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Notations & Usual definitions

Set theory and topology

R™.

N is the set of natural integers {0,1,...} and N* = N\ {0}.

R is the field of real numbers and R, = {z € R: z > 0}.

In all this document, the integer n € N* represents the dimension of the state space

|z| denotes the absolute value of x € R; ||z|| denotes the Euclidian norm of x € R?.
If A is a linear mapping from R? to R? ||A|| denotes the operator norm, that is
[A]] = sup{[|Az[| : [lz]] = 1}.

B(x,r) is the Euclidian open ball centered in x of radius 7.

B(x,r) is the Euclidian closed ball centered in x of radius r.

If Ais a subset of R", we denote by A the interior of A, that is the biggest open
subset of A.

Similarly, we denote by A the closure of A, that is the smallest closed set containing
A.

The boundary of A is defined by 94 = A\ A.

The set A C R" is convex iff for any a,b € A and for any A\ € [0, 1], we have
Aa+ (1 —=\)b e A.

If A C R™, the convex hull of A, denoted conv(A), is defined as the smallest (in the
sense of inclusion) convex set containing A. We denote also conv(A) the closure of

the convex hull of A. We recall that a compact set has a compact convex hull.

If A and B are bounded subsets of R", the distance between A and B is defined by
d(A, B) = inf{la — b|,a € A,b € B}.



Notations € Usual definitions

Functions & Vector fields

We call function any Lebesgue measurable mapping from R” to R.
We call vector field any Lebesgue measurable mapping from R” to R"™.

For any ¢ € N*, if i/ C R" is an open set and k € N, C¥(U,R?) denotes the set of
mappings from U to R? having continuous differential up to the order k. We also
define C®(U,R?) = NpenCF(U,R?). A mapping f : U — R? is said to be of class k
iff it belongs to C*(U, RY);

If f:RP — R?is a differentiable mapping, we denote d,f its differential at the
point x € RP.

If V' is a differentiable function and f is a vector field, we denote L;V = d,V f(x)
the Lie derivative of V' along f.

If f and g are differentiable vector fields, we denote [f, g] the Lie bracket of f and
g defined by [f, g](x) = dzg.f(v) — do f.g(x).

For any p,q € N* if U C RP is an open set, £ (U, R?) denotes the set of locally

loc

essentially bounded measurable mapping from U to R?. For any d € £2 (U, R?) and

loc

any compact set K C U, we denote ||d||x = esssup,c |d(z)].

For any p,q € N*, if i/ C RP is an open set, L>(U,R?) denotes the set of (globally)
essentially bounded measurable mapping from U to RY. For any d € L>(U,R?), we

denote [|d||oc = esssup,y |d(2)].

A function V' is positive definite, denoted by V' = 0, if V/(0) = 0 and V(z) > 0 for
all x # 0. A function V' is negative definite if =V = 0.

A mapping ¢ : R? — R? is proper if for any compact set K C RY, p~}(K) is a

compact set of RP.

A multivalued map F from a set A to a set B, denoted F' : A = B, is a map
F: A — P(B), where P(B) denotes the set of subsets of B.

Miscellaneous

For any a > 0 and x € R, [z]|* = sign (z)|z|*.



e The set K is defined as the set of strictly increasing continuous functions o : Ry —
R, with a(0) = 0.

e We also define Ko, = {a € K : lim, 1 a(r) = +00}.

e The set KL is defined as the set of continuous functions g : R, x Ry — R, such

that:
Vie Ry s+ f(s,t) € K

Vs e R, t+ [(s,t)is decreasing and lim; o 5(s,t) =0 .

e The identity mapping of a set I is denoted Ig. If the set E is clear from the context,

we simply denote it .

e The vector space R" is endowed with the Borel o-algebra and the Lebesgue measure.

We denote N the set of all zero measure subsets of R™.

o If & is a diffeomorphism, ®* denotes the pullback by ®. See Appendix B.

Abbreviations

Here is the list of the abbreviations used in this document. Those with a { are defined in

details in Appendix A.

DI : Differential Inclusion.

FTS' : Finite-Time Stable.

GAS' : Globally Asymptotically Stable.
GFTS' : Globally Finite-Time Stable.
LAS' : Locally Asymptotically Stable.
LAT' : Locally ATtractive.

ODE : Ordinary Differential Equation.

SPI' : Strictly Positively Invariant.
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(zeneral introduction

Homogeneous, from Ancien Greek Opoyevns,
"of the same race, family or kind",

from Opog,"same" and vevos, "kind".

The homogeneity is an intrinsic property of an object on which the flow of a particular
vector field operates as a scaling. This definition, rather simple, entails a lot of qualitative
properties for a homogeneous object, and is of particular interest in view of stability
purposes.

The study of the stability or the asymptotic stability of a dynamical system is a
central problem in the control theory. Given that the equations of a system are very often
impossible to integrate explicitely, indirect methods have to be used for getting qualitative
properties. Even though the results of Kurzweil |Kurzweil 1963| and Clarke |Clarke 1998
prove the equivalence of the asymptotic stability and the existence of a smooth Lyapunov
function, finding such a Lyapunov function may be a very difficult task. Qualitative
results not involving the computation of a Lyapunov function are therefore of a great
interest. This is why the homogeneity theory has been developed and used in control
theory: the rigid properties of homogenous systems simplify the study of the stability and
give sufficient conditions for deriving it.

The literature on the homogeneity theory is vast and detailed. A lot of theoretical
and practical results have been proved in the last decades, and used in different context.
The first Chapter of this work is devoted to a state of the art about homogeneity. The
usual context of homogeneous systems as well as their main features are recalled. In
that Chapter, we present the three steps of the definition of homogeneity. The classical
definition, going back to Euler and his homogeneous function theorem, is very common
in mathematics as well as in control theory. The weighted definition, firstly introduced in
control theory by Zubov and Hermes, was extensively studied by Khomenuk, Kawski and

Rosier afterwards. It is nowadays the most widely known and used notion of homogeneity.
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General introduction

The geometric definition is the last step of the homogeneity theory, giving it a unified and
coordinate-free framework. The main results of the theory are stated in the first Chapter,
among which various ways of checking homogeneity, the theorem of Rosier (homogeneous
converse second Lyapunov’s theorem), the equivalence between local attractiveness and
global stability, the link between a negative degree of homogeneity and the finite-time sta-
bility, and the Hermes’ theorem (homogeneous extension of the first Lyapunov’s theorem).
Finally this Chapter gives a quick introduction to the theory of local homogeneity.

The next Chapters are devoted to extensions, adaptations and applications of the usual
theory. This work focuses on two main aspects of the homogeneity theory: first, deriving
stability properties from the homogeneity or the local homogeneity; second, proving that
the homogeneity of a system provides some useful robustness properties. The results are
split into Chapters 2 to 5.

In Chapter 2, we extend the existing results on the homogenization of a nonlinear sys-
tem. This technique has been already defined and studied in the framework of weighted
homogeneity. We focus here on an extension to a more general setting of the geomet-
ric homogeneity. The advantages of the proposed extension include the coordinate-free
definition, allowing us to define an approximation that is perserved under a change of coor-
dinates, and its larger range of applicability due to a more general definition of geometric
homogeneity. The main approximation theorems are extended and academic examples of
use are given.

The third Chapter develops a theoretical framework for defining geometric homogene-
ity of discontinuous systems and/or systems described by a differential inclusion. Few
results already exist in this direction; we propose a unified theoretical framework based
on the geometric homogeneity. We show that the proposed definition is consistent with
respect to the Filippov’s regularization procedure. Then we give extensions of well-known
qualitative properties of homogeneous systems, which have been presented herebefore.
First, the converse homogeneous Lyapunov Theorem (Rosier’s Theorem) is extended us-
ing the result of Clarke, Ledyaev and Stern about the existence of a Lyapunov pair for an
asymptotically stable differential inclusion under standard assumptions. This allows us
to link negative degree of homogeneity and finite-time stability. The equivalence between
local attractiveness and global stability is also proved to hold.

Even though a nominal system is homogeneous, in applications the perturbations and
unmodelled dynamics cannot be avoided. That is why Chapter 4 is devoted to a study of
robustness properties of (weighted) homogeneous or homogenizable systems. We adress

the question of the input-to-state and integral input-to-state stability property of homoge-

12



neous systems. In order to do that, we consider two different assumptions. The first one is
algebraic and consists in the homogeneity of the system with respect to the perturbation.
This assumption, although appearing at first sight to be very strong, is in fact tractable
since a nonlinear change of coordinates can be performed on the perturbation. The second
assumption is more analytic: we consider that the diffence between the perturbed and the
nominal systems is bounded in an appropriate way. Both assumptions lead to a type of
robustness linked to the degree of homogeneity. The results are compared to each other,
and finally extended to the more general setting of homogenizable systems.

In the fifth Chapter, we study the example of the double integrator system. This
system is very important in practice (in mechanics, electrical engineering...) since a lot
of systems have a nominal form of the double integrator. However, in some applications,
the usual exponential convergence is not sufficient. Our aim is hence to synthesize a fam-
ily of (homogeneous) continuous finite-time stabilizing output feedbacks. The proposed
algorithm is somehow between the linear control and the purely discontinuous control
(twisting algorithm). The former does not achieve finite-time convergence, but the lat-
ter presents some chattering effects that are often an issue in practical situations. The
proposed method is a mix between the preceding two, and displays some of their main
features. Thereafter, we study the robustness of the closed loop system with respect to
perturbations and the impact of the discretization by using techniques developed before.
Simulations conclude the theoretical study of this system and illustrate its behavior.

Finally, a conclusion summarizes the results presented therein and proposes some
ongoing or future works. Three appendices are given afterwards, the first two recalling
classical definitions and results used in the document, and the third one presenting another
result not linked with the topic of this document, but done in parallel and published in
[Bernuau 2013d].

13



General introduction

14



Chapter 1

Homogeneity
Contents
1.1 Introduction . .. ... ... ... .. e 15
1.2 Standard homogeneity . .. ... ... ... ... ... ... 17
1.3 Weighted homogeneity . ... ... ................ 20
1.4 Geometric homogeneity . . . . . ... ... ... .. 000 24
1.5 Extensions. . . . . ... ... ittt 28
1.6 Conclusion. . . . . . . . . i ittt it e 29

1.1 Introduction

Homogeneity has a long standing history. In the classical sense, a mapping is homoge-
neous if it maps an argument scaled by a given constant to the image of that argument,
scaled by the same constant at a fixed power, called the degree. This property has been
the subject of a huge amount of works, because it holds for a lot of very common math-
ematical objects, like linear mappings or norms. Omne of the most interesting property
of homogeneous objects is that the scaling operation allows us to compare the behavior
at any point with the behavior at a corresponding point on the sphere. This fact can
be used for instance to reduce the dimension of a problem or to obtain symmetry prop-
erties, like the homogeneous function Theorem of Euler. The symmetry properties of
the homogeneous polynomials were first studied by Euler and then more deeply during
the nineteenth century, in view of projective geometry, algebraic geometry or in num-

ber theory. The classical homogeneity was also used to investigate stability properties
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Chapter 1. Homogeneity

[Malkin 1952, Krasovskii 1963, Hahn 1967, Rothschild 1976, Goodman 1976| and a par-

ticular attention was paid for polynomial systems [Dayawansa 1989).

The first generalization of the classical homogeneity was introduced in Control Theory
independently by V. I. Zubov [Zubov 1958] and H. Hermes [Hermes 1986, Hermes 1991b)].
The main idea is to replace the classical scaling by a slightly more general transformation,
namely a dilation. Indeed, each coordinate is scaled by the same constant but with

different powers, called weights. This leads to a weighted dilation written under the form
Ar(N) iz e R — (Naq, ..., A™x,) € R™,

for A > 0, where r; > 0 are the weights and r = [rq,...,7,] is a generalized weight. Such a
dilation leads to the extended notion called weighted homogeneity. The degrees of freedom

given by the weights allow us to see much more objects as homogeneous.

Such homogeneity property was naturally considered looking at a local approximation
of nonlinear systems: small time local controllability and local asymptotic stability is
shown to be inherited by the original nonlinear system if this property holds for the
homogeneous approximation [Hermes 1991b, Kawski 1988|. With this property, many
results were obtained for stability, feedback stabilization [Kawski 1990, Kawski 1991b,
Hermes 1995, Sepulchre 1996 or output feedback stabilization [Andrieu 2008]. Another
very important result was obtained independently by Zubov [Zubov 1958] and Rosier
[Rosier 1992a|: if a continuous homogeneous system is globally asymptotically stable,

then there exists a homogeneous proper Lyapunov function.

This notion was also used in different contexts: switched systems [Orlov 2005b], self-
triggered systems [Anta 2008, Anta 2010|, time delay systems [Efimov 2011], control and
analysis of oscillations [Efimov 2010]. Since investigation of the finite-time stability in
[Haimo 1986| many papers were devoted to this concept (e.g. [Bhat 2000]) and its link
with the homogeneity: the finite-time property is obtained if the system is locally asymp-
totically stable and homogeneous of a negative degree (see [Bhat 1998, Bacciotti 2005]).
This result is exploited in [Bhat 1997, Orlov 2005a, Bhat 2005] and with application
to controllers design in [Bhat 1998, Hong 2002b|, observers design in [Perruquetti 2008,
Shen 2008, Menard 2010], and output feedback in [Hong 2002a].

Extensions were given for vector fields of a degree of homogeneity that is a function
of the state [Praly 1997] and to homogeneity in the bi-limit [Andrieu 2008], which pro-
vides homogeneous approximations at the origin and at infinity. The local homogeneity

concept has been also introduced in [Efimov 2010]. These tools were useful for nonlinear
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1.2. Standard homogeneity

observer and output feedback design. Let us finally mention the extensions provided by
[Orlov 2005b| and [Levant 2005|, defining weighted homogeneity for differential inclusions
and making a short study of their properties.

In addition to all these works on weighted homogeneity, another approach has been
considered. Since the weighted homogeneity is based on a dilation that is dependent on the
coordinates, then there exist vector fields which are homogeneous for some coordinates,

but not using other ones. In [Bacciotti 2005], it is even proved that the system

j’,’lz )

i‘g = —T1 — I%IQ

is globally asymptotically stable, but no change of coordinates could put it in a form
for which the homogeneous approximation associated with any dilation is asymptotically
stable. Moreover, seeing dilations as a one-parameter group, homogeneity can easily
be stated without coordinates. This leads to a geometric definition of homogeneity. The
very first geometric definitions appeared independently in [Khomenuk 1961, Kawski 1990]
and |[Rosier 1993]. The paper of S. Bhat and D. Bernstein [Bhat 2005] is written in
this context, and proves a lot of theoretical results about homogeneous systems in the
geometric sense. Let us also mention [Anta 2010|, where the geometric homogeneity is
used for self-triggered systems.

In this Chapter, we shall present the basics on the homogeneity theory. In the Section
1.2, we shall present the classical homogeneity and the related properties. The Section
1.3 will be devoted to the weighted homogeneity and the Section 1.4 to the geometric
homogeneity. Each of these two sections will be an extension of the preceding. Finally,
some extensions of the main theory shall be presented in Section 1.5. The contents of this

Chapter have been submitted in a survey [Bernuau 2013b|.

1.2 Standard homogeneity

Definition 1.1. [Hahn 1967] Let n and m be two positive integers. A mapping f : R* —

R™ s said to be homogeneous of degree k € R in the classical sense iff
VA>0: f(Ax) = N f(x).

Note that no regularity assumption is made on the mapping f. Let us see some

17



Chapter 1. Homogeneity

examples.

e The function
ac?-i—a:g .
2= ifx#£0

:c%Jrz%

0 ife=0

x=(x1,29) —

is homogeneous of degree 1 and continuous, but it is not linear.

e The function defined by:

(1'1,1‘2) — { Trte 3

0 else

is homogeneous of degree —% and not continuous.

There exists a necessary and sufficient condition for homogeneity.

Proposition 1.2 (Euler’s Theorem for classical homogeneity). Let f : R* — R™ be a
differentiable mapping. Then f is homogeneous of degree k iff for all i € {1,...,m}

ixa‘ff (x) = kfi(x), Vo € R".

Let us mention that the regularity of a homogeneous mapping f is related to its degree:
e if Kk < 0 then f is either discontinuous (at the origin) or the zero vector field;

e if 0 < Kk < 1 then either the Lipschitz condition is not satisfied by f at 0 or f is

constant.

These conditions are necessary but not sufficient.

We will be particularly interested in homogeneous systems, e.g. systems like

i— (o) (1.1)

where the vector field f is homogeneous. Let us consider some examples.

o Let A € R™™ and f(z) = Ax. Then f is homogeneous of degree 1. Note that the

flow of f, x +— exp(At)x is homogeneous as well.

18



1.2. Standard homogeneity

e The scalar vector field f(z) = —sign (x) is homogeneous of degree 0. For any x¢ € R,
denote x(t) (resp. x(t)) a solution of & = —sign (x) with initial condition z(0) =
(resp. xx(0) = Azg). We have

o(t) = sign (o) (Jxo| —t) t € [0, |xol]
0 t> |$0|

thus xy(At) = Ax(t).

These examples lead us to the following proposition.

Proposition 1.3. [Zubov 1964, Hahn 1967] Assume that the vector field f : R" — R™
is homogeneous of degree r. For any solution x(t) of (1.1) and for all X\ > 0, the curve
t — Ax(\"71t) is a solution of & = f(x).

If the system (1.1) admits a (semi-)flow W (x), we have

AU (7)) = UH(a). (1.2)

Taking advantage of the Proposition 1.3, we can now state stability results.

Theorem 1.4. [Krasovskii 1963] Consider the homogeneous system (1.1) with a contin-
wous vector field f and with forward uniqueness of solutions. If the origin is a locally

attractive equilibrium, then the origin is globally asymptotically stable.

Theorem 1.5. [Krasovskii 1963] Consider the homogeneous system (1.1) with a contin-
uwous vector field f. Then the origin is globally asymptotically stable iff there exists a
homogeneous, proper and continuous function V€ C1(R™\ {0}), s.t. V is positive definite

and V are negative definite.

Corollary 1.6. [Malkin 1952, Krasovskii 1963] Let fi, ..., f, be continuous homogeneous
vector fields with degree k1 < ko < ... < ky and denote [ = f1+---+f,. Assume moreover
that f(0) = 0. If the origin is globally asymptotically stable under f, then the origin is
locally asymptotically stable under f.

See the book [Hahn 1967| for more details. The preceeding results have been stated
with the assumption of continuity of the vector field and the first one with the additional
hypothesis of forward uniqueness of solutions. We will see in the Chapter 3 that the first
hypothesis may be significantly weakened while the second may be dropped.
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Chapter 1. Homogeneity

1.3 Weighted homogeneity

Let us first formally state the basic definitions of weighted homogeneity that have been

evoked in the introduction.

Definition 1.7. A generalized weight is a n-tuple v = [ry,...,r,] with r; > 0. The
dilation associated to the generalized weight v is the action of the group R, \ {0} on R™
given by:
Ay Ri\{0O} xR* — R,
(A, ) — AN = (A, AT

Remark 1.8. Let us emphasize some facts.

o The definition of the dilation is coordinate-dependant. In all this work, homogeneity
will be used for functions and wvector fields defined on a vector space R™, with a
positive integer n. For the sake of simplicity, we will always assume that the chosen

basis 1s the canonical basis of R™, unless otherwise stated.
e In Chapter 4, we will sometimes allow the weights r; to be non-negative.
Definition 1.9. [Zubov 1958, Hermes 1986] Let r be a generalized weight.

e A function v is said to be r-homogeneous of degree k iff for all x € R™ and all A > 0
we have \™"p(Ayx) = ¢(x);

o A wvector field f is said to be r-homogeneous with degree k iff for all x € R™ and all
A > 0 we have \™"AJT (M) = f(2);

e The system (1.1) is r-homogeneous iff f is so.

Let us stress the links and the differences with the classical homogeneity. To begin
with, taking r = [1,..., 1], we see that the dilation associated to r is A,(\) = AI. Hence
a function ¢ is r-homogeneous of degree x iff p(Ax) = Ap(x), and we see that the
Definitions 1.1 and 1.9 coincide. However, a vector field f is r-homogeneous of degree x
iff f(Ax) = NAf(x). We see here a gap in the degrees of the two definitions: a vector
field is homogeneous in the classical sense of degree x iff it is r-homogeneous of degree

k — 1. For instance, every linear vector field is r-homogeneous of degree 0.

Remark 1.10. A vector field f is r-homogeneous of degree k iff each coordinate function

fi s r-homogeneous of degree k + r;.
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1.3. Weighted homogeneity

Obviously, some objects are weighted homogeneous without being homogeneous in the

classical sense. Let us see some examples.

Example 1.11. o The function @ : x — 1 + 3 is [2, 1]-homogeneous of degree 2;
o Let o, ..., « be strictly positive. Consider the n-integrator system:
jjl = T2,
"tn—l = Tn,

.’tn = Zz l{,’l LCUi—Iai.

The system is r-homogeneous of degree k with v = [ry,...,r,| iff the following
relations hold:

ri = rat+(i—n)k, Vie{l,...,n},

T = Tp+ R, Vie{l,...,n}.

Let us fix r, = 1. We easily see that this assumption forces k to be greater than —1.

The equations become:

{ri = 1+ (i—n)k, Vie{l,...n},

o = H%’L‘—’_—*}?’l)’i’ V’LE{l,?’L}

If Kk = —1, then the vector field defining the system is discontinuous on each coordi-
nate azis. If k = 0, then we recover a chain of integrators of n'*-order with a linear
state feedback. This example will be treated with more details in Chapter 5 for the

case n = 2.

Remark 1.12. The generalized weight defining the homogeneity of a function or a vector
field is not unique. Indeed, an object is r-homogeneous of degree k iff it s ar-homogeneous
of degree ar for all o > 0. Let us also stress that some systems can be r-homogeneous for
different generalized weights r that are not colinear. For instance, the system © = x on

R™ is r-homogeneous (of degree 0) for any generalized weight r.

Let us check how the properties of classical homogeneity from Section 1.2 are extended

into the framework of weighted homogeneity.

Proposition 1.13. [Zubov 1958] Assume that f : R* — R™ is a r-homogeneous vec-
tor field of degree k. For any solution x(t) of (1.1) and for all X > 0, the curve
t— Ar(N)x(At) is a solution of (1.1).
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Chapter 1. Homogeneity

If the system (1.1) admits a (semi-)flow ¥ (z), we have
AU (2) = UH(A). (1.3)

The Proposition 1.13 is the natural extention of the Proposition 1.3 in the framework
of classical homogeneity.

Let us see now the Euler theorem.

Proposition 1.14 (Euler’s Theorem for weighted homogeneity). [Zubov 1958] Let o be

a differentiable function. Then ¢ is r-homogeneous of degree k iff
g
rivi—(x) = kp(x), Vo € R™.
2 i,

Let f be a differentiable vector field. Then f is r-homogeneous of degree r iff for all
ie{l,....n}

n

of;
erxjg_i(x) = (k+ri)fi(2), VY € R™.
j=1 j

Theorems 1.4 and 1.5 remain true in the weighted homogeneity framework [Zubov 1958]
(in Russian), [Rosier 1992a|. The homogeneous converse Lyapunov theorem has been

proved independently by Zubov and Rosier.

Theorem 1.15. Let f be a continuous r-homogeneous vector field. If the origin is a glob-

ally asymptotically equilibrium of f, then there exists a r-homogeneous Lyapunov function
for f of class C*.

Let us set other results, which are fundamental in the study of finite-time stability.

Theorem 1.16. [Bhat 1997] Let f be a continuous r-homogeneous vector field of degree
k < 0 with forward uniqueness of solutions. If the origin is a locally attractive equilibrium
of (1.1), then the origin is globally finite-time stable (FTS).

Corollary 1.17. [Bhat 1997] Let fi,..., f, be continuous homogeneous vector fields of
degrees ky < ko < ... < k, and denote f = fi+---+f,. Assume moreover that f(0) = 0. If
the origin is globally asymptotically stable under fi then the origin is locally asymptotically
stable under f. Moreover, if the origin is FTS under fy then the origin is F'TS under f.

Let us finally introduce a useful tool in the study of homogeneous systems.
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1.3. Weighted homogeneity

Definition 1.18. Letr be a generalized weight. A function N is said to be a r-homogeneous

norm if the three following assumptions hold:
1. N is positive definite;
2. N is r-homogeneous of degree 1;

3. N s continuous.

The following function gives us an example of a r-homogeneous norm:

n 2.1 n
lelle = (O leal™)5, o= (1.4)
=1 i=1

rn| be a generalized weight and N be a r-homogeneous norm.
. Tn}. Then for all x € R™ the

Lemma 1.19. Letr = [rq, ...
We denote ry, = min{ry,...,r,} and ryp. = max{r, ..

following inequality holds
a_v-(N(z)) < ||zl < oyv (N(2)),
where a_ and a4 are positive constants and v_ and vy are class Ko functions defined by

gMmax  gf ¢ <1
v_(s) = .
gMmin gf ¢ > 1;

gMmin gf ¢ <1

vi(s) = .
grmax 4f ¢ > 1.

Proof. The inequality obviously holds for x = 0. Let us consider x # 0. There exists
y€{z€R": N(z) = 1} such that z = A;(\)y with A = N(x). If A > 1 we have

1/2
2] = 1AMyl = (Z AQ”?J?) :

which leads to
1/2

1/2
- (ny) <ol < A (Z y?>

Ayl < lefl < ATyl
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Chapter 1. Homogeneity

Setting a— = inf{||y|| : N(y) = 1} and ay = sup{||y|| : N(y) = 1}, we get
a-N(z)™= < |lz]| < aypN(z)™.

If A < 1, we get similarly o N (x)™= < ||z|| < a4 N(z)™» which completes the proof. [

1.4 Geometric homogeneity

As we have seen, the definition of the weighted homogeneity is based on a particular
choice of a basis in the construction of the dilation and is therefore coordinate-dependent.

