T. Abbas and A. Dutta, p21 in cancer: intricate networks and multiple activities, Nature Reviews Cancer, vol.23, issue.6, 2009.
DOI : 10.1038/nrc2657

P. Achard, J. Renou, R. Berthomé, N. Harberd, and P. Genschik, Plant DELLAs Restrain Growth and Promote Survival of Adversity by Reducing the Levels of Reactive Oxygen Species, Current Biology, vol.18, issue.9, 2008.
DOI : 10.1016/j.cub.2008.04.034

URL : https://hal.archives-ouvertes.fr/hal-00309509

P. Achard, A. Gusti, S. Cheminant, M. Alioua, S. Dhondt et al., Gibberellin Signaling Controls Cell Proliferation Rate in Arabidopsis, Current Biology, vol.19, issue.14, 2009.
DOI : 10.1016/j.cub.2009.05.059

URL : https://hal.archives-ouvertes.fr/hal-00408776

S. Adachi, K. Minamisawa, Y. Okushima, S. Inagaki, K. Yoshiyama et al., Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis, 10004?9. Epub, p.21613568, 2011.
DOI : 10.1073/pnas.1103584108

P. Adams, W. Sellers, S. Sharma, A. Wu, C. Nalin et al., Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors., Molecular and Cellular Biology, vol.16, issue.12
DOI : 10.1128/MCB.16.12.6623

L. Aguirrezabal, S. Bouchier?combaud, A. Radziejwoski, M. Dauzat, S. Cookson et al., Plasticity to soil water deficit in Arabidopsis thaliana: dissection of leaf development into underlying growth dynamic and cellular variables reveals invisible phenotypes, Plant, Cell and Environment, vol.111, issue.12, pp.2216-2717081254, 2006.
DOI : 10.1007/BF00395973

J. Alonso and A. Stepanova, T-DNA Mutagenesis in Arabidopsis, Methods Mol Biol, vol.236, pp.177-8814501065, 2003.
DOI : 10.1385/1-59259-413-1:177

V. Amador, S. Ge, P. Santamaría, D. Guardavaccaro, and M. Pagano, APC/CCdc20 Controls the Ubiquitin-Mediated Degradation of p21 in Prometaphase, Molecular Cell, vol.27, issue.3, pp.462-7317679094, 2007.
DOI : 10.1016/j.molcel.2007.06.013

K. Apel and H. Hirt, REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction, Annual Review of Plant Biology, vol.55, issue.1
DOI : 10.1146/annurev.arplant.55.031903.141701

S. Araki, M. Ito, T. Soyano, R. Nishihama, and Y. Machida, Mitotic Cyclins Stimulate the Activity of c-Myb-like Factors for Transactivation of G2/M Phase-specific Genes in Tobacco, 32979?88. Epub, p.15175336, 2004.
DOI : 10.1074/jbc.M403171200

C. Auld, K. Fernandes, and R. Morrison, Skp2-mediated p27(Kip1) degradation during S/G2 phase progression of adipocyte hyperplasia, Journal of Cellular Physiology, vol.101, issue.1, pp.101-1117096381, 2007.
DOI : 10.1002/jcp.20915

J. Azimzadeh, J. Traas, and M. Pastuglia, Molecular aspects of microtubule dynamics in plants, 513?9. Review. PMID, p.11641067, 2001.
DOI : 10.1016/S1369-5266(00)00209-0

V. Baldin and C. O. Death?tag, Med Sci (Paris), p.15581473, 2004.

M. Barow, Endopolyploidy in seed plants, BioEssays, vol.19, issue.3, p.16479577, 2006.
DOI : 10.1002/bies.20371

T. Becker, S. Haferkamp, M. Dijkstra, L. Scurr, M. Frausto et al., The chromatin remodelling factor BRG1 is a novel binding partner of the tumor suppressor p16INK4a, Molecular Cancer, vol.8, issue.1, pp.4-10, 2009.
DOI : 10.1186/1476-4598-8-4

G. Beemster, D. Veylder, L. Vercruysse, S. West, G. Rombaut et al., Genome-Wide Analysis of Gene Expression Profiles Associated with Cell Cycle Transitions in Growing Organs of Arabidopsis, PLANT PHYSIOLOGY, vol.138, issue.2, pp.734-4315863702, 2005.
DOI : 10.1104/pp.104.053884

D. Bird, M. Buruiana, Y. Zhou, L. Fowke, and H. Wang, Arabidopsis cyclin-dependent kinase inhibitors are nuclear-localized and show different localization patterns within the nucleoplasm, 861?72. Epub, p.17253089, 2007.
DOI : 10.1007/s00299-006-0294-3

B. Bisbis, F. Delmas, J. Joubès, A. Sicard, M. Hernould et al., Cyclin-dependent Kinase (CDK) Inhibitors Regulate the CDK-Cyclin Complex Activities in Endoreduplicating Cells of Developing Tomato Fruit, Journal of Biological Chemistry, vol.281, issue.11, pp.7374-8316407228, 2006.
DOI : 10.1074/jbc.M506587200

M. Boniotti and C. Gutierrez, A cell-cycle-regulated kinase activity phosphorylates plant retinoblastoma protein and contains, in Arabidopsis, a CDKA/cyclin D complex, The Plant Journal, vol.15, issue.3, 2001.
DOI : 10.1046/j.1365-313X.2001.01160.x

R. Booher and D. Beach, Involvement of a type 1 protein phosphatase encoded by bws1+ in fission yeast mitotic control. Cell, Jun, vol.1657, issue.6, pp.1009-162544292, 1989.

D. Boyes, A. Zayed, R. Ascenzi, A. Mccaskill, N. Hoffman et al., Growth Stage-Based Phenotypic Analysis of Arabidopsis: A Model for High Throughput Functional Genomics in Plants, THE PLANT CELL ONLINE, vol.13, issue.7, pp.1499-51011449047, 2001.
DOI : 10.1105/tpc.13.7.1499

J. Boruc, H. Van-den-daele, J. Hollunder, S. Rombauts, E. Mylle et al., Functional modules in the Arabidopsis core cell cycle binary protein?protein interaction network, Plant Cell. 2010, vol.22, issue.4, p.20407024, 2010.

V. Boudolf, R. Barrôco, E. Jde, A. Verkest, A. Beeckman et al., B1? type cyclin?dependent kinases are essential for the formation of stomatal complexes in Arabidopsis thaliana. Plant Cell, Epub, vol.16, issue.4, pp.945-5515031414, 2004.

