A. Balaban, D. Klein, and X. Liu, Growth, structure, and properties of graphite whiskers Graphitic cones Curved graphite and its mathematical transformations, Langmuir. Journal of Applied Physics. Carbon. Journal of Mathematical Chemistry, vol.233132156, issue.26, pp.12806-10283, 1960.

H. Andersen, Handbook of theoretical and computational nanotechnology, pp.507-543, 2006.

J. Han, R. Jaffe, J. Charlier, and G. Rignanese, Energetics and geometries of carbon nanoconic tips, The Journal of Chemical Physics, vol.108, issue.7, pp.2817-235970, 1998.
DOI : 10.1063/1.475672

S. Azevodo, Effect of substitutional atoms in carbon nanocones, Physics Letters A, vol.325, issue.3-4, pp.283-289, 2004.
DOI : 10.1016/j.physleta.2004.03.065

S. Jordan, V. Crespi, M. Chen, J. Wang, J. Gan et al., Theory of carbon nanocones: Mechanical chiral inversion of a micron-scale three-dimensional object. Physical Review Letters Field emission from a composite structure consisting of vertically aligned single-walled carbon nanotubes and carbon nanocones, Nanotechnology, vol.931712, issue.25, pp.5930-5934, 2004.

G. Timp, S. Nanotechnology-frankland, and D. Brenner, Hydrogen Raman shifts in carbon nanotubes from molecular dynamics simulation, Chemical Physics Letters, vol.33414, pp.1-318, 2001.

B. Trzaskowski, A. Jalbout, L. Adamowicz, L. Chii-ruey, W. Tzyy-jiann et al., Functionalization of carbon nanocones by free radicals: A theoretical study Nano-tip diamond-like carbon fabrication utilizing plasma sheath potential drop technique Sharpening of carbon nanocone tips during plasma-enhanced chemical vapor growth, Chemical Physics Letters. Materials Chemistry and Physics. Chemical Physics Letters, vol.44415721635017, issue.2, pp.4-6314, 2001.

M. Ge, K. Sattler, A. Krishnan, E. Dujardin, N. Treacy et al., Observation of fullerene cones Graphitic cones and the nucleation of curved carbon surfaces [19] Kvaerner, Production of micro domain particles by use of a plasma process nanocones: A variety of non-crystalline graphite, Nanostructures: Novel Architecture: Mircea V. Diudea 2005. [21] Heiberg-Andersen H, Skjeltorp AT, pp.192-6451, 1994.

W. Wang, Y. Lin, C. Kuo, C. Tan, K. Loh et al., Nanofabrication and properties of the highly oriented carbon nanocones Plasma synthesis of well-aligned carbon nanocones, Diamond and Related Materials. Diamond and Related Materials, vol.14231424, pp.3-7907, 2005.

Z. Tsakadze, I. Levchenko, K. Ostrikov, and S. Xu, Plasma-assisted self-organized growth of uniform carbon nanocone arrays, Carbon, vol.45, issue.10, pp.2022-2052, 2007.
DOI : 10.1016/j.carbon.2007.05.030

Y. Gogotsi, S. Dimovski, J. Libera, S. Iijima, M. Yudasaka et al., Conical crystals of graphite Nano-aggregates of singlewalled graphitic carbon nano-horns, Carbon. Chemical Physics Letters, vol.402630927, issue.12, pp.2263-73, 1999.

R. Mani, X. Li, M. Sunkara, and K. Rajan, Carbon Nanopipettes, Nano Letters, vol.3, issue.5, pp.671-674, 2003.
DOI : 10.1021/nl034125o

S. Utsumi, K. Urita, H. Kanoh, M. Yudasaka, K. Suenaga et al., Preparing a Magnetically Responsive Single-Wall Carbon Nanohorn Colloid by Anchoring Magnetite Nanoparticles, The Journal of Physical Chemistry B, vol.110, issue.14, pp.7165-70, 2006.
DOI : 10.1021/jp0569640

V. Krungleviciute, A. Migone, and M. Pepka, Characterization of single-walled carbon nanohorns using neon adsorption isotherms, Carbon, vol.47, issue.3, pp.769-74, 2009.
DOI : 10.1016/j.carbon.2008.11.036

R. Yuge, T. Ichihashi, Y. Shimakawa, Y. Kubo, M. Yudasaka et al., Preferential Deposition of Pt Nanoparticles Inside Single-Walled Carbon Nanohorns, Advanced Materials, vol.16, issue.16, pp.1420-1423, 2004.
DOI : 10.1002/adma.200400130

H. Tanaka, H. Kanoh, M. Yudasaka, S. Iijima, K. Kaneko et al., Quantum Effects on Hydrogen Isotope Adsorption on Single-Wall Carbon Nanohorns, Conductive and Mesoporous Single-Wall Carbon Nanohorn/Organic Aerogel Composites, pp.7511-69155, 2005.
DOI : 10.1021/ja0502573

N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu et al., Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism, [34] Norbert Molitor, Tsuzuki Kitamura. Carbon Nanohorns (CNHs), A new class of nanoporous carbons, pp.1580-1585, 2010.
DOI : 10.1016/j.carbon.2009.12.055

B. Huard, J. Sulpizio, N. Stander, K. Todd, B. Yang et al., Transport Measurements Across a Tunable Potential Barrier in Graphene, Physical Review Letters, vol.98, issue.23, pp.236803-236839, 2007.
DOI : 10.1103/PhysRevLett.98.236803

URL : https://hal.archives-ouvertes.fr/hal-00520827

C. Berger, Z. Song, T. Li, X. Li, A. Ogbazghi et al., Ultrathin Epitaxial Graphite:?? 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, Distingué par le comité Nobel, le graphène va révolutionner l'industrie électronique, pp.30-35, 2004.
DOI : 10.1021/jp040650f

K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature Nanotechnology. Science. Nature, vol.430645843, issue.56967240, pp.861-868, 2004.

