N
N

N

HAL

open science

Hybrid and Anonymous File-Sharing Environments:
Architecture and Characterisation

Juan Pablo Timpanaro

» To cite this version:

Juan Pablo Timpanaro. Hybrid and Anonymous File-Sharing Environments: Architecture and Char-
acterisation. Other [cs.OH]. Université de Lorraine, 2013. English. NNT: . tel-00915629

HAL Id: tel-00915629
https://theses.hal.science/tel-00915629
Submitted on 9 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00915629
https://hal.archives-ouvertes.fr

UNIVERSITE
DE LORRAINE

Département de formation doctorale en informatique Ecole doctorale IAEM Lorraine
UFR STMIA

Hybrid and Anonymous File-Sharing
Environments: Architecture and
Characterisation

DISSERTATION

presented November 6th, 2013

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Juan Pablo Timpanaro

Composition of the jury

Rapporteurs: Gabi DREO RODOSEK, Professor at Universitiat der Bundeswehr Miinchen
Maryline LAURENT, Professor at Télécom SudParis

Ezaminers: Guillaume DOYEN, Associate professor at Université de technologie de Troyes
Bénédicte LE GRAND, Professor at I’Université Paris 1 Panthéon - Sorbonne
René SCHOTT, Professor at Université de Lorraine, Telecom Nancy
Olivier FESTOR, Research director at INRTA Nancy-Grand Est

Dissertation Director: Isabelle CHRISMENT, Professor at Université de Lorraine, Telecom Nancy

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Loria

Mis en page avec la classe thloria.

Acknowledgments

This thesis would not have been completed without the support and encourage of many peo-
ple. First I would like to thank my thesis director, Professor Isabelle Chrisment, for her support
and her dedication to my work these past 3 years. Without her guidance this dissertation would
not have been possible.

I would also like to express my gratitude to Professor Olivier Festor, for allowing me the
opportunity to be part of the Madynes team and its excellent group of people.

I would like to give a special thank to Thibault Cholez for his support and encourage during
my first years of research.

I am especially grateful to my old friends, César, Martin and Francois for their help and fruit-
ful discussions during my thesis. I also would like to thank to Gaétan and Anthéa for making
the office a better place to work.

At last, T would like to extend my gratitude to all the Madynes team, especially to Céline
Simon for her endless patience, and to Frederic Beck and Alexandre Boeglin for their extensive
technical knowledge and support during my research.

i

A mis padres, Nancy y Oscar
Por haberme brindado incondicionalmente su apoyo en todas las decisiones que he tomado. Por sus
valores y su amor, que me han permitido ser una mejor persona.

A mi hermana, Maria Belén
Por haber creido en mi, por apoyarme y por las incontables experiencias vividas juntos todo este
tiempo.

A mis hermanos, Lucio y Franco
Por estar siempre presentes y por las innumerables charlas y momentos vividos.

iii

v

Table of Contents

Table of Figures xi

List of Tables xiii

Introduction 1

Chapter 1 General Introduction 3

1.1 Context o 3

1.2 Problem Statement 4

1.3 Contributions 4

1.3.1 First Part: State of theart 7

1.3.2 Second Part: Hybrid peer-to-peer file-sharing architectures 8

1.3.3 Third Part: Characterisation of anonymous environments 8

Part I State of the Art 9
Chapter 2 Kademlia-based hash tables: Principles, monitoring techniques and

security issues 11

2.1 Introduction 11

2.2 Principles of a DHT 12

2.2.1 Main components of a distributed hash table 12

2.2.2 Data storage procedure oL 12

2.3 Kademlia distributed hash tableo 0oL 13

2.3.1 Keyspace and k-buckets 13

2.3.2 Kademlia operations L L 13

2.3.3 Management of nodes’ arrival and departure 14

2.3.4 Current implementations 14

2.4 Approaches for the monitoring of Kademlia-based DHTs 15

Table of Contents

vi

2.5

2.6

2.4.1 Passive monitoring techniques 15
2.4.2 Active monitoring techniques 17
Security issues on Kademlia-based DHTs 18
2.5.1 The Sybil attack 18
2.5.2 Attacks in the Kad network 20
2.5.3 Attacks in the BitTorrent distributed trackers 21
Conclusion e 22

Chapter 3 Cooperative overlay networks and hybrid peer-to-peer file-sharing

architectures 23
3.1 Introduction 23
3.2 Cooperation among heterogeneous overlay networks 23

3.2 1 Synapse . ..o 24
3.2.2 Sinergy 24
3.2.3 Network Symbiosis 25
3.2.4 Organising the interconnection architecture 26
3.3 Interconnection of heterogeneous file-sharing networks 28
3.3.1 A multi-layered interconnection scheme 28
3.3.2 Interconnecting pure and hybrid file-sharing networks 30
3.4 Conclusion L 31

Chapter 4 Anonymous file-sharing networks: current approaches and moni-

toring techniques 33
4.1 Introduction 33
4.2 Anonymous communications Lo Lo 34

4.2.1 Anonymous paradigms 34
4.2.2 The Tor network 37
423 TheI2P network 38
4.3 Anonymous file-sharing approaches L oL 42
4.3.1 Fitting anonymity in the non-anonymous BitTorrent environment . . 43
4.3.2 Fully-dedicated anonymous environments 44
4.4 Monitoring anonymous networkso oL oL oL 50
4.4.1 Monitoring the Tor network 50
4.4.2 Monitoring the I2P network o000 52
4.4.3 Legals aspects on network monitoring 53
4.5 Conclusiono 54

Part II Hybrid Peer-to-Peer File-Sharing Architectures 55

Chapter 5 Improving content indexation in the BitTorrent file-sharing envi-

ronment 57
5.1 Introduction Y4
5.2 Comparison of DHTs0 . 58

5.2.1 Security comparisono 58
5.2.2 Performance comparisono 60
5.3 The download algorithm of the BitTorrent and the Ed2k networks 63
5.3.1 Download time with one seeder 63
5.3.2 Download time with ten seeders oL 64
5.4 A hybrid model with the BitTorrent and the Kad/Ed2k networks 64
5.4.1 An abstract hybrid model for file-sharing 65
5.4.2 An instantiation with the BitTorrent and the Kad/Ed2k networks . . 66
54.3 The hMuleclient o 68
5.4.4 Evaluation of the hMule client 70
5.5 Conclusion L 71

Chapter 6 Improving content availability in the I2P file-sharing environ-

ment 73
6.1 Introduction 73
6.2 Content availability in the I2P network 74
6.3 Interconnecting the I2P and the BitTorrent networks 75

6.3.1 A hybrid file-sharing model for the BitTorrent and I12P networks . . . 75

6.3.2 Operation and interaction of BiTIIP clients 7

6.3.3 Interconnection layer’s anonymity 79

6.4 Evaluation of the BiTIIP client 79

6.4.1 Download performance of the I2P network 80

6.4.2 Asingle BiTIIP client 80

6.4.3 Multiples BiTIIP clients 81

6.4.4 The connectME project 82

6.5 Conclusion 82

Part III Characterisation of Anonymous Environments 85

Chapter 7 Characterisation of the I2P network 87
7.1 Introduction 87

vii

Table of Contents

7.2 Exploiting the I2P network oo 88
72.1 ThenetDB 88
7.2.2 Exploiting thenetDB oo oo 89
7.2.3 Distribution of the monitoring floodfill nodes 91

7.3 Monitoring architecture L 91
7.3.1 Monitoring architecture overview 92
7.3.2 Analysis of Routerinfos and Leasesets 92
7.3.3 Deployment of monitoring floodfill nodes 95

7.4 A real time view of the I2P network 96
741 I2Puserso 96
7.4.2 I2P anonymous applications L. 98

7.5 Conclusion L 100

Chapter 8 Group-based characterisation of the I2P network 103

8.1 Introduction 103

8.2 Strategy for group-based characterisation 104
8.2.1 Strategy for characterisation L. 104
8.2.2 The Pearson’s correlation coefficient 105

8.3 Experimental results and analyses 0. 107
8.3.1 Experiment setup 107
8.3.2 Methodology 107
8.3.3 Casestudies 108
8.3.4 Analysis of low-end outliers 111

8.4 Discussion 111

8.5 Conclusion 112

Conclusion 113
Chapter 9 General Conclusion 115

9.1 Contributions summary 115
9.1.1 Hybrid peer-to-peer file-sharing environments 115
9.1.2 Characterisation of anonymous environments 117

9.2 Limitations L 118
9.2.1 Limitations on hybrid file-sharing architectures 118
9.2.2 Limitations on group-based characterisation through large-scale mon-

itoring and de-anonymisation Lo 118

9.3 Perspectives 119

viil

9.3.1 User de-anonymisation
9.3.2 Attack detection in I2P’s netDB

9.3.3 Content characterisation of I2P’s eepsites

Bibliography

ix

Table of Contents

1.1
1.2
1.3
1.4

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5

3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3

5.4
5.5
0.6
5.7

Table of Figures

An abstract view of our contributionso 5
Improving content indexation in the BitTorrent file-sharing environment 6
Improving content availability in the I2P file-sharing environment 6
Characterisation of the anonymous I2P environment 7
An example of a Kademlia routing table and a three-bit long keyspace 14
Distributed probes and their assigned network zones 16
Centralised/Distributed crawling L. 17
Synergy architecture. Reprinted from [1]o 00 25
Yang et al. system with a Chord-like upper layer and a Gnutella-like lower layer . 27
Hierarchical Content Distribution Network (HCDN). Reprinted from [2] 28
Lloret et al.’s multi-layered interconnection scheme. Reprinted from [3] 29
Interconnecting networks A and B through Lloret et al.’s multi-layered intercon-

nection scheme oL 29
Konishi et al.’s cooperation scheme. Reprinted from [4] 30
Fu et al.’s hybrid cooperation scheme. Reprinted from [5] 31
An Onion routing example L 36
Classification of anonymous systems 37
The operation of the Tor network 38
Independent and unidirectional inbound/outbound tunnels 40
Simple view of the I2P network oo 41
Employing the Tor anonymising layer to access the public BitTorrent network . . 43
OneSwarm architecture. Reprinted from [6] 45
Bird’s eye view on Freenet’s storing and retrieving process 46
I2P’s BitTorrent-like environment 49
Classification of anonymous file-sharing systems 49
Monitoring points in the Tor network’s infrastructure o1
Routing poisoning attack in the Mainline DHT & the Kad DHT 99
Time to publish in the Mainline DHT & the Kad DHT 61
Number of messages sent during the publishing process in the Mainline DHT &

the Kad DHT 62
Percentage of alive peers in the Mainline DHT & the Kad DHT 62
Time to download for BitTorrent & Ed2k clients with one initial seeder 64
Time to download for BitTorrent & Ed2k clients with ten initial seeders 64
Abstract hybrid file-sharing model.o Lo 0oL 65

x1

Table of Figures

xil

5.8
5.9
5.10

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

BitTorrent-Kad/Ed2k hybrid approach 67
Instantiation of our hybrid model with the BitTorrent and the Kad/Ed2k networks 67
The adaptive download mechanism of hMule. 70
New content introduced in the BitTorrent and the I2P file-sharing networks . . . 74
Instantiation of our hybrid model with the BitTorrent and the I2P networks . . . 76
Interaction between an I2P user and the connectMe.i2p eppsite 78
Interaction between connectMe.i2p and a BiTIIP client 78
Tunnel-based communication and BiTIIP’s non-anonymous communications . . . 79
Functional components of a BiTIIP client 80
Download performance of the 12P’s file-sharing environment 81
Download performance of a single BiTIIP client 81
Download performance of multiple BiTIIP clients 82
NetDB'’s iterative lookup 89
NetDB’s daily shifting 90
Interaction of normal and monitoring floodfill nodes 90
Distribution of the floodfill node’s routing identifiers in the netDB 91
A passive distributed monitoring architecture for the I2P network 92
[2P’s metadata, a Routerinfo and a Leaseset 93
Determining the geographical localisation of an I2P user through its routerinfo . 93
Overall procedure for testing a leaseset 94
Tagging a destination as an anonymous I2PSnark client 95
Number of I12P users detected 97
Anonymous 12P applications detected. L oL oL 99
Total number of leasesets detected L. 99
Estimated number of anonymous file-sharing clients and web servers 100
Towards group-based characterisation in the I2P network 104
Linear and non-linear data L Lo 105
Homoscedasticity and Heteroscedasticity 106
Pearson’s reference valueso L L o 106
Pearson’s analysis for Moscow /I2PSnark o0 109
Pearson’s analysis for Saint Petersburg/I2PSnark 110
Data distribution for Munich/I2PSnark 110
A false negative case for a country’ correlation oL 112

3.1

5.1
5.2
9.3
5.4
9.9

6.1
6.2

6.3

7.1
7.2
7.3

8.1
8.2

List of Tables

Classification of the reviewed interconnection systems.

Enabled protections for each client version. Reprinted from [7]
Parameters of the hybrid model oL
A hybrid content indexation/distribution mechanism.
Parameters of the instantiation for the BitTorrent and the Kad/Ed2k networks

The hMule hybrid model compared with existing interconnection models

Categories of new content in the BitTorrent and the 12P file-sharing networks . .
Defined parameters for the hybrid model instantiated for the BitTorrent and the
I2P networks L
The BiTIIP hybrid model compared with existing interconnection models

Distribution of monitoring floodfill nodes L.
Top ten countries detected in the I2P network
Top fifteen cities detected in the I2P network

Most active cities detected for a fifteen-day period
Pearson’s coefficients for different robust estimators

xiii

List of Tables

Xiv

Abstract

Most of our daily activities are carried out over the Internet, from file-sharing and social
networking to home banking, online-teaching and online-blogging. Considering file-sharing as one
of Internet top activities, different architectures have been proposed, designed and implemented,
leading to a wide set of file-sharing networks with different performances and goals. This digital
society enables as well users’ profiling. As Internet users surf the World Wide Web, every sent
or received packet passes through several intermediate nodes until they reach their intended
destination. So, an observer will be able to determine where a packet comes from and where
it goes to, to monitor and to profile users’ online activities by identifying to which server they
are connected or how long their sessions last. Meanwhile, anonymous communications have been
significantly developed to allow users to carry out their online activities without necessarily
revealing their real identity.

Our contribution is twofold. On the one hand, we consider hybrid file-sharing environments,
with a special focus on widely deployed real-world networks and targeting two defined goals. The
first goal is to improve content indexation in the BitTorrent file-sharing environment, enabling
BitTorrent content to be indexed in the Kad distributed has table and leading to a more robust
BitTorrent system. The second goal is to improve content availability in the I2P file-sharing
environment. We allow I2P users to anonymously access public BitTorrent content and we ob-
tain a fully anonymous file-sharing environment, including anonymous content indexation and
anonymous content distribution.

On the other hand, we focus on the understanding of anonymous environments through exten-
sive monitoring. We characterise the I2P network, targeting the entire anonymous environment
and its anonymous services. We consider different aspects of the network, such as the number
of users, their characteristics as well as the number of anonymous services available. Through
long-term measurements on the network and along with different correlation analyses, we are
able to characterise a small group of users using a specific anonymous service, such as the users
from a particular city performing anonymous file-sharing.

XV

xvi

Introduction

Chapter 1

(General Introduction

Contents
1.1 ContexXt . o v v v it e 3
1.2 Problem Statement 00000 4
1.3 Contributions v v v v v v v v v v o ot et e e e e 4
1.3.1 First Part: State of theart 7
1.3.2 Second Part: Hybrid peer-to-peer file-sharing architectures 8
1.3.3 Third Part: Characterisation of anonymous environments 8

1.1 Context

Most of our daily activities are carried out over the Internet, from file-sharing and social
networking to home-banking, online-teaching and online-blogging.

Considering file-sharing as one of Internet top activities, different architectures have been
proposed, designed and implemented, resulting in a wide set of file-sharing networks with differ-
ent performances and goals. These last years, these networks have been evolving, from centralised
approaches to fully decentralised systems. The BitTorrent network [8] used central TCP-based
trackers to coordinate peers sharing different files. Later on, the system moved from TCP-based
trackers to UDP-based trackers so as to reduce network overhead. Finally, the entire BitTorrent
architecture has recently shifted to a completely decentralised architecture, where two decen-
tralised trackers are available in the network. The other widely deployed peer-to-peer network,
namely the eDonkey network [9], has moved from a completely centralised architecture to a
fully decentralised environment, where a distributed hash table provides a double-indexation
mechanism, enabling a keyword-based search engine.

Digital societies bring with them the possibility of profiling users. As Internet users surf the
World Wide Web, all data packets sent and received pass through several intermediate nodes
until they reach their intended destination. Although it is not always possible to sniff data
passing by an intermediate point, an observer can determinate where a data packet comes from
and where it goes to. Thus, these intermediate nodes can monitor users, determine which server
they connect to, how long their sessions last, where they connect from. This allows intermediate
nodes to make a profile of users’ online activities. Anonymous systems have been designed to
enable users to carry out their online activities without necessarily revealing their online identity,
like their IP addresses, in the process. Anonymous systems have become an intrinsic part of
nowadays communications, driven by an enormous wave of governmental monitoring activities,

Chapter 1. General Introduction

loose legislations regarding citizens’ privacy and different privacy infringement cases in online
activities. Country-based blocking [10, 11, 12], nation-wide monitoring [13, 14] and conflictive
legislations against users’ online privacy [15, 16| have fostered Internet users to move towards
anonymous-based communications.

Our scientific content follows two axes, the wide set of file-sharing architectures, their perfor-
mance characteristics and how these architectures can be exploited, on the one hand; and that
growing anonymous-based Internet community and how it can be monitored, on the other hand.

1.2 Problem Statement

Firstly, we consider different file-sharing architectures and their properties. Top popular file-
sharing networks, such as the BitTorrent network or the Kad/Ed2k network have different per-
formance properties. They have been studied from different angles and have been optimised for
different purposes. The Kad/Ed2k network has an excellent Kademlia-based content indexation
scheme, while the BitTorrent’s download algorithm is known for its high performance. Therefore,
the challenge is to determine how to connect them, thus exploiting the best of both networks.

Nowadays, anonymous-aware communications have led to the creation of different closed
communities, such as dedicated anonymous file-sharing networks. However, one of the weaknesses
of these systems is that they have been designed to preserve users’ anonymity and not to access
public content communities, such as the BitTorrent network. These two scenarios lead to the
first point of our problematic, the study and analysis of hybrid file-sharing architectures, and the
way we can take advantage of the different aspects of current file-sharing networks to build a
stronger file-sharing environment.

Secondly, anonymous networks have been significantly developed' and more and more ser-
vices are available within these systems. A proper characterisation of these systems is necessary
to understand their real use in current communications and to determine whether these systems
are widely deployed or used only by a particular set of users. In terms of security, it is impor-
tant to determine whether this characterisation presents an anonymity risk for these systems.
This leads to the second point of our problematic, the proper characterisation of anonymous
environments.

1.3 Contributions

Our contribution is twofold. In the first place, we propose two hybrid file-sharing architec-
tures, designed to improve content indexation within the BitTorrent file-sharing environment
and to improve content availability in the anonymous 12P file-sharing environment. Then, we
aim at characterising a chosen anonymous environment, targeting the 12P network. Figure 1.1
summarises these contributions and presents the relationship between them.

Hybrid peer-to-peer file-sharing environments

We focus on hybrid file-sharing environments, especially on widely deployed real-world net-
works, searching two defined goals. The first goal is to improve content indexation in the Bit-
Torrent file-sharing environment by enabling BitTorrent content to be indexed in the Kad DHT.

1. The Tor network has tripled its user-base in the last three years, while the I2P anonymous network has
doubled its user-base in the last year. Statistics from https://metrics.torproject.org and http://stats.i2p.
in/, respectively. Last visited on 08/2013.

4

https://metrics.torproject.org
http://stats.i2p.in/
http://stats.i2p.in/

1.8. Contributions

[J! \ Improving Content ’l—_li Improving Content
| ;l Indexation & \‘ Availability

N

KAD/Ed2k Network BitTorrent Network 12P Network
" ;8 Characterization of Anonymous
=, I Environments

FIGURE 1.1 — An abstract view of our contributions

The second goal is to improve content availability in the I2P file-sharing environment by enabling
I2P users to access BitTorrent content anonymously. This would lead to a fully anonymous file-
sharing environment, including anonymous content indexation, as well as anonymous content
distribution.

Improving content indexation in the BitTorrent file-sharing environment

The BitTorrent network has shifted to a fully decentralised architecture using a Kademlia-
based DHT to support its operation. Although Kademlia is a well-studied and mature system,
BitTorrent uses a highly vulnerable implementation which remains open to different attacks.
Moreover, the current implementation of the BitTorrent’s decentralised architecture enables a
single level of indexation, storing peers that are sharing a given content, 4.e. enabling a content-
to-sources mapping.

At first glance, the Kad network has a two-level indexation mechanism, which is sufficient to
store BitTorrent’s content-to-sources mapping, while additionally providing an extra keywords-
to-content mapping. This extra mapping would enable a fully-distributed keyword-based lookup
service for the BitTorrent infrastructure, which is currently missing, and would provide a more
secure indexation mechanism.

Considering this solution a bit more in detail,we can claim that Kad users would benefit
from this scheme as well: the BitTorrent network counts tens of millions of users, who could
interact with Kad users, improving their performance of download. Figure 1.2 illustrates this
hybrid file-sharing architecture, where different network meeting points are used to interconnect
both networks.

We propose the first hybrid file-sharing model for the BitTorrent and the Kad/Ed2K networks.
We introduce a more robust content indexation mechanism within the BitTorrent system, while
enabling a bidirectional interaction between Kad/Ed2k and BitTorrent users.

Improving content availability in the I2P file-sharing environment

Current communications have shifted to a more anonymous state, where anonymous file-
sharing accounts for a considerable part. We focus on the I2P anonymous file-sharing environment
and the interaction with a public environment, with the goal of improving content availability
within this anonymous system.

We propose a hybrid file-sharing model, enabling the I12P file-sharing environment to inter-
act efficiently with the BitTorrent network, thus improving content availability within the 12P
network. This hybrid model guarantees a fully anonymous content indexation, as well as an

Chapter 1. General Introduction

Distribution @(—K@
T = 7

Two-Level =
Indexation (@ @

BitTorrent Swarm

f Improving Content
Indexation

FIGURE 1.2 — Improving content indexation in the BitTorrent file-sharing environment

anonymous content distribution scheme, where I2P users access can BitTorrent content while
maintaining their anonymity in the process.

A
AN VN
N

(o

: s Al Content
£3 12p Mainiine renymos Coten (CJ

W pHT

\
/
A\

I2P Swarm BitTorrent Swarm
(i= Improving Content
= i Distribution

FIGURE 1.3 — Improving content availability in the I12P file-sharing environment

Figure 1.3 depicts our hybrid file-sharing model, where the same conceptual network meeting
points are used to allow I2P users to interact with BitTorrent users. I2P users access these meeting
points anonymously, achieving an anonymous content distribution. The 12P’s Mainline DHT is
used to index BitTorrent content, obtaining an anonymous content indexation, corresponding to
the second step towards a fully anonymous file-sharing environment.

Characterisation of anonymous environments

We aim at understanding anonymous environments via extensive monitoring. These environ-
ments decouple a user’s real identity from the assigned system’s identity, thus enabling users to
access different services anonymously, such as anonymous file-sharing or anonymous web surfing.

We target the entire I2P anonymous environment, which includes a wide range of anonymous
services. We consider different aspects of the network, such as the number of users, the number of
anonymous services available and the geographical characteristics of the users. Through different

1.8. Contributions

correlation analyses, we were finally able to characterise a small group of users using a specific
anonymous service, such as the users from a particular city performing anonymous file-sharing.

1- 12P Users Geolocation
2- |12P Services Detection
3- Users-Services Correlation

}
%

Characterization of Anonymous

;;‘:—_2 ’ Environments

FIGURE 1.4 — Characterisation of the anonymous I2P environment

Figure 1.4 provides a glimpse of our contribution. Monitoring nodes are distributed through-
out the system, constantly collecting basic network information, which is kept in different databases.
Data is then processed to generate different network measurements, including correlation analyses
between anonymous services and users.

We propose the first application-level study of the anonymous I2P network and provide the
first group-based characterisation approach. Our findings have improved the I2P anonymous
network to a more secure state, where I12P’s designers modified different network parameters,
hardening, yet not avoiding, our monitoring approach.

Manuscript organisation

This manuscript is organised in three parts. The first one corresponds to the state of the art,
while the last two parts present our contributions.

1.3.1 First Part: State of the art

The first part of this document considers all the concepts and previous works necessary to
understand our contributions and their framework. This section is divided into three chapters.

Chapter 2 describes Kademlia-based distributed hash tables, their main components and
routing algorithms. We consider two foremost points within Kademlia-based distributed hash ta-
bles. On the one hand, we describe different monitoring techniques for these systems, from passive
to active approaches, such as distributed probes or crawling. On the other hand, we deal with
security issues within these systems, mainly focusing on two widely deployed implementations,
namely the Kad network and the BitTorrent’s distributed trackers.

Chapter 3 presents cooperation schemes between overlay networks, more specifically among
file-sharing networks. We first introduce different interconnection models for general overlay
networks, which generally aim at improving the routing performance. We describe the intercon-
nection of heterogeneous file-sharing networks, ¢.e. networks operating over different protocols.

Chapter 1. General Introduction

Finally, Chapter 4 presents anonymous environments currently deployed, like the Tor net-
work and the I2P network. We consider a first approach where anonymity is fitted into a non-
anonymous file-sharing network by means of an external anonymous system, e.g. by using the Tor
network to anonymise the BitTorrent traffic. The second approach focus on dedicated anonymous
file-sharing systems, such as Freenet or GNUnet. We describe different monitoring techniques of
these anonymous systems, and the legal implications at stake when conducting this kind of
monitoring.

Chapter 2 and 3 provide the background concepts for our contribution on hybrid peer-to-peer
file-sharing architectures. Chapter 4 introduces the concepts underlying our second contribution:
the characterisation of an anonymous environment.

1.3.2 Second Part: Hybrid peer-to-peer file-sharing architectures

The second part of this document describes our first contribution, namely the analysis and
evaluation of a hybrid peer-to-peer file-sharing architecture and it is organised in two chapters.

Chapter 5 analyses a hybrid approach between the Kad/Ed2k and the BitTorrent networks,
aiming at improving content indexation within the BitTorrent file-sharing environment. We first
introduce a comprehensive analysis comparing the Kad DHT and the main BitTorrent’s decen-
tralised tracker. Then, we conduct a performance analysis comparing the algorithm of download
of both Ed2k and BitTorrent networks. Finally, we bring forward our abstract hybrid file-sharing
model, which is instantiated with both the Kad/Ed2k and the BitTorrent networks.

Chapter 6 describes the interaction between the I2P anonymous file-sharing environment
and the public BitTorrent file-sharing environment, aiming at improving content availability
within the I2P network. We instantiate our abstract hybrid file-sharing model using these two
networks, enabling I2P users to access public BitTorrent content anonymously, while still having
the capacity to index BitTorrent content within I2P’s decentralised tracker, resulting in a fully
anonymous file-sharing environment.

1.3.3 Third Part: Characterisation of anonymous environments

The third, and last part, of this thesis describes our second contribution, i.e. the characteri-
sation of a widely deployed anonymous environment, and is divided into two chapters.

Chapter 7 introduces 12P’s metadata database, a Kademlia-based distributed hash table and
detail how we exploited it and placed a set of distributed monitoring nodes on the system. Finally,
we show how this metadata was analysed to successfully characterise 12P’s users and services.

Chapter 8 analyses the interaction between I2P anonymous and 12P BitTorrent-like clients
by applying Pearson’s correlation coefficient. Different case studies are conducted to determine
to what extent users contributed to the activity of a given application.

Part I

State of the Art

Chapter 2

Kademlia-based hash tables: Principles,
monitoring techniques and security

Contents

1ssues

2.1 Imtroduction i i ittt 11
2.2 Principlesof a DHT i i ittt vttt v v v oo 12
2.2.1 Main components of a distributed hash table 12
2.2.2 Data storage procedure Lo 12
2.3 Kademlia distributed hash table 13
2.3.1 Keyspace and k-buckets oL 13
2.3.2 Kademlia operations o 13
2.3.3 Management of nodes’ arrival and departure 14
2.3.4 Current implementations oL 14
2.4 Approaches for the monitoring of Kademlia-based DHTs 15
2.4.1 Passive monitoring techniques 0oL 15
2.4.2 Active monitoring techniques 17
2.5 Security issues on Kademlia-based DHTs. 18
2.5.1 The Sybil attack o 18
2.5.2 Attacks in the Kad network 20
2.5.3 Attacks in the BitTorrent distributed trackers 21
2.6 Conclusion i i i i i it ittt et e e e e 22

2.1 Introduction

A DHT or distributed hash table is a distributed storage system enabling the indexation of
<key,value> pairs like in a regular hash table. This structure relies on distributed nodes to store
data, where every node is responsible for maintaining a subset of all key-value mappings. Due to
the dynamic nature of nodes in the system, values are replicated in several nodes to deal with

continuous nodes’ arrival and departure.

Distributed hash tables are widely used in peer-to-peer infrastructures to support content
indexation. For instance, the widely deployed BitTorrent network [17] uses a DHT-based im-
plementation [18] for indexing <content,peers> pairs, where every online peer in the network

11

Chapter 2. Kademlia-based hash tables: Principles, monitoring techniques and security issues

becomes a node in the distributed hash table. Therefore, by querying the distributed hash table,
we can determine which peers are sharing a specific content. The Kad network, another popular
peer-to-peer network, is based on a DHT system to support its double-indexation mechanism,
where <keyword,contents> and <content,peers> pairs are stored in the system, enabling a
distributed keyword-based search system.

In this chapter, we first introduce the concept of distributed hash table and its principles,
followed by a description of the best known DHT architectures, with a specific focus on Kademlia
[19]. Then, we describe a set of passive and active monitoring techniques for Kademlia-based sys-
tems and different monitoring experiments on the Kad network and the BitTorrent’s distributed
trackers. We detail how these systems are exploited and which resources are needed to perform
such monitoring. Finally, we present different security issues of Kademlia-based DHT.

2.2 Principles of a DHT

We first present the main components of a distributed hash table, its keyspace and the
organisation of the participants. We then consider the procedure to store data within the system.

2.2.1 Main components of a distributed hash table

A distributed hash table has basically two main components: a keyspace and a mechanism to
organise the participants.

Keyspace

The keyspace is the set of possible values used to identify the different elements (keys, values
or nodes) in a DHT. It is given by the hashing function used to map keys to the associated
values. For instance, a SHA1 hashing function [20] leads to a 160-bit keyspace whereas a MD5
function [21] produces a 128-bit keyspace. Within a DHT, the keyspace is split among all nodes
on the system. Thus, every node is responsible for a subset of the entire keyspace and stores
data related to that section of the keyspace. As participants are more or less dynamic within the
system, the keyspace is constantly re-partitioned and re-assigned among current online nodes.

Organisation

DHT nodes are organised in an overlay network where a node maintains a routing table. To
decide whether a node is neighbour with another node, a distance function is used. The Kademlia
DHT uses the XOR function between two nodes’ identifiers to determine how close these two
nodes are. Once the nodes in the system are ordered according to their distance, a Kademlia
node can maintain its routing table with a bigger set of closer nodes and just fewer distant nodes.

2.2.2 Data storage procedure

A simplified DHT storage and search procedure works as follows: let’s assume the MD5
function is used and a video file my_video.mpg has to be stored. The MD5 hash of the filename
is generated, producing a 128-bit long k key and then a message STORE(k,my_video.mpg) is
dispatched to the closest node known in the DHT (in term of distance). This node forwards the
message until it reaches the node responsible for indexing the key k, who finally stores the file.
To search for the video file, the procedure is exactly the same except that a GET(k) message is
issued, and the node responsible for the key £ returns the video file.

12

2.8. Kademlia distributed hash table

To avoid loss of data due to nodes joining or leaving the DHT, some distributed hash table
implementations use a replication scheme. Considering the previously mentioned example, the
video file will be stored in a set of nodes instead of in a single node. This set consists in the z
closest nodes to a given key k, where the value of z depends on the implementation of the DHT,
normally oscillating within a range of tens of nodes. These characteristics make DHTs a good
solution when seeking for a scalable and fault tolerant distributed storage system.

2.3 Kademla distributed hash table

The first generation of peer-to-peer file-sharing networks was built on central directories and
used costly flooding strategies to locate other nodes in the systems. More recent architectures
are based on a distributed approach instead, employing distributed hash tables. The most rele-
vant DHT designs include Kademlia, Chord [22|, CAN [23] and Pastry [24]. We only study the
Kademlia protocol, since it is the protocol of the peer-to-peer system under consideration in our
thesis.

Kademlia is a distributed hash table based on the XOR logic function to compute distances
between nodes. It was proposed in 2002 and since then it has been applied in different real-world
systems, such as the Kad network.

2.3.1 Keyspace and k-buckets

Kademlia uses 160-bit long IDs for nodes, keys and values, which are obtained from the SHA1
hashing function. In order to compare two different identifiers, the XOR logic function is applied
as follows: given I D; and IDs, the distance between them is the d(IDy,IDs) = I1D; & I Dy and
interpreted as an integer value.

Kademlia’s routing table is organised according to the distance between nodes’ identifiers.
Assuming a 160-bit keyspace and for every i, where 0 < ¢ <160, a node maintains different lists
up to k of other nodes with distance between 2¢ and 201 from itself. These lists are called
k-buckets. Nodes are widely spread in the keyspace and therefore lower k-buckets, i.e. for small
values of i, contain fewer nodes, while higher k-buckets contain more nodes.

Figure 2.1 shows an example of a node’s routing table. Let’s consider a 3-bit keyspace,
resulting in a maximum of 23 nodes and let’s assume k = 3, obtaining $-buckets and a maximum
of three nodes per bucket. We are analysing node 001, which knows all nodes on the system,
except for nodes 011 and 110. Considering that the keyspace is 3-bit long and therefore 0
< ¢ <3, we have three different 3-buckets which we will call 3-bucket(0), 3-bucket(1l) and
3 -bucket (2). The first bucket stores nodes’ IDs with 0 bits in common with the node identifier ;
the second bucket stores nodes’ IDs having a prefiz of 0XX (only the first bit in common) ; finally
the last bucket stores nodes’ IDs with prefix 00X (the first two bits in common).

Kademlia routing table is updated in an opportunistic manner: every time a node receives
a message from a remote node N, it updates the information of N in the routing table. In our
example, if node 001 receives a message from node 110, which is not yet known, the routing
table needs to be updated. Node 110 is a candidate for the 3-bucket (0). However, this bucket
is full and assuming nodes 100, 101 and 111 are always responding to PING messages, the new
node 110 will not be inserted in the routing table.

2.3.2 Kademlia operations

There are 4 different messages in the Kademlia network, PING, STORE, FIND_NODE and FIND_VALUE.

13

Chapter 2. Kademlia-based hash tables: Principles, monitoring techniques and security issues

000 010 100 101 110 111
3-Bucket(2) 3-Bucket(l) 3-Bucket(0) ‘

3-Bucket(0) = {100,101,111} --> Prefix = XXX
3-Bucket(1l) = {010} --> Prefix = 0XX
3-Bucket(2) = {000} --> Prefix = 00X

FIGURE 2.1 — An example of a Kademlia routing table and a three-bit long keyspace

The ping message checks whether a node is online or not. The store message informs a node
when it has to store a value. A find_node message allows a peer to retrieve a list of nodes close
to a key. A Kademlia node receiving a find_ value message returns the same information as in a
find_node message, except if this node has previously stored a value for that key, in that case it
returns the stored value.

Locating the closest nodes to a given key is the most important procedure in Kademlia and
is called a node lookup. 1t consists in recursively searching for the £ closest nodes to a specific
key. To improve fault tolerance, Kademlia uses « parallel find node messages, where «, along
with £k, are system-wide values, normally £ = 20 and o = 3.

Kademlia’s storage procedure is implemented on top of the node lookup process by conducting
a node lookup first, and once a list of the k closest nodes is retrieved, a store message is issued
to each node.

2.3.3 Management of nodes’ arrival and departure

Kademlia has an effective and loose keyspace management, where the XOR logic function
is used to compute distances and determine which set of nodes has to store a given key. This
feature along with a regular republication of keys, which a user is responsible for, maintains a
simple routing approach. There is no keyspace reassignment upon a node departure or arrival.
However, by replicating data stored on the system, Kademlia efficiently deals with churn, greatly
reducing the load of keyspace management [25].

However, in the unlikely case that all Kademlia nodes storing a given key fail, the key will be
unreachable until a new re-publication takes place. For high-demanding peer-to-peer applications,
an unreachable key can be a major inconvenient. An active mechanism to maintain the routing
table updated is more suitable for critical distributed applications, where a key needs to be
anyhow accessible. Therefore, Kademlia-based distributed hash tables are a good option for
non-critical distributed systems, such as the BitTorrent’s distributed trackers.

2.3.4 Current implementations

We take into consideration two widely deployed implementations of Kademlia-based systems.

14

2.4. Approaches for the monitoring of Kademlia-based DHTs

The Kad network

The Kad network is probably the most known of Kademlia implementations. The Kad net-
work 2 is a peer-to-peer file-sharing network which uses an UDP-based Kademlia implementation
to support its double-indexation mechanism. Pairs <keyword, contents> and <content,sources>
are stored in the network, where a user can search for a content using a keyword (first level of in-
dexation) and then, once the desired content has been found, can search for the content’s sources
(second level of indexation).

The Kad network implements the Kademlia protocol through UDP messages, along with a
128-bit keyspace generated by the MD5 hashing function. One major difference with the original
Kademlia protocol lies in an interactive node-lookup process, instead of the initially proposed
recursive procedure. A second difference lies in a systematic process to update its routing table,
where every k-bucket is checked once an hour.

The BitTorrent network

The BitTorrent network is another peer-to-peer network that employs a Kademlia-based
implementation to support its indexation mechanism. The Mainline DHT [26] is the BitTorrent
trackerless approach, which aims at replacing its central trackers. The Mainline DHT enables a
single level of indexation, contrary to the Kad network, enabling only <content,sources> pairs
to be indexed. This forces BitTorrent’s users to use an off-band mechanism to replace the missing
first level of indexation, where torrent files are retrieved according to keywords.

A second trackerless Kademlia-based implementation named Vuze DHT [27] is available as
well. This DHT is similar to the Mainline DHT. However, the Vuze distributed hash table is
only used by the Vuze client (formally named Azureus) and is therefore inaccessible to the rest
of BitTorrent’s clients.

2.4 Approaches for the monitoring of Kademlia-based DHTs

Due to the wide deployment of Kademlia-based systems, several monitoring techniques have
been proposed. In this section, we review approaches for monitoring real-world Kademlia-based
implementations: the Kad network and the BitTorrent’s distributed trackers, aiming at evaluating
how effective these approaches are and what kind of data can be retrieved from the network.

2.4.1 Passive monitoring techniques

In passive monitoring, network behaviour is not disturbed or modified by the monitoring
itself. The monitoring nodes behave like normal network nodes and they do not generate extra
network traffic nor disrupt the existing nodes.

This approach consists in one or more distributed probes collecting and storing network traffic
as it passes through the nodes, such as the network messages, the seen nodes or the uptime of
nodes. The main advantage of this approach is the transparency during monitoring. Since there is
no active involvement from the monitoring nodes, monitoring can hardly be detected. However,
the main disadvantage of this approach is that idle nodes do not send any kind of information
and therefore are not detected during the monitoring, leading to a partial view of the network.