V. Boudolf, T. Lammens, J. Boruc, J. Van-leene, H. Van-den-daele et al., CDKB1;1 Forms a Functional Complex with CYCA2;3 to Suppress Endocycle Onset, PLANT PHYSIOLOGY, vol.150, issue.3, 2009.
DOI : 10.1104/pp.109.140269

M. Bourdon, J. Pirrello, C. Cheniclet, O. Coriton, M. Bourge et al., Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth, Development, vol.139, issue.20, pp.3817-2622991446, 2012.
DOI : 10.1242/dev.084053

URL : https://hal.archives-ouvertes.fr/hal-00855581

J. Bramsiepe, K. Wester, C. Weinl, F. Roodbarkelari, R. Kasili et al., Endoreplication Controls Cell Fate Maintenance, PLoS Genetics, vol.16, issue.6, pp.1000996-20585618, 2010.
DOI : 10.1371/journal.pgen.1000996.s005

URL : https://hal.archives-ouvertes.fr/hal-00524172

E. Bray, Genes commonly regulated by water-deficit stress in Arabidopsis thaliana, 2331?41. Epub, p.15448178, 2004.
DOI : 10.1093/jxb/erh270

C. Breuer, S. Shirasu, and K. , Endoreduplication and Cell-size Control in Plants, p.21094078, 2007.
DOI : 10.1002/9780470015902.a0020097

C. Breuer, T. Ishida, and K. Sugimoto, Developmental control of endocycles and cell growth in plants, Current Opinion in Plant Biology, vol.13, issue.6
DOI : 10.1016/j.pbi.2010.10.006

A. Capron, L. Okrész, and P. Genschik, First glance at the plant APC/C, a highly conserved ubiquitin???protein ligase, Trends in Plant Science, vol.8, issue.2, pp.83-912597875, 2003.
DOI : 10.1016/S1360-1385(02)00028-6

C. Mdel, M. Boniotti, M. Caro, E. Schnittger, A. Gutierrez et al., DNA replication licensing affects cell proliferation or endoreplication in a cell type?specific manner. Plant Cell, 2004.

J. Castresana, Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis, Molecular Biology and Evolution, vol.17, issue.4, pp.540-5210742046, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026334

A. Cebolla, J. Vinardell, E. Kiss, B. Oláh, F. Roudier et al., The mitotic inhibitor ccs52 is required for endoreduplication and ploidy-dependent cell enlargement in plants, The EMBO Journal, vol.18, issue.16, pp.4476-8410449413, 1999.
DOI : 10.1093/emboj/18.16.4476

URL : https://hal.archives-ouvertes.fr/hal-00191037

C. Cenciarelli, D. Chiaur, D. Guardavaccaro, W. Parks, M. Vidal et al., Identification of a family of human F-box proteins, Current Biology, vol.9, issue.20, pp.1177-910531035, 1999.
DOI : 10.1016/S0960-9822(00)80020-2

C. Chevalier, M. Nafati, E. Mathieu?rivet, M. Bourdon, N. Frangne et al., Elucidating the functional role of endoreduplication in tomato fruit development, Annals of Botany, vol.107, issue.7, p.21199834, 2011.
DOI : 10.1093/aob/mcq257

F. Chevenet, C. Brun, A. Bañuls, B. Jacq, and C. R. , TreeDyn: towards dynamic graphics and annotations for analyses of trees, BMC Bioinformatics, vol.7, p.43917032440, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00321061

M. Churchman, M. Brown, N. Kato, V. Kirik, M. Hülskamp et al., SIAMESE, a Plant-Specific Cell Cycle Regulator, Controls Endoreplication Onset in Arabidopsis thaliana, THE PLANT CELL ONLINE, vol.18, issue.11, 2006.
DOI : 10.1105/tpc.106.044834

A. Ciechanover, Y. Hod, and A. Hershko, Reprint of ???A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes???, Biochemical and Biophysical Research Communications, vol.425, issue.3, p.22925675, 1978.
DOI : 10.1016/j.bbrc.2012.08.025

A. Ciechanover, H. Heller, S. Elias, A. Haas, and A. Hershko, ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation., Proceedings of the National Academy of Sciences, vol.77, issue.3, pp.1365-86769112, 1980.
DOI : 10.1073/pnas.77.3.1365

H. Claeys, A. Skirycz, K. Maleux, and D. Inzé, DELLA Signaling Mediates Stress-Induced Cell Differentiation in Arabidopsis Leaves through Modulation of Anaphase-Promoting Complex/Cyclosome Activity, PLANT PHYSIOLOGY, vol.159, issue.2, pp.739-786, 2012.
DOI : 10.1104/pp.112.195032

T. Cools, D. Veylder, and L. , DNA stress checkpoint control and plant development, 23?8. Epub, 2008.
DOI : 10.1016/j.pbi.2008.09.012

D. J. Cosgrove, Growth of the plant cell wall, Nature Reviews Molecular Cell Biology, vol.96, issue.11, pp.850-86110, 2005.
DOI : 10.1007/s004250000303

R. Creelman and J. Zeevaart, Abscisic Acid Accumulation in Spinach Leaf Slices in the Presence of Penetrating and Nonpenetrating Solutes, PLANT PHYSIOLOGY, vol.77, issue.1, pp.25-816664022, 1985.
DOI : 10.1104/pp.77.1.25

K. Culligan, C. Robertson, J. Foreman, P. Doerner, and A. Britt, ATR and ATM play both distinct and additive roles in response to ionizing radiation, The Plant Journal, vol.10, issue.6, pp.947-6117227549, 2006.
DOI : 10.1111/j.1365-313X.2006.02931.x

D. Clercq, A. Inzé, and D. , Cyclin-Dependent Kinase Inhibitors in Yeast, Animals, and Plants: A Functional Comparison, Critical Reviews in Biochemistry and Molecular Biology, vol.8, issue.5, pp.293-31316911957, 2006.
DOI : 10.1007/s00299-001-0434-8

D. Pozo, J. Boniotti, M. Gutierrez, and C. , Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin?SCF(AtSKP2) pathway in response to light. Plant Cell, 2002.

