloured black or white. A move of Left consists
in choosing an uncoloured vertex and colouring it black, while a move
of Right would be to do the same with the colour white. An extra
condition is that the partial colouring has to stay proper, that is no
two adjacent vertices should have the same colour. Another way of
seeing the game is to play it on the graph of available moves: a position
is an undirected graph with all vertices coloured black, white or grey;
a move of Left is to choose a black or grey vertex, remove it from the
game with all its black coloured neighbours, and change the colour of
its other neighbours to white; a move of Right is to choose a white
or grey vertex, remove it from the game with all its white coloured
neighbours, and change the colour of its other neighbours to black.

• Domineering is a partizan game played on a square grid, where
some vertices might be missing. A move of Left consists in choosing
two vertically adjacent vertices and remove them from the game, while
a Right move is to choose two horizontally adjacent vertices and remove
them from the game. The game is usually represented with a grid of
squares where players put dominoes without superimposing them.

• Flip the coin is a partizan game played on one or several rows of
coins, each coin facing either heads or tails. At her turn, Left chooses
a coin facing heads and removes it from the game, flipping the coins
adjacent to it. At his turn, Right does the same with a coin facing tail.
There exists a variant where the two neighbours of the coin removed
become adjacent.

• Geography is an impartial game played on a directed graph with a
token on a vertex. There exist two variants of the game: Vertex Ge-

ography and Edge Geography. A move in Vertex Geography

is to slide the token through an arc and delete the vertex on which
the token was. A move in Edge Geography is to slide the token
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through an arc and delete the edge on which the token just slid. In
both variants, the game ends when the token is on an isolated vertex.
Geography can also be played on an undirected graph G by seeing it
as a symmetric directed graph where the vertex set remains the same
and the arc set is {(u, v), (v, u)|(u, v) ∈ E(G)}, except that in the case
of Edge Geography, going through an edge (u, v) would remove
both the arc (u, v) and the arc (v, u) of the directed version.

• Hackenbush is a partizan game played on a graph with arcs
coloured black, white, or grey, and a special vertex called the ground.
At her turn, Left removes a grey or black edge from the game, and
everything that is no longer connected to the ground falls down (is
removed from the game). At his turn, Right does the same with a
grey or white edge.

• Hex is a partizan game played on an hexagonal grid. At her turn,
Left places a black piece on an empty vertex, and Right does the same
at his turn with a white piece. The game ends when there is a path
of black stones connecting the upper-left side to the lower-right side
of the board, or a path of white stone connecting the upper-right side
to the lower-left side of the board.

• Nim is an impartial game played on one or several heaps of tokens.
At their turn, a player removes any positive number of tokens from
one single heap they choose.

• Octal games are impartial games played on one or several heaps of
tokens. The possible moves of an octal game are given by its octal
code d0.d1d2 . . ., where di range between 0 and 7. At their move, a
player may remove i tokens from a heap if either the heap is of size i
and di is odd, or if the heap is of size greater than i and di is congruent
to 2 or 3 modulo 4. They might even split a heap into two non-empty
heap, removing i tokens if di is at least 4. Note that d0 may only have
value 0 or 4.

• Peg Duotaire is an impartial game played on a grid, with pegs
on some vertices. On a move, a player hops a peg over another one,
provided they are adjacent, and landing right on the other side of it,
and removes the second peg from the game.

• Partizan Peg Duotaire is an impartial game played on a square
grid, with pegs on some vertices. On her move, Left hops a peg over
another one, provided they are vertically adjacent, and landing right
on the other side of it, and removes the second peg from the game.
On his move, Right hops a peg over another one, provided they are
horizontally adjacent, and landing right on the other side of it, and
removes the second peg from the game.

• She loves move, she loves me not is the name of the octal
game 0.3, which is equivalent to the octal game 0.7.

• Snort is a partizan game played on an undirected graph with vertices
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either uncoloured or coloured black or white. A move of Left consists
in choosing an uncoloured vertex and colouring it black, while a move
of Right would be to do the same with the colour white. An extra
condition is that no two adjacent vertices should have different colours.
Another way of seeing the game is to play it on the graph of available
moves: a position is an undirected graph with all vertices coloured
black, white or grey; a move of Left is to choose a black or grey vertex,
remove it from the game with all its white coloured neighbours, and
change the colour of its other neighbours to black; a move of Right
is to choose a white or grey vertex, remove it from the game with
all its black coloured neighbours, and change the colour of its other
neighbours to white.

• Timber is an impartial game played on a directed graph. On a move,
a player chooses an arc (x, y) of the graph and removes it along with all
that is still connected to the endpoint y in the underlying undirected
graph where the arc (x, y) has already been removed. Another way of
seeing it is to put a vertical domino on every arc of the directed graph,
and consider that if one domino is toppled, it topples the dominoes in
the direction it was toppled and creates a chain reaction. The direction
of the arc indicates the direction in which the domino can be initially
toppled, but has no incidence on the direction it is toppled, or on the
fact that it is toppled, if a player has chosen to topple a domino which
will eventually topple it.

• Timbush is the natural partizan extension of Timber, played on a
directed graph with arcs coloured black, white, or grey. On her move,
Left chooses a black or grey arc (x, y) of the graph and removes it along
with all that is still connected to the endpoint y in the underlying
undirected graph. On his move, Right does the same with a white or
grey arc.

• Toppling Dominoes is a partizan game played on one or several
rows of dominoes coloured black, white, or grey. On her move, Left
chooses a black or grey domino and topples it with all dominoes (of
the same row) at its left, or with all dominoes (of the same row) at its
right. On his turn, Right does the same with a white or grey domino.

• VertexNim is an impartial game played on a weighted strongly-
connected directed graph with a token on a vertex. On a move, a
player decreases the weight of the vertex where the token is and slides
the token along a directed edge. When the weight of a vertex v is set
to 0, v is removed from the graph and all the pairs of arcs (p, v) and
(v, s) (with p and s not necessarily distinct) are replaced by an arc
(p, s).
VertexNim can also be played on a connected undirected graph G by
seeing it as a symmetric directed graph where the vertex set remains
the same and the arc set is {(u, v), (v, u)|(u, v) ∈ E(G)}.
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• Vertex NimG is an impartial game played on a weighted directed
graph with a token on a vertex. There exist two variants of the game,
the Move then Remove version and the Remove then Move version. In
the Move then Remove version, a player’s move is to slide the token
through an arc and then decrease the weight of the vertex on which
they moved the token to. In the Remove then Move version, a player’s
move is to decrease the weight of the vertex where the token is and
then slide the token through an arc. When the weight of a vertex is set
to 0, the vertex is removed from the game. In the Remove then Move
version, there is a variant where it is still possible to move to vertices
of weight 0, ending the game as no move is possible from there.
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Appendix B

Appendix: Omitted proofs

B.1 Proof of Theorem 3.30

Theorem 3.30 If a > b > c are numbers, then aLRcRLb has value{
a
∣∣{b|c}

}
. Moreover, if a > b, then aEcRLb also has value

{
a
∣∣{b|c}

}
.

We cut the proof into two claims, one proving aLRcRLb has value{
a
∣∣{b|c}

}
, the other proving aEcRLb has value

{
a
∣∣{b|c}

}
.

We start by proving aLRcRLb has value
{
a|{b

∣∣c}
}
. We first prove some

preliminary lemmas on options of aLRcRLb.

Lemma B.1 Let a, b be numbers such that a > b. For any Right option bR

obtained from b toppling rightward and any Right option aR obtained from
a toppling leftward, we have aRLRbR > b.

Proof. We prove that Left has a winning strategy in aRLRbR − b whoever
plays first. When Left starts, she can move to aR−b, which is positive. Now
consider the case when Right starts, and his possible moves from aRLRbR−b.
If Right plays in −b, we get

• aRLRbR + (−b)R. Recall that since b is taken in its canonical form,
there is only one Right option to −b, namely (−b)R0 . Here Left can
answer to aR + (−b)R0 , which is positive.

Consider now Right’s possible moves in aRLRbR. Toppling rightward, Right
can move to:

• (aR)R − b, positive.
• aRL− b, positive as aRL > aR > a.
• aRLR(bR)R − b. Then Left can answer to aR − b, which is positive.

Toppling leftward, Right can move to:

• (aR)RLRbR− b. Then Left can answer to (aR)R− b, which is positive.
• bR − b, positive.
• (bR)R − b, positive.

�

Lemma B.2 Let a, b, c be numbers such that a > b > c. For any Right
option bR obtained from b toppling rightward, we have aLRcRLbR > {b|c}.