Y. Hernandez, V. Nicolosi, M. Lotya, F. Blighe, Z. Sun et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nature Nanotechnology, vol.19, issue.9, pp.563-571, 2008.
DOI : 10.1038/nnano.2008.215

K. Kim, A. Sussman, and A. Zettl, Graphene Nanoribbons Obtained by Electrically Unwrapping Carbon Nanotubes, ACS Nano, vol.4, issue.3, pp.1362-1368, 2010.
DOI : 10.1021/nn901782g

F. Withers, T. Bointon, M. Dubois, S. Russo, and M. Craciun, Nanopatterning of Fluorinated Graphene by Electron Beam Irradiation, Nano Letters, vol.11, issue.9, pp.877-803912, 2009.
DOI : 10.1021/nl2020697

Y. Ahmad, E. Disa, M. Dubois, K. Guérin, V. Dubois et al., The synthesis of multilayer graphene materials by the fluorination of carbon nanodiscs/nanocones, Carbon, vol.50, issue.10, pp.3897-908, 2012.
DOI : 10.1016/j.carbon.2012.04.034

URL : https://hal.archives-ouvertes.fr/hal-00785916

H. Hu, B. Zhao, M. Hamon, K. Kamaras, M. Itkis et al., Sidewall Functionalization of Single- Walled Carbon Nanotubes by Addition of Dichlorocarbene Covalent bond formation to a carbon nanotube metal Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups Graphane: A two-dimensional hydrocarbon Chemical functionalization of graphene Electron properties of fluorinated single-layer graphene transistors, Journal of the American Chemical Society. Science.Journal of the American Chemical Society. Physical Review B. Journal of Physics: Condensed Matter. Physical Review B, vol.12530150131752182, issue.415347, pp.14893-900, 2003.

J. Giraudet, [56] Iijima S. Helical microtubules of graphitic carbon [57] Iijima S. TI. Single-shell carbon nanotubes of 1-nm diameter, Thèse « Dérivés fluorés des différentes variétés allotropiques du carbone ? Synthèse, caractérisation et application aux matériaux d'électrode, pp.56-8603, 1991.

D. Bethune, C. Kiang, M. Vries, G. Gorman, R. Sovay et al., Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls Large-scale synthesis of carbon nanotubes Who should be given the credit for the discovery of carbon nanotubes? Carbon, Lukyanovich VM. O strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte, pp.605-7220, 1952.

J. Ong, N. Franklin, C. Zhou, M. Chapline, S. Peng et al., Nanotube Molecular Wires as Chemical Sensors Carbon nanotubes ? Production and industrial applications, Science. Materials and Design, vol.2872866, issue.5, pp.622-51477, 2000.

C. Journet, W. Maser, P. Bernier, A. Loiseau, M. Lamy et al., Large-scale production of single-walled carbon nanotubes by the electric arc discharge Catalytic engineering of carbon nanostructures, Nature. Langmuir, vol.388671168, issue.10, pp.756-83862, 1995.

S. Belluci, A. Malesevic, and H. Riley, Physics of carbon nanostructures physical properties of ceramic and carbon nanoscale structures The deposition of carbon on vitreous silica, Journal of the Chemical Society, vol.971, pp.1362-1368, 1948.

C. Huang, H. Wu, W. Lin, Y. Li, R. Baker et al., Temperature effect on the formation of catalysts for growth of carbon nanofibers Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, Carbon. Journal of Catalysis. ChemTech, vol.47261874, issue.19, pp.795-80351, 1972.

L. Wang, X. Wang, B. Zou, X. Ma, Y. Qu et al., Preparation of carbon black from rice husk by hydrolysis, carbonization and pyrolysis Ultrafine carbon black produced by pyrolysis of polyethylene using a novel DCthermal plasma process Specific anion and cation capacitance in porous carbon blacks On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water Modeling and simulation of carbon black synthesis in an aerosol flame reactor Advanced Powder Technology, Bioresource Technology. Journal of Physics and Chemistry of Solids. Carbon. Journal of Hazardous Materials. Carbon Black Science and Technology, vol.10269764877177782280, issue.176131, pp.8220-8265, 1993.

M. Moreno, F. Fabry, E. Grivei, and T. Gruenberger, Une nouvelle génération des noirs de carbone. L'actualité chimique, pp.295-301, 2006.

P. Johnson, M. Donnet, J. Wang, T. Wang, C. Locke et al., A dynamic continuum of nanostructured carbons in the combustion furnace Carbon Black Science and Technology, Carbon, vol.408485, issue.2, pp.189-94, 1993.

R. James and R. Inventor, Process of an apparatus for producing carbon and gaseous fuel patent 1, p.85, 1920.

J. Jakowsky, J. Inventor-process-gonzales-aguilar, M. Moreno, and L. Fulcheri, Carbon nanostructures production by gas-phase plasma processes at atmospheric pressure [88] Kvaerner, inventor A method for decomposition of hydrocarbons patent 92/00196, 89] Kvaerner, inventor System for the production of carbon black patent 93/00057. 1993. [90] Kvaerner, inventor Production of carbon black patent 93, pp.2772361-7400058, 1926.

J. Fincke, R. Anderson, T. Hyde, and B. Detering, Plasma Pyrolysis of Methane to Hydrogen and Carbon Black, Industrial & Engineering Chemistry Research, vol.41, issue.6, pp.1425-1460, 2002.
DOI : 10.1021/ie010722e

K. Kim, J. Seo, J. Nam, W. Ju, and S. Hong, Production of hydrogen and carbon black by methane decomposition using DC-RF hybrid thermal plasmas, The 31st IEEE International Conference on Plasma Science, 2004. ICOPS 2004. IEEE Conference Record, Abstracts., pp.813-836, 2005.
DOI : 10.1109/PLASMA.2004.1339821

W. Wiley, -. Ruff, O. Bretschneider, and O. , The reaction products of the different forms of carbon with fluorine, II (Carbon-monofluoride) Zeitschrift für anorganische und allgemeine Chemie, pp.1-18, 1934.

O. Ruff and O. Bretschneider, The composition and the formation heat of carbon-fluoride mixtures formed from Norit and SiC (As well as information on the formation heat of CF4 and SiC) Zeitschrift für anorganische und allgemeine Chemie, pp.19-21, 1934.

W. Rudorff, . Salzartige, . Verbindungen, . Graphits, W. Flusssaure-rudorff et al., Zeitschrift Fur Anorganische Chemie, Chemische Berichte-Recueil. Zeitschrift Fur Anorganische Chemie, vol.25480253, issue.5, pp.5-6319, 1947.

Y. Kaneko, M. Abe, and K. Ogino, Adsorption characteristics of organic compounds dissolved in water on surface-improved activated carbon fibres. Colloids and Surfaces, pp.211-233, 1989.