2. The Kad network is the distributed hash table supporting content’s indexation for the eDonkey network.
This content indexation/distribution scheme is used for different peer-to-peer client, such as aMule and eMule.
Throughout this document we refer to this scheme as Kad/Ed2k or simply as the Kad network, even if it includes
the eDonkey network as well.

15

Chapter 2. Kademlia-based hash tables: Principles, monitoring techniques and security issues

Probe Probe Probe

[= = @& @& = @& @& = 8 GV

Probe's Probe's Probe's
network zone network zone network zone

FIGURE 2.2 — Distributed probes and their assigned network zones

In a distributed environment like Kademlia, the only feasible manner to conduct a passive
monitoring is to be part of the network itself. A straightforward example is the built-in population
estimator of the aMule client, where an estimation of the number of users in the network depends
on the density of nodes in the client’s local routing table. Moreover, based on his/her routing
table and in the normal protocol operation (like the regular ping messages issued by the client),
the client determines the uptime of every seen node. Thus, the client computes a set of statistics
about the network, only from information gathered by participating on the system.

Distributed probes

Figure 2.2 shows the main concept of distributed probes: each probe gathers information
about its network zone. Thus, by placing a group of probes around the network, we can obtain
a general view of it.

Distributed probes require that the monitored network allows nodes to be freely placed.
Kademlia enables to freely choose a node identifier and therefore its placement within the dis-
tributed hash table. Thus, the distributed probes can be placed perfectly in particular network
zones. Choosing a node’s identifier freely in the network has a second advantage: probes can
target specific network zones. In Kademlia, a distributed probe will gather information around
its own part of the keyspace, of each store message it receives, for instance.

In the Kad network, Memon et al. [28] developed a distributed monitoring approach called
Montra, based on distributed probes. Their approach aimed at reducing network disruption when
capturing network traffic. These monitoring nodes, or minimally visible monitors according to the
authors, are designed to target a specific point in the Kad keyspace by only answering messages
from the target and ignoring the rest of messages from the network, thus becoming invisible to
the rest of nodes.

Steiner et al. [29] proposed a less elaborated monitoring approach for Kad called Mistral.
Mistral is similar to Montra in the sense that it uses a large number of distributed probes to
capture network traffic. However, it lacks any analysis of nodes placement, resulting in twice as
much monitoring nodes than Montra and producing a major disruption in the network.

Cholez et al. [30] conducted a content-based monitoring on Kad based in few (~ 20) dis-
tributed probes, using the PlanetLab testbed?. The authors targeted a specific key in the Kad
keyspace, which was mapped to a value/content, similar to the Montra tool. As a result the
authors were able to measure efficiently different characteristics for a specific content, such as
the first publish message to successive request messages and download messages.

Falkner et al. [32] conducted a set of measurements on the Vuze DHT, providing insights about
the churn, the messages overhead, the routing table inconsistencies, and the lookup performance,
among others. The authors used, although briefly detailed, a distributed monitoring architecture,
which included as much as 250 PlanetLab nodes.

3. PlanetLab is a research testbed with currently 1000+ distributed nodes [31].

16

2.4. Approaches for the monitoring of Kademlia-based DHTs

A B D F E B D
I
|
1
|

~, \ /
~——y {A,B,C,D,E,F} S~ {A,B,C,D,E,F} il

FI1GURE 2.3 — Centralised /Distributed crawling

Increasing the number of distributed probes around the network increases the total network
coverage and therefore improves the monitoring results. However, a large number of probes in
the network changes the density of nodes in the network, altering the real image of the network
as determined by Memon et al. [28]. Therefore, the number of distributed probes is a tradeoff
between the network coverage sought and the network distortion we are willing to accept.

2.4.2 Active monitoring techniques

In active monitoring, dedicated nodes actively scan the network and probe every node. How-
ever, as the monitoring nodes do not behave as normal nodes producing a high number of
outgoing messages and connections to external nodes, the collected data can be biased and may
not represent the network state properly.

Crawling

Crawling is one of the best known active monitoring techniques. The monitoring nodes in-
teractively discover new nodes through neighbours of known nodes. That way, exploring the
network graph leads to a network snapshot: a precise view of the network at a particular point of
time. The distribution of values among the nodes on the network is not disturbed by this active
monitoring approach, because the data stored in every node is not re-assigned to other nodes.
Yet, additional messages are issued from the monitoring nodes, thus increasing network traffic.

Crawling can be performed from a single machine or from several distributed machines. The
first case is the most usual, since it does not require any type of aggregation among distributed
nodes and generally achieves good performance in analysing sections of the network. On the
contrary, distributed crawling can target several disjoint parts of the network at the same time,
increasing network coverage but incurring in additional aggregation costs. An alternative of a
full crawl is a partial crawl, where only a particular region of the network is analysed. Figure
2.3 illustrates a simplified view of these two approaches, where the keyspace is represented as a
linear space only for ease of visualisation. In the centralised crawling, the crawler knows node A
and contacts it to discover further nodes. Node A responds with two nodes, B and C. The crawler
contacts these two nodes to discover further network nodes. This procedure is repeated until no
new nodes are discovered. In a decentralised crawling, every distributed crawler performs the
same procedure, but for a smaller part of the network.

Crawling has different requirements. On the one hand, it can only be done if the network
nodes can be inquired remotely: Kademlia nodes accept a find_node message, returning a list of

17

Chapter 2. Kademlia-based hash tables: Principles, monitoring techniques and security issues

the closest nodes known for a given key, which allows a monitoring node to discover new nodes.
Crawling cannot be carried out in a network where messages are accepted only from a particular
subset of nodes, like in friend-to-friend networks. On the other hand, crawling is expected to
generate a snapshot of the network. Therefore, if this process is slower than changes occurring in
the network, such as its topology, the resulting snapshot might not be accurate enough. In that
case, a distributed crawl or a partial crawl can be used to speed-up the process.

In Kademlia-based networks, crawling is achieved by iteratively issuing find_node messages
to discover nodes and gathering their neighbours. This process is repeated until no new nodes
are found and every node has been queried. If the dynamic of peers is slower than the crawl
itself, the resulting snapshot is a complete view of the network’s users.

Regarding the Kad network, Stutzback et al. [33] conducted a complete study on the Kad
network to characterise churn* in the network based on a distributed crawler called Cruiser.
Cruiser operates a master-slave architecture, with different distributed instances of the crawler
that analyse disjoint sections of the Kad DHT, improving crawling performance through paral-
lelism.

Steiner et al. [34] conducted an active monitoring in the Kad network based on a straight-
forward crawler called Blizzard. They successfully crawled the entire Kad keyspace using two
different instances of the same crawler from two different physical machines.

Considering the BitTorrent’s distributed trackers, Wolchok et al. [35] developed ClearView, a
centralised crawler for the Vuze DHT. ClearView deploys a large number of monitoring nodes in
the network from a single physical machine targeting a specific network region. After a certain
period of time (usually 30 minutes), these monitoring nodes are re-located in the network, tar-
geting a new region, thus crawling the entire Vuze DHT from a single machine, in a hop-by-hop
fashion.

Jinemann et al. [36] presented BitMON, a centralised partial crawler for the BitTorrent’s
Mainline DHT. BitMON repeatedly crawls a single partition of the network and determines the
size of the network, the country of the users, and the most used ports, among others. BitMON
automatically carries out an analysis of the data gathered and plots it.

Steiner et al. [37] extended their Kad crawler, Blizzard, so that it could operate with the Vuze
DHT. They presented statistical values of the network, such as the uptime of nodes, the software
versions and the geographical distribution of nodes.

2.5 Security issues on Kademlia-based DHTs

Security analyses have been extensively carried out in Kademlia-based DHTs, from single-
machine attacks to more complex distributed attacks. Along with these studies, several solutions
have been proposed to cope with these attacks. In this section, we start with briefly reviewing a
general attack in the context of DHTSs, namely the Sybil attack. Then we consider attacks on real-
world implementations of the Kademlia protocol, namely the Kad network and the BitTorrent’s
distributed trackers.

2.5.1 The Sybil attack

The Sybil attack, first introduced in 2002 by Douceur [38], is probably the most best known
attack in the literature against DHTS, even if it does not only target these systems. In its basic

4. Churn or Churn rate can be interpreted as the dynamic of peers, i.e. the arrival and departures of partici-
pants, and is one of the main characteristics in peer-to-peer environments [33].

18

2.5. Security issues on Kademlia-based DHTs

form, a Sybil attack takes advantage of the lack of entity-to-identity management, where a
physical entity can create several logical identities, taking control of a portion of the system, or
even of the entire system. Douceur states that, without a central authority in charge of issuing
identities, it is almost impossible to avoid this kind of attack on distributed environments such
as peer-to-peer networks.

Urdaneta et al. [39] conducted a rather complete survey on defence mechanisms against the
Sybil attack. The authors classified the defence mechanisms into six groups: centralised certifi-
cation authorities, distributed certification mechanisms, identification schemes based on physical
network characteristics, social networks, computational puzzles and game theory approaches.

One solution against a Sybil attack is the use of a central component for identity authen-
tication. Centralised authorities are supposed to be trusted by every network participant and
they should be able to ensure a valid entity-to-identity mapping on the system. Nevertheless, a
central authority is an obvious target of attacks and, along with its high maintaining costs, it is
not always suitable as a solution against Sybil attacks.

A distributed approach seems to better fit a DHT than a central authority but, due to the lack
of mutual trust in a distributed environment and to the reduced view of the network, as stated
by Urdaneta et al., these defence mechanisms are unable to fully prevent a Sybil attack, only
mitigate its effects. Dinger et al. [40] presented a distributed approach called self-registration,
where node identifiers are assigned in a distributed fashion according to their IP addresses, yet
leading to a probabilistic Sybil-resistant approach. Mashimo et al. [41] improved the former
approach by employing a local trust mechanism, maintaining the Sybil protection even against
an important increase of attackers.

Network characteristics, such as round-trip-times from different network nodes, can be used
to assess whether two logical identities correspond to a single physical entity or not. Wang et al.
[42] proposed the use of a net-print to identify a node within a network, where a local round-
trip-times vector is computed and compared with another vector from random nodes. A cheating
node can be detected by comparing both vectors.

The use of social information as an enhancing mechanism has been proposed to deal with
Sybil attacks. These approaches bind a logical identity to a physical entity, avoiding multiple fake
identities from a single entity. Yu et al. [43] proposed SybilLimit, an improved solution to their
previous SybilGuard protocol [44], which uses existing social information (such as an extended
version of the DBLP bibliography database) to develop a Sybil-resistant routing protocol.

Computational puzzles, also introduced as Resource testing by Levine et al. [45], aim at
proving network nodes with highly-demanding computational puzzles, assuming that an attacker
has less computational resources than a normal network node, since several logical identities are
dependent on the same physical entity. However, the computational puzzles approach might only
work if all identities are proven in a simultaneous way as stated by Douceur [38], and it requires
that honest nodes continue to compute these puzzles in order to remain on the system.

Finally, game theory-based approaches [46, 47| pretend to impose a utility model, which often
needs to use a sort of a currency in the system. Since the utilisation of a money currency within
a distributed environment is highly complex, these approaches have remained theoretical and
have not been deployed in any large distributed system.

The next two sections introduce real-world attacks on large deployed DHTs, along with their
solutions.

19

Chapter 2. Kademlia-based hash tables: Principles, monitoring techniques and security issues

2.5.2 Attacks in the Kad network

The Kad network has been studied from different angles, including its lookup protocol, content
retrieval performance and security aspects. In this section, we focus on the security issues of the
network, which have been widely investigated, leading to major changes in the protocol during
the last years. We concentrate on three attacks, namely a Spy attack, an Eclipse attack and a
DDoS attack.

A Spy attack can be considered as an improved passive monitoring, since it does not affect
the behaviour of the network, nor the Kad nodes. It is only intended to gather information about
a particular network zone, such as publish or search requests. An Eclipse attack, on the contrary,
has an impact on the network. Sybil nodes are placed closer than any other node to a specific
key in the Kad keyspace and, due to Kad routing protocol, every message converges to the Sybil
nodes. These Sybil nodes can choose not to answer these requests, producing an eclipse on that
particular key: normal nodes searching for that key will not get any answer. Finally, a DDoS
attack can be achieved by placing Sybils in popular zones in the DHT (Sybils close to a popular
movie ID, for instance) and including the IP address of the target in their routing response. That
way, the target machine receives a high amount of Kad traffic, which can be regulated by shifting
the Sybils to more or less popular network zones.

Steiner et al. [48] conducted a partial crawl in the Kad network for a six-month period and
discovered an ongoing Sybil attack during their experiments. As mentioned before, the lack of
an identifier > management scheme makes the network prone to that kind of attack. The authors
deployed their own Sybil nodes from a single machine, where they achieved a Spy attack, an
Eclipse attack and a DDoS attack.

Yu and Li [49] performed a DDoS attack in the network, highlighting the lack of identity
management in the Kad’s routing table. By firstly crawling the network and secondly spoofing
different protocol messages, the authors successfully achieved a DDoS attack in their own target
machine, with both TCP and UDP protocol connections. This study differs from the previous
DDoS attack by Steiner et al., since it does not use a set of Sybils nodes to announce the target
IP address, but it crawls the network and spoofs different request messages. By simply spoofing
a message, a new node (the target node) can be added in a remote node’s routing table.

Wang et al. [50] presented a spoofing-based attack in the network, showing that an attacker
can overwrite legitimate IP addresses in a victim’s routing table by sending Kademlia PING
messages with a spoofed identifier. Alternatively, the authors proposed a reflection attack, for
which the victim’s routing table is populated with the victim’s own IP address. However, the
study took into consideration a basic client version (eMule 0.48a), which does not have any
protection mechanisms and enables a single-machine attack. In newer versions of the client, that
attack is not possible.

Cholez et al. [51] measured Kad’s latest protection mechanisms and how these mechanisms
cope with the set of attacks previously introduced by [48] and [50], among others. They showed
that those protection mechanisms, which include flood protection, IP limitation, and IP wverifi-
cation, can successfully prevent a single-machine attack, where a set of Sybil nodes would be
deployed from a single physical machine. However, the authors showed that a distributed attack
using the PlanetLab infrastructure is still possible.

Kohnen et al. [52] conducted an Eclipse attack in the network, considering the same clients
as the former approach by Cholez et al. and their protection mechanisms. This Eclipse attack
exploits the Kad’s publishing process, where a set of distributed Sybil nodes are placed close to
the target key, attracting every Kad request. Additionally, these Sybil nodess use a promotion

5. We use identifiers and Kad IDs interchangeably when referring to the Kad network.

20

2.5. Security issues on Kademlia-based DHTs

process among themselves: they include the identifiers of other Sybil nodes in routing responses,
ensuring that every Sybil node gets known while routing.

In continuation of their previous work, Cholez et al. [53] introduced an identifiers’ distribution
analysis, where they compared the real distribution of peers with the theoretical one in the Kad
keyspace, successfully detecting attacking nodes in a network zone. They additionally proposed
a set of countermeasures in order to progressively remove those attacking nodes in Kad’s routing
process, which requires minimum changes in the current client in order to be deployed in the
real network. However, and as mentioned by the authors, their analysis, which considered a fix
number of users in the network, does not represent a dynamic environment like the Kad network
where the total number of users changes all along the day.

2.5.3 Attacks in the BitTorrent distributed trackers

Security attacks in the BitTorrent network have been widely studied [54, 55|, mainly targeting
its centralised architecture, which includes a central tracker to coordinate peers. However, this
system has shifted to a decentralised architecture. We consider its decentralised trackers, namely
the Mainline DHT and the Vuze DHT, and introduce the most relevant studies on these com-
ponents. Due to the Kademlia-based nature of these decentralised trackers, some of the attacks
proposed in Kad have already been deployed in the BitTorrent network with few modifications.

Wolchok et al. [56] conducted a Sybil attack on the Vuze DHT so as to defeat the Vanish
system [57]. The Vanish system enables the creation of data that will become inaccessible or
vanish after a specific time period by encrypting the data and storing the encryption keys in
the DHT as with any normal <key,value> pair. The Vuze DHT requires that these pairs be
periodically republished, or the pair will be otherwise dropped from the network. By intentionally
not republishing those pairs, the encryption keys will be lost, and the data previously encrypted
with these keys will be therefore inaccessible as well. Wolchok et al. used their ClearView crawler
to implement their attack against the Vuze DHT, showing that a basic Sybil attack was enough
to retrieve the encryption keys. They concluded that a public DHT, such as the Vuze DHT, was
not suitable as a building block for security-sensitive applications.

Wang et al. [58] presented a monitoring study in the BitTorrent’s Mainline DHT based on
few distributed honeypots. Their study brought forward a large ongoing Sybil attack in the
network and, even if the authors did not carry out an attack by themselves, they showed how
this distributed tracker was under attack. They detected a set of Mainline nodes, corresponding
to a large international ISP, performing traffic localisation ®. They additionally detected another
Mainline node injecting a great amount of Sybil nodes in the network to monitor content requests.
Neither of these attacks damaged the network. However, the authors showed how weak the
network was in terms of security protections.

The Kad DHT and the Mainline DHT are both based in the Kademlia DHT, however they
present different security issues. The Kad DHT has been widely studied and different protection
mechanisms have been presented. These protection mechanisms make the network resilient to
different attacks from a single-machine attacker. A identifiers’ distribution analysis has been
proposed to deal with a distributed attack. BitTorrent’s distributed trackers have been proven
open to attacks, but no security solutions have been proposed.

6. Traffic localisation allows I2P operators to reduce inter-ISP traffic by encouraging peers to connect to other
local peers, i.e. within the same ISP, as proposed by Varvello and Steiner [59], among other authors.

21

Chapter 2. Kademlia-based hash tables: Principles, monitoring techniques and security issues

2.6 Conclusion

We presented different monitoring studies applied to Kademlia-based systems, including ac-
tive monitoring techniques, such as crawling. Monitoring is possible in both Kademlia-based
systems, namely BitTorrent’s distributed trackers and the Kad network. Several authors anal-
ysed different aspects of both networks: the average size of network, the average uptime and
geographical distribution of users, the churn rate and the messages overhead. In most cases, a
single-machine crawler proved sufficient to analyse the network, although a distributed approach,
like the work carried out by Stutzback et al., could cover a wider part of the network.

Different attacks have been successfully carried out in the BitTorrent network. Even with
the previous research works performed on the Kad DHT, not all protection mechanisms have
been introduced in the system. Crosby and Wallach [60] stated that despite the security flaws
known and the ease to launch an attack in both BitTorrent’s distributed trackers, these two
Kademlia-based systems were suitable for the BitTorrent infrastructure, and its peer discovering
mechanisms. However, due to the recent shift of BitTorrent to a fully decentralised architecture,
it is necessary to improve the BitTorrent’s decentralised trackers and toughen their security
protections.

Our thesis is focused on both aspects, security and monitoring, for both networks. In Chapter
5, we conduct a security and performance analysis of the Mainline DHT, aiming at improving
BitTorrent’s content indexation scheme. Our approach is based on a hybrid scheme, where the
Kad network is used to index content, while the BitTorrent network is used to distribute content.
The next chapter introduces different architectures for cooperative overlay networks and hybrid
file-sharing architectures.

22

Chapter 3

Cooperative overlay networks and
hybrid peer-to-peer file-sharing
architectures

Contents
3.1 Imtroduction @i i it i ittt 23
3.2 Cooperation among heterogeneous overlay networks 23
3.2.1 Synapse L 24
3.22 Sinergy 24
3.2.3 Network Symbiosis o o 25
3.2.4 Organising the interconnection architecture 26
3.3 Interconnection of heterogeneous file-sharing networks 28
3.3.1 A multi-layered interconnection scheme 28
3.3.2 Interconnecting pure and hybrid file-sharing networks 30
3.4 Conclusion o it ittt it e 31

3.1 Introduction

More and more, software applications build up their own services on top of the Internet
infrastructure, create their own overlay networks, such as peer-to-peer file-sharing networks.
Considering a cooperation scheme among overlays is an interesting approach in order to max-
imise the overall network performance. A cooperation scheme where several file-sharing overlay
networks are interconnected would enable users to discover different resources (different files, for
instance) or to improve the download performance (more available peers, for example).

In this chapter, we study different overlay interconnection schemes, considering additionally
heterogeneous networks. We first present interconnection architectures for general overlays and
then focus on interconnection schemes among peer-to-peer file-sharing networks.

3.2 Cooperation among heterogeneous overlay networks

A wide set of applications uses overlay networks to support their operations, such as content
distribution environment, peer-to-peer file-sharing networks or anonymous networks. Due to the

23

Chapter 3. Cooperative overlay networks and hybrid peer-to-peer file-sharing architectures

wide deployment of overlay networks, it becomes important to analyse whether it is feasible
that these network cooperate among themselves, improving their own quality of service. The
principal idea behind overlay cooperation is to exploit remote hosts with particular characteristics
and use them among different overlays: a host from overlay A might find a specific content
located only in overlay B, for example. However, overlays tend to be heterogeneous in terms
of performance goals: a streaming-like overlay optimises latency, while a file-sharing network
optimises bandwidth. Therefore, these heterogeneous performance goals need to be taken into
account in an interconnection scheme.

This section introduces a general overview of overlay interconnection schemes. We first re-
view three main network architectures aimed at easing the interconnection between possibly
heterogeneous overlay networks. Then, we consider hybrid network models, which improve the
organisation of overlays’ interconnection.

3.2.1 Synapse

Liquori et al. [61] introduced Synapse, an information retrieval protocol based on the inter-
connection of heterogeneous overlay networks. The interconnection model is based on synapses,
which are nodes acting as bridges between several overlays and forwarding data packets from/to
the overlays they belong to. These overlay networks can be structured (such a Chord-based net-
work), unstructured, or hybrid networks. The authors proposed two approaches for internetwork
routing: a white boz and a black box protocol. A white box protocol is used when interconnecting
collaborative overlay networks, ¢.e. networks that can modify their routing protocol to include
Synapse information (replication and routing strategies, for example). A black box protocol inter-
connects non-cooperative overlay networks. In this case, all the whole Synapse information needs
to be carried in an additional control layer, the synapse control network. This is a DHT-based
metadata overlay, serving as a temporary container of the protocol data.

The authors simulated their network, considering only the white box Synapse protocol and
Chord-like structured networks as candidates for the interconnection. The Synapse protocol
proved more performant when compared to a basic Chord-like implementation, considering la-
tency, exhaustiveness (ratio of successful data lookups) and amount of messages generated by the
Synapses. In this analysis, Liquori et al. showed that increasing the number of Synapses did not
necessarily improve the lookup latency in the same proportion, which means that the Synapse
architecture does not need a high number of Synapses to efficiently work.

Liquori et al. chose a highly dynamic scenario in terms of churn rate, which represents the
current peer-to-peer file-sharing environments and showed that facing the same churn rate, a
Chord-based network is less robust than a Synapse-based network: considering that any node in
the system can fail with a 0.25 of probability, a Chord-based network can barely satisfy 10% of
the requests, while this ratio increases to 50% in a Synapse-based network with two Synapses.

3.2.2 Sinergy

Kwon and Fahmy [1] studied diverse cooperation schemes among co-eziting autonomous over-
lays, considering heterogeneous networks, scalability problems, as well as security issues. The
authors determined whether it was possible for autonomous overlays to cooperate, whether this
interconnection improved the considered overlays and finally, whether a cooperation could serve
as a basis to test and deploy new Internet services.

The authors proposed Sinergy, a proof-of-concept architecture that enables transparent in-
ternetwork cooperation based on a set of agents. These agents enable cooperative routing among

24

3.2. Cooperation among heterogeneous overlay networks

Synergy

Long-lived flow

Short—lived fle Reclaim

Original route
in the home overlay

Overlay B

FIGURE 3.1 — Synergy architecture. Reprinted from [1]

overlay networks, in a way similar to the previously mentioned Synapses. Agents are chosen by
each overlay according to different system heuristics (nodes with a high number of neighbours,
well-located nodes within an overlay, etc.) and placed in an overlay mesh, the agent network.
This overlay constitutes the core of Synergy and forms alternative and more efficient routing
paths, which can be used instead of local overlay routing paths. Figure 3.1 introduces Synergy
architecture: selected overlay hosts are ezported to Synergy, forming the overlay mesh, where
alternative routing paths are created. An exported host maintains two routing tables, one for its
own ho.me overlay and one for Synergy.

Synergy computes its routing paths independently from the routing paths in the intercon-
nected overlays, which allows overlays with different performance goals to cooperate. A Synergy
agent maintains linking properties to every other agents with different metrics: throughput is
suitable for file-sharing applications, while low-latency is more appropriate for real-time applica-
tions, for example.

Know and Fahmy conducted a performance evaluation on the PlanetLab testbed, deploying
Synergy over 8 overlays (each of them containing 8 users). They showed that Sinergy intro-
duced a minimum overhead (72 Kb/s for the conducted experiment), while improving latency,
throughput and data packet loss for roughly half of the nodes on the system when compared
with independent home overlays. The remaining 50% of the hosts showed slight improvements
during their experiments.

Synergy takes into consideration heterogeneous overlays, where their routing goals clearly
differ from one another, an important point when interconnecting overlays. However, the authors
did not specify how non-cooperative overlays” could interact and how Synergy would cope with
this scenario, contrary to Liquori et al., who proposed an alternative routing protocol to deal
with those non-cooperative overlays.

3.2.3 Network Symbiosis

Previous studies considered interconnection schemes in an ad-hoc manner, where network
nodes establish connections with nodes from other overlays. However, it is not clear when, and

7. The term non-cooperative correspond to the definition by Liquori et al. [61].

25

Chapter 3. Cooperative overlay networks and hybrid peer-to-peer file-sharing architectures

under which circumstances, establishing these connections. The way a network evolves through
time and how it deals with nodes’ departures and arrivals are important issues to consider.

Wakamiya et al. [62] studied the interconnection of overlay networks from an abstract perspec-
tive, considering a biological-based model to delineate the interconnection scheme. The authors
stated that cooperative overlays evolved through time, interacting among them and changing
their internal structure (i.e. their network topology), eventually developing strong relationships
and achieving a mature interconnection model or an overlay network symbiosis.

In their interconnection model, networks are dynamic. Each node decides to establish a
connection with another node in a different overlay, contrary to the Synergy approach, where the
network itself chooses its own interconnection nodes or agents. A node considers its surroundings
and its own needs to dynamically establish these connections. In a file-sharing environment, for
example, a peer holding a large number of files might decide to collaborate with the system by
initiating new interconnections and making these files available. Additionally, and opposed to
Synergy, an interconnection or link can be terminated by the interconnection node if the link
does not provide the benefit required: a node with a considerable bandwidth consumption might
decide to terminate the link. As stated by the authors, depending on which applications are
deployed on top of the overlays, different forms of symbiosis can be considered: mutualism (both
overlays benefit from the interconnection), commensalism (only one benefit while the other stays
unaffected) and parasitism (one overlay benefits while the other gets negatively affected).

The authors evaluated their model by simulation. They concluded that an interconnection
carried a considerable load in the internetwork nodes so that, to efficiently work, further mecha-
nisms to reduce this load needed to be considered, such as caching data in interconnection nodes,
as proposed by Konishi et al. [4].

3.2.4 Organising the interconnection architecture

The biologically-based study presented by Wakamiya et al. organised a network cooperation
on decisions made by single nodes: they stated that, if a node considered it could help the system
(for example by providing a high bandwidth channel), it could start an interconnection (as well
stop an existing one). Although this feature improved the internetwork model, an organisation
of interconnected nodes is still lacking. Placing these nodes into a mesh-like overlay, as Synergy
does, is a first step.

The following studies propose organisation schemes, where structured and unstructured peer-
to-peer networks are merged into a single model, bringing together the best of both approaches.

Two-tier hybrid model

Yang et al. [63] proposed a two-tiers data-sharing hybrid model. A structured Chord-based
network served as the backbone of the system, while unstructured Gnutella-like networks were
linked to the backbone and used it for communication among themselves, as illustrated in Figure
3.2.

The authors stated that the Chord-based backbone provided an efficient lookup service,
while the unstructured networks a flexible lookup service based on a best-effort approach. When
a data lookup is issued, it is first bounded to the backbone to find the corresponding unstructured
network and then forwarded to this network, where a flooding-based search mechanism is used to
find the correct result. The flooding-based (or alternatively a random walk) approach generates
a considerable amount of network traffic. However, it greatly eases the departure and arrival of
new nodes and provides a robust system against churn, an intrinsic property of current peer-to-

26

3.2. Cooperation among heterogeneous overlay networks

Node
*mapplng

mapping

MNode <
* ll'ﬁa[:)pll’\g \
4
/ \
Gnutella-like Gnutella-like
network network

|
I node
|
|

Gnutella-like
network

FIGURE 3.2 — Yang et al. system with a Chord-like upper layer and a Gnutella-like lower layer

peer systems. This model additionally includes a tunable system parameter, to determine the
percentage of peers in each tier. The authors showed through simulations that 30% of the total
nodes in the backbone was an optimal value, increasing data lookup efficiency and reducing data
lookup latency.

The authors considered that a caching system could be a good solution to cope with requests
for popular data. Additional improvements to this hybrid model are discussed (although not
implemented), such as link heterogeneity (connecting a high capacity peer to multiple peers with
low link capacities), topology awareness (matching the logical topology with the actual physical
topology), content awareness (peers with the same content preferences can be placed in the same
Gnutella-like network, thus improving data lookup), internetwork links (a temporary link can
exist between Gnutella-like networks to alleviate the load on the Chord-based network) and
BitTorrent-style networks (instead of Gnutella-like, a BitTorrent-like network is used, where the
node belonging to the Chord-based network acts as a tracker).

Hierarchical Content Distribution Network

Jiang et al. [2] proposed a hybrid content distribution model based on a content delivery
network (CDN for short) and a peer-to-peer network, named HCDN (Hierarchical Content Dis-
tribution Network), as shown in Figure 3.3. This model consists in a first layer of central servers
and edge servers and a second layer of user nodes. Central servers behave as in the traditional
CDN architecture, where the content to be distributed is firstly stored. Edge servers act as hot
spots, where highly popular data is replicated and stored, the same was as in surrogate servers
in CDNs (although within HCDN, an edge server can additionally share data with another edge
server). Finally, user nodes connect to edge servers, as well as with other user nodes to form a
peer-to-peer network and exchange data.

In the CDN layer, content is replicated from central servers to specific edge servers. When
the number of replications reaches a threshold, content can be removed from central servers,
increasing the storage capacity available. Existing replication strategies from CDN architectures,
such as the heuristic distributed algorithm by Wauters et al. [64], can still be used in HCDN.

27

Chapter 3. Cooperative overlay networks and hybrid peer-to-peer file-sharing architectures

J
user node user node

: user node . 4
o CP2Pdevel N\ _PIeve) 't 00de

FI1GURE 3.3 — Hierarchical Content Distribution Network (HCDN). Reprinted from [2]

In the P2P layer, current peer selection policies can be used, such as the BitTorrent tit-for-tat
scheme. However, peers should only download from other peers when possible so as to lighten
the load in edge servers.

The authors conducted a performance analysis comparing HCDN with a normal CDN and
a P2P model. They showed that their model outperformed a normal CDN in terms of service
capacity (measured in Kb/s), since a user connects to other users and edge servers. However,
HCDN did not outperform the P2P model under study, achieving worse result in terms of network
cost (measured in number of network hops) and it only got better performance than a P2P
approach when the number of user nodes having the entire content in the system reached 70%.

3.3 Interconnection of heterogeneous file-sharing networks

Interconnection of peer-to-peer file-sharing overlays aims at improving data search within
the system, the time to download time or bandwidth utilisation. One of the contributions of
our thesis is the analysis of hybrid file-sharing architectures. This sections introduces different
interconnection schemes for file-sharing networks.

3.3.1 A multi-layered interconnection scheme

Lloret et al. [3] developed an interconnection scheme for data search in peer-to-peer networks.
Super-peers are used to interconnect several networks and forward traffic among them.

The interconnection scheme is based on a three-layer architecture as illustrated in Figure 3.4.
The organisational layer is an ad-hoc network of super-peers, called Onodes, from different peer-
to-peer networks. This layer is used to organise the interconnection between networks based on
nodes of the lower layer, named distribution nodes or Dnodes. The distribution layer is composed
of a group of Dnodes which, in fact are the ones forwarding data between networks. Finally, the
lowest layer consists in the rest of the nodes of every interconnected network. Figure 3.5 depicts
an interconnection example between networks A and B. A Dnode D,; from network A needs to

28

3.3. Interconnection of heterogeneous file-sharing networks

Organization _ -
Layer /QW/
/ g) y }

Distribution _— §*
Layer F 5
/ |

Access .“ _.,i. e® N/
Layer
66 9600 ©4°e%,4 /

FIGURE 3.4 — Lloret et al.’s multi-layered interconnection scheme. Reprinted from [3]

request Dnodes from network B through one known Onode, in this case, O,. By means of the
organisational layer, O, can contact O, and retrieve two Dnodes from network B, Dp; and Dps.
Once D, retrieves a set of Dnodes from network B, it can start a distribution link.

_— Organizational
Lo: | o Layer
.’.’.;’ . "./7 "\
e e L T
08 s oot oot o ——— = Og e —————— > 0b
i~ =
N
; I Distribution
Rieques': Del = D.bl : Layer
| i
1 Da_l_J(- -------------------- S ¢ == —}» Dbz
%% I —T Distribution Link %;I : +
2| il [
1 1 1 H 1
| : | : |
\ A L A
-l 5 -—> I
] I
SNV I N v/
>
NN e 4 R
>
Network A Network B

FIGURE 3.5 — Interconnecting networks A and B through Lloret et al.’s multi-layered interconnection
scheme

The authors conducted a simulation analysis, for which they concluded that increasing the
number of Dnodes improved the overall performance of the network, while maintaining an ac-
ceptable number of organisational messages, i.e. the messages necessary to maintain the inter-
connection scheme.

However, it is not clear how and when a Dnode should start a link with a Dnode from another
network. The authors stated that a Dnode could request an adjacency by using an on-demand
approach to upper Onodes. Additionally, the authors considered an active approach for Onodes
leaving or joining the system, which required to re-run a routing algorithm in order to replace
offline Onodes. Even if Onodes are elected by considering the most stable nodes in the system, the
churn rate is considerably high in current peer-to-peer file-sharing environments. This can lead
to a high load in the organisational layer due to the re-computation of this routing algorithm.

29

Chapter 3. Cooperative overlay networks and hybrid peer-to-peer file-sharing architectures

A comprehensive analysis considering real churn rates is missing and the performance values
presented are tied to a static-network topology, which is not adequate for current file-sharing
networks.

3.3.2 Interconnecting pure and hybr:id file-sharing networks

Konishi et al. [4] introduced a cooperative scheme for pure® file-sharing peer-to-peer networks
based on cooperative peers as seen in Figure 3.6. These cooperative peers act as a logical link,
forwarding search messages and their responses, while the actual data transfer is carried out by
normal peers in each network.

Logical Link
Query
Cooperative Peer
Response
Candidate Netwopk 1 N2 Candidate Network 2

—4

-1] '

’ e
@ ¥ &
i H

P2P Network 1 ad P2P Network 2
Direct Transmit

FIGURE 3.6 — Konishi et al.’s cooperation scheme. Reprinted from [4]

Networks nodes willing to improve their own quality of service” postulate to become coop-
erative peers. Their candidature or application is accepted on the basis of a distributed voting
approach, where every voter locally computes its decision. Nevertheless, only highly connected
and separated peers can become cooperative peers. Highly connected refers here to peers with
a high number of neighbours, while the separation between two peers refers to the number of
network hops. On the one hand, by selecting highly connected cooperative peers, the authors
expect an effective message dissemination. On the other hand, by selecting separated cooperative
peers, the concentration of messages is expected to be distributed along the whole network.

The authors analysed their scheme by interconnecting two networks with ten-thousand users
and placing ten cooperative peers. They concluded that caching at the cooperative peers did
not improve the search latency within the interconnection scheme, mainly because the size of
the cache needs to be disproportionally big to achieve a high hit rate (>70%). The simulation
additionally showed that choosing cooperative peers randomly did not improve the quality of
service, but that it was all the same necessary to choose highly connected peers to enhance it.
However, Konishi et al. only considered static peer-to-peer networks with a fixed number of users

8. In a pure file-sharing interconnection the implied networks use the same protocol, so there is no need to
perform a protocol conversion.

9. The quality of service can be improved by introducing new peers into the peer-to-peer network or extending
the search for a given content to different networks, for example.

30

3.4. Conclusion

and a fixed network topology, which is not representative of the current dynamic of peer-to-peer
file-sharing networks.

Fu et al. [5] extended the work done by Konishi et al.. They considered hybrid peer-to-peer
networks, as opposed to the contrary to pure file-sharing networks, where cooperative peers need
to apply message conversions because of the incompatibility of protocols between networks. In
the hybrid approach described in Figure 3.7 a shared peer enables the interconnection among two
networks. This shared peer, e.g. the cooperative peer, is in charge of forwarding search messages as
well as data packets between networks. Since networks might use different protocols, cooperative
peers need to translate messages before forwarding them.

s

=~ F, &
a — OFyg S /QO QO{(,
espor'.se ‘ﬂ 2

3}

network 1 network 2

FIGURE 3.7 — Fu et al’s hybrid cooperation scheme. Reprinted from [5]

The authors evaluated their interconnection scheme’s performance through simulations and
concluded that the application-level’s quality of service was improved thanks to these cooperative
peers, but one must still note that the load within these peers remains considerable. However,
their simulations did not include message conversions, which is the main characteristic of hybrid
interconnections, and so that the total load within cooperative peers cannot be considered as
properly measured.

3.4 Conclusion

We reviewed different studies in the area of interconnection of overlay networks and cooper-
ation schemes, including heterogeneous networks. A varied set of solutions have been proposed,
for which the use of intermediate nodes or shared nodes is a common denominator. Table 3.1
shows a classification of the reviewed interconnection systems, highlighting their most important
characteristics. Synapse is one of the most complete architectures, considering network churn
and heterogeneous network protocols, proposing black-boz and white-box protocol. We addition-
ally described different organisational models, where structured and unstructured networks are
merged. The structured network is usually the backbone of the model and it is composed of the
minority of nodes in the system. The unstructured network serves as the distribution platform,

31

Chapter 3. Cooperative overlay networks and hybrid peer-to-peer file-sharing architectures

where peer-to-peer connections are normally employed among the participants, which account
for the majority of nodes in the system.

