. [. Bibliography, Y. Benabdallah, J. L. Dermenjian, and . Rousseau, Carleman estimates for the onedimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, J. Math. Anal. Appl, pp.336-865887, 2007.

Y. [. Benabdallah, J. L. Dermenjian, and . Rousseau, Carleman estimates for stratified media, Journal of Functional Analysis, vol.260, issue.12, pp.3645-3677, 2011.
DOI : 10.1016/j.jfa.2011.02.007

URL : https://hal.archives-ouvertes.fr/hal-00529924

M. Bellassoued, Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization, Asymptotic Anal, vol.35, p.257279, 2003.

F. Boyer, F. Hubert, and J. L. Rousseau, Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations, Journal de Math??matiques Pures et Appliqu??es, vol.93, issue.3
DOI : 10.1016/j.matpur.2009.11.003

URL : https://hal.archives-ouvertes.fr/hal-00366496

F. Boyer, F. Hubert, and J. L. Rousseau, Discrete Carleman Estimates for Elliptic Operators in Arbitrary Dimension and Applications, SIAM Journal on Control and Optimization, vol.48, issue.8, pp.5357-5397, 2010.
DOI : 10.1137/100784278

URL : https://hal.archives-ouvertes.fr/hal-00450854

F. Boyer, F. Hubert, and J. L. Rousseau, Uniform controllability properties for space/time-discretized parabolic equations, Numerische Mathematik, vol.59, issue.1, pp.601-661, 2011.
DOI : 10.1007/s00211-011-0368-1

URL : https://hal.archives-ouvertes.fr/hal-00429197

F. Boyer and J. L. Rousseau, Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.31, issue.5, p.preprint, 2012.
DOI : 10.1016/j.anihpc.2013.07.011

URL : https://hal.archives-ouvertes.fr/hal-00724766

]. T. Car39 and . Carleman, Sur uneprobì eme d'unicité pour les systèmes d'´ equation aux dérivées partiellesàtiellesà deux variables indépendantes, Ark. Math. Astr. Fys, pp.26-43, 1939.

C. Carthel, R. Glowinski, and J. Lions, On exact and approximate boundary controllabilities for the heat equation: A numerical approach, Journal of Optimization Theory and Applications, vol.22, issue.3, pp.429-484, 1994.
DOI : 10.1007/BF02192213

E. [. Chitour and . Trélat, Controllability of partial differential equations, Advanced Topics in Control Systems Theory, Lecture Notes in Control and Inform. Sci, vol.328, 2006.

A. [. Doubova and J. P. Osses, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM: Control, Optimisation and Calculus of Variations, vol.8, pp.621-661, 2002.
DOI : 10.1051/cocv:2002047

R. [. Ekeland and . Temam, Convex analysic and variational problems, Classics in Applied Mathematics Society for Industrial and Applied Mathematics (SIAM), vol.28, 1999.

S. Ervedoza and E. Zuazua, The Wave Equation: Control and Numerics Control and stabilization of PDE's, Lecture Notes in Mathematics CIME Subseries, pp.245-340, 2012.

J. [. Ervedoza, On the observability of abstract time-discrete linear parabolic equations, Revista Matem??tica Complutense, vol.47, issue.2, pp.163-190
DOI : 10.1007/s13163-009-0014-y

URL : https://hal.archives-ouvertes.fr/hal-00599624

C. [. Ervedoza, Zheng and E. Zuazua On the observability of time-discrete conservative linear systems, Journal of Functional Analysis, issue.12, pp.254-3037, 2008.

. [. Fattorini, A unified theory of necessary conditions for nonlinear nonconvex control systems, Applied Mathematics & Optimization, vol.5, issue.1, pp.141-185, 1987.
DOI : 10.1007/BF01442651

S. [. Fernández-cara and . Guerrero, Global Carleman Inequalities for Parabolic Systems and Applications to Controllability, SIAM Journal on Control and Optimization, vol.45, issue.4, pp.1395-1446, 2006.
DOI : 10.1137/S0363012904439696

A. [. Fernandez-cara and . Munch, Numerical null controllability of the 1D heat equation: primal algorithms, 2009.

A. [. Fernandez-cara and . Munch, Numerical null controllability of the 1D heat equation: dual algorithms, 2010.

E. [. Cara and . Zuazua, On the null controllability of the one-dimensional heat equation with BV coefficients, Comput. Appl. Math, vol.21, p.167190, 2002.

H. [. Fattorini and . Frankowska, Necessary conditions for infinite dimensional problems, Mathematics of Control, Signals, and Systems, 1991.

O. [. Fursikov, . Yu, and . Imanuvilov, Lecture notes, Controllability of evolution equations, 1996.

J. [. Glowinski, J. Lions, and . He, Exact and approximate controllability for distributed parameter systems: a numerical approach, Encyclopedia of Mathematical and its Applications , 117, 2008.

J. Infante and E. Zuazua, Boundary observability for the space semi-discretizations of the 1 ??? d wave equation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.2, pp.407-438, 1999.
DOI : 10.1051/m2an:1999123

F. [. Klibanov and . Santosa, A Computational Quasi-Reversibility Method for Cauchy Problems for Laplace???s Equation, SIAM Journal on Applied Mathematics, vol.51, issue.6, pp.1653-1675, 1991.
DOI : 10.1137/0151085

[. Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients, Journal of Differential Equations, vol.233, issue.2, p.417447, 2007.
DOI : 10.1016/j.jde.2006.10.005

URL : https://hal.archives-ouvertes.fr/hal-00105669

J. Lions, Exact Controllability, Stabilization and Perturbations for Distributed Systems, SIAM Review, vol.30, issue.1, pp.1-68, 1988.
DOI : 10.1137/1030001

]. J. Ll11a, G. Rousseau, and . Lebeau, On carleman estimates for elliptic and parabolic operators . Applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var, 2011.