J. Menendez, J. Phillips, B. Xia, and L. Radovic, On the Modification and Characterization of Chemical Surface Properties of Activated Carbon:?? In the Search of Carbons with Stable Basic Properties, Langmuir, vol.12, issue.18, pp.4404-4414, 1996.
DOI : 10.1021/la9602022

R. Lagow, Fluorine Compounds, Organic, Direct Fluorination. Kirk-Othmer Encyclopedia of Chemical Technology, 2000.
DOI : 10.1002/0471238961.0409180512010715.a01

A. Kharitonov, Direct fluorination of polymers???From fundamental research to industrial applications, Progress in Organic Coatings, vol.61, issue.2-4, pp.192-204, 2008.
DOI : 10.1016/j.porgcoat.2007.09.027

O. Boltalina, Fluorination of fullerenes and their derivatives, Journal of Fluorine Chemistry, vol.101, issue.2, pp.273-281, 2000.
DOI : 10.1016/S0022-1139(99)00170-0

R. Taylor, Why fluorinate fullerenes?, Journal of Fluorine Chemistry, vol.125, issue.3, pp.359-68, 2004.
DOI : 10.1016/j.jfluchem.2003.10.012

R. Yazami, A. Hamwi, K. Guérin, Y. Ozawa, M. Dubois et al., Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries, Electrochemistry Communications, vol.9, issue.7, pp.1850-1855, 2007.
DOI : 10.1016/j.elecom.2007.04.013

A. Hamwi and R. Yazami, inventor Electrochemistry of carbon subfluorides EP 1999812 A2, 2008.

J. Whitacre, R. Yazami, A. Hamwi, M. Smart, W. Bennett et al., Low operational temperature Li???CFx batteries using cathodes containing sub-fluorinated graphitic materials, Journal of Power Sources, vol.160, issue.1, pp.577-84, 2006.
DOI : 10.1016/j.jpowsour.2006.01.045

R. Yazami, A. Hamwi, K. Guérin, Y. Ozawa, M. Dubois et al., Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries, Electrochemistry Communications, vol.9, issue.7, pp.1850-1855, 2007.
DOI : 10.1016/j.elecom.2007.04.013

N. Chilingarov, J. Rau, L. Sidorov, L. Bencze, A. Popovic et al., Atomic fluorine in thermal reactions involving solid TbF4, Journal of Fluorine Chemistry, vol.104, issue.2, pp.291-296, 2000.
DOI : 10.1016/S0022-1139(00)00259-1

J. Gibson and R. Haire, Thermal decomposition of curium tetrafluoride and terbium tetrafluoride, Journal of Solid State Chemistry, vol.73, issue.2, pp.524-554, 1988.
DOI : 10.1016/0022-4596(88)90140-5

A. Goryunkov, V. Markov, O. Boltalina, B. ?emva, A. Abdul-sada et al., Reaction of silver(I) and (II) fluorides with C60: thermodynamic control over fluorination level, Journal of Fluorine Chemistry, vol.112, issue.2, pp.191-197, 2001.
DOI : 10.1016/S0022-1139(01)00521-8

M. El-ghozzi and D. Avignant, Crystal chemistry and magnetic structures of Tb(IV) fluorides, Journal of Fluorine Chemistry, vol.107, issue.2, pp.229-262, 2001.
DOI : 10.1016/S0022-1139(00)00363-8

A. Kharitonov, G. Simbirtseva, V. Bouznik, M. Chepezubov, M. Dubois et al., Modification of ultra-high-molecular weight polyethylene by various fluorinating routes, Journal of Polymer Science Part A: Polymer Chemistry, vol.100, issue.6, pp.3559-73, 2011.
DOI : 10.1002/pola.24793

N. Batisse, K. Guérin, M. Dubois, A. Hamwi, L. Spinelle et al., Fluorination of silicon carbide thin films using pure F2 gas or XeF2, Thin Solid Films, vol.518, issue.23, pp.6746-51, 2010.
DOI : 10.1016/j.tsf.2010.05.120

W. Zhang, P. Bonnet, M. Dubois, C. Ewels, K. Guérin et al., Comparative Study of SWCNT Fluorination by Atomic and Molecular Fluorine, Chemistry of Materials, vol.24, issue.10, pp.1744-51, 2012.
DOI : 10.1021/cm203415e

URL : https://hal.archives-ouvertes.fr/hal-00711813

G. Van-lier, C. Ewels, F. Zuliani, D. Vita, A. Charlier et al., Theoretical Analysis of Fluorine Addition to Single-Walled Carbon Nanotubes:?? Functionalization Routes and Addition Patterns, The Journal of Physical Chemistry B, vol.109, issue.13, pp.6153-6161, 2005.
DOI : 10.1021/jp046005q

O. Sl, M. Torrent-sucarrat, M. Solà, P. Geerlings, C. Ewels et al., Reaction Mechanisms for Graphene and Carbon Nanotube Fluorination, The Journal of Physical Chemistry C, vol.114, issue.8, pp.3340-3345, 2010.

T. Nakajima, Fluorine carbon and fluoride carbon materials, pp.11-20, 1995.

T. Nakajima, M. Kawaguchi, and N. Watanabe, Ternary Intercalation Compound of Graphite with Aluminum Fluoride and Fluorine, Chemistry Letters, pp.1045-1053, 1981.

T. Nakajima, M. Kawaguchi, and N. Watanabe, Graphite intercalation compound of magnesium fluoride and fluorine, Carbon, vol.20, issue.4, pp.287-91, 1982.
DOI : 10.1016/0008-6223(82)90004-5

W. Rudorff and G. Rudorff, Zur Konstitution des Kohlenstoff-Monofluorides. Zeitschrift für Anorganische und Allgemeine Chemie, p.281, 1947.