Use General use Organisational models Peer-to-peer file-sharing
Model Synapse | Synergy Net. Yang’s | HCDN Lloret’s | Konish’s | Fu’s ex-
Symbio- | scheme scheme scheme tension
sis
Intera- | Synapses| Agents Random | N/A User Super Coope- Shared
ction (Bridges) connec- nodes nodes rative Peers
compo- tions peers
nent,
Organisa-| ad-hoc ad-hoc ad-hoc 2-Tiers | CDN 2-layers | ad-hoc ad-hoc
tion overlay overlay overlay (Struc- | layer / ad-hoc | overlay overlay
tured& overlay
un-
struc-
tured)
Deploy- Simul. PlanetLab | Simul. Simul. Sim. (No Simul. Simul. Simul.
ment (With (No (No (No Churn) (No (No (No
Churn) | Churn) Churn) Churn) Churn) | Churn) Churn)
Topology | Dynamic | Random N/A Barabasit Fixed Random | Barabasi- | Kazaa
(Small Albert Albert topology
size) (10000 (1000
nodes) nodes)
/ Ran-
dom
Multi Yes No No No Undefined Undefined No Yes, but
protocol untested
Start of | Network | Network Local de- | Network | Network Network | Network | Local de-
inter- decision | decision cision deci- decision decision | decision | cision
connec- sion
tions

TABLE 3.1 — Classification of the reviewed interconnection systems

Yet, most of the solutions have been evaluated through simulation analyses. None of them
considered real-world implementations of interconnection schemes taking into account popular
file-sharing networks, neither considering an improved data search scheme nor considering an
improved download protocol. Furthermore, most of the performed simulation analyses did not
include the churn rate, a critical network aspect within peer-to-peer networks, and therefore their
applicability in real-world system becomes questionable.

In our thesis, we consider the interconnection of widely deployed file-sharing networks. Chap-
ter 5 presents a hybrid model between the BitTorrent and the Kad networks. This model improves
BitTorrent’s content indexation. Chapter 6 proposes a hybrid model considering anonymous net-
works, where the I2P network and the BitTorrent network are interconnected to improve 12P’s
content availability. In the next chapter, we detail different anonymous systems, with a special
focus on the I2P network, as well as different anonymous file-sharing systems.

32

Chapter 4

Anonymous file-sharing networks:
current approaches and monitoring

techniques

Nowadays, people perform most of their social and business activities over the Internet.
Information, sent or received, goes through various intermediaries nodes, different autonomous
systems, different networks, and can be recorded for a specific and targeted monitoring purpose.
Either way, data we send over the net does not vanish easily nor rapidly. In the early days of the
Internet, the notions of privacy and anonymity were vague and left aside. But, more and more
users have moved to a privacy-preserving digital environment, mainly driven by different policies
and data retention '° directives such as the European Data Retention Directive.

Contents
4.1 Introduction i i i i ittt e e e e e e e 33
4.2 Anonymous communications 000 e e e .. 34
4.2.1 Anonymous paradigms 34
4.2.2 The Tornetwork 37
423 Thel2P network o 38
4.3 Anonymous file-sharing approaches 42
4.3.1 Fitting anonymity in the non-anonymous BitTorrent environment . 43
4.3.2 Fully-dedicated anonymous environments 44
4.4 Monitoring anonymous networks« v v v v v v e 0w 50
4.4.1 Monitoring the Tor network, 50
4.4.2 Monitoring the I2P network 0oL 52
4.4.3 Legals aspects on network monitoring 53
4.5 Conclusion 0 i i i ittt e e e e e e e e e e e e e e e 54
4.1 Introduction

11

10. Also known as data preservation, which seems less acute but it is still as significant as retention.

11. The Data Retention Directive, or Directive 2006/24 /EC. L105/54, from the Official Journal of the European
Union 2006, roughly state that every telecommunication company needs to store users’ data for a period between

six to twenty-four months, to ease possible criminal investigations.

33

Chapter /. Anonymous file-sharing networks: current approaches and monitoring techniques

The concepts of anonymity and privacy are different, although they are interspersed. Anonymity
allows a person to be unrecognisable among a greater group of people, while privacy stands for the
right of a person to control his/her personal information to avoid any unwanted disclosure. In this
privacy-preserving Internet, file-sharers have been facing various situations, such as monitoring
and profiling of users or strict anti-piracy laws, for which several privacy-preserving file-sharing
technologies have been developed to offer different degrees of anonymity to users. Fully-dedicated
anonymous file-sharing networks have been proposed, as well as different mechanisms, to increase
users’ privacy, such as anonymising the BitTorrent traffic via a proxy or an anonymous layer.

Due to the high use of these anonymous systems, it is important to study and analyse them to
determine their real use. Because of the very nature of anonymous communications, monitoring
these systems is very challenging and requires further techniques.

Most of the current anonymous file-sharing systems are based on current anonymous sys-
tems. That is why, we first describe anonymous systems and their associated paradigms. Then,
we describe current anonymous file-sharing environments. We focus on monitoring techniques,
especially for widely deployed anonymous networks. We briefly consider the legal implications
when monitoring public networks, as well as a few facts to keep in mind so as not to weaken
users’ privacy.

4.2 Anonymous communications

Anonymous communications mask the parties in a communication: the sender, the receiver
or both. Within the Internet, an anonymous system hides, for example, the TP address of the
sender when contacting a given web server. These anonymous systems serve as a basis for a wide
range of applications, from censorship-resistant networks to anonymous file-sharing systems.

This sections presents two anonymous paradigms and different current anonymous systems.

4.2.1 Anonymous paradigms

Edman and Yener [65] conducted a survey on anonymous communication systems, where they
proposed to classify these systems into high-latency and low-latency systems. Before outlining
these paradigms, we first introduce the terminology when considering anonymous systems. Pfitz-
mann and Hansen [66] presented a study on terminology, aiming at standardising the various
terms within the field.

Anonymity is the impossibility to identify a particular subject within a set of subjects, the
anonymity set. This anonymity set is not fixed and depends on a possible attacker. If the attacker
is powerful, it can narrow down the set, thus easing the identification of a particular subject.
Unlinkability of two or more items of interest (IOI from an attacker’s point of view is the
impossibility to distinguish whether these items are related or not. Finally, anonymity through
unlinkability is defined as the unlinkability between subjects and the actions of these subjects,
such as sending or receiving a message. In a simplified version and from an attacker’s point of
view, a user is anonymous if he/she cannot be tagged as the sender or the receiver of a particular
message.

High-latency systems

High-latency systems ensures strong anonymity in exchange of high delays and are only
applicable to non-interactive applications, such as email applications.

34

4.2. Anonymous communications

David Chaum [67] wrote one of the first studies on anonymous communications, presenting
the concept of miz-nodes, which is the basis for almost all current high-latency systems. Mix-
nodes receive encrypted messages, decrypt them, add random padding to maintain their length
and put them into a batch. A batching strategy'? is used to determine when to send a received
message to its actual destination. An attacker observing the incoming and outgoing messages of
a mix-node will not be able to correlate them, since they were previously decrypted, producing
a different set of bits. Additionally, the messages have been delayed and reordered within the
mix-node.

Although ensuring some anonymity, a single mix-node is a single point of trust: a compromised
mix-node can reveal the relation between incoming and outgoing messages. An alternative is to
use a set of mix-nodes, where a message is routed through an ordered list of mix-nodes, thus
increasing the overall anonymity, since every hop knows only the predecessor and the successor
out of the total mix-nodes in the path. There are two classic mix-node topologies: miz-cascades
and free routes. In the first one, a client’s traffic is routed through one or more predefined routes;
in the second one, users select their own ordered list of mix-nodes to route their messages.

There have been different implementations of anonymous email systems using the concept of
mix-node from Chaum. They are usually classified in remailers type I, II or III. The anonymous
remailer type I, also known as Cypherpunk remailer, was initially presented by Hughes and
Finney '® and consists in a group of distributed mix-nodes. A header for every hop in the path is
added by the sender before the message is sent. Each mix-node decrypts the incoming message
with its private key, removes the header and forwards the still-encrypted data to the next hop,
until data reaches the last mix-node. Anonymous remailers type I do not implement Chaum’s
padding strategy nor his batching or delaying strategies, and therefore they are sensitive to
correlation attacks by a passive attacker. The type II remailer, or Mizmaster, was developed
by Maller et al. [69]. It is an improved version of the previous type I remailer, which includes
padding to maintain a fixed message-size, as well as a batching strategy to prevent correlation
from a passive adversary. Finally, the type III remailer, or Mizminion, presented by Danezis et
al. [70], is the latest implementation of an anonymous remailer and includes link encryption. The
Mixminion remailer additionally ensures anonymity to both sender and recipient, contrary to
remailers type I and II, which only ensure anonymity for the sender.

Low-latency systems

In a low-latency system, there is no reordering nor batching of incoming messages, with only
traffic forwarding being performed. These systems fit better interactive applications, like web
browsing. In a low-latency system, the equivalent of a mix-node is a prozy.

On the one hand, we have a single-proxy approach or one-hop approach, which uses an inter-
mediate hop, namely a proxy server, to route a user’s traffic. The receiver gets the intermediate
hop’s TP address and not the original user’s TP address. The main disadvantage of this approach
is that a proxy server is run by a single operator, which can be compromised, thus deanonymis-
ing any user using the service. On the other hand, most of the current low-latency anonymous
systems use a set of proxies to form a multi-hop path, generally encrypting the data all along
this path. The Crowds system, the Web Mixes approach and Onion routing are the most relevant
low-latency systems.

12. A batching strategy specifies up to when the messages should be stored. "We keep up to 100 messages in
the batch" or "Every minute the batch is cleared out", are some examples.
13. Parekh presented Hughes and Finney’s work in his journal article Prospects for remailers [68].

35

Chapter /. Anonymous file-sharing networks: current approaches and monitoring techniques

Reiter and Rubin [71] designed the Crowds system, especially for anonymous Web transac-
tions. In their mode, a user on the system forwards traffic following a forwarding-probability
scheme: half of the time it forwards an incoming message to another user than its actual des-
tination. An attacker participating on the system is not able to discover whether an incoming
message was generated from the previous node or, if it has simply been forwarded. Thus, the
system guarantees anonymity to the sender or probable innocence, as the authors classified their
system.

Berthold et al. [72] designed a mix-based architecture for anonymous real-time Internet access.
A user routes its traffic through one of several available miz-cascades. The last mix-node in the
cascade forwards the traffic to a prozy-server, which forwards traffic to the Internet. The traffic
within the mix-cascades is encrypted, thus hardening a traffic analysis attack.

Onion routing, firstly introduced by Goldschlag et al. [73], is based on the concept of Chaum’s
mix-cascades, where onion routers are used instead of mix-nodes. An onion router accepts a
message, performs a cryptographic operation on the message and forwards it immediately to
the next hop in the path, avoiding any batching or delaying strategies. A user selects a group
of onion routes in the system and creates a circuit: a bidirectional path among different onion
routers. During the creation of the circuit, each onion router in the circuit receives the identifier
of the next hop (except of the last node); two encryption keys, one for forward traffic and one
for backward traffic, and an encrypted payload to be forwarded to the next hop. Thus, every
onion router in the circuit knows its predecessor, its successor, and which encryption keys need
to be used during the data transfer.

Key C

|
!
]

FIGURE 4.1 — An Onion routing example

Figure 4.1 depicts a scenario after the creation of a three-router circuit, where a user sends
data over the circuit. The original message is encrypted with the forward key C of the last onion
router, the resulting encrypted packet is re-encrypted with the forward key B of the middle router
and finally with the forward key A of the first router, leading to a layered encryption. The onion
routing consists in every onion router removing a layer of encryption, or peeling off a layer, to
obtain further routing instructions and a still-encrypted payload. Router C gets the real message
and forwards it to the Internet. When router C receives an answer, it encrypts the message with
its backward encryption key and forwards it to router B. Every onion router performs the same
operations until the message reaches the user. The user then peels off every layer of encryption
to retrieve the actual message.

Onion routing does not include batching nor delaying strategies, as most of anonymous low-
latency systems, although it performs padding in every message to maintain a constant message
size.

Our classification of anonymous systems is illustrated in Figure 4.2. Among the alternatives
previously presented for anonymous low-latency systems, we focus on Onion routing-based ap-
proaches. One of our contributions targets the I12P network, an anonymous system based on a

36

4.2. Anonymous communications

slight variation of Onion routing.

Anonymous Communications

T

| Low-latency Systems | High-latency Systems
/ | \
| One Hop | Multi Hop C);‘per:’:;ﬁl;?k | Mixmaster | Mixminion

SN

[Crowd Systeml [Web Mixes I [Onion Routing |

r 12P Network | Tor Network
e -

FIGURE 4.2 — Classification of anonymous systems

4.2.2 The Tor network

The Tor network is probably the most used and most widely deployed anonymous low-latency
system, with five-hundred-thousand users in average '*. This network enables anonymous TCP-
based communications by tunnelling a user’s traffic through a virtual three-nodes circuit before
reaching the Internet.

The initial design was presented by Dingledine et al. 74| and it based on the original Onion
routing design. However, it includes several variations, such as a central directory server and a
telescopic approach for the creation of circuits.

The Tor network implements a central approach to distribute signed network information by
means of trusted nodes, contrary to the original Onion routing design, which suggests flooding
the network with routers’ information. These trusted nodes are called directory servers and
they maintain a synchronised directory of the all onion routers available in the network. Users
periodically query these directory servers to obtain a list of onion servers.

In the original Onion routing design, a single message for tunnel creation is passed through
every router, thus creating the intended circuit with only one message. The Tor network uses
an interactive approach instead. In this approach, called a telescopic circuit building approach,
the user creates initially the first hop of the circuit and then uses this one-router circuit to send
another request to the second router in the circuit and so on for the rest of the routers. Therefore,
the user uses the circuit as it is being created to tunnel further circuit building messages.

Since the Tor network is a volunteer-based network, anyone can run a Tor node and forward
third-party traffic in the network. Additionally, a user can forward traffic outside the Tor network,
to the Internet by running a Tor exit node. By using exit policies within an exit node, a user can
select which type of traffic he/she willing to forward. Figure 4.3 shows an example, where Alice

14. Statistics available at https://metrics.torproject.org/users.html. Last visited on 08/2013.

37

Chapter /. Anonymous file-sharing networks: current approaches and monitoring techniques

=

; Rela - \

Alice L \ .
\

Charlie

FIGURE 4.3 — The operation of the Tor network

uses the Tor network to contact Bob and Charlie using the same circuit, with the last node in
the circuit acting as an exit node. Besides enabling anonymous TCP-based communications to
the Internet, the Tor network provides a mechanism to deploy anonymous web sites or hidden
services in the network, which are only accessible within the Tor network.

The Tor network has been widely studied and different improvements have been proposed,
such as entry guards to cope with attacks on hidden services [75]; an incentive-based approach
to reward cooperative bridges (bridges are similar to Tor exit nodes) and improve the network
overall performance [76], and a simplified used of hidden services on the network [77], among
others.

However, it has been shown by McLachlan et al. [78] that, if the Tor network keeps growing
up to a millionaire user-base like popular peer-to-peer services (such as Skype, for instance),
Tor nodes will spend considerably more bandwidth in distributing the network directory than
in actually forwarding traffic. The authors proposed a distributed directory service based on a
Kademlia DHT to cope with the problem of scalability.

On the one hand, a distributed directory service would allow the Tor network to scale and
support several million users. On the other hand, we consider that a network originally designed
with a distributed database would be a better approach. The I2P network, which does not utilise
a central component to coordinate the nodes in the system, but a distributed network database,
fits our goal.

4.2.3 The I2P network

The Invisible Internet Project, or also known as I2P, is an anonymous network intended for
low-latency anonymous UDP-like and TCP-like communications, mainly designed for anonymous
web hosting and anonymous file-sharing. The system is designed as an anonymous network layer
and does not ensures anonymity by concealing the originator or recipient of the communication,
but by enabling users to communicate among themselves anonymously and in a secure way.
Within 12P, both ends of a communication are unidentifiable to each other or to third-parties.

38

4.2. Anonymous communications

I2P’s anonymity

The I2P network layer is composed of participants known as I2P nodes or I2P routers'>. The
information regarding every particular I2P router, such as its IP address, is gathered in a special
structure called routerinfo. An 12P node uses tunnels, similar to Tor’s circuits, to communicate
with other nodes, being these tunnels formed by others I2P nodes. Whenever an I2P router A
wants to create a tunnel with an I2P router B, router A needs router B’s routerinfo.

Within the I12P network, a user’s application is not identified via the tuple <IP address, port
number >, but through a location-independent identifier which decouples a user’s online identity
and his/her actual physical location. This hash-like identifier is known as a destination. Every
time a user deploys an [2P application, such as a file-sharing client, a destination is created for
that application. This destination is used to receive incoming messages from third-parties, like
others I12P file-sharing clients. The information concerning a particular destination is grouped in
a special structure called leaseset. A remote I12P user needs that leaseset to establish a connection
with the application.

The basis of I12P’s anonymity is the unlinkability between leasesets and routerinfos. It is not
possible to link a particular leaseset, representing an application, with a particular routerinfo,
representing an 12P user. Let’s illustrate that scenario with two I2P users, running two BitTorrent
applications on top of the I2P network. Each user A and B has its own routerinfo ri, and ri,,
respectively. Each BitTorrent application has its own leaseset [s, and lsp, respectively. Within
the I12P network, it is not possible to link ri, with ls, or ri, with ls; and, therefore, an I2P user
with a particular application.

A leaseset has a set of entry points or gateways to receive messages from third-parties. Ls,
will have one (or more) entry points, so remote applications, e.g. aapy, can send messages. These
entry points are the I2P nodes in the end of the tunnel of the user A, which are represented with
different routerinfos. Therefore, an application aap, will have a leaseset ls,, where the entry
points are 74, and 7i,. The remote application aap, will communicate with aap, through ri, and
Ty

Distributed network database

I2P uses a distributed database to store its network metadata, that is, leasesets and routerin-
fos. The database is called the netDB and is a Kademlia-based DHT, composed of floodfill nodes.
Floodfill nodes are normal I2P nodes with high bandwidth rates. All routerinfos and leasesets
are stored within these floodfill nodes and are accessible by every node in the I2P network.

Considering the previous example, ri,, rip, [s, and ls, are stored within the netDB. An 12P
user A running an application app, has a destination dest, and its associated leaseset [s,. If an
I2P user running an application aap, wants to contact the application aap,, he/she needs to
search in the database the leaseset ls, through the destination dest, (we can consider that, in a
hash table, dest, is the key and ls, is the value).

Thanks to a distributed database, the I2P network avoids a single point of failure, as opposite
to Tor’s central directory. Additionally, the 12P network uses a dynamic approach to deploy
floodfill nodes and improve scalability.

15. The terms I2P node and I2P router are used interchangeably throughout this document.

39

Chapter /. Anonymous file-sharing networks: current approaches and monitoring techniques

Garlic routing

The 12P network uses a slight variation of the onion routing approach, called garlic routing.
As previously mentioned, in Onion routing, a message is routed from its sender to the final
endpoint through several intermediate nodes using layered encryption. The sender adds, to the
message to be sent, an encryption layer for every node in the path. Each intermediate node peels
off one of these layers, exposing routing instructions along with still-encrypted payload data.
Finally, the last node removes the final layer of encryption, exposing the original message to the
endpoint.

Garlic routing allows the sender to include several messages in a single garlic message. The
main idea is to take advantage of the expensive initial encryption process to add further messages
in the same encrypted outgoing message, which can be seen as the inside of a garlic, hence the
garlic routing’s analogy.

[2P currently uses this approach to include two extra messages into a single garlic message: a
delivery status message and a netDB store message. Let’s consider a communication between an
I2P user and an anonymous web server hosted within the I2P network. The user sends a garlic
message with the actual request to the web server, including these two extra messages. The first
message is a delivery status message to be sent back to the I2P user once the web server receives
the request, as an acknowledgement. The second message is the actual leaseset of the I12P user,
which is used by the web server to send messages back to the I2P user. Thanks to this feature,
every leaseset does not need to be published in the netDB.

Unidirectional tunnels

Contrary to Tor’s circuits, I2P tunnels are unidirectional and formed by the gateway (entry
point), a set of participants (intermediate nodes) and an endpoint. Two types of tunnels exist:
inbound tunnels enable a user to receive data and outbound tunnels, to send data. Therefore,
a fully bidirectional communication between two users involves four tunnels, as illustrated in
Figure 4.4, which shows a simple connection between Alice and Bob. Alice’s outbound gateway
and inbound endpoint (the closest to Alice), as well as Bob’s outbound gateway and inbound
endpoint, are implemented by Alice’s and Bob’s routers, respectively.

__________________________________ \ e e e e
I o j
: ,,,,,,,,,,,,,,,,,,,,,,,,, | : ,,,,,,,,,,,,,,,,,,,,,,,,,,, |
DAL | . .
i (Alice : i I : Bob! |
: : Gateway = Participant =» Participant =» Endpoint —F——J'# Gateway = Participant —> Endpoint B
: @ : : ol
E . o8
e v A : ! | sl
[Endpoint <&=Participant <=Participant <= Gateway +——| : :
| . | ;

= Endpoint <e—Participant 1— Gateway

,___

I

I

1@
o)
o
wn
0
o)
]
—h

Q

c
-
Q
ot
0
3

FIGURE 4.4 — Independent and unidirectional inbound/outbound tunnels

I2P leans on a constant local profiling mechanism of all seen I2P routers, regarding their
performance, latency, and availability. The indirected behaviour of users is recorded and used to
profile them, contrary to the Tor network, where users’ claimed performance values are published
in the central directory. No published performance information is used in I2P’s local profiling
mechanism, so as to avoid attacks from nodes claiming high performance values. An I2P router
uses these profiles to select the most appropriate nodes for its tunnels.

40

4.2. Anonymous communications

Figure 4.5 depicts a simple view of the I2P network, where Alice communicates with Bob
and Charlie. In this case, Alice’s tunnels include three routers (Alice’s router, a participant and
a gateway/endpoint). Bob’s and Charlie’s tunnels have no participants and only two routers.
Additionally, a same I2P node can be used for different tunnels, like the shared endpoint in
Charlie’s and Bob’s outbound tunnel.

The tunnels used for the 2P applications are called client tunnels and are created as pre-
viously mentioned, considering the best profiled I2P routers. An I12P router additionally creates
exploratory tumnels, which are formed by routers that have not yet been profiled. These ex-
ploratory tunnels are used to profile new routers.

.

— Outbound Tunnel

— 3 [MBoUNd TUnnel

Direct router
communication

ccoc>

FIGURE 4.5 — Simple view of the I2P network

I2P applications

The I2P network is optimised for anonymous hosting, enabling not only the I2P user accessing
the web server to stay anonymous, but the web server operator as well. Deploying a normal web
server on top of an I2P router generates a leaseset which, once published in the netDB, can
be recovered and used to access the web server. 2P provides a DNS-like service to support a
name-mapping service with web sites names ending in .12p.

I2P also provides a wide set of dedicated applications, such as chat clients (IRC-like and
Jabber-like), file-sharing clients (Bit Torrent-like, Kad-like and Gnutella-like), a blogging service, a
distributed data store and newsgroups services, and has different libraries to develop applications
on top of the network.

I2P security

The I2P network has not received as much academic attention as the Tor network, and
therefore the amount of attacks and protections is not well documented. However, one important
aspect to highlight is that in Tor, as the network is intended to route traffic to the Internet, a
timing attack is always feasible. An attacker placing two nodes, one entry node and one exit node,

41

Chapter /. Anonymous file-sharing networks: current approaches and monitoring techniques

can correlate messages and de-anonymise a user accessing a certain service, such as a web server.
I2P traffic rarely goes out the mix-net, and therefore that attack is much harder to achieve.

However, Herrmann and Grothoff [79] conducted an attack on I2P’s anonymous web sites,
called eepsites, where an attacker with moderate resources is able to de-anonymise the user
hosting an anonymous web site. The authors exploited I12P’s local profiling mechanism and biased
the selection of peers towards their own malicious nodes. Thus, they increased the chances of
placing more malicious nodes in the same I2P tunnel. Once a tunnel contains malicious nodes,
it is more simple to measure messages going through the I2P nodes and determine the real host
of a given anonymous web server.

Crenshaw [80] exploited the application layer of anonymous web servers within the I2P net-
work to de-anonymise different users hosting these services. The author did not compromise the
anonymity of the network per se, but showed that even with a strong underlying anonymity sup-
port like the I2P network, it was extremely important to consider privacy leaks in the application
layer.

Mayzaud [81] modelled I2P’s cryptographic protocols through the AVISPA project [82], where
different tunnel configurations were tested. The author determined that I2P successfully pro-
tected a user identity on the system in all scenarios tested, except for the case of two-hops
inbound tunnels. If an attacker is placed as the only participant within a two-hops inbound tun-
nel and if can determine that the previous node within the tunnel is published as an inbound
gateway in the netDB, then he/she can conclude that the next hop within the tunnel is the
creator of the tunnel. The author concluded that I12P’s anonymity lies on the fact that I2P’s
tunnels are defined by every user and therefore their length remains unknown by a remote peer.

I2P and Tor

There are two major differences between the Tor network and the design of the I2P network.
On the one hand, the I2P network does not enable to access the Internet like the Tor network
does. Only one or two out-prozies'® are available on the network, while several hundred exit
nodes exist in the Tor network. On the other hand, every I2P node forwards traffic on behalf of
the network, while only a small subset of the entire user-base participates in in the Tor network 7.

4.3 Anonymous file-sharing approaches

File-sharing has always contributed significantly to the overall Internet traffic and, due to the
privacy-preserving environment we are involved in nowadays, more and more users are shifting to-
wards anonymous environments. Anonymous file-sharing networks enable an anonymous content
distribution scheme, where users connect themselves to exchange data, while not been recognised
via their TP address. Some anonymous file-sharing networks additionally enable anonymous con-
tent indexation as well. Thanks to that latter feature, users do not have to share content’s
identifiers out-of-band, in a non-anonymous way.

This section reviews the best known anonymous peer-to-peer file-sharing approaches. We
present different studies, showing that fitting anonymity in non-anonymous environments has
several implications and that a user’s identity can still be leaked. Fully dedicated anonymous file-
sharing networks, on the contrary, have strong identity protection mechanisms, but the amount of

16. An out-proxy allows traffic to be routed outside the I2P network, to the normal Internet, as a Tor’s exit
node does.

17. At mid-2013 there are 500000+ Tor users and only 4000+ participants in the Tor mix-net, which represents
the 8% of the entire user-base.

42

4.8. Anonymous file-sharing approaches

available content on the network is highly reduced when compared to public file-sharing networks,
like the BitTorrent network.

4.3.1 Fitting anonymity in the non-anonymous BitTorrent environment

Two of the most widely deployed file-sharing networks, namely the BitTorrent and the Kad
networks, were not designed to take into consideration anonymity issues. As these networks count
several millions of users, different approaches have been considered to introduce anonymity within
these systems.

Within a non-anonymous peer-to-peer file-sharing environment, peers communicate with each
other to exchange data, usually in an ad-hoc manner: based on a peer-selection algorithm, a peer
connects to remote peers, exchanges data and disconnects on a regular basis. These are direct
peer-to-peer connections, and therefore a single attacker at one end can be able to monitor
and identify other participant peers. A straightforward example is the active monitoring within
BitTorrent swarms presented by Bauer et al. [83], where a monitor peer probes every known peer
in a given swarm to determine whether a peer is actively sharing a given content.

Hence, to achieve some degree of anonymity, a peer might opt for hiding its identity '8, while
connecting to remote peers. Proxy-based approaches or anonymising layers are the most used
solutions.

Tor Network BitTorrent Swarm

FIGURE 4.6 — Employing the Tor anonymising layer to access the public BitTorrent network

Figure 4.6 depicts a BitTorrent user routing its traffic through the Tor network while interact-
ing with public users. This configuration has been chosen by a considerable number of BitTorrent
users to anonymise their traffic, as stated by Le Blond et al. [84]. However, this approach is far
from being secure in terms of ensured anonymity. Manils et al. [85] conducted an attack on
BitTorrent users using the Tor network by exploiting Tor’s lack of UDP support, among others.
Since BitTorrent is mainly based on a distributed UDP-based tracker, users need to overpass
the Tor network and connect directly to that service, revealing their public IP address. By cor-
relating the information in this distributed tracker and the information logged by a malicious
Tor exit node, an attacker can de-anonymise a user. However, this attack does not compromise
the anonymity provided by the Tor network, and it only exploits an application-level problem: if
BitTorrent users are able to anonymise their UDP traffic or encrypt their TCP traffic over Tor so
as to prevent exit nodes from monitoring exiting traffic, this attack would no longer be possible.

18. Within Internet communications it is given by an IP address.

43

Chapter /. Anonymous file-sharing networks: current approaches and monitoring techniques

The same scenario is feasible when considering proxies or VPN (virtual private networks): if
these services do not provide UDP support, a user’s identity can be leaked by directly connecting
to UPD trackers or decentralised UDP-based trackers. There are commercial solutions, such as
the BTGuard proxy '?, that do not route UDP traffic, and however it is announced as a perfect
solution to cope with anonymous downloads. TorGuard ?°, on the contrary, is another commercial
proxy which supports UDP trackers, thus avoiding the leakage of identity information when
using a BitTorrent application. Nevertheless, a proxy is run by a single operator, who can always
conduct a monitoring on users’ activities or keep IP logs, leading to more difficult to encounter,
but yet possible, anonymity problems.

4.3.2 Fully-dedicated anonymous environments

There are basically two different approaches when considering fully-dedicated anonymous
file-sharing solutions: brightnets and darknets.

A brightnet allows users to freely establish connections with any other peer on the network.
Its main characteristics lies in the fact that shared data is actually meaningless data. Therefore,
there are no copyright laws that can be applied to it, thus detaching users from legal matters.
Actual data is transformed into a meaningless set of bytes by combining and encoding different
parts of real files into a single block of bytes, for a later regrouping and decoding. The brightnet
concept does not ensure anonymity per se, since anyone joining the system can identify every
other user on it. However, it is not possible to determine which files are being distributed on
the system by simply observing it, and therefore there is no incentive to monitor the system.
Albeit interesting, the brightnet concept has not been widely used in anonymous file-sharing
systems, being the Owner-Free File System [86] the only semi-stable, although unmaintained,
real implementation.

A darknet, or often called a friend-to-friend network, aims at providing anonymity to end-
users by maintaining trust-based links among them. A user connects only to trusted peers (i.e.
his/her friends) by means of specific application protocols. A file-sharing darknet can be seen
as an instant messenger application with an added file-sharing layer, as suggested by Seeger
[87]. The darknet notion has been more widely adopted within anonymous file-sharing networks.
OneSwarm, Freenet, GNUnet and the I2P file-sharing environment are probably the best known
and deployed anonymous file-sharing networks. We focus on the darknet approach in the following
subsections.

OneSwarm

Isdal et al. [6] presented OneSwarm, a file-sharing architecture composed of three different
file-sharing scenarios in a single framework: anonymous publication, anonymous download and
friend-based file-sharing. Since every scenario has different tradeoffs between download efficiency
and achieved privacy, we can obtain a complete anonymous file-sharing architecture by combining
them. A high-level view of the architecture is illustrated in Figure 4.7. The principle is that
OneSwarm users form an overlay, where any kind of content can be shared without restrictions
(defined by the authors as without attributions), yet still obscuring users identity through source-
address rewriting and multi-hops paths. New content can be introduced in the system by any
OneSwarm peer connected to normal BitTorrent swarms (public sharing). Additionally, users can

19. http://btguard.com/. Last visited on 08/2013.
20. http://torguard.net/. Last visited on 08/2013.

44

http://btguard.com/
http://torguard.net/

4.8. Anonymous file-sharing approaches

establish permissions for certain data and only share it with a certain number of known peers
(with permissions).

Public sharing Without attribution With permissions

FIGURE 4.7 — OneSwarm architecture. Reprinted from [6]

Prusty et al. [88] highlighted OneSwarm’s security issues by successfully conducting a twin
timing attack and demonstrating that a collusion attack was highly effective. This collusion
attacks allowed the authors to determine the real source of a given content, breaking the anony-
mous publication process. The twin timing attack takes advantage of OneSwarm’s design, where
artificial delays are introduced to cope with a single attacker. The authors stated that with 15%
of attackers on the system, 90% of the system was vulnerable to this attack. Moreover, Prusty
et al. additionally showed that the original software release included a hard-coded value for a
probability value (p=0.95 instead of the p=0.5 declared value), which enabled a collusion attack
to nearly affect the entire system with 25% of attackers. New versions of OneSwarm are now able
resistant to this attack.

Cunche et al. [89] reinforced the collusion attack on OneSwarm by successfully launching an
improved of it version called indirect collusion attack. This attack relies on a few monitoring
nodes not necessarily connected to the targeted victim, but to the general OneSwarm overlay.
The authors successfully detected the source of the content with a zero false negatives probability
and barely a 2% false positives.

OneSwarm clearly steps forward in anonymous file-sharing by considering its different aspects:
publishing, downloading and friend-based sharing. By replicating content downloaded from the
public network into OneSwarm, this architecture allowed the BitTorrent content to be introduced
into the system. However, this procedure needs to be manually carried out by a user. As the
BitTorrent network already holds a considerable amount of content, it becomes unrealistic to
perform up-to-date file-sharing. OneSwarm is not adequate if a user wants to download up-to-
date content anonymously.

Freenet

Clarke et al. [90] introduced Freenet, a censorship-resistant distributed data storage being,
arguably, the only currently deployed full darknet. It is based on distributed nodes that share
unused disk space to contribute to the network’s total storage capacity. Based on this distributed
storage, services like anonymous hosting, anonymous chatting and anonymous messaging have
been deployed on top of the system.

Whereas in normal peer-to-peer file-sharing architectures, a user owns data and makes it

45

Chapter /. Anonymous file-sharing networks: current approaches and monitoring techniques

available within the system for later sharing, Freenet divides data into encrypted chunks and
stores it in several nodes throughout the system. This approach, called data partition, reinforces
the anonymity of the original publisher, as well as data availability, since data is still accessible
even when the original publisher goes off-line. By including encryption in the former approach,
Freenet guarantees plausible deniability to users, since they do not only store chunks of the
original data, but they encrypt them.

Figure 4.8 depicts a simplified approach of Freenet’s storing and retrieving process. The
producer stores a file which is divided in two parts, p; and ps. Node A is responsible for one
part, while node C is responsible for the other part. During the storing process, node B caches
part p1, while forwarding the request. The requester retrieves part p; directly from node C, while
part ps is retrieved from node A, where node C caches this part in the process. That way, future
requests for this file from nodes close to the requester will be answered faster, since both parts
are now cached in node C.

@
v

R t
equester Part 1

G G Part 2

i
Producer /
Part 1 O 2
1
—_

N\

Part 2

/s

/e

©

©)
Part 1 1
z

FIGURE 4.8 — Bird’s eye view on Freenet’s storing and retrieving process

Freenet nodes are organised as a small-world network 2!, where most of the nodes on the
system have few connections with other nodes. Yet, a small group of nodes is highly connected
to other nodes. These networks take advantage of these well-connected nodes to achieve a small-
length-path between any pair of nodes, as well as to increase fault-tolerance. In Figure 4.8,
node C is a highly-connected node, which serves as a hub to reach almost every other node in
the system. Freenet was originally designed as an opennet, where every node established a few
connections with untrusted peers. In a recent release, an extension has been proposed so as to
operate in dark mode, enabling peers to connect only with trusted peers, resulting in a fixed
network.

Regarding Freenet’s security, the authors stated that the network was susceptible to a wide
range of attacks when operating in open mode, including correlation attacks and fully monitoring
the network to determine who the original publisher of a given content was. Operating in dark
mode highly increases the overall anonymity of the system. However, different studies have shown

21. Introduced by Stanley Milgram in his work, The Small-World Problem [91].

46

4.8. Anonymous file-sharing approaches

that even in dark mode, the network is still vulnerable to different attacks.

Evans et al. [92] demonstrated that Freenet’s routing algorithm in dark mode was prone
to a clusterisation attack. In dark mode, Freenet’s nodes are randomly distributed, and due to
receive the same amount of store requests, thus balancing the load on the network. The attack
works by grouping nodes and, in that way, unbalances the distribution of nodes. The result is
that a percentage of nodes do not receive any store request, while other ones receive a high
number of requests, exceeding their storing capacity and consequently causing data loss. Schiller
et al. [93] completed the work by Evans et al. by considering two extra attacks in the current
Freenet’s routing algorithm: a divergence attack (aimed at disrupting the routing) and a non-
optimal distribution attack (aimed at disturbing the distribution of nodes within the system).
The authors proved that all of these three attacks, including the original clusterisation attack,
were possible on the system by exploiting a routing primitive.

Finally, Tian et al. [94, 95] proposed two attacks on Freenet, a traceback attack and a routing
table insertion attack. In their model, a routing table insertion attacks aims at establishing
connections between a target node and an attacker by considering the network topology around
the attacker and predicting the routing paths for data insert/request messages. Freenet’s routing
algorithm maintains a dynamic topology so as to prevent static routing paths from forming,
where a connection between two nodes A and B is maintained until a successful number of
requests have been received by these nodes. Once a threshold is achieved, the connection is
dropped and a new one is created. The routing table insertion attack takes advantage of this
mechanism by enforcing a connection between two honest nodes to be dropped so as to establish
a new connection between the attacker and one of those honest nodes. The routing table insertion
attack enables the second attack, namely the traceback attack, which aims at determining the
origin of a message, such as a data insertion message, thus de-anonymising the original publisher
of a given content.

GNUnet

Bennett et al. [96] proposed GNUnet, a decentralised reputation-based network for anonymous-
based peer-to-peer communications, with anonymous file-sharing being the main service built on
top of the network. GNUnet operates in open mode, where nodes connect to untrusted parties.
However, it additionally has a friend-to-friend mode to operate in dark mode, restricting con-
nections only to trusted parties. In both cases, every connection between two nodes is encrypted
by means of a SSH-like approach. GNUnet also includes a ranking mechanism to support its
reputation-based communication, where nodes are ranked according to their behaviour within
the system: nodes have to pay for queries (by decreasing their ranking value) and are rewarded
when they respond them with valid replies (by increasing their ranking values). Eventually, high-
ranked nodes have priority over low-ranked nodes, long-trusted nodes being thus favoured over
recent untrusted nodes, in an overall attempt to avoid Denial-of-Service attacks.

A censorship-resistant file-sharing protocol [97] has been developed on top the current GNUnet
system, achieving: 1) plausible deniability for intermediate nodes forwarding search queries and
content ; 2) content fragmentation among several nodes to balance the load on the network;
3) encrypted reqular-expression-based search queries so as to hide what users are searching for
intermediate-forwarding nodes. This file-sharing system is based on a hash-tree structure. A file
is divided in multiple 1 Kb fixed-size blocks and different levels of indexation are used to main-
tain the file structure, including a file description and a keyword. Each block is encrypted and
then stored in different nodes through the entire system in order to balance the load. The main
disadvantage is that some blocks might be lost due to network churn, making it impossible to

47

Chapter /. Anonymous file-sharing networks: current approaches and monitoring techniques

reconstruct the entire file. The authors stated that the reduced size of the blocks makes their
replication almost costless. However, the downside is the high number of queries needed to re-
cover a file, which stresses the network. This hash-tree-based encoding is vulnerable to attacks
where an attacker processes a given file, obtaining the set of blocks. If he/she then compares
every seen block going through its GNUnet node with the set of blocks previously processed,
he/she can filter out that specific content, leading a limited form of censorship. Since the entire
system is designed to help users to introduce new content, the former attack is hard to avoid.

Kiigler [98] also exploited the encoding scheme previously mentioned, conducting a shortcut
attack, which is a variant of the intersection attack, in order to detect the initiator of a request.
By exploiting a routing optimisation, known as hot path routing, the author was able to de-
anonymise the initiator of a request (a download request for instance).

I2P anonymous file-sharing environment

Lastly, we consider the I2P’s anonymous file-sharing environment. Since the 12P anonymous
network has already been previously introduced, we only focus on its anonymous file-sharing
characteristics.