Proof. We prove that Left has a winning strategy in aLRcRLbR − {b|c}
whoever plays first. When Left starts, she can move to a − {b|c}, which is
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positive. Now consider the case when Right starts, and his possible moves
from aLRcRLbR − {b|c}. If Right plays in −{b|c}, we get

• aLRcRLbR − b. Then Left can answer to a− b, which is positive.

Consider now Right’s possible moves in aLRcRLbR. Toppling rightward,
Right can move to:

• aR − {b|c}, positive.
• aL− {b|c}, positive.
• aLRcR − {b|c}, positive as aLRcR > {a|c} > {b|c}.
• aLRc− {b|c}, positive.
• aLRcRL(bR)R−{b|c}. Then Left can answer to (bR)R−{b|c}, which

is positive by Corollary 3.34

Toppling leftward, Right can move to:

• aRLRcRLbR − {b|c}. Then Left can answer to aR − {b|c}, which is
positive.

• cRLbR − {b|c}, positive by Lemma 3.39
• cRRLbR − {b|c}. Then Left can answer to cRRLbR − c, which is

positive by Lemma B.1
• LbR − {b|c}, positive by Corollary 3.34
• (bR)R − {b|c}, positive by Corollary 3.34

�

Lemma B.3 Let a, b, c be numbers such that a > b > c. For any Left option
aL obtained from a toppling leftward, we have aLLRcRLb < a.

Proof. We prove that Right has a winning strategy in aLLRcRLb − a
whoever plays first. When Right starts, he can move to cRLb− a, which is
negative. Now consider the case when Left starts, and her possible moves
from aLLRcRLb− a. If Left plays in −a, we get

• aLLRcRLb+(−a)L0 . Then Right can answer to cRLb+(−a)L0 , which
is negative.

Consider now Left’s possible move in cRLb. Toppling rightward, Left can
move to:

• (aL)L − a, negative.
• aL − a, negative.
• aLLRcL − a. Then Right can answer to cL − a, which is negative.
• aLLRcR− a. Then Right can answer to cR− a, which is negative.
• aLLRcRLbL − a. Then Right can answer to aLLRc − a, which is

negative by Lemma 3.35.

Toppling leftward, Left can move to:

• (aL)LLRcRLb − a. Then Right can answer to cRLb − a, which is
negative.

• RcRLb− a, negative.
• cLRLb− a. Then Right can answer to cL − a, which is negative.
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• b− a, negative.
• bL − a, negative.

�

Lemma B.4 Let a, b, c be numbers such that a > b > c. For any Left option
bL obtained from b toppling rightward, we have cRLbL <

{
a|{b

∣∣c}
}
.

Proof. We prove that Right has a winning strategy in cRLbL −
{
a|{b

∣∣c}
}

whoever plays first. When Right starts, he can move to c−
{
a|{b

∣∣c}
}
, which

is negative. Now consider the case when Left starts, and her possible moves
from cRLbL −

{
a|{b

∣∣c}
}
. If Left plays in −

{
a|{b

∣∣c}
}
, we get

• cRLbL − {b|c}, negative by Lemma 3.40.

Consider now Right’s possible moves in cRLbL. Toppling rightward, Left
can move to:

• cL −
{
a|{b

∣∣c}
}
. Then Right can answer to cL − a, which is negative.

• cR−
{
a|{b

∣∣c}
}
. Then Right can answer to cR− a, which is negative.

• cRL(bL)L−
{
a|{b

∣∣c}
}
. Then Right can answer to cRL(bL)L−a, which

is negative by Lemma 3.35.

Toppling leftward, Left can move to:

• cLRLbL −
{
a|{b

∣∣c}
}
. Then Right can answer to cLRLbL − a, which

is negative by Lemma B.1.
• bL −

{
a|{b

∣∣c}
}
. Then Right can answer to bL − a, which is negative.

• (bL)L −
{
a|{b

∣∣c}
}
. Then Right can answer to (bL)L − a, which is

negative.

�

We can now prove the following claim.

Claim B.5 Let a, b, c be numbers such that a > b > c. We have
aLRcRLb =

{
a|{b

∣∣c}
}
.

Proof. We prove that the second player has a winning strategy in
aLRcRLb−

{
a|{b

∣∣c}
}
. Consider first the case where Right starts and his

possible moves from aLRcRLb −
{
a|{b

∣∣c}
}
. If Right plays in −

{
a|{b

∣∣c}
}
,

we get

• aLRcRLb− a. Then Left can answer to a− a which has value 0.

Consider now Right’s possible moves in aLRcRLb. Toppling leftward, Right
can move to:

• aRLRcRLb −
{
a|{b

∣∣c}
}
. Then Left can answer to aR −

{
a|{b

∣∣c}
}
,

which is positive.
• cRLb−

{
a|{b

∣∣c}
}
. Then Left can answer to cRLb− {b|c} which has

value 0.
• cRRLb−

{
a|{b

∣∣c}
}
. Then Left can answer to cRRLb− {b|c}, which

is positive by Lemma 3.40.
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• Lb−
{
a|{b

∣∣c}
}
. Then Left can answer to Lb−{b|c}, which is positive

by Corollary 3.34.
• bR−

{
a|{b

∣∣c}
}
. Then Left can answer to bR−{b|c}, which is positive

by Corollary 3.34.

Toppling rightward, Right can move to:

• aR −
{
a|{b

∣∣c}
}
, positive.

• aL−
{
a|{b

∣∣c}
}
, positive.

• aLRcR −
{
a|{b

∣∣c}
}
. Then Left can answer to aLRcR − {b|c}, which

is positive by Lemma 3.40.
• aLRc −

{
a|{b

∣∣c}
}
. Then Left can answer to aLRc − {b|c}, which is

positive if a > b, and has value 0 if a = b.
• aLRcRLbR−

{
a|{b

∣∣c}
}
. Then Left can answer to aLRcRLbR−{b|c},

which is positive when a > b by Lemma B.2, or to bR −
{
a|{b

∣∣c}
}
,

which is positive when a = b.

Now consider the case where Left starts and her possible moves from
aLRcRLb−

{
a|{b

∣∣c}
}
. If Left plays in −

{
a|{b

∣∣c}
}
, we get

• aLRcRLb−{b|c}. Then Right can answer to cRLb−{b|c} which has
value 0.

Consider now Left’s possible move in aLRcRLb. Toppling rightward, Left
can move to:

• aLRcRLbL−
{
a|{b

∣∣c}
}
. Then Right can answer to cRLbL−

{
a|{b

∣∣c}
}
,

which is negative by Lemma B.4.
• aLRcR−

{
a|{b

∣∣c}
}
. Then Right can answer to cR−

{
a|{b

∣∣c}
}
, which

is negative.
• aLRcL −

{
a|{b

∣∣c}
}
. Then Right can answer to cL −

{
a|{b

∣∣c}
}
, which

is negative.
• a−

{
a|{b

∣∣c}
}
. Then Right can answer to a− a which has value 0.

• aL −
{
a|{b

∣∣c}
}
. Then Right can answer to aL − a, which is negative.

Toppling leftward, Left can move to:

• bL −
{
a|{b

∣∣c}
}
. Then Right can answer to bL − a, which is negative.

• b−
{
a|{b

∣∣c}
}
. Then Right can answer to b− a, which is negative.

• cLRLb−
{
a|{b

∣∣c}
}
. Then Right can answer to cL −

{
a|{b

∣∣c}
}
, which

is negative.
• RcRLb−

{
a|{b

∣∣c}
}
. Then Right can answer to Rc−

{
a|{b

∣∣c}
}
, which

is negative.
• aLLRcRLb −

{
a|{b

∣∣c}
}
. Then Right can answer to aLLRcRLb − a,

which is negative by Lemma B.3 when a > b, or to aLLRc−
{
a|{b

∣∣c}
}
,

which is negative by Lemma B.4 when a = b.

�

As an example, here is a representation of
{
− 1|{−7

4 | − 2}
}
:
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We now prove that aEcRLb has value
{
a|{b

∣∣c}
}
. Again, we first prove

some preliminary lemmas on options of aEcRLb.

Lemma B.6 Let a, b, c be numbers such that a > b > c. For any Right
option bR obtained from b toppling rightward, we have aEcRLbR > {b|c}.

Proof. We prove that Left has a winning strategy in aEcRLbR − {b|c}
whoever plays first. When Left starts, she can move to bR − {b|c}, which
is positive by Corollary 3.34. Now consider the case when Right starts, and
his possible moves from aEcRLbR − {b|c}. If Right plays in −{b|c}, we get

• aEcRLbR − b. Then Left can answer to a− b, which is positive.