H. Takenaka, M. Kawaguchi, M. Lemer, and N. Bartlett, Synthesis and characterization of graphite fluorides by electrochemical fluorination in aqueous and anhydrous hydrogen fluoride, Journal of the Chemical Society, Chemical Communications, issue.19, pp.1431-1433, 1987.
DOI : 10.1039/c39870001431

A. Hamwi, Fluorine reactivity with graphite and fullerenes. fluoride derivatives and some practical electrochemical applications, Journal of Physics and Chemistry of Solids, vol.57, issue.6-8, pp.6-8677, 1996.
DOI : 10.1016/0022-3697(95)00332-0

A. Hamwi and R. Yazami, inventors; Secondary solid electrolyte lithium battery patent WO90/07798, 1990.

A. Tressaud, F. Moguet, S. Flandrois, M. Chambon, C. Guimon et al., On the nature of C???F bonds in various fluorinated carbon materials: XPS and TEM investigations, Journal of Physics and Chemistry of Solids, vol.57, issue.6-8, pp.6-8745, 1996.
DOI : 10.1016/0022-3697(96)00343-5

Y. Kita, N. Watanabe, and Y. Fujii, Chemical composition and crystal structure of graphite fluoride, Journal of the American Chemical Society, vol.101, issue.14, pp.3832-3873, 1979.
DOI : 10.1021/ja00508a020

W. Rüdorff and G. Rüdorff, Zur Konstitution des Kohlenstoff-Monofluorids, Zeitschrift f??r anorganische Chemie, vol.XVIII, issue.5-6, pp.281-96, 1947.
DOI : 10.1002/zaac.19472530506

L. Ebet, J. Brauman, and R. Huggins, Carbon monofluoride. Evidence for a structure containing an infinite array of cyclohexane boats, Journal of the American Chemical Society, vol.96, issue.25, pp.7841-7843, 1974.
DOI : 10.1021/ja00832a054

H. Touhara, K. Kadono, Y. Fujii, and N. Watanabe, On the Structure of Graphite Fluoride, Zeitschrift f???r anorganische und allgemeine Chemie, vol.6, issue.1, pp.7-20, 1987.
DOI : 10.1002/zaac.19875440102

N. Watanabe, Characteristics and applications of graphite fluoride, Physica B+C, vol.105, issue.1-3, pp.17-21, 1981.
DOI : 10.1016/0378-4363(81)90207-2

Y. Sato, K. Itoh, R. Hagiwara, T. Fukunaga, and Y. Ito, Short-range structures of poly(dicarbon monofluoride) (C2F)n and poly(carbon monofluoride) (CF)n, Carbon, vol.42, issue.14, pp.2897-903, 2004.
DOI : 10.1016/j.carbon.2004.06.042

C. Delabarre, Thèse « Contribution à l'étude de la fonctionnalisation et de l'intercalation des nanotubes de carbone ? Apllication à l'élaboration de strctures nanofilammentaires, 2005.

Y. Sato, K. Itoh, R. Hagiwara, T. Fukunaga, and Y. Ito, On the so-called ???semi-ionic??? C???F bond character in fluorine???GIC, Carbon, vol.42, issue.15, pp.3243-3252, 2004.
DOI : 10.1016/j.carbon.2004.08.012

J. Giraudet, M. Dubois, K. Guérin, C. Delabarre, A. Hamwi et al., Fluorine???GIC, The Journal of Physical Chemistry B, vol.111, issue.51, pp.14143-51, 2007.
DOI : 10.1021/jp076170g

A. Panich, ChemInform Abstract: Nuclear Magnetic Resonance Study of Fluorine-Graphite Intercalation Compounds and Graphite Fluorides, ChemInform, vol.100, issue.33, pp.169-85, 1999.
DOI : 10.1002/chin.199933294

W. Zhang, M. Dubois, K. Guerin, P. Bonnet, H. Kharbache et al., Effect of curvature on C???F bonding in fluorinated carbons: from fullerene and derivatives to graphite, Phys. Chem. Chem. Phys., vol.5, issue.5???6, 2010.
DOI : 10.1039/B914853A

W. Zhang, M. Dubois, K. Guerin, P. Bonnet, H. Kharbache et al., Effect of curvature on C???F bonding in fluorinated carbons: from fullerene and derivatives to graphite, Phys. Chem. Chem. Phys., vol.5, issue.5???6, pp.1388-98, 2010.
DOI : 10.1039/B914853A

N. Watanabe, T. Nakajima, and H. Touhara, Graphite Fluorides, 1988.

R. Fusaro and H. Sliney, ???A New Solid Lubricant, A S L E Transactions, vol.19, issue.1, pp.56-65, 1970.
DOI : 10.1111/j.1749-6632.1951.tb54242.x

A. Nazarov and V. Makotchenko, Dicarbon monofluoride: a solid host for containment of volatiles, Inorganic Materials, vol.38, issue.3, pp.278-82, 2002.
DOI : 10.1023/A:1014783119281

T. Nakajima, Fluorine-Carbon ans Fluoride-Carbon Materials: Chemistry, Physics, and Applications, pp.355-380, 1995.

R. Fusaro and H. Sliney, ???A New Solid Lubricant, A S L E Transactions, vol.19, issue.1, pp.56-65, 1970.
DOI : 10.1111/j.1749-6632.1951.tb54242.x

Y. Pauleau, Propri??t??s tribologiques de rev??tements et couches minces anti-frottement ?? haute temp??rature, Revue G??n??rale de Thermique, vol.36, issue.3, pp.192-208, 1997.
DOI : 10.1016/S0035-3159(97)88159-7

J. Ayel and . Lubrifiants, Techniques de l'Ingénieur, 1997.

P. Thomas, K. Delbé, D. Himmel, J. Mansot, F. Cadoré et al., Tribological properties of lowtemperature graphite fluorides. Influence of the structure on the lubricating performances, Journal of Physics and Chemistry of Solids, vol.67, pp.5-61095, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00756133

W. Zhang, L. Moch, M. Dubois, K. Gu, and J. Giraudet, Direct Fluorination of Carbon Nanocones and Nanodiscs, Journal of Nanoscience and Nanotechnology, vol.9, issue.7, pp.4496-501, 2009.
DOI : 10.1166/jnn.2009.M83

P. Thomas, D. Himmel, J. L. Mansot, M. Dubois, K. Guérin et al., Tribological Properties of Fluorinated Carbon Nanofibres, Tribology Letters, vol.120, issue.1, pp.49-59, 2009.
DOI : 10.1007/s11249-008-9406-2

P. Thomas, . Hd, J. Mansot, W. Zhang, M. Dubois et al., Friction Properties of Fluorinated Carbon Nanodiscs and Nanocones, Tribology Letters, vol.37, issue.2, pp.353-62, 2011.
DOI : 10.1007/s11249-010-9719-9

N. Nomède-martyr, E. Disa, P. Thomas, R. L. Mansot, J. Dubois et al., Tribological properties of fluorinated nanocarbons with different shape factors, Journal of Fluorine Chemistry, vol.144, issue.0, pp.10-16, 2012.
DOI : 10.1016/j.jfluchem.2012.08.008