Unlike the previously mentioned file-sharing approaches, such as OneSwarm or Freenet, 12P
provides a secure layer for applications to communicate anonymously among themselves. On
top of this layer, different file-sharing applications were adapted to work with the concept of
destinations??, more like the censorship-resistant file-sharing protocol of GNUnet.

Three file-sharing clients are available within the I2P network: one Gnutella-based, named
I2Phex, one aMule-based, called iMule and one BitTorrent-like, named I2PSnark. We mainly
consider the I2PSnark because of its extended use within the system and, by contrast, the reduced
user-base of the two other file-sharing clients. [2PSnark is a BitTorrent-like client, operating on
top of I2P, maintaining every feature of BitTorrent-like clients. The only major difference is
that remote peers are identified through destinations. The BitTorrent’s tit-for-tat mechanism 3,
its piece selection algorithm, and every characteristic of the protocol are maintained within the
[2PSnark client.

Figure 4.9 shows the I2P BitTorrent-like file-sharing environment. On the one hand, ev-
ery user communicates anonymously with other users on the network via the underlying I2P
anonymising layer, leading to an anonymous content distribution scheme. As in the BitTorrent
network, different swarms are formed within the 12P anonymous file-sharing environment to
share content. On the other hand, there are different anonymous built-in trackers, as well as an
additional decentralised tracker, which allow content to be indexed within the system, result-
ing in an anonymous content indezation scheme. The built-in trackers act as normal BitTorrent
trackers, although they are contacted through the I2P network. The decentralised tracker is an
adaptation of the BitTorrent’s Mainline DHT, designed to work with the concept of destination
instead of IP address.

I2P thus enables a fully anonymous close file-sharing environment, including anonymous
content distribution and anonymous content indexation. It is a closed environment because it is
not possible to access content from the regular BitTorrent network, but only content previously
introduced in the I2P network. I2P BitTorrent-like users do not interact with public BitTorrent

22. A destination is the location-independent abstraction used by I2P to replace a tuple <IP address,port>. It
has been previously introduced in Subsection 4.2.3.

23. BitTorrent uses a tit-for-tat approach to implement an incentive mechanism to optimise download rates
[17].

48

4.8. Anonymous file-sharing approaches

t{'i&’ o et =
A
f 12P's I
| Mainline DHT |
| |
| |
| |
1
/
Anonymaous
BitTorrent Tracker
I12P Swarm

FIGURE 4.9 — I2P’s BitTorrent-like environment

users. Therefore, the decentralised tracker is exclusively composed of 12P BitTorrent users and
it only indexes I2P BitTorrent content.

Classification of anonymous file-sharing approaches

Figure 4.10 depicts our classification of the anonymous file-sharing systems reviewed in this
section. We focus on anonymous up-to-date file-sharing, ¢.e. the possibility to anonymously access
content in open file-sharing communities, like the BitTorrent network, which remain the major
sources of content.

Anonymous file-sharing Systems

T~

|Non—dedicated Systemsl I Fully dedicated Systems I
File-sharing over File-sharing through .
anonymizing layer VPN/Proxy Brightnets Darknets
(BitTorrent over Tor) (BTGuard)
2P filessharing
IOFF Systeml I OneSwarm l I Freenet I I GnuNet I E__EnLirﬂm_ﬂl__l

FIGURE 4.10 — Classification of anonymous file-sharing systems

Non-dedicated systems stand as a good option regarding content, since users can access open
file-sharing communities while preserving their online anonymity. However, these approaches,
such as using the Tor network to anonymise BitTorrent traffic, imply different anonymity risks,
leading to application-level identity leaks.

Fully dedicated anonymous file-sharing approaches can ensure strong anonymity for end-

49

Chapter /. Anonymous file-sharing networks: current approaches and monitoring techniques

users, such as the I2P file-sharing environment. This approach makes possible anonymous con-
tent indexation and anonymous content distribution, leading to a fully anonymous file-sharing
environment. Nevertheless, the amount of available content in the system is substantially less
important than in non-anonymous environments such as the BitTorrent network.

In this thesis, we focus on 12P’s file-sharing environment and propose a mechanism to enable
I2P users to access public BitTorrent content, while preserving their anonymity.

4.4 Monitoring anonymous networks

As Chaabane et al. [99] stated in their monitoring study, a shared belief in the research
community is that anonymous networks are used for the sake of freedom of speech and they
should therefore remain unexplored or uncharacterised, so as not to reveal sensitive information.
The authors later agreed on the fact that a monitoring study on anonymous environments would
help understanding the network and would thus represent a mandatory step in the growing
process of the system. We strongly agree upon this concept, as well as on the idea that any
anonymity system that leaks sensitive information about users through a monitoring study is
not mature enough and needs to be improved.

Monitoring an anonymous environment implies additional challenges when compared with a
normal monitoring: 1) participants in an anonymous network do not necessarily use the network,
but they might just forward traffic on behalf of the network ; 2) real users, such as file-sharers,
might not forward traffic, but they are still anonymous; 3) traffic is usually encrypted and a
passive monitoring might therefore not be adequate.

We focus on the monitoring of anonymous low-latency systems, mainly targeting the Tor
network and the I2P network. This section presents different monitoring studies on these net-
works. Our goal is to show which kind of information can be retrieved from a precise anonymous
environment, how that information is retrieved and which monitoring architectures are more ad-
equate when the network has a central directory, like the Tor network, or a distributed database,
like the I2P network.

4.4.1 Monitoring the Tor network

On the Tor network, we have two types of monitoring approaches: a low-resource monitoring

on the one hand, and a more aggressive approach, based on deep packet inspection on the other
hand.

Low-resource monitoring

As Tor is a volunteer-based network, it becomes easy to place a monitoring node. Since the
network is intended to route traffic to the Internet, an attacker can log every packet leaving
the mix-net through his/her exit node by placing a monitoring node as an exit node. This
feature, along with the fact that insecure protocols are used on the network, allows a low-resource
monitoring to be highly effective. Figure 4.11 shows a simplified view of the Tor network, including
relays, bridges, entry guard nodes and exit nodes, as well as all the possible monitoring points
in the infrastructure.

Most of the analyses on the way to monitoring the Tor network take advantage of Tor’s
main feature: enabling an anonymous access to the Internet, where ezit nodes are used. Another
required feature for an easier monitoring is the use of a central component, such as the Tor

20

4.4. Monitoring anonymous networks

Tor .
User '

Periodic
request X
1

.. [*m
-fE
Periodic User

I Central | reguest

Directory c d g ——————
|Birectoryy -t r Possible Monitoring 1

o Paints

FIGURE 4.11 — Monitoring points in the Tor network’s infrastructure

central directory, which can be publicly queried. Both of these features facilitate the networks’
monitoring.

One of the first monitoring studies on the Tor network was performed by Egerstad and
brought forward by different people [100, 101]. Egerstad obtained a large list of email credentials
for embassies and different corporate agencies around the world. His monitoring consisted in
placing a few exit nodes distributed worldwide, while logging every TCP packet that went in
and out of his nodes. Many Tor users do not encrypt the traffic they relay to the network and
therefore the last node in the anonymous path, i.e. the exit node, is able to log data packets in
a plain-text form.

McCoy et al. [102] conducted a traffic characterisation study of the Tor network. The authors
collected traffic regarding Tor clients, as well as exit traffic. By analysing the application layer of
the data packets exiting the network, they were able to characterise different applications using
Tor and showed that HTTP connections accounted for over 90% of the total detected traffic.
These results indicated that interactive web traffic represented the main use of the Tor network.
The authors additionally detected a considerable number of connections using insecure protocols,
like POP or FTP, which allows the operator of the exit node to log different users credentials,
1.e. the user’s names and passwords. Moreover, the Tor network defines entry guards, which are
nodes that are used for the first hop in a tunnel and are assigned by a central authority. By
having a node assigned as an entry guard, an attacker can monitor different clients using the Tor
network and determine their country of origin, for example.

Loesing et al. [103] also performed a statistical analysis on the Tor network, differentiating the
users’ country of origin and the port number of exiting traffic, where interactive web traffic was
the most detected traffic once again. On the one hand, to determine the users’ country of origin,
the authors considered all the statistical information collected by entry nodes and bridges?*,
which is uploaded to the central directories in a regular basis. That information consists in an

24. A bridge acts as a Tor relay, but it is not listed in the central directory, making more difficult to block it.
This feature helps censored users to connect to the Tor network when Tor relays are blocked.

o1

Chapter /. Anonymous file-sharing networks: current approaches and monitoring techniques

aggregation of users’ countries of origin and not in their IP addresses, which somehow preserves
a user’s anonymity. On the other hand, to determine the port number of connections, Loesing et
al. used a Tor exit node?® to measure the target port and the amount of incoming and outgoing
bytes per connection.

These previous research works clearly highlight the difference between privacy and anonymity.
The Tor network anonymises a user’s traffic by passing it through different nodes before it goes
out of the network and therefore the end of the communication cannot determine the user’s
real IP address. However, Tor does not encrypt nor authenticate the traffic outside the network.
If this data is in a plain-text form, the exit node can monitor the data passing through, thus
attacking the users’ privacy.

Mulazzani et al. [104] presented a simple statistical analysis on Tor servers, extending the
functionality of the TorStatus project?® to support long term measurements. The authors ar-
gued that having a detailed knowledge of Tor servers over time could help to detect anomalous
behaviours, such as a country-wide blocking (all Tor servers from a given country suddenly stop
working, for instance) or to improve the path selection algorithm (if the number of Tor servers
for a given country decreases, users from that country might opt to build longer tunnels for
example).

The use of the Tor network was approached from varied angles: McCoy et al., as well as
Loesing et al., aimed at characterising the network based on the geographical distribution of
users and the type of exiting traffic; Mulazzani et al. however conducted a more simple analysis
of the network, focusing only on Tor servers and their behaviour on the network.

Deep packet inspection

Chaabane et al. [99] conducted a more complex analysis on the Tor network by employing
Deep Packet Inspection techniques on six Tor exit nodes. The authors discovered that around 30%
of the total detected traffic was BitTorrent encrypted traffic which, along with the non-encrypted
BitTorrent traffic, it accounted for more than 50% of the total detected traffic, making BitTorrent
the biggest source of traffic on the Tor network. They additionally detected several Tor users
using a one-hop circuit to obtain a SOCKS proxy instead of a full three-hop Tor circuit, which
increases the throughput but greatly reduces the anonymity of the user. Finally, Chaabane et al.
were able to crawl the Tor network so as to detect Tor bridges, which are not officially listed in
the main central directory of the network. Their single-node crawler puts in evidence the lack
of protection against automatic crawling in the central directory regarding Tor bridges, which
reduces the purpose of non-listed Tor bridges.

4.4.2 Monitoring the I2P network

When considering the I2P network, the same techniques as in Tor cannot be applied due to
its lack of a central directory and exit nodes. The I2P network is a closed network in the sense
that no traffic leaves the network to the Internet. As previously mentioned, the I2P network is
optimised for anonymous hosting and therefore most of the generated traffic remains in the 12P
network.

There are two main statistical services for the I2P network. The first service, which is the

25. It is unclear whether a single node or multiples nodes were used in their study.
26. A project to maintain statistics about Tor servers, available at http://www.torstatus.net/. Last visited
on 08/2013.

52

4.4. Monitoring anonymous networks

official statistics portal 2, provides approximate values for the number of users on the network,

the number of applications deployed, as well as different parameters for 12P’s tunnels, such as
building success rates, building rejection rates and the number of average tunnels a normal 12P
user participates in. These values are obtained from a single floodfill node deployed by the authors
of the network. According to the number of current floodfill nodes in the network, the values of
a single floodfill are extrapolated to have total approximate values for the entire system. The
main issue with that service is that it only provides an estimation of the number of users and
not the type of applications deployed on the network. All statistical values are extrapolated and
therefore, only an estimated view is produced by this service.

The second service provides uptime statistics for I2P’s anonymous web sites ?8. This service
works by pooling all listed and known I2P eepsites to determine whether they are running or
they are down. This service only contacts the eepsites listed in 12P’s DNS-like service. If different
eepsites have been created but not added to 12P’s DNS-like service, they are not contacted and
are thus excluded from the monitoring.

4.4.3 Legals aspects on network monitoring

Whenever a monitoring study is carried out, it is necessary to consider its implications re-
garding a user’s privacy. By carefully monitoring, logging and analysing the network traffic,
several conclusions can be drawn concerning the users in the network. When it comes to anony-
mous networks, those implications become more critical and further ethical guidelines must be
considered.

This section introduces different aspects of anonymous network monitoring from a legal per-
spective. We consider that it is compulsory to take these aspects into account when monitoring
an anonymous environment since it might not only engender anonymity problems for the users
of the system but also for the researchers performing the monitoring.

Ohm et al. [105] showed that there was no special consideration nor safe harbours for aca-
demic research when conducting any kind of network monitoring and that it could therefore be
considered violation of privacy. The authors mainly focused on federal laws in the United States
but international were examined as well. The authors analysed tens of monitoring studies so as
to evaluated the extent to which researchers contemplated users’ privacy in their monitoring and
up to which degree they sacrificed research on behalf of privacy. They reached the conclusion
that due to the vagueness in the law??, several authors sheltered their studies in well-known
sentences like "we have anonymised the data and therefore it is not illegal” or "capturing only
headers does not imply a privacy violation". However, these affirmations are not sufficient to be
exempt of any further legal implications, and even if there is not any fixed set of rules of thumb,
Ohm et al. proposed different guidelines to minimise the liability, while conducting a monitoring
study: 1) capture only the data needed for the study; 2) distort the retrieved IP addresses if
possible; 3) if sensitive data (IP addresses, for instance) is stored, encrypt it whenever not used ;
4) restrict the monitoring to the smallest network required; 5) be aware of filtering tools that
might still keep the entire data packet on disk and 6) get a consent from users whenever possible.

This previous research work presented different aspects regarding the monitoring of non-
anonymous networks. Loesing et al. [103] gave a set of guiding principles in their statistical

27. Accessible at http://stats.i2p.in. Last visited on 08/2013.

28. Accessible at tino.i2p.in. Last visited on 08/2013.

29. Although United States federal laws were considered, many international laws have been harmonised through
conventions and treaties, as stated by [105], and therefore worldwide researchers can still find the authors’ con-
clusions highly valuable.

93

http://stats.i2p.in
tino.i2p.in

Chapter /. Anonymous file-sharing networks: current approaches and monitoring techniques

study on the Tor network, which could be taken into consideration when conducting a monitor-
ing study in anonymous networks. The authors considered that the legal requirements, i.e. the
involved laws, depended upon which country the monitoring was conducted in and, along with
the vague definition of these laws on the Internet community, it is eventually difficult to apply
them correctly. User’s privacy is one of the authors’” main concerns and they argue that mon-
itoring should not allow an attacker to extend its own logging capabilities. Finally, the ethical
approval is another important point to consider, while conducting a monitoring study, regarding
which Loesing et al. proposed to obtain informed consent from either the entirety of users on
the system or from an Institutional Review Board which, in the field of computer science, is not
always available.

When monitoring either a public network or an anonymous environment, certain aspects need
to be considered so as to preserve users’ privacy and comply with the applicable laws, while still
maximising the monitoring.

4.5 Conclusion

We reviewed different anonymous systems, mainly focusing on anonymous file-sharing en-
vironments. We showed that fitting anonymity by means of external anonymity services, like
anonymity layers or VPNs, could possible leak users’ online identity. Dedicated anonymous file-
sharing networks, on the contrary, ensure a strong anonymity for the end-user, but the lack of
content in these systems can discourage users seeking up-to-date anonymous file-sharing, like in
the case of the I2P’s anonymous file-sharing environment. In Chapter 6, we consider the intercon-
nection between anonymous and public file-sharing environments, aiming at improving content
availability in the I2P’s file-sharing environment.

We introduced different monitoring approaches regarding anonymous environments, where
the low-latency anonymous Tor network has been widely characterised. Its central directory
along with its ezit nodes allow a low-resource monitoring to be highly accurate. The anonymous
I2P network guarantees a strong anonymity for the end-user and has doubled its user-base in
the last year. Yet, there have not been any comprehensive studies of the system nor a proper
characterisation of it. Former monitoring techniques applied to the Tor network cannot be applied
to this network, mainly because of 12P’s lack of central directory or exit nodes. In Chapter 7, we
present the first monitoring study of the I2P network, while in Chapter 8 we introduce the first
study towards group-based characterisation in the I2P network.

The next chapter presents our work in the area of hybrid file-sharing networks and the way
we managed to improve the indexation of BitTorrent’s content via the Kad DHT.

54

Part 11

Hybrid Peer-to-Peer File-Sharing
Architectures

25

Chapter 5

Improving content indexation in the
BitTorrent file-sharing environment

Contents
5.1 Introduction ittt e 57
5.2 Comparison of DHTS . . . v v v v v v v v v v ot v v v vt a oo e s 58
5.2.1 Security comparisono 58
5.2.2 Performance comparison 60
5.3 The download algorithm of the BitTorrent and the Ed2k networks 63
5.3.1 Download time with oneseeder 63
5.3.2 Download time with ten seeders L. 64
5.4 A hybrid model with the BitTorrent and the Kad/Ed2k networks 64
5.4.1 An abstract hybrid model for file-sharing 65
5.4.2 An instantiation with the BitTorrent and the Kad/Ed2k networks . 66
5.4.3 The hMuleclient 68
5.4.4 Evaluation of the hMule client 70
5.5 Conclusion v v it ittt e e e e e e e e e 71

5.1 Introduction

Previous Internet studies [106, 107] reported that peer-to-peer (P2P) file-sharing applications
contributed significantly to all Internet traffic. Currently, the situation has changed in favour of
online streaming services, such as Youtube or Netflix [108]. However, in Europe 46% of the
upstream traffic is still generated by P2P file-sharing applications, while in North America it
accounts for the 42%, according to the same study. Therefore, P2P file-sharing applications
remain still in the top positions when it comes to Internet traffic.

Considering P2P file-sharing applications, BitTorrent is the biggest active application being
ranked first with millions of simultaneous users and available torrents. Legal issues involving
copyrighted data in the network have yielded to the closure of major centralised tracker sites,
such as The Pirate Bay or Mininova, leading to a decentralised architecture. This has accelerated
the evolution of the network towards a fully distributed approach offering the same features
as a central tracker. The BitTorrent network has two decentralised trackers, both based on the
Kademlia DHT, as presented in Subsection 2.3.4. The Mainline DHT tracker is the most deployed

o7

Chapter 5. Improving content indexation in the BitTorrent file-sharing environment

one, which has been embedded in most of the BitTorrent clients since 2006. Alternatively, a
second distributed implementation has been developed exclusively for the Vuze client (formerly
Azureus). Both decentralised trackers offer a single level of indexation, mapping torrent to peers,
which allow users to find sources to download a particular content. The main advantage over a
central tracker is availability, since in a decentralised tracker several peers store the information.
However, the level of security in these decentralised trackers is reduced, enabling different types
of attacks.

The eDonkey (Ed2k) network has ranked second [108] in the most used P2P file-sharing
applications, accounting for a third of all P2P file-sharing activity (BitTorrent accounts for the
remaining two-thirds). In 2004, the main client of the eDonkey network, namely the eMule client,
introduced a new fully decentralised P2P network called Kad, which was designed to be backward
compatible with eDonkey. Since the shutdown of the major eDonkey servers in the past years
due to legal drawbacks, Kad has gained popularity. Thanks to its fully distributed architecture
and the open-source nature of its clients (eMule and aMule), Kad has been widely studied
and improved, as detailed in Subsection 2.5.2. Being that the BitTorrent network is the most
used P2P application but its decentralised components have not been improved from a security
perspective, we argue that the BitTorrent network could easily benefit from the performance
and security features of the Kad network to index content. Additionally, Kad could benefit from
the performance of the BitTorrent download algorithm, thus both networks taking advantage of
their mutual collaboration.

This chapter introduces our hybrid file-sharing model, which is instantiated with both Bit-
Torrent and Kad/Ed2k networks. We first conduct an analysis of BitTorrent’s Mainline DHT 3°
and the Kad network and compare them from a performance and security perspective. Then,
we evaluate the performance of the download algorithm of BitTorrent and compare it against
the download algorithm of Ed2k network. Finally, we instantiate our abstract hybrid model with
these two networks and assess it through the implementation of a hybrid client called hMule.

5.2 Comparison of DHTs

We compare both DHTs, Mainline and Kad, from two different perspectives. On the one
hand, we need to determine the level of protection of both Kad and Mainline DHTs against
basic attacks. On the other hand, we assess whether the Kad DHT performs better in terms of
publication time and messages overhead than the Mainline DHT.

We used the aMule client version 2.2.6 for our analysis of the Kad DHT and the Vuze client
version 4.5 with its Mainline DHT plugin version 1.3.3.1 for our analysis of the Mainline DHT.

5.2.1 Security comparison

This section is organised as follows. Firstly, we evaluate the protection level of the Mainline
DHT against a basic routing table attack, which is the basis for more complex attacks. Secondly,
we bring forward a study of protection mechanisms in the Kad DHT, which prevent simple as
well as complex attacks in the network.

30. The Mainline DHT has been adopted by major BitTorrent clients, while the Vuze DHT is only employed
by a single client. Therefore, we only consider the former DHT for our comparative study. However, Crosby and
Wallach [60] showed that both DHTSs presented the same security properties.

o8

5.2. Comparison of DHTs

Assessing the security features of the Mainline DHT

In order to evaluate the security level in the Mainline DHT, we consider the attack described
by Steiner et al. [109], commonly known as a routing table poisoning attack, from a single
attacker. With this basic attack an single attacker can take control of a remote peer’s routing
table by adding several fake routing contacts. Successfully achieving that attack will prove that
the network is open to basic vulnerabilities, and more complex attacks can be easily performed.

Our first experiment consisted in positioning one Sybil per bucket. We conducted this attack
by sending several ping requests (equivalent to a hello request in the Kad DHT) to the same
target peer, using a unique IP address and different ports. A ping request contains the IP address
and port of the receiver and the ID of the sender. In our case, every ping message contained a
random ID. Figure 5.1(a) shows the number of contacts on the target peer’s routing table. Firstly,
we let the target peer bootstrap and reach a steady number of contacts, normally around 170
contacts. Secondly, we initiated the attack at the twelfth minute, where 160 ping requests were
emitted in parallel?!. As a result, the target peer’s routing table got filled with almost all these
fake contacts, reaching a total number of around 310 contacts. Because the target peer’s first
twenty buckets were already full with normal (not fake) contacts, new contacts could not be
added in those buckets.

350 T T T 800
300 | S o 700
o
12] o] I
S 250 F £ 600
8 S
5 O 500 -
O 200 2
— T F
5 150 o L 40
é ; 300 |
»
5 100 £ 200
4 2
SOF 1 100 No Protections —— |
0 | Number of Contacts —<— 0 Protections Enabled
0 5 10 15 20 0 5 10 15 20
Minutes Minutes

(a) Total number of contacts during the attack in the (b) Number of fake contacts during the attack in the
Mainline DHT (partial poisoning) Kad DHT (full poisoning). Reprinted from [7]

FIGURE 5.1 — Routing poisoning attack in the Mainline DHT & the Kad DHT

We performed a second experiment aiming at entirely filling each bucket, which means eight
fake contacts per bucket 2. Therefore, we sent 1280 (8 * 160) ping messages properly scheduled
to the target peer. Notwithstanding, only one fake contact succeeded to enter a bucket, because
the Mainline DHT does not allow two contacts in the same bucket to share the same IP address.
This feature protected the routing table from a full poisoning (eight fake contacts per bucket),
but not from a partial poisoning (one fake contact per bucket).

Security features in the Kad DHT

As previously mentioned in Subsection 2.5.2, Cholez et al. [7] studied the protections mech-
anisms of the Kad DHT, which have been progressively introduced in different versions of the
client. These mechanisms include a flood protection mechanism, an IP limitation mechanism and
a IP verification mechanism. A flood protection mechanism is achieved by keeping a history of
all data packets received in the last 12 minutes, so as to avoid peers sending a high number of

31. Since we have 160 buckets, we send one message per bucket.
32. Routing table’s description available at www.http://bittorrent.org/beps/bep_0005.html. Last visited on
08/2013.

99

www.http://bittorrent.org/beps/bep_0005.html

Chapter 5. Improving content indexation in the BitTorrent file-sharing environment

Clients Flood protection | IP limitation | IP verification
eMule 0.48a / aMule 2.1.3 No No No
eMule 0.49a / aMule 2.2.1 Yes Yes No
eMule 0.49b / aMule 2.2.2 Yes Yes Yes

The Mainline DHT No Partial No

TABLE 5.1 — Enabled protections for each client version. Reprinted from [7]

messages as well as unrequested messages. The IP limitation mitigates the Sybil attack from an
attacker owning a single public IP address by avoiding more than ten contacts from the same
/24 subnet. Finally, an IP verification avoids identity spoofing (both for IP address and node’s
ID) by introducing a three-way handshake before adding a contact.

Figure 5.1(b) shows the behaviour of the Kad DHT against a routing poisoning attack. When
there was no protection activated, the target peer’s routing table was completely filled with fake
contacts (full poisoning). However, when the target’s peer activated all three protections, no fake
contacts could be placed into its routing table.

Table 5.1 shows the different protections mechanisms in the Kad DHT (over the different
clients) and in the Mainline DHT. These protection mechanisms mitigate an attack from a single
IP address or from a /24 subnet. However, it could still possible to launch a distributed attack
using several IP addresses. Cholez et al. [110] additionally proposed an analysis of the distribution
of IDs in the Kad DHT, where the density of the IDs of peers is taken into consideration. Since
an attacker aims at placing several attacking nodes in a particular DHT zone, it increases the
normal density of nodes in that DHT zone and it can be therefore detected.

We have compared Kad and Mainline DHTs from a security perspective. The protection
mechanisms included in the Kad DHT make the network resilient to a simple, but highly effective,
routing poisoning attack, oppositely to the Mainline DHT, which is widely open to this simple
attack. We continue our analysis from a performance point of view, to complete our comparison
of both DHTs.

5.2.2 Performance comparison

For our performance analysis we consider three properties:

— Publishing time: How many seconds are required to publish a value in the DHT 7

— Overhead during publishing: How many messages are required to publish a value in

the DHT ?

— Lifetime of the stored information: How long does a previous stored value last in the

DHT?

We have chosen to measure the performance regarding how long it takes to publish a value,
but not how long it takes to search for it, since both operations are based on the same lookup
mechanism and are expected to be symmetric. The Kad DHT and the Mainline DHT use the
same routing procedure with a different request message for both, publishing and searching a
value.

Publishing time

Publishing a value is one of the basic functions in any DHT. It consists in finding the adequate
peers, i.e. the closest ones to the value, to later store the value. The time taken to publish a new

60

5.2. Comparison of DHTs

content is a good metric to measure the performance of the routing algorithm. An important
difference between Kad and Mainline DHTS is the number of nodes a value will be stored in. In
the Kad DHT a value is stored in the ten closest peers, while in the Mainline DHT a value is
stored in the eight closest peers. To measure the publishing time, we consider the time it takes a
full store in the Mainline DHT (in the eight closest nodes) and the time it takes to store a value
in the eight (instead of ten) closest nodes in the Kad DHT.

During a period of twenty-four hours, we published one-thousand random values (one value
per minute) in both DHTSs, and measured the time to publish. Figure 5.2 shows the average
time to publish for all published values. Both DHTs consumed between thirty and forty seconds
to store a value, where the Mainline DHT performed a bit faster. The Kad DHT includes a
fix three-second timer between the closest contacts are found and the actual publish request is
emitted. Steiner et al. [111] showed that this three-second timer can be reduced to half a second
without affecting the routing algorithm. Figure 5.2(b) depicts the time to published of the Kad
DHT without this timer.

60 — 60
Mainline —e— KAD —&—
KAD - Reduced timer ----m---
50 f 1 50 1
< =g
]]
5 40 1 g5 40 i
a /\ a e e, s, e e, . m o 2t
2 30 | — ""—0—‘—»/\/‘\./‘\}—4—0—'—»‘\ e | T e B
g g
8 20t 8 20}
7] [
9] %)
10 1 10
0 0
0 5 10 15 20 0 5 10 15 20
Hours Hours
(a) Time to publish in the Mainline DHT (b) Time to publish in the Kad DHT

FIGURE 5.2 — Time to publish in the Mainline DHT & the Kad DHT

Crosby and Wallach [60] conducted a performance analysis on the Mainline DHT, where
they measured the time to publish around 60 seconds. They analysis was performed based on
the Mainline BitTorrent client, while our analysis was performed using the Vuze client and its
Mainline DHT extension *?. Crosby and Wallach stated that different implementations of the
Mainline DHT had different performances, which is visible in this case.

Overhead during publishing

We also measured the number of routing messages required to publish a value in both DHTs.
Figure 5.3 depicts these values for both DHTs. The Kad DHT requires between 25 and 30
messages on average for each publication, while the Mainline DHT requires 40 messages on
average.

To publish a value, we require first to search for the closest nodes and then to instruct them
to store the value. This last part of the publishing process requires always the same number of
messages: if we have a set of eight closest nodes, then we will send eight messages, one for each
node. Therefore, the difference on the number of messages sent is due to routing messages to
find the closest nodes. Thus, the Mainline DHT produces more routing messages than the Kad
DHT.

As mentioned by Crosby and Wallach [60], the Mainline DHT implements the Kademlia

33. Plugin accessible at http://plugins.vuze.com/. Last visited on 08/2013.

61

http://plugins.vuze.com/

Chapter 5. Improving content indexation in the BitTorrent file-sharing environment

50 50

Mainline —e— KAD —o—

g 40 ""/\'/\/\\ . /'/\/—/ g 4
g | \ Z
i [- .
g 30 1 I e T] e,
@ 20 2 50 v
g g
[o
Z 10 z 1

0 0

0 5 10 15 20 0 5 10 15 20
Hours Hours
(a) Messages sent in the Mainline DHT (b) Messages sent in the Kad DHT

FIGURE 5.3 — Number of messages sent during the publishing process in the Mainline DHT & the Kad
DHT

protocol with a branching width®* of two, which only guarantees one bit closer at every lookup

step. For that reason, the Mainline DHT uses more messages to converge to the set of closest
nodes.

Lifetime of the stored information

Since churn is an intrinsic characteristic of DHTs, values previously published need a periodic
republishing or they might be otherwise lost. The information lifetime gives us an approximation
of the rate needed to maintain a value in the network. A DHT with a high churn rate requires a
higher republishing rate.

In order to measure the lifetime of information in both DHTSs, we kept the set of peers where
we initially published the thousand random values and periodically checked whether these peers
were alive or not. Figure 5.4 depicts the measured aliveness of these peers through time.

100 % 100 %

| Mainline —e— \ KAD —o—
80% f| 80% | n
) \ 1) X\
g \ g \
g 60% | g 60% "
o \ o e
> \ > ..
g 40% L s 40 % T
5 —- 5
2 \f“‘\\ N T o o o o o o o o
20 % R 1 20 %
DA SR S S o oo o |
0% ‘ ‘ ‘ ‘ 0% ‘ ‘ ‘
0 5 10 15 20 0 5 10 15 20
Hours Hours
(a) Alive peers in the Mainline DHT (b) Alive peers in the Kad DHT

FIGURE 5.4 — Percentage of alive peers in the Mainline DHT & the Kad DHT

Regarding the Kad DHT, we can observe that after the first 30 minutes, 84% of all peers are
alive, and after five hours only 50% are alive. Finally, after a whole day only 28% of all peers
are reachable. The Kad DHT adapts its publishing process accordingly by republishing keywords
every twenty-four hours and files after five hours. Keywords are republished by all peers sharing
files, and therefore a twenty-four hours republishing rate is suitable.

34. During the lookup process, a node finds systematically the closest nodes to store a value. The branching
width indicates how fast the lookup process converges.

62

5.8. The download algorithm of the BitTorrent and the Ed2k networks

The Mainline DHT has higher churn levels. After the first thirty minutes, only 41% of all
peers are alive. If we consider the initial set of eight nodes where a value is stored, it means
that after thirty minutes, only three nodes remain online, decreasing the probability of finding a
value. Finally, after twenty-four hours only 9% of the entire set of nodes is no longer reachable.
The analysis by Crosby and Wallach [60] presents the same results, where they defined as infant
mortality events those nodes that become unreachable after a short period of time. This explains
the sudden drop in the curve of aliveness in the Mainline DHT.

The Kad DHT outperforms the Mainline DHT in both aspects, security and performance.
This DHT includes three protection mechanisms to avoid different attacks, such as routing table
poisoning attacks. It also requires less messages to publish a value and the churn rate in the
network is lower when compared to the Mainline DHT.

5.3 The download algorithm of the BitTorrent and the Ed2k net-
works

The performance characteristics of the Kad DHT and its security features make it an excellent
DHT: its routing algorithm achieves good lookup times and it is resilient to most known attacks.
The churn level measured in the network is a key feature to take into consideration, since it
strongly affects the final performance, even though it does not depend on the DHT design itself,
but on users’ behaviour.

Although the DHT level is important, the final users are more sensitive to the performance
of the algorithm of download. The overall download can be overshadowed by a slow download
algorithm, even if the indexing process operates extremely fast and well.

In order to determine the performance of the algorithm of download of the Kad/Ed2k and
the BitTorrent networks, we measured how long it took for a Kad/Ed2k and a BitTorrent clients
to download a seven-hundred mega-bytes random file. Our experiment was deployed using the
PlanetLab testbed with a total of fifty distributed nodes. We considered a single-file download
for our experiments, since that is a normal condition in file-sharing environment, to download a
single file at a time.

We consider two cases, with one initial seeder and with ten initial seeders?>. For our experi-
ments we used the same clients as for the comparison of DHTs in Section 5.2.

5.3.1 Download time with one seeder

Starting with one initial seeder is the normal behaviour, since the original publisher initially
uploads itself as the only source and new peers eventually complete the download and become new
seeders. Figure 5.5 shows a comparison between BitTorrent and Ed2k clients. While BitTorrent
clients achieved a complete download of the file in 315 minutes, Ed2k clients achieved it in 745
minutes.

The algorithm of download of BitTorrent performs better and achieves, on average, a complete
download in 42% of the total time of a Ed2k client. It is normal that the total number of seeders
increases fast, therefore we conducted a second experiment with ten initial seeders and measured
the final time to download.

35. Despite seeder being a BitTorrent’s term, it represents in the Ed2k network a peer with the entire content.

63

Chapter 5. Improving content indexation in the BitTorrent file-sharing environment

100 % T T T T 100 %
o =]
& 8% & 80% |
c c
3 2
o o
O 60% 8 60%
k] S
[9] 123
[%] 173
e 40w} £ 40% |
ksl °
[=N o
g 20% | g 20%
o (8}
BitTorrent Clients —e— KAD/Ed2k Clients —e—
0% : : : 0% ko=t : : :
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Minutes Minutes

(a) Average time of download for BitTorrent clients (b) Average time of download for Ed2k clients with one
with one initial seeder initial seeder

FIGURE 5.5 — Time to download for BitTorrent & Ed2k clients with one initial seeder

5.3.2 Download time with ten seeders

New content tends to disseminate fast and new seeders become available in a short period
of time. We considered that ten initial seeders adequately represent non-popular content. Figure
5.6 depicts the results of the experiment. In this case, BitTorrent clients took 224 minutes to
complete the download, while Ed2k clients took 395 minutes in total. BitTorrent clients still
perform better, completing the download in 57% of the total time to download of Ed2k clients.

100 % 100 %
o o
8 80w S 80w
c <
3 3
j=] o
o 60% f O 60%
ks S
0 @
[%] 1%}
E a0% | £ 40%[
ksl k3l
[=N Q
§ 20%} E 20w}
o o
BitTorrent Clients —e— KAD/Ed2k Clients —=—
0% f { ! 0% L . . . i { L
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
Minutes Minutes

(a) Average time to download for BitTorrent clients (b) Average time to download for Kad/Ed2k clients
with ten initial seeders with ten initial seeders

FIGURE 5.6 — Time to download for BitTorrent & Ed2k clients with ten initial seeders

BitTorrent’s download algorithm overcomes Kad/Ed2K’s algorithm when it comes to a single-
file download, when 2% of the peers are seeders (1 source among 50 peers) and when 20% of
peers are seeders (10 peers out of 50). In both experiments, BitTorrent clients completed the
download in half of the time of Ed2K clients.

5.4 A hybrid model with the BitTorrent and the Kad/Ed2k net-
works

Our previous evaluation demonstrated that the Kad DHT outperforms the Mainline DHT
and includes different protections mechanisms. These mechanisms make the network resilient to
complex attacks, on the opposite to the Mainline DHT, which is open to a basic routing poisoning
attack. However, in a single-file download scenario, the algorithm of download of BitTorrent
performs faster than the Ed2k’s algorithm

64

5.4. A hybrid model with the BitTorrent and the Kad/Ed2k networks

According to these results, we consider a combined approach. This approach aims at im-
proving the indexation of content within the BitTorrent environment by using the Kad DHT
to index BitTorrent’s content, leading to a hybrid file-sharing network. In this section, we first
introduce an abstract and hybrid model for file-sharing. Then, we instantiate this model with the
BitTorrent network and the Kad/Ed2k network. Finally, we detail a hybrid client called hMule
serving as the interconnection point between these two networks.

5.4.1 An abstract hybrid model for file-sharing

Figure 5.7 shows a high-level view of our interconnection model. We consider two networks,
A and B, and an interconnection layer serving as the meeting point for users from both networks.
Hybrid nodes form this interconnection layer and are responsible for forwarding messages and
traffic between networks. Three types of interactions are possible: 1) among nodes from an
interconnected network and hybrid nodes; 2) among hybrid nodes; and 3) among nodes from
the same interconnected network.

Interconnection @ .

- @ .4— o
Iayer ,’1;. : T m S ' >' Inter-layer
/ Sl N7 X YO N - @ interaction
: v \
RSSO G L ae
Ve / /- \\.\ /A \ N\
// / /,f’ N \\ \
, 2 o \

® Hybrid-points
< - - :
>' interaction

-
N\
\
N\
N\
//
e
Q¥
L]

L 4
' ' Network-layer
7

J
fe—>
~o

\
\
~

@ interaction

Network A Network B

FIGURE 5.7 — Abstract hybrid file-sharing model.

Table 5.2 gives all the parameters of our hybrid model, to be defined when the model is

instantiated.

— The parameter interaction type indicates whether both networks’ users communicate
between each other (through the interconnection layer) or if the communication is only in
one way (from network A to network B, for instance).

— Hybrid nodes deployment denotes whether the hybrid nodes are deployed at the begin-
ning of the interconnection or they dynamically deployed on-demand.

— The number of hybrid nodes is directly related to the number of users in both networks,
the capacity of each hybrid node and the intended coverage of the interconnection, as
denoted in Equation 5.1. U, and U, indicates the number of users in networks A and
B respectively, while C, and C} represent the number of users a single hybrid node can
manage in networks A and B, respectively. IC indicates the intended coverage and can
take values in the range [0,1]. A value of one specifies that we want to interconnect every
node in both networks at the same time.

nb_hybrid_nodes = MAX([U,/C,.]|,[Uy/Cy |) * IC (5.1)

65

Chapter 5. Improving content indexation in the BitTorrent file-sharing environment

‘ Parameter name

Type of value

Description ‘

Interaction type

Unidirectional /Bidirectional

Unidirectional (A->B or B->A)
or Bidirectional (A<->B)

Deployment of hybrid nodes

On-demand /Fix

Are hybrid nodes deployed dy-
namically 7

Number of hybrid nodes

Numeric value

How many hybrid nodes do we
need ?