Consider now Right’s possible moves in aEcRLbR. Toppling rightward,
Right can move to:

• aR − {b|c}, positive.
• a− {b|c}, positive.
• aEcR − {b|c}. Then Left can answer to a− {b|c}, which is positive.
• aEc− {b|c}, positive.
• aEcRL(bR)R − {b|c}. Then Left can answer to (bR)R − {b|c}, which

is positive by Corollary 3.34.

Toppling leftward, Right can move to:

• aREcRLbR − {b|c}. Then Left can answer to aR − {b|c}, which is
positive.

• cRLbR −{b|c}. Then Left can answer to bR −{b|c}, which is positive
by Corollary 3.34.

• cRRLbR−{b|c}. Then Left can answer to bR−{b|c}, which is positive
by Corollary 3.34.

• LbR − {b|c}, positive by Corollary 3.34.
• (bR)R − {b|c}, positive by Corollary 3.34.

�

Lemma B.7 Let a, b, c be numbers such that a > b > c. For any Left option
aL obtained from a toppling leftward, we have aLEcRLb < a.

Proof. We prove that Right has a winning strategy in aLEcRLb−a whoever
plays first. When Right starts, he can move to aL−a, which is negative. Now
consider the case when Left starts, and her possible moves from aLEcRLb−a.
If Left plays in −a, we get

• aLEcRLb+ (−a)L. Then Right can answer to cRLb+ (−a)L, which
is negative.

Consider now Left’s possible moves in aLEcRLb. Toppling rightward, Left
can move to:

• (aL)L − a, negative.
• aL − a, negative.
• aLEcL − a. Then Right can answer to cL − a, which is negative.
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• aLEcR− a. Then Right can answer to cR− a, which is negative.
• aLEcRLbL − a. Then Right can answer to aL − a, which is negative.

Toppling leftward, Left can move to:
• (aL)LEcRLb − a. Then Right can answer to cRLb − a, which is

negative.
• cRLb− a, negative.
• cLRLb− a. Then Right can answer to cL − a, which is negative.
• b− a, negative.
• bL − a, negative.

�

We can now prove the following claim.

Claim B.8 Let a, b be numbers such that a > b > c. We have
aEcRLb =

{
a|{b

∣∣c}
}
.

Proof. We prove that the second player has a wining strategy in
aEcRLb−

{
a|{b

∣∣c}
}
. Consider first the case where Right starts and his

possible moves from aEcRLb−
{
a|{b

∣∣c}
}
. If Right plays in −

{
a|{b

∣∣c}
}
, we

get
• aLRcRLb− a. Then Left can answer to a− a which has value 0.

Consider now Right’s possible moves in aEcRLb. Toppling leftward, Right
can move to:

• aREcRLb−
{
a|{b

∣∣c}
}
. Then Left can answer to aR−

{
a|{b

∣∣c}
}
, which

is positive.
• cRLb−

{
a|{b

∣∣c}
}
. Then Left can answer to cRLb− {b|c} which has

value 0.
• cRRLb−

{
a|{b

∣∣c}
}
. Then Left can answer to cRRLb−{b|c} which is

positive by Lemma 3.40.
• Lb−

{
a|{b

∣∣c}
}
. Then Left can answer to Lb−{b|c}, which is positive

by Corollary 3.34.
• bR−

{
a|{b

∣∣c}
}
. Then Left can answer to bR−{b|c}, which is positive

by Corollary 3.34.

Toppling rightward, Right can move to:
• aR −

{
a|{b

∣∣c}
}
, positive.

• a−
{
a|{b

∣∣c}
}
, positive.

• aEcR −
{
a|{b

∣∣c}
}
. Then Left can answer to aEcR − {b|c}, which is

positive by Lemma 3.42.
• aEc −

{
a|{b

∣∣c}
}
. Then Left can answer to aEc − {b|c}, which is

positive.
• aEcRLbR −

{
a|{b

∣∣c}
}
. Then Left can answer to aEcRLbR − {b|c},

which is positive by Lemma B.6.
Now consider the case where Left starts and her possible moves from
aEcRLb−

{
a|{b

∣∣c}
}
. If Left plays in −

{
a|{b

∣∣c}
}
, we get
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• aEcRLb − {b|c}. Then Right can answer to cRLb − {b|c} which has
value 0.

Consider now Left’s possible move in aEcRLb. Toppling rightward, Left can
move to:

• aEcRLbL−
{
a|{b

∣∣c}
}
. Then Right can answer to cRLbL−

{
a|{b

∣∣c}
}
,

which is negative by Lemma B.4.
• aEcR −

{
a|{b

∣∣c}
}
. Then Right can answer to cR −

{
a|{b

∣∣c}
}
, which

is negative.
• aEcL−

{
a|{b

∣∣c}
}
. Then Right can answer to cL−

{
a|{b

∣∣c}
}
, which is

negative.
• a−

{
a|{b

∣∣c}
}
. Then Right can answer to a− a which has value 0.

• aL −
{
a|{b

∣∣c}
}
. Then Right can answer to aL − a, which is negative.

Toppling leftward, Left can move to:

• bL −
{
a|{b

∣∣c}
}
. Then Right can answer to bL − a, which is negative.

• b−
{
a|{b

∣∣c}
}
. Then Right can answer to b− a, which is negative.

• cLRLb−
{
a|{b

∣∣c}
}
. Then Right can answer to cL −

{
a|{b

∣∣c}
}
, which

is negative.
• cRLb−

{
a|{b

∣∣c}
}
. Then Right can answer to c−

{
a|{b

∣∣c}
}
, which is

negative.
• aLEcRLb−

{
a|{b

∣∣c}
}
. Then Right can answer to aLEcRLb−a, which

is negative by Lemma B.7.

�

As an example, here is a representation of
{
3|{1| − 3

2}
}
:

B.2 Proof of Theorem 3.31

Theorem 3.31 If a > b > c > d are numbers, then both bRLaLRdRLc
and bRLaEdRLc have value

{
{a|b}

∣∣{c|d}
}
.

We cut the proof into two claims, one proving bRLaLRdRLc has value{
{a|b}

∣∣{c|d}
}
, the other proving bRLaEdRLc has value

{
{a|b}

∣∣{c|d}
}
.

We start by proving bRLaLRdRLc has value
{
{a|b}

∣∣{c|d}
}
. We first

prove some preliminary lemmas on options of bRLaLRdRLc.

Lemma B.9 Let a, b, c, d be numbers such that a > b > c > d.
For any Right option bR obtained from b toppling leftward, we have
bRRLa >

{
{a|b}

∣∣{c|d}
}
.

Proof. We prove Left has a winning strategy in bRRLa −
{
{a|b}

∣∣{c|d}
}

whoever plays first. When Left starts, she can move to bRRLa − {c|d},
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which is positive by Lemma 3.40. Now consider the case when Right starts,
and his possible moves from bRRLa −

{
{a|b}

∣∣{c|d}
}
. If Right plays in

−
{
{a|b}

∣∣{c|d}
}
, we get

• bRRLa− {a|b}, positive by Lemma 3.40.

Consider now Right’s possible moves in bRRLa. Toppling rightward, Right
can move to:

• (bR)R−
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to (bR)R−{c|d}, which

is positive.
• bR −

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to bR − {c|d}, which is

positive.
• bRRLaR−

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to aR−

{
{a|b}

∣∣{c|d}
}
,

which is positive.

Toppling leftward, Right can move to:

• (bR)RRLa−
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to a−

{
{a|b}

∣∣{c|d}
}
,

which is positive.
• La−

{
{a|b}

∣∣{c|d}
}
, positive.

• aR −
{
{a|b}

∣∣{c|d}
}
, positive.

�

Lemma B.10 Let a, b, c, d be numbers such that a > b > c > d.
For any Right option dR obtained from d toppling rightward, we have
bRLaLRdR > {c|d}.

Proof. We prove that Left has a winning strategy in bRLaLRdR − {c|d}
whoever plays first. When Left starts, she can move to bRLa−{c|d}, which
is positive. Now consider the case when Right starts, and his possible moves
from bRLaLRdR − {c|d}. If Right plays in −{c|d}, we get

• bRLaLRdR− c. Then Left can answer to bRLa− c, which is positive.

Consider now Right’s possible moves in bRLaLRdR. Toppling rightward,
Right can move to:

• bR − {c|d}, positive.
• b− {c|d}, positive.
• bRLaR−{c|d}. Then Left can answer to aR−{c|d}, which is positive.
• bRLaL−{c|d}. Then Left can answer to aL−{c|d}, which is positive.
• bRLaLR(dR)R−{c|d}. Then Left can answer to bRLa−{c|d}, which

is positive.