G. Lebeau and L. Robbiano, Contr??le Exact De L??quation De La Chaleur, Communications in Partial Differential Equations, vol.52, issue.1-2, p.335356, 1995.
DOI : 10.1016/0022-0396(87)90043-X

G. Lebeau and L. Robbiano, Stabilisation de lequation des ondes par le bord, Duke Math. J, vol.86, p.465491, 1997.
DOI : 10.1215/s0012-7094-97-08614-2

J. , L. Rousseau, and L. Robbiano, Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations, Arch. Rational Mech. Anal, vol.195, pp.953-990, 2010.

J. L. Rousseau and ,. L. Robbiano, Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces, Invent. Math, vol.183, pp.245-336, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00397223

R. [. Lasiecka and . Triggiani, Control theory for partial differential equation: continuous and approximation theories. I. Abstract parabolic systems, Encyclopedia of Mathematics and its Applications, vol.74, 2000.

E. [. Labbé and . Trélat, Uniform controllability of semidiscrete approximations of parabolic control systems, Systems & Control Letters, vol.55, issue.7, pp.597-609, 2006.
DOI : 10.1016/j.sysconle.2006.01.004

Y. [. Li and . Yao, Maximum principle of distributed parameter systems with time lags, Lecture Notes in Control and Information Sciences, vol.75, pp.410-427, 1985.
DOI : 10.1007/BFb0005665

J. [. Li and . Yong, Necessary Conditions for Optimal Control of Distributed Parameter Systems, SIAM Journal on Control and Optimization, vol.29, issue.4, pp.895-909, 1991.
DOI : 10.1137/0329049

E. [. Lopez and . Zuazua, Some new results related to the null controllability of the 1-D heat equation, pp.1-22, 1998.

. [. Leon and . Zuazua, Boundary controllability of the finite-difference space semi-discretizations of the beam equation, ESAIM: Control, Optimisation and Calculus of Variations, vol.8, pp.827-862, 2002.
DOI : 10.1051/cocv:2002025

[. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin, Dyn. Syst. B, vol.14, issue.4, pp.1465-1485, 2010.

[. Miller, Resolvent conditions for the control of unitary groups and their approximations, Journal of Spectral Theory, vol.2, pp.1-2012
DOI : 10.4171/JST/20

URL : https://hal.archives-ouvertes.fr/hal-00620772

E. [. Munch and . Zuazua, Numerical approximation of the null controls for the heat equation through transmutation, Inverse Problems, vol.43, 2010.

. [. Nguyen, The uniform controllability property of semidiscrete approximations for the parabolic distributed parameter systems in Banach, preprint, 2012.

E. [. Negreanu and . Zuazua, Uniform boundary controllability of a discrete 1-D wave equation, Systems & Control Letters, vol.48, issue.3-4, pp.261-279, 2003.
DOI : 10.1016/S0167-6911(02)00271-2

. [. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci, vol.44, p.44, 1983.
DOI : 10.1007/978-1-4612-5561-1

A. [. Pedregal and . Munch, Numerical null controllability of the heat equation through a variational approach, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00724035

L. Robbiano, Théorème dunicité adapté au contrôle des solutions desprobì emes hyperboliques, Comm. Partial Differential Equations, vol.16, p.789800, 1991.
DOI : 10.5802/jedp.409

URL : http://archive.numdam.org/article/JEDP_1991____A7_0.pdf

O. Staffans, Well-posed linear systems, Encyclopedia of Mathematical and its Applications, 103French version) Optimal control : Theory and applications, Concrete Mathematics, p.246, 2005.

]. D. Tat95 and . Tataru, Carleman estimates and unique continuation for the Schroedinger equation, Dierential Integral Equations, vol.8, p.901905, 1995.

M. Tucsnak and G. Weiss, Observability and controllability of infinite dimensional systems, 2007.

E. Zuazua, Boundary observability for the finite-difference space semi-discretizations of the 2-d wave equation in the square, Journal de Math??matiques Pures et Appliqu??es, vol.78, issue.5, pp.78-523, 1999.
DOI : 10.1016/S0021-7824(98)00008-7

]. E. Zua02 and . Zuazua, Controllability of the partial differential equations and its semi-discrete approximations , Discrete Contin, Dyn. Syst, vol.8, issue.2, pp.469-513, 2002.

]. E. Zua04 and . Zuazua, Optimal and approximate control of finite-difference approximation schemes for 1-D wave equation, Rendiconti di Matematica VIII II, vol.24, pp.201-237, 2004.

]. E. Zua05 and . Zuazua, Propagation, Observation, Control and Numerical Approximation of Wave approximated by finite-difference method, SIAM Review, vol.47, issue.2, pp.197-243, 2005.

]. E. Zua06 and . Zuazua, Control and numerical approximation of the wave and heat equations, International Congress of Mathematicians, pp.1389-1417, 2006.

?. , ?. ??-?-r-?-?-??s-Éq??t?-?-?-s, ?. , ?. ?rt??@bullet@bullet?s-??sé?rét?sé?s-?és?, ?. et al., t? ??s ??é????tés ????s?r??????té ??s?r?ts q?? s??t ??t???s ?? s??t ??s ??ss? ?ré??s?s q?? ?????s ?ér??é?s ???s ???? ??s ?st???t???s ?? ??r?????? ???s ??? s?????? ??rt??? ???s ?? ???t??t? ??rt??????r ?? ????????s??????s????s ???ér????s ???s ?é