Protocol translation Yes/No Do networks A and B use the
same protocol 7
Interaction of hybrid nodes Yes/No Do hybrid nodes interact among
themselves 7
Type of hybrid node Passive/Active Are hybrid nodes detectable by

non-hybrid nodes ?

TABLE 5.2 — Parameters of the hybrid model

— A protocol translation is needed when both interconnected networks operate under
different protocols, such as different file-sharing networks.

— The interaction of hybrid nodes is useful to exchange network and control messages. This
interaction can improve the interconnection, but it increases the load among hybrid nodes.

— Finally, type of hybrid node indicates whether these nodes are perceived as different
nodes on both networks A and B and therefore users are aware of the these hybrid nodes;
or hybrid nodes behave and operate exactly as normal nodes, thus being unidentifiable by

the users.

5.4.2 An instantiation with the BitTorrent and the Kad/Ed2k networks

Figure 5.8 introduces a high-level-view of this hybrid scenario, including the Kad DHT and the
BitTorrent’s algorithm. A user queries the first level of indexation of the Kad DHT with different
keywords to search for the desired content. Once the particular content (and its associated hash
value) has been chosen, the user queries the second level of indexation of the Kad DHT to retrieve
the list of sources for that content. This list of sources enables the user to join a particular
BitTorrent swarm and download the required file through the BitTorrent’s algorithm. All these
steps are summarised in Table 5.3.

Steps Description Input Output
1 Retrieve a set of possible content and select one | Keywords | Hash
2 Retrieve a list of sources for that Hash Hash Sources
3 Join the BitTorrent swarm Sources File

TABLE 5.3 — A hybrid content indexation/distribution mechanism.

Whenever a file has been downloaded through the normal BitTorrent network, it is published
automatically into the Kad DHT. Thus, BitTorrent content becomes indexed in the Kad DHT,
enabling users to publish or search torrents by keywords, a missing feature in the BitTorrent’s

decentralised trackers.

66

5.4. A hybrid model with the BitTorrent and the Kad/Ed2k networks

Keywo'rdsJ File ‘

[4 ®
- Protections mechanisms - Tit-for-Tat algorithm
- Double-indexation - Piece selection algorithm
KAD DHT BitTorrent Swarm

' 1

I | &

!- _____ Source | l

— > Wk + |

FIGURE 5.8 — BitTorrent-Kad/Ed2k hybrid approach

We instantiate this high-level-view scenario with our abstract model. Figure 5.9 depicts the
instantiation of our model with both BitTorrent and Kad/Ed2k networks, where the intercon-
nection layer is formed by hybrid nodes called hMule.

Interconnection “
layer Y

Ma_inline I
DHT

KAD/Ed2k Network BitTorrent Network

FIGURE 5.9 — Instantiation of our hybrid model with the BitTorrent and the Kad/Ed2k networks

The hMule client is the meeting point for both networks and implements the three-step pro-
cess depicted in Figure 5.8. HMule is able to search in the Kad DHT for BitTorrent content based

67

Chapter 5. Improving content indexation in the BitTorrent file-sharing environment

on different keywords. Once the content has been found, it is downloaded using the BitTorrent’s
algorithm. Thus, hMule users can benefit from a secure and keyword-based indexing mechanism
while using the BitTorrent’s algorithm. Besides being able to exploit both networks, hMule clients
are backward compatible and can connect to normal BitTorrent clients and download content
from the pure BitTorrent network, as well as connect to normal Kad/Ed2k clients and download
content from aMule/eMule clients.

Table 5.4 introduces the values for each of the parameters of the hybrid model for file-sharing.

Firstly, hMule clients are able to access the Mainline DHT and download content from the
normal BitTorrent network. Once this content has been downloaded, it is automatically published
in the Kad DHT, where remote aMule/eMule clients can search for it and download it through
the hMule client (using the Ed2k’s algorithm). Secondly, hMule clients can download content
from the Kad/Ed2k network and publish it in the Mainline DHT, where normal BitTorrent
clients can access it and download it from the hMule client (using the BitTorrent’s algorithm).
This is the best option to maintain a backward compatible client, while introducing our hybrid
model. So, the Interaction type is bidirectional interaction.

Hybrid nodes are deployed by users, fully controlling the client. Users can start or stop the
hMule client by themselves, leading to an on-demand deployment process. Therefore, it is not
applicable to define a number of required hybrid nodes to support the interconnection, since
there is no central coordinator to manage the interconnection.

Traffic do not flow from one network to the other one directly. The hMule nodes keep the
content and make it accessible to both networks. So, a protocol translation is not required.

HMule nodes interact among themselves through the BitTorrent’s algorithm to share BitTor-
rent content. Even if hMule nodes implement the Ed2k’s algorithm, they always use BitTorrent’s
algorithm to share content among themselves.

Finally, hMule nodes are passive nodes. Normal aMule/eMule clients, as well as normal
BitTorrent clients, cannot identify hMule nodes when interacting with them.

‘ Parameter ‘ Value ‘

Interaction type Bidirectional
Hybrid nodes deployment On-demand
Number of hybrid nodes | Not Applicable

Protocol translation Not Applicable
Hybrid-nodes interaction Yes

Type of hybrid node Passive

TABLE 5.4 — Parameters of the instantiation for the BitTorrent and the Kad/Ed2k networks

We defined the parameters to maximise the characteristics of both networks. We maintain
a fully backward-compatible client, where BitTorrent and Kad/Ed2k clients can interact with
hMule clients without any modifications.

5.4.3 The hMule client

The hMule node is the interconnection point between both the BitTorrent and the Kad/Ed2k
networks, improving the indexation of content in the BitTorrent environment. Users are required
to use this hybrid client to profit from our improved three-steps indexing mechanism, while still
being able to access the BitTorrent and the Kad/Ed2k networks, resulting in a fully backward-

68

5.4. A hybrid model with the BitTorrent and the Kad/Ed2k networks

compatible client. The development of the hMule client was done in collaboration with Damian
Vicino [112].
We now describe the implementation of the hMule client and its main characteristics.

Implementation of the hMule client

HMule is a modular C++ implementation, where we extend the aMule client to support the
BitTorrent’s algorithm as an additional algorithm to download. The aMule % open-source client
was employed due to its modular architecture and its Linux-based implementation.

LibTorrent-Rasterbar 37 is the library used to support the BitTorrent functionality owing to
its high-level interface to manage download sessions and individual torrents and peers. Addi-
tionally LibTorrent-Rasterbar supports a wide set of BitTorrent extensions, such as access the
Mainline DHT, BitTorrent’s metadata exchange3®, UPnP and IP filters.

The strategy to download and the hMule’s referee

HMule uses both BitTorrent and Ed2k algorithms to connect to both networks. Whenever an
hMule client intends to download content from the Kad/Ed2k network, it searches in the Kad
DHT for content’s sources. These sources can be, either normal aMule/eMule clients or hMule
clients.

If the list of sources contains only aMule/eMule clients, the hMule client uses the original
Ed2k’s algorithm. However, if among the retrieved sources there are other hMule clients, the
hMule client connects only to these hybrid clients and download the content using the BitTor-
rent’s algorithm. This procedure is made by a component called referee, which decides to which
remote sources connect to.

The diagram of sequence 5.10 depicts this interaction. The hMule client retrieves a set sources,
both aMule/eMule and hMule clients from the Kad DHT. It then requests the content’s filename,
where each remote source responds with the filename. Remote hMule sources will respond addi-
tionally with the BitTorrent’s infohash identifier of the content.

Once the hMule client has received a response from every remote source, it evaluates if the
number of hMule clients accounts for more than a predefined threshold 3. If so, the hMule client
decides to download the content using the BitTorrent’s algorithm and request the torrent file
from the remote hMule clients. If the threshold is not reached, the hMule client downloads the
content from the aMule/eMule sources. Thus, hMule dynamically decides whether to use the
BitTorrent’s algorithm or Ed2k’s algorithm.

Conversion of hash identifiers

The Kad DHT uses the MD5 hashing function and therefore 128-bit identifiers are employed
to index keywords and files. On the contrary, the Mainline DHT uses the SHA-1 hashing func-
tion and hence 160-bit identifiers. A problem arises when an hMule client publishes BitTorrent
content, which contains a 160-bit identifier, into the Kad DHT, which uses a 128-bit identifier.

Before publishing BitTorrent content into the Kad DHT, the hMule client hashes the original
160-bit identifier of the Mainline DHT with the MD5 function, obtaining the required 128-bit

36. http://sourceforge.net/projects/amule/. Last visited on 08/2013.

37. http://www.rasterbar.com/products/libtorrent/. Last visited on 08/2013.

38. http://bittorrent.org/beps/bep_0009.html, Last visited on 08/2013.

39. Preliminary tests were conducted with a threshold of 50%, indicating that if half of the remote sources are
hMule clients, then the content is downloaded through BitTorrent’s algorithm.

69

http://sourceforge.net/projects/amule/
http://www.rasterbar.com/products/libtorrent/
http://bittorrent.org/beps/bep_0009.html

Chapter 5. Improving content indexation in the BitTorrent file-sharing environment

hMule Client KAD DHT Remote hMule Client Remote aMule/eMule Client

loop [FOR EACH Source]
alt [IF HMULE]

EdZ2k.getFileName{hash) »
>

Ed2k filename

BitTorrent.infoHash

A A

[NOT HMULE]

Edzk.getFileName(hash)

>
Ed2K filename | |

4
+

alt [HMULE SOURCES > Threshold]

BitTorent.getTorrentFile (infoHash)
>

BitTorrent.torrentFile |

4
<+

BitTorent.requestContent(infoHash)
>

" BitTorrent.content |
<

[ELSE]

Ed2k.getContent (hash)

»
Edzk.content | |

4
<4

hMule Client KAD DHT Remote hMule Client Remote aMule/eMule Client

FIGURE 5.10 — The adaptive download mechanism of hMule

Kad identifier. This mapping is locally maintained by the hMule client and persisted through
different sessions. Whenever the hMule client receives a filename’s request for a given Ed2k’s
hash, it searches in its local map for the hash to determine whether it has been previously
computed from a Mainline DHT’s infohash. If so, it can additionally answer the request with the
Mainline DHT’s infohash.

This mapping solves the main incompatibility problem between the identifiers of the Mainline
DHT and the Kad DHT. It only requires a extra message to communicate the Mainline DHT’s
infohash, which is implemented as an extension of the eMule protocol. The mapping between
hash identifiers is extremely light in terms of memory use, with barely thirty-five kilobytes for a
list of one-thousand <Ed2k’s identifier, Mainline’s identifier> pairs.

5.4.4 Evaluation of the hMule client

The hMule client is part of the hMule project 4, is fully implemented and freely accessible
under GPL license.

The client has been deployed on the PlanetLab tested to corroborate the right integration in
both BitTorrent and Kad/Ed2k networks. We successfully downloaded non-copyrighted content
from the BitTorrent network, and published it into the Kad DHT, where further hMule clients
downloaded it using the BitTorrent’s algorithm. Additionally, aMule clients were able to search
and download this content from hMule clients, using the Ed2k’s algorithm.

We did not modify the algorithms of download and therefore they are expected to perform
as previously measured. The process of indexation of the Kad DHT was not modified and there-

40. The hMule project is accessible at http://hmule.gforge.inria.fr/.

70

http://hmule.gforge.inria.fr/

5.5. Conclusion

fore it behaves as previously shown. Table 5.5 positions our hybrid model with the reviewed
interconnection models presented in Chapter 3. Our model in the only model considering widely
deployed file-sharing networks and their dynamic topologies. We use an ad-hoc overlay to organise
our hybrid nodes, a common denominator in hybrid interconnection models.

Use General use | Org. models Peer-to-peer file-sharing
Model Synapse Yang’s Lloret’s Konish’s Fu’s hMule
scheme scheme scheme extension
Interaction | Synapses N/A Super Cooperative| Shared Hybrid
compo- (Bridges) nodes peers Peers nodes
nent
Organisa- ad-hoc 2-Tiers 2-layers ad-hoc ad-hoc ad-hoc
tion overlay (Struc- /ad-hoc | overlay overlay overlay
tured& overlay
unstruc-
tured)
Deploy- Sim. Sim. (No | Sim. (No | Sim. (No | Sim. (No | Real net-
ment (With Churn) Churn) Churn) Churn) works
Churn)
Topology Dynamic N/A Random Barabasi- Kazaa BT/Ed2k
Albert topology | topology
(1000
nodes)
Multi pro- | Yes No Undefined | No Yes, but | Not ap-
tocol untested plicable
Start of | Network Network Network Network Local de- | On-
intercon- decision decision decision decision cision demand
nections

TABLE 5.5 — The hMule hybrid model compared with existing interconnection models

5.5 Conclusion

In this chapter we presented a comprehensive study of the Mainline DHT and the Kad DHT
from a security and performance perspective. We further compared BitTorrent’s algorithm and
Ed2k’s algorithm in a single-file download scenario.Through real-world experiments we put in
evidence the lack of protections mechanisms of the Mainline DHT against basic attacks and
demonstrated that the Kad DHT is resilient to the same attacks. Our experiments showed that
BitTorrent’s algorithm is approximately twice as fast than Ed2k’s algorithm when considering a
real-world single-file download scenario.

We analysed and proposed a hybrid approach for file-sharing, which uses the Kad DHT
to index content and the BitTorrent’s algorithm to download it. Our hybrid model is the first
interconnection model to consider widely deployed file-sharing networks. We instantiated our
model through a fully backward-compatible file-sharing client called hMule. This client enables
a user to index BitTorrent content in the Kad DHT, still enabling the user to connect to both
networks individually. The hMule client is fully implemented and freely accessible.

71

Chapter 5. Improving content indexation in the BitTorrent file-sharing environment

The next chapter presents the interconnection of anonymous and non-anonymous file-sharing
environments. We use the same abstract model presented in this chapter, and we instantiate it
with the anonymous I2P network and the BitTorrent network.

72

Chapter 6

Improving content availability in the
I2P file-sharing environment

Contents
6.1 Introductionttt 73
6.2 Content availability in the I2P network 74
6.3 Interconnecting the I2P and the BitTorrent networks 75
6.3.1 A hybrid file-sharing model for the BitTorrent and I2P networks . . 75
6.3.2 Operation and interaction of BiTIIP clients 77
6.3.3 Interconnection layer’s anonymity, 79
6.4 Evaluation of the BiTIIP client 79
6.4.1 Download performance of the I2P network 80
6.4.2 A single BiTIIP client 80
6.4.3 Multiples BiTIIP clients 81
6.4.4 The connectME project 82
6.5 Conclusiont i i it ittt e 82

6.1 Introduction

Peer-to-peer file-sharing applications generate an important part of current Internet traffic,
where the BitTorrent network produces, in average, a third of all European upstream traffic.
Currently, the BitTorrent network hosts several millions of torrents and users simultaneously,
making it the biggest content peer-to-peer delivery community.

Additionally, anonymous communications have been constantly increasing and Internet users
are shifting to a privacy-preserving Internet. Users realise the importance of maintaining a certain
degree of anonymity when accessing the Internet so as to keep their online ideas and their real
identities separated. In anonymous communications, anonymous file-sharing whose goal is to
maintain a user’s identity hidden and avoid censorship or file-sharing profiling through data
mining, while downloading different content.

However, and despite the wide range of anonymous file-sharing options, the available content
on these systems is reduced and often out-dated. Public communities, on the other hand, are
still the biggest source of content. Therefore, the problem becomes to anonymously access public
content.

73

Chapter 6. Improving content availability in the I2P file-sharing environment

This chapter presents a hybrid approach for the BitTorrent and I2P networks, aiming at
improving content availability in the anonymous I2P BitTorrent-like file-sharing environment.
We propose a fully anonymous file-sharing environment, where content indexation, as well as
content distribution are anonymous. We firstly show that I2P’s file-sharing environment suffers
from a considerable lack of content, barely containing 1% of all BitTorrent’s available content.
Secondly, we instantiate our abstract hybrid model presented in Subsection 5.4.1 with both
BitTorrent and I2P file-sharing networks. Finally, we evaluate our instantiation through the
implementation of a hybrid client, called BiTIIP, which allows I2P file-sharing users to access
public BitTorrent content.

6.2 Content availability in the I2P network

It seems normal that popular content gets available first in public communities than in anony-
mous networks, mainly when considering content such as Movies, TV shows, Games or Music.
Users download content from public file-sharing networks and then introduce it in anonymous
file-sharing communities. Inevitably, the amount of content available in anonymous file-sharing
environments should be considerably lower than in public communities. In order to assess the
lack of content in the I2P anonymous file-sharing environment, we conducted a thirty-day mea-
surement to determine the rate of new content introduced per day in the public BitTorrent
community, and in the I2P file-sharing community.

We considered Torrentz 4!, a major meta-search engine for BitTorrent content, which indexes
torrent from various torrent sites, including The Pirate Bay *? and BitSnoop*3. Regarding 12P,
we used the Postman tracker**., which is the biggest BitTorrent tracker available in the I2P
network.

10000
1000 WW
%)
<
g
° 100 ¢
H
z P
A n A
10 %o A n " o B ' i
- . LRV L ."/1---\
.. SN N ! Y
SN e, Torrentz —e—
Postman ----s---

1
25/06 29/06 03/07 07/07 11/07 15/07 19/07 23/07
Days

FIGURE 6.1 — New content introduced in the BitTorrent and the I2P file-sharing networks

Figure 6.1 depicts the amount of new content introduced every day in the BitTorrent public
community and in the [2P Postman tracker. There are, in average, 720 new torrents in Torrentz
and roughly 8 new torrents in the Postman tracker every day. We can also observe that Torrentz
presents a more stable rate of new torrents per day, as opposed to the Postman tracker, where
we can notice different peaks, most of them close to weekends (29/06, 07/07, 14/07 and 20/07).

41. http://torrentz.eu/. Last visited on 08/2013.

42. http://thepiratebay.sx/. Last visited on 08/2013.

43. http://bitsnoop.com/. Last visited on 08/2013.

44. http://tracker2.postman.i2p/. Last visited on 08/2013.

74

http://torrentz.eu/
http://thepiratebay.sx/
http://bitsnoop.com/
http://tracker2.postman.i2p/

6.3. Interconnecting the I2P and the BitTorrent networks

Trackers | Movies | TV Shows | Games | Music Total
Torrentz | 21.11% 47.45% 8.27% | 23.15% | 21648
Postman | 48.30% 18.22% 2.96% | 30.50 % | 236

TABLE 6.1 — Categories of new content in the BitTorrent and the I2P file-sharing networks

We took into account four main content categories for our measurement: Movies, TV shows,
Music and Games. Table 6.1 shows the amount of new content per category for every tracker
and the total number of torrents measured. Barely the 1% of the torrents in Torrentz are present
in the Postman tracker. Moreover, Torrentz reported 19 million active torrents, while the Post-
man tracker reported around 12000 active torrents. Even though the effort of different users to
introduce BitTorrent content into the I2P network, we can assert the lack of new content in the
I2P file-sharing environment.

We propose an on-demand mechanism, enabling 2P users to access BitTorrent content. The
next section presents our interconnection model for the BitTorrent and I12P networks.

6.3 Interconnecting the I2P and the BitTorrent networks

We showed that the available content in the I2P file-sharing environment is reduced. We
bring forward an interconnection scheme for both BitTorrent and I2P file-sharing networks,
aiming at improving the content availability in the latter. Thus, we enable a fully-anonymous
content distribution scheme, which includes anonymous content indexation as well as anonymous
content distribution.

Interconnecting anonymous and non-anonymous environments needs to take into considera-
tion which components of the interconnection have to be anonymous and which not. As previously
mentioned in Subsection 4.2.1, the anonymity of a subject is the impossibility to discriminate
the subject among a set, called the anonymity set. Unlinkability refers to the impossibility to
link together two items of interest (e.g. a message to a user, for instance) from an attacker’s
point of view.

Hence, our main design goal for the BitTorrent-I2P interconnection is twofold. On the one
hand, we aim at maintaining the anonymity of an I2P user, defined as UA;, while interacting
with a BitTorrent user, defined as UB;j, for the anonymity set defined in 6.1. On the other hand,
we seek the unlinkability between an anonymous I2P user and the content he/she is downloading.
From an attacker’s point of view, it implies that it is not possible to bind successfully an 12P
user with a public BitTorrent download.

anonymity_set = {UA;,UB;}, Vi,j (6.1)

In this section, we first instantiate our abstract model for file-sharing, defined in Subsection
5.4.1 and its parameters accordingly. Then, we detail the hybrid client BiTIIP and its operation.
Finally, we consider the components’ anonymity of our model and their characteristics.

6.3.1 A hybrid file-sharing model for the BitTorrent and I2P networks

The BitTorrent network, as well as the I2P file-sharing network, are swarm-based, where
different users share a particular content on the same file-oriented peer-to-peer network. Different
swarms form the entire file-sharing network, where a user can take part in more than one swarm

75

Chapter 6. Improving content availability in the I2P file-sharing environment

at a time. We consider the interconnection among anonymous and non-anonymous swarms, thus
we have different interconnections for different swarms.

Figure 6.2 introduces every component of our interconnection model. The interconnection
layer is composed of hybrid nodes called BiTIIP. I2P users from a particular swarm interact
with BitTorrent user from another swarm through our BiTIIP clients, thus forming a unique
swarm and sharing the same content.

In our interconnection design, an 12P user needs to request specifically the BitTorrent content
to download. This procedure is achieved in a single step in our design. The I2P user needs to
request in our interconnection’s eepsite *, called connectMe.i2p, the desired BitTorrent content
(through a magnet link or a torrent file) to download. With this single step, a new BiTIIP client
will be started to respond to this demand and allows the I2P user to access the desired BitTorrent
content. The new BiTIIP client will index the requested content in the I2P’s Mainline DHT and
in this way, the I2P user can subsequently query the 12P’s Mainline DHT and find the content.

Interconnection

BitlIP BitlIP BitlIP
layer o ' i

\ \BT'S [r\)ﬂ:_irnline
(cl—(ch
ST

o —

connetMe.i2p
I2P Swarm BitTorrent Swarm

FIGURE 6.2 — Instantiation of our hybrid model with the BitTorrent and the I12P networks

A BiTIIP client connects to both BitTorrent and I12P swarms and allows the I12P users to
access BitTorrent traffic, while enabling BitTorrent clients to request different pieces®® of the
content being downloaded from the I12P side. Therefore, we consider a bidirectional interconnec-
tion, since BiTIIP clients forward traffic from the BitTorrent network to the I2P network and
vice-versa.

One important feature of our design is that every interconnection is started on-demand. The
first 12P user willing to download a particular BitTorrent content will request it in our eppsite
and a new BiTIIP client will be started. Once an interconnection has been started, further I12P
users requesting the same BitTorrent content in the eepsite will be notify that the content has
already been requested and therefore is already accessible in the I2P network.

A BiTTIP client has a limited capacity in terms of connections to remote clients. We analysed
the code of different BitTorrent clients and determined that the maximum number of connections
oscillates around one-hundred connections. We consider this value as the capacity for each BiTTIP

45. I2P enables anonymous web sites called eepsites. These have been previously presented in Subsection 4.2.3.
46. BitTorrent content is divided into fixed-size pieces for download, where clients request the pieces one-by-one
as specified at http://bittorrent.org/beps/bep_0003.html. Last visited on 08/2013.

76

http://bittorrent.org/beps/bep_0003.html

6.3. Interconnecting the I2P and the BitTorrent networks

client, 7.e. how many users a BiTIIP client can manage in every swarm and therefore in Equation
5.1 we have C, = C, = 100. However, current top BitTorrent swarms have more than ten-
thousand users *7, while I2P swarms barely have one-hundred users*®. For this reason, we only
consider an interconnection between an I2P swarm and a fraction of a BitTorrent swarm *°, thus
applying the intended coverage (IC) parameter only to the smallest swarm, the 12P swarm. As
a result, equation 5.1 becomes nb_hybrid_nodes = [Uj,/100]| * IC.

The I2P and BitTorrent network use different protocols. The I12P network uses destinations
instead of tuples <IP address, port number> and tunnels to support its anonymous communi-
cations. Therefore, BiTIIP clients need to translate I2P messages into BitTorrent messages and
vice-versa.

In our instantiated interconnection model, BiTIIP clients do not interact among themselves
to perform control operations nor to share pieces. BiTIIP clients do not hold the downloaded
content, but just forward it. Every request to a BiTIIP client is forwarded and not resolved on
the client. Connections between BiTIIP clients will only increase the load in the interconnection
and therefore are not allowed.

Finally, BiTIIP clients behave exactly as BitTorrent clients in one side and I2P users in the
other side, and therefore they are undetectable for the rest of the users. Table 6.2 summarises
all the parameters of our instantiation for the I2P and BitTorrent networks.

‘ Parameter ‘ Value ‘

Interaction type Bidirectional
Hybrid nodes deployment On-demand
Number of hybrid nodes | [Ujo,/100] * IC

Protocol translation Yes
Hybrid-nodes interaction No
Type of hybrid node Passive

TABLE 6.2 — Defined parameters for the hybrid model instantiated for the BitTorrent and the 12P
networks

This instantiation enables a full anonymous file-sharing environment. The indexation of the
content is performed through the 12P’s Mainline DHT, while the distribution of the content is
achieved by means of the use of BiTIIP clients. The next section introduces how the BiTIIP
clients operate and their interaction with I2P users.

6.3.2 Operation and interaction of BiTIIP clients

BiTTIP clients are dynamically started and deployed based on requests from the I12P users.
Whenever an 12P user wants to download BitTorrent content, he/she needs to contact our eepsite.
The sequence diagram 6.3 depicts the interaction between an I2P user and our eepsite.

The first step is to request the content in our eepsite using a magnet link or a torrent file. If
the content has already been requested by other I2P user, i.e. a BiTIIP client has already been
started, the eepsite notifies the I2P user that the content is already available. If the content is

47. Statistics available at http://torrentz.eu/. Last visited on 08/2013.

48. Statistics available at http://tracker2.postman.i2p/. Last visited on 08/2013.

49. We are aiming at introducing BitTorrent content into the I2P network and therefore we do not require to
interconnect all BitTorrent users.

7

http://torrentz.eu/
http://tracker2.postman.i2p/

Chapter 6. Improving content availability in the I2P file-sharing environment

connectME BiTIIP Client BT's Mainline DHT Remote BitTorrent Client 12P's Mainline DHT

Start (content)

I,

1

loop [Connect to Sources

Connection (content)

.

OK

Announce (content)

2)

OK

OK

4
*

connectME BiTIIP Client BT's Mainline DHT Remote BitTorrent Client 12P's Mainline DHT

FIGURE 6.3 — Interaction between an I2P user and the connectMe.i2p eppsite

being requested for the first time, the eepsite notifies the users that a new BiTIIP client has been
created.

The second step, performed by all I2P users, is to search the I2P’s Mainline DHT for content’s
sources. In the event the content has already been requested, the I2P user will retrieve not only
a BiTIIP client but others I2P users sharing the content.

The sequence diagram 6.4 depicts the interaction between our eepsite and BiTIIP clients.

connectME BiTIIP Client BT's Mainline DHT Remote BitTorrent Client 12P's Mainline DHT

Start (content)

1

loop [Connect to Sources

I,

(2)

Connection (content)

OK

h 4

Announce (content)

h 4

Sources

OK

4
4

connectME BiTIIP Client BT's Mainline DHT Remote BitTorrent Client 12P’'s Mainline DHT

FIGURE 6.4 — Interaction between connectMe.i2p and a BiTIIP client

When the connectME.i2p eepsite receives a request message and no interconnections exist, a
new BiTIIP client is started (1). The BiTIIP client will search the BitTorrent’s Mainline DHT

78

6.4. FEvaluation of the BiTIIP client

for BitTorrent sources, and will connect to all retrieved sources to join the BitTorrent swarm
(2). Finally, the BiTIIP client will index the requested BitTorrent content in the I2P’s Mainline
DHT. This last step allows I2P users to find sources for the requested BitTorrent content.

6.3.3 Interconnection layer’s anonymity

We define an interaction between anonymous and non-anonymous environments, where our
design goal is to maintain the anonymity of users in the I2P network. It also implies to maintain
the unlinkability between an anonymous I2P user and a BitTorrent download.

As mentioned in Subsection 4.2.3, I2P uses unidirectional tunnels to ensure anonymous com-
munications, where every user defines his/her own tunnels and therefore his/her own tradeoff
between anonymity and performance: shorter tunnels achieve better performance but guarantee
less anonymity on the contrary to longer tunnels.

Alice uses its own tunnels to connect to remote BiTIIP clients as depicts in Figure 6.5 and
therefore her communications remain anonymous. BiTIIP clients use a -hop tunnel configuration
to connect to remote I12P users. They reduce their anonymity but increase their performance. As
BiTIIP clients connect directly to BitTorrent clients, their anonymity will be reduced to zero in
any case and a configuration with 0-hop tunnels is adequate in this case.

”””””””””””””””””””””””””” | (CTTTTTTTTTTTTTTTTTTTTTY

o ! L , BitTorrent |

i Alice I i BITIP Client i

} @ Gateway — Participant - Participant — Endpoint __L : PN :

\ N [et 17 I
& I ...

\‘ _4-1-"’—:— = :

] Endpoint <—Participant <« Partici <— Gateway : I I

1 1 1

| ! 1 1

: Anonymous ! : Non-anonymous !

| communication ! | communication |

T S S S S S S S ST S S ST ST WY ST N ST Y T ST Y S WYY S WY Y ST ST A e e e J

FIGURE 6.5 — Tunnel-based communication and BiTIIP’s non-anonymous communications

This configuration allows us to achieve better throughput rates, while preserving 12P users’
anonymity. From an attacker’s point of view, it is only possible to link a public download with
a particular BiTIIP client and not further into the I2P network. Even by placing a malicious
BiTIIP client, an attacker will not able to de-anonymise an I2P user.

6.4 Evaluation of the BiTIIP client

BiTIIP is a Java-based client, using the Snark BitTorrent Library®? and the I2PSnark file-
sharing library. The Snark library enables BiTIIP to interact with BitTorrent clients, while
12PSnark enables BiTIIP to communicate with other I2P users performing file-sharing. BiTIIP
serves as an interface between these two libraries and to synchronises requests from one network
to the other one, while performing opportunistically caching of pieces.

Figure 6.6 depicts all the components on a BiTIIP client. The Snark library requires further
extensions to support decentralised tracking through the Mainline DHT, as well as to support the
BitTorrent extension protocol to exchange BitTorrent metadata ', and therefore two components

50. The Snark project is available at https://code.google.com/p/snark/. Last visited on 08/2013.
51. Specification available at http://bittorrent.org/beps/bep_0009.html and http://bittorrent.org/
beps/bep_0010.html. Last visited on 08/2013.

79

https://code.google.com/p/snark/
http://bittorrent.org/beps/bep_0009.html
http://bittorrent.org/beps/bep_0010.html
http://bittorrent.org/beps/bep_0010.html

Chapter 6. Improving content availability in the I2P file-sharing environment

were included to the BiTIIP client to support these functionalities. On the contrary, the I2PSnark
library enables decentralised tracking through the I2P’s Mainline DHT. It additionally does not
need an extension to support exchange of metadata, since in our interconnection model an 12P
user accesses BitTorrent content and therefore only BitTorrent’s metadata. The shared storage is
the central component interacting with both libraries, receiving piece requests from one network,
retrieving these pieces from the other network, and forwarding the requested pieces.

12P's ". -\ ﬂcaihe‘. Mainline DHT f ‘ BT's Mainline
Mainline DH ﬁ?)‘_i Eais nterface ‘—’*i'ﬁ‘f DHT

" Metainfo
Exchange

BiTIIP Client Interface
I2P Swarm BitTorrent Swarm

F 3

FIGURE 6.6 — Functional components of a BiTIIP client

This synchronisation requires time and affects the achieved download rates of the intercon-
nection. This section analyses the performance achieved by our hybrid model when downloading
public content from the 12P network. We conducted different experiments considering two con-
figurations: a single BiTIIP client per swarm and multiple BiTIIP clients per swarm.

6.4.1 Download performance of the I2P network

We need to assess the current download performance of the I2P’s file-sharing environment
first, for a later comparison with our hybrid model.

We chose the top twenty torrents from the Postman tracker (regarding swarm size). We mea-
sured the download rates achieved, using the configuration depicted in Figure 6.5. We considered
the overall swarm speed achieved, as well as the fastest peer in the swarm.

Figure 6.7 shows the results for the current performance of the I2P’s file-sharing environment.
The fastest peer in every swarm had an average rate of 9 KB/s, while the overall download speed
of the swarms presented an average rate of 33 KB/s.

We observed that 12P’s file-sharing environment did not exhibit a good performance. The
tunnel-based communications of I2P penalise the final throughput. However, I12P’s design goal is
not high throughput but anonymous communications. Therefore, that is the tradeoff we need to
accept for an anonymous download.

6.4.2 A single BiTIIP client

Once we assessed the performance of I12P, we evaluated our BiTIIP client. We took into
account the configuration shown in Figure 6.8(a). A single I2P user connected to a BiTIIP client
to download a random ten MB file hosted by a single BitTorrent client. This simple configuration

80

6.4. FEvaluation of the BiTIIP client

50 T
Fastest peer e
Swarm speed
40 E
30 | B
2]
j=N
o
X
20 | B
0 1 1 1 1
0 % 20 % 40 % 60 % 80 % 100 %

Download

FIGURE 6.7 — Download performance of the I2P’s file-sharing environment

enabled us to measure how fast our BiTIIP client performed as a connection point between these
two networks.

n BitlIP 50 T T
Interconnection - Fastest I2P peer
layer BITIIP ---mmer
40
30 |
o
. § 1 1}
p) 2 | | i 1 R H i .
o < A) e e R i !
& -~ 4). S R {
e BT's ot S i
K253 Mainline DHT —
Mainline DHT
0% ‘ . : :
) 0% 20 % 40 % 60 % 80 % 100 %
12P Swarm BitTorrent Swarm
Download
(a) Configuration of the experiment (b) Download performance of a single BiTIIP

FIGURE 6.8 — Download performance of a single BiTIIP client

We performed the same download a of twenty-five times and obtained an average rate of
17 KB/s throughout our BiTIIP client. Figure 6.8(b) depicts our result and compares BiTIIP’s
performance against the fastest peer in 12P’s swarms. As mentioned in Section 6.3.3, BiTIIP
clients use a 0-hop tunnel configuration, which reduces their anonymity in the 12P network, but
considerable increases their performance and hence they achieve better rates than normal 12P
users.

6.4.3 Multiples BiTIIP clients

A single BiTIIP client doubles the download performance of the fastest 12P peer detected. By
including further BiTIIP clients within an swarm, we can increase its performance. We conducted
a second experiment, where we added extra BiTIIP clients expecting to proportionally increase
the performance. Figure 6.9(a) depicts the configuration of the experiment, where we used two,
three and four clients. For ease of visualisation, only one BiTIIP client accessed both DHTs in the
figure. However, every BiTIIP client had access to the I2P’s Mainline DHT and the BitTorrent’s
Mainline DHT.

As expected, each BiTIIP client proportionally increased the throughput of the download as
shown in Figure 6.9(b). Two BiTIIP clients provided around 37 KB/s, similar to the performance
of the I12P’s swarms.

81

Chapter 6. Improving content availability in the I2P file-sharing environment

BitlIP BitlIP BitlIP BitlIP 80
2 = s

(el

Interconnection

Downloading 'rates 1 BiTIIP)' ——
70 Downloading rates (2 BiTIIP)

layer ! Downloading rates (3 BiTIIP)
60 - Downloading rates (4 BiTIIP)
50 f
_ 2
e'i‘iﬁe g o ; 1
/\--J 30 b 1
l(ﬁ‘l BT's -
W ﬁ@ Mainline DHT 20 | e e
12P's ok]
Mainline DHT
0 L L L L L
. 0% 20% 40 % 60 % 80 % 100 %
I2P Swarm BitTorrent Swarm
Download
(a) Configuration of the experiment (b) Download performance of multiple BiTIIP clients

FIGURE 6.9 — Download performance of multiple BiTIIP clients

We propose to increase the overall interconnection performance by adding, when possible,
further BiTIIP clients to an existing interconnection with the only objective of increasing the
overall performance.

It is important to consider the scalability of our design. As mentioned in Subsection 6.3.1,
we aim at interconnecting an I12P swarm with a fraction of a BitTorrent swarm. Therefore, the
required number of BiTIIP clients is proportional to the number of I2P users within an 12P
swarm. Based on the number of I2P users in top I2P swarms, presented as well in Subsection
6.3.1 and the estimated capacity of a single BiTIIP client, we are able to interconnect an 12P
swarm with any BitTorrent swarm with a single BiTIIP client.

6.4.4 The connectMFE project

The connectME project 3? encourages Internet users to contribute to the improvement of
anonymous environments, with a special focus on anonymous file-sharing environments. The
BiTIIP client can be deployed so as to increase our current set of available BiTIIP clients. As
more BiTIIP clients become available, more content can be introduced in the I12P’s file-sharing
environment. The project’s website brings together our implementation of the BiTIIP client,
distributable under a GPL license. The BiTIIP client was developed in collaboration with Tarang
Chugh [113].

Table 6.3 positions our hybrid model against the interconnection models previously pre-
sented. Like the hMule model, our hybrid model considers widely deployed networks and their
real topologies. This model enables an on-demand mechanism, where I2P users can request Bit-
Torrent content, where BiTIIP clients are deployed to meet this demand. There is no modification
from the side of the 12P users, which enables a fully backward-compatible model with previous
I2P clients. Our hybrid model is the first model to consider an interaction between anonymous
and non-anonymous environments, where anonymous users can access public content without
compromising their anonymity.

6.5 Conclusion
This chapter introduced a hybrid model for file-sharing aiming at improving the content

availability in the I2P’s file-sharing environment. We showed that barely 1% of all available
BitTorrent content was available in the I2P network, containing mostly out-dated files. According

52. Accessible at http://connectme.gforge.inria.fr/.

82

http://connectme.gforge.inria.fr/

6.5. Conclusion

Use General use Peer-to-peer file-sharing
Model Synapse Lloret’s Konish’s Fu’s ex- | hMule BiTIIP
scheme scheme tension
Interaction | Synapses Super Cooperative Shared Hybrid Hybrid
component | (Bridges) nodes peers Peers nodes nodes
Organisation| ad-hoc 2-layers ad-hoc ad-hoc ad-hoc ad-hoc
overlay / ad-hoc | overlay overlay overlay overlay
overlay
Deployment | Sim. Sim. (No | Sim. (No | Sim. (No | Real net- | Real
(With Churn) Churn) Churn) works net-
Churn) works
Topology Dynamic Random Barabasi- | Kazaa BT/Ed2k | BT
Albert topology topology | topol-
(1000 ogy
nodes)
Multi proto- | Yes Undefined | No Yes, but | Not ap-| Yes
col untested plicable
Start of | Network Network Network Local deci- | On- On-
intercon- decision decision decision sion demand demand
nections
Anonymous | No No No No No Yes
intercon-
nection

TABLE 6.3 — The BiTIIP hybrid model compared with existing interconnection models

to that lack of content, we designed an interconnection model enabling 2P users to access public
content.