Toppling leftward, Right can move to:

• bRRLaLRdR−{c|d}. Then Left can answer to bRRLa−{c|d}, which
is positive.

• LaLRdR−{c|d}. Then Left can answer to La−{c|d}, which is positive.
• aRLRdR−{c|d}. Then Left can answer to aR−{c|d}, which is positive.
• dR − {c|d}. Then Left can answer to dR − d, which is positive.
• (dR)R − {c|d}. Then Left can answer to (dR)R − d, which is positive.
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�

Lemma B.11 Let a, b, c, d be numbers such that a > b > c > d.
For any Right option cR obtained from c toppling rightward, we have
bRLaLRdRLcR > {c|d}.

Proof. We prove that Left has a winning strategy in bRLaLRdRLcR−{c|d}
whoever plays first. When Left starts, she can move to bRLa−{c|d}, which
is positive. Now consider the case when Right starts, and his possible moves
from bRLaLRdRLcR − {c|d}. If Right plays in −{c|d}, we get

• bRLaLRdRLcR − c. Then Left can answer to bRLa − c, which is
positive.

Consider now Right’s possible moves in bRLaLRdRLcR. Toppling right-
ward, Right can move to:

• bR − {c|d}, positive.
• b− {c|d}, positive.
• bRLaR − {c|d}, positive.
• bRLaL− {c|d}, positive.
• bRLaLRdR −{c|d}. Then Left can answer to bRLa−{c|d}, which is

positive.
• bRLaLRd− {c|d}, positive.
• bRLaLRdRL(cR)R − {c|d}. Then Left can answer to bRLa− {c|d},

which is positive.

Toppling leftward, Right can move to:

• bRRLaLRdRLcR − {c|d}. Then Left can answer to bRRLa − {c|d},
which is positive as bRRLa > {a|b}.

• LaLRdRLcR − {c|d}. Then Left can answer to La − {c|d}, which is
positive.

• aRLRdRLcR − {c|d}. Then Left can answer to aR − {c|d}, which is
positive.

• dRLcR − {c|d}, positive by Lemma 3.39.
• dRRLcR−{c|d}. Then Left can answer to cR−{c|d}, which is positive

by Corollary 3.34.
• LcR − {c|d}, positive by Corollary 3.34.
• (cR)R − {c|d}, positive by Corollary 3.34.

�

We can now prove the following claim.

Claim B.12 Let a, b, c, d be numbers such that a > b > c > d. We have
bRLaLRdRLc =

{
{a|b}

∣∣{c|d}
}
.

Proof. To prove that bRLaLRdRLc =
{
{a|b}

∣∣{c|d}
}
, we prove that the

second player has a winning strategy in bRLaLRdRLc −
{
{a|b}

∣∣{c|d}
}
.
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Without loss of generality, we may assume Right starts the game, and con-
sider his possible moves from bRLaLRdRLc−

{
{a|b}

∣∣{c|d}
}
. If Right plays

in −
{
{a|b}

∣∣{c|d}
}
, we get

• bRLaLRdRLc− {a|b}. Then Left can answer to bRLa− {a|b} = 0.

Consider now Right’s possible moves in bRLaLRdRLc. Toppling rightward,
Right can move to:

• bR −
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to bR − {c|d}, which is

positive.
• b−

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to b−{c|d}, which is positive.

• bRLaR−
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to aR−

{
{a|b}

∣∣{c|d}
}
,

which is positive.
• bRLaL−

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to aL−

{
{a|b}

∣∣{c|d}
}
,

which is positive.
• bRLaLRdR −

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to

bRLaLRdR − {c|d}, which is positive by Lemma B.10.
• bRLaLRd −

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to

bRLaLRd− {c|d}, which is positive.
• bRLaLRdRLcR −

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to

bRLaLRdRLcR − {c|d}, which is positive by Lemma B.11.

Toppling leftward, Right can move to:

• bRRLaLRdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to

bRRLa−
{
{a|b}

∣∣{c|d}
}
, which is positive by Lemma B.9.

• LaLRdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to

La−
{
{a|b}

∣∣{c|d}
}
, which is positive.

• aRLRdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to

aR −
{
{a|b}

∣∣{c|d}
}
, which is positive.

• dRLc−
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to dRLc− {c|d} which

has value 0.
• dRRLc −

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to dRRLc − {c|d},

which is positive by Lemma 3.40.
• Lc −

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to Lc − {c|d}, which is

positive by Corollary 3.34.
• cR −

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to cR − {c|d}, which is

positive by Corollary 3.34.

�

As an example, here is a representation of
{
{1|1}

∣∣{1
2 |0}

}
:

We now prove bRLaEdRLc has value
{
{a|b}

∣∣{c|d}
}
. Again, we first

prove some preliminary lemmas on options of bRLaEdRLc.



Chapter B. Appendix: Omitted proofs 199

Lemma B.13 Let a, b, c, d be numbers such that a > b > c > d.
For any Right option dR obtained from d toppling rightward, we have
bRLaEdR > {c|d}.

Proof. We prove Left has a winning strategy in bRLaEdR −{c|d} whoever
plays first. When Left starts, she can move to bRLa − {c|d}, which is
positive. Now consider the case when Right starts, and his possible moves
from bRLaEdR − {c|d}. If Right plays in −{c|d}, we get

• bRLaEdR − c. Then Left can answer to bRLa− c, which is positive.
Consider now Right’s possible moves in bRLaEdR. Toppling rigtward, Right
can move to:

• bR − {c|d}, positive.
• b− {c|d}, positive.
• bRLaR − {c|d}, positive as bRLaR > {a|b} > {c|d}.
• bRLa− {c|d}, positive.
• bRLaE(dR)R − {c|d}. Then Left can answer to bRLa− {c|d}, which

is positive.
Toppling leftward, Right can move to:

• bRRLaEdR − {c|d}. Then Left can answer to bRRLa− {c|d}, which
is positive.

• LaEdR−{c|d}. Then Left can answer to La−{c|d}, which is positive.
• aREdR−{c|d}. Then Left can answer to aR−{c|d}, which is positive.
• dR − {c|d}. Then Left can answer to dR − d, which is positive.
• (dR)R − {c|d}. Then Left can answer to (dR)R − d, which is positive.

�

Lemma B.14 Let a, b, c, d be numbers such that a > b > c > d.
For any Right option cR obtained from c toppling rightward, we have
bRLaEdRLcR > {c|d}.

Proof. We prove Left has a winning strategy in bRLaEdRLcR − {c|d}
whoever plays first. When Left starts, she can move to bRLa−{c|d}, which
is positive. Now consider the case when Right starts, and his possible moves
from bRLaEdRLcR − {c|d}. If Right plays in −{c|d}, we get

• bRLaEdRLcR − c. Then Left can answer to bRLa − c, which is
positive.

Consider now Right’s possible moves in bRLaEdRLcR. Toppling rightward,
Right can move to:

• bR − {c|d}, positive.
• b− {c|d}, positive.
• bRLaR − {c|d}, positive as bRLaR > {a|b} > {c|d}.
• bRLa− {c|d}, positive.
• bRLaEdR − {c|d}. Then Left can answer to bRLa − {c|d}, which is

positive.
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• bRLaEd− {c|d}, positive.
• bRLaEdRL(cR)R−{c|d}. Then Left can answer to cR−{c|d}, which

is positive by Corollary 3.34.

Toppling leftward, Right can move to:

• bRRLaEdRLcR − {c|d}. Then Left can answer to bRRLa − {c|d},
which is positive.

• LaEdRLcR − {c|d}, positive by Lemma B.6.
• aREdRLcR − {c|d}. Then Left can answer to aR − {c|d}, which is

positive.
• dRLcR − {c|d}, positive by Lemma 3.39.
• dRRLcR−{c|d}. Then Left can answer to cR−{c|d}, which is positive

by Corollary 3.34.
• LcR − {c|d}, positive by Corollary 3.34.
• (cR)R − {c|d}, positive by Corollary 3.34.

�

We can now prove the following claim.

Claim B.15 Let a, b, c, d be numbers such that a > b > c > d. We have
bRLaEdRLc =

{
{a|b}

∣∣{c|d}
}
.