A. Hamwi, K. Guérin, and M. Dubois, Fluorinated Materials for Energy Conversion Chapter, 2005.

D. Lide, Handbook of chemistry and Physics, 2002.

S. Chen, A. Rodgers, J. Choo, R. Wilhoit, and B. Zwolinski, Ideal gas thermodynamic properties of six fluoroethanes, Journal of Physical and Chemical Reference Data, vol.4, issue.2, pp.441-56, 1975.
DOI : 10.1063/1.555521

A. Hamwi, Fluorine reactivity with graphite and fullerenes. fluoride derivatives and some practical electrochemical applications, Journal of Physics and Chemistry of Solids, vol.57, issue.6-8, pp.677-88, 1996.
DOI : 10.1016/0022-3697(95)00332-0

A. Hamwi, M. Daoud, and J. Cousseins, Graphite fluorides prepared at room temperature 2. A very good electrochemical behaviour as cathode material in lithium non-aqueous electrolyte cell, Synthetic Metals, vol.30, issue.1, pp.23-31, 1989.
DOI : 10.1016/0379-6779(89)90637-1

R. Yazami and A. Hamwi, A reversible electrode based on graphite fluoride prepared at room temperature for lithium intercalation, Solid State Ionics, vol.40, issue.41, pp.40-41982, 1990.
DOI : 10.1016/0167-2738(90)90168-Q

P. Hany, R. Yazami, and A. Hamwi, Low-temperature carbon fluoride for high power density lithium primary batteries, Journal of Power Sources, vol.68, issue.2, pp.708-718, 1997.
DOI : 10.1016/S0378-7753(97)02642-6

R. Yazami and A. Hamwi, A new graphite fluoride compound as electrode material for lithium intercalation in solid state cells, Solid State Ionics, vol.28, issue.30, pp.28-301756, 1988.
DOI : 10.1016/0167-2738(88)90456-0

M. Root, R. Dumas, R. Yazami, and A. H. , The Effect of Carbon Starting Material on Carbon Fluoride Synthesized at Room Temperature: Characterization and Electrochemistry, Journal of The Electrochemical Society, vol.148, issue.4, pp.339-384, 2001.
DOI : 10.1149/1.1354612

URL : https://hal.archives-ouvertes.fr/hal-00418246

D. Linden and T. Reddy, Handbook of Btteries, 2001.

H. Groult, C. Julien, A. Bahloul, S. Leclerc, E. Briot et al., Improvements of the electrochemical features of graphite fluorides in primary lithium battery by electrodeposition of polypyrrole, Electrochemistry Communications, vol.13, issue.10, pp.1074-1080, 2011.
DOI : 10.1016/j.elecom.2011.06.038

URL : https://hal.archives-ouvertes.fr/hal-00616951

W. Zhang, K. Guérin, M. Dubois, Z. Fawal, D. Ivanov et al., Carbon nanofibres fluorinated using TbF4 as fluorinating agent. Part I: Structural properties, Carbon, vol.46, issue.7, pp.1010-1016, 2008.
DOI : 10.1016/j.carbon.2008.02.029

W. Zhang, K. Guérin, M. Dubois, A. Houdayer, F. Masin et al., Carbon nanofibres fluorinated using TbF4 as fluorinating agent. Part II: Adsorption and electrochemical properties, Carbon, vol.46, issue.7, pp.1017-1041, 2008.
DOI : 10.1016/j.carbon.2008.02.027

M. Dubois, K. Guerin, W. Zhang, Y. Ahmad, A. Hamwi et al., Tuning the discharge potential of fluorinated carbon used as electrode in primary lithium battery, Electrochimica Acta, vol.59, pp.485-91, 2012.
DOI : 10.1016/j.electacta.2011.11.015

URL : https://hal.archives-ouvertes.fr/hal-00683666

R. Chingas, G. Milliken, J. Resing, H. Tsang, T. Dubois et al., Graphite ASF5 intercalation kinetics and diffusion by NMR imaging EPR and Solid-State NMR Studies of Poly(dicarbon monofluoride) (C2F)n [3] Panich AM. Nuclear magnetic resonance study of fluorine?graphite intercalation compounds and graphite fluorides, Synthetic Metals. The Journal of Physical Chemistry B. Synthetic Metals, vol.121101004, issue.12242, pp.131-611800, 1985.

A. Panich, T. Nakajima, S. Goren, T. Mallouk, B. Hawkins et al., 19F NMR study of C-F bonding and localization effects in fluorine-intercalated graphite Infrared and n.m.r. Studies of the Graphite Hydrofluorides Nuclear magnetic resonance study of fluorine-graphite intercalation compounds Graphite fluorides prepared at room temperature. 1. Synthesis and characterization Chemical composition and crystal structure of graphite fluoride, Study of Graphite Monofluoride (CF)n: 19F Spin?Lattice Magnetic Relaxation and 19F/13C Distance Determination by Hartmann?Hahn Cross Polarization, pp.175-814, 1528.

Y. Sato, K. Itoh, R. Hagiwara, T. Fukunaga, Y. Ito et al., On the so-called " semi-ionic " C?F bond character in fluorine?GIC Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm Structural investigation of xenon-ion-beam-irradiated glassy carbon, Carbon. Diamond and Related Materials. Physical Review B. Journal of Chemical Physics, vol.4211512505314, issue.156893, pp.3243-9589, 1970.

K. Guérin, R. Yazami, A. Hamwi, M. Root, R. Dumas et al., Hybrid-type graphite fluoride as cathode in primary lithium batteries The effect of carbon starting material on carbon fluoride synthesized at room temperature, Electrochemical and Solid-State Letters Journal of the Electrochemical Society, vol.71514816, pp.159-62339, 2001.

S. Zhang, D. Foster, J. Wolfenstine, and J. Read, Electrochemical characteristic and discharge mechanism of a primary Li/CFx cell, Journal of Power Sources, vol.187, issue.1, pp.233-240, 2009.
DOI : 10.1016/j.jpowsour.2008.10.076

T. B. Reddy, . Handbook, J. Desilva, R. Vazquez, P. Stallworth et al., McGraw-Hill Solid-state nuclear magnetic resonance studies of electrochemically discharged CFx, Solid-state NMR studies of chemically lithiated CFx, pp.5659-66148, 2010.

A. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, vol.61, issue.20, pp.14095-107, 2000.
DOI : 10.1103/PhysRevB.61.14095

K. Guérin, J. Pinheiro, M. Dubois, Z. Fawal, F. Masin et al., Synthesis and Characterization of Highly Fluorinated Graphite Containing sp2 and sp3 Carbon NMR and EPR studies of room temperature highly fluorinated graphite heat-treated under fluorine atmosphere, Chemistry of Materials. Carbon, vol.164223, issue.910, pp.1786-921931, 2004.

J. Giraudet, M. Dubois, K. Guérin, J. Pinheiro, A. Hamwi et al., Solid-state 19F and 13C NMR of room temperature fluorinated graphite and samples thermally treated under fluorine: Low-field and high-resolution studies, Journal of Solid State Chemistry, vol.178, issue.4, pp.1262-1270, 2005.
DOI : 10.1016/j.jssc.2005.01.024

J. Giraudet, C. Delabarre, K. Guérin, M. Dubois, F. Masin et al., Comparative performances for primary lithium batteries of some covalent and semi-covalent graphite fluorides, Journal of Power Sources, vol.158, issue.2, pp.1365-72, 2006.
DOI : 10.1016/j.jpowsour.2005.10.020

C. Delabarre, M. Dubois, J. Giraudet, K. Guérin, A. Hamwi et al., Electrochemical performance of low temperature fluorinated graphites used as cathode in primary lithium batteries Fluorination of carbon nanotubes Preparation and characterization of carbon cryogel microspheres Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes Integration of carbon aerogels in PEM fuel cells Planar fibre reinforced carbon aerogels for application in PEM fuel cells, [31] Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors, pp.2543-8723, 1996.

B. Huang, Y. Huang, Z. Wang, L. Chen, R. Xue et al., Characteristics of pyrolyzed phenolformaldehyde resin as an anode for lithium-ion batteries Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery, Journal of Power Sources. Chemistry of Materials, vol.58332334, issue.220, pp.231-44420, 1996.

A. S. Aricò, P. , B. Scrosati, J. Tarascon, &. Walter-van-schalkwijk-guo et al., Nanostructured materials for advanced energy conversion and storage devices Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices Nano-ionics in the context of lithium batteries, Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 ? x FePO4. Electrochemical and Solid-State Letters, pp.366-772878, 2005.

K. Guérin, HDR «La fluoration du carbone au service du stockage électrochimique de l'Energie », 2008.

Y. Sato, S. Shiraishi, Z. Mazej, R. Hagiwara, and Y. Ito, Direct conversion mechanism of fluorine???GIC into poly(carbon monofluoride), (CF)n, Carbon, vol.41, issue.10, pp.1971-1978, 2003.
DOI : 10.1016/S0008-6223(03)00186-6

K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, vol.10441, issue.10, pp.4303-418, 2004.
DOI : 10.1021/cr030203g

G. Chung, H. Kim, S. Yu, S. Jun, C. Jw et al., Origin of Graphite Exfoliation An Investigation of the Important Role of Solvent Cointercalation, Journal of The Electrochemical Society, vol.147, issue.12, pp.4391-4399, 2000.
DOI : 10.1149/1.1394076

Z. Shu, R. Mcmillan, J. Murray, I. Davidson, M. Inaba et al., Use of chloroethylene carbonate as an electrolyte solvent for a lithium ion battery containing a graphitic anode STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution Design of electrolyte solutions for Li and Li-ion batteries: a review Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries, Journal of The Electrochemical Society. Electrochimica Acta. Electrochimica Acta. Journal of Power Sources, vol.14245445046, issue.122?30, pp.161-16299, 1995.

K. Xu, S. Zhang, T. Jow, W. Xu, and C. Angell, LiBOB as Salt for Lithium-Ion Batteries:A Possible Solution for High Temperature Operation, A26-A9. [47] Barlowz CG. Reaction of Water with Hexafluorophosphates and with Li Bis(perfluoroethylsulfonyl)imide Salt, pp.362-366, 1999.
DOI : 10.1149/1.1426042

.. Etude-du-mécanisme-de-décharge-des-nanofibres-fluorées, 158 4.1.3.1 Evolution de la structure avec la profondeur de décharge, ., p.162

A. Okotrub, N. Yudanov, A. Chuvilin, I. Asanov, S. Yu et al., Fluorinated cage multiwall carbon nanoparticles, Chemical Physics Letters, vol.322, issue.3-4, pp.2930-46231, 2000.
DOI : 10.1016/S0009-2614(00)00405-X

M. T. Dubois, F. Tuinstra, J. Koenig, S. Lynum, J. Hugdahl et al., Contribution à l'étude de l'intercalation électrochimique de cations alcalins dans des structures d'accueil carbonées (parasexiphénylène, polyparaphénylène et matériaux dérivés de sa pyrolyse), 1999, Université Henri Poincaré Nancy 1 Raman spectrum of graphite Novel materials for electrochemical power sourcesintroduction of PUREBLACK® Carbon, Journal of Chemical Physics. Journal of Power Sources, vol.531537, issue.3, pp.1126-30288, 1970.

C. Portet, G. Yushin, and Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon, vol.45, issue.13, pp.2511-2519, 2007.
DOI : 10.1016/j.carbon.2007.08.024

J. Gibson, R. Haire, N. Chilingarov, J. Rau, L. Sidorov et al., Thermal decomposition of curium tetrafluoride and terbium tetrafluoride Atomic fluorine in thermal reactions involving solid TbF4, Journal of Solid State Chemistry. Journal of Fluorine Chemistry, vol.7310410, issue.22, pp.524-30291, 1988.

Y. Ahmad, E. Disa, M. Dubois, K. Guérin, V. Dubois et al., The synthesis of multilayer graphene materials by the fluorination of carbon nanodiscs/nanocones, Carbon, vol.50, issue.10, pp.3897-908, 2012.
DOI : 10.1016/j.carbon.2012.04.034

URL : https://hal.archives-ouvertes.fr/hal-00785916

W. Zhang, M. Dubois, K. Guérin, P. Bonnet, H. Kharbache et al., Fluorinated nanocarbons using fluorinating agent: Strategies of fluorination and applications. The European Physical Journal B -Condensed Matter and Complex Systems, pp.133-142, 2010.