R. Deshaies and C. Scf, Ring H2?based ubiquitin ligases, Annu Rev Cell Dev Biol.435?67. Review, vol.15, p.10611969, 1999.
DOI : 10.1146/annurev.cellbio.15.1.435

D. Veylder, L. Beeckman, T. Beemster, G. Krols, L. Terras et al., Functional Analysis of Cyclin-Dependent Kinase Inhibitors of Arabidopsis, The Plant Cell, vol.13, issue.7, pp.1653-6811449057, 2001.
DOI : 10.2307/3871392

D. Veylder, L. Joubès, J. Inzé, and D. , Plant cell cycle transitions, Current Opinion in Plant Biology, vol.6, issue.6, 2003.
DOI : 10.1016/j.pbi.2003.09.001

D. Veylder, L. Beeckman, T. Inzé, and D. , The ins and outs of the plant cell cycle, Nature Reviews Molecular Cell Biology, vol.18, issue.8, pp.655-6517643126, 2007.
DOI : 10.1038/nrm2227

D. Veylder, L. Larkin, J. Schnittger, and A. , Molecular control and function of endoreplication in development and physiology, 624?34. Epub, p.21889902, 2011.
DOI : 10.1016/j.tplants.2011.07.001

URL : https://hal.archives-ouvertes.fr/hal-00638845

N. Dharmasiri, S. Dharmasiri, A. Jones, and M. Estelle, Auxin Action in a Cell-Free System, Current Biology, vol.13, issue.16, pp.1418-2212932326, 2003.
DOI : 10.1016/S0960-9822(03)00536-0

P. Donnelly, D. Bonetta, H. Tsukaya, R. Dengler, and N. Dengler, Cell Cycling and Cell Enlargement in Developing Leaves of Arabidopsis, Developmental Biology, vol.215, issue.2, pp.407-1910545247, 1999.
DOI : 10.1006/dbio.1999.9443

M. Dorée, Triggering cell mitosis in higher eukaryotes, Med Sci299?307. Review. French, vol.19, issue.3, p.12836412, 2003.

B. Edgar and T. Orr?weaver, Endoreplication Cell Cycles, 297?306. Review. No abstract available, p.11348589, 2001.
DOI : 10.1016/S0092-8674(01)00334-8

URL : http://doi.org/10.1016/s0092-8674(01)00334-8

R. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, p.15034147, 2004.
DOI : 10.1093/nar/gkh340

T. Evans, E. Rosenthal, J. Youngblom, D. Distel, and T. Hunt, Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division, Cell, vol.33, issue.2, pp.389-966134587, 1983.
DOI : 10.1016/0092-8674(83)90420-8

L. Farmer, A. Book, K. Lee, Y. Lin, H. Fu et al., The RAD23 Family Provides an Essential Connection between the 26S Proteasome and Ubiquitylated Proteins in Arabidopsis, The Plant Cell, vol.22, issue.1
DOI : 10.1105/tpc.109.072660

N. Ferrándiz, J. Caraballo, L. García?gutierrez, V. Devgan, M. Rodriguez?paredes et al., p21 as a Transcriptional Co-Repressor of S-Phase and Mitotic Control Genes, PLoS ONE, vol.277, issue.5, p.22662213, 2012.
DOI : 10.1371/journal.pone.0037759.s007

D. Francis, The plant cell cycle ??? 15??years on, New Phytologist, vol.20, issue.2, p.17388890, 2007.
DOI : 10.1111/j.1469-8137.2007.02038.x

K. Früh, M. Gossen, K. Wang, H. Bujard, P. Peterson et al., Displacement of housekeeping proteasome subunits by MHC?encoded LMPs: a newly discovered mechanism for modulating the multicatalytic proteinase complex, EMBO J. Jul, vol.1513, issue.14, pp.3236-448045254, 1994.

K. Fulop, A. Pettkó?szandtner, Z. Magyar, P. Miskolczi, E. Kondorosi et al., The Medicago CDKC;1-CYCLINT;1 kinase complex phosphorylates the carboxy-terminal domain of RNA polymerase II and promotes transcription, The Plant Journal, vol.11, issue.6, pp.810-82026, 2005.
DOI : 10.1111/j.1365-313X.2005.02421.x

URL : https://hal.archives-ouvertes.fr/hal-00019408

J. Gagne, B. Downes, S. Shiu, A. Durski, and R. Vierstra, The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis, Proceedings of the National Academy of Sciences, vol.99, issue.17, pp.11519-2412169662, 2002.
DOI : 10.1073/pnas.162339999

J. Gautier, M. Solomon, R. Booher, J. Bazan, and M. Kirschner, cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2, Cell, vol.67, issue.1, pp.197-2111913817, 1991.
DOI : 10.1016/0092-8674(91)90583-K

G. Goldstein, M. Scheid, U. Hammerling, D. Schlesinger, H. Niall et al., Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells., Proceedings of the National Academy of Sciences, vol.72, issue.1, pp.11-51078892, 1975.
DOI : 10.1073/pnas.72.1.11

N. Gonzalez, H. Vanhaeren, and D. Inzé, Leaf size control: complex coordination of cell division and expansion, Trends in Plant Science, vol.17, issue.6, pp.332-372, 2012.
DOI : 10.1016/j.tplants.2012.02.003

K. Gould, S. Moreno, D. Owen, S. Sazer, and P. Nurse, Phosphorylation at Thr167 is required for Schizosaccharomyces pombe P34cdc2 function, Trends in Cell Biology, vol.2, issue.2, pp.3297-3091655416, 1991.
DOI : 10.1016/0962-8924(92)90158-J

C. Granier, L. Aguirrezabal, K. Chenu, S. Cookson, M. Dauzat et al., permitted the identification of an accession with low sensitivity to soil water deficit, New Phytologist, vol.164, issue.3, pp.623-3516411964, 2006.
DOI : 10.1111/j.1469-8137.2005.01609.x

C. Granier and F. Tardieu, Multi-scale phenotyping of leaf expansion in response to environmental changes: the whole is more than the sum of parts, Plant, Cell & Environment, vol.58, issue.9, 2009.
DOI : 10.1111/j.1365-3040.2009.01955.x

S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Systematic Biology, vol.59, issue.3
DOI : 10.1093/sysbio/syq010

URL : https://hal.archives-ouvertes.fr/lirmm-00511784

A. Gusti, N. Baumberger, M. Nowack, S. Pusch, H. Eisler et al., The Arabidopsis thaliana F-Box Protein FBL17 Is Essential for Progression through the Second Mitosis during Pollen Development, PLoS ONE, vol.149, issue.3, p.4780, 2009.
DOI : 10.1371/journal.pone.0004780.t005

URL : https://hal.archives-ouvertes.fr/hal-00370009

C. Gutierrez, The Arabidopsis cell division cycle Arabidopsis Book, p.22303246, 2009.

A. Harb, A. Krishnan, M. Ambavaram, and A. Pereira, Molecular and Physiological Analysis of Drought Stress in Arabidopsis Reveals Early Responses Leading to Acclimation in Plant Growth, PLANT PHYSIOLOGY, vol.154, issue.3, p.20807999, 2010.
DOI : 10.1104/pp.110.161752

S. Hata, H. Kouchi, I. Suzuka, and T. Ishii, Isolation and characterization of cDNA clones for plant cyclins, EMBO J, vol.10, issue.9, pp.2681-81831125, 1991.