Proof. To prove that bRLaEdRLc =
{
{a|b}

∣∣{c|d}
}
, we prove that the sec-

ond player has a winning strategy in bRLaEdRLc −
{
{a|b}

∣∣{c|d}
}
. With-

out loss of generality, we may assume Right starts the game, and consider
his possible moves from bRLaEdRLc −

{
{a|b}

∣∣{c|d}
}
. If Right plays in

−
{
{a|b}

∣∣{c|d}
}
, we get

• bRLaEdRLc − {a|b}. Then Left can answer to bRLa − {a|b} which
has value 0.

Consider now Right’s possible move in bRLaEdRLc. Toppling rightward,
Right can move to:

• bR −
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to bR − {c|d}, which is

positive.
• b−

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to b−{c|d}, which is positive.

• bRLaR−
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to aR−

{
{a|b}

∣∣{c|d}
}
,

which is positive.
• bRLa−

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to bRLa−{c|d}, which

is positive.
• bRLaEdR−

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to bRLaEdR−{c|d},

which is positive by Lemma B.13.
• bRLaEd−

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to bRLaEd−{c|d},

which is positive.
• bRLaEdRLcR −

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to

bRLaEdRLcR − {c|d}, which is positive by Lemma B.14.

Toppling leftward, Right can move to:
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• bRRLaEdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to

bRRLa−
{
{a|b}

∣∣{c|d}
}
, which is positive by Lemma B.9.

• LaEdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to

La−
{
{a|b}

∣∣{c|d}
}
, which is positive.

• aREdRLc −
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to

aR −
{
{a|b}

∣∣{c|d}
}
, which is positive.

• dRLc−
{
{a|b}

∣∣{c|d}
}
. Then Left can answer to dRLc− {c|d} which

has value 0.
• dRRLc −

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to dRRLc − {c|d},

which is positive by Lemma 3.40.
• Lc −

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to Lc − {c|d}, which is

positive by Corollary 3.34.
• cR −

{
{a|b}

∣∣{c|d}
}
. Then Left can answer to cR − {c|d}, which is

positive by Corollary 3.34.

�

As an example, here is a representation of
{
{5
2 |1}

∣∣{−1
4 | −

1
2}
}
:

B.3 Proof of Lemma 3.80

Lemma 3.80

1. ∀n > 1, x2nB ≡+ 3
4 and x2n−1B ≡+ 1

2 .

2. ∀n > 0, Bx2nB ≡+ 1 and Bx2n+1B ≡+ 3
2 .

3. ∀n > 0, Bx2nW ≡+ 0 and Bx2n+1W ≡+ ∗.

4. ∀n > 0,m > 0, x2nBx2mB >+ 1, x2n+1Bx2m+1B >+ 1,
x2n+1Bx2mB >+ 3

4 and x2nBx2m+1B >+ 3
4 .

5. ∀n > 0,m > 0, x2nBx2mW >+ −1
4 , x

2n+1Bx2m+1W >+ −1
4 ,

x2n+1Bx2mW >+ −1
2 and x2nBx2m+1W >+ −1

2 .

6. ∀n > 0,m > 0, Bx2nBx2mB >+ 3
2 , Bx2n+1Bx2m+1B >+ 3

2 ,

Bx2n+1Bx2mB >+ 3
2 and Bx2nBx2m+1B >+ 3

2 .

7. ∀n > 0,m > 0, Bx2nBx2mW >+ 0, Bx2n+1Bx2m+1W >+ 0,
Bx2n+1Bx2mW >+ 1

2 and Bx2nBx2m+1W >+ 1
2 .

Proof. We show the results by induction on the number of vertices of the
graph.

We start with 1. First consider Left plays first, and all her possible moves
from x2nB. She can move to:
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• x2n−1WB, which has value x2n−1W +B, having value 1
2 by induction.

• W + oWx2n−2B, having value at most W + x2n−1B which is negative
by induction.

• xiWo+W +oWx2n−i−3B, having value at most xi+1+W +x2n−i−2B
which is negative by induction.

• x2n−2Wo+W , having value at most x2n−1 +W which is negative by
induction.

• xiWx2n−i−1B, which has value at most 1
2 by induction.

• x2n−1Wo, which has value at most x2n, having value 0.

Now consider Right plays first, and all his possible moves from x2nB. He
can move to:

• x2n−1BB, which has value x2n−1 +B having value 1 or 1∗.
• B + oBx2n−2B, having value at least B + x2n−1B which has value 3

2 .
• xiBo+ B + oBx2n−i−3B, having value at least xi+1 + B + x2n−i−2B

which has value more than 1.
• x2n−2Bo+B+B, having value at least x2n−1+B+B which has value

2 or 2∗.
• xiBx2n−i−1B, which has value more than 3

4 by induction.

Now consider Left plays first, and all her possible moves from x2n−1B.
She can move to:

• x2n−2WB, which has value 1
4 by induction.

• W + oWx2n−3B, having value at most W +x2n−2B which is negative.
• xiWo+W +oWx2n−i−4B, having value at most xi+1+W +x2n−i−3B

which is negative.
• x2n−3Wo+W , having value at most x2n−2 +W which is negative.
• xiWx2n−i−2B, which has value at most 1

4 by induction.
• x2n−2Wo, which has value at most x2n−1, having value 0 or ∗.

Now consider Right plays first, and all his possible moves from x2n−1B. He
can move to:

• x2n−2BB, which has value 1.
• B + oBx2n−3B, having value at least B + x2n−2B which has value 7

4 .
• xiBo+ B + oBx2n−i−4B, having value at least xi+1 + B + x2n−i−3B

which has value more than 1.
• x2n−3Bo+B+B, having value at least x2n−2+B+B which has value

2.
• xiBx2n−i−2B, which has value at least 1 by induction.

We now prove 2. As BB ≡+ 1 and BxB ≡+ 3
2 has been established

earlier, we can consider n > 1.
First consider Left plays first, and all her possible moves from Bx2nB.

She can move to:

• oWx2n−1B, having value at most x2nB which has value 3
4 .

• BxiWo + W + oWx2n−i−3B, which has value at most
Bxi+1 +W + x2n−i−2B, having value at most 1

4 .
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• BWx2n−1B which has value 1∗.
• BxiWx2n−i−1B. Without loss of generality, we may assume i is odd.

Then Right can answer to Bxi−1BWx2n−i−1B, having value 1, and
proving that BxiWx2n−i−1B has a value that is not 1 or more.

Now consider Right plays first, and all his possible moves from Bx2nB. He
can move to:

• B+B+ oBx2n−2B, which has value at least B+B+x2n−1B, having
value 5

2 .
• BxiBo + B + oBx2n−i−3B, which has value at least

Bxi+1 +B + x2n−i−2B, having value at least 9
4 .

• BBx2n−1B which has value 3
2 .

• BxiBx2n−1B which has value at least 3
2 .

Now consider Left plays first, and all her possible moves from Bx2n+1B. She
can move to:

• oWx2nB, having value at most x2n+1B which has value 1
2 .

• W +oWx2n−1B, which has value at most W +x2nB having value −1
4 .

• BxiWo + W + oWx2n−i−2B, which has value at most
Bxi+1 +W + x2n−i−1B, having value at most 1

2 .
• BWx2nB which has value 1.
• BxiWx2n−iB. Then Right can answer to Bxi−1BWx2n−iB, having

value 1∗ or 3
2 , and proving that BxiWx2n−iB has a value that is not

3
2 or more.

Now consider Right plays first, and all his possible moves from Bx2n+1B.
He can move to:

• B + B + oBx2n−1B, which has value at least B + B + x2nB, having
value 11

4 .
• BxiBo + B + oBx2n−i−2B, which has value at least

Bxi+1 +B + x2n−i−1B, having value at least 2.
• BBx2nB which has value 7

4 .
• BxiBx2n−iB which has value more than 3

2 .

We now prove 3. Bx2nW ≡+ 0 follows from Theorem 3.51. From
Bx2n+1W , Left can move to BWx2nW having value 0, and Right can move
to Bx2nBW having value 0.

We now prove 4. If m = 0, x2nBx2mB has value 1 and x2n+1Bx2mB has
value 1 or 1∗, hence for these two cases, we may consider m > 1. If n = 0,
x2nBx2mB has value 1 and x2nBx2m+1B has value 3

2 , hence for these two
cases, we may consider n > 1. Consider Right plays first, and his possible
moves from x2nBx2mB − 1. He can move to:

• x2nBx2mB. Then Left can answer to x2nBWx2m−1B, which has value
3
4∗.

• B +Bx2n−2Bx2mB − 1, having value more than 3
2 .

• xiBo + B + oBx2n−i−3Bx2mB − 1, which has value at least
xi+1 +B + x2n−i−2Bx2mB − 1 having value more than 3

4 .
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• x2n−2Bo + B + Bx2mB − 1, which has value at least
x2n−1 +B +Bx2mB − 1, having value 1 or 1∗.