For instance, consider the following vector field:

0

0
(z1 4+ 29 — 23) =— + (29 + ] + 27179 — Qx?)%
2

8961

According to the previous definitions, it is not weighted homogeneous. But setting z =

w9y — a2, this vector field becomes:

0 0
(@1 + 2)8_551 tag
and in this form, the vector field is (1, 1)-homogeneous.

Since we are particularly looking at stability properties, a coordinate-free definition
should be of a great interest. Let us take a look at the definition of weighted homogeneity.
For a given © € R", the set (Ayz)xs0 is a curve on R™. An object is homogeneous iff its
variations along these curves reduces to the dilation and a scaling. With this point of
view, the homogeneity property should be invariant under a change of coordinates if these
curves are encoded in a geometric object.

This remark has been done very early in the development of the homogeneity theory
[Khomenuk 1961, Kawski 1990, Rosier 1993|. The basic idea is to consider a vector field
v and to replace the curves (A,x)yso by the integral curves of v. Even though this
idea is widely shared in the literature, the authors do not always agree on the specific
assumptions on this vector field. The definition we shall take here is not the most general,
but allows us to translate the main properties of the two preceding sections into the

geometric framework.

Definition 1.20. [Kawski 1991a] A vector field v € C}(R™,R") is said to be Euler if it is
complete and if the origin is a GAS equilibrium of —v. We will always write ® the flow
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1.4. Geometric homogeneity

of v, that is ®*(x) is the current state at time s of the trajectory of v starting from x at
s=0.

Definition 1.21. Let v be an Euler vector field. A function o or a vector field f is said

to be v-homogeneous of degree r iff for all s € R we have':
(q)s)*(p — 6'%890, ((I)s)*f — BKSf' (15)

Consider a generalized weight r = [r,...,r,] and the vector field v = ), rixia%i. It
is straightforward to check that r-homogeneity is equivalent to v-homogeneity, and hence
the weighted homogeneity is a particular case of the geometric homogeneity in a fixed
basis.

We will be particularly interested in the homogeneity for a vector field. Since the
definition of the geometric homogeneity needs to compute the flow ®, it will be a difficult
task in general. Nevertheless, there exist equivalent conditions for a vector field f to be

homogeneous assuming regularity properties on f.

Proposition 1.22. [Kawski 1995] Assume that the vector field f : R* — R™ is v-
homogeneous of degree k. For any solution x(t) of (1.1) and for all s € R, the curve
t — ®5(x(e"t)) is a solution of (1.1).

If the system (1.1) admits a (semi-)flow U'(x), we have

P o Ut = Wl o B° (1.6)

The Proposition 1.22 is the natural extension of the Propositions 1.3 and 1.13 in the
framework of classical homogeneity. The Euler’s Theorem also admits an extension, that

justifies the name “Euler vector field”.

Proposition 1.23 (Euler’s Theorem for geometric homogeneity). [Kawski 1995/

Let ¢ be a differentiable function. Then v is v-homogeneous of degree r iff
L,p = Kp.
Let f be a differentiable vector field. Then f is v-homogeneous of degree k iff

{va}:'%f'

L(®*)* denotes the pullback by the diffeomorphism ®°, see Appendix B.
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Chapter 1. Homogeneity

Remark 1.24. In [Rosier 1993/, the property v, f| = kf is the definition of a symme-
try. This definition s based on the classical theory of partial differential equations as
set in [Olver 1986]. The properties (1.5) and (1.6) are then seen as consequences of this
definition in [Rosier 1993].

The Theorems 1.4, 1.5, 1.16 and 1.17 remain true in the geometric homogeneity frame-
work [Bhat 2005, Rosier 1992a]. The geometric homogeneous version of the Theorem 1.5
is often referred as the Theorem of Rosier. Some other results were proved in the geometric

homogeneity framework and obviously hold for classical and weighted homogeneities.

Theorem 1.25. /Bhat 2005] Consider a homogeneous continuous vector field f with for-
ward uniqueness of solutions. If there exists a SPI compact set for f then f is GAS.

The definition of a homogeneous norm remains unchanged for geometric homogeneity.

However, the existence of such a homogeneous norm is not trivial.

Proposition 1.26. Let v be an Euler vector field. Then there exists a v-homogeneous

norm.

Proof. Set f = —v. Since [v, f] = 0, f is v-homogeneous of degree 0. By Theorem 3.22,
there exists a continuous Lyapunov function of degree « for any x > 0. Take x = 1. The

obtained function N is definite positive, v-homogeneous of degree 1 and continuous. [J

Another natural question is to wonder whether a given Euler vector field v corresponds

to a weight r up to a change of coordinates.

Proposition 1.27. Let v be an Fuler vector field. There exist coordinates x1,..., T, in
which v =Y, rixiaiz_ iff there exists v-homogeneous functions o1, ..., p, € CH(R™,R) of
degree 11, ..., r, such that rank (dop1, . . ., dopn) = n.

Proof. Assume that there exist coordinates x1, ..., z, in which v =), Tixia%i' Then the
functions ¢;(x) = x; are appropriate choices.

Conversely, assume that there exist v-homogeneous functions ¢y, ..., p, € C}(R",R)
such that rank (dop, . .., down) = n. Set Y(z) = (p1(x), ..., n(x))T. Let us prove first
that T is a global diffeomorphism. The rank of the differential of T at O is

)T:n.

rank (dogs, . . ., don

The functions ¢; being of class C!, this rank is locally constant: there exists a neigh-
borhood U of the origin such that for all x € U, rank (d, ¢, .. .,dwgpn)T = n. By the
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1.4. Geometric homogeneity

inverse function Theorem, T is a local diffeomorphism. Now, let us show that T is
injective. The condition Y(z) = Y(y) is equivalent to y;(x) = ¢;(y) for all i. Con-
sider a v-homogeneous norm N. Being continuous and homogeneous, it is proper (see
[Bhat 2005]). Therefore the set B = {z € R" : N(z) < 1} is compact, and there exists
s € R such that ®¥(B) = {z € R* : N(z) < e’} C U. There exists also 0 € R such
that ®7(z) € °(B) and ®7(y) € ®*(B). Hence p;(x) = p;(y) gives €"%¢p;(x) = €"%p;(y)
and ¢;(P7(z)) = pi(P7(y)) € U. Then YT(P%(z)) = YT(P7(y)) leads to ®7(z) = P(y)
because T is a diffeomorphism on U, and finally T is injective on R™. We conclude by
the Theorem of global inversion that T is a global diffeomorphism, and a straightforward

verification shows that v =), Ti@ia%,- O

Remark 1.28. Let us mention that such functions do not always exist. First, note
that the conditions of the Proposition imply that the coefficients r; are non zero, since
a continuous homogeneous function of degree 0 is constant and therefore cannot verify the
rank condition.

Considering now a norm 1 vector x and a scalar o > 0, we have:

axr) = ripi(ax)

VSOZ(
v( = 7ripi(ax)

)
)
) = ri(pilaz) —¢i(0))
)
)

daztpi V(ax

dazpi (V(aw) — v(0)
doztpi (dov (az) + o)
daztpi (dov x + 0(1)

= ri(dopi(ax) + o(a))

Letting now o — 0, we get
dop;dovx = ridop;T.
Being true for any x in the unit sphere, the equality implies
dop; dov = ridowpi,

that is dop! is an eigenvector of dov™ with associated eigenvalue r;. Finally, the conditions
of the Proposition imply that dov” admits n independant eigenvectors, that is, dov’ is
diagonizable. This is obviously not always true.

Let us finally mention that an example of an Euler vector field that does not reduce to
a dilation is given in the Example 5.9 p. 194 of [Bacciotti 2005].
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Chapter 1. Homogeneity

1.5 Extensions

Even though the successive improvements of the definitions of homogeneity allow us to
see much more functions and vector fields as homogeneous, the interest of the theory is
not only restricted to homogeneous objects. Sometimes, a homogeneous vector field can
be seen as an approximation of non-homogeneous one, and some qualitative properties of
the approximation hold for the approximated vector field. The first result in this direction
is due to Hermes [Hermes 1991a], with an assumption of forward uniqueness of solutions
and then generalized by Rosier in [Rosier 1992a] without this assumption. This theorem

is a generalization of the Theorem of linearization of Lyapunov.

Theorem 1.29 (Hermes’ Theorem). [Rosier 1992a] Let f be a continuous vector field and
r be a generalized weight. Assume that there exists a continuous r-homogeneous vector
field h of degree k such that

sup [|A"A:(A) M f(Az) — h(x)|| — O.
If the origin is a GAS equilibrium for h, then it is a LAS equilibrium for f.
Remark 1.30. The Hermes’ theorem implies the first part of the Corollary 1.17.

Following this idea, [Andrieu 2008| developed a theory on homogeneous approxima-
tions in the weighted homogeneous framework. To the approximation around the origin
is added an approximation at the infinity; considering both lead to the notion of bilimit
homogeneity. We refer to [Andrieu 2008 for more details. Let us also mention that sim-
ilar ideas appear in [Zubov 1958|. In [Efimov 2010], these ideas are extended for getting

approximation not only at the origin and at infinity.

Definition 1.31. [Andrieu 2008, Efimov 2010] For a generalized weight v, let us denote
Il - |- the r-homogeneous norm defined by (1.4) and S, = {x € R : ||z||, = 1}.
A function @ is (r, Ao, n)-homogeneous of degree x € R, with a generalized weight r,

Ao € [0, +00] and a r-homogeneous function n of degree r if we have:

sup [A""p(A(A)z) — n(x)] —> 0.

CL‘ESr )\—))\0
A wector field f is (r, Ao, h)-homogeneous of degree x € R, with a generalized weight
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1.6. Conclusion

r, Ao € [0,4+00] and a r-homogeneous vector field h of degree k if we have:

sup |A A (A) (A (M) x) — h(2)|| — 0.
EESI‘ )\_>)\O
The Hermes’ theorem can be easily reformulated in this setting. There exists also a

similar result using the local homogeneity at infinity.

Theorem 1.32. [Andrieu 2008] Let the vector field f be (r,+00,h)-homogeneous with a
continuous h. If the origin is (globally) asymptotically stable for the system & = h(x),
then there exists an invariant compact set K C R™ containing the origin that is globally

asymptotically stable for the system & = f(x).

1.6 Conclusion

In this Chapter, we have seen the well-known definitions of the classical, weighted, ge-
ometric and local homogeneities. We have seen the main results of the theory, among
which the Theorem of Rosier, that is a converse homogeneous Lyapunov theorem, the
equivalence of local attractiveness and global stability for homogeneous systems and the
Hermes’ Theorem, that is a homogeneous extension of the first Theorem of Lyapunov.

This Chapter is the starting point of our work. In the Chapter 2, we shall extend the
local homogeneity theory defined in Section 1.5 in the geometric setting. In the Chapter
3, we shall extend the geometric setting defined in Section 1.4 to discontinuous systems
defined by a differential inclusion. In the Chapter 4, we shall see how the homogeneous
systems behave under perturbations, and study their robustness. The Chapter 4 will be
formulated in the weighted homogeneity framework defined in Section 1.3. Finally, the
Chapter 5 will be an application of the preceding Chapters to the output stabilization of
the double integrator.
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Chapter 2. Coordinate-free transition from global to local homogeneity

2.1 Introduction

Do non-homogeneous objects exist? Even if this question may seem trivial, it is actually
a bit delicate. Indeed, the geometric homogeneity allows us to see a lot of objects as
homogeneous. Let us take a look at vector fields. It is obvious that a homogeneous vector
field has no isolated equilibrium except the origin. However, in a lot of applications,
global stabilization is achieved. Let us then restrict ourselves to vector fields with a
unique possible equilibrium, namely the origin. Since a vector field always commutes with
itself, we might think that any such vector field is eventually homogeneous. However, it
is worth to stress that the Euler vector field defining homogeneity is specific: that is the
main difference between homogeneity theory and symmetry theory. Restricting ourselves

to complete C! vector fields, we get:

Lemma 2.1. The origin is GAS for a complete C' wvector field iff the origin is LAT
for this vector field and there exists a Euler vector field v for which this vector field s

v-homogeneous.

When dealing with global stabilization of smooth systems, the geometric homogeneity
approach may hence be applied. This lemma, despite its appearance of generality, gives

us in return a way of designing a non-homogeneous vector field.

Example 2.2. [Hahn 1967] Let us consider the following vector field on R?:

22 (xg — 1) + 25 ) N 23(x9 — 277) )
(23 +23)(1 + (23 +23)?) 01 (o] + 23)(1 + (2] + 23)%) Oy

It is shown in [Hahn 1967] that this vector field is globally attractive but unstable. If
this vector field were v-homogeneous for a given Euler vector field v, attractiveness would

imply stability. Thus for any Euler vector field v, this vector field is not v-homogeneous.

This example shows that the class of homogeneous vector fields, even though very large,
will not be able to manage all the issues for the global stabilization of nonlinear systems.
This setting is somehow similar to the linear setting. Indeed, many systems are linear,
but the applicability of the linear systems approach becomes wider due to linearization.
The same scheme can be used with homogeneity. If a vector field or a function fails to
be homogeneous, sometimes we can compute a local homogeneous approximation of this
object.

The study of a homogeneous approximation has a long history. Basically, to study

a problem, the idea is to find another problem which is more easily solvable and which
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2.2. Local homogeneous approximation

approximates in some sense the first problem. In the context of the stability theory,
the method is to compute an approximation of a given vector field and to deduce the
local stability of the initial system from the stability of the approximation. The second
Theorem of Lyapunov may be consider to be the first attempt of formalizing this method:
from the asymptotic stability of the linear approximation we deduce the local asymptotic
stability of the nonlinear system.

Zubov [Zubov 1958] and Rosier [Rosier 1992a| proved independently an extension of
this result for the weighted homogeneity. With this property, many results were obtained
for stability /stabilization [Kawski 1990, Kawski 1991b, Hermes 1995, Sepulchre 1996| or
output feedback [Andrieu 2008]|. This notion was also used in different contexts: switched
systems [Orlov 2005b], self-triggered systems [Anta 2010], control and analysis of oscilla-
tions [Efimov 2010], time delay systems [Efimov 2011]. Extensions were provided for the
vector fields which are homogeneous of degrees of homogeneity that are functions of the
state [Praly 1997] and to homogeneity in the bi-limit [Andrieu 2008|, which makes the ho-
mogeneous approximation valid both at the origin and at infinity. The local homogeneity
concept has been also introduced in [Efimov 2010]. These tools were useful for nonlinear
observer and output feedback design [Menard 2013].

In this chapter, our aim is to extend the applicability of these homogeneous approx-
imations by considering geometric homogeneity. First, we shall define the homogeneous
approximation and its basic properties. Then we shall see conditions under which the
approximation can be computed more easily. Finally, we shall recast the theorems of ap-
proximations in this setting and use them to treat examples. The contents of this Chapter

have been submitted in [Bernuau 2013a).

2.2 Local homogeneous approximation

We recall that the functions and vector fields under consideration are assumed to be
defined on R™. We assume moreover in all this Chapter that they are merely continuous,
unless stronger regularity assumptions are explicitely stated.

Following [Andrieu 2008], we may now define the local approximation. The following

definitions uses the uniform convergence on compact sets recalled in Appendix B.
Definition 2.3. Let ¢ and n be functions and let f and h be vector fields.

e The function n is the v-homogeneous approximation of degree k at 0 of the function

33



Chapter 2. Coordinate-free transition from global to local homogeneity

p if:
e (D) LS . (2.1)

S——00

e The vector field h is the v-homogeneous approzimation of degree r at 0 of the vector

field f if:
e (%) f S, (2.2)

s—+—00
If the uniform convergence is taken when s — +00, we get the approrimation at co.
Proposition 2.4. e Let p be a function. Assume that the v-homogeneous approzima-

tion of degree K at 0 or at co of p exists and is denoted by n. Then n is a continuous

v-homogeneous function of degree k.

e Let [ be a vector field. Assume that the v-homogeneous approximation of degree k
at 0 or at oo of [ exists and is denoted by h. Then h is a continuous v-homogeneous

vector field of degree k.

Proof. We shall prove the proposition for a function and for homogeneous approximation
at 0, the others cases being similar. Fix xop € R™ and let us prove the continuity of 7 at

xo. Pick an € > 0. The uniform convergence property gives:
Jo e R:Vs < oVa € B(xg,1) e (®°)" p(x) — n(z)] < e.

The function e "7 (®7)" ¢ is clearly continuous, hence there exists a neighborhood U of

o, which we can choose contained in B(xo, 1), such that:
Ve el e ™ (D7) p(x) — e " (D7) p(x0)| < e.
Finally for all x € U:

n(x) —nxo)] < In(x) — e ™ (7)" p()]
e (D7) p(x) — e (D7) (o)
e (7)" p(wo) — n(wo)|
< 3e.

It remains to prove that n is v-homogeneous of degree k. For any o € R and x € R", we
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2.2. Local homogeneous approximation

have:

e (@) (x) = e (D7) (P (x))
= ¢ (d,@°) " lim e (dgo (@) (07 ()

S—>—00

_ lim e—li(0'+8) (dx¢0')*1 (d@ﬂ(z)®s)il gp(@d-ﬁ-s(x))

S——00

— lim ef,%(a%»s) (dxq)oqu)—l gp(@"“(x))

S——00

= lim e "ot9) (<I>U+S)*go(x)

§——00

= ().

]

The following proposition shows that the uniform convergence on compact sets can be

replaced with another property which is easier to check.

Proposition 2.5. Let B be a compact subset of R™ such that the origin is in the interior
of B.

e Let p be a function. Assume that there exists a v-homogeneous function n of degree
Kk such that e " (®*)" ¢ converges to n uniformly on B when s — —oo. Then 1 is

the v-homogeneous approzimation of p at 0 of degree k.

e Let f be a vector field. Assume that there exists a v-homogeneous vector field h of
degree k such that e="* (®*)" f converges to h uniformly on B when s — —oo. Then

h is the v-homogeneous approximation of f at 0 of degree k.

Proof. We only give the proof for a vector field. Let K be a compact set. Since v is Euler,
there exists o € R such that K C ®7(B). We have for all y € K:

le™* (*)" (f =m) (Il = sup Jle™™ (@°)" (f = h)(w)l

y€P7(B)

= sup e (%) (f — h)(®7(x))]]

z€B

= sup [[€"7d, @7e " (07H) T (f — h)(x))

z€B

C sup ||e~Fs+) (@) (f = h) ()],

zeB

IN

where C' = €™ sup, . ||d;®7|| > 0. Finally, we have:

sup [l (@%)°(f = MWl ==, 0
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Chapter 2. Coordinate-free transition from global to local homogeneity

and A is the local approximation of f at 0. O

Example 2.6. Consider the scalar vector field v = —2—=-2. We want to compute the v-

1+]z| 9z *
approzimation around 0 of the vector field f = x%. The problem is that here we are not

able to find a explicit expression of the flow of v. However, we have:

PG S A
or  \ 1+ |z 1+ |z| ) Ox
and we find that:
x x 0
PN f = —— + [P*(2)|—— ) =—.
(@) <1+|x|+| (x)|1+|x|>8x

Therefore for all x € B(0,1):
[(@°)" f —v[ < [2°(2),

and hence the uniform convergence of the flow of v on the ball proves that the vector field

v is the v-homogeneous approzimation of f of degree O at 0.

When dealing with homogeneity, we often want to check a property on the unit sphere
and extend it everywhere by homogeneity. The following proposition shows that, un-
der mild conditions, we can check that a homogeneous function or vector field is the
homogeneous approximation of a given function or vector field only on the sphere. In
[Bacciotti 2005|, the definition used for homogeneous approximation only takes the uni-
form convergence on the unit sphere, instead of taking it on all compact sets. This

proposition shows also that these approaches match under some conditions.

Proposition 2.7. Let us denote S the unit sphere of R™, \,un the smallest real part of
the eigenvalues of dov. Let ¢ be a function and n be a v-homogeneous function of degree

k; let f be a vector field and h be a v-homogeneous vector field of degree k.

e If K > 0 and if sup,cgle (¢ — n)(P°(x))] — 0 when s — —oo then n is the

v-homogeneous approximation of degree r at 0 of .

o If k> —Apin and if sup, g ||e ™ (d.@°) " (f — h)(®%(x))|| = 0 when s — —oo then

h is the v-homogeneous approzimation of degree x at 0 of f.

Proof. We will only prove the second point, the first being an easy adaptation. In this
proof, we work in a fixed basis of R™ and we identify linear mappings with their corre-

sponding matrices in this basis. Next we aim at comparing the speed of convergence of
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2.2. Local homogeneous approximation

e " (d,®*) " and (f — h)(®%(x)). To do that, we will first find a differential equation

verified by d,®®, and then use it to compare the speeds by an approximation of dgs )V

by doV.

1. A look at the identity 4 ()" ;2 = (*)" [, 22| gives:

d

ds

(d,@°) " = = (d, @) daps (o).

Differentiating the identity (d,®*)(d,®*)”" = I leads to the desired differential
equation:

d
% (dzq)s) = dq;s(x)y da;q)s

. Let us now consider a given compact set K C R™ and prove that:

sup ||e**d,P°w| — 0. (2.3)
zeS,weK §—=—00

Since K+ A\, > 0, the matrix —dov — k1 is Hurwitz, and thus there exists a matrix
P = PT >0 and v > 0 such that:

P(dov + kI) + (dov + kI)' P > ~P.
Since the mapping
x> P(dyv + &I) + (dyv + kI)TP — yP
is continuous, there exists a neighborhood U of the origin such that for all x € U:
P(d,v + KI) + (dyv + k)T P > yP.

There exists so € R such that for all s < so, ®*(S) C U. Therefore, for all x € S

and for all s < sq:
P(dgs(myv + K1) + (dgs@yv + kI)TP > yP.

Fix now a vector w € K and = € S. Set y(s) = ¢"*d, P*w. We have:

%y(S) = (dos@yv + K1) y(s).
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Chapter 2. Coordinate-free transition from global to local homogeneity

If we denote V(y) = yT Py, we have:

SV ((3))) = y(s)T (P(daniey + AT+ (dasa -+ 51T P) (s).

Then for s < sg

g(V(y(S))) >V (y(s)),

and thus
V(y(s)) < V(y(se))er ).
Given that

V{w(s0)) < & sup | d,@*|Puu]”,
xE

with u the biggest eigenvalue of P, there exists a constant C', independant of z € S,
such that [jy(s)|| < Ce™/?|w|. We conclude that |y(s)|| — 0 when s — —oo,
uniformly on x € S, that is (2.3).

3. Let us prove that f(0) = h(0). We still denote K a compact subset of R™. Assume
that 0 ¢ K. For all » > 0, there exists s, € R, such that for all s < s,, for all
w e K:
le™"* (dp @) w|| > r.

Set x € S and denote v = (f — h)(0). By continuity, (f — h)(®*(x)) — v when
s — —oo. Hence, if f(0) # h(0), there exists s; € R such that for all s < sy,
(f — h)(®*(x)) € B(v, |v]/2). Therefore:

e (d,®°) ' (f — h)(®%(x)) — oo,
which is a contradiction. This proves that f(0) = h(0) and hence:

0=e (do®*) " (f = h)(®*(0)) — 0.

S——00

4. Consider now a compact set L. We want to prove that:

sup [le™"* (°)" (f — h)(2)]| — 0.

zel S——00
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2.2. Local homogeneous approximation

Since L is compact, there exists o9 € R such that
Lc{otu ] oo(s).
o<oo
Let z be a non zero element of L. There exists ¢ < oy and x € S such that
z = ®7(x). An easy rewritting gives:

e rs ((I)S)* (f N h)(Z) _ enadwq}a |:ef/<(s+a) (dxq)era)—l (f . h)(q)s+a(x))] '

The uniform convergence of ¢ **(®*)* (f — h) on the sphere implies that for all

e > 0, there exists s; € R such that for all s < sq:

sup [l (4, *) ™" (f — h)(®*(«))]| < e

€S

Thus for s < sg = s1 — g9, we have s + 0 < s; and therefore:

Sup ”e—n(s—i—o) (dw@s"W) -1 (f . h) (CI)S""’(;E))” <e.

€S

But we have seen that

sup |[e"d,Q°w| — 0.
z€S,|w|<e g —0

Since o < 0g, we conclude that there exists sy € R such that for all s < s
le™ (@°)" (f = h)(2)]| < e

Since f(0) = h(0), we finally get the uniform convergence.
[

Remark 2.8. In the Proposition 2.7, the unit sphere S can be replaced by any compact
set S such that for all x € R™ \ {0}, there ezxists 0 € R such that °(x) € S.

Beforehand, we have given the definition of an homogeneous approximation for a given

degree. We may naturally wonder about the possible choice for this degree. There is yet

at most one degree of interest for a given function or vector field. Consider for instance

the vector field case. Let m be such that the homogeneous approximation h of degree m

at 0 of a vector field f exists. Then for all k& < m, we have

e (%) f <5 0.

S§—>—0Q
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Chapter 2. Coordinate-free transition from global to local homogeneity

Moreover, if h # 0 then for all £ > m

e (D) f UC .

S§——00

Finally, there exists at most one degree for which a non-vanishing approximation exists.
This degree will be of a particular interest, because it may give us a non-vanishing approx-

imation, and because this approximation will inherit qualitative properties of the initial

object.
Definition 2.9. Let v be a Euler vector field and let o # 0 be a function.

1. The local degree of v-homogeneity of ¢ at 0 is defined as:

Y 0y

S—>—00

dego(p) = sup{r € R:e™™ (2%)" ¢

with convention sup & = —oo and sup R = +o0.

2. The local degree of v-homogeneity of ¢ at 0o is defined as:

dega(p) = inf{r € R e (%) 25 o)
S§—+00
with convention inf @ = +o00 and inf R = —c0.