H. Hauser, M. Bardroff, G. Pyrowolakis, and S. Jentsch, A Giant Ubiquitin-conjugating Enzyme Related to IAP Apoptosis Inhibitors, The Journal of Cell Biology, vol.391, issue.6, pp.1415-229628897, 1998.
DOI : 10.1038/377248a0

C. Havens and J. Walter, Docking of a Specialized PIP Box onto Chromatin-Bound PCNA Creates a Degron for the Ubiquitin Ligase CRL4Cdt2, Molecular Cell, vol.35, issue.1, p.19595719, 2009.
DOI : 10.1016/j.molcel.2009.05.012

A. Hershko, A. Ciechanover, H. Heller, A. Haas, and I. Rose, Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis., Proceedings of the National Academy of Sciences, vol.77, issue.4, pp.1783-66990414, 1980.
DOI : 10.1073/pnas.77.4.1783

A. Hershko and A. Ciechanover, The ubiquitin system for protein degradation, Annu Rev Biochem.761?807. Review. No abstract available, vol.61, p.132323, 1992.

A. Hershko, D. Ganoth, V. Sudakin, A. Dahan, L. Cohen et al., Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2, J Biol Chem. Feb, vol.18269, issue.7, pp.4940-68106468, 1994.

G. Horiguchi and H. Tsukaya, Organ Size Regulation in Plants: Insights from Compensation, Frontiers in Plant Science, vol.2, p.22639585, 2011.
DOI : 10.3389/fpls.2011.00024

M. Hülskamp, S. Mis?a, and G. Jürgens, Genetic dissection of trichome cell development in Arabidopsis, Cell. Feb, vol.1176, issue.3, pp.555-668313475, 1994.

D. Inzé, Green light for the cell cycle, 657?62. Epub, p.15678103, 2005.
DOI : 10.1242/jcs.00250

D. Inzé, D. Veylder, and L. , Cell Cycle Regulation in Plant Development, Annual Review of Genetics, vol.40, issue.1, pp.77-10517094738, 2006.
DOI : 10.1146/annurev.genet.40.110405.090431

M. Ito, M. Iwase, H. Kodama, P. Lavisse, A. Komamine et al., A novel cis?acting element in promoters of plant B?type cyclin genes activates M phase?specific transcription, Plant Cell, vol.10, issue.3, pp.331-419501108, 1998.

M. Ito, S. Araki, S. Matsunaga, T. Itoh, R. Nishihama et al., G2/M? phase?specific transcription during the plant cell cycle is mediated by c?Myb?like transcription factors, ):1891?905. Erratum in, p.215911487700, 2001.

J. Ito, T. Batth, C. Petzold, A. Redding?johanson, A. Mukhopadhyay et al., Cytosolic Proteome Highlights Subcellular Partitioning of Central Plant Metabolism, Journal of Proteome Research, vol.10, issue.4, pp.1571-8221166475, 2011.
DOI : 10.1021/pr1009433

URL : https://hal.archives-ouvertes.fr/hal-00610475

P. Jackson, A. Eldridge, E. Freed, L. Furstenthal, J. Hsu et al., The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases, Trends in Cell Biology, vol.10, issue.10, 2000.
DOI : 10.1016/S0962-8924(00)01834-1

M. Jakoby, C. Weinl, S. Pusch, S. Kuijt, T. Merkle et al., Analysis of the Subcellular Localization, Function, and Proteolytic Control of the Arabidopsis Cyclin-Dependent Kinase Inhibitor ICK1/KRP1, ):1293?305. Epub, p.16766674, 2006.
DOI : 10.1104/pp.106.081406

J. Marc, J. , D. Falkenhan, M. T. Mader, G. Brininstool et al., Arp Schnittger Transcriptional Profiling of Mature Arabidopsis Trichomes Reveals That NOECK Encodes the MIXTA?Like Transcriptional Regulator MYB106, Plant Physiol, vol.148, issue.3, pp.1583-1602, 2008.

T. Jégu, D. Latrasse, M. Delarue, C. Mazubert, M. Bourge et al., Multiple functions of KRP5 connect endoreduplication and cell elongation, Plant Physiol, 2013.

J. Joubès and C. C. , Endoreduplication in higher plants, Plant Mol Biol. Review, vol.43, issue.5?6, pp.735-4511089873, 2000.
DOI : 10.1007/978-94-010-0936-2_15

T. Kamura, M. Conrad, Q. Yan, R. Conaway, and J. Conaway, The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2, Genes & Development, vol.13, issue.22, pp.2928-3310579999, 1999.
DOI : 10.1101/gad.13.22.2928

M. Karimi, D. Inzé, and A. Depicker, GATEWAY??? vectors for Agrobacterium-mediated plant transformation, Trends in Plant Science, vol.7, issue.5, pp.193-198, 2002.
DOI : 10.1016/S1360-1385(02)02251-3

R. Kasili, J. Walker, L. Simmons, J. Zhou, D. Veylder et al., SIAMESE Cooperates With the CDH1-like Protein CCS52A1 to Establish Endoreplication in Arabidopsis thaliana Trichomes, Genetics, vol.185, issue.1, p.20194967, 2010.
DOI : 10.1534/genetics.109.113274

J. Kim, K. Park, S. Chung, O. Bang, and C. Chung, Deubiquitinating Enzymes as Cellular Regulators, ):9?18. Review. PMID, p.12944365, 2003.
DOI : 10.1093/jb/mvg107

URL : http://jb.oxfordjournals.org/cgi/content/short/134/1/9

H. Kim, S. Oh, L. Brownfield, S. Hong, H. Ryu et al., Control of plant germline proliferation by SCF(FBL17) degradation of cell cycle inhibitors, Nature, vol.455, issue.7216, p.18948957, 2008.

K. Kitagawa, D. Skowyra, S. Elledge, J. Harper, and P. Hieter, SGT1 Encodes an Essential Component of the Yeast Kinetochore Assembly Pathway and a Novel Subunit of the SCF Ubiquitin Ligase Complex, Molecular Cell, vol.4, issue.1, pp.21-3310445024, 1999.
DOI : 10.1016/S1097-2765(00)80184-7

M. Koegl, T. Hoppe, S. Schlenker, H. Ulrich, T. Mayer et al., A Novel Ubiquitination Factor, E4, Is Involved in Multiubiquitin Chain Assembly, Cell, vol.96, issue.5, pp.635-4410089879, 1999.
DOI : 10.1016/S0092-8674(00)80574-7

R. Kowles and R. Phillips, DNA amplification patterns in maize endosperm nuclei during kernel development, Proceedings of the National Academy of Sciences, vol.82, issue.20, pp.7010-416593620, 1985.
DOI : 10.1073/pnas.82.20.7010

A. Kumagai and W. Dunphy, The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system, Cell, vol.64, issue.5, pp.903-141825803, 1991.
DOI : 10.1016/0092-8674(91)90315-P

T. Lammens, V. Boudolf, L. Kheibarshekan, L. Zalmas, T. Gaamouche et al., Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset, Proceedings of the National Academy of Sciences, vol.105, issue.38, p.18787127, 2008.
DOI : 10.1073/pnas.0806510105

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2567204

Z. Larson?rabin, Z. Li, P. Masson, and C. Day, FZR2/CCS52A1 Expression Is a Determinant of Endoreduplication and Cell Expansion in Arabidopsis, PLANT PHYSIOLOGY, vol.149, issue.2, 2008.
DOI : 10.1104/pp.108.132449

Z. Lu and T. Hunter, Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle, Jun Review, vol.159, issue.12, p.20519948, 2010.