• x2nB + B + oBx2m−2B − 1, which has value at least
x2nB +B + x2m−1B − 1, having value 5

4 .
• x2nBxiBo + B + oBx2m−i−3B − 1, which has value at least

x2noxi+1 +B + x2m−i−2B − 1, having value at least 1
2 or 1

2∗.
• x2nBx2m−2Bo + B + B − 1, which has value at least

x2nox2m−1 +B +B − 1, having value 1 or 1∗.
• Bx2n−1Bx2mB − 1, having value at least 1

2 .
• xiBx2n−i−1Bx2mB − 1. Then Left can answer to

xiBWx2n−i−2Bx2mB − 1, having value at least 0 when i is
odd, or to xi−1WBx2n−i−1Bx2mB − 1, having value at least 0 when
i is even.

• x2n−1BBx2mB − 1, having value at least x2n−1B + x2mB − 1, which
has value 1

4 .
• x2nBxiBx2m−i−1B − 1. Then Left can answer to

x2n−1WBxiBx2m−i−1B − 1, which has value at least 0.

Consider Right plays first, and his possible moves from x2n+1Bx2m+1B − 1.
He can move to:

• x2n+1Bx2m+1B. Then Left can answer to x2n+1BWx2mB, which has
value 1

2 .
• B +Bx2n−1Bx2m+1B − 1, having value more than 3

2 .
• xiBo + B + oBx2n−i−2Bx2m+1B − 1, which has value at least

xi+1 +B + x2n−i−1Bx2m+1B − 1 having value more than 3
4 .

• x2n−1Bo + B + Bx2m+1B − 1, which has value at least
x2n +B +Bx2m+1B − 1, having value 3

2 .
• x2n+1B + B + oBx2m−1B − 1, which has value at least

x2n+1B +B + x2mB − 1, having value 5
4 .

• x2n+1BxiBo + B + oBx2m−i−2B − 1, which has value at least
x2n+1oxi+1 +B + x2m−i−1B − 1, having value at least 1

2 or 1
2∗.

• x2n+1Bx2m−1Bo + B + B − 1, which has value at least
x2n+1ox2m +B +B − 1, having value at least 1 or 1∗.

• Bx2nBx2m+1B − 1, having value at least 1
2 .

• xiBx2n−iBx2m+1B − 1. Then Left can answer to
xiBWx2n−i−1Bx2m+1B − 1, having value at least 0 when i is
odd, or to xi−1WBx2n−iBx2m+1B − 1, having value at least 0 when
i is even.

• x2nBBx2m+1B−1, having value at least x2nB + x2mB − 1, which has
value 1

2 .
• x2n+1BxiBx2m−iB − 1. Then Left can answer to

x2n+1BWxi−1Bx2m−iB − 1, which has value at least 0.

If Left plays first in x2n+1Bx2mB− 3
4 , she can move to x2n+1Bx2m−1WB− 3

4 ,
having value at least 0. Now consider Right plays first, and his possible moves
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from x2n+1Bx2mB − 3
4 . He can move to:

• x2n+1Bx2mB − 1
2 . Then Left can answer to x2n+1Bx2m−1WB − 1

2 ,
which has value at least 1

4 .
• B +Bx2n−1Bx2mB − 3

4 , having value at least 7
4 .

• xiBo + B + oBx2n−i−2Bx2mB − 3
4 , which has value at least

xi+1 +B + x2n−i−1Bx2mB − 3
4 having value more than 1.

• x2n−1Bo + B + Bx2mB − 3
4 , which has value at least

x2n +B +Bx2mB − 3
4 , having value 5

4 .
• x2n+1B + B + oBx2m−2B − 3

4 , which has value at least
x2n+1B +B + x2m−1B − 3

4 , having value 5
4 .

• x2n+1BxiBo + B + oBx2m−i−3B − 3
4 , which has value at least

x2n+1oxi+1 +B + x2m−i−2B − 3
4 , having value at least 3

4 or 3
4∗.

• x2n+1Bx2m−2Bo + B + B − 3
4 , which has value at least

x2n+1ox2m−1 +B +B − 3
4 , having value 5

4 or 5
4∗.

• Bx2nBx2mB − 3
4 , having value more than 3

4 .
• xiBx2n−iBx2mB − 3

4 . Then Left can answer to
xi−1WBx2n−iBx2mB − 3

4 , having value at least 0.
• x2n+1BxiBx2m−i−1B − 3

4 . Then Left can answer to
x2nWBxiBx2m−i−1B − 3

4 , which has value at least 0.

If Left plays first in x2nBx2m+1B − 3
4 , she can move to x2nBWx2mB − 3

4 ,
having value 0. Now consider Right plays first, and his possible moves from
x2nBx2m+1B − 3

4 . He can move to:

• x2nBx2m+1B − 1
2 . Then Left can answer to x2nBWx2mB − 1

2 , which
has value 1

4 .
• B +Bx2n−2Bx2m+1B − 3

4 , having value at least 7
4 .

• xiBo + B + oBx2n−i−3Bx2m+1B − 3
4 , which has value at least

xi+1 +B + x2n−i−2Bx2m+1B − 3
4 , having value more than 1.

• x2n−2Bo + B + Bx2m+1B − 3
4 , which has value at least

x2n−1 +B +Bx2m+1B − 3
4 , having value at least 7

4 or 7
4∗.

• x2nB + B + oBx2m−1B − 3
4 , which has value at least

x2nB +B + x2mB − 3
4 , having value 7

4 .
• x2nBxiBo + B + oBx2m−i−2B − 3

4 , which has value at least
x2noxi+1 +B + x2m−i−1B − 3

4 , having value at least 3
4 or 3

4∗.
• x2nBx2m−1Bo + B + B − 3

4 , which has value at least
x2nox2m +B +B − 3

4 , having value 5
4 or 5

4∗.
• Bx2n−1Bx2m+1B − 3

4 , having value more than 3
4 .

• xiBx2n−i−1Bx2m+1B − 3
4 . Then Left can answer to

xi−1WBx2n−i−1Bx2m+1B − 3
4 , which has value at least 0.

• x2nBxiBx2m−iB − 3
4 . Then Left can answer to

x2n−1WBxiBx2m−iB − 3
4 , which has value more than 1

4 .

We now prove 5. If n = 0, x2nBx2mW has value 0 and x2nBx2m+1W
has value ∗, hence for these two cases, we may consider n > 1. If m = 0,
x2nBx2mW has value −1

4 and x2n+1Bx2mW has value −1
2 , hence for these
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two cases, we may consider m > 1. Consider Right plays first and his possible
moves from x2nBx2mW + 1

4 . He can move to:

• x2nBx2mW + 1
2 . Then Left can answer to x2n−1WBx2mW + 1

2 , which
has value 0.

• B + oBx2n−2Bx2mW + 1
4 , which has value at least

B + x2n−1Bx2mW + 1
4 , having value at least 1.

• xiBo + B + oBx2n−i−3Bx2mW + 1
4 , which has value at least

xi+1 +B + x2n−i−2Bx2mW + 1
4 , having value at least 3

4 or 3
4∗.

• x2n−2Bo + B + Bx2mW + 1
4 , which has value at least

x2n−1 +B +Bx2mW + 1
4 , having value 5

4 or 5
4∗.

• x2nB + B + oBx2m−2W + 1
4 , which has value at least

x2nB +B + x2m−1W + 1
4 , having value 3

2 .
• x2nBxiBo + B + oBx2m−i−3W + 1

4 , which has value at least
x2noxi+1 +B + x2m−i−2W + 1

4 , having value 1
2 or 1

2∗.
• x2nBx2m−2Bo+B + 1

4 , which has value at least x2nox2m−1 +B + 1
4 ,

having value 5
4 or 5

4∗.
• x2nBx2m−1Bo+ 1

4 , which has value at least x2nox2m + 1
4 , having value

1
4 or 1

4∗.
• xiBx2n−i−1Bx2mW + 1

4 . Then Left can answer to
xiBx2n−i−2WBx2mW + 1

4 , which has value at least 0.
• x2n−1BBx2mW+ 1

4 , having value at least x2n−1B + x2mW + 1
4 , which

has value 0.
• x2nBxiBx2m−i−1W + 1

4 . Then Left can answer to
x2n−1WBxiBx2m−i−1W + 1

4 , which has value at least 1
4 .

Consider Right plays first and his possible moves from x2n+1Bx2m+1W + 1
4 .