The local degree of homogeneity of a vector field vs defined similarly.

Example 2.10. Set v = xa% on R. The scalar function ¢ : x — € has a local degree
of v-homogeneity of 0 at the origin and the homogeneous approrimation is the constant

function 1. However, the limit of e™** (®*)" ¢ is oo for all k when s — +oc, and thus

degoo(ip) = +00.

As we have seen, the degree may be infinite and therefore the local approximation
may not exist. But even when the degree is finite, the local approximation may not be of
any interest. Indeed, it is possible to go from a vanishing approximation to a diverging

approximation when the degree is increasing, as in the following example.
Example 2.11. Let v be an Euler vector field. Let ¢ be a continuous v-homogeneous
function of degree Kk > 0. We define:

|1/d

o = -

d>1
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2.2. Local homogeneous approximation

This series converges, since for all d > 1, |p(x)|V? < 1+ |p(2)|, and thus ¥(z) <
e(1+|p(x)]). The function v is continuous. Set m > 0, and let d be an integer such that
d > r/m. We have:

(@ @)

() > .
Kks/d 1/d
5 mms & lp(2)]
= dl
> (n/d m) |()0( )|1/d — 400
- d! s——00 ’

Therefore, degy(p) < 0. On the other hand, if m < 0, we have for all C > 0:

KS/d

—— sup [p(a)]* — 0,
|z|<c S—>—00

sup e "™ (P%(x)) < Z

|z|<C a>1

thus degy(p) = 0, but with a vanishing approzimation. Finally, for all m < 0, the local v-
homogeneous approzimation of 1 is vanishing, and for allm > 0, the local v-homogeneous

approximation is diverging.

The previous example shows that sometimes, the only possible homogeneous approxi-
mation is vanishing. We have to be careful that even if the local degree of homogeneity is
finite, say &, it does not imply that there exists a local approximation of f of degree k, even

vanishing, as we can see in Example 2.12 (the same observation holds for [Andrieu 2008]).

Example 2.12. Let v be a Fuler vector field and ¢ a v-homogeneous function of degree
k. Consider ¥(x) = p(x)In(|p(x)|). The function v is continuous. Let us compute the
local degree of homogeneity of 1 at 0. We have

™" (@ () In(|p(@°(2))]) = "™ () s + e (@) In(|p()]),

thus the local degree of 1 1s Kk, but

e p(®%(x)) In(|o(®*(2))]) = ¢(x)s + () In(|e(z)])
does not converge and the function ¢ has no v-homogeneous approximation at 0.
This example justifies the following definition.

Definition 2.13. Let o be a function. We say that p is v-homogenizable at 0 (resp. at o)

41



Chapter 2. Coordinate-free transition from global to local homogeneity

if dego() (resp. deg.(v)) is finite and @ admits a local v-homogeneous approzimation at
0 of degree degy(p) (resp. a local v-homogeneous approzimation at oo of degree deg..(v)).
If  is v-homogenizable of degree d, the v-homogeneous approrimation of ¢ of degree

d s called the v-homogenization of .

The v-homogenizability and the v-homogenization of a vector field are defined similarly.

2.3 Stability results

The framework of homogenization allows us to give a precise meaning of the approximation
evoked previously. In the preceeding section, we have given the basic properties of this
homogenization, and we have seen how to compute it more easily. But up to now, we
have not seen in which sense this homogenization approximates the initial object. In
this section, we shall show that qualitative properties of a vector field are encoded in its

homogenization.

Theorem 2.14. Let [ be a vector field v-homogenizable at 0 with k = degy(F') and denote
by h its v-homogenization at 0. If the origin is an asymptotically stable equilibrium for h,

then it is a locally asymptotically stable equilibrium for f.

Proof. From the theorem of Rosier |Rosier 1992a|, there exists a homogeneous proper
Lyapunov function V' € C*(R™\{0}, R) of degree y > max{0, —x} for h. Set S = {V(x) =
1} and a = max,es £,V (z) < 0. Since V' € C'(R"\{0},R), d,V is continuous on S.
Therefore the number b = sup, g ||d,;V]| is well defined and strictly positive. For all
x € S and all s € R we have L;V(®*(x)) = L,V (P*(2)) + L(s-n)V (P*(x)). Moreover, we
find £,V (®%(x)) = W)L,V (x) < e%5q and

L)V (P°(x) = €™ Lins@sy(r-n)(V 0 @°)(x)
— e(ﬂ-&-n)sdxv [e—ns (@3)* (f _ h)(:c)}
< s o (@) (7~ 1))
A

Since h is the local homogeneous approximation of f, we have:

sup [le”"* (©°)" (f = h) (@)l — 0

zes S§—>—00
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2.3. Stability results

and thus there exists T' € R such that for all s < T

sup [le* (2°)" (f = W) < ~55.
Therefore for all s < T we have
LV(0%(x)) < —gew+~>s.
Given that e(#r)s = V(@S(x))’u#, we get finally:
LV (D%(z)) < —gv<q>5(x)>% Vs < T (2.4)

and the function £V is definite negative on {0} U, ®*(S) = {V(y) < e#"'}, which is a
neighborhood of 0. Finally, we conclude the proof by applying the Theorem of Lyapunov
A4 O

Remark 2.15. This theorem was proved in [Bacciotti 2005/, Corollary 5.6, for vector
fields of class C*.

Moreover, if the degree of the homogenization in negative, finite-time stability is

achieved locally.

Corollary 2.16. Under the assumptions of Theorem 2.14, if dego(f) < 0, then the origin
15 a locally FTS equilibrium of f.

Proof. We use the notations of the proof of Theorem 2.14. By (2.4), for all y € {V(y) <

et} we have:
ptr

LiV(y) < —5V()5 (2.5)

Since kK < 0,0 < “Hﬂ < 1 and then for any solution x(t) of & = f(x) with initial condition

zo € {V(y) < e}, x(t) converges in a finite time to the origin. O
A similar result exists for local approximation at oo.

Theorem 2.17. Let f be a vector field v-homogenizable at co with k = deg. (f) and
denotes by h its v-homogenization. If the origin is an asymptotically stable equilibrium of
h, then there exists a SPI compact neighborhood of the origin K such that every solution

of & = f(x) reaches K in a finite time.
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Chapter 2. Coordinate-free transition from global to local homogeneity

Proof. The vector field h is continuous, GAS and homogeneous of degree «, thus, by the
theorem of Rosier [Rosier 1992a|, there exists a proper Lyapunov function V' homogeneous
of degree y1 > max{0, —x} for h. Set S = {V(z) = 1} and a = max,es L,V (z) < 0. For
all z € S and all s € R we have L;V(®*(x)) = L,V (®*(x)) + Ls—n)V (P*(x)). Moreover,
we find £,V (®°(x)) = e+ L,V(x) < e )5 )M and

LV (P*(x)) = € Lirs(@ny(-m)(V 0 P°)(x)
= U L@y (- V ().

Since V' € C*(R™\{0},R), d,V is continuous on S. Therefore the number b = sup, ¢ ||d, V||

is well defined and strictly positive. Since h is the local homogeneous approximation of

f, we have:
sup[le™™ (%) (f = h)(x)]] — 0

eSS s—+o0

and thus there exists T' € R such that for all s > T

—KS s\ * a
sup [le=" (8°)" (7 = h) ()| < —5-
€S
Therefore for all s > T we have
a
|£[efns(q>s)*(f_h)}‘/(m)| < —5.
Given that e(H+)s — V((bs(m))”uj, we get finally:
a ptr
Vs> T LV (D%(x)) < —EV(CI)S(w)) " (2.6)
which is equivalent to:
a wtr
Vye{V(y)>eT}y  L;V(y) < —§V(y) " (2.7)

Integrating the differential inequality (2.7) gives that for any solution x(t) of & = f(x)
with initial condition ¢ € {V (y) > e*T} and for all ¢ > 0 such that V(z(t)) > e*T:

=

V(x(t)) < (Vi) 54 g) " im0
Vi(zg)e % ifk=0
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which in turn implies that:

‘< 2 (e‘”T - V(xo)_§> if K #0

| 2(nV(xo) — pT) if =0 28)

Therefore, for all ¢ large enough, V(2(t)) < e#T and the finite-time attractivity is proved.
0

Moreover, if the degree of the homogenization is positive, the convergence to this

compact set is achieved in a time which is uniform in the initial condition.

Corollary 2.18. Under the assumptions of Theorem 2.17, if dego(f) > 0, then there
exists a time T > 0 such that all the solutions of & = f(x) reach the positively invariant

compact K in time T.

Proof. We use the notations of the proof of Theorem 2.17. Since x > 0, the function

_k .. . —rT
z2> 0 %% (e”‘T -z u) is increasing and converges to 2’% when z — +00. Therefore

kT

e (o V(e E) < BT

ak ak

=T. U

2.4 Examples

In this section, we want to illustrate the theory developed along this chapter and see how

to use it on examples.

Example 1

The first example of this section shows how the geometric homogeneity framework gen-
eralizes the weighted one. Some objects can be proved to be homogeneous, even though
they would not seem so a priori.

On R?, set v = (21 + 29) 22

o1

+(—x1+ l’g)%. We easily prove that v is Euler. Indeed,
coss —sins

the flow of v is given by ®°(x) = e*R(s)x where R(s) = ( _
sins  coss

> . Consider now

o 0
f=llzl] (cos(ln Hx”)ﬁ_xl + sin(In ||x||)6_x2> _
The vector field f is continuous, and v-homogeneous of degree 0. Indeed we have f =
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/| R(In [|[]) 52; and:

@) () = e R-s)le* Ryl R(n e Ris)al) 5 -
— el R(=$)R(s + In ”x'“a% _

Example 2

In this example, we want to illustrate the techniques of homogenization developed in the
Section 2.2 and the stability results of Section 2.3.

Consider the planar vector fields

0
v=x1— + (12 + 27)

(9371 8_@

and
1, 0

=T +To—.

H 1 8.’,131 2 8@
These vector fields are Euler as we can see by computing their flow. Now consider:
22 9 213 212
fo=—mi(x2 + 21 — 27) B + [—al@e — 27)” = 229(22 + 21 — 27) )]8_:152’
where o > 0 is a real parameter. This vector field is C'. The direct computation of
[V, fa] shows f, is v-homogeneous of degree 2. Denote by h, the local g-homogeneous

approximation of f, around 0. We find:

o, o0
ha = —xl(xl + xg)Q% — $2(2(l’1 + I2)2 + O./{E2)%.
o 2

For a > 0, we easily see that h, is GAS, and then f, is LAS. Since f, is ¥-homogeneous,
it is GAS.

For a« = 0, we can directly write:
) 0
fo= (3 + a1 — 2%)? (—:m? — 23:2—> :

Therefore fy is stable but not asymptotically stable, since every point in the set xo + x; —

2? = 0 is an equilibrium.
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Example 3

This example shows how the geometric homogeneity can manage issues on nonlinear

problems. Consider the following system on R*"™!, with x € R, y € R" and A € R™™:

i zzielel oyl
1+ 2] THa] (2.9)
go= Ay—lylPy

We denote v = 1f\x|a% + ya%. This vector field is clearly Euler. We see that the

system is defined by the sum of 3 v-homogeneous vector fields: Aya%, zllyll o

T 1+|a] 9z

and

—_z3e2lzl 9

1+z] oz
infinity is therefore of degree 2 and given by:

. o z3e2lz|
{x R (2.10)
g _ 2
v = —llyllPy

— ||y||2y8% which are respectively of degree 0, 1 and 2. The homogenization at

The origin is clearly a globally asymptotically stable equilibrium for this approximation,
and thus by Theorem 2.17, there exists a radius » > 0 such that all the trajectories
of system (2.9) converge to the ball centered at the origin of radius r in finite time.
Moreover, the degree of local homogeneity being strictly positive, the convergence to this

ball is achieved in a time that is uniform in the initial conditions.

Example 4

Consider the following Euler vector field:

0 0
V= (371 + x2)8_1‘1 + .TQ@.

Being linear, one can easily compute its flow:

<I>S(:U)—65<(1) i)x

We want to compute the v-homogeneous approximation of the following vector field

around the origin:
o |_$2—|2 0
x|l Oxs

f
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We get, for a degree of —1:

’ ) ° = ! —s|x 2 0 x 2 0
¢ 0:0) (@) = e sl LT ).

And this quantity converges pointwise to h = mga%l. This means that the only possible
v-homogenization of the vector field f is the vector field h, that is, an orthogonal vector
field!

Hopefully, the convergence is not uniform. Indeed:

||€S (dx(bs)il f((I)S<£E)) - h(l’)H2 - <\/(561_:£I$2j)2 12 - $2> + <\/(x1 J&x:;Q)z 4 x2>

and for ;1 = 1 and xy = —1/s, we get:

wﬂ%@ﬂlﬂ@@ﬁ—h@N?“(iﬂﬁﬁ_xﬂz+<wﬂj2

The non-uniform convergence proves that f has no local v-approximation around the
origin. The conclusion on this example is twofold: first, it shows that it is necessary to
pay attention at the uniformity of the convergence; secondly, it gives a hint to understand

the necessity of this uniform convergence in the proof of the Theorems 2.14 and 2.17.

2.5 Conclusion

This chapter proposes an extension of the local homogeneity framework in the geomet-
rical or coordinate-free setting. The stability theorems are recast for these generalized
definitions for systems defined by continuous vector field, without any assumption on the
uniqueness of the solutions. The theory is illustrated with examples of systems which
can never be homogeneous (whatever the setting is), and others which are homogeneous
only in the coordinate-free setting. Advances of this framework application for stability

analysis are also demonstrated on these examples.
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Chapter 3. Homogeneity: from ordinary differential equations to differential inclusions

3.1 Introduction

It is well known that the solution of a differential equation & = f(x), with f a continuous
vector field on R", is a differentiable curve x(t) defined on a time interval. However, if
we try to relax the assumption of continuity on f, and look for instance at a vector field
f which admits a jump discontinuity at 0, a problem naturally arises. Indeed, consider
x(t) a solution with x(0) = 0, then &(t) = f(x(t)) is discontinuous at t = 0, but the
derivative of a differentiable function does not admit jump discontinuities, and we get a

contradiction.

Indeed, consider the very simple and enlightening scalar example:
& = —signu, r € R. (3.1)

The solutions are defined by x(t) = sign (xo)(|zo| — t) for t < |xo|, and therefore reach the
origin in a finite time. The only possible solution starting at the origin is the constant

solution. Finally, the general form of the solution should be:

sign xo(|xo] — 1) ¢ < |0l
.fU(t) = ’

but this curve is not differentiable at ¢t = —xz,.

The study of discontinuous systems has a long history. Caratheodory developed in 1918
a well known generalization of the Cauchy-Peano-Arzéla theorem |Caratheodory 1918|.
He used absolutely continuous functions to define solutions. This set of functions admits
a derivative almost everywhere, and should hence verify the differential equation almost
everywhere. This setting, although very general, does not handle all the situations. In
particular, when a trajectory reaches a submanifold in finite-time and stays on this sub-

manifold, this setting is not able to represent the behavior of the solutions.

Filippov’s definitions have been introduced in this context. Instead of looking at the
pointwise value of a vector field, Filippov’s idea is to compute an “average” value of the
vector field, using its values at the neighborhood of any point. This procedure, known as
the Filippov’s reqularization procedure, transforms a vector field into a set-valued map: at
each point, the value of this map consists in all the possible velocities. When the vector
field is continuous, the set reduces to a singleton and this construction boils down to the
usual setting. But when the vector field is discontinuous, the set-valued map encodes

all the directions the system can go towards. Hence, the classical differential equation
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3.1. Introduction

& = f(x) is replaced by a differential inclusion & € F(x).

Note that there exists also another similar framework, proposed by Krasovskii. The
main difference between the Filippov and Krasovskii methods relies on the fact that the
Filippov construction does not depend on the value of the vector field on any zero measure
set, whereas the Krasovskii method does. This difference makes for instance the latter
giving different differential inclusion for the system (3.1) for different values of the function
sign at zero. Since we do not want to pay attention to the particular pointwise values of

the vector field, we focus in this work on the Filippov framework only.

The theory of differential inclusions is well-established [Filippov 1988] [Aubin 1984].
Among others, it appears in optimal control theory or viability theory; when dealing
with variable structure systems, systems with adaptive control, power electronic systems
with switching devices or mechanical systems with friction, discontinuous right-hand sides
appear naturally. Finally, the sliding mode control theory makes an important use of

discontinuous controller to achieve finite-time stability as well as robustness.

As we have seen beforehand, the homogeneity theory provides tools to understand
and describe nonlinear systems. If the theory of homogeneous system is well-known in
the context of ODE, only few extensions to DI exist in the literature. First of all, Fil-
ippov |Filippov 1988| defined homogeneity for DI, but only in the context of classical
homogeneity. A. Levant |Levant 2005] and Y. Orlov |Orlov 2005b| studied also the sub-
ject, but some properties of homogeneous ODE were not extended. Let us also mention
that an extension of the Theorem of Rosier for locally essentially bounded vector fields
is proved in |Rosier 1992b|. Finally, as far as we know, nothing has been done about

geometric homogeneity for DI.

In this chapter we shall recall the basis of the differential inclusion theory, then define
homogeneity for differential inclusions, connect this definition with the usual definition for
vector fields, and extend all the useful properties of homogeneous ODE to homogeneous
DI. We shall particularly see how the flow commutation property can be extended, demon-
strate a Rosier’s theorem on the existence of a Lyapunov function for DI and prove that
the qualitative properties on homogeneous systems still apply with some slight changes.

The contents of this Chapter have been partially published in [Bernuau 2013f].
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Chapter 3. Homogeneity: from ordinary differential equations to differential inclusions

3.2 Differential inclusions

3.2.1 Differential inclusions: basic concepts

Let us start with an ODE given by a vector field f € £iX:

loc*

T = f(x).

(3.2)

The Filippov’s regularization procedure consists in the construction of a set-valued map

F defined by:
ﬂ ﬂ conv(f(B(x,e) \ N)).

e>0 NeN

(3.3)

By construction, for all x € R™, the set F'(x) is closed and convex. Moreover, if f = ¢

almost everywhere, then the Filippov’s regularization of ¢ is equal to the regularization

of f. Hence, since the vector field f has been taken locally essentially bounded, we will

assume for the sake of simplicity that f is locally bounded. For given ¢ > 0 and N € NV,

the set
conv(f(B(z,e) \ N))

is a subset of the compact set

conv(f(B(z,¢2)))

and therefore compact. Moreover the set
ﬂ conv(f(B(x,e) \ N))

is nonempty if and only if for any finite family {Ny,... Ny} C N the set

(| conv(f(B(z,e) \ N))

N€{N1,...Nq}

is nonempty, which is true since

conv(f(B(x,e \ U

is not empty. Finally, F'(x) is a nonempty compact and convex set.

Definition 3.1. A set-valued map F' is upper semicontinuous(USC) iff for any x € R™

and any neighborhood V of F(x), there exists a neighborhood U of x such that for any
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3.2.  Differential inclusions

yel, Fly) CV.

Let us show that the Filippov’s procedure leads to a USC set-valued map. Set x € R"
and V a neighborhood of F(z). Then there exists § > 0 such that for all 0 < ¢ < 0,
Nyen OV (f(B(x,e) \ N)) C V. Set U = B(x,0). Ify e U, for e = 0 — |z -y,
B(y,e) C B(x,0). Therefore

M () @ (f(B(y,e) \ N)) C V

e>0 NeN

and F'is USC.
In many applications, the differential inclusion is given by the set-valued map com-
ing from the Filippov’s procedure. We will therefore focus on set-valued map with the

properties inherited by this procedure.

Definition 3.2. Let F' be a set-valued map. We say that F' verifies the standard assump-

tions if F' is USC and if for any x € R™, F(x) is a nonempty compact conver set.

The general concept of solution of an ODE & = f(x) is given by a differentiable curve
x(t) defined on a nonempty time interval I such that %£(¢) = f(x(t)) for all ¢ € I. In the

context of DI, this notion is replaced by the one of absolutely continuous function:

Definition 3.3. Consider a curve x : I — R"™, where I denotes an interval. We say that
x 1s absolutely continuous if for every positive number €, there is a positive number 0 such

that whenever a finite sequence of pairwise disjoint sub-intervals (xy, yx) of I satisfies:

D Mys —anll <6
k

then:

Z £ (yr) = flzn) < e

This definition, although not really tractable in practice, leads to the following useful

equivalence:

Proposition 3.4. [Nielsen 1997] A curve x : I — R" is absolutely continuous iff it is
differentiable almost everywhere, its derivative is Lebesgue integrable over I and for any

a<bel:

z(b) — x(a) = / x(t)dt.
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Chapter 3. Homogeneity: from ordinary differential equations to differential inclusions

This proposition allows us now to define the notion of solution of a differential inclu-

sion.

Definition 3.5. An absolutely continous curve x defined on I is a solution of the differ-
ential inclusion & = F(x) iff for almost allt € I, &(t) € F(x(t)).

This notion of solutions has numerous interests. Obviously, it boils down to the
classical setting if the set-valued map comes from a continuous vector field. Moreover, such
solutions do exist. For ODE, there exist classical sufficient conditions ensuring existence of
solution for a Cauchy problem (e.g. continuity with the Cauchy-Peano-Arzéla theorem).
These conditions depend on the smoothness of the function in the right-hand side of the
ODE. For DI, the standard assumptions suffice to get the existence of a solution to any
Cauchy problem [Aubin 1984|. This means that any differential equation with a locally
essentially bounded right-hand side has a solution for any initial condition in the sense
exposed above.

Additionally, the Lipschitz condition leads to the uniqueness of solutions for the classi-
cal setting. There exist definitions of a Lischitzean set-valued map leading to uniqueness
of solutions as well. Note however that the Lipschitz setting for set-valued map will not be
used in our work: the problems we are aiming to address are mostly never Lipschtizean.

Indeed, in a lot of problems involving discontinuous vector fields, uniqueness of so-
lutions is not achieved. Actually, when the discontinuity comes from the control, like
in sliding mode controls, the purpose of this choice is to get properties like finite-time
stability or robustness with respect to some bounded perturbations. These properties are
not compatible with uniqueness of solutions, at least backward. Handling the case of non-
uniqueness of solutions needs a careful recast of the definitions of convergence, stability
and even equilibrium. The revised definitions will have to be split in two parts: if one
solution has a given property, we will say that this property is weak; if all the solutions
have this property, we will say that this property is strong. Note that this split into weak
and strong definitions is not due to the discontinuity itself but to the non-uniqueness of

solutions.

Example 3.6. Consider the continuous scalar system i = 2|x]/2. The vector field

vanishes at the origin, and thus the constant zero curve is a solution. However, for all

0 t <t
t
(t—1t)? t>to

to > 0, the curve
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3.2.  Differential inclusions

is another solution to the Cauchy Problem with initial condition x(0) = 0. Hence the

origin, although a point of vanishing of the vector field, is only a weak equilibrium.

3.2.2 Equilibria, attractiveness and stability

Definition 3.7. A point v is a weak equilibrium of an ODE or a DI if the constant

curve t — Too 18 a Solution. It is a strong equilibrium if the constant curve is the only

solution of an ODE or of a DI for any initial value (to, To), to € R.

Similar definitions exist for attractiveness and stability.

Definition 3.8. Consider an equilibrium xo for an ODE or a DI. We say that v is:

weakly locally attractive if there exists a neighborhood U of xs such that for all
xo € U, there exists a solution x with x(0) = x¢ such that x(t) — xs whent — +00;

weakly globally attractive if it is weakly locally attractive with U = R";

strongly locally attractive if there exists a neighborhood U of v, such that for all

xo € U and all solutions x with x(0) = x¢, we have x(t) — xo when t — +00;
strongly globally attractive if it is strongly locally attractive with U = R"™;

weakly stable if for any neighborhood U of xy there exists a neighborhood V of x
such that for all g € V, there exists a solution x with x(0) = xo such that x(t) € U
for allt > 0;

strongly stable if for any neighborhood U of xq there exists a neighborhood V of xg
such that for all xo € V and all solutions x with x(0) = xo, we have x(t) € U for all
t>0;

weakly locally asymptotically stable if it is weakly locally attractive and weakly sta-
ble;

strongly locally asymptotically stable of it is strongly locally attractive and strongly

stable;

weakly globally asymptotically stable if it is weakly globally attractive and weakly

stable;

strongly globally asymptotically stable if it is strongly globally attractive and strongly
stable.
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Chapter 3. Homogeneity: from ordinary differential equations to differential inclusions

In this work, our aim is often to get qualitative informations on the behavior of a
system, that is to known how the system is going to behave in the future. In this setting,
a property which is true only for one solution, but not necessarily for the others, will
not be interesting. Hence, now and further on, when the distinction is not explicitly

mentioned, it means that we are dealing with the strong properties.

3.2.3 Qualitative properties on the solutions of a Differential In-

clusion

This last subsection exposes some properties of the set of solutions of a DI. These results,
although well known, are presented here for the sake of completeness. In the classical
setting of continuous vector fields with forward uniqueness of solutions, the flow or the
semi-flow of the vector field provides a lot of qualitative informations about the system.
When the forward uniqueness is lost, a flow does not exist anymore. In this subsection,
we are going to define a generalized flow and study its properties. The results that we
shall get will be helpful in the study of the next section. Remark also that similar results
can be found in [Filippov 1988], [Aubin 1984], [Angeli 1999]...

Consider the autonomous differential inclusion defined by the set-valued map [ veri-

fying the standard assumptions:
T € F(x). (3.4)

When dealing with ODE, a useful qualitative tool is the flow or at least the semiflow
when we have only uniqueness of solutions in forward time. In the case of possible non-
uniqueness, the situation is more complex. We say that a solution x of (3.4) starts at x¢ if
x is defined on an interval containing 0 and x(0) = . We will denote by S([0,T7], A) the
set of solutions of (3.4) defined on the interval [0, 7], T > 0, starting in A C R™. We also
allow T'= +00, and in this situation the interval [0, T] has to be understood as [0, +00).
We will also denote S([0, 7], xzo) = S([0, T, {xo}).