L. Jingjing, Y. Zhang, G. Qin, T. Tsuge, N. Sakaguchi et al., Targeted Degradation of the Cyclin?Dependent Kinase Inhibitor ICK4/KRP6 by RING?Type E3 Ligases Is Essential for Mitotic Cell Cycle Progression during Arabidopsis Gametogenesis De?Quan Li Stomatal development and movement: The roles of MAPK signaling Plant Signal Behav, Plant Cell, vol.20, issue.510, pp.1538-1554, 2008.

Z. Magyar, T. Mészáros, P. Miskolczi, M. Deák, A. Fehér et al., Cell Cycle Phase Specificity of Putative Cyclin-Dependent Kinase Variants in Synchronized Alfalfa Cells, THE PLANT CELL ONLINE, vol.9, issue.2, pp.223-359061953, 1997.
DOI : 10.1105/tpc.9.2.223

Z. Magyar, D. Veylder, L. Atanassova, A. Bakó, L. Inzé et al., The role of the Arabidopsis E2FB transcription factor in regulating auxin?dependent cell division. Plant Cell, pp.2527-4116055635, 2005.

M. Malumbres and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm, 153?66. Review. PMID, 2009.
DOI : 10.1038/nrc2602

K. Marrocco, M. Bergdoll, P. Achard, M. Criqui, and P. Genschik, Selective proteolysis sets the tempo of the cell cycle, Current Opinion in Plant Biology, vol.13, issue.6, pp.631-920810305, 2010.
DOI : 10.1016/j.pbi.2010.07.004

URL : https://hal.archives-ouvertes.fr/hal-00554378

C. Massonnet, S. Tisné, A. Radziejwoski, D. Vile, D. Veylder et al., New Insights into the Control of Endoreduplication: Endoreduplication Could Be Driven by Organ Growth in Arabidopsis Leaves, PLANT PHYSIOLOGY, vol.157, issue.4, p.22010109, 2011.
DOI : 10.1104/pp.111.179382

URL : https://hal.archives-ouvertes.fr/hal-01019362

E. Mathieu?rivet, F. Gévaudant, A. Sicard, S. Salar, P. Do et al., Functional analysis of the anaphase promoting complex activator CCS52A highlights the crucial role of endo-reduplication for fruit growth in tomato, The Plant Journal, vol.15, issue.5, 2010.
DOI : 10.1111/j.1365-313X.2010.04198.x

E. Mathieu?rivet, F. Gévaudant, C. Cheniclet, M. Hernould, and C. C. , The Anaphase Promoting Complex activator CCS52A, a key factor for fruit growth and endoreduplication in Tomato, Plant Signaling & Behavior, vol.51, issue.8, p.20671429, 2010.
DOI : 10.4161/psb.5.8.12222

G. Mcdowell, R. Kucerova, and A. Philpott, Non-canonical ubiquitylation of the proneural protein Ngn2 occurs in both Xenopus embryos and mammalian cells, Biochemical and Biophysical Research Communications, vol.400, issue.4, p.20807509, 2010.
DOI : 10.1016/j.bbrc.2010.08.122

S. Mcqueen?mason, D. Durachko, and D. Cosgrove, Two Endogenous Proteins That Induce Cell Wall Extension in Plants, THE PLANT CELL ONLINE, vol.4, issue.11, pp.1425-1433, 1992.
DOI : 10.1105/tpc.4.11.1425

J. Melaragno, B. Mehrotra, and A. Coleman, Relationship between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis, THE PLANT CELL ONLINE, vol.5, issue.11, pp.1661-166812271050, 1993.
DOI : 10.1105/tpc.5.11.1661

M. Menges, S. De-jager, W. Gruissem, and J. Murray, Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control, The Plant Journal, vol.277, issue.4, pp.546-6615686519, 2005.
DOI : 10.1111/j.1365-313X.2004.02319.x

J. Mitchison and J. Creanor, Further measurements of DNA synthesis and enzyme potential during cell cycle of fission yeast Schizosaccharomyces pombe, 244?7. No abstract available, p.5124486, 1971.
DOI : 10.1016/0014-4827(71)90337-5

A. Mocciaro and M. Rape, Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control, Journal of Cell Science, vol.125, issue.2
DOI : 10.1242/jcs.091199

P. Nurse, Cyclin Dependant Kinases and celle cycle control, Nobel Lecture, pp.10-10231022017701871, 2001.
DOI : 10.1002/chin.200236289

Y. Okushima, I. Mitina, H. Quach, and A. Theologis, AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator, The Plant Journal, vol.16, issue.1, pp.29-4615960614, 2005.
DOI : 10.1111/j.1365-313X.2005.02426.x

C. T. Payne, A. Zhang, and . Lloyd, GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1, Genetics, vol.156, issue.3, pp.1349-1362, 2000.

J. Park, J. Ahn, Y. Kim, S. Kim, J. Kim et al., Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants, The Plant Journal, vol.298, issue.2, pp.153-6315807779, 2005.
DOI : 10.1111/j.1365-313X.2005.02361.x

A. Peres, M. Churchman, S. Hariharan, K. Himanen, A. Verkest et al., Novel Plant-specific Cyclin-dependent Kinase Inhibitors Induced by Biotic and Abiotic Stresses, Journal of Biological Chemistry, vol.282, issue.35, pp.25588-9617599908, 2007.
DOI : 10.1074/jbc.M703326200

P. Kylee, M. Amanda, L. Rychel, and K. U. , Torii Out of the Mouths of Plants: The Molecular Basis of the Evolution and Diversity of Stomatal Development Plant Cell, 2010.

M. Quimbaya, K. Vandepoele, E. Raspé, M. Matthijs, S. Dhondt et al., Identification of putative cancer genes through data integration and comparative genomics between plants and humans, Cellular and Molecular Life Sciences, vol.37, issue.12, pp.2041-55, 2010.
DOI : 10.1007/s00018-011-0909-x

E. Ramírez?parra, Q. Xie, M. Boniotti, and C. Gutierrez, The cloning of plant E2F, a retinoblastoma? binding protein, reveals unique and conserved features with animal G(1)/S regulators, Nucleic Acids Res, vol.27, issue.17, pp.3527-3310446243, 1999.