He can move to:

• x2n+1Bx2m+1W + 1
2 . Then Left can answer to x2n+1BWx2mW + 1

2 ,
which has value 0.

• B + oBx2n−1Bx2m+1W + 1
4 , which has value at least

B + x2nBx2m+1W + 1
4 , having value at least 1.

• xiBo + B + oBx2n−i−2Bx2m+1W + 1
4 , which has value at least

xi+1 +B + x2n−i−1Bx2m+1W + 1
4 , having value at least 3

4 or 3
4∗.

• x2n−1Bo + B + Bx2m+1W + 1
4 , which has value at least

x2n +B +Bx2m+1W + 1
4 , having value 5

4∗.
• x2n+1B + B + oBx2m−1W + 1

4 , which has value at least
x2n+1B +B + x2mW + 1

4 , having value 1.
• x2n+1BxiBo + B + oBx2m−i−2W + 1

4 , which has value at least
x2n+1oxi+1 +B + x2m−i−1W + 1

4 , having value at least 1
2 or 1

2∗.
• x2n+1Bx2m−1Bo+B+ 1

4 , which has value at least x2n+1ox2m +B + 1
4 ,

having value 5
4 or 5

4∗.
• x2n+1Bx2mBo+ 1

4 , which has value at least x2n+1ox2m+1 + 1
4 , having

value 1
4 or 1

4∗.
• xiBx2n−iBx2m+1W + 1

4 . Then Left can answer to
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xiBx2n−iBWx2mW + 1
4 , which has value at least 1

4 .
• x2n+1BBx2mW + 1

4 , which has value at least x2n+1 +Bx2mW + 1
4 ,

having value 1
4 or 1

4∗.
• x2n+1BxiBx2m−iW + 1

4 . Then Left can answer to
x2n+1Bxi−1WBx2m−iW + 1

4 , which has value at least 0 when i
is even, or to x2n+1BxiBWx2m−i−1W + 1

4 , which has value at least 1
4

when i is odd.
• x2n+1Bx2mBW + 1

4 , having value more than 0.

Consider Right plays first and his possible moves from x2n+1Bx2mW + 1
2 .

He can move to:

• x2n+1Bx2mW +1. Then Left can answer to x2nWBx2mW +1, which
has value 1

4 .
• B+oBx2n−1Bx2mW+1

2 , which has value at least B + x2nBx2mW + 1
2 ,

having value at least 5
4 .

• xiBo + B + oBx2n−i−2Bx2mW + 1
2 , which has value at least

xi+1 +B + x2n−i−1Bx2mW + 1
2 , having value at least 1 or 1∗.

• x2n−1Bo + B + Bx2mW + 1
2 , which has value at least

x2n +B +Bx2mW + 1
2 , having value 3

2 .
• x2n+1B + B + oBx2m−2W + 1

2 , which has value at least
x2n+1B +B + x2m−1W + 1

2 , having value 3
2 .

• x2n+1BxiBo + B + oBx2m−i−3W + 1
2 , which has value at least

x2n+1oxi+1 +B + x2m−i−2W + 1
2 , having value at least 3

4 or 3
4∗.

• x2n+1Bx2m−2Bo + B + 1
2 , which has value at least

x2n+1ox2m−1 +B + 1
2 , having value 3

2 or 3
2∗.

• x2n+1Bx2m−1Bo+ 1
2 , which has value at least x2n+1ox2m + 1

2 , having
value 1

2 or 1
2∗.

• xiBx2n−iBx2mW + 1
2 . Then Left can answer to

xiBx2n−i−1WBx2mW + 1
2 , which has value at least 0.

• x2nBBx2mW + 1
2 , which has value at least x2nB+ x2mW + 1

2 , having
value 1

2 .
• x2n+1BxiBx2m−i−1W + 1

2 . Then Left can answer to
x2nWBxiBx2m−i−1W + 1

2 , which has value at least 1
4 .

Consider Right plays first and his possible moves from x2nBx2m+1W + 1
2 .

He can move to:

• x2nBx2m+1W + 1. Then Left can answer to x2n−1WBx2m+1W + 1,
which has value 1

2∗.
• B + oBx2n−2Bx2m+1W + 1

2 which has value at least
B + x2n−1Bx2m+1W + 1

2 , having value at least 1.
• xiBo + B + oBx2n−i−3Bx2m+1W + 1

2 , which has value at least
xi+1 +B + x2n−i−2Bx2m+1W + 1

2 , having value at least 1 or 1∗.
• x2n−2Bo + B + Bx2m+1W + 1

2 , which has value at least
x2n−1 +B +Bx2m+1W + 1

2 , having value 3
2 or 3

2∗.
• x2nB + B + oBx2m−1W + 1

2 , which has value at least
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x2nB +B + x2mW + 1
2 , having value 3

2 .
• x2nBxiBo + B + oBx2m−i−2W + 1

2 , which has value at least
x2noxi+1 +B + x2m−i−1W + 1

2 , having value at least 3
4 or 3

4∗.
• x2nBx2m−1Bo + B + 1

2 , which has value at least x2nox2m +B + 1
2 ,

having value 3
2 or 3

2∗.
• x2nBx2m−1Bo+ 1

2 , which has value at least x2nox2m + 1
2 , having value

1
2 or 1

2∗.
• xiBx2n−i−1Bx2m+1W + 1

2 . Then Left can answer to
xiBx2n−i−2WBx2m+1W + 1

2 , which has value at least 1
4∗.

• x2n−1BBx2m+1W+ 1
2 , which has value at least x2n−1B+x2m+1W+ 1

2 ,
having value 1

2 .
• x2nBxiBx2m−iW + 1

2 . Then Left can answer to
x2n−1WBxiBx2m−iW + 1

2 , which has value at least 0.

We now prove 6. If n = 0, Bx2nBx2mB has value 7
4 and Bx2nBx2m+1B

has value 3
2 , hence for these two cases, we may consider n > 1. If m = 0,

Bx2nBx2mB has value 7
4 and Bx2n+1Bx2mB has value 3

2 , hence for these
two cases, we may consider m > 1. If Left plays first in Bx2nBx2mB− 3

2 , she
can move to BWx2n−1Bx2mB− 3

2 which has value at least 0. Now consider
Right plays first, and his possible moves from Bx2nBx2mB− 3

2 . He can move
to:

• Bx2nBx2mB−1. Then Left can answer to BWx2n−1Bx2mB−1 which
has value at least 1

2 .
• B + B + oBx2n−2Bx2mB − 3

2 , which has value at least
B +B + x2n−1Bx2mB − 3

2 , having value more than 5
4 .

• BxiBo + B + oBx2n−i−3Bx2mB − 3
2 , which has value at least

Bxi+1 +B + x2n−i−2Bx2mB − 3
2 , having value more than 3

4 .
• Bx2n−2Bo + B + Bx2mB − 3

2 , which has value at least
Bx2n−1 +B +Bx2mB − 3

2 , having value 1.
• BxiBx2n−i−1Bx2mB − 3

2 , which has value at least
BxiBx2n−i−1 + x2mB − 3

2 , having value more than 0.

If Left plays first in Bx2n+1Bx2m+1B − 3
2 , she can move to

BWx2nBx2m+1B − 3
2 which has value at least 0. Now consider Right plays

first, and his possible moves from Bx2n+1Bx2m+1B − 3
2 . He can move to:

• Bx2n+1Bx2m+1B − 1. Then Left can answer to BWx2nBx2m+1B − 1
which has value at least 1

2 .
• B + B + oBx2n−1Bx2m+1B − 3

2 , which has value at least
B +B + x2nBx2m+1B − 3

2 , having value more than 5
4 .

• BxiBo + B + oBx2n−i−2Bx2m+1B − 3
2 , which has value at least

Bxi+1 +B + x2n−i−1Bx2m+1B − 3
2 , having value more than 3

4 .
• Bx2n−1Bo + B + Bx2m+1B − 3

2 , which has value at least
Bx2n +B +Bx2m+1B − 3

2 , having value 7
4 .

• BxiBx2n−iBx2m+1B − 3
2 . Then Left can answer to

BxiBx2n−iBWx2mB − 3
2 , which has value more than 0.
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Consider Right plays first, and his possible moves from Bx2n+1Bx2mB − 3
2 .

He can move to:

• Bx2n+1Bx2mB−1. Then Left can answer to BWx2nBx2mB−1 which
has value at least 0.

• B + B + oBx2n−1Bx2mB − 3
2 , which has value at least

B +B + x2nBx2mB − 3
2 , having value at least 3

2 .
• BxiBo + B + oBx2n−i−2Bx2mB − 3

2 , which has value at least
Bxi+1 +B + x2n−i−1Bx2mB − 3

2 , having value more than 3
4 .