Our hybrid model allows I2P users to access BitTorrent content while preserving their
anonymity. This leads to a scheme, where an anonymous content indexation and distribution
mechanisms are possible. We evaluated our model through a hybrid client called BiTIIP, which
outperforms the fastest 12P user and preserves I12P’s users anonymity. BiTIIP acts as the meeting
point between [2P users and BitTorrent users, enabling a bidirectional connection. By means of
I2P’s tunnel-based communications, an I2P user can anonymously contact a BiTIIP client and
access BitTorrent content without jeopardising its anonymity.

We considered the 2P anonymous network for our interconnection model according to its
characteristics. The next chapter presents our characterisation of this network considering, among
others, the number of users, the number of applications and the type of these applications.

83

Chapter 6. Improving content availability in the I2P file-sharing environment

84

Part 111

Characterisation of Anonymous
Environments

85

Chapter 7

Characterisation of the I2P network

Contents
7.1 Introductionttt t i 87
7.2 Exploiting the I2P network v v v v v v v 0 e 88
721 ThenetDB 88
7.2.2 Exploiting thenetDB oL 89
7.2.3 Distribution of the monitoring floodfill nodes 91
7.3 Monitoring architecture 000, 91
7.3.1 Monitoring architecture overview 92
7.3.2 Analysis of Routerinfos and Leasesets 92
7.3.3 Deployment of monitoring floodfill nodes 95
7.4 A real time view of the I2P network 96
741 T2P users e 96
7.4.2 1I2P anonymous applications 98
7.5 Conclusion o v it it ittt e e e e e e e e e 100

7.1 Introduction

Anonymous communications have been acquiring more and more interest since the past
decade, either for fighting against any type of censorship, passive attacks (third-parties sniff-
ing, traffic analysis, user profiling) or for malicious purposes (copyrighted material downloads).
Anonymous file-sharing is one of the most active fields in anonymous communications and is
increasingly growing. This growth is partially due to the onrush of negative news on public
file-sharing communities, including legal actions by governmental institutions, law-enforcement
agencies to major file-sharing communities. Another reason is the rising concerns of privacy and
anonymity in the Internet.

A large-scale monitoring analysis on a file-sharing community provides an overview of the
network [114, 115, 116], enabling us to know which kind of content is distributed in the anonymous
environment, the amount of users performing anonymous file-sharing, as well as determining
which users are downloading a specific content. However, a large-scale monitoring on anonymous
environments is very challenging and has not been extensively investigated. Most of the studies
are essentially focused on the Tor network [99, 117].

This chapter introduces the first monitoring architecture for the anonymous I2P environ-
ment, providing deep insights about the utilisation of the network and its users. We demonstrate

87

Chapter 7. Characterisation of the I2P network

the ability to detect most of I12P anonymous applications, including anonymous file-sharing ap-
plications, and determine their use on the network through time, as well as to geolocate 12P
users. Firstly, we introduce I12P’s DHT, called the netDB, which is the central component in
our architecture and we explain how it can be exploited. Secondly, we detail the entire monitor-
ing architecture and its components. Finally, we evaluate our monitoring architecture through a
six-day experiment.

7.2 Exploiting the I12P network

In this section, we first complete the characteristics of the netDB, previously presented in
Subsection 4.2.3. Then, we detail how the netDB is exploited to allow us to monitor the 12P
network.

7.2.1 The netDB

The netDB is composed of floodfill nodes. These floodfill nodes are normal 12P nodes which
have locally decide to become floodfill nodes. An I2P node evaluates the current number of
floodfill nodes in the network, its available bandwidth rates and its health®3. If the number of
floodfill nodes is less than five-hundred peers®*, the current I2P user has more than 256 KB/s
available and it is well-integrated in the network, it automatically becomes a floodfill node.

The distributed nature of the netDB and the local mechanism to decide whether to become
a floodfill node hardens the I2P network. These characteristics avoid a single point of failure,
since there is no central component to attack.

NetDB storing process

The netDB uses an iterative lookup procedure to publish and retrieve values, based on the
Kademlia XOR metric. This metric determines the distance between two identifiers. On the
I2P network, the metric is applied between a floodfill’s routing identifier and the value identifier
(either a routerinfo or a leaseset). Whenever an I2P user wants to publish a value in the netDB, it
performs an iterative lookup as detailed in Subsection 2.3.4. It iteratively queries remote floodfill
nodes, starting firstly by its known floodfill nodes, in order to find the closest floodfill nodes for
the value to be published.

Figure 7.1 depicts an example, where an I2P user wants to store a routerinfo with a hash
value of 13. It starts by querying its only known floodfill, node 2. Node 2 responds with node 7.
A second request is sent to node 7, which responds with node 12. A final request is sent to node
12, which responds with itself as the closest node to the value 13. A final store request is then
sent to node 12, which will store the value. In this example, the 12P user stores the routerinfo
in a single floodfill node. However, in the current netDB implementation an I12P user stores a
value in the closest five floodfill nodes. This parameter is known as the replica set and is used to
improve fault tolerance against floodfill nodes going off-line.

53. A router’s health indicates how well the router is integrated in the network.

54. The I2P design specifies that around 6% of the network should form the netDB, where with the current
estimation of 24000 I2P users, there should be nearly fifteen-hundred floodfill nodes. However, a minimum value
of five-hundred nodes is hard-coded and therefore the real percentage decreases to nearly 2%.

88

7.2. Ezploiting the I2P network

AReq(l13) I B.Reqg(13)
' >

C.Req(13)

FIGURE 7.1 — NetDB’s iterative lookup

Keyspace shifting

As every Kademlia-based DHT, 12P’s netDB uses the XOR metric to determine in which
nodes a value should be published in or retrieved from by comparing a node’s identifier and
a value’s identifier. A node’s identifier is determined during the first execution and normally
remains unchanged throughout the entire life of the node.

Nevertheless, the netDB uses a temporary identifier instead of a fix identifier to compute
the XOR distance. This temporary identifier, called a routing identifier as opposed to the node
identifier, is obtained by appending the node identifier with the current date and hashing the
result, as shown in 7.1. Therefore, the identifier used in the netDB is the routing identifier, which
changes every day, while the node identifier remains fixed.

routing identifier = SH A256(node__identi fier||yyyyM Mdd) (7.1)

At midnight, every previously published value needs to be republished in another DHT lo-
cation, since the routing identifier changes, as shown in Figure 7.2. I2P uses this approach to
increase the cost of a localised Sybil attack in the netDB, since attackers are placed close to a
target identifier in the DHT by forging their identifiers, aiming at receiving every publish and
search request for the targeted identifier. However, as the DHT keyspace changes every day,
Sybils’ identifiers need to be daily recomputed, increasing the cost of the attack.

The major drawback of this approach is when the DHT’s keyspace is shifting, most of the
publish and search requests fail, until every value is accordingly republished.

7.2.2 Exploiting the netDB

We exploit the netDB by taking advantage of its mechanism to become a floodfill node. The
netDB uses a local mechanism without any central authority nor a general consensus among all
floodfill nodes. Any I2P user can volunteer as a floodfill node. This strategy allows us to deploy
a set of monitoring floodfill nodes in the netDB.

We conduct a passive monitoring, as described in Subsection 2.4.1, where our monitoring
floodfill nodes behave as distributed probes, targeting different zones in the netDB. These moni-
toring floodfill nodes act as normal floodfill nodes, forming the netDB along with other floodfill
nodes and storing I12P’s metadata.

We aim at gathering as much network metadata as possible. Whenever we receive a publish
request, either for a routerinfo or for a leaseset, we process it as a regular floodfill node, and

89

Chapter 7. Characterisation of the I2P network

Routerinfo Routerinfa
Node Id = 48

988 hode Id = 23
Routing Id = 2 Routing Id = 16

a8 @ 8 B B B s
~ / H \ e \ P (Previous day)
\\ // ! \ //l \4//

AN i A\
\A, ! /‘(/ AN
/N ! s\ P \
VS i \ - A
Y |
g 8 @ oo o o o0
: Current day
Routerinfo Routerinfo
Node Id = 48 luode Id = 23

Routing ld =5 Routing Id =18

FIGURE 7.2 — NetDB'’s daily shifting

store it for a latter analysis. The sequence diagrams 7.3 show the difference between a normal
non-monitoring floodfill node and our modified monitoring floodfill node. From an I2P user’s
point of view, there is no notable operational difference which make our monitoring floodfill
nodes passive monitoring nodes.

12P User Menitor Floodiill Node

loop

publishValue(Routerinfo),
>

12P User Normal Floodfill Node AcK \

<
+

Analyse Routerinfo ——---- \
i

publishValue(Routerinfo),
»

‘ ‘ publishValue(Leaseset)
»

ACK
ACK

<
<

<
publishValue(l easeset) N

P Analyse Leaseset ——--—- \
” ACK ‘ ‘ - !
<
D, Y
GetRouterinfo (identifier) GetRouterinfo (identifier)
> >
Lo Routerinfo ‘ ‘ " Routerinfo ‘
< <
gellLeaseset (identifier) . getlLeaseset (identifier)
> >
g Leaseset ‘ ‘ " Leaseset ‘
< <
12P User Normal Flocdfill Node 12P User Monitor Floodfill Node
(a) Interaction of a normal floodfill node (b) Interaction of a monitoring floodfill node

FIGURE 7.3 — Interaction of normal and monitoring floodfill nodes

By placing different monitoring floodfill nodes in the netDB, we are able to gather a vast
amount of network metadata, analyse it and characterise the I2P network. Routerinfos are used
to geolocalise I2P users and determine their online behaviour in the I2P network. Leasesets are
used to determine which anonymous applications are deployed, as well as their uptime in the
network.

90

7.8. Monitoring architecture

7.2.3 Distribution of the monitoring floodfill nodes

A monitoring approach using distributed probes works better if the network to be monitored
enables free placements of nodes, which is not the case of the netDB. The netDB uses a node
identifier and a routing identifier. In the normal Kademlia design, the node and routing identifiers
are identical, enabling a node to easily choose its position in the DHT. On the contrary, the netDB
recalculates its routing identifier every day. Therefore, in order to position a node in the DHT, we
need to compute a hash dictionary, retrieving a node identifier given its actual routing identifier.
This is known as a pre-image attack [118] and it is practically infeasible with the SHA2 hashing
function, which is netDB’s hashing function.

As we are not able to place a monitoring floodfill node in a specific netDB position, a localised
attack in the network would require an enormous computational cost. However, to retrieve as
much [2P’s metadata as possible, the monitoring floodfill nodes are required to be well distributed
in the keyspace, i.e. not being grouped all together in a particular part of the keyspace.

As a cryptographic function, the SHA2 function presents an uniform distribution of all gen-
erated hash codes and therefore the current set of floodfill nodes’ routing identifiers should
theoretically present a uniform distribution. In order to evaluate the real distribution of the
floodfill nodes, we monitored all floodfill nodes (which accounted for five-hundred nodes during
our measurements) during one month and recorded their routing identifiers. At every new shift-
ing of the keyspace we determined the new distribution of the routing identifiers and computed
a daily average.

Zone 1

12.48% '
12.61%

Zone 7

Zone 3
12.35%
. Zone 5

12.55%

FIGURE 7.4 — Distribution of the floodfill node’s routing identifiers in the netDB

Figure 7.4 depicts the results of our experiment, where we reduced the entire netDB keyspace
to eight equal zones for ease of visualisation. We obtained a uniform distribution of the floodfills
nodes. We were also able to detect around forty floodfill nodes that did not respect the shifting
mechanism and stayed fixed during our measurements. Those floodfill nodes were deployed by a
few IP addresses, which does not correspond to the normal operation of the network.

7.3 Monitoring architecture

This section describes our monitoring architecture and its components. It includes the analysis
of routerinfos and leasesets, as well as an analysis of the required number of monitoring floodfill
nodes to monitor the entire I2P network.

91

Chapter 7. Characterisation of the I2P network

PostgreSQL

:’—@Cﬂ’ [2PStats.loria fr

[

LJ
0

[

@ Floodfill node

l:] Floodfill monitor node

FIGURE 7.5 — A passive distributed monitoring architecture for the 12P network

7.3.1 Monitoring architecture overview

We have a passive distributed monitoring architecture, where monitoring nodes are dis-
tributed on the network and behave as normal nodes. Figure 7.5 depicts our architecture.

A set of monitoring floodfill nodes are placed in the netDB to collect 12P’s routerinfos and
leasesets. Once this metadata has been analysed, the results of the analyses are stored in a central
database. Later, they are aggregated and displayed in a statistical website.

The deployment of monitoring floodfill nodes is completely flexible. These nodes can be
dynamically added to the netDB, thus increasing the amount of network metadata retrieved and
analysed. The next sections introduce both routerinfo and leaseset analysers and the required
number of monitoring floodfill nodes to have a complete network coverage.

7.3.2 Analysis of Routerinfos and Leasesets

A routerinfo identifies an I2P user on the network by specifying its contact details, as shown
in Figure 7.6. It includes a 2048-bit ElGamal encryption key, a 1024-bit DSA signing key, as
well as a certificate, which is all defined as the router identity. The routerinfo includes a contact
address, such as [contact.com:4567, a set of text options, such as the capability flags of the
router, and finally, a signature of the entire routerinfo. The ElGamal encryption key is used
when contacting a router, while the DSA key is used to verify routerinfo integrity.

A leaseset provides the contact details for a client’s anonymous I2P application, as shown in
Figure 7.6. A leaseset includes a 2048-bit ElGamal encryption key, a 1024-bit DSA signing key,
as well as a certificate, which is all defined as the destination identity. The leaseset also includes
an encryption public key for end-to-end encryption, a signature of the entire leaseset and a set of
leases, which are the real entry points for the anonymous application. Each entry point specifies
a gateway, a tunnel ID, which is represented as a four-bytes number, and an ezpiration date for
the lease.

These structures are processed and analysed by every monitor floodfill node as shown below.

Routerinfo analysis

A routerinfo is analysed in order to know the geographical localisation of the I2P user it
represents. A monitoring floodfill node uses different services to accurately determine the ge-

92

contact.com:4567

7.8. Monitoring architecture

Routerinfo LeaseSet
Router |dentity Destination Identity
- 2048-bits ElGamal - 2048-bits ElGamal
-1024-bits DSA -1024-bits DSA
- Certificate - Certificate

Contact Address
- contact.com: 4567 End-to-End Encryption Key

) Leases
Text Options -Lease 1 (Gw, Tunnel ID, Expiration)|

-Lease N (Gw, Tunnel 1D, Expiration]

Signature Signature

FIGURE 7.6 — I2P’s metadata, a Routerinfo and a Leaseset

ographical localisation of a particular IP address, as shown in the Sequence Diagram 7.7. It
employs a local database based on the MaxMind services * to determine the country, the region
and the city of the given IP address. In the case that some fields are not retrieved, such as the
city, the monitoring floodfill node uses two external web services, Geo IP Tool®® and Who is this
IP 2°7 to complete the geographical data.

2P User Monitor Floodfill Node PostgreSQL Server GEOQ P Service A GEOQ IP Service B
loop
4
Querying local MaxMind database
alt [IF GEO DATA COMPLETE]
storeRouterinfo (Routerinfo, GeoData,
iy OK
[ELSE]
getGEOData (Routerinfo.contactAddress) »
< GeolPData F| ‘
getGEOData (Routerinfo.contactAddress) »
Ly GeolPData ? ‘
storeRouterinfo (Routerinfo, GeoData)
Ly oK
2P User Monitor Floodfill Node PostgreSQL Server GEOQ P Service A GEOQ IP Service B

FIGURE 7.7 — Determining the geographical localisation of an I2P user through its routerinfo

Leaseset analysis

Analysing a leaseset requires a far more complex procedure when compared to analysing a
routerinfo. Our goal is to determine which application is represented by a given leaseset, such as

55. Available at http://www.maxmind.com/ under a Creative Commons Attribution-ShareAlike 3.0 Unported
License. Last visited on 08/2013.

56. http://www.geoiptool.com/. Last visited on 08/2013.

57. http://www.whoisthisip.com/. Last visited on 08/2013.

93

http://www.maxmind.com/
http://www.geoiptool.com/
http://www.whoisthisip.com/

Chapter 7. Characterisation of the I2P network

a particular anonymous file-sharing client or an anonymous web server.

A destination is I2P’s representation for an IP address and a port number, and therefore we
can open a TCP-like socket through a destination or send UDP-like messages to it. The Sequence
Diagram 7.8 depicts the five-step procedure performed by a monitoring floodfill node in order to
tag a destination with a particular anonymous application.

2P User Monitor Floodfill Node Desti i PostgreSQL Server

loop

GET|
alt [IF RESPONSE ERROR]

» oK
[IF GET RESPONSE]
N
@
4-_GETRESPONSE |
storeLeaseSet (Leasesel, WebServer)
N oK

[NO RESPONSE]

N
@)

[NO FILESHARING APP]

storeLeaseSet (Leaseset, OPENTCP!

< oK
[ELSE]
n
)
storeLeaseSet (Leasesel, UNKNOWN'
< oK
2P User Monitor Floodfill Node Remote Destionation PostgreSQL Server

FIGURE 7.8 — Overall procedure for testing a leaseset

A monitoring floodfill nodes starts by checking whether the destination corresponds to the
I2PMessenger anonymous messenger application by sending an HTTP GET message through a
TCP-like socket. The default behaviour of this application when receiving an HTTP message is
to respond with an error message indicating that the destination is not running an anonymous
web server, but an anonymous I2P messenger application (1). If the destination is in fact running
an anonymous web server, it responds to the GET message accordingly and it can be tagged an
eepsite (2).

When there is no answer to the HT'TP GET message, a monitoring floodfill node checks for
anonymous file-sharing applications, including I2PSnark clients, IMule clients and I2Phex clients
(3).

The iMule client operates a TCP-based destination and a UDP-based destination. Therefore,
a TCP-like HELLO request and a UDP-like Kademlia HELLO request are sent.

If no response is received, a monitoring floodfill node checks for a I2Phex client by sending a

94

7.8. Monitoring architecture

GNUTELLA CONNECT message through a TCP-like socket.

12P User Monitor Floedfill Node Remote Destination

loop

BitTorrentMessage (Random Torrent HASH)
»

alt [Connection Closed]

RESET

A

BitTorrent Malformed Message .

alt [Response Timeouts]

IsI2ZPSnark (Leaseset) 2

[Any Response]

Response

4
<
IsNOTIZPSnark (Leaseset) :
[Connection NOT Closed]

IsNOTIZPSnark (Leaseset) :

12P User Monitor Floodfill Node Remote Destination

FIGURE 7.9 — Tagging a destination as an anonymous I2PSnark client

A two-step analysis is required when testing for an I2PSnark client, as illustrated in the
Sequence Diagram 7.9. First, a well-formed BitTorrent message with a random torrent hash
is sent. If the destination is actually running an [12PSnark client, it will immediately close the
connection when receiving a well-formed BitTorrent message for a torrent that the client is not
sharing. Then, if the connection is immediately closed, a second malformed BitTorrent message
is sent. If the destination is actually running an [2PSnark client, it will not respond and therefore
the response will timeout. This two-step analysis enables a monitoring floodfill node to determine
whether a destination is running an I2PSnark client.

Finally, if all of the above analyses are unsuccessful, a monitoring floodfill node checks whether
the destination corresponds to a TCP-like application by attempting to open a TCP-like socket
(4). Otherwise, the destination is tagged as unknown and the analysis concludes (5).

The I2P network is optimised for anonymous web sites called eepsites and file-sharing appli-
cations are widely used in an anonymous environment. For these reasons, eepsites and file-sharing
clients will be our target applications.

7.3.3 Deployment of monitoring floodfill nodes

It is important to consider the network coverage of our monitoring architecture, which de-
pends on the current number of monitoring floodfill nodes deployed in the netDB and the replica
factor. The latter indicates in how many nodes a value will be stored in.

Equation 7.2 denotes the minimum number of monitoring floodfill nodes to achieve a full
coverage, with N as the total number of floodfill nodes and X as the current replica set. For
the current netDB with five-hundred floodfill nodes and a replica set of five nodes, one-hundred
monitoring floodfill nodes are required to have a complete network coverage. If we consider a
total of five-hundred floodfill nodes and a replica set of five nodes, we can obtain a network
coverage of 70% with seventy monitoring floodfill nodes, for instance.

95

Chapter 7. Characterisation of the I2P network

nb_monitors = [N / X |, N= #floodfills , X= replica factor (7.2)

The calculated number of monitor floodfill nodes is adequate when considering a perfect
distribution in the netDB as shown in Subsection 7.2.3.

For our monitoring architecture we use the Planetlab testbed and due to technical reasons
we are able to deploy seventy monitoring floodfill nodes. Our goal is to determine whether our
monitoring floodfill nodes are well-distributed in the netDB and therefore we reach the intended
network coverage of 70%. We conducted the same distribution experiment as in Subsection 7.2.3
only with our monitoring floodfill nodes.

During a month and at every keyspace shifting, we recorded the seventy routing identifiers.
Table 7.1 shows the distribution of our monitoring floodfill nodes, where we divided the entire
netDB’s keyspace in eight zones for ease of visualisation. We can observe a good distribution,
except for zone four that had less monitors during the thirty days.

Keyspace zone % of monitors (daily average)

Zone 1 11.6279%
Zone 2 13.1782%
Zone 3 14.7286%
Zone 4 8.5271%
Zone 5 14.7286%
Zone 6 12.4031%
Zone T 13.1782%
Zone 8 11.6279%

TABLE 7.1 — Distribution of monitoring floodfill nodes

According to these results, our seventy monitoring floodfill nodes cover approximately 70%
of the network.

7.4 A real time view of the I2P network

This section presents the results obtained with our monitoring architecture. We first analyse
the current geographical distribution of I12P users in the network, including country-based and
city-based distributions. Then, we present all detected anonymous I2P applications, with a special
focus on anonymous file-sharing clients and anonymous web servers. Finally, we describe an online
statistics portal, which aggregates our results.

We deploy our monitoring architecture for a six-day period, from 2013-06-18 12:00:00
CEST to 2013-06-24 12:00:00 CEST, with a total of seventy monitoring floodfill nodes deployed
on the PlanetLab testbed. During our measurement, the netDB had around five-hundred floodfill
nodes. According to Equation 7.2, with covered 70% of the network with our seventy monitoring
floodfill nodes.

7.4.1 1I2P users

We introduce the overall number of detected I2P users throughout the monitoring measure-
ment and classify them according to their geographical properties.

96

7.4. A real time view of the I2P network

Detected number of I2P users

Figure 7.10 depicts the number of I2P users detected throughout the six-day monitoring,
where we observe an average of nearly 28000 daily I2P users. We also observe different daily
high peaks at 18h00, indicating that I2P users were more active during the European afternoon,
with 31000 users in average. We also notice daily low peaks at midnight, where the number of
detected 12P users dropped to nearly 24000 I12P users. This was due to the 12P netDB’s shifting
mechanism, introduced in Subsection 7.2.1. All floodfill nodes, including our monitoring floodfill
nodes, changed their position in the netDB and therefore started to receive new metadata, while
previously stored metadata was no longer valid. This situation affected the operation of the
network for a short period of time and therefore it affected our monitoring results.

60000 T T ; T
Detected I2P users - 70% coverage
Estimation - 100% coverage
50000
%] . e . .
) . R - o * ¢
@ 40000 ¢ .. , * . R .
& * /R - & . * ‘. Ry
= 30000 f P g /./'\L e .
g UL T vy
£ 20000 f E
[
[a]
10000 r
18:00 18:00 18:00 18:00 18:00 18:00

Hours (CEST)

FIGURE 7.10 — Number of I2P users detected

I2P users’ behaviour presents a similar pattern to peer-to-peer networks [119], depicting a
sinusoidal pattern with a period of twenty-four hours and a maximum at 18h00 CEST. According
to our 70% of network coverage, we estimated a daily average value of nearly 40000 I2P users,
as depicted in Figure 7.10.

Our results present the same behaviour as the values published in the I12P’s official statistics
web site®®, where I2P users present a sinusoidal pattern. However, we detected a bigger number
of I2P users, putting into evidence that the official statistics web site does not consider the entire
network and its approximations do not fully represent the I2P network.

Country-based characterisation

We detected a total of 113433 widely distributed 12P users. Table 7.2 summarises the top ten
countries detected, where Russia accounts for nearly the 40% of all users.

We observe that the 12P network had a considerable participation from Russian users. We
detected a total of 159 countries, indicating that the I2P network is widely deployed.

City-based characterisation

Table 7.3 depicts the top fifteen cities out of the 13547 total cities detected. We observed
that twelve out of the top fifteen cities are Russian cities. Moreover, we detected a total of 813
Russian cities out of the 1108 total Russian cities [120], which indicates that the I2P network is
used in nearly the 75% of all Russia.

58. http://stats.i2p.in/

97

http://stats.i2p.in/

Chapter 7. Characterisation of the I2P network

‘ Country ‘ Number of detected users ‘ Overall percentage ‘
Russian Federation 45299 39.93%
United States 9968 8.78%
Germany 8563 7.54%
Ukraine 5491 4.84%
Brazil 4940 4.35%
France 4073 3.59%
United Kingdom 3688 2.96%
Ttaly 3154 2.78%
Belarus 2370 2.08%
India 1859 1.63%

TABLE 7.2 — Top ten countries detected in the I2P network

City ‘ Number of detected users ‘ Overall percentage ‘
Moscow 6542 5.76%
Saint Petersburg 2351 2.07%
Minsk 1191 1.04%
Krasnodar 1088 0.95%
Perm 1022 0.90%
Kiev 1020 0.89%
Chelyabinsk 984 0.86%
Omsk 920 0.81%
Nizhniy Novgorod 797 0.70%
Kazan 756 0.66%
Berlin 721 0.63%
Ufa 720 0.63%
Samara 668 0.60%
Yekaterinburg 623 0.54%
Voronezh 622 0.54%

TABLE 7.3 — Top fifteen cities detected in the I2P network

7.4.2 1I2P anonymous applications

As previously introduced, we are able to analyse different I2P anonymous applications, includ-
ing different 12P anonymous file-sharing clients and anonymous web servers, hosting anonymous
web sites or eepsites.

Anonymous file-sharing clients

Figure 7.11(a) depicts the number of detected I2P file-sharing clients, considering the three
current available clients. We observe that [2PSnark is the most used application, with an average
of 450 clients. IMule clients barely present any activity, with as low as 6 clients detected in
average. Finally, [2Phex has an average value of 3 clients, with a slight increase of clients during
the weekend (right part of the chart).

98

7.4. A real time view of the I2P network

(a) Anonymous file-sharing clients detected.

(b) Anonymous web servers detected.

4000 700
12PSnark —=— Detected WebServers —e—
IMule ----m---
é 12Phex -+ 0 600 A A i .
A . S e SRR SRS g s00 p A AY A Nt e TN e
1< (7} ' . o
£ 3
£ o 400
g g
= = 300
o 2
3 2 200
3] 10 y e 2
o 5 "'""'"'\.~""""’:“~,»-—l_ P e :.! g S a
[a] aag a 't 100
1 0
12:00 06:00 00:00 18:00 12:00 06:00 00:00 18:00 12:00 12:00 06:00 00:00 18:00 12:00 06:00 00:00 18:00 12:00
Hours (CEST) Hours (CEST)

FIGURE 7.11 — Anonymous I2P applications detected.

The I2PSnark client is a built-in file-sharing client and therefore works out of the box, fa-
cilitating its use. On the contrary, both remaining anonymous file-sharing clients, iMule and
I12Phex, are modifications to the regular file-sharing client and therefore their deployment in the
I2P network is more complex, partially discouraging their use.

Anonymous web servers

Figure 7.11(b) shows the number of anonymous web servers detected, with an average of
510 web servers. We see that even anonymous web servers, which are intended to operate in
a more stable way than file-sharing applications, present a subtle sinusoidal pattern as well.
This indicates that I12P users hosting their anonymous web servers were still connecting and
disconnecting from the I2P network as the rest of the users.

Contrary to the statistics service Tino ®®, which contacts those anonymous web servers listed
in I2P’s DNS-like service, we consider every published anonymous web server in the netDB and
therefore we provide a precise real time view of the network, even for unlisted eepsites.

2500 T
Total number of leasets — o
Deteeted Ieasesets
«w 2000 /. -\/
B /‘
%]
[0}
@ 1500 | .
<
bS]
@ 1000 E
Qo
S
>
Z 500} 1
0 1 1 1 1 1 1 1
12:00 06:00 00:00 1800 12:00 06:00 00:00 18:00 12:00

Hours (CEST)

FIGURE 7.12 — Total number of leasesets detected

Figure 7.12 depicts the total number of leasesets detected during our measurement. We
detected an average of 1960 leasesets, and we were able to tag 59% of them. It indicates that nearly
two-thirds of the I2P network is performing anonymous file-sharing or hosting an anonymous web
site.

59. Presented in Subsection 4.4.2 and accessible at tino.i2p.in. Last visited on 08/2013.

99

tino.i2p.in

Chapter 7. Characterisation of the I2P network

Estimation of the total network

As mentioned before, we cover nearly 70% of the entire network with our current monitor
floodfill nodes. Figure 7.13 shows the total number of detected applications, both anonymous
file-sharing clients and web servers, with an average value of 1154 applications. The figure addi-
tionally depicts our estimation of the total number of these two I2P applications for the six-day
monitoring, with an average value of 1650 applications.

2500 r r T T
Detected Apps - 70% coverage —*—
Estimation - 100% coverage
2000 f
1500 |

1000

Detected apps

500

12:00 06:00 00:00 1800 12:00 06:00 00:00 18:00 12:00
Hours (CEST)

FIGURE 7.13 — Estimated number of anonymous file-sharing clients and web servers

I2PStats: The 12P statistics portal

All retrieved information is aggregated and displayed in our statistics web site %° including a
real time view of the network, as well as historical data. The estimation of the number of users,
the 12P anonymous applications and the geographical distribution of I2P users is presented. This
web site was developed in cooperation with Henry [121].

Our results reflected the normal operation of the network, which can be observed in our
statistics web site.

7.5 Conclusion

We focused in the I2P anonymous environment. By exploiting 12P’s distributed database,
known as the netDB, we were able to deploy a set of passive distributed probes, thus collecting a
vast amount of network metadata. By properly analysing this metadata, we determined different
characteristics of the I2P users and the I2P anonymous applications.

We designed, implemented and successfully deployed the first large-scale monitoring architec-
ture for the 2P network. We mainly considered anonymous file-sharing and anonymous eepsites,
determining their real use in the network, leading to an accurately characterisation of the I12P
anonymous environment.

We evaluated our monitoring architecture through a real-world analysis of the network and
presented a six-day analysis of the system. We showed that Russia accounted for nearly the
40% of all I2P users detected, where 75% of the total number of Russian cities were identified.
Additionally, the I2PSnark client presented an active behaviour, with an average value of 450
active clients. The number of detected anonymous web servers hosting eepsites was measured

60. Accessible at http://i2pstats.loria.fr/.

100

http://i2pstats.loria.fr/

7.5. Conclusion

as well, with an average value of 510 servers. The statistics service Tino announced a total of
350 anonymous web sites and we were able to detect a total of 510 anonymous web sites. This
indicates that there were several unlisted anonymous web sites in the [2P network.

Our monitoring architecture continuously operates, with an average of seventy distributed
monitoring floodfill nodes deployed on the PlanetLab’s testbed. According to our distribution
analysis and the current amount of floodfill nodes in the netDB, this amount of monitoring flood-
fill nodes enables us to analyse approximately 70% of the entire I2P network. A real time analysis
of the I2P network can be found in our statistics web site, including the current geographical
distribution of I2P users and the use of different 12P anonymous applications.

The replica factor of I12P’s netDB has changed based on our monitoring efforts, increasing
the number of monitoring floodfill nodes required to have a complete coverage. The replica set
was previously formed by a eight nodes, where a full coverage (considering the current number
of five-hundred floodfill nodes) would have been achievable with sixty monitoring floodfill nodes
instead of one-hundred monitoring nodes. By reducing the replica set in the netDB, 12P designers
increased the number of monitoring floodfill nodes required to have a full coverage, but they also
reduced netDB’s fault-tolerance to churn.

The next chapter presents our approach to perform a group-based characterisation in the 12P
network and to further improve the insights of the system.

101

Chapter 7. Characterisation of the I2P network

102

Chapter 8

Group-based characterisation of the
I2P network

Contents
8.1 Introduction ittt 103
8.2 Strategy for group-based characterisation 104
8.2.1 Strategy for characterisation 104
8.2.2 The Pearson’s correlation coefficient 105
8.3 Experimental results and analyses 107
8.3.1 Experiment setup 107
8.3.2 Methodology 107
8.3.3 Casestudies 108
8.3.4 Analysis of low-end outliers 111
8.4 DISCUSSION . . .« v v i i ittt e e e e e e e e e e e e e e e e e e 111
8.5 Conclusion @ i i i i i i ittt et e e e e 112

8.1 Introduction

The previous chapter introduced a distributed monitoring architecture for the anonymous I12P
environment, which allows us to characterise I2P users and I2P anonymous applications. Besides
providing us with insights of the system, this application-level analysis certainly introduces an
anonymity risk. By analysing the behaviour of a particular application and the behaviour of a
set or users, we should be able to determine whether this group of users is responsible for a given
application’s activity on the system.

This chapter presents the first step towards group-based characterisation, where we target
the entire I2P anonymous file-sharing network. We conduct a comprehensive correlation analysis
based on data collected from our distributed monitoring architecture, considering users from the
top detected cities, along with the 12PSnark application, which is the most used anonymous
file-sharing application in the 2P network.

Pearson’s coefficient is used to analyse this correlation and to determine whether these cities
contribute, and in which measure, to I12P’s file-sharing activity. Our goal is to show that despite
a strong underlying anonymising layer, it is still possible to analyse users’ activities in the net-
work and establish whether their behaviour presents similar patterns with anonymous network
applications, such as file-sharing applications.

103

Chapter 8. Group-based characterisation of the I2P network

12FSnark App

N
(=}
© o
d
3
12PSnarlc apps

City users
n
o
o

City users

50

Correlation
TO- T1

users,iZ2pSnark — r

FIGURE 8.1 — Towards group-based characterisation in the 12P network

We first introduce our strategy for group-based characterisation and detail Pearson’s corre-
lation coefficient and its characteristics. Then, we present our experiments results through three
different case studies. Finally, we address the complexity of a correlation analysis between a
country and an application, as well as an analysis with further I2P applications.

8.2 Strategy for group-based characterisation

This section presents our strategy to perform a group-based characterisation in the I2P
network and the correlation coefficient used for our analysis.

8.2.1 Strategy for characterisation

Figure 8.1 introduces, more precisely, our objective, considering data from the real network.
We have the number of detected I12PSnark applications along with the number of detected users
from Moscow for a period of fifteen days. Our goal is to establish in which measure this set of
users contributes to the detected file-sharing activity for this period of time. A positive correla-
tion between these two set of data would allow us to determine that these users were actually
performing file-sharing on the network. Moreover, we can assert which part of the variance of
file-sharing activity is explained from the variance of the number of users from Moscow.

We want to analyse two variables, I2P users and I12PSnark applications. With a bivariate cor-
relation analysis we can determine if two variables present a dependent relationship and establish
whether this dependency is positive or negative. We consider the number of I12P users from a
particular city and the number of detected [2PSnark applications. This type of data is ratio data.
Data of type ratio is the most descriptive type of data [122], where the intervals between every
value are meaningful and a natural zero exists. Our data has a ratio type since the intervals are
meaningful (the difference between twenty and ten users is the same as the difference between
forty and thirty users) and a natural zero exists.

104

8.2. Strateqy for group-based characterisation

According to this type of data, we use Pearson’s correlation coefficient, which gives us a
measure of the linear dependence of two variables.

8.2.2 The Pearson’s correlation coefficient

The Pearson’s correlation coefficient value of two variables is defined as the covariance of the
two variables divided by the product of their standard deviations, as presented in Equation 8.1.

~ Cov(X,Y)
Pay = oXaoY
Equation 8.2 describes Pearson’s correlation coefficient applied to a sample of the population,
where the covariance and standard deviations are replaced for those of a particular sample of n
elements.

(8.1)

(X X)(Y; - Y)
- Si-v

The Pearson’s coefficient is only applicable if the data under analysis fulfils four requirements:

— Normal distribution: data should follow an approximative normal distribution.

— Type of data: interval or ratio data is required.

— Liner relationship: the variables need to present a linear relationship.

— Homoscedasticity: data should present the same variance around the line of best fit,

which means that it should be scatter in the same way around it.

Although data is not required to follow a perfect normal distribution, an approximative

normal distribution is required so that the coefficient is applicable.

M=

rz,y = \/
i=

Data requirements for Pearson’s coefficient

80

80

Best fit line " Bestfitline -
70t ® o 70t
[) ° o ‘®
60 | ®e o . 1 60 | ° : : °
° s ° g o ¢ RN e | $
L hd o 0 J L @ °
50 ° ° 50 . ®
>]] ° N e ° °
° ° °
aor e e 1 wol § o
o ®
30 30 |
20 20
10 10 L
120 130 140 150 160 170 180 60 80 100 120 140 160 180 200 220
X X
(a) Linear (b) Non-linear

FIGURE 8.2 — Linear and non-linear data

Non-linearity can be detected by plotting the data in a scatter plot and visually checking
whether it follows a linear form or not, as presented in Figure 8.2. Non-linearity of data can lead
to an erroneous prediction for values outside the data range.

Finally, non-homoscedasticity or heteroscedasticity occurs when the variance of the data

along the line of best fit changes, which can result in a data distribution as shown in Figure 8.3.
Non-homoscedasticity in the analysed data can bias the correlations towards the subset of data
with the largest variance.

105

Chapter 8. Group-based characterisation of the I2P network

80

Best fit line

80

Best fit line

® o
70 ® e 70
o © o6 °
60 | ®e o 60 | ° N b
s ° °
[] []
50 | ° ° oo ° 50 f e .o °
. ° e .-®@ ° : °
> ° . ° ° ‘o o0
40 ° ° 40 ° °
i ° °®
30 o ° 30 e
B % °
20 t 20
10 i i i i i 10 i i i i i
120 130 140 150 160 170 180 120 130 140 150 160 170 180
X X

(a) Homoscedasticity (b) Heteroscedasticity

FI1GURE 8.3 — Homoscedasticity and Heteroscedasticity

Interpretation of Pearson’s coefficient

Pearson’s coefficient provides an output between -1 and 1. According to Cohen [123], a cor-
relation value above 0.50 (or less than -0.50) is considered strong, a value between 0.30 and 0.50
(or between -0.50 and -0.30) as moderate, and finally, a value between 0.30 and -0.30 as weak,
like depicted in Figure 8.4. We only retain positive values in our analysis, since with more 12P
users, more [2PSnark applications. We need to take into account an additional parameters to
properly interpret our correlation analysis, the coefficient of determination, called 7 (being r the
Pearson’s coefficient), and the significance of the correlation, called p.

High Moderate| Low Low |Moderate High

-0.50 -0.30 0 0.30 0.50 1

FIGURE 8.4 — Pearson’s reference values

The coefficient of determination varies between zero and one and explains the variance of
the data. It is extremely important in our analysis, since it determines in which measure the
changes of a set of users are responsible for the changes of the number of detected 12PSnark
applications. These changes correspond to the variance of the data and are what we consider the
activity of users or file-sharing applications. Therefore, the coefficient of determination indicates
us in which measure the changes in the number of users are responsible for the changes in the
number of file-sharing applications, i.e. it explains the variance of the data.