E. Ramirez?parra and C. Gutierrez, Characterization of wheat DP, a heterodimerization partner of the plant E2F transcription factor which stimulates E2F-DNA binding, FEBS Letters, vol.41, issue.1, pp.73-811108846, 2000.
DOI : 10.1016/S0014-5793(00)02239-0

H. Ren, A. Santner, J. Del-pozo, J. Murray, and E. M. , Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases, The Plant Journal, vol.216, issue.5, pp.705-1618005227, 2007.
DOI : 10.1007/s00425-002-0752-2

A. Roeder, V. Chickarmane, A. Cunha, B. Obara, B. Manjunath et al., Variability in the Control of Cell Division Underlies Sepal Epidermal Patterning in Arabidopsis thaliana, PLoS Biology, vol.15, issue.5, p.20485493, 2010.
DOI : 10.1371/journal.pbio.1000367.s019

B. Rymen, F. Fiorani, F. Kartal, K. Vandepoele, D. Inzé et al., Cold Nights Impair Leaf Growth and Cell Cycle Progression in Maize through Transcriptional Changes of Cell Cycle Genes, 1429?38. Epub, p.17208957, 2007.
DOI : 10.1104/pp.106.093948

R. Farshad, J. Bramsiepe, C. Weinl, S. Marquardt, B. Novák et al., CULLIN 4?RING FINGER? LIGASE plays a key role in the control of endoreplication cycles in Arabidopsis trichomes Variability in the Control of Cell Division Underlies Sepal Epidermal Patterning in Arabidopsis thaliana, Proc Natl Acad Sci PLoS Biol, vol.107, issue.85, pp.15275-15280, 2010.

P. Russell and P. Nurse, cdc25+ functions as an inducer in the mitotic control of fission yeast, Cell, vol.45, issue.1, pp.145-533955656, 1986.
DOI : 10.1016/0092-8674(86)90546-5

A. Russo, P. Jeffrey, and N. Pavletich, Structural basis of cyclin-dependent kinase activation by phosphorylation, Nature Structural Biology, vol.50, issue.8, pp.696-7008756328, 1996.
DOI : 10.1107/S0021889891004399

B. Ruggiero, H. Koiwa, Y. Manabe, T. Quist, G. Inan et al., Uncoupling the Effects of Abscisic Acid on Plant Growth and Water Relations. Analysis of sto1/nced3, an Abscisic Acid-Deficient but Salt Stress-Tolerant Mutant in Arabidopsis, PLANT PHYSIOLOGY, vol.136, issue.2, pp.3134-4715466233, 2004.
DOI : 10.1104/pp.104.046169

B. Rymen, F. Fiorani, F. Kartal, K. Vandepoele, D. Inzé et al., Cold Nights Impair Leaf Growth and Cell Cycle Progression in Maize through Transcriptional Changes of Cell Cycle Genes, 1429?38. Epub, p.17208957, 2007.
DOI : 10.1104/pp.106.093948

P. A. Sabelli, Replicate and die for your own good: Endoreduplication and cell death in the cereal endosperm Original Research Article, Journal of Cereal Science, vol.56, issue.1, 2012.

L. Sanz, W. Dewitte, C. Forzani, F. Patell, J. Nieuwland et al., The Arabidopsis D?type cyclin CYCD2, Plant Cell, vol.1, 2011.

M. Sasabe and Y. Machida, Regulation of organization and function of microtubules by the mitogen-activated protein kinase cascade during plant cytokinesis, Cytoskeleton, vol.12, issue.11, p.2012
DOI : 10.1002/cm.21072

M. Schmid, T. Davison, S. Henz, U. Pape, M. Demar et al., A gene expression map of Arabidopsis thaliana development, Nature Genetics, vol.52, issue.5, 2005.
DOI : 10.1104/pp.104.051300

A. Schnittger, U. Schöbinger, Y. Stierhof, and M. Hülskamp, Ectopic B-Type Cyclin Expression Induces Mitotic Cycles in Endoreduplicating Arabidopsis Trichomes, Current Biology, vol.12, issue.5, pp.415-435, 2002.
DOI : 10.1016/S0960-9822(02)00693-0

A. Schnittger and M. Hülskamp, Trichome morphogenesis: a cell-cycle perspective, 823?6. Review. PMID:12079678. b, 1422.
DOI : 10.1098/rstb.2002.1087

M. Sekine, M. Ito, K. Uemukai, Y. Maeda, H. Nakagami et al., Isolation and characterization of the E2F-like gene in plants, FEBS Letters, vol.15, issue.1, pp.117-2210571072, 1999.
DOI : 10.1016/S0014-5793(99)01296-X

R. Sheaff, J. Singer, J. Swanger, M. Smitherman, J. Roberts et al., Proteasomal Turnover of p21Cip1 Does Not Require p21Cip1 Ubiquitination, Molecular Cell, vol.5, issue.2, pp.403-1010882081, 2000.
DOI : 10.1016/S1097-2765(00)80435-9

C. Sherr and J. Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression, Genes & Development, vol.13, issue.12
DOI : 10.1101/gad.13.12.1501

Y. Shimizu, Y. Okuda?shimizu, and L. Hendershot, Ubiquitylation of an ERAD Substrate Occurs on Multiple Types of Amino Acids, Molecular Cell, vol.40, issue.6, p.21172657, 2010.
DOI : 10.1016/j.molcel.2010.11.033

A. Shimotohno, C. Umeda?hara, K. Bisova, H. Uchimiya, and M. Umeda, The Plant?Specific Kinase CDKF;1 Is Involved in Activating Phosphorylation of Cyclin?Dependent Kinase?Activating Kinases in Arabidopsis. Plant Cell, pp.2954-2966, 2004.