• Bx2n−1Bo + B + Bx2mB − 3
2 , which has value at least

Bx2n +B +Bx2mB − 3
2 , having value 5

4 .
• Bx2n+1B + B + oBx2m−2B − 3

2 , which has value at least
Bx2n+1B +B + x2m−1B − 3

2 , having value 3
2 .

• Bx2n+1BxiBo + B + oBx2m−i−3B − 3
2 , which has value at least

Bx2n+1Bxi+1 +B + x2m−i−2B − 3
2 , having value more than 3

4 .
• Bx2n+1Bx2m−2Bo + B + B − 3

2 , which has value at least
Bx2n+1Bx2m−1 +B +B − 3

2 , having value more than 5
4 .

• BxiBx2n−iBx2mB− 3
2 , which has value at least BxiBx2n−i+x2mB− 3

2 ,
having value at least 1

4 .
• Bx2n+1BxiBx2m−i−1B − 3

2 . Then Left can answer to
Bx2nWBxiBx2m−i−1B − 3

2 , which has value at least 0.

Bx2nBx2m+1B has the same value as Bx2nBx2m+1B.
We now prove 7. If n = 0, Bx2nBx2mW has value 1

4 and Bx2nBx2m+1W
has value 1

2 , hence for these two cases, we may consider n > 1. If m = 0,
Bx2nBx2mW has value 0 and Bx2n+1Bx2mW has value 1

2 , hence for these
two cases, we may consider m > 1. Consider Right plays first, and his
possible moves from Bx2nBx2mW . He can move to:

• B + B + oBx2n−2Bx2mW , which has value at least
B +B + x2n−1Bx2mW , having value at least 3

2 .
• BxiBo + B + oBx2n−i−3Bx2mW , which has value at least

Bxi+1 +B + x2n−i−2Bx2mW , having value at least 1.
• Bx2n−2Bo + B + Bx2mW , which has value at least

Bx2n−1 +B +Bx2mW , having value 3
2 .

• Bx2nB + B + oBx2m−2W , which has value at least
Bx2nB +B + x2m−1W , having value 3

2 .
• Bx2nBxiBo + B + oBx2m−i−3W , which has value at least

Bx2nBxi+1 +B + x2m−i−2W , having value more than 1.
• Bx2nBx2m−2Bo+B, which has value at least Bx2nBx2m−1 +B, hav-

ing value more than 7
4 .

• Bx2nBx2m−1Bo, which has value at least Bx2nBx2m, having value at
least 1.

• BBx2n−1Bx2mW , having value at least 1
2 .

• BxiBx2n−i−1Bx2mW . Then Left can answer to
BxiBx2n−i−2WBx2mW , which has value at least 0.
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• Bx2n−1BBx2mW , which has value at least Bx2n−1 +Bx2mW , having
value at least 1

2 .
• Bx2nBxiBx2m−i−1W . Then Left can answer to

Bx2n−1WBxiBx2m−i−1W , which has value at least 1
2∗.

Consider Right plays first, and his possible moves from Bx2n+1Bx2m+1W .
He can move to:

• B + B + oBx2n−1Bx2m+1W , which has value at least
B +B + x2nBx2m+1W , having value at least 3

2 .
• BxiBo + B + oBx2n−i−2Bx2m+1W , which has value at least

Bxi+1 +B + x2n−i−1Bx2m+1W , having value at least 1.
• Bx2n−1Bo + B + Bx2m+1W , which has value at least

Bx2n +B +Bx2m+1W , having value 7
4∗.

• Bx2n+1B + B + oBx2m−1W , which has value at least
Bx2n+1B +B + x2mW , having value 7

4 .
• Bx2n+1BxiBo + B + oBx2m−i−2W , which has value at least

Bx2n+1Bxi+1 +B + x2m−i−1W , having value more than 1.
• Bx2n+1Bx2m−1Bo + B, which has value at least Bx2n+1Bx2m +B,

having value more than 7
4 .

• Bx2n+1Bx2mBo, which has value at least Bx2n+1Bx2m+1, having
value at least 1.

• BBx2nBx2m+1W , having value at least 1
2 .

• BxiBx2n−iBx2m+1W . Then Left can answer to
BxiBx2n−i−1WBx2m+1W , which has value at least 1

2∗.
• Bx2nBBx2m+1W , which has value at least Bx2n +Bx2m+1W , having

value 3
4∗.

• Bx2n+1BxiBx2m−iW . Then Left can answer to
Bx2nWBxiBx2m−iW , which has value at least 0.

Consider Right plays first, and his possible moves from Bx2n+1Bx2mW − 1
2 .

He can move to:

• Bx2n+1Bx2mW . Then Left can answer to Bx2nWBx2mW , which has
value 0.

• B + B + oBx2n−1Bx2mW − 1
2 , which has value at least

B +B + x2nBx2mW − 1
2 , having value at least 5

4 .
• BxiBo + B + oBx2n−i−2Bx2mW − 1

2 , which has value at least
Bxi+1 +B + x2n−i−1Bx2mW − 1

2 , having value at least 1
2 .

• Bx2n−1Bo + B + Bx2mW − 1
2 , which has value at least

Bx2n +B +Bx2mW − 1
2 , having value 5

4 .
• Bx2n+1B + B + oBx2m−2W − 1

2 , which has value at least
Bx2n+1B +B + x2m−1W − 1

2 , having value 3
2 .

• Bx2n+1BxiBo + B + oBx2m−i−3W − 1
2 , which has value at least

Bx2n+1Bxi+1 +B + x2m−i−2W − 1
2 , having value more than 3

4 .
• Bx2n+1Bx2m−2Bo + B − 1

2 , which has value at least
Bx2n+1Bx2m−1 +B − 1

2 , having value at least 3
2 .
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• Bx2n+1Bx2m−1Bo − 1
2 , which has value at least Bx2n+1Bx2m − 1

2 ,
having value more than 1

4 .
• BBx2nBx2mW − 1

2 , having value at least 1
4 .

• BxiBx2n−iBx2mW − 1
2 . Then Left can answer to

BxiBx2n−i−1WBx2mW − 1
2 , which has value at least 0.

• Bx2nBBx2mW − 1
2 , which has value at least Bx2n +Bx2mW − 1

2 ,
having value at least 1

4 .
• Bx2n+1BxiBx2m−i−1W − 1

2 . Then Left can answer to
Bx2nWBxiBx2m−i−1W − 1

2 , which has value at least 0.

Consider Right plays first, and his possible moves from Bx2nBx2m+1W − 1
2 .

He can move to:

• Bx2nBx2m+1W . Then Left can answer to Bx2nBWx2mW , which has
value 0.

• B + B + oBx2n−2Bx2m+1W − 1
2 , which has value at least

B +B + x2n−1Bx2m+1W − 1
2 , having value at least 1.

• BxiBo + B + oBx2n−i−3Bx2m+1W − 1
2 , which has value at least

Bxi+1 +B + x2n−i−2Bx2m+1W − 1
2 , having value at least 1

2 .
• Bx2n−2Bo + B + Bx2m+1W − 1

2 , which has value at least
Bx2n−1 +B +Bx2m+1W − 1

2 , having value 1∗.
• Bx2nB + B + oBx2m−1W − 1

2 , which has value at least
Bx2nB +B + x2mW − 1

2 , having value 3
4 .

• Bx2nBxiBo + B + oBx2m−i−2W − 1
2 , which has value at least

Bx2nBxi+1 +B + x2m−i−1W − 1
2 , having value more than 3

4 .
• Bx2nBx2m−1Bo+B− 1

2 , which has value at least Bx2nBx2m +B − 1
2 ,

having value at least 3
2 .

• Bx2nBx2mBo− 1
2 , which has value at least Bx2nBx2m+1 − 1

2 , having
value more than 1

4 .
• BxiBx2n−i−1Bx2m+1W − 1

2 . Then Left can answer to
BxiBx2n−i−1BWx2mW − 1

2 , which has value at least 0.
• Bx2nBBx2mW − 1

2 , which has value at least Bx2n +Bx2mW − 1
2 ,

having value 1
4 .

• Bx2nBxiBx2m−iW − 1
2 . Then Left can answer to

Bx2nBxiBWx2m−i−1W − 1
2 , which has value at least 0 when i

is odd, or to Bx2nBxi−1WBx2m−iW − 1
2 , which has value at least 0

when i is even.
• Bx2nBx2mBW − 1

2 , having value more than 0.

�
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