Let T €]0, +o0] be such that every solution of (3.4) starting in A is defined on [0, 7T7.
We denote UT(A) = {x(T) : x € S([0,T], A)}. This set is the reachable set from A at
time T, or the limit in case T' = 4+00. Let us stress that with the assumption of uniqueness
of solutions in forward time, W! corresponds to the semiflow of F'; this remark justifies
that we call U the generalized flow of F.

Without the standard assumptions, the set S([0,7],{zo}) may not be well-defined.
Indeed, consider the scalar differential inclusion defined by @ € F'(x) = R,. Then for any

mt

T €]0,+oc], the curve ¢t — tan (ﬁ) is a solution starting at 0, but is defined only on
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3.2.  Differential inclusions

(=T, T) and cannot be extended to [0,7]. A phenomenon of finite-time blow up occurs

for any positive time. However, the standard assumptions prevent such nasty behavior.

Lemma 3.9. Let K be a compact subset of R™. There exists T > 0 such that any solution
of (3.4) starting in K can be extended to the whole interval [0, T] and for allt € [0,T] the
set WY(K) is bounded.

Proof. Consider a compact subset L of R™ such that K C L. Denote § = d(K,dL) > 0
and M = max{||v|]| : v € F(z),x € L}. The positive number M is well-defined since the
set {v € F(x),x € L} is compact. If M =0, U'(K) = K for any ¢t > 0. We assume now
that M + 0.

Let x be a solution of (3.4) starting in K and denote 7 = inf{t > 0 : x(t) € JL}.
Hence, for all 0 < ¢ < 7, x(t) € L and thus:

Ja(r) — 2(0)| < / ()t < M.

Since x(7) € JL and x(0) € K, we have ||z(7) — 2(0)|| > . Thus 7 > §/M. We can
therefore extend any solution of (3.4) starting in K on the interval [0, T'], where T' = /M.
Moreover, for any ¢ € [0, T|, we have z(t) € L. O

Lemma 3.10. Let I be a segment of R, y : I — R™ an integrable function. We assume
moreover that there exists V and VW two compacts subsets of R™ with V convezr such that
y(I) CW C V. Then for allt € I and h € R such that t + h € I:

1 t+h
E/ y(r)dr € V.
t

Proof. Assume that y is a simple function. Then there exists a partition of [¢t,t + h],
Ay, ..., Ag such that y4, = a;. Then:

But ), A(:i) = ’\([t’,t;rh]) = 1, and by convexity of V,

1 t+h
E/ y(r)dr e V.
¢

Now in the general case, the function y being bounded, there exists a sequence of

simple functions (y;) converging to y uniformly on 7. Thus for k large enough, y,(I) C V,
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Chapter 3. Homogeneity: from ordinary differential equations to differential inclusions

1 t+
E/t T—hm / T)dT €V

since V is closed. O

and

Lemma 3.11. Let K C R™ be a compact set. Let (x) € S([0,T], K) be a sequence of
solutions of (3.4) and let L C R™ be a compact set such that for all t € [0,T], xx(t) € L.
Then there exists a subsequence of (xy) converging to x € S([0,T), K) uniformly on [0, T].

Proof. Let us denote M = sup,c;{||y]| : v € F(x)}. Then for all a < b € [0, T}, we have:

low(b) — 2 (a)]| < / léx(6)ldt < M(b— a).

Therefore the solutions xy are Lipschitz with a constant M and the family () is equicon-
tinuous. By the Arzela-Ascoli theorem, this sequence admits a subsequence (we do not
relabel) uniformly converging to a continuous function x. Since all the functions x; are
Lipchitz with the same constant M, so is x; finally x is absolutly continuous.

Let V be a compact convex neighborhood of F'(z(t)) and W a compact neighborhood
of F(x(t)) such that W C V. By USC of F, there exists an open bounded neighborhood
U of x(t) such that for all y € U, F'(y) C W. Since x is continuous, there exists n > 0
such that for all 7 € [t —n,t +n], 2(7) € U. Let us denote [ = {x(7): 7 € [t —n,t + n]}.
The set [ is compact and is a subset of U. Set a = d(7,0U) > 0. Since (xj) converges
uniformly to x, there exists N > 0 such that for all £ > N and for all 7 € [t — n,t + 7],
lzi(T) — ()| < §. Thus for all k > N and for all 7 € [t —n,t+ 1], 2(7) € U and then
t1(t) € W. Applying now the Lemma 3.10, we get that

(t+h})b—x = lim — / T)dr € V.

k—o00 h

Therefore, for any ¢t where x is differentiable, (t) € V. Being compact and convex,
F(x(t)) is equal to the intersection of all its compact and convex neighborhood. Therefore,
(t) € F(xz(t)). Since x(0) = limx,(0) and z4(0) € K compact, ©(0) € K. Finally,
v € S(0,T), K). O

Proposition 3.12. Let K be a compact subset of R™. Assume that there exists T > 0
such that every solution of (3.4) starting in K stay in the compact L for all t € [0,T].
Then for all t € [0, T), the set V'(K) is compact.
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Proof. For all t € [0, T the set U*(K) is bounded. Let us show that the set W*(K) is then
compact. Consider a sequence of points (zx(t)) € W¥(K) with corresponding solutions
(xr) € S([0,t], K). By Lemma 3.11, there exists a subsequence of (zy) converging to
a solution x on [0,¢] and the sequence (zx(t)) admits a converging subsequence, which

proves the compactness of W!(K). O

Theorem 3.13. Let K C R" be compact and assume that all the solutions of (3.4) starting
in K are defined on the whole interval [0,T]. Then there exists a compact set [ C R"
such that for all t € [0,T], W' (K) C L and the set V'(K) is compact.

Proof. We shall prove that there exists a compact set L. C R™ such that for all ¢ € [0, T7,
U!(K) C L. Then by the Proposition 3.12, the second assertion follows.

By contradiction, assume that for all & > 1, there exists z; € S([0,7T], K) and t; €
[0, 7] such that d(zx(tx), K) > k. Replacing z; with a subsequence, we can assume
that x(0) converges. Without loss of generality, we assume that x4(0) — 0. Then
e ()|l > .

For all 1 < m < k, there exists t{* € (0,1;) such that ||zx(t}")]] = m and zx(t) < m
for t € [0,#7]. Let us extract a subsequence of (xj(;)) which is converging to ¢!, with
ll¢']] = 1, and then extract from ¢; a subsequence converging to t' (we do not relabel).

Let us denote M = sup,cp 1illyll : v € F(z)}. We assume that k is big enough so
that ||zx(t;) — ¢'|] < 1/2. For all t € [0,¢;], ||ex(t)]| < 1. If t* < ¢}, then z; is bounded
on [0,#']. Else, set:

ty =sup{t < t': |||lan(t) — aa(t))] = 1/2}.

Then for all ¢ € [tL,¢'], ||lzx(t) — zx(t1)|| < 1/2 and then ||ax(t) — ¢*|] < 1. Thus
zi(t) € B(q',1) and then ||@4(¢)|| < M. Hence:

tl
< Jla(t) — @t < /1 k(N < Mt — t).
t

k

1
2

We conclude that ' — ¢ > . Taking k big enough allows us to assume that t' —¢} < -1
and then ¢} > t!. Thus for all ¢ € [ti,t!], ||z1(t) — ¢*|| < 1. Finally the sequence (zy) is
bounded on [0, #!] and then equicontinuous. By Lemma 3.11, there exists a subsequence

of x; converging to = € S([0,¢'],0) on [0, t!]. Moreover, Z(t') = ¢'. Indeed

12() = g'll < l2(t") = 2p ()l + llon(t') — @)l + llawty) — 'l
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Chapter 3. Homogeneity: from ordinary differential equations to differential inclusions

and [k (t') — @i (t) || < ' = 6| M" where M" = sup,c i nuson{llvll < v € F(x)}.

We reiterate this proof for m = 2,3,... and construct this way a nested family of
subsequences. A diagonal extraction leads to the extension of Z on [0,t™] of all m, with
lZ(t™)]] = |l¢™|| = m. Since the sequence (t™) is bounded in [0,7], we can extract
a subsequence converging to t* € [0,7] and Z is defined on t* by hypothesis. Then
T(t™) — Z(t*), but [|Z(t™)|| = m which leads to the desired contradiction. O

Corollary 3.14. Let T' > 0 be such that all solutions starting from the compact set K C
R™ exist on [0,T]. Then S([0,T], K) is compact for the topology of uniform convergence
on [0,T].

Proof. Let (zj) be a sequence of S([0, 7], K). By the Theorem 3.13, there exists L such
that xx(t) € L for all k£ and all ¢t € [0, T]. By the Lemma 3.11, there exists a subsequence
of (zx) which is converging to a solution = € S([0, T, K) uniformly on [0, T7. O

Proposition 3.15. Consider T > 0 such that the solutions of (3.4) starting from the
compact set K C R™ are defined on [0, T]. For all neighborhood V of VT (K), there exists
a neighborhood U of K such that the solutions starting from U are defined on [0,T] and
viU) cVv.

Proof. The fact that the solutions starting from a small enough neighborhood of K are
defined on [0, T is an easy adaptation of the proof of Theorem 3.13.

Let us prove that Ny U7 (K + B(0,1/k)) = ¥T(K). We have obviously W7 (K) C
UT(K + B(0,1/k)) for all k > 1 and then WT(K) C My T (K + B(0,1/k)). Let y €
M1 WT (K + B(0,1/k)) be fixed. There exists a sequence of solutions z € S([0,T], K +
B(0,1/k)) such that x4(T) = y. By Theorem 3.13, there exists a compact set [ C R"
such that U¢(K + B(0,1)) C L for all t € [0, T]. By Lemma 3.11, we can therefore extract
a subsequence converging to a solution x. Moreover, z(0) € K and x(T) = y, and thus
y € WT(K), which proves that N> VT (K + B(0,1/k)) = VT(K).

Let k be big enough such that WT(K + B(0,1/k)) C V. Then U = K + B(0,1/k) is a

valid choice. N

3.3 Homogeneous differential inclusions

In this section, we continue to consider the DI (3.4) for which the standard assumptions

hold. The aim of this section is to define a homogeneity notion consistent with the
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conventional definition and see how the nice properties of the homogeneous continuous
systems can be generalized.
We adopt here a natural definition, which is also a straightforward extension of the

definition of [Levant 2005| (given only for weighted homogeneity).

Definition 3.16. Let v be a Euler vector field. A set-valued map F : R" = R" is
v-homogeneous of degree k € R if for all x € R™ and for all s € R we have:

F(®*(z)) = e*d,P°F(x).

The system (3.4) is v-homogeneous of degree k if the set-valued map F is v-homogeneous

of degree k.

Proposition 3.17. Let F' : R"™ = R" be a set-valued v-homogeneous map of degree k.
Then for all o € R™ and any solution x of the system (3.4) starting at xo and all s € R,
the absolute continuous curve t — ®%(x(e"t)) is a solution of the system (3.4) starting
at ®5(xo).

Proof. Consider a solution = of (3.4) starting at xo. The curve t — ®*(z(e"t)) is clearly

an absolute continuous curve for all s € R. Moreover, for almost all £ € R we have:

d
E(I)s(x(e“t)) = " dy(ensy P T(e"°t)
€ dy(enspy @ F(x(e™°t)).

Since F' is v-homogeneous of degree x, we find 4£®*(z(e"*t)) € F(®*(x(e"*t))) and thus
t — ®5(x(e"st)) is a solution of the system (3.4) for all s € R. O

Remark 3.18. This proposition is the extension of Proposition 1.22. The proposition
may also be recast using the generalized flow, stating that, for all t > 0, for all s € R and
all compact set K C R":

T(D*(K)) = @3 (T (K)). (3.5)

Now, similarly to the usual setting, a lot of properties can be extended from a sphere

to everywhere outside the origin by homogeneity.

Proposition 3.19. Let F' be a v-homogeneous set-valued map of degree . Then F(x) is
compact for all x € R™\ {0} iff F(x) is compact for all x € S, where S = {x € R : ||z|| =

1}. The same property holds for convexity or upper semi-continuity.
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Proof. The result about compactness or convexity is straightforward. Let us only prove

that if F'(x) is USC on the sphere, so is I' everywhere outside of the origin.

Set y # 0. There exists s € R and x € S such that ®*(z) = y. Fix V a neighborhood
of F(y) = F(®%(x)) = e"d,P*F (). Eventually replacing V by a bounded neighborhood
of F(y) included in V, we assume that V is bounded. Consider a bounded neighborhood
Vo C V of F(y) such that there exists a > 0 with d(V,,dV) > «, and denote by Vy =
e~"(d,®°)""Vy. Vy is a neighborhood of F(x). Let us denote M = sup,ey, ||v]| > 0. Let
us also denote by 0,4, (d.®*(d,P°)~1) the biggest singular value of the linear mapping
d,®%(d,®*)~*. The function ¢ : z = |0mae(d.P*(d,P*) ') — 1] is continuous and vanishes
at z = x. Therefore, there exists a neighborhood U of z on which p(z) < <. By

M
upper semi-continuity of F' at x, there exists Uy a neighborhood of x such that for all

Z €U, F(2) C Vo. Set U = ®3(U NUy), then U is a neighborhood of y. Let z be an
element of Y. Then there exists 3 € U N Uy such that z = ®*(%). Therefore F(z) =
F(®5(2)) = e*d:D°F(Z) C e"d; DV, since z € Uy. But Vo = e *(d, )1V, thus
F(2) C d:®%(d,®*)"V,. Let v € V, be fixed. We have:

|d:®*(d, ®*) " 'v — v|| < p(Z)M.

Since z € U, we find ||d:®%(d,®*)"'v — v|| < a, and hence d:®*(d,®*)"'v € V. Finally
we conclude that F'(z) C V and the proposition is proved. O

As we have seen, in many situations, the set-valued map F' comes from the Filippov’s
regularization procedure of a discontinuous vector field f. Suppose that we have a vector
field f, which is homogeneous in the sense of the usual definition 1.21. If we apply the
regularization procedure, is the homogeneity property preserved? The answer is positive

as shown in the following proposition.

Proposition 3.20. Let f € L2 (R™ R™) be a vector field and F be the associated set-

loc

valued map obtained by the Filippov’s reqularization procedure (3.3). Suppose f is v-

homogeneous of degree k. Then F' is v-homogeneous of degree k.

Proof. Since for all ¢ > 0 there exist e. > 0 and ¢, > 0 such that ®*(B(x,c_)) C
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B(®*(x),e) C ®*(B(x,e4)) we have:

F(®*(z)) = NesoNyenonv(f(y),y € B(®*(x),) \ N)
= NsoNyen 00V (f(y), y € ®*(B(x,2)) \ N)
( JAN)

(e

= NesoNyen OV (f(P%(2)), z € B(w, e

MNeso Nyen conv(e™d.®°f(2), z € B(x,e) \ N)
e dy®* Nowo e OV ((de®*) 1d.®° f(2), z € B(x,2) \ N).

Let us denote by 0pe.((d,®°)"1d.®%) the biggest singular value of the linear mapping
(d,®%)~d.®°. The function ¢ : z > |Apaz(d.P*(d,P%)~1) — 1] is continuous and therefore

bounded on B(z,e) and moreover vanishes at z = . For all z € B(xz,¢) we have:
1d:®*(d, @) f(2) — f(2)]| < M(e),

where M(g) = supp, ) pesssupp(, .|| f|l. The function M(e) is continuous at zero and
M(0) = 0. We have proved that d,®%(d,®*)"'f(z) € B(f(z), M(e)).

Let K be a compact, convex neighborhood of F(x). Following the previous con-
sideration, there exists ¢y > 0 such that for all 0 < ¢ < gy and for all z € B(z,¢),
we have F(z) + B(0,M(c)) C K, where K denotes the interior of the set K. There-
fore conv{ F'(z) + B(0, M(¢))} C K and finally F(®*(z)) C e*d,P*K. Being compact
and convex, F(z) is equal to the intersection of all its compact convex neighborhood
and hence F(®°(x)) C e"d,®*F(x). Applying the same proof to y = ®5(x), we find
F(z) = F(@*(y)) C e *d,® *F(y) = e "*(d,P*) ' F(P*(x)) and thus F(P*(z)) =
e d, D F(x). O

Example 3.21. Consider the n-integrator with an input u(x) = — Y. kssign (z;), k; > 0:

jIl = XT3
jjn—l = Tn
Ty, = =, kisign (z;)

It is easy to check that this vector field is homogeneous of degree —1 w.r.t. to the gener-
alized weight (n,...,2,1). The associated differential inclusion is therefore homogeneous

w.r.t. (n,...,2,1) of degree —1 as well.
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3.4 Main results

In the previous section, we have seen how to define a homogeneous discontinuous system
and the basic properties stemming from this definition. But the classical theory of homo-
geneity highlights a lot of very important and useful properties of homogeneous systems.

Among those, the ones we are going to generalize in this section are:

e the Theorem of Rosier [Rosier 1992a|, which is a homogeneous converse Lyapunov

theorem;

e the link between negative degree of homogeneity and finite-time stability [Bhat 1998,
and the properties of the settling-time function [Bhat 1997];

e the consequences of the existence of a strictly positively invariant compact set
|[Bhat 2005];

e the equivalence of the notions of local attractivity and global stability for homoge-
neous systems [Filippov 1988], [Bhat 2005].

3.4.1 Converse Lyapunov theorem for homogeneous differential

inclusions

The following theorem asserts that a strongly globally asymptotically stable homoge-
neous differential inclusion admits a homogeneous Lyapunov function. This result is a

generalization of the theorem proved by L. Rosier for ODE [Rosier 1992a].

Theorem 3.22. Let F be a v-homogeneous set-valued map of degree k, satisfying the

standard assumptions. Then the following statements are equivalent:
e The origin is (strongly) GAS for the system (3.4).

e For all p > max(—«,0), there exists a pair (V,W) of continuous functions, such
that:

1. V € C®(R™ R), V is positive definite and homogeneous of degree ji;

2. W e C>*°(R"\{0},R), W is strictly positive outside the origin and homogeneous
of degree i1+ K;
8. maxyep(g) d.Vv < —W(x) for all x # 0.

Proof. By the result of [Clarke 1998|, the two following statements are equivalent:
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e The system (3.4) is strongly GAS.
e There exist a pair (Vp, W) of continuous functions, such that:

1. Vo € C=(R"), V, is positive definite;

2. Wy € C=(R"\ {0}), Wy is strictly positive outside the origin;

3. MaXycp(y) d:Vov < —Woy(x) for all z # 0.
Hence, it suffices to prove that the homogeneity condition allows us to build a homo-
geneous Lyapunov pair. The sequel of the proof is widely inspired by the proof from

[Rosier 1992a|. Let a : [0,4+00[— [0,1] be a class C* function such that for all ¢ < 1,
a(t) =0, for all t > 2, a(t) = 1 and for all ¢t €]1,2[, a/(t) > 0. Set p > max(—~,0) and:

V() = / e a(Vo(@*(x)))ds,

then V(0) = 0. For all & # 0, there exists s; such that for all s < sy, V5(®*(x)) < 1.
Similarly, there exists so such that for all s > s9, Vo(®*(x)) > 2. Hence:

e Hs2

Vi) = /82 e "a(Vo(®*(x)))ds +

51 H

and V is well-defined.

The homogeneity of V' is straightforward using a change of variable: V(®7(x)) =
Je e a(Vo(@*(27(x))))ds = €7 [ e a(Vo(P¥(x)))du = 7V ().

On the other hand, for all s € R, e #5a(Vy(P*(x))) is C*° and e *$a(Vo(P*(x)))| < e H*
which is integrable (4 > 0). Thus V' belongs to the class C* on R™ and therefore proper
[Bhat 2005]. Moreover, for all v € F(z):

deU:/e #oa! (Vo(°(2))) (das () Vo) (de®®) vds.
R
As F' is homogeneous, there exists 0 € F(®%(x)) such that v = "5d,P%v. Hence:

Vo = [ WV ) (daeo o) s

_/R ! (Vo (@ ())) W @° () ds.

IN

Let us denote:
W (x) —/Re (s 0! (Vo (@° () Wo (% ())ds,
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thus maxyep(z) d.Vv < =W (x). It is clear that W is well-defined and strictly positive.
The function W is clearly homogeneous of degree s + o ( this fact can be also proven

using a simple change of variable). Moreover, for all s € R, the function
x e U (Vo (@0 (2))) Wo(@° ()

is in the class C*°(R™\ {0}). Let us show that |e~#t%)5¢/(Vo(®*(2)))Wo(P%(x))] is locally
upper-bounded by an integrable function. Set U, = B(x, |z|/2). For x # 0, U, is a
neighborhood of . Since v is Euler, there exists s1, so such that for all y € U, C R™\ {0},
for all s < sy, Vo(P*(y)) < 1 and for all s > s9, Vo (P5(y)) > 2. Hence o' (Vo(P*(y))) =0
for all s ¢]si, sy and for all y € U,. Denote ¢; = sup,cy, Supseps, ) W(P*(y)) and
Co = sup,ep a'(t). We get:

e~ R0/ (Vo (@° (2))) Wo(°(2))] < e W71, ierco

which is clearly integrable, where 14 is the characteristic function of the set A, that is
14(z) = 1if v € A and 0 else. Therefore, W is C> on a neighborhood of x for all
z € R™\ {0}, ie. Wis C>® on R™\ {0}.

The only point remaining to prove is the continuity of W at the origin. Let ¢ > 0 be
fixed. There exists s; such that for all s < sy, Vo(®*(y)) < 1 for all y € B(0,e). Thus,
introducing the sets A = {V5(P*(y)) > 2} and B = {Vp(P*(y)) < 2}, for all y € B(0,¢),

we have

Wly) = [ e W (Vo(@%(y))) Wo (@ (y))ds
= fsfoo e UHa! (Vo(22(y))) Wo (2°(y)) 1ads
[0 e (Vo (%)) Wo(@°(y)) L pds.

Since a/(t) = 0 for t > 2 the first part vanishes. But V; is proper, thus B is compact and
Wy is bounded by ¢3 > 0 on this set. Therefore

Wiy) =[5 e B (Vo(@°(y))) Wo(@°(y)) 1pds

f:)o e~ WHR)s ey cads < 400,

IN

since pu+ £ > 0. Finally, W is continuous at the origin and the proof is completed. O]

3.4.2 Application to Finite-Time Stability

In this subsection, we aim at applying the Theorem 3.22 to Finite-Time Stability (FTS).

Indeed, the existence of a smooth homogeneous Lyapunov function provides informations
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about the rate of convergence of such systems.
Definition 3.23. Consider the system (3.4). The origin is said to be FTS if:

1. the origin is (strongly) stable;

2. there exists an open neighborhood U of the origin such that for all x € U, there exists
T > 0 such that for all t > 7, we have W' (x) = {0} (strong finite-time convergence).

The settling-time function is then defined for x € U by T(x) = inf{r > 0 : Vt >
7, Wi(z) = {0}}.

If the neighborhood U can be chosen to be R™, the system is said to be Globally FTS
(GFTS).

Corollary 3.24. Let F' be a v-homogeneous set-valued map of degree k < 0, satisfying
the standard assumptions. Assume also that the origin is GAS for I'. Then the origin is

GFTS for F and the settling-time function is continuous at zero and locally bounded.

Proof. The origin is GAS for F' and F' is homogeneous; thus by Theorem 3.22, F' admits
a homogeneous Lyapunov pair (V,W). Let us apply Lemma 4.2 of [Bhat 2005| to the
continuous functions V and W. We get that for all z € R™\ {0}, and for all v € F'(x):

Ktp

d, Vo< -W(x) <-C((V(x))* , (3.6)

where C' = mingy—yy W. Since ”T“ < 1, V converges to zero in a finite time, giving us
the finite-time convergence of the system, which is therefore GFTS. Moreover, a direct

BV () 7
e ol

integration of the inequation (3.6) gives T(x) , where T denotes the settling-time

function. Since V is continuous, T is locally bounded and continuous at zero. O

It has been shown in [Bhat 2005| that under the assumptions of homogeneity (of neg-
ative degree), continuity of the right-hand side and forward uniqueness of solutions, the
settling-time function of a finite-time stable system is continuous. The two latter do ob-
viously not hold in our context. We have seen that, however, under the standard assump-
tions, the settling-time function remains continuous at the origin and locally bounded.
Let us emphasize that these conclusions are sharp and that the settling-time function is

not continuous in general. See, for instance, [Polyakov 2012] or the following example.
Example 3.25. (A counterezample to the 2" statement of Theorem 1 from [Levant 2005])
Consider the system defined on R? by:

i = —(sign (z1) + z)ﬁ.
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Chapter 3. Homogeneity: from ordinary differential equations to differential inclusions

This system is clearly strongly (uniformly [Levant 2005]) GFTS and v-homogeneous of

0
Oxo *

x| 21 >0
T(z) :{ =] ’

negative degree with v = Ila%l + 29 A simple computation shows that the settling-

time function is:
3 T <0

which is discontinuous on xr; = 0.

3.4.3 Sufficient conditions for Global Asymptotic Stability

In this subsection, we focus on the qualitative properties of homogeneous discountinuous
systems that can lead to GAS. The first result is a generalization of Theorem 6.1 of
[Bhat 2005].

Theorem 3.26. Suppose that K is a strongly strictly positively invariant compact subset
(SPI) of R™ for the homogeneous system (3.4). Then the origin is GAS for (3.4).

Proof. Let us denote s the degree of I. Since the solutions starting in K are bounded,
they are defined for all ¢ > 0, and thus W*(K) is compact for all ¢ > 0 by Proposition
3.12. From equation (3.5), we have:

YD (K)) = &*(TY(K)) C D*(K) = D*(K).