The significance of the correlation, or p-value, gives the probability of obtaining a given
correlation value for a non-representative sample, 7.e. how true our correlation value is. The
significance of the correlation is important when dealing with reduced sample sizes (~ 20%
elements, for instance), where an incorrect selection of a sample (not-random, biased, etc.) can
produce wrong correlation values.

Analysis of outliers

Outliers are extreme values in our dataset, which can have a considerable impact in our sta-
tistical measurements. Outliers can produce, for instance, non-normality in the data, violating
the model’s assumptions and producing deviant results, occasionally underestimating the out-
come of our analysis, or what might be even more critical, overestimating our results. Ascombe

106

8.3. FEzxperimental results and analyses

[124] classified outliers in two general groups, those coming from errors in the measurements and
those coming from the inherent variability of the data itself. Therefore, it is highly important to
properly analysed the data and determine whether these extreme values were indeed generated
by errors in the measurements or they truly represent the data.

There are different ways to deal with outliers, where robust statistical methods are used.
These methods are designed to resist outliers by either eliminating them from the analysis or
rearranging them to comply with the model’s assumptions, such as data normality. We consider
a trimmed estimator and Winsorising, which are two of the best known robust methods to deal
with outliers.

A trimmed estimator consists in ordering the data and removing a fixed percentage of it
from both ends. If we apply a trimmed estimator at 10% to a list of one-hundred elements,
we need to remove five elements from both ends of the ordered data. Winsorising applies the
same mechanism as the trimmed estimator, although values are not removed but replaced with
a specific percentile of the data. If we apply Winsorising at 20%, every value under the tenth
percentile need to be set to the tenth percentile value, while every value above the nineteenth
percentile need to be set to the nineteenth percentile value.

8.3 Experimental results and analyses

We use the Pearson’s correlation coefficient in the I2P network in order to analyse the re-
lationship between users from a particular city and the number of I2PSnark applications. We
expect to detect a moderate-to-high correlation between the top cities and [2PSnark applications.

8.3.1 Experiment setup

A single-day correlation analysis does not represent the actual use of the network, since a
day can present particularities and lead to biased samples and underrate or overrate correlation
coefficient values. So, measurements were conducted over fifteen-day period, where we consider
that three week-ends is a good time window to detect a long-lived correlation between a particular
city and I2PSnark applications. Our correlation analysis uses data collected from the real 12P
network through our monitoring architecture presented in the Chapter 7, for a period of fifteen
days from 2013-03-15 00:00:00 CEST to 2013-03-30 00:00:00 CEST. Due to technical limitations
we used only forty monitoring floodfill nodes during the period of analysis.

8.3.2 Methodology

For the following analysis, we first need to determine whether our data fulfil Pearson’s require-
ments for a correlation analysis, which is data normality, data linearity and data homoscedas-
ticity. Data normality is tested through the analysis of the frequency histogram (I2P users vs.
I2PSnark applications) and how well it fits a normal distribution. A line of best fit is employed
to determine whether the distribution of points follows a linear distribution. Homoscedastic-
ity is corroborated by visually checking the plotted data. The type of data under analysis was
previously determined as ratio data, which is adequate for a Pearson’s analysis.

Our monitoring architecture does not cover the entire 12P network, and therefore we do not
collect data for every available user and I2PSnark application. This produces a few situations
where we detect a low number of either users or I2PSnark applications, leading to outliers.

We deal only with eztreme-low values in our dataset. We might encounter a low number of
I12PSnark applications due to a partial network coverage. Therefore, we modified the two robust

107

Chapter 8. Group-based characterisation of the I2P network

methods considered to analyse only the low part of the data, i.e. those values close to zero. A
Trimmed estimator at 10% removes only every value under the tenth percentile of the ordered
data. A Winsorising at 10% replaces only those values under the tenth percentile.

We considered the top cities in term of users detected in our period of analysis, as well as
their daily activity during the entire fifteen-day measurement. We detected 16085 cities, where
most of them presented less than ten users through out the entire fifteen-day period. Because
of the active use of I12PSnark clients, those cities presenting a low number of users were not
adequate for our correlation analysis. Table 8.1 depicts the most active cities.

‘ City ‘ Users ‘ Overall percentage ‘
Moscow 244223 8%

Saint Petersburg 106688 3.5%
Tokyo 20667 ~1%
Yekaterinburg 28507 ~ 1%
Kiev 26262 ~ 1%
Novosibirsk 23090 ~ 1%
Knoxville 17949 <1%
Krasnodar 17849 < 1%
Nizhny Novgorod 17008 < 1%
Paris 14837 < 1%
Berlin 13471 < 1%
Omsk 12814 < 1%
Ufa 12056 < 1%

Munich [5392] <1% |

TABLE 8.1 — Most active cities detected for a fifteen-day period

From all leasesets retrieved over the fifteen-day period, 31.7% were I2PSnark clients. Ac-
cording to the results presented in Subsection 7.4.2, we detected the same fraction of I2PSnark
applications even for a smaller network coverage (forty monitoring floodfill nodes instead of
seventy).

8.3.3 Case studies

Moscow and Saint Petersburg presented a high number of users detected, where the first one
contributed to the 8% of the total users detected. We first considered those two cities for our
correlation analysis as a case study, since they were the ones that contributed the most. Later
on, we analysed another less significant city, and determined whether it represented a part of the
file-sharing activity detected or not.

Correlation analysis for Moscow

Figure 8.5(a) plots Moscow’s data with the number of I2P users in the z-axis and the number
of I2PSnark applications detected in the y-axis. We observe a set of outliers in the bottom left
corner of the chart. Figure 8.5(b) depicts Moscow’s data after outliers’ exclusion through our
modified trimmed estimator, which is used for the correlation analysis.

108

8.3. FEzxperimental results and analyses

Linearity
== Homoscedasticity
- Homoscedasticity

Detected 12PSnark apps
.
I
2

Detected 12PSnark apps
=
I
<]

0 200 400 600 800 1000 0o 200 400 600 800 1000

Moscow Users Moscow Users
(a) With outliers (b) Without outliers
300 —
Best fit line
o 250
o
[=%
©
~ L
E 200 :
2 150 L ® '.o °
o o o .:') oo ©
B 100 [0. .‘ Py
3) °%
2) LY
o) . [4 L L]
[a] 50 . .
Pearson correlatlon coefficient= 0.4997
0 L L) h L
0 200 400 600 800 1000

Users

(c) Pearson’s correlation coefficient analysis

FIGURE 8.5 — Pearson’s analysis for Moscow/I2PSnark

The results shows that data approximately follows a normal distribution and additionally
a straight line, presenting the required linearity. Finally, the data keeps a constant dispersion,
indicating homoscedasticity, the final requirement to properly apply Pearson’s coefficient.

Figure 8.5(c) shows the result of Pearson’s correlation for the fifteen-day sample with a value
of r = 0.4901. We see a strong correlation according to the references values presented in
Subsection 8.2.2. This shows that 12P users from Moscow highly contributed to the I2P’s file-
sharing activity during the analysed period. The coefficient of determination is r* = 0.2401,
indicating that the activity of users from Moscow explained a quarter of all detected file-sharing
activity for this particular fifteen-day period.

Correlation analysis for Saint Petersburg

Figure 8.6(a) plots Saint Petersburg’s data and Figure 8.6(b) depicts this data after outliers’
exclusion through our trimmed estimator.

The results shows that the data approximately follows a normal distribution. Linearity as
well as homoscedasticity were corroborated with the same mechanisms as with Moscow. Figure
8.6(c) shows the result of Pearson’s correlation for the fifteen-day period, where a moderate
correlation is observed with a value of r = 0.3952. In this case, the coefficient of determination
indicates that the activity of users from Saint Petersburg accounted for 15.61% of the total
file-sharing activity for our period of analysis.

Correlation analysis for Munich

We saw that two of the most active cities presented a strong correlation value (for Moscow)
and a moderate correlation value (for Saint Petersburg) with I12PSnark applications according

109

Chapter 8. Group-based characterisation of the I2P network

300 300

Linearity
oo == Homoscedasticity
250 12 [===~ Homoscedasticity

250

200

150

100

Detected 12PSnark apps
Detected 12PSnark apps
=
I
<]

50

0 100 500 0 500
Users Saint Petersburg Users
(a) With outliers (b) Without outliers
300 —
Best fit line
o 250
a
<y
©
< 200 |
©
j =4
n
Q150 -
o
° . ol
£ 100t . .
2 . .
1
a s0f ¢ :
Pearson correlation coefficient= 0.3731
0 . L ;
0 100 200 300 400 500

Users

(c) Pearson’s correlation coefficient analysis

FIGURE 8.6 — Pearson’s analysis for Saint Petersburg/I2PSnark

to Pearson’s correlation coefficient. Let’s consider a city such as Munich. This city has an active
daily participation, however it barely contributes to 0.2% of the total number of users detected.
Figure 8.7(a) plots our data for the city of Munich, where a possible correlation might not seem
as clear as with the previous cities. Figure 8.7(b) depicts the data after outliers’ exclusion.

The results show a lack of a normal distribution. Moreover, the data presents heteroscedas-
ticity, where for bigger values of users, smaller is the variance, i.e. the data points are close to
the line of best. In this case, Pearson’s coefficient was not applicable, since data did not comply
with the coefficient’s assumptions.

300
350 [los
o 250 B %] o4 I
=3 g 300 F
@ © Lk
X 4 x LI
= 4 X 250 L
& &
o] o 200
o]
° = 150
1] . i Q
o 3t L.
2 £ 100
j7) il . .
a 4 a 8 Linearity
50 - Homoscedasticity 1
0 ladusnte tanae : : : o - Homoscedasticity
0 20 40 60 80 100 0 20 40 60 80 100
Users Munich Users
(a) With outliers (b) Without outliers

FI1GURE 8.7 — Data distribution for Munich /I2PSnark

We could not determine whether users from Munich contribute to I2P’s file-sharing activity.
However, we can visually analyse the data. We observe that most of the points were concentrated

110

8.4. Discussion

between 14 and 24 I2P users, while the number of 12PSnark applications detected varied from 50
to 150. This behaviour can be observed in the frequency histogram, where both peaks correspond
to intervals [14,18) and [18,22) and account for the 65% of the total data points. This indicates
that changes in the number of detected I12PSnark applications were not related with changes in
the number of I2P users from Munich. According to this visual analysis, we can deduce that this
set of users did not perform significant file-sharing in the I12P network.

8.3.4 Analysis of low-end outliers

We consider that a trimmed estimator is more adequate for our correlation analysis, since we
discard outliers and keep only those representative values. Winsorising is adequate to deal with
errors in the measurements, where low values are replaced with more suitable, and more likely
values. However, in our case it would distort the dataset when replacing deviant values, either
I2P users or [2PSnark values.

Table 8.2 shows a comparison of the different Pearson’s correlation values for our fifteen-day
period for the analysed cities. We took into consideration different configurations of our two
adapted robust estimators. We also consider a visual exclusion of outliers. We observe that the
correlation coefficient for data with a visual exclusion and with the use of a trimmed estimator
at 10% are similar for both cities. This indicates that a visual exclusion of outliers is adequate
when the dataset can be plotted and easily interpreted. Using the dataset without an outliers
analysis leads to biased results, such as the case of Moscow, where the correlation coefficient
increases up to a value of 0.76.

City | No Exclusion [Visual | Trim. 10% | Trim. 20% | Wins. 10% | Wins. 20% |
Moscow 0.7657 0.4997 [0.4901 04111 0.7418 0.5902
Saint Petersburg 0.3300 0.3731 | 0.3952 0.3370 0.2916 0.3419

TABLE 8.2 — Pearson’s coefficients for different robust estimators

8.4 Discussion

We introduced a correlation analysis on the I12P network, so as to determine which city
contributed the most to 12P’s file-sharing activity, thus characterising these I12P users in terms
of use and deployment of an anonymous application. Here, we analyse a possible correlation
between a country and [2PSnark applications.

We only considered 12P cities and [2PSnark applications, and left aside a possible analysis
between countries and these applications. When combined into a single country, the correlation
might not be noticed. An extreme example of this scenario is presented in Figure 8.8(a), where a
strong correlation exists between an application and a particular city, but when considering the
value for the country itself, including both cities, the correlation value considerable decreases.
Figure 8.8(b) shows a real-case scenario considering Italy and Rome. There is a moderate corre-
lation between Italy and 12PSnark applications. However, when considering Rome and I2PSnark
applications the correlation value doubles. A pre-analysis needs to be carried out before consid-
ering a correlation analysis between countries and applications.

Furthermore, we only studied 12PSnark applications, since it is the most active file-sharing
application on the network. The rest of the file-sharing clients reached a low daily participation

111

Chapter 8. Group-based characterisation of the I2P network

120

300

e Cityl' e taly |

City2 Pearson (Country-App) = -0.0918 Rome Pearson (Italy-I2PSnark) = 0.4246
100 |~ Count 1 250 < I12PSnark 1
Appﬁcgﬁon Pearson (Cityl-App) = 0.9844 Pearson (Rome-IZPSnark.) =0.8519
o -
80 | 1 200 ¢ N, —s S S—
o 'n.,,,.,,. ',n - N, o
> 60 1 > 150
40 | 4 100
............ L e e
20 P et—e TN g A 50
e S S
0 - 1 L 1 L ¥ 0 1 n 1 1
0 5 10 15 20 0 5 10 15 20
X X

(a) An extreme case of a country-based correlation (b) A real case of a country-based correlation anal-
analysis ysis

FIGURE 8.8 — A false negative case for a country’ correlation

and therefore they were not adequate for our correlation analysis. Additional applications, such
as anonymous web servers, did not present the necessary variation through time in order to
correlate them.

8.5 Conclusion

We demonstrated that it is possible to simultaneously analyse the behaviour of I12P users and
I2P applications. We showed that we were able to profile I2P users and determine which set of
users contributed the most to 12P’s file-sharing activity.

By accordingly applying Pearson’s correlation coefficient to the data retrieved by our dis-
tributed architecture, we detected a strong correlation between I2P’s top city, Moscow, and
I12P’s top file-sharing application, I2PSnark. A moderate correlation was as well detected be-
tween users from Saint Petersburg and [2PSnark applications. The variance of users from both
cities explained a third of the total file-sharing activity in the I2P network for the studied period.
We additionally showed that not every active city contributed to I2P’s file-sharing activity, such
as Munich.

Our analysis could be improved by improving our geographical localisation tool to obtain more
precise geographical zones in a city. If we are able to confine a group of users to a particular
region in a city and correlate them against I2PSnark applications, we could be able to determine
which part of the city is more or less responsible of the detected anonymous file-sharing activity.

The I2P network is a complete anonymising layer, but it still requires further anonymity
studies and peer-reviewed research to strengthen the overall provided anonymity. Our work con-
tributed to the ongoing improvements on the network, for which we foresee an excellent option
when considering anonymising services.

112

Conclusion

113

Chapter 9

(zeneral Conclusion

Contents

9.1 Contributions summary o000 e e .. 115
9.1.1 Hybrid peer-to-peer file-sharing environments 115
9.1.2 Characterisation of anonymous environments 117
9.2 Limitations o i v i i e e e e e e e e e e e 118
9.2.1 Limitations on hybrid file-sharing architectures 118

9.2.2 Limitations on group-based characterisation through large-scale mon-
itoring and de-anonymisation 0oL 118
9.3 Perspectives . . ¢ v v v v v v v i i e e e e e e e e e e 119
9.3.1 User de-anonymisation, 119
9.3.2 Attack detection in I2P’snetDB 119
9.3.3 Content characterisation of 12P’s eepsites 119

This chapter summarises our contributions and presents the final conclusion about our thesis.
We introduce the limitations of our work, mainly considering the de-anonymisation of users based
on large-scale monitoring. We end with our work perspectives in the field of anonymous networks.

9.1 Contributions summary

We presented two main contributions. On the one hand, we designed and evaluated two
hybrid file-sharing architectures aiming at improving content indexation and content availability
in BitTorrent-like file-sharing environments. On the other hand, we designed and evaluated a
distributed monitoring architecture that allows us to characterise a widely deployed anonymous
system.

9.1.1 Hybrid peer-to-peer file-sharing environments

We studied hybrid file-sharing environments from two angles. In the first place, we improved
the content indexation scheme in the BitTorrent file-sharing environment via a hybrid BitTorrent-
Kad/Ed2k approach, considering the best of both networks. In the second place, we improved the
content availability in the I2P file-sharing environment, where anonymous I12P users can access
public BitTorrent content through an on-demand approach.

115

Chapter 9. General Conclusion

Improving content indexation in the BitTorrent file-sharing environment

Peer-to-peer file-sharing applications still generate a considerable amount of all Internet traf-
fic. Nearly half of all European upstream traffic is BitTorrent and Kad/Ed2k traffic, which
indicates that both networks are highly used and deployed.

On the one hand, BitTorrent is the most used content distribution platform and is based
on a vulnerable implementation of its Kademlia-based decentralised tracker, making the entire
architecture vulnerable. The Kad/Ed2k network, on the contrary, uses a secure DHT to provide
a double-indexation mechanism. On the other hand, the algorithm of download of BitTorrent
reduces nearly 50% the time of download when compared to the Ed2k algorithm, in a single-file
download environment. Therefore, we argue that both networks can benefit from one another,
achieving a hybrid peer-to-peer file-sharing environment.

We designed, evaluated and implemented a hybrid file-sharing client named hMule. This
client is able to index BitTorrent content in the Kad DHT, thus empowering the BitTorrent
network to use the Kad’s indexation service instead of its vulnerable decentralised tracker im-
plementation. This hybrid scheme additionally enables a double-indexation scheme, where not
only <content,peers> pairs are indexed, but <keyword,contents> pairs are indexed as well.
This double-indexation introduces an extra indexation level in the BitTorrent network, a feature
currently missing. The hMule client allows users to download content using the algorithm of
download of BitTorrent, thus gathering the best of both networks, a strong content indexation
scheme and an excellent content distribution platform.

The hMule client demonstrates how a hybrid interconnection scheme between two file-sharing
networks can lead to an improved file-sharing environment, avoiding to reinvent the wheel and to
create two similar Kademlia-based content indexation mechanisms. The hMule client has been
tested in both the BitTorrent and the Kad/Ed2k networks and it has been proven functional
and backward compatible. The hMule project %' encourages Internet users to employ the hMule
client and benefit from this hybrid cooperation.

Improving content availability in the I12P file-sharing environment

Anonymous communications are significantly growing and Internet users are shifting to a
privacy-preserving Internet, drawing their attention to the concept of online anonymity and
online privacy. In these anonymous communications, anonymous file-sharing environments are
a major field, where dedicated file-sharing networks have been designed and deployed, such
as the I2P anonymous file-sharing network. The I2P network provides a BitTorrent-like file-
sharing environment on top of the network, which allows users to index and distribute content
in an anonymous manner. However, the available content on the system is widely reduced, and
non-anonymous public networks, such as the BitTorrent network, are still the major sources of
content.

We designed and developed a hybrid file-sharing client named B:iTIIP, enabling anonymous
I2P users to access public BitTorrent content without compromising their anonymity. The BiTITP
client enables an on-demand approach, where I12P users specify the desired BitTorrent con-
tent and an interconnection between both networks is created to respond to this demand. The
client indexes BitTorrent content in the I2P decentralised tracker, enabling an anonymous con-
tent indexation, while content is distributed through the I2P anonymous network, proving an
anonymous content distribution. This hybrid scheme results in a fully anonymous file-sharing
environment.

61. Accessible at http://hmule.gforge.inria.fr/.

116

http://hmule.gforge.inria.fr/

9.1. Contributions summary

The connectME project 2 provides the first step towards the interconnection of anonymous

and non-anonymous networks, with a special focus on anonymous file-sharing environments. The
project enables Internet users to install a BiTIIP client, in this way increasing the available
number of BiTIIP clients.

9.1.2 Characterisation of anonymous environments

We conducted the first large-scale monitoring on the I2P anonymous system, characterising
users and services running on top of the network. We first designed and implemented a distributed
monitoring architecture based on distributed probes placed in the 12P’s netDB, which allows us
to collect a vast amount of network metadata. Then, we conducted a correlation analysis between
the behaviour of users and the behaviour of anonymous file-sharing clients to achieve a group-
based characterisation in the network, enabling us to determine which I2P city contributed the
most to the anonymous file-sharing activity in the network.

Characterisation of the anonymous I2P environment

Anonymous systems have been gathering more and more users. The 12P anonymous network
has doubled its user-base in the last year, but still there is no comprehensive analysis of the
network nor monitoring studies characterising the system. The I2P network provides a wide set
of services, such as anonymous file-sharing clients and anonymous web hosting. However, we
cannot measure the use of these anonymous services on the system and determinate the real use
of the I12P network.

Our distributed monitoring architecture allows us to determine the use of anonymous file-
sharing applications and anonymous web servers or eepsites available in the 2P network. We
established that the I2PSnark client is the most used anonymous file-sharing application, contrary
to other file-sharing alternatives, such as iMule or [2Phex. We detected as well several unlisted
eepsites on the system, which accounted for a 30% of the total number of eepsites detected. We
additionally determined the geographical distribution of the I2P users and concluded that the
I2P network is widely deployed, being Russia the most active country.

This large-scale monitoring provided us with the first insights of the I2P anonymous system,
including the use of different anonymous services, as well as the geographical distribution of the
I12P users. Our distributed architecture ease the understanding of this anonymous system, help
us to understand in which direction the system is evolving and the main use of the system.

Group-based characterisation in the I2P anonymous environment

Our distributed monitoring architecture provides us with different insights about the 12P
network, where different application-level analyses are performed to detect anonymous services,
such as anonymous file-sharing clients or anonymous web servers. These application-level analyses
allow us to detect the behaviour of particular applications, notably their period of activity. By
considering the behaviour of a particular anonymous service along with a particular set of 12P
users, we were finally able to determine in which measure this set of users was responsible for
the activity of the anonymous service.

We applied Pearson’s correlation coefficient to successfully established which I2P cities con-
tributed the most to the file-sharing activity in the network. By correlating the behaviour of
the I2P users from two top cities along with the behaviour of the 12PSnark client throughout a

62. Accesible at http://connectme.gforge.inria.fr/

117

http://connectme.gforge.inria.fr/

Chapter 9. General Conclusion

particular period of time, we determined that the activity of users from those cities explained
38% of all detected file-sharing activity.

We demonstrated that a large-scale monitoring could not only provide us with different
insights of an anonymous system, but it could as well led to a group-based characterisation. The
behaviour of users on the system is as important as the anonymity guaranteed by the system
itself and need to be considered whenever employing an anonymous system.

9.2 Limitations

The limitations of our work are twofold. One the one hand considering our hybrid file-sharing
architectures and on the other hand considering the de-anonymisation of users based on large-
scale monitoring.

9.2.1 Limitations on hybrid file-sharing architectures

We designed and evaluated two hybrid file-sharing architectures, enabling a better indexa-
tion of the BitTorrent content via the Kad DHT and improving the content availability in the
I2P network. Both of our approaches work by introducing an interconnection layer, serving as
the meeting point between the two intended networks to interconnect. This layer is formed by
volunteer hybrid nodes, which are deployed by regular Internet users.

The disadvantage of our hybrid model lays on the volunteer-based approach, since if the
number of volunteers is less than the required number of hybrid nodes, the interconnection is
weak. However, as more Internet users offer to deploy hybrid nodes, the interconnection becomes
stronger. This situation is likely to occur during the bootstrap phase, in which our hybrid clients,
as well as the overall hybrid model, are not well-known. The solution is to manually deploy
different hybrid nodes to support a weak interconnection until the hybrid model gets well-known
and a few external hybrid nodes have been deployed.

9.2.2 Limitations on group-based characterisation through large-scale moni-
toring and de-anonymisation

We showed that a large-scale monitoring could provide us with valuable insights when con-
sidering anonymous systems. We established that anonymous file-sharing is widely deployed in
the 12P network, mainly guided by 12PSnark clients. The I2P network is widely deployed, where
Russia accounts for nearly the 40% of all I2P users detected. We employed this large-scale mon-
itoring to determine the behaviour of users and anonymous services on the system. Through
the Pearson’s correlation coefficient we determined which I2P city contributed the most to I2P’s
file-sharing activity, leading to a group-based characterisation.

This group-based characterisation indicates us which subset of users, from a particular city
in this case, contribute the most to a particular anonymous service, such as I2PSnark file-sharing
clients. However, we are not able to link a particular I2P user with an anonymous service through
that large-scale monitoring, mainly because we detect the behaviour of users and anonymous
services through a particular period of time, which does not provide us with the required precision
to bind a single user with a specific anonymous service.

In order to further de-anonymise a single user, we need to take into consideration the I2P
network itself and its mechanisms to guarantee a user’s anonymity on the system as described
in the following section. By compromising those mechanisms, we could be able to determine the
services a given user is running on top of the I2P network.

118

9.3. Perspectives

9.3 Perspectives

Our future work is focused on three aspects of the I2P network.

9.3.1 User de-anonymisation

Starting from our limitations to de-anonymise a particular I2P user, we studied 12P’s unidi-
rectional tunnels and the mechanism used to create these tunnels. We discovered a vulnerability
in the mechanisms to create I2P’s tunnels, which allows an attacker to detect whether he/she is
the last participant in an inbound tunnel. With this knowledge, it would be possible to attack
an I2P’s eepsite in order to de-anonymise the eepsite’s operator.

De-anonymising a single user in the I2P network would require two steps.

We first would need an automatic mechanism to reduce the set of suspects, i.e. which nodes
we think are hosting an anonymous web site. Otherwise, it is practically infeasible to attack the
entire [2P network.

The second step is a mechanism to attack I2P’s local profiling algorithm, so as to position
malicious I2P routers in an inbound tunnel.

9.3.2 Attack detection in I2P’s netDB

I2P’s netDB is a Kademlia-based DHT without any mechanism to certify identities and
therefore it is susceptible to a Sybil attack. Although it contains a slight modification in how
routing identifiers are calculated to avoid a localised Sybil attack, it is still possible to deploy
more general attacks.

An attacker running several floodfill nodes could either monitor the network or attack it. By
placing a big set of malicious floodfill nodes and gathering more 12P’s metadata than a single
floodfill node, an attacker could decide to stop answering requests for that metadata, producing
a major disruption at a particular moment.

A full-space crawling in the netDB could give us every active floodfill node and their infor-
mation, including routing identifiers and IP addresses. By inspecting this information, we could
determine whether a single IP address has multiple routing identifiers associated.

Attack detection is the first step towards a more robust netDB, where a identities’ man-
agement mechanism could lessen the impact of a Sybil attack. The netDB does not enable free
placement of nodes and therefore a localised Sybil attack is practically infeasible. Local rules to
avoid multiple floodfill nodes from a single node would prevent a full-space Sybil attack.

9.3.3 Content characterisation of I2P’s eepsites

The I2P network is optimised for anonymous hosting, where different eepsites are available on
the system. We have detected through our distributed monitoring architecture several unlisted
eepsites, accounting for the 30% of the total available eepsites.

We consider that analysing every eepsite could allow us to characterise I12P’s anonymous
hosting environment, to determine which kind of content is hosted on the system. This in-
depth characterisation would enable us to understand the system and its users, not only from a
behavioural point of view, but from a preferences point of view.

119

Chapter 9. General Conclusion

120

1]

2]

3]

4]

[5]

(6]

[7]

8]

9]

[10]

[11]

Bibliography

S. Fahmy M. Kwon. Synergy: an overlay internetworking architecture. In Proc. of the
14th IEEE International Conference on Computer Communications and Networks, pages

401-406, San Diego, CA, USA, October 2005.

Hai Jiang, Jun Li, Zhongcheng Li, and Jing Liu. Efficient hierarchical content distribution
using P2P technology. In Proc. of the 16th IEEE International Conference on Networks,
pages 1 -6, December 2008.

Jaime Lloret, Fernando Boronat, Carlos E. Palau, and Manuel Esteve. Two Levels SPF-
Based System to Interconnect Partially Decentralized P2P File Sharing Networks. In
Proc. of The 2005 Joint International Conference on Autonomic and Autonomous Systems
/ International Conference on Networking and Services 2005, Papeete, Tahiti, 2005.

Junjiro Konishi, Naoki Wakamiya, and Masayuki Murata. Proposal and evaluation of a
cooperative mechanism for pure p2p file sharing networks. In Proc. of the 2nd Interna-
tional Conference on Biologically Inspired Approaches to Advanced Information Technology,

BioADIT ’06, pages 33-47, Berlin, Heidelberg, 2006. Springer-Verlag.

Hongye Fu, Naoki Wakamiya, and Masayuki Murata. A Cooperative Mechanism for Hybrid
P2P File-Sharing Networks to Enhance Application-Level QoS. I[FEICE transactions on
communications, 89(9):2327-2335, September 2006.

Tomas Isdal, Michael Piatek, Arvind Krishnamurthy, and Thomas Anderson. Privacy-
preserving P2P data sharing with OneSwarm. In Proc. of the 2010 ACM SIGCOMM
Conference, SigComm 10, pages 111-122, New York, NY, USA, 2010. ACM.

Thibault Cholez, Isabelle Chrisment, and Olivier Festor. Evaluation of Sybil Attacks Pro-
tection Schemes in KAD. In Ramin Sadre and Aiko Pras, editors, Proc. of the 3rd Interna-

tional Conference on Autonomous Infrastructure, Management and Security, volume 5637
of AIMS ’09, pages 70-82, Enschede, Netherlands, 2009. University of Twente, Springer.

BitTorrent.org. The BitTorrent Protocol. http://bittorrent.org/. Last visited on
08/2013.

Oliver Heckmann, Axel Bock, Andreas Mauthe, and Ralf Steinmetz. The eDonkey File-
Sharing Network. ftp://www.kom.tu-darmstadt.de/papers/HBMS04-1-paper.pd. Last
visited on 08/2013.

Jacob Appelbaum and Roger Dingledine. How Governments
Have Tried To Block Tor. http://archive.org/details/
28c3howGovernmentsHaveTriedToBlockTorByJacobAppelbaumRoger. Last visited on
08/2013.

Ramesh Subramanian. The Growth of Global Internet Censorship and Circumven-

tion: A Survey. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2032098.
Lastvisitedon08/2013.

121

http://bittorrent.org/
ftp://www.kom.tu-darmstadt.de/papers/HBMS04-1-paper.pd
http://archive.org/details/28c3howGovernmentsHaveTriedToBlockTorByJacobAppelbaumRoger
http://archive.org/details/28c3howGovernmentsHaveTriedToBlockTorByJacobAppelbaumRoger
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2032098. Last visited on 08/2013.
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2032098. Last visited on 08/2013.

Bibliography

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

122

Margaret Coker. U.A.E. Puts the Squeeze on BlackBerry. http://online.wsj.
com/article/SB10001424052748704702304575402493300698912.html. Last visited on
08/2013.

Bill Marczak and Morgan Marquis-Boire. Researchers Find 25 Countries Us-

ing Surveillance Software. http://bits.blogs.nytimes.com/2013/03/13/
researchers-find-25-countries-using-surveillance-software/. Last visited
on 08/2013.

James Bamford. The NSA Is Building the Country Biggest Spy Center (Watch What You
Say). http://www.wired.com/threatlevel/2012/03/ff_nsadatacenter/. Last visited
on 08/2013.

Official Journal of the European Union. Directive 2006/24/EC of the European Par-
liament. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=0J:L:2006:105:
0054:0063:EN:PDF. Last visited on 08/2013.

Mike Rogers and Dutch Ruppersberger. Cyber Intelligence Sharing and Protection Act.
http://thomas.loc.gov/cgi-bin/bdquery/z?d113:h.r.624:. Last visited on 08/2013.

Bram Cohen. Incentives build robustness in bittorrent. Technical report, bittorrent.org,
2003.

Andrew Loewenstern. DHT Protocol. http://www.bittorrent.org/beps/bep_0005.
html.Lastvisitedon08/2013. Last visited on 08/2013.

Petar Maymounkov and David Maziéres. Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. In Rewised Papers from the 1st International Workshop on
Peer-to-Peer Systems, IPTPS 01, pages 53-65, London, UK, 2002. Springer-Verlag.

Donald E. Eastlake and Paul E. Jones. US Secure Hash Algorithm 1 (SHA1). http://
www.ietf.org/rfc/rfc3174.txt?number=3174. Last visited on 08/2013.

Ronald L. Rivest. The MD5 Message-Digest Algorithm (RFC 1321). http://www.ietf.
org/rfc/rfc1321.txt?number=1321.

Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proc. of the

2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, SigComm 01, pages 149-160, New York, NY, USA, 2001. ACM.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A
scalable content-addressable network. SIGCOMM Comput. Commun. Rev., 31(4):161-172,
2001.

Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object Lo-
cation, and Routing for Large-Scale Peer-to-Peer Systems. In Proc. of the IFIP/ACM
International Conference on Distributed Systems Platforms Heidelberg, Middleware 01,
pages 329-350, London, UK, UK, 2001. Springer-Verlag.

Zhonghong Ou, Erkki Harjula, Otso Kassinen, and Mika Ylianttila. Performance evaluation
of a kademlia-based communication-oriented p2p system under churn. Comput. Netw.,
54(5):689-705, 2010.

BitTorrent Enhancement Proposals. Mainline distributed hash table speficication. http://
bittorrent.org/beps/bep_0005.html. Last visited on 08/2013.

Vuze Wiki. The Vuze distributed hash table. http://wiki.vuze.com/w/Distributed_
hash_table. Last visited on 08/2013.

http://online.wsj.com/article/SB10001424052748704702304575402493300698912.html
http://online.wsj.com/article/SB10001424052748704702304575402493300698912.html
http://bits.blogs.nytimes.com/2013/03/13/researchers-find-25-countries-using-surveillance-software/
http://bits.blogs.nytimes.com/2013/03/13/researchers-find-25-countries-using-surveillance-software/
http://www.wired.com/threatlevel/2012/03/ff_nsadatacenter/
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:105:0054:0063:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:105:0054:0063:EN:PDF
http://thomas.loc.gov/cgi-bin/bdquery/z?d113:h.r.624:
http://www.bittorrent.org/beps/bep_0005.html. Last visited on 08/2013
http://www.bittorrent.org/beps/bep_0005.html. Last visited on 08/2013
http://www.ietf.org/rfc/rfc3174.txt?number=3174
http://www.ietf.org/rfc/rfc3174.txt?number=3174
http://www.ietf.org/rfc/rfc1321.txt?number=1321
http://www.ietf.org/rfc/rfc1321.txt?number=1321
http://bittorrent.org/beps/bep_0005.html
http://bittorrent.org/beps/bep_0005.html
http://wiki.vuze.com/w/Distributed_hash_table
http://wiki.vuze.com/w/Distributed_hash_table

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

[40]

[41]

[42]

Ghulam Memon, Reza Rejaie, Yang Guo, and Daniel Stutzbach. Large-scale monitoring of
DHT traffic. In Proc. of the 8th International Conference on Peer-to-peer Systems, IPTPS
'09, pages 11-11, Berkeley, CA, USA, 2009. USENIX Association.

Moritz Steiner, Wolfgang Effelsberg, and Taoufik En-najjary. Load reduction in the kad
peer-to-peer system. In Proc. of the 5th International Workshop on Databases, Information
Systems and Peer-to-Peer Computing, Viena, Austria, 2007.

Thibault Cholez, Isabelle Chrisment, and Olivier Festor. Monitoring and Controlling Con-
tent Access in KAD. In Proc. of the 9th International Conference on Communications,
Capetown, South Africa, May 2010. IEEE.

Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A Blueprint for In-
troducing Disruptive Technology into the Internet. In Proc. of the 1st HotNets Workshop,
Princeton, New Jersey, USA, October 2002.

Jarret Falkner, Michael Piatek, John P. John, Arvind Krishnamurthy, and Thomas An-
derson. Profiling a million user dht. In Proc. of the 7th ACM SIGCOMM conference on
Internet measurement, IMC 07, pages 129-134, New York, NY, USA, 2007. ACM.

Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer networks. In Proc.
of the 6th ACM SIGCOMM Conference on Internet Measurement, IMC ’06, pages 189-202,
New York, NY, USA, 2006. ACM.

Moritz Steiner, Ernst W Biersack, and Taoufik En Najjary. Actively monitoring peers
in KAD. In Proc. of the 6th International Workshop on Peer-to-Peer Systems, Bellevue,
United States, February 2007.

Scott Wolchok and J. Alex Halderman. Crawling BitTorrent DHTs for fun and profit. In
Proc. of the Jth USENIX Conference on Offensive Technologies, WOOT 10, pages 1-8,
Berkeley, CA, USA, 2010. USENIX Association.

K. Junemann, P. Andelfinger, J. Dinger, and H. Hartenstein. BitMON: A Tool for Au-
tomated Monitoring of the BitTorrent DHT. In Proc. of the 10th IEEE International
Conference on Peer-to-Peer Computing, pages 1 =2, Delft, The Netherlands, August 2010.

Moritz Steiner and Ernst W Biersack. Crawling Azureus. Technical Report EURE-
COM+2495, Eurecom, June 2008.

John R. Douceur. The Sybil Attack. In Revised Papers from the 1st International Workshop
on Peer-to-Peer Systems, IPTPS 01, pages 251-260, London, UK, 2002. Springer-Verlag.

Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. A survey of DHT security
techniques. ACM Comput. Surv., 43(2):8:1-8:49, 2011.

Jochen Dinger and Hannes Hartenstein. Defending the sybil attack in p2p networks: Tax-
onomy, challenges, and a proposal for self-registration. In Proc. of the 1st International
Conference on Availability, Reliability and Security, ARES "06, pages 756763, Washington,
DC, USA, 2006. IEEE Computer Society.

Yo Mashimo, Masanori Yasutomi, and Hiroshi Shigeno. SRJE: Decentralized Authenti-
cation Scheme against Sybil Attacks. In Proc. of the 12th International Conference on
Network-Based Information Systems, pages 220-225, Indianapolis, USA, 2009.

Honghao Wang, Yingwu Zhu, and Yiming Hu. An efficient and secure peer-to-peer overlay
network. In Proc. of the 30th Conference on Local Computer Networks, LCN 05, pages
764-771, Washington, DC, USA, 2005. IEEE Computer Society.

123

Bibliography

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[53]

124

Haifeng Yu, P.B. Gibbons, M. Kaminsky, and Feng Xiao. SybilLimit: A Near-Optimal
Social Network Defense against Sybil Attacks. In Proc. of the 2008 IEEE Symposium on
Security and Privacy, pages 3 —17, May 2008.

Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham Flaxman. Sybilguard:
defending against sybil attacks via social networks. In Proc. of the 2006 Conference on

Applications, Technologies, Architectures, and Protocols for Computer Communications,
SigComm 06, pages 267-278, New York, NY, USA, 2006. ACM.

Brian Neil Levine, Clay Shields, and N. Boris Margolin. A Survey of Solutions to the
Sybil Attack. Tech report 2006-052, University of Massachusetts Amherst, Amherst, MA,
October 2006.

Rupert Gatti, Stephen Lewis, Andy Ozment, Thierry Rayna, and Andrei Serjantov. Suffi-
ciently secure peer-to-peer networks. Workshop on the Economics of Information Security,
2004.