A. Skirycz, D. Bodt, S. Obata, T. , D. Clercq et al., Developmental Stage Specificity and the Role of Mitochondrial Metabolism in the Response of Arabidopsis Leaves to Prolonged Mild Osmotic Stress, PLANT PHYSIOLOGY, vol.152, issue.1, 2010.
DOI : 10.1104/pp.109.148965

A. Skirycz and D. Inzé, More from less: plant growth under limited water, Current Opinion in Biotechnology, vol.21, issue.2, 2010.
DOI : 10.1016/j.copbio.2010.03.002

A. Skirycz, K. Vandenbroucke, P. Clauw, K. Maleux, D. Meyer et al., Survival and growth of Arabidopsis plants given limited water are not equal, Nature Biotechnology, vol.17, issue.3, 2011.
DOI : 10.1111/j.1469-8137.2005.01609.x

A. Skirycz, H. Claeys, D. Bodt, S. Oikawa, A. Shinoda et al., and a Role for Ethylene Signaling in Cell Cycle Arrest, The Plant Cell, vol.23, issue.5, pp.1876-88, 2011.
DOI : 10.1105/tpc.111.084160

N. Starostina and E. Kipreos, Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors, 33?41. Epub, p.22154077, 2009.
DOI : 10.1016/j.tcb.2011.10.004

K. Sugimoto?shirasu and K. Roberts, ???Big it up???: endoreduplication and cell-size control in plants, Current Opinion in Plant Biology, vol.6, issue.6
DOI : 10.1016/j.pbi.2003.09.009

F. Tardieu and W. Davies, Stomatal Response to Abscisic Acid Is a Function of Current Plant Water Status, PLANT PHYSIOLOGY, vol.98, issue.2, pp.540-516668674, 1992.
DOI : 10.1104/pp.98.2.540

L. Teixeira and S. Reed, Ubiquitin Ligases and Cell Cycle Control, Annual Review of Biochemistry, vol.82, issue.1, p.23495935, 2013.
DOI : 10.1146/annurev-biochem-060410-105307

A. Thomann, E. Lechner, M. Hansen, E. Dumbliauskas, Y. Parmentier et al., Arabidopsis CULLIN3 Genes Regulate Primary Root Growth and Patterning by Ethylene-Dependent and -Independent Mechanisms, PLoS Genetics, vol.125, issue.1, 2009.
DOI : 10.1371/journal.pgen.1000328.s002

URL : https://hal.archives-ouvertes.fr/hal-00367322

T. Acosta, J. Fowke, L. Wang, and H. , Analyses of phylogeny, evolution, conserved sequences and genome?wide expression of the ICK/KRP family of plant CDK inhibitors, 2011.

H. Toyoshima and T. Hunter, p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21, Cell, vol.78, issue.1, pp.67-748033213, 1994.
DOI : 10.1016/0092-8674(94)90573-8

M. Umeda, A. Shimotohno, Y. Mpci170, D. Ungermannova, Y. Gao et al., Control of cell division and transcription by cyclin? dependent kinase?activating kinases in plants DOI:10.1093 Ubiquitination of p27Kip1 requires physical interaction with cyclin E and probable phosphate recognition by SKP2, Plant Cell Physiol. J Biol Chem, vol.46280, issue.34, pp.1437-144230301, 2005.

Y. Uno, T. Furihata, H. Abe, R. Yoshida, K. Shinozaki et al., Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions, Proceedings of the National Academy of Sciences, vol.97, issue.21, pp.11632-711005831, 2000.
DOI : 10.1073/pnas.190309197

K. Vandepoele, J. Raes, D. Veylder, L. Rouzé, P. Rombauts et al., Genome-Wide Analysis of Core Cell Cycle Genes in Arabidopsis, THE PLANT CELL ONLINE, vol.14, issue.4, pp.903-1611971144, 2002.
DOI : 10.1105/tpc.010445

J. Van-leene, J. Hollunder, D. Eeckhout, G. Persiau, E. Van-de-slijke et al., Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana, Molecular Systems Biology, vol.443, pp.397-20706207, 2010.
DOI : 10.1007/s11103-006-9019-9

URL : https://hal.archives-ouvertes.fr/hal-01203927

J. Van-leene, J. Boruc, D. Jaeger, G. Russinova, E. et al., A kaleidoscopic view of the Arabidopsis core cell cycle interactome, Trends in Plant Science, vol.16, issue.3, pp.141-50, 2011.
DOI : 10.1016/j.tplants.2010.12.004

W. Verelst, A. Skirycz, and D. Inzé, Abscisic acid, ethylene and gibberellic acid act at different developmental stages to instruct the adaptation of young leaves to stress, Plant Signaling & Behavior, vol.21, issue.4
DOI : 10.4161/psb.5.4.11421

A. Verkest, C. Manes, S. Vercruysse, S. Maes, E. Van-der-schueren et al., The cyclin?dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes. Plant Cell, Epub, vol.17, issue.6, pp.1723-3615863515, 2005.

A. Verkest, C. Weinl, D. Inzé, D. Veylder, L. Schnittger et al., Switching the Cell Cycle, 1099?106. Review. PMID:16286449. b, 2005.

R. Verma, R. Annan, M. Huddleston, S. Carr, R. G. Deshaies et al., Phosphorylation of Sic1p by G1 Cdk Required for Its Degradation and Entry into S Phase, Science, vol.278, issue.5337, pp.455-609334303, 1997.
DOI : 10.1126/science.278.5337.455

P. Verslues, M. Agarwal, S. Katiyar?agarwal, J. Zhu, and J. Zhu, Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status, 523?39. Erratum in, p.109216441347, 2006.
DOI : 10.1111/j.1365-313X.2005.02593.x

J. Viallard, F. Lacombe, F. Belloc, J. Pellegrin, and J. Reiffers, Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology, Cancer Radiother, 2001.

J. Vinardell, E. Fedorova, A. Cebolla, Z. Kevei, G. Horvath et al., Endoreduplication Mediated by the Anaphase-Promoting Complex Activator CCS52A Is Required for Symbiotic Cell Differentiation in Medicago truncatula Nodules, THE PLANT CELL ONLINE, vol.15, issue.9, pp.2093-10512953113, 2003.
DOI : 10.1105/tpc.014373

URL : https://hal.archives-ouvertes.fr/hal-00134591

K. Vlieghe, V. Boudolf, G. Beemster, S. Maes, Z. Magyar et al., The DP-E2F-like Gene DEL1 Controls the Endocycle in Arabidopsis thaliana, Current Biology, vol.15, issue.1, pp.59-6315649366, 2005.
DOI : 10.1016/j.cub.2004.12.038

J. Walker, D. Oppenheimer, J. Concienne, and J. Larkin, SIAMESE, a gene controlling the endoreduplication cell cycle in Arabidopsis thaliana trichomes, 2000.