Therefore, the set ®*(K) is SPI for all s € R. We also note that ¥*(K) = ¥'(U*(K)) C
UY(K). Thus (V*(K)),5, is a nested family of compact sets. Let us denote K. their
intersection; K, is a non-empty compact, and is the biggest positively invariant compact
subset of K. But for all s € R

@ (1) = ()W) = () ¥(@*(K)
£>0 >0
has the same property. Therefore K, = ®*(K,), that is K, is an invariant subset for ®.
Since v is Euler, we conclude that K, = {0} and every solution starting in K converges
to the origin, thus 0 € K. The stability follows from the SPI of the sets ®*(K) for all
seR. O

Let us illustrate how this Theorem can be used to derive robustness properties for

some homogeneous systems.
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Example 3.27. Assume we know ki, ks > 0 such that the following system is GAS (the

existence of such gains will be proved in Chapter 5):

r1 = X9
.%"2 = —k:lsign (1’1) — kgsign (.’,132)

As we have seen, this system is homogeneous w.r.t. the weight (2,1) of degree —1. There-
fore, there exists a homogeneous Lyapunov pair (V,W') of degrees k > 1 and k — 1. We
denote Fy the set valued map associated to this vector field and for o € R? we denote F,

the set valued map associated to the vector field:

Ty = X
o = —(ki+ ay)sign (x1) — (ko + ap)sign (z2)

We shall prove that the compact set K = {x € R* : V(x) < 1} is SPI for I, for small
values of . Let y € K and v € F,(y). There exists v € S = {x € R" : V(z) = 1}
and s € R such that ®*(x) = y. By homogeneity, there also exists w € F,(x) such that

v=-e"°d, P°w. Therefore:
A, Vv = dgs (Ve *d, @*w = " V*d, V.

Since w € Fy(x), there exist 01,09 € [—1,1] such that w = (xe, —(k1 + ay)oy — (k2 +

a)o2)T. Let us denote 0 = (wg, —ki01 — kooo)T € Fo(x). We have:

d,Vv = B sq Vaw
= LV + d,V (w— )]

< W)+ sup d.V I~
r 2

< e | —inf W(z) + sup ||d.V]]. ;0;
V) gl S
i 2

< e Vs | _inf W(z) + sup||d, V. a;ll ] -

< i V() supl V1L 3l

inszS W(:c)
Supges [lda V|7

Therefore, if |aq|+ o] < d,Vv < 0, which means that K is strictly positively
invariant. The set valued map F, being homogeneous, it is hence GAS for a small enough.
Finally, any stabilizing control under the form u(x) = —kysign (z1) — kesign (z2) is robust

w.r.t. small errors on the gains k;, like itmplementation errors.
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Chapter 3. Homogeneity: from ordinary differential equations to differential inclusions

As we have seen in the introduction, for continuous homogeneous systems (with for-
ward uniqueness of solutions) the notions of local attractiveness and global asymptotic

stability are merged. This fact admits a generalization in the discontinuous setting.

Theorem 3.28. Let F' be a v-homogeneous set-valued map of degree k with the standard
assumptions. Assume moreover that all the solutions of the associated DI are defined for
all t > 0 and tend to 0 when t — oo. Then the origin is strongly globally asymptotically
stable.

Proof. By contradiction, assume that the origin is unstable. Then there exists a neigh-
borhood U of the origin such that for all neighborhoods of the origin V C U, there exists
a solution starting in ¥V which does not stay in . Taking V = B(0,1/i), there exists a
solution z; such that z;(0) € V, and there exists a real number ¢; such that x;(t;) ¢ U.
Therefore, when i — oo, z;(0) — 0 but (z;(¢;)) does not converge to 0.

Let us denote by N a v-homogeneous norm and denote o; = N(z;(0)). There exists
e > 0 such that N(z;(t;)) > . We can also assume that J; < . Since x;(t;) > 0, we can
finally assume that 9; > 0 by continuity.

Let us denote:

a; = sup{t € [0,t;]: N(x;(t)) = 0;},
b; = inf{t €[0,t;]: N(x;(t)) =e}.

We define y;(t) = x;(t + a;). The curves y; are solutions of (3.4) defined on [0, b; — a;] and
we have N(y;(0)) = 0;, N(vyi(t)) € (0;,¢) for all t € (0,b; — a;) and N(y;(b; — a;)) = .

By Proposition 3.17, for all s € R, the curve t — ®*(y;(e"*t)) is a solution. Set s; =
—Ino;, zi(t) = % (y;(e"it)) and tf = 0 (b; — a;). We find N(z;(t)) = e N(y;(e"it)) =
N(y;(e®it))/0;. Hence N(z;(0)) = 1, for all t € (0,tf) we have N(z(t)) > 1 and
N(z(t7)) = ¢/

Assume that there exists a bounded subsequence of (tf). By Theorem 3.13, the cor-
responding subsequence (z;(t7)) is bounded; however N(z;(t})) = 5. — oo. Then the
sequence (t;) tends to +oo.

By Corollary 3.14, let us now extract a subsequence (z,,(;) converging to a solution
Z on [0,1]. Then we extract a subsubsequence (zy,04,()) converging to z on [0,2], etc.
A diagonal extraction provides us the subsequence (zy,s. 04,(:)) Which is converging to z
uniformly on [0, j] for all j € N. Forall t > 0, we have N (Z(t)) = limy; N(2,0...00,(i)r))- But
v opi(i) A0d thus N(zpi0 op,()(1)) = 1. Therefore N(z(t)) = 1

and z(t) does not tend to zero, which is a contradiction. O

for i large enough, t < t
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Example 3.29. Consider a double integrator endowed with an observer written with the

error equation under the form:

1 = X9

Ty = kysign (xq1) + ko sign (zo — e2) (3.7)
é1 = ex+1; |_€1—‘ 1/2

és = lysign(ey)

with k1 < ke < 0, l1,lo < 0. This system is weighted homogeneous of degree —1 with
respect to the generalized weight v = (2,1,2,1).

Consider first the error subsystem:

ég = lQ sign (61)

Using the function V(e) = —ly|ei| +€3/2, we see that the system (3.8) is FTS. Indeed,
for ex # 0, V(e) = —lilsles|'/? < 0. Hence the compact set K = {V < 1} is SPI, since
the line e; = 0 is not invariant. Being of negative degree, we find that the system (3.8) is
FTS.

The system (3.7) being clearly forward complete, it becomes equivalent in a finite time

{::Ul - " . (3.9)

to the system:

Ty = kysign (xq) + kosign (z3)

Using the Lyapunov function V(x) = —ki|xi| + 23 and ky < ko, we find that the system
(5.9) is FTS as well.

Finally, all the solutions of the system (3.7) converge in finite-time to 0, but stability
18 not straightforward. However, the Theorem 3.28 ensures us that the stability is a

consequence of the attractiveness for homogeneous systems and we find that the system
(5.7) is GFTS.

3.5 Conclusion

In this Chapter, we have proposed a geometric definition of homogeneity for DI, and we
have seen that it is consistent with respect to the Filippov’s regularization procedure.
With this framework, we have been able to state extensions to the DI setting of results

holding for continuous homogeneous systems:
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e The converse Lyapunov theorem of Rosier — if the origin is a globally asymptotically

stable equilibrium, then there exists a Lyapunov function (indeed, a Lyapunov pair)
for the DI.

e If the origin is a globally asymptotically stable equilibrium for a homogeneous DI

of negative degree, then it is strongly FTS.
e The existence of a SPI compact set is equivalent to global asymptotic stability.

e The local attractiveness of the origin implies its global asymptotic stability.
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Robustness and stability
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4.1 Introduction

The problem of robustness and stability analysis with respect to external inputs (like ex-
ogenous disturbances or measurement noises) for dynamical systems is in the center of at-
tention of many research works [Doyle 1992, Hill 1980, van der Schaft 1996, Sontag 2001,
Vidyasagar 1981, Willems 1972]. One of the most popular theories, which can be used
for this robustness analysis for nonlinear systems, was originated more than twenty years
ago [Sontag 1989] and it is based on the Input-to-State Stability (ISS) property and many
related notions, see for instance the recent survey [Dashkovskiy 2011] and the references
therein. The advantages of ISS theory include a list of necessary and sufficient conditions,
existence of the Lyapunov method extension, a rich variety of stability concepts adopted
for different control and estimation problems.

The main tool to check the ISS property for a nonlinear system consists in designing a
Lyapunov function that satisfies some sufficient conditions. As usual, there is no generic

approach to select a Lyapunov function for nonlinear systems. Therefore, computationally
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tractable approaches for ISS verification for particular classes of nonlinear systems are of
great importance, and they are highly demanded in applications. In this chapter we are
going to propose such a technique for checking ISS and integral ISS (iISS) for a class of
homogeneous or locally homogeneous systems. We will restrict ourselves to the weighted
homogeneity framework.

The ISS notion of homogeneous systems has been studied in [Hong 2001, Ryan 1995,
Andrieu 2008]. In this chapter we are going to generalize the result of those works and
extend it to the integral ISS (iISS) property. The underlying idea of the proposed results
is that for a nonlinear system its asymptotic stability with zero disturbance implies a
certain robustness (ISS or iISS) under homogeneity conditions.

The outline of this chapter is as follows. The section 4.2 is devoted to the necessary
preliminaries, including the stability and robustness notions that we shall use afterwards.
The ISS and iISS properties of homogeneous systems are studied in Section 4.3 and the
same analysis for locally homogeneous systems is done in Section 4.4. The contents of
this Chapter have been published in [Bernuau 2013¢|, submitted in |[Bernuau 2013h| and
used in |Bernuau 2013g|.

4.2 Preliminaries

In the sequel the following nonlinear system is considered:

T = f(x,d), (4.1)

where x € R™ is the state, d € L>*(R,,R™) is the external input and f : R"*™ — R™ is a
continuous vector field with f(0,0) = 0.

For a given input d € L>®(R;,R™) we denote Sy(zo) the set of solutions of (4.1)
defined on a time interval containing ¢ = 0 and with value x( at t = 0.

We will be interested in the following stability properties [Dashkovskiy 2011].

Definition 4.1. The system (4.1) is called input-to-state practically stable (ISpS), if for
any input d € L>®(R,,R™) and any xo € R"™ there exist some functions f € KL, v € K
and ¢ > 0 such that for all x € Sy(xo):

@)l < Bllzoll, 1) +~(lldllos) + ¢, VE=0.
The function vy is called the nonlinear asymptotic gain. The system s called 1SS if ¢ = 0.
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Definition 4.2. The system (4.1) is called iISS, if there exist some functions a € K,
v € K and € KL such that for any o € R, d € LRy, R™) and v € Sy(wo), the

following estimate holds:

t

a(llz(®)l) < B(llwoll, 1) +/’V(I|d(8)ll)ds, vt > 0.

0

The Definitions 4.1 and 4.2 have the following Lyapunov function characterizations.

Definition 4.3. A smooth function V : R® — R, is called an ISpS Lyapunov function
for the system (4.1) if for all x € R", d € R™ and some r > 0, ay, a9, 3 € Ko and
0ek:

ay([le]]) < V(x) < a(lz]]),
d:V f(x,d) <7+ 0([|d]]) — as([[z]]).

Such a function V s called an ISS Lyapunov function ¢f r = 0. It is an iISS Lyapunov
function if r = 0 and if ag : Ry — R, is only assumed to be positive definite instead of

class K.

Note that an ISpS Lyapunov function can also satisfy the following equivalent condition

for some v € K and ¢ > 0:
z]] > ¢+ ~([|d]]) = d.V f(x,d) < —as(]]]).

Theorem 4.4. [Sontag 1995] The system (4.1) is ISS (ISpS, iISS) iff it admits an 1SS
(ISpS, iISS) Lyapunov function.

Note that if the system (4.1) is ISS, then it is also iISS.

4.3 Robustness of homogeneous systems

The ISS property of a r-homogeneous system (4.1) of degree x > 1 has been investigated
in [Ryan 1995|, while the ISS property of a r-homogeneous system of the form

T = folx) + Go(x)d (4.2)
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for any admissible degree x > —ry;, (with homogeneous fy and Gy) has been studied in
[Hong 2001]. In this chapter we would like to propose conditions of ISS and iISS properties
for a r-homogeneous continuous system (4.1) of any degree k.
Let us define

flw,d) = [f(x,d)" OL]" € R™™.

The vector field f is an extended auxiliary vector field for the system (4.1), where 0,, is

the zero vector of dimension m.

Theorem 4.5. Let the continuous vector field ]E be homogeneous with the weights r =
[r1,...,mn] > 0 and v = [Fy,...,7,] > 0 of degree k, i.e. for all v € R, d € R™ and
all X\ > 0 we have f(A,(N)z, Af(N)d) = NN (N) f(x,d). Assume that the system (4.1) is
globally asymptotically stable for d =0, then

e the system (4.1) is ISS if 7, > 0,

e the system (4.1) is iISS if 7 = 0 and £ < 0,
where Tyin = Minj<j<m 7.
Proof. Under the introduced conditions f(A,(A)z,0) = A*A,.(A)f(z,0) and the system
& = f(z,0) is globally asymptotically stable, therefore by Theorem 1.5 there exists a r-

homogeneous, continuously differentiable, positive definite and proper Lyapunov function

Vi R"™ = Ry of degree p such that 1+ > 0, t > e = maxi<j<, 7; and
.V f(x,0) < —a, |d,V] <b, Vre{V=1} (4.3)

where a > 0, b > 0.

There exists a function o € K such that:

1y, d) = fy, )l < o(lld]]) Vye{V <1} (4.4)

Let us denote fy(x) = f(x,d). Consider now the time derivative of the Lyapunov
function V' computed for the system (4.1) for all z € {z € R" : V(2) = 1}, A > 0 and
deR™

Ly

VINO)) = LoV )+ LV ()
N LV (@) + dgV (A A (A (fa = fo) (A, (V)]
N [ V() + duV (<fA;1(A>d ~ fo)a))]

-

a+ bo([|A: (Ndl)]

N

IN
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We denote ||[AZ*(\)|| = 6()\) with

“Tmaxif ¢ < ]
5(3)—{8 if s <

gFmin  if g >1
Now, if 7pin > 0, then 0 is continuous on R, \ {0} and strictly decreasing. Consider the

following function:
O(s) = 61 (M) ,
s

The function 6 is continuous on R, with 0(0) = lim,_, 6~ !(s) = 0 and strictly increasing,
hence § € K. If A > (D) then §(\) < % and thus for all |d| < D, we have
IAZE(N)d|| < v(A\)D < 07*(a/2b). Therefore:

L, V(A N)a) < X,

that is £;,V(y) < —2V(y)"%" for all V(y) > 6(D) and for all ||d|| < D, and then the
system (4.1) is ISS by Theorem 4.4.

Now assume that r,;, = 0 and x < 0. First, note that we have —r;, < k. Indeed, if
not, the coordinate of fy which corresponds to the weight r,;, is r-homogeneous of degree

K =4 rmin < 0 and continuous, thus constant. But this is impossible since the origin is a
GAS equilibrium for fo.

Consider now the function W(z) = In(1 + V(z))

. This function is C*, proper and
positive definite. We get:

At d,V
Ly, WA (Nz) =

S LnV @)+ s VAT (fa = fo)(A (V) (45)
ﬁ;—:ﬂﬁfov(l’) + 1/\+ :deV ((ngl(A)d - fo)(x)) . (4.6)

For all A > 0, we have ﬁ < 1. For A > 1, we have also Aty

i < land 6(A) =1, and
thus |[A;(A\)d| < ||d||- Therefore (4.6) gives:

K+u

A
< — ~_1
< —af + bolIAF )
+

V(A (\)a)
“Tv i, ol

Ly, W(A:(N)x)

For A <1, V(A,(N)z) < 1, thus ||(fa — fo)(A-(N)x)|| < o(]|d]|). Moreover, since > 7max,
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Chapter 4. Robustness and stability

IA“AL(N)]| < 1. Using (4.5), we find:

Ktp

V(Ar()\)jl}) H
WA-Ne) < =0 300

Ly

d

+ bo(||d|]). (4.7)

Finally, the relation (4.7) holds for any A > 0, and therefore, for all y # 0:

Viy)

y 23

L W(y) < —a——— + bo(||d

W) € —af 5o + o))

and the system is iISS by Theorem 4.4. m

As we can conclude from this result, for the homogeneous system (4.1) its robustness

(ISS or iISS property) is a function of its degree of homogeneity.

Corollary 4.6. Let a continuous vector field fy : R® — R™ be r—homogeneous of degree

k and let the origin be a globally asymptotically stable equilibrium.

o If f(x,d) = folx)+d, i.e. dis an additive disturbance, then the system (4.1) is ISS

for k > —ruym, and iISS for k = —rpp.

o If f(x,d) = folz+d), i.e. dis a measurement noise, then the system (4.1) is always
1SS.

Proof. Take r = r + k and r = r for the additive disturbance and measurement noise

cases respectively. O]

Thus to verify robustness of a homogeneous system with respect to an external input
it is enough to establish its asymptotic stability for the case d = 0 and compute its degree
of homogeneity performing some algebraic operations, which is a big advantage of the
homogeneity approach, while in the conventional case an ISS/iISS Lyapunov function has
to be found |Ning 2012]. However, the sole homogeneity of f is not enough to claim iISS
(ISS), and the case T, = 0 with £ > 0 is the only exclusion as in the following example
forr=0and r = 1:

= (d—1)[z]% a>1.

The asymptotically stable system (4.1) for d = 0 is finite-time stable if it is homoge-
neous with negative degree [Bhat 2000, Moulay 2005, Hong 2010|. Interestingly to note
that the finite-time stability and iISS have a similar restriction on the degree of homo-
geneity (it has to be negative or non positive for iISS), thus the finite-time stability of a

homogeneous system implies iISS, as stated in the following corollary.
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4.3. Robustness of homogeneous systems

Corollary 4.7. Let the vector field f be (r,T)-homogeneous of degree k < 0, with r > 0
and 1 > 0.

e If the origin is globally asymptotically stable for d = 0, then (4.1) is iISS.

o If rim = 0, then the origin is globally asymptotically stable for d = 0 if and only if
(4.1) is iISS.

This result can be applied, for example, to “bilinear” systems:

&= folzr) +>_ filxdy), (4.8)
i=1
where all ¢ € {1,...,m}, f; are r-homogeneous vector fields of the same degree and

1:(0) = 0 (the simplest example is f;(x) = A;z, where A; € R™*™). According to Corollary
4.7, if the system & = fo(x) is asymptotically stable and r-homogeneous of a non-positive
degree, then the system is iISS.

Theorem 4.5 also provides a quantitative estimate on the asymptotic gain of (4.1) in
the ISS case.

Corollary 4.8. We keep the assumptions and the notations of Theorem 4.5. Assume
that Tmin > 0. Then there exists a constant C > 0 such that the following estimate of the

asymptotic gain holds:

Fmax ] <
V(D)g(}{ Drmm if D <1

D7min 4f D >1
Proof. Let us recall first that by Lemma 1.19, there exist constants a_, oy > 0 such that:
av-([lzll) < =]l < o ([l]lr),
where:
v_(s) = min(s"mn, g"mex)  p (s) = max(s i, g"max),

In the proof of Theorem 4.5, we have seen that L7,V (y) < =5V (y) as long as [jy||, > 0(D).
That implies that there exists a function f € KL such that for all ¢ > 0 such that
le@ll, = 6(D), we have [l2(®)]| < A(l=(0)]],). But the condition yl| = av.(0(D))

implies [|y||, > 0(D). Finally, we get:

le@I < Alz(0)]], 1) + aqvi (6(D)),
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Chapter 4. Robustness and stability

that is the system is ISS with asymptotic gain v(D) = ajvy(0(D)). Straightforward

computations give:
Tmin

Dmax if D <1
V(D) S O Tmax ’

Dmmin if D >1
with C' > 0. n

The case Ty, = 0 is critical for Theorem 4.5, it is possible that the system (4.1) is ISS

while 7,;, = 0 as it is shown in the following example:

By = —|22]"3 + |21]Y2ds,
where r = [1; 1.5], ¥ = [0; 3], K = 2 and its ISS Lyapunov function is V(z) = a? 4 3.

The conditions of Theorem 4.5 can be technically relaxed skipping homogeneity of
f (homogeneity with respect to d). It is worth stressing that homogeneity of f is not
a restrictive condition since d is an external input, and we can modify dimension or

introduce nonlinear change of coordinates for d.

Theorem 4.9. Assume that the system (4.1) is globally asymptotically stable for d = 0
and r-homogeneous of degree k, i.e. f(A.(N)x,0) = NA.(N\)f(x,0) for all x € R™ and all
A > 0. Assume also that there exist functions 1, € K and 0 < Vpin < Umax such that
for all x € R™ and all d € R™:

1f (2, d) = £, 0)[] < O([lz[l ) (lldll) + e(lldl]),

where

s¥min - 4f s <1
0(s) = :
glmax  4f g > 1

Then the system (4.1) is
ISS if kK > Ymax — Tmin;
iISS if Kk < Yax — Tmin < 0.

Proof. Under introduced conditions, by Theorem 1.5 there exists a continuously dif-
ferentiable, positive definite and proper Lyapunov function V : R" — R, such that
V(A-(N)x) = MWV (x) for any A\ > 0, with g > rp.c and £ + g > 0, and the inequalities
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4.3. Robustness of homogeneous systems

(4.3) are satisfied for a > 0, b > 0. Consider the time derivative of the Lyapunov function
V' computed for the system (4.1) for all x € {z € R" : ||z]|, = 1} and d € R™:

Ede(AT<)‘)x) - EfOV(AT()‘)x)_I_Efd fo ( ():L“)
= ML V() + daVAT AN T (fa = fo)(A(V)a)]
< A [=a+be(N) [O(|A-(Nzll)w(ldl) + e(lld])]]

At

IN

-
[=a + (MNP (lld]]) + be(M(lld]])]

where

—K—Tmax f < 1
E(S) _ { S 1II § < .

g Tmin jf g > 1]

Consider first the case K > Upax — Tmin. Let us denote

n@>fmn{¢’1<4ézg>5w_l<ﬂgéii5>}'

Clearly, if ||d|| < n(\), then e(A)0(N)(||d]]) < & and e(N)p(||d]]) < &. Therefore,

4b 4b

L V(A(N)x) < =X e forall y #0, L5,V (y) < —5[lyllf** and the system is ISS,
since n € K. Indeed, by the condition £ > Vyax — Tmin, the following functions belong to
class K:
1 ghtrmax  jf g < ]
S — = :
e(s) ghtrminif g > 1
= 1 SK+Tmax_19min if S S 1
S = )
e(s)0(s) ghHTmin—Vmax jf g > ]

Now, if Pax — Tmin < 0, we shall use the Lyapunov function W = In(1+ V). Denoting
a = max{sup{V(x) : ||z||, = 1}; 1}, we find:

a)\'iJrM s

LA ) <~ b2 OB + X =Nl (4.10)
LW M) < — 2 g Lyt yeeid) + o). (@1
1+ al# 1+ al
If A <1 then 1+ o < 1, 0(X) < 1 and X¥FHe(X) = M mmax < 1 since 1 — Tmax > 0. Hence
(4.11) gives:
a)\n—i—u
LW AN) <~ () + e(lal)).

Otherwise, if A > 1 then —2 < 1/a < 1, Me(A\) = A7 < 1 and \e(\)0(\) =

1+aAH
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Chapter 4. Robustness and stability

AVmax=rmin < 1 since Upmayx — Tmin < 0. Hence (4.10) gives:

WA Aa) < A

L _
! T 14 aMH

d

+o((lldll) + e(ldl) - (4.12)

Finally the relation (4.12) holds for any A\, which means that for any y # 0 we have:

__allyllF™

W(y) < ————
R

+ (¢ + ) ([|d]]) (4.13)
and therefore the system (4.1) is iISS. O

In the Theorem 4.9, two constants, namely ¥,,;, and ¥p,.x, are involved in the definition
of the function 0. Remark that 9,,;, = 0 is always a valid choice by the continuity of f.
The only real condition is the existence of V., which expresses the polynomial growth
of the vector field f; — fo when x becomes large.

The result of Theorem 4.9 can be applied for a larger class of systems, which are not
necessarily homogeneous (the function f may be non homogeneous). For example, to the
system (4.2) with non homogeneous Gy (the result of [Hong 2001] cannot be used in this
case):

{ Ty = —x+ %7
By = —xo+ [31]Y3ds,
where r = [1; 1] and k = 0 for d = 0, Vppin = Umax = 1/3.

However, the conditions obtained in Theorem 4.9 also do not work for the critical case
example (4.9), where Jpin = 0.5, Umax = 3 and the equality £ = Oyax — rmin 1S satisfied.
A reason of that is hidden in the conservatism of the function # computation. Another
explanation of this fact is that, in the case 7, = 0 the system (4.1) may not admit a
r-homogeneous ISS Lyapunov function (both Theorems 4.5 and 4.9 are based on an ISS
Lyapunov function of that type), see also the case of Proposition 4.10 below, where this

fact is pointed out for the case r = 0,,.

Proposition 4.10. Considering d as a constant, let the vector field f be r—homogeneous
of degree k independent of d, i.e. f(A.(N)x,d) = NA.(\)f(x,d) for all x € R", d € R™
and all A > 0.

o Assume that the system (4.1) admits a r—homogeneous ISS Lyapunov function V.
Then V s a Lyapunov function for fq and the origin is a uniformly globally asymp-
totically stable equilibrium for (4.1).
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4.3. Robustness of homogeneous systems

o Assume that the system (4.1) admits a r—homogeneous iISS Lyapunov function V.
Then the origin is a uniformly stable equilibrium for (4.1).

Proof. By definition, an ISS (resp. iISS) Lyapunov function for the system (4.1) verifies:
L, V() <0(ldl]) — as(llyl]), 0 €K, as € Ku (resp. as = 0).