W. Zhang, K. Guérin, M. Dubois, Z. Fawal, D. Ivanov et al., Carbon nanofibres fluorinated using TbF4 as fluorinating agent. Part I: Structural properties, Carbon, vol.46, issue.7, pp.1010-1016, 2008.
DOI : 10.1016/j.carbon.2008.02.029

W. Zhang, K. Guérin, M. Dubois, A. Houdayer, F. Masin et al., Carbon nanofibres fluorinated using TbF4 as fluorinating agent. Part II: Adsorption and electrochemical properties, Carbon, vol.46, issue.7, pp.1017-1041, 2008.
DOI : 10.1016/j.carbon.2008.02.027

R. Yazami, A. Hamwi, K. Guérin, Y. Ozawa, M. Dubois et al., Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries, Electrochemistry Communications, vol.9, issue.7, pp.1850-1855, 2007.
DOI : 10.1016/j.elecom.2007.04.013

S. Urbonaite, L. Hälldahl, and G. Svensson, Raman spectroscopy studies of carbide derived carbons, Carbon, vol.46, issue.14, pp.1942-1949, 2008.
DOI : 10.1016/j.carbon.2008.08.004

Y. Sato, K. Itoh, R. Hagiwara, T. Fukunaga, Y. Ito et al., Nuclear magnetic resonance study of fluorine-graphite intercalation compounds 19F NMR study of C-F bonding and localization effects in fluorine-intercalated graphite Chemical composition and crystal structure of graphite fluoride, al. EPR and Solid-State NMR Studies of Poly(dicarbon monofluoride) (C2F)n, pp.3243-97633, 1979.

J. Giraudet, M. Dubois, K. Guérin, J. Pinheiro, A. Hamwi et al., Solid-state F-19 and C-13 NMR of room temperature fluorinated graphite and samples thermally treated under fluorine: Low-field and high-resolution studies [22] Panich AM. Nuclear magnetic resonance study of fluorine-graphite intercalation compounds and graphite fluorides, Journal of Solid State Chemistry. Synthetic Metals, vol.17810023, pp.1262-8169, 1999.

C. Wilkie, G. Yu, and D. Haworth, Solid-state C-13 NMR and F-19 NMR spectra of some graphite fluorides, Journal of Solid State Chemistry, vol.3024, pp.197-210, 1979.

N. Watanabe, Two types of graphite fluorides, (CF)n and (C2F)n, and discharge characteristics and mechanisms of electrodes of (CF)n and (C2F)n in lithium batteries, Solid State Ionics, vol.1, issue.1-2, pp.87-110, 1980.
DOI : 10.1016/0167-2738(80)90025-9

W. Zhang, L. Spinelle, M. Dubois, K. Guérin, H. Kharbache et al., New synthesis methods for fluorinated carbon nanofibres and applications, Journal of Fluorine Chemistry, vol.131, issue.6, pp.676-83, 2010.
DOI : 10.1016/j.jfluchem.2010.02.007

F. Chamssedine, M. Dubois, K. Guérin, J. Giraudet, F. Masin et al., Reactivity of Carbon Nanofibers with Fluorine Gas, Chemistry of Materials, vol.19, issue.2, pp.161-72, 2006.
DOI : 10.1021/cm061731m

W. Zhang, M. Dubois, K. Guérin, P. Bonnet, E. Petit et al., Effect of graphitization on fluorination of carbon nanocones and nanodiscs, Carbon, vol.47, issue.12, pp.2763-75, 2009.
DOI : 10.1016/j.carbon.2009.05.035

K. Guérin, M. Dubois, A. Houdayer, and A. Hamwi, Applicative performances of fluorinated carbons through fluorination routes: A review, Journal of Fluorine Chemistry, vol.134, issue.0, pp.11-18, 2012.
DOI : 10.1016/j.jfluchem.2011.06.013

W. Zhang, M. Panich, A. Shames, T. Nakajima, M. Dubois et al., On paramagnetism in fluorinated graphite: EPR and solid state NMR study NMR and EPR studies of room temperature highly fluorinated graphite heat-treated under fluorine atmosphere, Thèse " Nouvelles stratégies de synthèse des nanocarbones, pp.959-641931, 2001.

J. Jones and . Thèse, Etude des interfaces électrode/électrolyte et des phénomènes de solubilité dans l'accumulateur lithium-ion, 2010.

J. Jones, M. Anouti, M. Caillon-caravanier, P. Willmann, and D. Lemordant, Thermodynamic of LiF dissolution in alkylcarbonates and some of their mixtures with water, Fluid Phase Equilibria, vol.285, issue.1-2, pp.62-70, 2009.
DOI : 10.1016/j.fluid.2009.07.020

J. Jones, M. Anouti, M. Caillon-caravanier, P. Willmann, and D. Lemordant, Lithium fluoride dissolution equilibria in cyclic alkylcarbonates and water, Journal of Molecular Liquids, vol.153, issue.2-3, pp.2-3146, 2010.
DOI : 10.1016/j.molliq.2010.02.006

J. Jones, M. Anouti, M. Caillon-caravanier, P. Willmann, P. Sizaret et al., Solubilization of SEI lithium salts in alkylcarbonate solvents, Fluid Phase Equilibria, vol.305, issue.2, pp.121-127, 2011.
DOI : 10.1016/j.fluid.2011.03.007

A. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, vol.61, issue.20, pp.14095-107, 2000.
DOI : 10.1103/PhysRevB.61.14095

J. Giraudet, M. Dubois, K. Guérin, C. Delabarre, A. Hamwi et al., Solid-State NMR Study of the Post- Fluorination of (C2.5F)n Fluorine?GIC Infrared and n.m.r. Studies of the Graphite Hydrofluorides, The Journal of Physical Chemistry B. Philosophical Transactions of the Royal Society of London Series A Mathematical and Physical Sciences, vol.11131439, issue.51, pp.14143-51179, 1528.

W. Zhang, M. Dubois, K. Guérin, A. Hamwi, J. Giraudet et al., Solid-state NMR and EPR study of fluorinated carbon nanofibers A lithium/carbon fluoride (C2F) primary battery, Journal of Solid State Chemistry. Journal of the Electrochemical Society, vol.18113541, issue.8, pp.1915-242393, 1988.