C. Wang and Z. Liu, Arabidopsis Ribonucleotide Reductases Are Critical for Cell Cycle Progression, DNA Damage Repair, and Plant Development, 350?65. Epub, p.16399800, 2006.
DOI : 10.1105/tpc.105.037044

H. Wang, L. Fowke, and W. Crosby, A plant cyclin-dependent kinase inhibitor gene, Nature, vol.386, issue.6624, 1997.
DOI : 10.1038/386451a0

H. Wang, Q. Qi, P. Schorr, A. Cutler, W. Crosby et al., ICK1, a cyclin-dependent protein kinase inhibitor fromArabidopsis thalianainteracts with both Cdc2a and CycD3, and its expression is induced by abscisic acid, The Plant Journal, vol.386, issue.4, pp.501-511, 1998.
DOI : 10.1038/369574a0

H. Wang, Y. Zhou, S. Gilmer, S. Whitwill, and L. Fowke, Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology, The Plant Journal, vol.386, issue.5, 2000.
DOI : 10.1046/j.1365-313X.1998.00231.x

H. Wang, Y. Zhou, D. Bird, and L. Fowke, Functions, regulation and cellular localization of plant cyclin-dependent kinase inhibitors, Journal of Microscopy, vol.215, issue.2, p.18778421, 2008.
DOI : 10.1111/j.1365-2818.2008.02039.x

W. Wang and X. Chen, HUA ENHANCER3 reveals a role for a cyclin-dependent protein kinase in the specification of floral organ identity in Arabidopsis, 3147?56. Epub, p.15175247, 2004.
DOI : 10.1242/dev.01187

H. Wang, Y. Zhou, D. Bird, and L. Fowke, Functions, regulation and cellular localization of plant cyclin-dependent kinase inhibitors, Journal of Microscopy, vol.215, issue.2, p.18778421, 2008.
DOI : 10.1111/j.1365-2818.2008.02039.x

C. Weinl, S. Marquardt, S. Kuijt, M. Nowack, M. Jakoby et al., Novel Functions of Plant Cyclin-Dependent Kinase Inhibitors, ICK1/KRP1, Can Act Non-Cell-Autonomously and Inhibit Entry into Mitosis, ):1704?22. Epub, p.15749764, 2005.
DOI : 10.1105/tpc.104.030486

B. Wen, J. Nieuwland, and J. Murray, The Arabidopsis CDK inhibitor ICK3/KRP5 is rate limiting for primary root growth and promotes growth through cell elongation and endoreduplication, Journal of Experimental Botany, vol.64, issue.4, p.23440171, 2013.
DOI : 10.1093/jxb/ert009

K. Wickliffe, A. Williamson, H. Meyer, A. Kelly, and M. Rape, K11-linked ubiquitin chains as novel regulators of cell division, Trends in Cell Biology, vol.21, issue.11, p.21978762, 2011.
DOI : 10.1016/j.tcb.2011.08.008

K. Wilkinson, M. Urban, and A. Haas, Ubiquitin is the ATP?dependent proteolysis factor I of rabbit reticulocytes, J Biol Chem, vol.255, issue.16, pp.7529-326249803, 1980.

B. Williamson, B. Tudzynski, P. Tudzynski, and J. Van-kan, Botrytis cinerea: the cause of grey mould disease, Molecular Plant Pathology, vol.65, issue.5, p.20507522, 2007.
DOI : 10.1094/MPMI.2000.13.7.724

D. Winter, B. Vinegar, H. Nahal, R. Ammar, G. Wilson et al., An ???Electronic Fluorescent Pictograph??? Browser for Exploring and Analyzing Large-Scale Biological Data Sets, PLoS ONE, vol.39, issue.8, 2007.
DOI : 10.1371/journal.pone.0000718.g009

J. Wohlschlegel, B. Dwyer, D. Takeda, and A. Dutta, Mutational Analysis of the Cy Motif from p21 Reveals Sequence Degeneracy and Specificity for Different Cyclin-Dependent Kinases, CKI), homologues des Kip-Related Proteins (KRP1 à 7). Les protéines SIM/SMR interagissent avec des complexes de type CYCD/CDKA et CYCA-B/CDKB au cours du cycle cellulaire. SIM et SMR1 sont des régulateurs positifs de la transition du cycle mitotique vers l'endoréplication. L'expression des gènes SIM/SMR est induite en réponse à des stress biotiques et abiotiques. Lors d'un stress abiotique, les plantes adaptent leur croissance en modulant la division et l'expansion cellulaire. L'un des stress abiotiques majeurs auquel les plantes doivent faire face est la sécheresse, pp.4868-74, 2001.
DOI : 10.1128/MCB.21.15.4868-4874.2001

K. De-même-que-leurs-homologues-les and L. Sim, Les SIM/SMR sont considérés comme de bons candidats pour relier l'activité du cycle cellulaire aux stimuli de l'environnement. La régulation des SIM/SMR et leur rôle dans le contrôle du cycle cellulaire lors d'un stress abiotique ont donc été étudiés Ce travail de recherche a démontré l'implication de la voie de protéolyse UPS dans le contrôle post-traductionnel de tous membres de la famille SIM/SMR testés (SIM, SMR1 et SMR7) Il démontre également que SIM, SMR2 et surtout SMR1 sont nécessaires à l'endoréplication des cellules foliaires. Lors d'un stress hydrique, l'expression des gènes SIM, SMR1, SMR3 et SMR5 est induite. Le profil spatio-temporel de ces inductions a mis en évidence deux groupes de gènes, SIM-SMR1 et SMR3-SMR5, avec des fonctions distinctes. De plus, les mutants perte-de-fonction sim, smr5 et sim.smr1

C. Arabidopsis, S. /. Smr, and C. Cellulaire, Stress hydrique SUMMARY In the model plant Arabidopsis thaliana, the SIAMESE-RELATED proteins (SIM/SMR1 to 13) are a plant-specific family of Cyclin-dependent Kinase Inhibitors (CKIs), homologous to the Kip-Related Proteins (KRP1 to 7) The SIM/SMRs proteins interact with CYCD/CDKA and CYCA-B/CDKB complexes during the cell cycle. SIM and SMR1 are positive regulators of the switch from mitotic cycle to endoreplication. The expression of SIM/SMRs genes is induced in response to biotic and abiotic stress, Mots

C. Arabidopsis and S. /. Smrs, One of the major abiotic stress that plants face is the drought stress Like their homologous KRPs, the SIM/SMRs could be degraded through the specific proteolysis depending on ubiquitin and proteasome (UPS) The SIM/SMRs proteins are considered as good candidates to link cell cycle activity with environmental stimuli. So, the regulation of SIM/SMRs and their role in cell cycle control during abiotic stress have been investigated This research work has shown the involvement of the UPS proteolysis in the post-translational control of all the tested members of the SIM/SMR family It also shows that SIM, SMR2 and mostly SMR1 are required in endoreplication of leaf cells. During drought stress, the expression of SIM, SMR1, SMR3 and SMR5 genes is induced. The spacio-temporal pattern of those inductions revealed two groups of genes, SIM-SMR1 and SMR3-SMR5, with distinct functions. In addition, the sim, smr5 and sim.smr1.smr2 loss-of-function mutants tested are hypersensitive to drought stress. These results were used to develop a model of the role and regulation of SIM/SMRs in the control of mitotic cell cycle and endoreplication in response to drought stress, During abiotic stress