If V is r-homogeneous, set y = A, (\)x, with ||z||, = 1. Then LV (y) = N*"FL V(z).
Using Lemma 1.19, there exists a function w € Ko (resp. w > 0) such that:

ALy V() < Olld]) — wAM]l)-

If w € Ky, then for any  such that ||z]|, = 1 and any d € R™, we find \***L; V(z) —
—oo when A — +oo. We obtain L,V (z) < 0 and \*tHL, V(z) = L,V (y) < 0.

If w = 0, then we just have £,V (z) < A=T#0(||d||), and when A\ — +o0, we get
L;,V(x) <0, thus N L, V(x)=L;,V(y) <O0. O

To finish comparison of Theorems 4.5 and 4.9 note that the conditions of Theorem 4.9

may be more restrictive than in Theorem 4.5, as it can be seen in the following example:

{j}l = —$§+L.’,132-|1/3d1

ig = —L$2]5/3+$?d2 ’

where r = [1; 3], r = [2; 2|, x = 2 and it is ISS by Theorem 4.5 (it also has a homogeneous
ISS Lyapunov function V(z) = x$/6 + x3/2). However, Theorem 4.9 does not provide
any conclusion since Vi = 1, Omax = 3 and £ = Vpax — min > 0. In addition, the
iISS condition in Theorem 4.9 implicitly needs Yax < Tmin. Another interpretation of
the ISS condition of Theorem 4.9 is that the system (4.1) is r-homogenizable at oo with
homogenization f(x,0), and this approximation is uniform in d.

Finally consider an example, for which a strict Lyapunov function is not known, but
using Theorems 4.5 or 4.9 it is possible to establish ISS property. Let us consider the

following planar nonlinear system:

, (4.14)

él = €9 — ll |_61 + d1—|6
ey = —lo |_€1 + d1—|2/6771 + do

where e; € R, e5 € R are the states, d; € R, dy € R are external inputs, [y > 0, [ > 0

and € (%, 1) are the parameters. Such a system describes dynamics of estimation error
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Chapter 4. Robustness and stability

when analyzing a finite-time observer/differentiator [Bernuau 2012|, see Chapter 5. In
this case d; represents the measurement noise and ds models an external disturbance or
model mismatch. The system (4.14) is homogeneous for r = [1 ] and ¥ = [1 25 — 1] with
degree Kk = 3 — 1. To show that for d; = dy = 0 the system is asymptotically stable, we

can consider a Lyapunov function
V(el, 62) = —|€1|2'B + —(3%,
which derivative for (4.14) takes the form

Vo= bLle ¥ ey —li]e1]?) — laea| e ]
= —libyle[ 7,
i.e. V is not a strict Lyapunov function for the system (4.14). Therefore, the system is
Lyapunov stable (V < 0); moreover all its trajectories are attracted by the origin (the
origin is the only invariant solution on the line e; = 0), thus the system (4.14) is globally
asymptotically stable. In fact, since it is homogeneous with a negative degree it is finite-
time stable. By Theorem 4.5, since 7,;, > 0, the system is ISS with respect to d; and
ds.
In Chapter 5, we will see another example, for which a strict Lyapunov function is
not known, but using homogeneity it is possible to prove ISS property for a nonlinear

homogeneous controller from [Bhat 1998].

4.4 Robustness of locally homogeneous systems

The ISS property of locally homogeneous systems has been analyzed in [Andrieu 2008|.
It was shown there that if the system (4.1) is locally homogeneous at 0 and +o00, and all
approximations and the system itself are globally asymptotically stable for d = 0, then
(4.1) is ISS. First we are going to propose a variant of that proof for approximation at
infinity and, next, we will extend it for systems that are not homogeneous with respect
to d.

Theorem 4.11. Let the vector field f be (r,T)-homogenizable at oo (with v > 0 and

r>0), i.e. for any compact set K C R" x R™

sup [[ATCATTN) F(A-(N)z, As(N)d) — h(x, d)|| — 0,

(z,d)eK A—r+o00
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4.4. Robustness of locally homogeneous systems

where h is the homogenization of f. For d € R™, denote hqg(x) = h(x,d). Assume that
the system @ = ho(x) is globally asymptotically stable, then the system (4.1) is ISpS.

Proof. We shall here use the arguments of the proof of Theorems 4.5 and 2.17. We also
denote fy(z) = f(x,d) and hy(z) = h(x,d).

There exists a function o € K such that:

1Ay, d) = h(y, 0)I < o(lldl]) vy e{V <1} (4.15)

We denote £ = deg f and K = {z € R* : V(z) = 1} x {6 € R™ : ||§||s < 1}. Let
V € CYR™, R) be a proper Lyapunov function for hg, r-homogeneous of degree p > 0.
Forallz € {z€R":V(z) =1}, d € R™ and all A > 1, we have:

Ly

d

VA (Nx) = LngV(A(A)2) + Logono V(A (M) + L0,V (Ar(A))
< N a+ o (AN d])
FOINTAN) T = A)(A (N2, Ar(NAN) T D]

where the constant @ > 0 and b > 0 are defined as:

—a= sup LpV(x), b= sup |d,V]. (4.16)
{V(z)=1} {V(z)=1}

By an argument similar to the proof of Theorem 4.5, there exists a function 6; € K such
that if [|A,(\)z|| > 01(||d||), then o(||Az(\)71d||) < —a/4b. There also exists a function
0y € K such that if V(z) = 1 and O(||d||) < ||A,(A)z||, then ||d||z < A. Let us denote
0(s) = max{0y(s), 02(s)}. Since

sup [[ATCATTN) F(A(N)z, As(N)d) — h(x, d)|| — 0,

(z,d)eK A—r+00

there exists ¢ > 0 such that if ||A,(A)z| > ¢, then

A a
sup_ [A7AT N F(A (N A(A)d) — (e, d)]| <
(z,d)eK
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Chapter 4. Robustness and stability

Now, if | A,(A)z|| > ¢+ 0(]|d||), then ||d||; < 1 where d = Az(\)~'d and

VAT = B (N2, Ar(AN) AN )]
= [IATRAN) TS = ) (A (N, Ax(N)d) |
< SUPgs)ek [AT"A(A)~ 1(f h) (A (A

ptr

Finally, if [ly|| > ¢+ 0(||d||), £,V (y) < —5V(y) » and the system (4.1) is ISpS by
Theorem 4.4. [

For example, consider the system:

.fl = X1 — .T? + 272|I'1|0‘75d

j/’Q = Xy — LxQ‘IQ + |x1|3'5|x2|0'125d

which is (r, T)-homogenizable at co with the weights r = [1,2], T = 0.25 and with

- o)

_ Lm2'|2 + |$1|3'5|I2|0'125d

of degree 2. The linearization of the system is unstable and it is hard to simulate this
system in order to check its stability since it is very stiff. However, since all conditions of

Theorem 4.11 are satisfied, the system is ISpS.

Corollary 4.12. Let all conditions of Theorem 4.11 be satisfied, and assume moreover
that

sup [[ATA (N F(Ar (N2, Ar(A)d) — h(, d)|| < a,

(z,d)eK

where a is defined by (4.16). Then the system (4.1) is ISS.

Proof. 1f the additional condition holds, let us denote

sup  [ATFATY ) F(A (N, Ax(N)d) — h(z, d)|| = d’ < a.

(z,d)eK

There exists a function ¢’ € K such that if |[y|| > 0(||d|]), then o(||[Az(N\)"'d]]) < 452,
with V(y) = M, and we find that if ||y|| > ¢'(||d||), L7,V (y) < —“/;a (y)L:i and the
system (4.1) is ISS by Theorem 4.4. O

Corollary 4.13. Let a continuous vector field fo : R™ — R™ be r-homogenizable at oo

and such that its homogenization is asymptotically stable. If f(x,d) = fo(x) +d, i.e. d is
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an additive disturbance, or f(x,d) = fo(x + d), i.e. d is a measurement noise, then the
system (4.1) is ISpS.

Proof. Denote k the local degree of homogeneity of fy at oco. Being the degree of the
approximation which is a GAS r-homogenous vector field, K > rp;,. Take r = r + &
for the additive disturbance case, and r = r for the measurement noise. The result now
follows Theorem 4.11. O

There is a modification of Theorem 4.11, which skips homogeneity with respect to d.
We keep denoting fy(z) = f(x,d).

Theorem 4.14. Let the vector field fo be r-homogenizable at oo and denote hg its ho-
mogenization. Assume also that there exist functions 1, € K and 0 < Vpin < Umax such
that for all x € R™ and all d € R™

1F (e, d) = f (@, O)I < OCllxll- )b ([Idl]) + (Nl dl]),

with
gUmin  4f g < 1
0(s) = fo < :
glmax  if 5> 1
If k = deg, fo > Vmax — 'min and if the system & = ho(x) is globally asymptotically stable,
then the system (4.1) is ISpS.

Proof. Under the introduced conditions the system & = ho(z) is r-homogeneous of de-
gree x and globally asymptotically stable. Then by the weighted homogeneous version
of Theorem 1.5 there exists a continuously differentiable, positive definite and radially
unbounded Lyapunov function V' : R® — R, r-homogeneous of degree p > 0 and (4.16)
holds for some a > 0, b > 0. Consider the time derivative of V' computed for (4.1) for all
re€{zeR":V(z) =1} and d € R™

V(A (N)z)

Ly

d

LagV(A(A)w) + Lo -nV(Ar(A)2) + L, 1, V(Ar(A))
< NT=a+ sup [ATAT ) fo(Ar(N)a) = ho(2))

V(z)=1

HOATRO(A |l )b dl) 4+ bAT (]| )]
There exists ¢; > 0 such that if ||A,(\)z| > ¢; then

sup [IAFAL ) folAr(A)a) — ol < -

V(x)=1

87



Chapter 4. Robustness and stability

There exists ¢ > 0 such that if ||A,.(A)z|| > ¢ then A|jz|, > 1. We set ¢ = max{cy, c2}.
Then if [|A,(N)x|| > ¢ then

Ly

d

a / —K—Tmi —R—Tmi
V(A () N [t & b aPmmsrmm ] + DA mmip(d])]

with ¢’ = supy_, ||z|[?=. Since & + r'min — Vmax > 0, there exist functions 0, » € K such
that if [|A,(A)z]] = o(||d]|) then by Amex—r=miny(||d||) < a/6b and if [|A,(N)z]] > &(||d]|)
then A" "mino(||d||) < a/6b. Hence, if |A,(N)z|| > ¢+ (@ + ¥)(||d]|]), we find

Ly

d

V(A (M) < —%AW,
that is, for all ||y|| > ¢+ (¢ + QL)(HdH)a

a
Lo Vi) < ~Sxet

and by Theorem 4.4 the system (4.17) is ISpS. O

Theorems 4.11 and 4.14 extend the conditions of Theorems 4.5 and 4.9 on the case
of local homogeneity at infinity. However, in the local case the difference between appli-
cability conditions of Theorems 4.11 and 4.14 is minor. The main advantage is that the
local approximation at infinity may fail to exist for both variables z and d (the case of
Theorem 4.11), but it may exist for d = 0 and Theorem 4.14 can be applied in this case.

Consider the following example

. z111/64
R (4.17)
ig = — X9 + |$1|1/6d

For d # 0 this system has no homogeneous approximation at infinity. Indeed, set weights
r = [ry; ro) > 0 and ¥ = [F] > 0 and degree x € R. We find

fov 00 if—/ﬁ—%r1+f—2r2>0
. o |)\T1.Z‘1|1 6)\rd
lim VA" e— m— = e B s )
o [ENPCINE 0 if —Kk—3ri+7—2ry<0
1/6
Il if — = 3ry 7 — 2 =0
Therefore the only possible degree of local homogeneity of the system is xk = —%7‘1 +7—=2r3.

However, if the system were homogenizable at oo, the previous limit would have been

continuous, which is not the case here. Hence for any (r,T), the system is not (r,T)-
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homogenizable and thus neither the Theorem 4.11 nor the result of [Andrieu 2008| can
be applied here.
Now, if we choose r = [2; 0.5] the system (4.17) with d = 0 is r-homogenizable at

i~ ()

of degree x = 0, which is clearly asymptotically stable. A direct calculation shows that

infinity with homogenization

Umin = Umax = 1/3 are valid values. Therefore, since £ > Upax — Tmin, according to
Theorem 4.14 the system (4.17) is ISpS.

4.5 Conclusion

In this Chapter, several conditions of the ISS and iISS properties have been developed
based on the homogeneity theory. The advantage of these conditions is that the system
robustness can be checked after its asymptotic stability in the unperturbed case provided
that some algebraic homogeneity conditions are satisfied for the system equations (globally
or locally). All results are obtained for generic nonlinear systems. Several examples
are proposed showing efficiency of the proposed theory and its limitations. In the next
Chapter, we will see how to use the ingredients developed in this Chapter for the concrete

example of the double integrator.
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Chapter 5

Application to the double integrator
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5.1 Introduction

In many applications the nominal models have the double integrator form (mechanical
systems, for instance). Despite its simplicity this model is rather important in the con-
trol theory since frequently a design method developed for the double integrator can be

extended to a more general case (via backstepping, for example). Most of the current
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techniques for nonlinear feedback stabilization provide an asymptotic stability: the ob-
tained closed-loop dynamics is locally Lipschitz and the system trajectories settle at the
origin when the time is approaching infinity. However, there are situations where we need
more precision on the speed of convergence. This is why the finite-time stability notion
has been quickly developing during the last decades: solutions of a F'T'S system reach the
equilibrium point in a finite time. Let us mention that finite-time convergence implies
non-uniqueness of solutions (in backward time) which is not possible in the presence of

Lipschitz-continuous dynamics, where different maximal trajectories never cross.

Engineers are interested in the FTS because one can manage the time for solutions to
reach the equilibrium which is called the settling time. The settling time function, defined
as the maximum time for all solutions to reach the desired equilibrium for a given initial
condition, is hence an important tool in this context. However, like any quantitative
information about the solutions of a differential equation, the settling time function is not
always known. Some results exist, though, on qualitative properties of this settling time
function. Its regularity, and particularly its continuity at the origin, has been studied
in [Bhat 2000|, under the assumption of forward uniqueness of solutions. That paper
shows, among other results, that the continuity of the settling time function is equivalent
to its continuity at the origin, which is not always achieved. Such properties allows an
accurate numeric approximation of the settling time function, which is a good alternative

to qualitative informations.

For continuous systems, necessary and sufficient conditions for F'TS have been given
(see [Haimo 1986, Moulay 2003|). In addition, necessary and sufficient conditions appear
for finite-time stability for a class of discontinuous systems (see [Orlov 2005b]), and ex-
tended in Chapter 3. It was observed in many papers that F'TS can be achieved if the sys-
tem is locally asymptotically stable and homogeneous of negative degree [Bacciotti 2005,
Bhat 1997]. We have also seen related results when the system is only homogenizable
by a GAS homogenization of negative degree in the Chapter 2 (see Corollary 2.16).
These results justify the central role played by the homogeneity in the FTS system
design. The reader may found additional properties and results on homogeneity in
[Bacciotti 2005, Bhat 1997, Hermes 1991a, Kawski 1995, Orlov 2003|.

Our goal in this Chapter is to use the techniques developed along this work for the
design of a FTS output feedback controller for the double integrator. Since the double
integrator is controllable, open-loop control strategies can be used to drive the state to the
origin in a finite time (see [Athans 1966, Ryan 1979, Wonham 1985] for a minimum time
optimal control). Based on homogeneity, Bhat and Bernstein in their paper [Bhat 1998]
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provided a homogeneous F'TS state controller for the double integrator under rather re-
strictive conditions on parameters of the controller. In [Orlov 2011 an output feedback
control is proposed based on the homogeneous control from [Bhat 1998] and a sliding-
mode observer. It is shown in [Orlov 2011] that this control has a certain robustness with
respect to a particular form of disturbances (bounded by a function of the output). Our
objective is to relax the applicability conditions for the control obtained in [Bhat 2005],
and to improve robustness abilities of the FTS output control with respect to [Orlov 2011]
proposing a purely continuous controller and observer.

The outline of this Chapter is as follows. We will begin by formulating the problem
in Section 5.2. The output FTS controller will be designed in Section 5.3, while the
robustness and the influence of the discretization will be studied in Section 5.4. Finally,
we will present the results of computer simulations of the proposed control algorithm in
Section 5.5. The contents of this Chapter have been submitted in [Bernuau 2012| and
submitted in [Bernuau 2013c|.

5.2 Problem formulation

Our contribution aims at designing a continuous F'T'S output feedback based on homo-

geneity for the following double-integrator system:

',ijl = T2,
Ty = u(wg, ), (5.1)
Yy = I,

where 1 and x5 are the states of the system, u is the input and y is the output. We will

proceed in four steps:

1. Design a continuous homogeneous state feedback control ensuring F'T'S for the dou-

{‘/{“ - (5.2)

To = U.

ble integrator:

2. Design a continuous homogeneous observer:

{!Jiﬁ = @2—){1(3/—331)7 (53)

Ty = wlwr,x2) — x2(y — 1),
where x; and x» are functions to be designed such that the origin is F'TS for the
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error e = xr — & equation:

{é1 = e +xlea), (5.4)

és = xaler).

3. Show a separation principle such that the obtained observer-based closed loop sys-

tem is FTS.
Ty = o,
-jj2 - U(y, i?)v (55)
y = T,

where 5 is obtained from (5.11).

4. Study the robustness of the closed loop system and the influence of the discretization

of the control and of the observer.

5.3 Finite-time output feedback based on homogeneity

5.3.1 Finite-time control

Let us consider the double integrator (5.2). It is homogeneous of degree x w.r.t. to the

dilation A, with weight r = [rq, r9] as soon as u is r-homogeneous of degree r, and
rMTt+tKRK=ry Tot+ K="y

Thus fixing 7o = 1 (without loss of generality) a necessary and sufficient condition for
(5.2) to be homogeneous is
rm=1-—k r,=1+k. (5.6)

To have FTS it is necessary and sufficient that (5.2) is LAS and that x < 0. Let us find
conditions for which the following feedback leads to LAS of the origin of the system (5.2):

u = k’l L.Z’l-lal + ]{?2 L.’L’Q-l(m, (57)

and £ < 0. The feedback (5.7) is homogeneous of degree r, iff r, = 1 + K = r;¢;. From
(5.6), setting v := ap, we get:

k=a—1, m=2—a, o=
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The condition x < 0 is equivalent to o < 1, which in turn implies that o; < 1. For oo < 0,

the feedback u is not well defined. For o = 0, we recover the discontinuous system

{”?1 - . (5.8)

o = kysgn(wy) + kosgn(ws)

This system is very important in the sliding mode control theory and has already been
extensively studied (see |[Levant 2011] and references therein). However we focus here on
continuous feedbacks and observers, and hence we assume « € (0, 1).

Summarizing, the system (5.2) with the feedback (5.7) takes the form

{"iﬁl oo (5.9)

To = kltmﬂﬁ—l-kgtmﬂ“ 7

and is r-homogeneous of degree o — 1, with r = [2 — «; 1], and continuous.

We would like to find conditions on the coefficients k; under which the origin is a
LAS equilibrium for the system (5.9) (that due to homogeneity implies FTS). In the work
[Bhat 2005] these conditions have been obtained for « sufficiently close to one. Here we
consider let & being any number in (0, 1).

Consider the following function:

—k 2
1 |I1|1+a1 + ﬁ

View— )
v 14+ 2

(5.10)

The function V is continuously differentiable, proper, homogeneous of degree 2 with re-
spect to Ay, and V = ko|xo| 2. Tf ky < 0 and ky < 0, the function V is definite positive,

and V is negative semi-definite.
Theorem 5.1. If « € (0,1), ky < 0 and ko < O then the system (5.9) is FTS.

Proof. A direct application of the LaSalle invariance principle shows that the system (5.9)
is GAS. Being homogenous of degree o — 1 < 0, the system (5.9) is therefore FTS. ]

Remark 5.2. This result has been proved in [Orlov 2011] under the additional assumption
ki < ks.

5.3.2 Finite-time observer design

A finite-time observer for a canonical observable form was constructed for the first time

in [Perruquetti 2008]. The proof of finite-time stability is based on the homogeneity
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property. In the case of the double integrator, the observer is:

2 = fo—1 _ 45 15
{ﬂUl T2 1|_y $11 (5.11)

Ty — u—lgLy—fi:ﬂ'B?

The powers (; are defined such that the error dynamics can be written as follows:
e1=e+10 Leﬂﬁl

ég = l2 |_€1—|B2

where e = x — & and the right hand side is p-homogeneous with a negative degree where

P = [p1, p2]. The homogeneity holds as soon as the following relations hold

p1+ Kk =p2=pif2, p2+K=piPa.

Therefore, setting § = S, the homogeneity condition becomes

pr=p1f, Bo=26-1 K=p(B—1),

with g € (3,1).
In [Perruquetti 2008], the FTS of the origin was only proved for any 5 € (1 —¢,1) for
a sufficiently small € > 0. Here we show that the system is F'TS for all g € (%, 1) and all

p1 > 0. The system can be recast as:

G = ethlal” (5.12)
s = Iy L61-|25_1

and it is continuous and p-homogeneous of degree p;(8 — 1) with p = [p1, p13].

Theorem 5.3. Set 8 € (3,1) and consider the observer (5.11). Then the associated error
system (5.12) is globally FTS for any l; <0 and ly < 0.

Proof. Consider the following function:

V(G) = _ﬁ|€1| + E

The function V' is definite positive, proper, continuously differentiable and homogeneous

of degree 2p,3. Moreover, we compute V(e) = —ll|e;[?1 < 0. Using the LaSalle
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invariance principle, it is then straightforward to prove that the system (5.12) is GAS.
Being homogeneous, this system is therefore F'TS. [

Thus the observer (5.11) ensures observation of the state of the system (5.1) in a finite

time for any initial conditions.

5.3.3 Finite-time stable observer based control

Our aim is now to use the two preceeding subsections to build a finite-time observer based
control. In view of Theorems 5.1 and 5.3, we assume here that k; < 0, ky < 0, I; < 0 and
ly < 0. Let us rewrite the system (5.5) for the designed FTS control (5.7) and the FTS

observer (5.12) (in the estimation error coordinates):

T = X

iy = kyloy]Te + kolag — €2]® . (5.13)
é1 = eg+lile]?

ey = lle !

Remark 5.4. Note that x9 — eo = 9, thus the control depends on the measured output
x1 only. Moreover, we could replace x1 in this equation by &1 = x1 — ey without changing

the following results.
To prove the F'T'S property of this system we need two auxiliary lemmas.

Lemma 5.5. Set 0 € (0,1). The function a € R — |a]® € R is 0-Hdlder-continuous with

constant 2179 on R, that is

la +61° — [a]] < 2"°b° Va,beR.

Proof. Define for a,b € R and 0 € (0,1):
gola,b) = la+ ]’ — |a]’.

Let us show that |gg(a,b)| < 2179(b]%. Tt is clear that this inequality is true for b = 0. In

the sequel, we assume b # 0. An easy verification shows that for all A > 0:

go(Aa, \b) = )\egg(a, b),

ao(a.b) = |6199(5. ).
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Let us denote hy : z € R — gp(2,1). The function hy is differentiable for all z ¢ {—1,0}
and hjp(z) = 0(]1 + 2|71 — |2|°71). Hence hy is strictly increasing on (—oo, —1/2) and
strictly decreasing on (—1/2,4+00). Thus, we find 0 < hg(z) < hp(—1/2) = 217, Finally,
we have go(a,b) = [b]%gs($,1) = [b]°he(%), and therefore |go(a, b)| < 219(b|°. O

Lemma 5.6. The system

1 = X9
I.Q = k)l Ll’l-| ﬁ + k?g LJIQ — eg]a
15 1SS with respect to the input es.

Proof. We are in position to apply the Theorem 4.5. We see that the auxiliary vector
field is (r,T)-homogeneous, with ¥ = ry, of degree aw — 1. Since Ty, = 12 > 0, in view of

Theorem 5.1, the system is ISS with respect to the input e,. n

Now we are in position to formulate the main result.
Theorem 5.7. The system (5.13) with &(to) = 0 is globally FTS for any o € (0,1) and
pe(1/2,1) for any k1 <0, ke <0, I; <0 and ly < 0.

Proof. By the stability of the observer and the ISS of the state equation, there exists
v € K and «, 8 € KL such that for any o > 0 and all ¢t > tq:

le@I < allle(to)ll t = to),
le@I < Bllz(to)ll,t = to) +~( sup [le(7)]]).

TE[to,ﬂ
We have obviously the estimate sup,c(, 4 [le(7)[| < a(lle(fo)]|,0). Taking #(to) = 0, we
find e(to) = x(to) and hence sup, ¢, 4 lle(7)|| < a(||lz(to)]],0). Finally we have

@I < Bllz(to)ll, £) + o e[z (to) ], 0) (5.14)

and therefore the system is stable. The finite-time convergence of the system is a direct
consequence of the finite-time convergence of the error e and the finite-time convergence
of the system (5.9). We conclude that the system (5.13) is globally FTS. O

Remark 5.8. It is worth to stress that the system (5.138) is FTS in coordinates (ey,ez)
(see Theorem 5.3) and it is FTS in coordinates (x1,xs,e1,e2) (Theorem 5.7). Moreover,
equation (5.14) actually proves the stability of the isolated coordinates (x1,xo) provided
that we choose &(ty) = 0.
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5.4 Robustness properties of the closed loop system
with fixed parameters

If we choose 3 = 32— and p; = 2 — « in (5.13), it is easy to see that the system becomes
t-homogeneous of degree o — 1 where v = [ry, 79, p1, p2] = [2 — @, 1,2 — o, 1]. This choice
provides another proof of the Theorem (5.7) without the help of ISS: being attractive and
homogeneous, the system is stable.