R. Yazami, Chemistry, Physics and Applications of Fluorine-Graphite and Fluoride-Carbon Compounds, p.251, 1995.

R. Nakajima, T. Watanabe, N. Touhara, H. Okino, and F. , Synthesis, structure, and physicochemical properties of fluorine-graphite intercalation compounds Fluorine-carbon and fluoride-carbon materials Graphite Fluorides and Carbon?Fluorite Compounds Boca Raton Ann Arbor Boston Property control of carbon materials by fluorination, Carbon, vol.384, issue.12, pp.241-67, 1991.

N. Watanabe, T. Nakajima, H. Touhara, M. Dubois, K. Guérin et al., Graphite Fluorides NMR and EPR studies of room temperature highly fluorinated graphite heat-treated under fluorine atmosphere Synthesis and Characterization of Highly Fluorinated Graphite Containing sp2 and sp3 Carbon, Carbon. Chemistry of Materials, vol.42167, issue.109, pp.1931-401786, 1988.

Y. Ahmad, E. Disa, M. Dubois, K. Guérin, V. Dubois et al., The synthesis of multilayer graphene materials by the fluorination of carbon nanodiscs/nanocones The effect of nanostructure on the thermal properties of fluorinated carbon nanofibres Applicative performances of fluorinated carbons through fluorination routes: A review, Carbon. Carbon. Journal of Fluorine Chemistry, vol.504913410, issue.1014, pp.3897-9084801, 2011.

W. Zhang, K. Guérin, M. Dubois, Z. Fawal, D. Ivanov et al., Carbon nanofibres fluorinated using TbF4 as fluorinating agent. Part I: Structural properties Carbon nanofibres fluorinated using TbF4 as fluorinating agent. Part II: Adsorption and electrochemical properties, Carbon. Carbon, vol.46114612, issue.77, pp.1010-61017, 2008.

W. Zhang, L. Spinelle, M. Dubois, K. Guérin, H. Kharbache et al., New synthesis methods for fluorinated carbon nanofibres and applications, Journal of Fluorine Chemistry, vol.131, issue.6, pp.676-83, 2010.
DOI : 10.1016/j.jfluchem.2010.02.007

F. Chamssedine, M. Dubois, K. Guérin, J. Giraudet, F. Masin et al., Reactivity of Carbon Nanofibers with Fluorine Gas, Chemistry of Materials, vol.19, issue.2, pp.161-72, 2006.
DOI : 10.1021/cm061731m

C. Basire and D. Ivanov, Evolution of the Lamellar Structure during Crystallization of a

S. Nalum, N. Arnljot, E. Geir, H. Kenneth, and D. , Carbon nanocones: wall structure and morphology, Science and Technology of Advanced Materials, vol.1016, issue.6, p.65002, 2009.

N. Watanabe, S. Koyama, and H. Imoto, in a Vacuum, Bulletin of the Chemical Society of Japan, vol.53, issue.10, pp.2731-2735, 1980.
DOI : 10.1246/bcsj.53.2731

R. Yazami, M. Deschamps, S. Genies, J. Frison, E. Flahaut et al., Study of the carbon material electrolyte interface Gram-scale CCVD synthesis of double-walled carbon nanotubes Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation, Journal of Power Sources. Chemical Communications. Carbon, vol.6818019431, issue.1122, pp.110-31442, 1997.

S. Zhang, D. Foster, J. Wolfenstine, J. Read, J. Desilva et al., Electrochemical characteristic and discharge mechanism of a primary Li/CFx cell Solid-state nuclear magnetic resonance studies of electrochemically discharged CFx, Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices, pp.233-75659, 2008.

R. Yazami, A. Hamwi, K. Guérin, Y. Ozawa, M. Dubois et al., Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries, Electrochemistry Communications, vol.9, issue.7, pp.1850-1855, 2007.
DOI : 10.1016/j.elecom.2007.04.013

Y. Ahmad, E. Disa, M. Dubois, K. Guérin, V. Dubois et al., The synthesis of multilayer graphene materials by the fluorination of carbon nanodiscs/nanocones, Carbon, vol.50, issue.10, pp.3897-908, 2012.
DOI : 10.1016/j.carbon.2012.04.034

URL : https://hal.archives-ouvertes.fr/hal-00785916

A. Partir-de-cette-Évolution, trois modes principaux de fonctionnement d'un AFM sont accessibles, il s'agit : du mode contact, du mode non-contact (MNC) et du mode contact intermittent (MT) (également appelé « Tapping »). Nous détaillerons ces modes plus loin

. Le-système-d, amplification est un levier sur lequel est fixée la pointe. L'ensemble est assimilable à un oscillateur. Le levier, de forme variable, est assimilable à un ressort de raideur connue

J. Giraudet, M. Dubois, K. Guérin, A. Hamwi, and F. Masin, Solid state NMR studies of covalent graphite fluorides (CF)n and (C2F)n, Journal of Physics and Chemistry of Solids, vol.67, issue.5-6, pp.5-61100, 2006.
DOI : 10.1016/j.jpcs.2006.01.030

G. Study and . Monofluoride, CF)n: 19F Spin?Lattice Magnetic Relaxation and 19F/13C Distance Determination by Hartmann?Hahn Cross Polarization, The Journal of Physical Chemistry B, vol.1093, issue.1, pp.175-81, 2004.

J. Giraudet, C. Delabarre, K. Guérin, M. Dubois, F. Masin et al., Comparative performances for primary lithium batteries of some covalent and semi-covalent graphite fluorides, Journal of Power Sources, vol.158, issue.2, pp.1365-72, 2006.
DOI : 10.1016/j.jpowsour.2005.10.020

A. Abragam, F. Barbarin, G. Berthet, J. Blanc, C. Fabre et al., The principles of nuclear magnetism NMR and ESR studies of an undoped conjugated polymer: poly-p-phenylene 19F NMR study of C-F bonding and localization effects in fluorine-intercalated graphite Characterization of poly(carbon monofluoride) by 19F and 19F to 13C cross polarization MAS NMR spectroscopy Property control of carbon materials by fluorination Solid State 13C and 19F NMR Characterization of Fluorinated Charcoal Solid state NMR of polymers, Studies in Physical and Theoretical Chemistry Nuclear magnetic resonance study of fluorine?graphite intercalation compounds and graphite fluorides, Synthetic Metals. Chemical Physics Letters. Chemical Communications. Carbon. Energy & Fuels. Synthetic Metals. Journal of Structural Chemistry, vol.627138121010014, issue.0222, pp.53-94, 1961.