In this section, we will study the robustness properties that we can get in this setting

thanks to homogeneity. Indeed, we will be interested in the system:

T, = X9

iy = kylzi]7a ‘I-lkg |xg — ex]® . (5.15)
ér = ex+lile ]

& = lyle]T=

5.4.1 Robustness analysis

Assume that the system (5.15) is subject to disturbances:
1. a noise d; on the output x1;

2. a perturbation dy which may appear in the transmission channel between the con-

troller and the observer;
3. physical perturbations ds like frictions or unmodelled dynamics;
4. computationnal errors dl and cig on 7 and Z».
The disturbed system is now:

T = X9

Ty = kltxl—l—dﬂﬁ—l—kzLxQ—eg—Fdz—!—czﬂo‘—Fds
61 = es—dytliler—dy+d]Te

és = bley—di+di]7= +ds

(5.16)

Let us denote the disturbance 0 = (dy, da, ds, dl,dg). We have the following robustness

result:
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Theorem 5.9. The system (5.16) is ISS with respect to input 0. Its asymptotic gain is
upper bounded by the function v, given by

71(s) —Cl{ 7o ossl : (5.17)

and C7 is a constant. We assume hereafter without loss of generality that C7 > 1.

Proof. In view of Theorem 5.1, we are in position to apply the Theorem 4.5. We see that
the auxiliary vector field is (¢, t)-homogeneous, with t = [2—a; 1; a; 2 — «; 1], of degree
a — 1. Since 7y, = « > 0, by Theorem 4.5, the system is ISS with respect to the input
0. The Corollary 4.8 gives the estimation of the asymptotic gain. n

5.4.2 Discretization effects

Similarly, we can study the influence of the discretization of the control and the observer in
our observer-based feedback. We assume that there exists a sequence of sampling instants
() )ken increasing to +oo at which the observer and the control are updated, such that
0 < tgy1 —tg < h. For t € (tx,tgr1), the observer and the control remain constant. The

system can be rewritten, for t € [tg, tyy1):

(

a1(t) = ao(1)
() = kalm(te)]7% + ko B2 (te)]°
) T1(ter1) = T1(t) + (tppr — tr) X
(#2(te) = b o1 () — (81775 )
To(thr1) = To(te) + (tepr — i) X

(u(tk) — ly| @y (tg) — ivl(tk)‘lﬁ)

To compare this hybrid system with the continuous system (5.15), we need to define

(5.18)

\

some other variables. We define, for ¢ € [tg, t541):

{ F1(t) = dolty) — |z (k) — d1(t)]7= (5.19)

Ta(t) = ulty) — lli(ty) — &1(ty)] 7=

Settlng fl(to) = .fl (to) and .fg(to) = Li’g(tg) leads to jl(tk) = i’l(tk) and fig(tk) = fg(tk>
for any k € N. These variables are affine interpolations of the discrete system. We are

naturally led to define new “observation errors” by €; = x1 —x; and €5 = x5 — Z5. Finally,
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setting «(t) = max{tg, t; < t}, and:

) — To(t) (5.20)
)

we get, for t € R,:

Ty = k‘lLCerdﬂﬁ + ko | g —52+CZ2-|O‘
él = 52—ci2+llL51—cZ1+dﬂﬁ .
éz = l2L51 —Ci1+d1-|ﬁ

(5.21)

Therefore, setting z = (1, 9, £1,£2) and A = (dj, dy, Jg), we have the following corol-

lary of Theorem 5.9:

Corollary 5.10. The system (5.21) with o € (0,1) is ISS w.r.t. the state z and the input
A. Its asymptotic gain is upper bounded by ;.

We shall now prove that the discretized system (5.18) is practically stable and con-

verging to a ball which radius is a class K function of A.

Let us now study the variations of the input A through time.

t
/ 1(T)dr
u(t)

/ |22(7) = w2(u(t))| d7 + h |22 (u(1))]

/ / )] dsdr + b z(u(t))

< h2|u )]+ hfa(u(t))],

di(t)] =

IN

IN

where w(1(t)) = ki |21 (o(t))] 75 + ko|Z2(e(t))]®. Similarly, we get:

L
N
~~
~
-
A

hfule(®) = b lea(a(0)] 77

h|7a(u(0)) = la o1 (u(8))1757 .

=
—

—
=
IA
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We easily deduce that if h < 1, then ||A(?)]] < v2(||z(e(2))]]), where:

T if s<1
Y2(s) = CQh{ = (5.22)

s if s>1

and Cy > 0 is a constant.

Now, we set so > 0 such that:
1
So < min {1, (01(2*“)(4*‘“2>C§(2*°‘)> E-a)—oT)a? } . (5.23)

We claim that the following choice for h will be satisfactory:

9 o\ —b
1 SéQfa)(4fo¢ )—a a(2—a)
h= ( Sy . (5.24)

Let us note that the condition (5.23) and (5.24) imply 0 < h < 1. Denote 0(s) =
s — 1 0 72(s), where 1 is given by (5.17) and ~, is given by (5.22).

Lemma 5.11. For all s > sy, we have 0(s) > 0. Moreover the function 0 is strictly

increasing for s > so and 0(s) — +o0.
S—+00

Proof. First of all, let us note that the definitions of A and « € (0, 1) imply the following

inequality:
h < ! < ! (5.25)
7 < a0y :
0201 «
In particular, equation (5.25) ensures that ﬁ > (7 > 1. Let us hence distinguish 3
cases:

1. if s > ﬁ > 1, we have vo(s) = Cyhs > 1 and 71 o 15(s) = C1Cshs. Hence
0(s) = (1 — C1Cyh)s with 1 — C1Cyh > 0, thus 0 is strictly increasing and positive.
2. if 5 € [1,@], v : )
Cy (Cyhs)e2, that is O(s) = sta (s a2 — ) (Cyh)i<?). Using again (5.25)

and s > 1, we get that 0 is strictly increasing and positive.

we have similarly vo(s) = Cohs < 1. Therefore v, o 1(s) =

3. finally if sy < s < 1, using the expression of h we have:

o \ T2 % 2
Y1 072(s) = Ch (Czhsﬁ) T =gy BT gmaay),
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(2—a)(4—a?)—a? (2704)(4702);0(2 o2
Therefore 0(s) = (s @-a@-a? — g  C=DED ) » sG-a)@=a?) and @ is positive and

strictly increasing for s < s < 1.

Moreover, the first case gives 6(s) = (1 — C1Cyh)s for s > ﬁ and equation (5.25) gives

1 — C1C5h > 0, which ends the proof. O

Theorem 5.12. If h is given by (5.24), then the ball centered at the origin of radius sg
18 globally asymptotically stable.

Proof. Let us first show the stability. Since () < ¢, we have sup,cy, 4 [A(T)]] <
SUD, o4 Y2([[2(7)|]).  Therefore, by Corollary 5.10, there exists a class KL function j
such that, for all ¢ > tq:

121 < Bllz(to)ll, t = to) + 71 0 72( sup |lz(7)]). (5.26)

TE[to,t]

Let t,q belongs to the interval of definition of 2(t). For ¢ € [tg, taz], We have:

o [2(m)]l < B(ll2(to) ]I, 0) +71 0 vz(Te[tS;}tIT)m} I2(m)1), (5.27)
and thus 0 (sup, s, 1.1 12(7)]]) < B(||z(to) |, 0). By Lemma 5.11, there exists s; such that
for all s > 51, 0(s) > B(||2(t0)]], 0). Therefore, sup ¢, 4.1 [12(7)|| < s1 is bounded. Since
this inequality is true for all ¢y and t,,4., ||2(t)]] is uniformly bounded. Lemma 5.11 also
implies that the function 0 : o — 0(c + so) is a class Ko function. If sup, > [|2(7)]| > so,

then we have
sup [|2(7)|| < so + 07" 0 B(]|2(0)]],0). (5.28)

720

Being true if sup,>¢ ||2(7)|| < so as well, this inequality always holds and proves the

stability of the ball centered at the origin of radius sp.

Let us now prove that limsup,_, ||2(t)|| < so. By (5.26) and the first part, we have:

12()]] < B(Do, t = to) + 71 0 ya(sup [|z(7)])- (5.29)

T>t0

The function 8 being of class KL, for all £ > 0 there exists Ty > 0 such that for all
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t —to > Ty, we have B(Dy,t — to) < e. Therefore, for all t > to + To:

Izl < e+ 31 0ma(sup (7))
TZ210

sup [[2(7)[| < e+ ova(sup [[z(7)]])
T>to+T0 T>1o
li < li
i sup (Dl < =+ 0m%( lim sup [2(7)II)
limsup ||z(t)[| < e+ o ya(limsup|z(t)]])
t—o0 t—+o00
O(limsup ||z(t)|]) < e.

t—o00

This last inequality is true for any ¢ > 0, thus f(limsup,_, ||z(t)]|) < 0 and therefore
lim sup,_,, ||2(t)|| < so by Lemma 5.11. O

5.5 Simulations

2
conditions of theorems 5.7, 5.9 and 5.12 are satisfied.

Select @ = 0.6, f# = 5= and ky = —1, ky = =2, [; = —1, I, = —2, then clearly all

The results of the system simulation are presented in figures 5.1, 5.2. In figures
5.1.a, 5.2.a and 5.1.b, 5.2.b the examples of transients in time are given for the system
state (1, 72) and the estimation error (e, ey) respectively. In the case of figure 5.1 all
disturbances are selected to be zero, the step of simulation A~ = 0.002. In the case of
figure 5.2 d;(t) = 0.1sin(5¢) and d3(t) = 0.1 cos(6t) with h = 0.2 (the disturbances dy(t),
di(t) and dy(t) are generated by the computational procedure used for simulation). As
we can conclude from the results presented in figure 5.1, the system is converging to
zero in a finite time for both pairs of variables, and the convergence is also monotone
(that illustrates the theoretical results obtained above). From figure 5.2 we see that the
trajectories stay bounded in the presence of disturbances and that they converge to some
ball around the origin even for a rather large simulation step h. Non-smoothness of the
trajectories in figure 5.2 is due to the structure of the developed algorith and to the large

step of integration.

104



5.5, Simulations

X1, Xy b. @@

4

Figure 5.1: The results of simulation without disturbances, A = 0.002

a. h b. @@

Figure 5.2: The results of simulation with disturbances, h = 0.2
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5.6 Conclusion

In this Chapter, we have used some of the techniques developed herebefore, based on
homogeneity and achieving finite-time stability and ISS. We have seen how the problems
of finite-time control and estimation for the double integrator can be studied. We have
designed a finite-time output control and proved the robustness of the proposed output
control achieving an improvement of the result of [Orlov 2011]. We have shown that input
and observer discretization does not destroy stability of the presented control algorithm.
Finally, we have shown the efficiency of the obtained solution by computer simulations.
This work might be improved in several directions. For instance, the development of
the approach to the case of n'"-dimensional integrator and the evaluation of the settling

time function are possible future directions of the research.
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In this work, we have studied stability and robustness properties of nonlinear systems
using homogeneity-based methods.

The first Chapter has recalled the usual context of homogeneous systems as well as
their main features. Standard, weighted and geometric definitions of homogeneity have
been presented, and the main results of the theory stated. We have seen the link between
negative degree of homogeneity and finite-time stability. Finally, this chapter gave an
introduction to the theory of local homogeneity.

The second Chapter of this work extends the homogenization of nonlinear systems.
This theory was already defined in the framework of weighted homogeneity, and an ex-
tension to the more general setting of the geometric homogeneity is presented here. The
main approximation results are extended and academic examples of use are given.

The third Chapter develop a theoretical framework for defining geometric homogene-
ity of discontinuous systems and/or systems given by a differential inclusion. We have
shown that the proposed definition is consistant with respect to the Filippov’s procedure.
Extensions of well-known qualitative properties of homogeneous systems have been pre-
sented in this context: the converse homogeneous Lyapunov Theorem, the equivalence
between local attractiveness and global stability and the link between negative degree
and finite-time stability.

The fourth Chapter consists in a study of the robustness properties of homogeneous or
homogenizable systems. The input-to-state and integral input-to-state stability properties
have been proved for homogeneous systems under two different principal assumptions:
on the first hand, homogeneity with respect to the perturbation; on the other hand, a
bound on the difference between the perturbed and the nominal systems. The type of
robustness has been shown to be linked to the degree of homogeneity. These results have
been compared to each other, and extended to the more general setting of homogenizable
systems.

In the fifth Chapter, we studied the example of the double integrator system. We
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General conclusion

synthesize a homogeneous continuous finite-time stabilizing output feedback. We have
studied its robustness with respect to perturbations and the impact of the discretization
by using techniques developed before. Simulations conclude the theoretical study of this
system and illustrate its behavior.

Homogeneity is a vast topic. Even though this work is extending existing results, a

lot of work remains to do. Our future directions of research are the following.

e Develop homogenization for discontinuous systems, by using the techniques pre-

sented in Chapters 2 and 3.
e Extend the results of the Chapter 4 to geometric homogeneity.

e Extend the techniques developed in Chapter 5 for the n* integrator and the corre-

sponding observer.

e Extend the homogeneity definitions for more general systems, like hybrid systems

and systems defined by distributions and currents.
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Introduction générale

L’homogénéité est une propriété intrinséque d’'un objet sur lequel le flot d’'un champ de
vecteurs particulier agit comme une dilatation. Cette définition, trés simple, implique
un grand nombre de propriétés qualitatives importantes pour les objets qui la vérifient.
Cette propriété, qui peut étre vérifiée par des opérations algébriques, permet d’obtenir
des conditions suffisantes de stabilité asymptotique qui simplifient ’étude de certains
systémes non-linéaires en permettant par exemple d’éviter le passage par une fonction de

Lyapunov.

Dans le premier chapitre, nous présentons les définitions de I’homogénéité classique,
a poids et géométrique, ainsi que 'homogénéité locale. Nous énoncons les propriétés

usuelles des objets homogénes.

Dans le deuxiéme chapitre, nous développons la théorie de I'homogénéité locale au

cadre de I’homogénéité géométrique. Les théorémes d’approximation sont démontrés.

Dans le troisiéme chapitre, nous étendons la théorie de 'homogénéité aux inclusions
différentielles. Nous y prouvons que cette extension est consistante avec la procédure de
Filippov et que les propriétés usuelles des systémes homogeénes persistent dans ce cadre

élargi. En particulier, un théoréme de Lyapunov inverse homogéne est démontré.

Dans le quatriéme chapitre, nous étudions les propriétés de robustesse des systémes
homogénes. Nous prouvons, sous une hypothése d’homogénéité par rapport a la per-
turbation ou de proximité entre le champ nominal et le champ perturbé, qu’un systéme

homogeéne est ISS ou iISS. Ces résultats sont étendus aux systémes localement homogénes.

Dans le cinquiéme chapitre, nous appliquons les techniques et les résultats obtenus
précédemment a la stabilisation en temps fini par un retour de sortie d’'un double inté-

grateur. Nous étudions les effets de la discrétisation sur un tel systéme.
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Chapitre 1 — Homogénéité

Habituellement, on dit qu’une application est homogéne si I'image d’un argument multiplié
par un scalaire est égale a 'image de cet argument, multipliée par ce méme scalaire a une
puissance donnée, appelée le degré. On peut voir cette propriété comme une forme de
symétrie de D'application le long des rayons issus de l'origine, celle-ci s’y comportant
comme un monome. Faisant suite & Euler et son théoréme des fonctions homogénes, de
nombreux auteurs se sont intéressés a cette propriété dans I’étude de la stabilité. Parmi
les propriétés intéressantes, citons que I'attractivité locale de I'origine est équivalente a sa
stabilité asymptotique globale.

La premiére généralisation de I’homogénéité classique a été introduite indépendam-
ment par Zubov et Hermes. L’idée principale est de remplacer la multiplication par un
scalaire par une opération plus générale appelée dilatation. Chaque coordonnée est mul-
tipliée par un méme scalaire & une certaine puissance, appelée poids. On définit ainsi la

dilatation associée aux poids, écrite sous la forme suivante:
AN iz € R = (Naq, ..., N x,) € R™,

pour A > 0, ou les r; > 0 sont les poids et r = [ry,...,r,] désigne le poids généralisé.

Cette dilatation mene a la notion étendue d’homogénéité a poids.
Définition 1. Soit r un poids généralisé.

e Une fonction ¢ est dite r-homogéne de degré r ssi pour tout v € R™ et tout A > 0

nous avons A\ "p(Ayx) = @(x);

e Un champ de vecteurs f est dit r-homogéne de degré k ssi pour tout x € R™ et tout
A > 0 nous avons \"ALf(Aw) = f(x);

o Un systéme est r-homogene s’il est défini par un champ de vecteurs r-homogene.

Cette propriété fut utilisée notamment pour approximer localement des systémes non-
linéaires et pour obtenir des résultats sur la stabilité ou la stabilisation. Un théoréme tres
important fut démontré indépendamment par Zubov et Rosier : si un systéme homogéne
continu est globalement asymptotiquement stable, alors il existe une fonction de Lyapunov
lisse homogéne. Les applications de la théorie sont nombreuses. Citons notamment le
lien avec la stabilité en temps fini : cette propriété est automatique pour les systémes

homogénes asymptotiquement stables de degré strictement négatif.
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En plus de ces travaux sur ’homogénéité a poids, une approche géométrique, indépen-
dante du choix des coordonnées, a été développée. Le poids généralisé est alors remplacé

par un champ de vecteurs qui encode les directions de dilatation de ’espace.

Définition 2. Un champ de vecteurs v € CH(R",R") est dit Euler s’il est complet et si
lorigine est un équilibre GAS pour —v. Nous noterons toujours ® le flot de v, c’est-a-dire

que ®5(x) est I'état au temps s de la trajectoire de v issue de x a s = 0.

Définition 3. Soit v un champ de vecteurs FEuler. Une fonction @ ou un champ de

vecteurs f est dit v-homogéne de degré k ssi pour tout s € R on a® :
(q)s)*(p — elﬁsw’ ((I)s)*f — elﬁs!f' (1)

Il existe des systémes globalement asymptotiquement stables qu’aucun changement de
coordonnées ne peut mettre dans une forme sous laquelle ils admettraient une approxi-
mation homogéne asymptotiquement stable (au sens de I'homogénéité a poids).

Bien que les développements successifs de la théorie de I’homogénéité aient élargi son
champ d’application, son intérét ne réside pas uniquement dans les objets homogénes. Le
théoréme de Hermes qui suit permet d’approximer en un certain sens un champ de vecteurs
non-homogeéne par un champ homogeéne, le premier héritant localement des propriétés de

stabilité du second.

Théoréme 4 (Théoréme de Hermes). [Rosier 1992a] Soit f un champ de vecteurs continu
et r un poids généralisé. Supposons qu’il existe un champ de vecteurs r-homogéne h de
degré K tel que

sup [AT"AL(N) T f(Az) = h(z)]| — 0.

lzl|=1 A0

Si Uorigine est un équilibre GAS pour h alors c’est un équilibre LAS pour f.

Cette idée a été largement développée dans [Andrieu 2008|, menant & une théorie

locale de 'homogénéité a poids.
Chapitre 2 — Transition géométrique de I’homogénéité

globale a I’homogénéité locale

L’objet de ce chapitre est I'extension de I’homogénéité locale au cadre de 'homogénéité

géométrique. On considére des fonctions et des champs de vecteurs continus dans ce

2(®%)* dénote le pullback par le diffeomorphisme ®°, voir Appendice B.
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chapitre.
Définition 5. Soient ¢ et n des fonctions et soient f et h des champs de vecteurs.

e La fonction n est l'approximation v-homogéne de degré k en 0 de la fonction ¢ si :

ks fas\k | CUC
e (P) p — . (2)

S——00
e Le champ de vecteurs h est l'approximation v-homogenéne de degré k en 0 du champ
de vecteurs f si :
—KS S\ * cuce
e " (P°) f — h. (3)

S—>—00
Si1 la convergence uniforme est prise quand s — 400, on obtient la définition de [’approxi-

mation en l'infini.

Toute approximation homogéne d’une fonction ou d’'un champ continu est continue.
Dans la définition précédente, le degré est libre. En fait, un calcul simple montre qu’il

existe au plus un degré pour lequel une approximation non-nulle peut exister.
Définition 6. Soit v un champ de vecteurs Euler et soit p # 0 une fonction.
1. Le degré local de v-homogénéité de ¢ en 0 est :

degy(p) =sup{s € R: e ™ (®°)" cve 0}

S—>—00
avec la convention sup @ = —oo et supR = +o0.

2. Le degré local de v-homogénéité de ¢ en oo est :

dego() = inf{r € R: ™ (@) &5 0}

S$—+00

avec la convention inf @ = +oo et inf R = —o0.
Le degré local d’homogénéité est défini similairement pour les champs de vecteurs.

Il est tout a fait possible que pour tout degré, I’approximation homogéne soit nulle ou
divergente, donnant ainsi lieu & un degré local infini. Mais méme quand un degré local
fini existe, cela ne nous assure ni qu’il existe une approximation homogéne de ce degré,
ni qu’une telle approximation serait non-nulle. En revanche, quand une approximation

existe pour le degré d’homogénéité locale, cette approximation est digne d’intérét.
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Définition 7. Soit p une fonction. Nous dirons que @ est v-homogénéisable en 0 (resp.
en Uinfini) si degy(p) (resp. deg. (p)) est fini et si ¢ admet une approximation v-
homogéne en 0 de degré degy(p) (resp. wune approzimation v-homogéne en linfini de
degré deg..(v)).

St ¢ est v-homogénéisable de degré d, [’approximation v-homogeéne de ¢ de degré d est
appelée la v-homogénéisation de .

La v-homogénéisabilité et la v-homogénéisation sont définis similairement pour un

champ de vecteurs.

Ce cadre nous permet maintenant d’énoncer les théorémes d’approximation au sens

géométrique.

Théoréme 8. Soit f un champ de vecteurs v-homogénéisable en 0 et soit h sa v-homogé-
néisation en 0. Si lorigine est un équilibre asymptotiquement stable pour h, c’est un

équilibre localement asymptotiquement stable pour f.

Théoréme 9. Soit f un champ de vecteurs v-homogénéisable en oo et soit h sa v-
homogénéisation en oo. St lorigine est un équilibre asymptotiquement stable pour h,
alors il existe un compact strictement positivement tnvariant atteint par toutes les courbes

intégrales de f.

Chapitre 3 — Homogénéité: des équations différentielles
ordinaires aux inclusions différentielles

Dans ce chapitre, nous étendons la définition de I’homogénéité géométrique aux inclusions
différentielles, et nous présentons les extensions des résultats de stabilité des systémes ho-
mogénes définis par des équations différentielles. Nous nous intéresserons uniquement
a des inclusions différentielles définies par des applications multivaluées vérifiant les hy-
pothéses standard, c’est-a-dire semi-continues supérieurement et telles que I'image de tout

point soit compacte, convexe et non-vide.

Définition 10. Soit v un champ de vecteurs Euler. Une application multivaluée F

R™ = R™ est v-homogene de degré Kk € R si pour tout x € R™ et tout s € R nous avons :
F(®°(x)) = ™d, P F(x).

Un systéme donné par une inclusion différentielle est dit v-homogeéne de degré k si lappli-

cation multivaluée qui le définit est v-homogene de degré k.
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Cette définition étend naturellement la définition classique et elle est consistante avec
la procédure de Filippov : si un champ de vecteurs est v-homogéne de degré «, I’application
multivaluée obtenue par la procédure de Filippov sera elle aussi v-homogéne de degré k.

Les résultats importants de la théorie classique s’étendent a ce nouveau cadre.

Théoréme 11. Soit F' une application multivaluée v-homogéne de degré r satisfaisant

les hypotheéses standard. Alors les assertions suivantes sont équivalentes :

e L’origine est (fortement) GAS pour le systéme & € F(x).

e Pour tout pn > max(—r,0), il existe une paire (V, W) de fonctions continues telles

que :

1. V € C®(R™",R), V est définie positive et v-homogéne de degré ji;
2. W e C®(R"\ {0},R), W est strictement positive en dehors de l'origine et

v-homogene de degré p+ K,

8. maxyep(g) daVv < —W(x) pour tout x # 0.

Ce théoréme donne les mémes caractérisations de la stabilité en temps fini que dans le
cadre classique : un systéme homogeéne, GAS et de degré strictement négatif est stable en
temps fini. On remarquera que la fonction de temps d’établissement est aussi homogéne,
continue en zéro et localement bornée, mais pas continue partout en général.

D’autres conditions suffisantes de stabilité asymptotique sont généralisées : 1'existence
d’un compact strictement positivement invariant ou l'attractivité locale impliquent la

stabilité asymptotique.

Chapitre 4 — Robustesse et stabilité

Dans ce chapitre, nous nous intéressons a la robustesse des systémes homogeénes soumis a
des entrées inconnues. On se restreint a des systémes continus et au cadre de I’homogénéité
a poids. Nous nous attachons a prouver que, sous certaines conditions, les systémes
homogénes sont ISS ou ilSS.

Nous considérons le systéme suivant :

izf('%d)r (4)

ou x € R" désigne 'état du systéme tandis que d € L*(R,,R™) est 'entrée exogéne et

f:R™™ — R™ est un champ de vecteurs continu vérifiant f(0,0) = 0.
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Théoréme 12. Supposons qu’il existe des poidsr = [r1,...,r,] > 0etT = [Fy,... 7y >0
et un degré k tels que f(A.(N)z, Az(N)d) = N*A.(N\) f(x,d) pour tous x € R", d € R™ et
A > 0. On suppose enfin que le systéme (4) est globalement asymptotiquement stable pour
d=0. Alors le systéeme (4) est

o ISS st i > 0,

e IS5 si T =0 et kK <0,
Ol Tynin = MINj<j<pm 7.

Les conditions du théoréme sont en particulier vérifiées si on dispose d’un champ
homogéne continu fy et qu’on définit f(z,d) = f(x) +d ou f(x,d) = f(x + d). Dans le

premier cas, le systéme est ISS si kK > —ry, et iISS si kK = —rp;,. Dans le second cas, le

systéme est toujours ISS. On peut aussi obtenir une estimation du gain asymptotique.

Corollaire 13. Nous conservons les hypothéses et les notations du théoréeme précédent.
Supposons de plus que Ty, > 0. Alors il existe une constante C > 0 pour laquelle le gain

asymptotique admet les estimations suivantes :

Tmax

D ifD<1

D)< C "min
D) < {DTmn if D >1

Le théoréme précédent reposait sur une hypothése d’homogénéité par rapport a la
perturbation. On peut remplacer cette hypothése par une condition de proximité entre le

champ nominal non-perturbé et le champ perturbé.

Théoréme 14. Supposons que le systéme (4.1) est GAS pour d = 0 et r-homogeneous de
degré k, i.e. f(A.(N)x,0) = NA.(\)f(x,0) pour tout x € R™ et tout X\ > 0. Supposons
de plus qu’il existe des fonctions 1, € K et des réels positifs Umin < Umax tels que pour
tout x € R™ et tout d € R™ :

1/ (2, d) = f(, 0)[] < O(l|x[l- )Nl dll) + e(lldl]),

avec
gUmin  4f g <1
0(s) = fes :
gVmax if g > 1
Alors le systéme (4.1) est

ISS si & > Ymax — Tmins
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iISS si kK < Ppax — Tmin < 0.

Dans le manuscrit sont proposés des exemples pour lesquels le premier théoréme
s’applique mais pas le second, puis ou le second s’applique mais pas le premier.

Les deux théorémes précédents reposaient largement sur I’homogénéité du champ nom-
inal. Lorsque le champ nominal n’est pas homogéne, mais qu’il admet une homogénéisa-

tion en l'infini, on peut tout de méme obtenir des résultats d’ISpS.

Théoréme 15. Supposons qu’il existe des poidsx > 0 et r > 0 et une application continue

h:R"™ x R™ — R" tels que pour tout compact K C R™ x R™

sup [[ATCATTN) f(A(N)z, As(N)d) — h(x, d)|| — 0.

Supposons que le systéeme & = h(x,0) est GAS, alors le systéme (4.1) est ISpS.

Ce théoréme correspond au théoréme 12. Le théoréme suivant correspond quant a lui

au théoréme 14.

Théoréme 16. Soit r un poids généralisé, fo un champ de vecteurs r-homogénéisable
en linfini et notons hy sa r-homogénéisation. Supposons aussi qu’il existe des fonctions

WV, p € K des réels positifs Umin < Omax tels que pour tout x € R™ et tout d € R™

1f (2, d) = f (2, 0)[] < O(||=[l- ) (lldll) + e(ldl]),

avec
19 . .
gVmin gf ¢ <]
0(s) = :
glmax  if 5> 1
Si k= deg., fo > Umax — Tmin €t si le systéme & = ho(x) est globalement asymptotiquement
stable, alors le systéeme (4.1) est ISpS.

La encore, des exemples sont données pour comparer les champs d’application de ces

deux théorémes.

Chapitre 5 — Application au double intégrateur

Ce chapitre expose un schéma de stabilisation par retour de sortie d’un double intégrateur
basé sur des techniques d’homogénéité. Les méthodes et les résultats obtenus précédem-

ment y trouvent une application. Le systéme considéré est le suivant :
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Ty = X9,
Ty = u(xy, 1), (5)
Yy =
ol x; et xy désignent les états du systéme, u I'entrée et y la sortie.
Nous commencons par construire un retour d’état stabilisant. On prouve ainsi que,
quelque soit la valeur du paramétre o €]0, 1], le systéme suivant est r-homogéne de degré

a — 1 et stable en temps fini, avec r = [2 — a; 1] :

Ty = X2
. o . (6)
To = ki L$1—| o + ko LQ?Q—I

pourvu que les gains ky et ks soient choisis strictement positifs.

On s’intéresse ensuite & ’observateur non-linéaire suivant :

{ f1 = iz—llLy—jﬂ’g

To = U— lgl_y—i’l—‘zgfl

: (7)

ol /g et Iy sont des réels et 8 €]3,1]. L’équation d’erreur associée est :

é1=¢e3+ 1 L61-|ﬁ
ég = lo|eg 1271
Et on peut montrer que ce systéme est p-homogéne de degré p;(f—1), avec p = [p1, Bp1],
et stable en temps fini.

On peut alors considérer le retour de sortie u = ki|y| o+ ko | Z2|%, ce qui donne, en

boucle fermée, le systéme suivant :

T = @

iy = kiloy]Te + kolag — €2]® ®)
é1 = eg+lile]?

ey = lyleg]?P!

On montre alors que ce systéme est stable en temps fini en utilisant la stabilité en
temps fini de chaque sous-systéme et I'ISS du systéme donné par les deux premiéres
lignes par rapport a l'entrée e; grace au théoréme 12.

Dans la suite, on va s’intéresser a la robustesse de ce systéme en utilisant 1a encore les

résultats du chapitre précédent. On va donc choisir les paramétres de maniére a ce que le
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systéme soit homogéne. En 'occurrence, il s’agit de sélectionner py =2 —«a et = ﬁ

Considérons alors le systéme perturbé suivant :

T, = X9

Ty = kilm +d1]ﬁ + ko |y —62+d2+d2]a+d3
&1 = eg—dg+llLel—d1+d1]ﬁ

éo = lyler —dy+dy]7a +ds

, (9)

ol dy, dsy, ds, dy et dy sont des entrées inconnues. Une simple application du théoréeme 12
permet de prouver I'ISS de ce systéme perturbé. Enfin, nous allons appliquer ce résultat
a I'étude des effets de la discrétisation. Considérons donc que ’entrée et ’observateur

sont soumis a des dynamiques discrétes. On peut réécrire le systéme ainsi :

Il(t) = l’g(t)
To(t) = kil (te)]7" + kel da(ti)]®
T1(trer) = T1(te) + (tepr — te) ¥

(10)

2(te) + (trgr — tr) X
(te) — o |21 (tr) — $1(tk)-|i)

To(thsr) =

< (te) — lilwa(te) — 21 (te) [ 2= a)
(u

\

En posant, pour t € [ty, txi1):

{:ﬁ(t) = (ty) = hlas () — &1(6)] (11)

Ba(t) = ulty) — Llai(ty) — 21(tx)]7=

&1 = T1 — jil, E9 = T9 — Li’Q, L(t) = max{tk,tk S t}, et :

do(t) = Tp(ult)) — Ta(t) (12)

on peut réécrire le systéme sous la forme suivante :

T = X9

iy = kilzy +di)Te + kylag — g2 4 da]®
& = eo—do+1liler—di +di]7

gy = bleg—di+dy)7=

(13)
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On en déduit ainsi que le systéme est ISS par rapport a l'entrée (dj, ds, Cig) Enfin, en
étudiant les variations de I’entrée en fonction du temps et du pas d’échantillonnage h, on

prouve le théoréme suivant :

Théoréme 17. Si le pas d’échantillonnage est donné par :

1
1 (2—a)(4—a?)—a?\ alz—a)
h=— %0 2 5
02 C§2fa)(4fa )

alors la boule centrée a ['origine et de rayon so est globalement asymptotiquement stable.

Enfin, des simulations viennent illustrer ces résultats.

X1, Xy b. @@

Figure 1. Résultats de simulation avec perturbations, h = 0.2

Conclusion

Dans ce travail nous avons étudié la stabilité et la robustesse de certains systémes non-
linéaires en utilisant des méthodes basées sur '’homogénéité. Méme si ce travail étend des
résultats existants, de nombreux points restent a approfondir, notamment I’homogénéisa-
tion et la robustesse des systémes non-linéaires ou encore I'utilisation de ces techniques

pour I'étude de l'intégrateur d’ordre n.

119



Résumé étendu en francais

120



Appendix A

Stability and Lyapunov theory

Let us consider a continuous vector field f and the associated differential equation:

T = f(x). (A.1)

Definition A.1. Let xo, € R™ be fized.

The point T is an equilibrium of f if f(xo) = 0.

An equilibrum o is said to be stable if for any neighborhood U of x, there exists
a neighborhood V of xo such that any solution x of (A.1) with x(0) € V is defined
for allt >0 and x(t) €U for all t > 0.

An equilibrum x is said to be locally attractive (LAT) if there exists a neighborhood
V of T such that any solution x of (A.1) with x(0) € V is defined for allt > 0 and

x(t) T Toor

An equilibrum x is said to be globally attractive (GAT) if in the previous definition

we can choose V = R™.

An equilibrum o, 1s said to be locally finite-time attractive if there exists a neigh-
borhood V of x and a function T : V — R, such that any solution x of (A.1) with
x(0) € V is defined for allt > 0 and x(t) = x5 for all t > T(xo).

An equilibrum x. is said to be globally finite-time attractive ¢f in the previous

definition we can choose V = R™.

An equilibrum o is said to be locally asymptotically stable (LAS) if it is stable

and locally attractive.
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Appendixz A. Stability and Lyapunov theory

o An equilibrum o is said to be globally asymptotically stable (GAS) if it is stable
and globally attractive.

o An equilibrium x is said to be finite-time stable (FTS) if it is stable and locally

finite-time attractive.

o An equilibrium . is said to be globally finite-time stable (GFTS) if it is stable and

globally finite-time attractive.

e A compact set K is said to be strictly positively invariant(SPI) if any solution of
(A.1) with initial condition in K belongs to K for t > 0.

e The vector field f is said to be complete if the mazimal solutions of (A.1) are defined
for all t € R. It is forward complete if the mazimal solutions of (A.1) are defined
forallt e R,.

Given that an equilibrium can be translated to zero with a change of frame, the defini-
tions and results given thereafter always assume that the equilibrium under consideration

is the origin of R™. Let us also define the notions of stability and attractiveness for a set.
Definition A.2. Let K C R"™ be a compact set.

o The set K 1is said to be stable if for any neighborhood U of K, there exists a neigh-
borhood V of K such that any solution x of (A.1) with x(0) € V is defined for all
t >0 and x(t) €U for allt > 0.

e The set K is said to be locally attractive if there exists a neighborhood V of K
such that any solution x of (A.1) with x(0) € V is defined for all t > 0 and
A0}, ) .0,

o The set K s said to be globally attractive if in the previous definition we can choose
Y =R".

e The set K s said to be locally asymptotically stable if it is stable and locally at-

tractive.

o The set K 1s said to be globally asymptotically stable if it is stable and globally

attractive.

Definition A.3. Let U be an open neighborhood of the origin and let V € C*(U,R) be
a positive definite function. The function V' is said to be a Lyapunov function for the
system (A.1) on U if LV (x) <0 for all v €U \ {0}.
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Theorem A.4 (Theorem of Lyapunov). Assume that there exists an open neighborhood
U of the origin and a Lyapunov function for the system (A.1) on U. Then the origin is
LAS.

If there exists a proper Lyapunov function for the system (A.1) on R™, then the origin
is GAS.

Theorem A.5 (Kurzweil’s converse Lyapunov theorem). [Kurzweil 1963] Assume that
the system (A.1) is GAS. Then there exists a proper Lyapunov function for (A.1) on R™.
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Appendixz A. Stability and Lyapunov theory
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Appendix B
Additional material

Definition B.1. Let ® : R® — R" be a diffeomorphism of class C', let ¢ be a function
and f be a vector field.

e The pullback of ¢ by ® is the function *p : x — p(P(x)).
e The pullback of f by ® is the vector field ®*f : & — (d®)~" f(D(x)).

Lemma B.2. [Marsden 1998][Theorem 6.4.1 p365] Let v be a C* vector field, @ its flow,
© a function and f a vector field, both of class Ct. Then

d
_@8* — @S*EV’
T(@)0 = (@)L

L@ = (@)

Definition B.3. Let (g )ren be a sequence of functions. We say that this sequence con-
verges uniformly on compact sets to a function p, denoted @y, kiiio v, if for any compact
set K and any € > 0 there ezists ko > 0 such that for all k > ko, sup,cx |op(x)—p(x)| < €.

Let (fi)ken be a sequence of vector fields. We say that this sequence converges uniformly
on compact sets to a vector field f, denoted fy ki%(); f, if for any compact set K and
any € > 0 there exists ko > 0 such that for all k > ko, ||fx — fllx < &, where ||f||x =
sup,ee I1£(@)]l
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1. Introduction

Topological obstruction to stabilization is a long standing prob-
lem of control theory detailed in the introduction of Moulay and
Hui (2011). There are two main topological obstructions to contin-
uous stabilization. First, the Brockett obstruction is a local obstruc-
tion related to the structure of the controlled systems involving
the nature of feedback controls (Brockett, 1983). Then, the retrac-
tion obstruction is a global obstruction related to the structure of
the underlying state space: if the state space of the system has the
structure of a vector bundle over a compact manifold, no continu-
ous static feedback can globally stabilize an equilibrium. This result
has been proved and its consequences are studied in detail in Bhat
and Bernstein (2000).

The Brockett condition, which is necessary in the case of contin-
uous time-invariant feedback controls, does not remain necessary
for driftless controllable systems with time-varying feedback. The
existence of such feedbacks has been proved in Coron (1992), while
(Pomet, 1992) gave an explicit design under an additional condi-
tion on the Control Lie Algebra (see Pomet, 1992, Assumption 1).
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A natural question is, hence, to wonder whether continuous time-
varying feedback controls could also avoid the retraction obstruc-
tion as suggested in the introduction of Nakamura, Yamashita, and
Nishitani (2009).

In Bhat and Bernstein (2000, Remark 1), the authors mention
that their result also handles the case of dynamic feedback. In-
deed a dynamic feedback is usually seen as a dynamic extension
where the augmented state is stable. Estimation of parameters or
observer-based control are in this scope. In that case, the result of
Bhat and Bernstein (2000) is applicable directly, with the method
exposed in their remark. Nevertheless, a time-varying static feed-
back is also a dynamic extension using a timer ¢ = 1. However
in this situation, there is no convergence to a single equilibrium
point, but to a submanifold; the result of Bhat and Bernstein (2000)
is therefore not applicable in this context, following (Bhat & Bern-
stein, 2000, Remark 1).

The aim of this paper is to prove that, in the second case, the
obstruction still remains: a time-varying feedback control which
is globally asymptotically uniformly stabilizing a system defined
on a fiber bundle with a compact manifold as its base space does
not exist.

2. Retraction obstruction

By a manifold we mean a smooth, positive dimensional, con-
nected manifold without boundary. The definition of a fiber bundle
is given for instance in Abraham and Marsden (2008).

Our purpose is to link the topological property of contractibility
of a manifold to the existence of a globally asymptotically stable
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equilibrium. Let us introduce the definitions we will be using and
some useful properties.

Definition 1. Let E be a topological space and xq € E. A retraction
of E on xg is a continuous mapping h : [0, 1] x E — E such that
forallx € E, h(0,x) = xand h(1, x) = xo. A topological space E is
said to be contractible if there exists a retraction of E.

Proposition 2 (Guillemin & Pollack, 2010, Section 2.4). No compact
manifold is contractible.

Consider a controlled system defined by

y=foyyu) yeN, uel, (1)

with &/ a manifold and U a set of admissible controls, and where fj
is a continuous vector field.

We wonder about the global stabilizability of the system via a
time-varying feedback u(y, t). To do that, we will set ¢ = 1 and
look at the partial asymptotic stability of the closed-loop system:

y=foy,uly, 1)

=1

(2)

Hence, let us introduce the definitions of partial stability we
will be using. Those definitions are adapted from Haddad and
Chellaboina (2007).

Definition 3. Let M = N x 7 be a product manifold. Consider
f = (f1, f») aforward complete continuous vector field on M with
the property of unicity of solutions in forward time. We denote by
@ the semiflow of f and p; the canonical projection on .

(1) We say thaty., € W is a partial equilibrium if forall T € 7, we
have fi (Yoo, T) = 0.

(2) A partial equilibrium y., € N is said to be partially stable uni-
formly in t if for all U C N neighborhood of y., there exists
V C N aneighborhood of y,, such that forally € V and for
allt € 7, p1o@(t, (v, 7)) € Uforallt > 0.

(3) A partial equilibrium y,, € V is said to be partially globally
asymptotically stable uniformly in t if it is partially stable uni-
formlyin t andifforall (y, 7) € M wehavep,;0®(t, (¥, 7)) —
Yoo Whent — +00.

Remark 4. The last item of Definition 3 is slightly different from
the more standard ones. Indeed, to prove our result, we only need
the stability to be uniform with respect to t. The uniformity with
respect to T of the convergence, which is usually required, is not
necessary here.

The following definition, inspired by Khalil (2002, Chapter 12)
about time-varying stabilizability, is given here in the partial
stability context.

Definition 5. The system (1) is said to be globally asymptotically
uniformly stabilizable by means of a continuous generalized time-
varying feedback if there exist a point y,, € , a manifold 7, a
continuous mapping f, : &N x 7 — T7 with f,(y, 7) € T, 7 for
ally € W~ and all T € 7 and a continuous control law u(y, 7)
such that y. is a partial equilibrium of the closed loop system
¥, 1) = (fo(y, u(y, 1)), f2(y, T)) and is partially globally asymp-
totically stable uniformly in 7.

Remark 6. Let us note that, taking & = R and f,(y, t) = 1, this
definition boils down to the definition of global asymptotic stabi-
lization by means of a continuous time-varying feedback. In the
generalized time-varying setting, the variable T can be stable or
not, scalar or vector, bounded or not.

In Bhat and Bernstein (2000, Theorem 1), the authors use Propo-
sition 2 to prove that if a manifold & admits a structure of fiber
bundle over a compact manifold, then no continuous vector field
over N can have a unique globally asymptotically stable equilib-
rium. Hence, they conclude that the system (1) cannot be globally
asymptotically stabilized by means of a state feedback. Now let us
prove that (Bhat & Bernstein, 2000, Theorem 1) can be extended in
the following way to the time-varying setting.

Theorem 7. Assume that N is a manifold with a structure of fiber
bundle over a compact manifold Q. If there exists a continuous section
of the bundle, then the system (1) is not globally asymptotically
uniformly stabilizable by means of a continuous generalized time-
varying feedback in such a way that the augmented vector field has
the forward unicity of solutions property.

Proof. Ad absurdum, assume that there exists a continuous dy-
namic feedback which globally asymptotically uniformly stabilizes
the system (1) in such a way that the augmented vector field has
the forward unicity of solutions. Let us denote by t the added vari-
able, and T € 7. We have © = f,(y, 1), and the system (1) can be
rewritten in an extended form, with f; (y, 7) = fo(y, u(y, 7)):

v\ _ (A1)
(f) - (fzcv, o) ?

The Eq. (3) defines a continuous vector field f on the manifold
M = N x T, with the forward unicity of solutions property. More-
over, there exists a partially globally asymptotically stable equilib-
rium uniformly in T denoted by y, € V.

Let us denote g : & — @ the fiber bundle projection. Set p; :
M — N the first canonical projection and set w = mgop;. We de-
note goo = mo(Yo). Similarly, fix 7o in 7 and set o (q) = (00(q), To)
where 0p : @ — N is a continuous section of 7. Clearly, o is a
continuous section of 7. We also note that the manifold .M trivially
inherits a structure of fiber bundle over @ with projection 7.

The vector field f is continuous and has the forward unicity of
solutions property. Therefore, it admits a semiflow & (Bhatia & Ha-
jek, 1969). Let us denote:

h:[0,1]xQ@ — @

1
Goo ifr=1.

Since we clearly have h(0, q) = g and h(1, q) = g, let us prove
the continuity of h. This mapping is obviously continuous on [0, 1)
X @.

Let us show the continuity at (1, q) for g € Q. Let (A4, q,) €
[0, 1) x @ be a sequence of points converging to (1, q). We set

1
tnzln(l_}\n), X =0(q,), x=0(q.

We have t, — +00 and, by continuity of the section, x, — x. Let
U C @ be a neighborhood of g, and Uy = no’](U) C N the cor-
responding neighborhood of y.. By partial stability uniformly in ,
there exists Vo C N a neighborhood of y,, such that forall y € Vg,
allt € 7 andallt > 0, we have p; o @ (t, (y, 7)) C Up.

On the other hand, the partial attractivity of y,, means that
p1 o @(t,X) — Yo Whent — oo. Thus, there exists T > 0
such that p; o @ (T, x) € Vy. By continuity, there exists Ny > 0
such that for all n > N; we have p; o ®(T, x,) € Vq. Therefore,
forallt > T, we have p; o @ (t,x,) € Up. Butt, — —+00, so
there exists N, > 0 such that for alln > N, t, > T. Thus, for
alln > N = max(Nq, N,), we have p; o @ (t,, x,) € Up. Hence,
foralln > N, h(,Ap, qn) = 7o o p1 o D (ty, x,) € U. Since U is an
arbitrary neighborhood of q.,, the mapping h is continuous.

However, the mapping h defines a retraction of the compact
manifold @ on g, which leads to the expected contradiction,
thanks to Proposition 2. O
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Example 8. Let us consider the following system, defined on the
circle:

6=u 6cs (4)

By using the angular velocity @ = & we can rewrite the system as

0=w

W =u. (5)
Here the state space is the tangent space of the circle, denoted
by TS!. The tangent space of a manifold has always a structure of
vector bundle over that manifold, and therefore TS! has a structure
of vector bundle over the compact manifold S! with projection g
given by:

o0, w) = 6.

Moreover, being a vector bundle, the tangent bundle admits oy,
the zero section, as a continuous section. One may wonder if it is
possible to design a continuous feedback control u(@, w, t) globally
stabilizing a state (6p, 0) such that the closed-loop system has
uniqueness of solution in forward time.

Since S' is compact, from Theorem 7 the system (5) cannot be
globally asymptotically uniformly stabilized.

Finally, taking into account Theorem 7 and (Bhat & Bernstein,
2000, Theorem 1), we have the following result: consider the sys-
tem (1) defined on a manifold with a structure of fiber bundle over
a compact manifold. If there exists a continuous section of the bun-
dle, then no continuous dynamic feedback can globally asymptot-
ically uniformly stabilize the system in such a way that the closed
loop system has the forward unicity of solutions.

3. Conclusion

This paper extends (Bhat & Bernstein, 2000, Theorem 1) to
the case of time-varying feedback control. We prove that under
mild assumptions, no continuous time-varying feedback control
can avoid the retraction obstruction; that is, no continuous time-
varying feedback control can globally asymptotically uniformly
stabilize an equilibrium on a state space which has a structure of
fiber bundle over a compact manifold.

This topological obstruction on compact manifolds prevents us
from having continuous globally asymptotically uniformly stabiliz-
ing feedback (neither static nor time-varying nor dynamic). More-
over it is proved in Mayhew and Teel (2011) that the obstruction
still remains for discontinuous autonomous vector fields or differ-
ential inclusions. Finally the topological obstruction appears to be
a strong constraint on stabilization, and few possibilities remain.
First, since the uniformity property of the partial stability is in-
deed being used in our proof, the possibility of non-uniform global
stabilizability still remains open. Second, hybrid feedbacks can be
considered as suggested in Mayhew and Teel (2011). Finally, other
notions of solutions for discontinuous systems exist; some of them
might not inherit the same obstruction to global stabilization.
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Robustesse et stabilité des systémes non-linéaires : un point de vue basé sur
I’homogénéité

Résumé :

L’objet de ce travail est I’étude des propriétés de stabilité et de robustesse des systémes non-linéaires
via des méthodes basées sur I’homogénéité. Dans un premier temps, nous rappelons le contexte usuel des
systémes homogeénes ainsi que leurs caractéristiques principales. La suite du travail porte sur I’extension
de ’homogénéisation des systémes non-linéaires, déja proposée dans le cadre de 'homogénéité a poids, au
cadre plus général de ’homogénéité géométrique. Les principaux résultats d’approximation sont étendus.
Nous développons ensuite un cadre théorique pour définir ’homogénéité de systémes discontinus et/ou
donnés par des inclusions différentielles. Nous montrons que les propriétés bien connues des systémes
homogeénes restent vérifiées dans ce contexte. Ce travail se poursuit par I’étude de la robustesse des
systémes homogénes ou homogénéisables. Nous montrons que sous des hypothéses peu restrictives, ces
systémes sont input-to-state stable. Enfin, la derniére partie de ce travail consiste en 1’étude du cas
particulier du double intégrateur. Nous développons pour ce systéme un retour de sortie qui le stabilise
en temps fini, et pour lequel nous prouvons des propriétés de robustesse par rapport & des perturbations
ou & la discrétisation en exploitant les résultats développés précédemment. Des simulations viennent
compléter I’étude théorique de ce systéme et illustrer son comportement.

Mots clés : Stabilité, robustesse, systémes homogeénes, temps fini, inclusions différentielles.

Robustness and stability of nonlinear systems: a homogeneity point of view

Abstract: The purpose of this work is the study of stability and robustness properties of nonlinear
systems using homogeneity-based methods. Firstly, we recall the usual context of homogeneous systems
as well as their main features. The sequel of this work extends the homogenization of nonlinear systems,
which was already defined in the framework of weighted homogeneity, to the more general setting of the
geometric homogeneity. The main approximation results are extended. Then we develop a theoretical
framework for defining homogeneity of discontinuous systems and/or systems given by a differential
inclusion. We show that the well-known properties of homogeneous systems persist in this context. This
work is continued by a study of the robustness properties of homogeneous or homogeneizable systems.
We show that under mild assumptions, these systems are input-to-state stable. Finally, the last part of
this work consists in the study of the example of the double integrator system. We synthesize a finite-time
stabilizing output feedback, which is shown to be robust with respect to perturbations or discretization
by using techniques developped before. Simulations conclude the theoretical study of this system and
illustrate its behavior.

Keywords: Stability, robustness, homogeneous systems, finite-time, differential inclusions.