N. Boris Margolin and Brian N. Levine. Informant: detecting sybils using incentives. In
Proc. of the 11th International Conference on Financial cryptography and 1st International
conference on Usable Security, FC ’07/USEC ’07, pages 192-207, Berlin, Heidelberg, 2007.
Springer-Verlag.

Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. Exploiting KAD: possible uses
and misuses. SIGCOMM Comput. Commun. Rev., 37(5):65-70, 2007.

Zhoujun Li and Xiaoming Chen. Misusing Kademlia Protocol to Perform DDoS Attacks.
In Proc. of the 2008 IEEE International Symposium on Parallel and Distributed Processing
with Applications, ISPA 08, pages 80-86, Washington, DC, USA, 2008. IEEE Computer
Society.

Peng Wang, James Tyra, Eric Chan-Tin, Tyson Malchow, Denis Foo Kune, Nicholas Hop-
per, and Yongdae Kim. Attacking the Kad network. In Proc. of the jth international
conference on Security and Privacy i Communication Netowrks, SecureComm '08, pages
23:1-23:10, New York, NY, USA, 2008. ACM.

Thibault Cholez, Isabelle Chrisment, and Olivier Festor. Evaluation of Sybil Attacks Pro-
tection Schemes in KAD. In Proc. of the 3rd International Conference on Autonomous
Infrastructure, Management and Security: Scalability of Networks and Services, AIMS ’09,
pages 70-82, Berlin, Heidelberg, 2009. Springer-Verlag.

Michael Kohnen, Mike Leske, and Erwin P. Rathgeb. Conducting and Optimizing Eclipse
Attacks in the Kad Peer-to-Peer Network. In Proc. of the 8th International IFIP-TC 6
Networking Conference, Networking 09, pages 104-116, Berlin, Heidelberg, 2009. Springer-
Verlag.

Thibault Cholez, Isabelle Chrisment, and Olivier Festor. Efficient DHT attack mitigation
through peers ID distribution. In Proc. of the 24th IEEE International Symposium on
Parallel and Distributed Processing, pages 1-8, Atlanta, Georgia, USA, 2010. IEEE.

Marti Ksionsk, Ping Ji, and Weifeng Chen. Attacks on BitTorrent - An Experimental
Study. In Xuejia Lai, Dawu Gu, Bo Jin, Yongquan Wang, and Hui Li, editors, Proc. of 3rd
International Conference on Forensic Applications and Techniques in Telecommunications,
Information and Multimedia, volume 56 of e-Forensics ’10, pages 79-89. Springer, 2010.

Guillaume Urvoy Keller, Soufiane Rouibia, Jonathan Vayn, and Olivier Beauvais. Early
stage denial of service attacks in BitTorrent: an experimental study. In Proc. of the 2008
Workshop on Collaborative Peer-to-Peer Systems, Roma, Italy, June 2008.

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Scott Wolchok, Owen S. Hofmann, Nadia Heninger, Edward W. Felten, J. Alex Halderman,
Christopher J. Rossbach, Brent Waters, and Emmett Witchel. Defeating Vanish with Low-
Cost Sybil Attacks Against Large DHTs. In Proc. of the 17th Network and Distributed
System Security Symposium, San Diego, CA, USA, 2010. The Internet Society.

Roxana Geambasu, Tadayoshi Kohno, Amit A. Levy, and Henry M. Levy. Vanish: in-
creasing data privacy with self-destructing data. In Proc. of the 18th USENIX Security
Symposium, SSYM ’09, pages 299-316, Berkeley, CA, USA, 2009. USENIX Association.

Liang Wang and J. Kangasharju. Real-world sybil attacks in BitTorrent Mainline DHT.
In Proc. of the 2012 IEEE Global Communications Conference, pages 826-832, Anaheim,
CA, USA, 2012.

Matteo Varvello and Moritz Steiner. Traffic localization for DHT-based BitTorrent net-
works. In Proc. of the 10th International IFIP TC 6 Conference on Networking, Networking
11, pages 40-53, Berlin, Heidelberg, 2011. Springer-Verlag.

Scott Crosby and Dan Wallach. An Analysis of BitTorrent’s Two Kademlia-Based DHTs.
Technical Report TR-07-04, Rice University, 2007.

Luigi Liquori, Cédric Tedeschi, Laurent Vanni, Francesco Bongiovanni, Vincenzo
Ciancaglini, and Bojan Marinkovic. Synapse: A Scalable Protocol for Interconnecting
Heterogeneous Overlay Networks. Technical report, INRIA, 2009.

Naoki Wakamiya and Masayuki Murata. Overlay Network Symbiosis: Evolution and Co-
operation. In Proc. of the 1st Conference on Bio-Inspired Models of Network, Information
and Computing Systems, pages 1 =5, Lugano, Switzerland, December 2006.

Min Yang and Yuanyuan Yang. An Efficient Hybrid Peer-to-Peer System for Distributed
Data Sharing. IEEE Trans. Comput., 59(9):1158-1171, 2010.

Tim Wauters, Jan Coppens, Filip De Turck, Bart Dhoedt, and Piet Demeester. Replica
placement in ring based content delivery networks. Computer Communications, 29(16):3313
— 3326, 2006.

Matthew Edman and Biilent Yener. On anonymity in an electronic society: A survey of
anonymous communication systems. ACM Comput. Surv., 42(1):5:1-5:35, 2009.

Andreas Pfitzmann and Marit Hansen. A terminology for talking about
privacy by data minimization: Anonymity, unlinkability, undetectability, un-
observability, —pseudonymity, and identity management. http://dud.inf.tu-

dresden.de/literatur/Anon _Terminology v0.34.pdf, 2010. v0.34.

David L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84-90, 1981.

Sameer Parekh. Prospect for remailers: where is Anonymity heading on the Internet ?.
First Monday, Volume 1, Number 2 - 5 August 1996. http://firstmonday.org/htbin/
cgiwrap/bin/ojs/index.php/fm/article/view/476/397. Last visited on 08/2013.

Ulf Moller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmaster Protocol -
Version 3. IETF Internet Draft, 2003.

George Daneris, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a type
iii anonymous remailer protocol. In Proc. of the 2003 IEEE Symposium on Security and
Privacy, SP 03, pages 2—, Washington, DC, USA, 2003. IEEE Computer Society.

Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web transactions. ACM
Transactions on Information and System Security, 1:66-92, 1998.

125

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/476/397
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/476/397

Bibliography

[72]

73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

126

Oliver Berthold, Hannes Federrath, and Stefan Kopsell. Web MIXes: A system for anony-
mous and unobservable Internet access. In Proc. of the 2001 International Workshop on

Designing Privacy Enhancing Technologies: Design Issues in Anonymity and Unobservabil-
ity, pages 115-129, Berkeley, California, USA, 2001. Springer-Verlag New York, Inc.

David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding Routing Information.
In Proc. of the 1st International Workshop on Information Hiding, pages 137-150, London,
UK, 1996. Springer-Verlag.

Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: the second-generation onion
router. In Proc. of the 13th conference on USENIX Security Symposium, SSYM 04, pages
21-21, Berkeley, CA, USA, 2004. USENIX Association.

Lasse Overlier and Paul Syverson. Locating Hidden Servers. In Proc. of the 2006 IEEE
Symposium, on Security and Privacy, SP 06, pages 100-114, Washington, DC, USA, 2006.
IEEE Computer Society.

Tsuen-Wan Johnny Ngan, Roger Dingledine, and Dan S. Wallach. Building incentives into
tor. In Proc. of the 14th International Conference on Financial Cryptography and Data
Security, FC 10, pages 238-256, Berlin, Heidelberg, 2010. Springer-Verlag.

Lasse Overlier and Paul Syverson. Improving efficiency and simplicity of Tor circuit estab-
lishment and hidden services. In Proc. of the 7th International Conference on Privacy En-
hancing Technologies, PET 07, pages 134152, Berlin, Heidelberg, 2007. Springer-Verlag.

Jon McLachlan, Andrew Tran, Nicholas Hopper, and Yongdae Kim. Scalable onion routing
with torsk. In Proc. of the 16th ACM Conference on Computer and Communications
Security, CCS ’09, pages 590-599, New York, NY, USA, 2009. ACM.

Michael Herrmann and Christian Grothoff. Privacy-implications of performance-based
peer selection by onion-routers: a real-world case study using [12P. In Proc. of the 11th
International Conference on Privacy Enhancing Technologies, PETS 11, pages 155-174,
Berlin, Heidelberg, 2011. Springer-Verlag.

Adrian Crenshaw. Darknets and hidden servers: Identifying the true IP /network identity
of 12P service hosts. In Black Hat DC 2011, DC, March 2011.

Anthéa Mayzaud. Analyse des vulnérabilités du réseau pair a pair anonymisé 12P. Master’s
thesis, ESTAL, Villers-lés-Nancy, 2011.

The AVISPA Project. Automated Validation of Internet Security Protocols and Applica-
tions. http://www.avispa-project.org/. Last visited on 08/2013.

Kevin Bauer, Damon McCoy, Dirk Grunwald, and Douglas Sicker. BitStalker: Accurately
and efficiently monitoring bittorrent traffic. In Proc. of the 1st IEEE International Work-
shop on Information Forensics and Security, London, UK, 2009.

Stevens Le Blond, Pere Manils, Abdelberi Chaabane, Mohamed Ali Kaafar, Claude Castel-
luccia, Arnaud Legout, and Walid Dabbous. One bad apple spoils the bunch: exploiting
P2P applications to trace and profile Tor users. In Proc. of the 4th USENIX Conference
on Large-scale FExploits and Emergent Threats, LEET 11, pages 2-2, Berkeley, CA, USA,
2011. USENIX Association.

Pere Manils, Chaabane Abdelberi, Stevens Le-Blond, Mohamed Ali Kaafar, Claude Castel-
luccia, Arnaud Legout, and Walid Dabbous. Compromising Tor Anonymity Exploiting P2P
Information Leakage. CoRR, abs/1004.1461, 2010.

The OFF Project. The OFF System. http://offsystem.sourceforge.net/. Last visited
on 08/2013.

http://www.avispa-project.org/
http://offsystem.sourceforge.net/

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

Marc Seeger. The current state of anonymous file-sharing Bachelor’s thesis, Studiengang
Medieninformatik Hochschule der Medien, Stuttgart, Germany, July 2008.

Swagatika Prusty, Brian Neil Levine, and Marc Liberatore. Forensic investigation of the
OneSwarm anonymous filesharing system. In Proc. of the 18th ACM Conference on Com-
puter and Communications Security, CCS ’11, pages 201-214, New York, NY, USA, 2011.
ACM.

M. Cunche, M.A. Kaafar, Jiefeng Chen, R. Boreli, and A. Mahanti. Why are they hiding ?
Study of an anonymous file sharing system. In Proc. of the 1st Conference on Satellite
Telecommunications, pages 1 -6, Rome, Italy, October 2012.

Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A Dis-
tributed Anonymous Information Storage and Retrieval System. In Proc. of the 2001
International Workshop on Designing Privacy Enhancing Technologies: Design Issues in
Anonymity and Unobservability, pages 4666, Berkley, CA, USA, 2001. Springer-Verlag
New York, Inc.

Stanley Milgram. The Small World Problem. Psychology Today, 2:60-67, 1967.

Nathan S. Evans, Chris GauthierDickey, and Christian Grothoff. Routing in the Dark: Pitch
Black. In Proc. of the 23rd Conference on Computer Security Applications Conference,
pages 305-314, Miami Beach, Florida, USA, 2007.

Benjamin Schiller, Stefanie Roos, Andreas Hofer, and Thorsten Strufe. Attack Resistant
Network Embeddings for Darknets. In Proc. of the 30th IEEE Symposium on Reliable
Distributed Systems Workshops, SRDSW 11, pages 90-95, Washington, DC, USA, 2011.
IEEE Computer Society.

Yingfei Dong and Zhenhai Duan. A Traceback Attack on Freenet. Submitted to INFO-
COM, 2013.

Yingfei Dong and Zhenhai Duan. A Routing Table Insertion Attack on Freenet. Submitted
to the annual ASE/IEEE Cyber Security Conference., 2012.

Krista Bennett, Tiberius Stef, Christian Grothoff, Tzvetan Horozov, and loana Patrascu.
The GNet Whitepaper. Technical report, Purdue University, 2002.

Krista Bennett, Christian Grothoff, Tzvetan Horozov, and loana Patrascu. Efficient sharing
of encrypted data. In Proc. of the 7th Conference on Information Security and Privacy,
pages 107-120, Melbourne, Australia, 2002.

Dennis Kiigler. An Analysis of GNUnet and the Implications for Anonymous, Censorship-
Resistant Networks. In Roger Dingledine, editor, Revised Papers of the 3rd Internationl
Workshop on Privacy Enhancing Technologies, volume 2760 of PETShop 03, pages 161—
176, Dresden, Germany, 2003. Springer.

Abdelberi Chaabane, Pere Manils, and Mohamed Ali Kaafar. Digging into Anonymous
Traffic: A Deep Analysis of the Tor Anonymizing Network. In Proc. of the 4th International
Conference on Network and System Security, NSS ’10, pages 167-174, Washington, DC,
USA, 2010. IEEE Computer Society.

The Sydney Morning Herald. The hack of the Year. http://www.smh.com.au/news/
security/the-hack-of-the-year/2007/11/12/1194766589522 .html?page=fullpage#
contentSwapl. Last visited on 08/2013.

Bruce Schneier. Anonymity and the Tor Network. http://www.schneier.com/blog/
archives/2007/09/anonymity_and_t_1.html.Lastvisitedon08/2013.

127

http://www.smh.com.au/news/security/the-hack-of-the-year/2007/11/12/1194766589522.html?page=fullpage#contentSwap1
http://www.smh.com.au/news/security/the-hack-of-the-year/2007/11/12/1194766589522.html?page=fullpage#contentSwap1
http://www.smh.com.au/news/security/the-hack-of-the-year/2007/11/12/1194766589522.html?page=fullpage#contentSwap1
http://www.schneier.com/blog/archives/2007/09/anonymity_and_t_1.html. Last visited on 08/2013.
http://www.schneier.com/blog/archives/2007/09/anonymity_and_t_1.html. Last visited on 08/2013.

Bibliography

[102]

[103]

[104]

[105]

[106]

[107]
108

[109]

[110]

[111]

[112]
[113]

[114]

[115]

[116]

128

Damon Mccoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker. Shin-
ing Light in Dark Places: Understanding the Tor Network. In Proc. of the 8th International
Symposium on Privacy Enhancing Technologies, PETS ’08, pages 63-76, Berlin, Heidelberg,
2008. Springer-Verlag.

Karsten Loesing, Steven J. Murdoch, and Roger Dingledine. A case study on measuring
statistical data in the Tor anonymity network. In Proc. of the 1/th international Conference
on Financial Cryptograpy and Data Security, FC 10, pages 203-215, Berlin, Heidelberg,
2010. Springer-Verlag.

Martin Mulazzani, Markus Huber, and Edgar R. Weippl. Anonymity and monitoring: how
to monitor the infrastructure of an anonymity system. Trans. Sys. Man Cyber Part C,
40(5):539-546, 2010.

Douglas C. Sicker, Paul Ohm, and Dirk Grunwald. Legal issues surrounding monitoring
during network research. In Proc. of the 7th ACM SIGCOMM Conference on Internet
Measurement, IMC *07, pages 141-148, New York, NY, USA, 2007. ACM.

Sandvine. Global Internet Phenomena Report 2011. http://www.sandvine.com/
downloads/documents/05-17-2011_phenomena/Sandvine’20Global’,20Internet
%20Phenomenay,20Report .pdf. Last visited on 08/2013.

Klaus Mochalski and Hendrik Schulze. Ipoque Internet Study 2008/2009. Africa, 2009.

Sandvine. Global Internet Phenomena Report 2012. http://www.sandvine.com/
downloads/documents/Phenomena_2H_2012/Sandvine_Global_Internet_Phenomena_
Report_2H_2012.pdf. Last visited on 08/2013.

Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. Exploiting KAD: possible uses
and misuses. Computer Communication Review, 37(5):65-70, 2007.

Thibault Cholez, Isabelle Chrisment, and Olivier Festor. Efficient DHT attack mitigation
through peers’ ID distribution. In Proc. of the 7th International Workshop on Hot Top-
ics in Peer-to-Peer Systems, Atlanta, United States, 2010. IEEE International Parallel &
Distributed Processing Symposium.

Moritz Steiner, Damiano Carra, and Ernst W Biersack. Evaluating and improving the
content access in KAD. Springer "Journal of Peer-to-Peer Networks and Applications”,
Vol 3, NA°2, June 2010, June 2010.

Damian Vicino, Juan Pablo Timpanaro, Isabelle Chrisment, and Olivier Festor. hMule: an
unified KAD-BitTorrent file-sharing application. Research Report RR-7815, INRIA, 2011.

Tarang Chugh. Bridging the two BitTorrent Worlds: I2P and P2P. Research report, INRIA,
2012.

Georgos Siganos, Josep M. Pujol, and Pablo Rodriguez. Monitoring the Bittorrent Mon-
itors: A Bird’s Eye View. In Proc. of the 10th International Conference on Passive and
Active Network Measurement, PAM ’09, Seoul, Korea, April 2009. Springer-Verlag.

Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. A global view of Kad. In Proc.
of the 7th ACM SIGCOMM Conference on Internet Measurement, IMC 07, San Diego,
California, USA, October 2007. ACM.

Anirban Banerjee, Michalis Faloutsos, and Laxmi Bhuyan. The P2P War: Someone Is
Monitoring Your Activities! In Proc. of the 6th International Networking Conference,
Networking ’07, Atlanta, GA, USA, May 2007. Springer.

http://www.sandvine.com/downloads/documents/05-17-2011_phenomena/Sandvine%20Global%20Internet%20Phenomena%20Report.pdf
http://www.sandvine.com/downloads/documents/05-17-2011_phenomena/Sandvine%20Global%20Internet%20Phenomena%20Report.pdf
http://www.sandvine.com/downloads/documents/05-17-2011_phenomena/Sandvine%20Global%20Internet%20Phenomena%20Report.pdf
http://www.sandvine.com/downloads/documents/Phenomena_2H_2012/Sandvine_Global_Internet_Phenomena_Report_2H_2012.pdf
http://www.sandvine.com/downloads/documents/Phenomena_2H_2012/Sandvine_Global_Internet_Phenomena_Report_2H_2012.pdf
http://www.sandvine.com/downloads/documents/Phenomena_2H_2012/Sandvine_Global_Internet_Phenomena_Report_2H_2012.pdf

[117] Damon Mccoy, Tadayoshi Kohno, and Douglas Sicker. Shining light in dark places: Under-
standing the Tor network. In Proc. of the 8th Privacy Enhancing Technologies Symposium,
PETS ’08, Leuven, Belgium, July 2008. Springer.

[118] Network Working Group. Attacks on Cryptographic Hashes in Internet Protocols. http://
tools.ietf.org/html/rfc4270. Last visited on 08/2013.

[119] Amir Alsbih, Thomas Janson and Christian Schindelhauer. Analysis of Peer-to-Peer Traffic
and User Behaviour. http://archive.cone.informatik.uni-freiburg.de/pubs/ITA11_
bittorrent_alsbih_janson_schindelhauer.pdf. Last visited on 08/2013.

[120] Russian Federal Service of State Statistics (Rosstat). Russian Census (2002). http://www.
perepis2002.ru/index.html?1d=87. Last visited on 08/2013.

[121] Jéréme Henry. Supervision du réau anonyme I2P. Research report, INRIA, 2012.
[122] S.S. Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677-680, 1946.

[123] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences (2nd Edition). Rout-
ledge Academic, 2 edition, 1988.

[124] Frank Anscombe. Graphs in statistical analysis. The American Statistician, 27(1):17-21,
1973.

129

http://tools.ietf.org/html/rfc4270
http://tools.ietf.org/html/rfc4270
http://archive.cone.informatik.uni-freiburg.de/pubs/ITA11_bittorrent_alsbih_janson_schindelhauer.pdf
http://archive.cone.informatik.uni-freiburg.de/pubs/ITA11_bittorrent_alsbih_janson_schindelhauer.pdf
http://www.perepis2002.ru/index.html?id=87
http://www.perepis2002.ru/index.html?id=87

Bibliography

130

Publications

International conferences

— Juan Pablo Timpanaro, Isabelle Chrisment and Olivier Festor, Improving Content
Availability in the I2P Anonymous File-Sharing Environment,in Cyberspace Safety
and Security (CSS) 2012 - Melbourne, Australia

— Juan Pablo Timpanaro, Isabelle Chrisment and Olivier Festor, A Bird’s Eye View on
the I2P Anonymous File-sharing Environment, in Network and System Security (NSS)
2012 - Wuyishan, China

— Juan Pablo Timpanaro, Thibault Cholez, Isabelle Chrisment and Olivier Festor, BitTorrent’s
Mainline DHT Security Assessment,in New Technologies, Mobility and Security (NTMS)
2011 - Paris, France

International workshops

— Juan Pablo Timpanaro, Thibault Cholez, Isabelle Chrisment and Olivier Festor, When
KAD meets BitTorrent - Building a Stronger P2P Network, in Workshop on Hot Top-
ics in Peer-to-Peer Systems (HotP2P) 2011 - Anchorage, Alaska

— Juan Pablo Timpanaro, Isabelle Chrisment and Olivier Festor, I2P’s Usage Characterisation
(short paper), in Traffic Monitoring and Analysis (TMA) 2012 - Vienna, Austria

Poster sessions

— Juan Pablo Timpanaro, [sabelle Chrisment and Olivier Festor, Monitoring Anonymous
P2P File-Sharing Systems, in IEEE Peer-to-Peer (IEEE P2P) 2013 - Trento, Italy

— Juan Pablo Timpanaro, Isabelle Chrisment and Olivier Festor, Distributed Monitoring
On Anonymous Environments,in Summer School on Communication Networks (RESCOM)
2013 - Porquerolles, France

Research reports

— Juan Pablo Timpanaro, Isabelle Chrisment and Olivier Festor, Monitoring the I2P
network, Research report RR-7844, 2011

— Thibault Cholez, Juan Pablo Timpanaro, Guillaume Doyen, Isabelle Chrisment, Olivier
Festor and Rida Khatoun, Vulnérabilités de la DHT de BitTorrent & Identification
des comportements malveillants dans KAD, Projet ACDA-P2P, Délivrable 2 (in French),
2011

Most of our daily activities are carried out over the Internet, from file-sharing and social networking
to home banking, online-teaching and online-blogging. Considering file-sharing as one of Internet top
activities, different architectures have been proposed, designed and implemented, leading to a wide set
of file-sharing networks with different performances and goals. This digital society enables as well users’
profiling. As Internet users surf the World Wide Web, every sent or received packet passes through several
intermediate nodes until they reach their intended destination. So, an observer will be able to determine
where a packet comes from and where it goes to, to monitor and to profile users’ online activities by
identifying to which server they are connected or how long their sessions last. Meanwhile, anonymous
communications have been significantly developed to allow users to carry out their online activities
without necessarily revealing their real identity.

Our contribution is twofold. On the one hand, we consider hybrid file-sharing environments, with a
special focus on widely deployed real-world networks and targeting two defined goals. The first goal is
to improve content indexation in the BitTorrent file-sharing environment, enabling BitTorrent content
to be indexed in the Kad distributed has table and leading to a more robust BitTorrent system. The
second goal is to improve content availability in the I2P file-sharing environment. We allow 12P users to
anonymously access public BitTorrent content and we obtain a fully anonymous file-sharing environment,
including anonymous content indexation and anonymous content distribution.

On the other hand, we focus on the understanding of anonymous environments through extensive mon-
itoring. We characterise the I2P network, targeting the entire anonymous environment and its anonymous
services. We consider different aspects of the network, such as the number of users, their characteristics
as well as the number of anonymous services available. Through long-term measurements on the network
and along with different correlation analyses, we are able to characterise a small group of users using a
specific anonymous service, such as the users from a particular city performing anonymous file-sharing.

La plupart de nos activités quotidiennes sont aujourd’hui rythmées et régies par Internet, qu’il s’agisse
de partage de fichiers, d’interaction sur les réseaux sociaux, de banques et de cours en ligne, ou encore de
publication de blogs. En ce qui concerne le partage de fichiers, 'une des activités les plus pratiquées sur
Internet, diverses solutions ont déja été proposées, créées et implantées, pour constituer des réseaux de
partage de fichiers aux performances et objectifs parfois trés différents. Cette société du numérique permet
le profilage des utilisateurs. Chaque information envoyée ou regue sur Internet va ainsi traverser une série
de noeuds intermédiaires jusqu’a atteindre sa destination. Un observateur pourra ainsi déterminer la
provenance et la destination des paquets et de ce fait surveiller et profiler les activités des utilisateurs en
identifiant le serveur auquel ils se connectent ou la durée de leur session. Paralléelement, les communications
anonymes se sont développées afin de permettre aux utilisateurs d’utiliser Internet sans que leur identité
ne soit nécessairement révélée.

Notre contribution se veut double. Nous nous intéressons tout d’abord aux environnements de partage
de fichiers hybrides en nous focalisant sur des réseaux réels largement, déployés. Nous visons, au travers
de cette étude, deux objectifs. Le premier consiste en I’amélioration du systéme d’indexation de contenu
au sein de I'environnement de partage de fichiers BitTorrent. Il s’agit, plus précisément, de renforcer le
systéme BitTorrent par le biais d’une indexation de son contenu dans la table de hachage distribuée Kad.

Notre second but est d’améliorer les conditions d’accés au contenu ainsi que sa disponibilité au
sein de l’environnement I2P de partage de fichiers. Nous permettons aux utilisateurs d’I2P d’accéder
anonymement au contenu public de BitTorrent et nous aboutissons ainsi & un environnement de partage
de fichiers totalement anonyme, indexation et distribution du contenu comprises. Nous centrons ensuite
notre analyse sur une meilleure compréhension des environnements anonymes par le biais d’une surveil-
lance & grande échelle. Nous définissons les caractéristiques du réseau I2P, en visant l'intégralité de
I’environnement anonyme et son large champ d’activités et de services anonymes. Nous analysons les dif-
férents aspects du réseau, comme le nombre des utilisateurs, leurs caractéristiques ainsi que le nombre de
services anonymes disponibles. Au travers des mesures et évaluations réalisées a long terme sur le réseau,
couplées & différentes analyses de corrélation, nous avons réussi & identifier et caractériser un petit groupe
d’individus exécutant un service anonyme spécifique comme, par exemple, les habitants d’une méme ville
utilisant une application anonyme de partage de fichiers.

UNIVERSITE
DE LORRAINE

Département de formation doctorale en informatique Ecole doctorale IAEM Lorraine
UFR STMIA

Environnements Hybrides et
Anonymes pour le Partage de Fichiers :
Architecture et Caractérisation

THESE

présentée et soutenue publiquement le 6 Novembre 2013

pour 'obtention du

Doctorat de I’Université de Lorraine

spécialité informatique
p q
par

Juan Pablo Timpanaro

Composition du jury

Rapporteurs : Gabi DREO RODOSEK, Professeure a Universitidt der Bundeswehr Miinchen
Maryline LAURENT, Professeure a Telecom SudParis

Ezaminateurs : Guillaume DOYEN, Maitre de Conférences a I’Université de Technologie de Troyes
Bénédicte LE GRAND, Professeure a I’Université Paris 1 Panthéon-Sorbonne
René SCHOTT, Professeur a I’'Université de Lorraine
Olivier FESTOR, Directeur de Recherche Inria Nancy-Grand Est

Dissertation Director: Isabelle CHRISMENT, Professeure & TELECOM Nancy, Université de Lorraine

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Loria

Mis en page avec la classe thloria.

Table des matiéres

Table des figures

Chapitre 1 Introduction
1.1 Contexte
1.2 Problématique

Chapitre 2 Contributions

2.1 Amélioration de l'indexation du contenu dans ’environnement de partage de
fichiers BitTorrento
2.1.1 Comparaison des DHTs
2.1.2 Algorithmes de téléchargement de BitTorrent et Ed2k
2.1.3 Un modéle de partage de fichiers hybride BitTorrent & KAD/Ed2k
2.1.4 Synthése

2.2 Amélioration de la disponibilité du contenu dans ’environnement de partage de
fichiers I2P C L
2.2.1 Disponibilité du contenu dans le réseau 12P
2.2.2 Interconnexion entre les réseaux I2P et BitTorrent
2.2.3 Performance du client BiTITP
224 Synthése

2.3 Caractérisation de I’environnement anonyme I2P
231 LanetDB d’I2Po
2.3.2 Exploitation de lanetDB d'I2Po oL
2.3.3 Architecture de surveillance
2.3.4 Leréseau I2P en temps réelo
2.3.5 Synthése L

2.4 Caractérisation fondée sur les groupes dans I’environnement anonyme 2P
2.4.1 Cadre de 'expérimentation oL
2.4.2 Analyse de corrélation : Moscou L.

2.4.3 Analyse de corrélation : Saint-Pétersbourgo

N O Ot = W

O © oo oo 3

Table des matiéres

2.4.4 Analyse de corrélation : Munich L. oo oL 16

24.5 Synthése 16
Chapitre 3 Conclusion 19
3.1 Environnements hybrides de partage de fichiers 19

3.2 Caractérisation des environnements anonymes 20

i

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Table des figures

Instanciation du modeéle hybride avec les réseaux BitTorrent et Kad/Ed2k.
Instanciation de notre modéle hybride avec les réseaux BitTorrent et I12P.

A passive distributed monitoring architecture for the I2P network.
Répartition mondiale des utilisateurs 12P.
Analyse de Pearson pour Moscow/I2PSnark.
Analyse de Pearson pour Saint Petersburg/I2PSnark.
Distribution des données pour Munich/I2PSnark

iii

Table des figures

v

Résumé

La plupart de nos activités quotidiennes sont aujourd’hui rythmées et régies par Internet,
qu’il s’agisse de partage de fichiers, d’interaction sur les réseaux sociaux, de banques et de cours
en ligne, ou encore de publication de blogs. En ce qui concerne le partage de fichiers, 1'une
des activités les plus pratiquées sur Internet, diverses solutions ont déja été proposées, créées
et implantées, pour constituer des réseaux de partage de fichiers aux performances et objectifs
parfois trés différents. Cette société du numeérique permet le profilage des utilisateurs. Chaque
information envoyée ou recue sur Internet va ainsi traverser une série de noeuds intermédiaires
jusqu’a atteindre sa destination. Un observateur pourra ainsi déterminer la provenance et la
destination des paquets et de ce fait surveiller et profiler les activités des utilisateurs en identifiant
le serveur auquel ils se connectent ou la durée de leur session. Parallélement, les communications
anonymes se sont développées afin de permettre aux utilisateurs d’utiliser Internet sans que leur
identité ne soit nécessairement révélée.

Notre contribution se veut double. Nous nous intéressons tout d’abord aux environnements
de partage de fichiers hybrides en nous focalisant sur des réseaux réels largement déployés. Nous
visons, au travers de cette étude, deux objectifs. Le premier consiste en 'amélioration du systéme
d’indexation de contenu au sein de ’environnement de partage de fichiers BitTorrent. Il s’agit,
plus précisément, de renforcer le systéme BitTorrent par le biais d'une indexation de son contenu
dans la table de hachage distribuée Kad.

Notre second but est d’améliorer les conditions d’accés au contenu ainsi que sa disponibilité
au sein de ’environnement I2P de partage de fichiers. Nous permettons aux utilisateurs d’I2P
d’accéder anonymement au contenu public de BitTorrent et nous aboutissons ainsi & un environ-
nement de partage de fichiers totalement anonyme, indexation et distribution du contenu com-
prises. Nous centrons ensuite notre analyse sur une meilleure compréhension des environnements
anonymes par le biais d’une surveillance & grande échelle. Nous définissons les caractéristiques du
réseau 12P, en visant 'intégralité de I’environnement anonyme et son large champ d’activités et
de services anonymes. Nous analysons les différents aspects du réseau, comme le nombre des util-
isateurs, leurs caractéristiques ainsi que le nombre de services anonymes disponibles. Au travers
des mesures et évaluations réalisées a long terme sur le réseau, couplées a différentes analyses de
corrélation, nous avons réussi a identifier et caractériser un petit groupe d’individus exécutant
un service anonyme spécifique comme, par exemple, les habitants d’une méme ville utilisant une
application anonyme de partage de fichiers.

vi

Chapitre 1

Introduction

Sommaire
1.1 Contexte . . . v i v i i i e 1
1.2 Problématique ¢ v ot i v v v vttt e e e e e e e

1.1 Contexte

Nous évoluons chaque jour dans I'ére de 1’électronique et du numérique. La plupart de nos
activités quotidiennes sont aujourd’hui rythmées et régies par Internet, qu’il s’agisse de partage
de fichiers, d’interaction sur les réseaux sociaux, de banques et de cours en ligne, ou encore de
publication de blogs, ces exemples ne constituant qu’un trés mince échantillon des innombrables
possibilités offertes par la toile. En ce qui concerne le partage de fichiers, qui reste sans aucun
doute 'une des activités les plus pratiquées sur Internet, diverses solutions ont déja été proposées,
créées et implantées, pour constituer ainsi un large ensemble de réseaux de partage de fichiers
aux performances et objectifs parfois trés différents. Ces réseaux ont évolué au fil du temps,
passant d’une approche plus centralisée a des systémes aujourd’hui totalement décentralisés.

Le réseau BitTorrent, d’une part, utilisait des trackers (traqueurs)' basés sur le protocole
de controle de transmissions TCP pour coordonner des pairs partageant différents fichiers. Le
systéme a ensuite évolué vers le protocole UDP afin de réduire la charge du systéme. Au final,
c’est toute 'architecture de BitTorrent qui a été récemment modifiée jusqu’a étre totalement
décentralisée avec ’emploi de tables de hachage distribuées (DHTS) a la place des traqueurs. Un
utilisateur d’Internet peut ainsi accéder & un large éventail de contenu simultanément avec des
dizaines de millions d’autres utilisateurs a travers le monde, et ce, via le protocole de télécharge-
ment de BitTorrent, tout en utilisant un mécanisme d’indexation du contenu off-band comme
des liens magnets? pour interroger la DHT.

De son coté, le réseau eDonkey s’est également tourné vers une architecture complétement
décentralisée, ot une DHT rend possible un mécanisme de double indexation permettant une
recherche de fichiers & partir de mots clés. L’algorithme de téléchargement Ed2K demeure néan-
moins moins étudié.

Cette ére du numérique s’inscrit également sous ’angle de la surveillance et du profilage
puisque chaque information envoyée - ou recue, par un internaute va passer par une série de noeuds

1. Entités fournissant une liste de sources pour les fichiers recherchés.
2. Format permettant de désigner et référencer les fichiers a télécharger.

Chapitre 1. Introduction

intermédiaires jusqu’a atteindre sa destination. Méme ¢§’il s’avére possible de ne pas pouvoir
détecter le passage d’une information au niveau d’un nceud intermédiaire, un observateur pourra
toujours en déterminer sa provenance et sa destination et ainsi surveiller I'utilisateur en identifiant
le serveur d’oi il s’est connecté mais aussi la durée de sa session, pour finalement étre en mesure
de pouvoir dresser un profil des activités online de cet utilisateur. Parallélement et pour contrer
ce phénomeéne se sont développés des aires et des systémes de communication anonymes, créés
pour permettre & leurs utilisateurs de pouvoir s’adonner & leurs activités sur Internet sans que
leur identité, comme par exemple leur adresse IP, ne soit nécessairement révélée au cours du
processus. Les systémes anonymes sont devenus une caractéristique intrinséque a notre mode de
communication virtuelle actuel, renforcés par une vague de surveillance politique [?, 7, 7, 7, ?],
de lois floues sur le respect de la vie privée [?, ?] et de divers cas de violation de cette méme vie
privée lors d’activités en ligne. Au final, les internautes se sont sensiblement tournés de plus en
plus vers ces modes de communication anonymes.

Notre étude s’articule autour de deux axes : d'un coté le large éventail d’architectures de
partage de fichiers existant, leurs performances et la maniére avec laquelle elles peuvent étre
exploitées; de 'autre, cette communauté anonyme grandissante sur Internet et la maniére avec
laquelle elle peut étre controlée.

1.2 Problématique

Nous évaluons tout d’abord différentes architectures de partage de fichiers et leurs propriétés.
Les réseaux les plus populaires, comme BitTorrent ou KAD/Ed2k, ont été optimisés pour répon-
dre des objectifs différents. Le réseau KAD/Ed2k présente un excellent systéme d’indexation
du contenu basé sur Kadmelia, tandis que ’algorithme de téléchargement BitTorrent est connu
pour sa haute performance. Notre objectif consiste ainsi trouver un moyen de connecter ces deux
réseaux en exploitant les points forts de chacun d’entre eux.

La volonté exprimée de nos jours par un certain nombre d’utilisateurs de pouvoir commu-
niquer au sein d’un environnement respectant la vie privée a conduit la création de plusieurs
communautés fermées mais aussi I’émergence de réseaux dédiés au partage de fichiers anonyme.
Si ces systémes ont été améliorés pour préserver I'anonymat de leurs utilisateurs, ils présentent
I'inconvénient de ne pas pouvoir accéder des communautés partageant publiquement du con-
tenu, tel que le réseau BitTorrent. Ces deux facteurs nous aménent au premier point de notre
problématique, savoir I’étude et ’analyse d’architectures hybrides de partage de fichiers afin de
pouvoir tirer parti de certaines propriétés de différents réseaux actuels de partage de fichiers pour
construire un environnement de partage plus solide.

Nous centrons ensuite notre analyse sur les réseaux anonymes, qui n’ont cessé de prendre
de I'importance?® et au sein desquels de plus en plus de services deviennent disponibles. Une
caractérisation détaillée de ces systémes est nécessaire pour nous permettre d’en comprendre
I'usage réel dans les communications d’aujourd’hui, de déterminer si ces systémes sont largement
déployés ou utilisés par un certain type d’utilisateurs seulement et d’analyser leur évolution
dans le temps. Ce qui constitue donc ici notre challenge est de pouvoir analyser ces systémes
sans compromettre 'anonymat de leurs utilisateurs, nous amenant directement au second point
de notre problématique, & savoir une caractérisation correcte et détaillée des environnements
anonymes.

3. Le nombre d’utilisateurs du réseau Tor a triplé au cours de ces 3 derniéres années, pendant que celui
du réseau I2P a doublé durant la seule année passée. Statistiques & https://metrics.torproject.org et
http://stats.i2p.in/.

Chapitre 2

Contributions

Sommaire
2.1 Amélioration de I’indexation du contenu dans 1’environnement de
partage de fichiers BitTorrent 3
2.2 Amélioration de la disponibilité du contenu dans I’environnement
de partage de fichiers I2P v v v i it i e e 7
2.3 Caractérisation de ’environnement anonyme I12P 10

2.4 Caractérisation fondée sur les groupes dans ’environnement anonyme
I2P . . o e e e e e e e e e e e e e e e e e e e 14

2.1 Amélioration de ’indexation du contenu dans I’environnement
de partage de fichiers BitTorrent

Des études antérieures sur Internet [?, ?] ont montré que la proportion d’applications de
partage de fichiers pair-a-pair (P2P) était considérable en terme de trafic Internet. La situation
a récemment évolué en faveur des services de streaming tels que YouTube ou Netflix [?]. Malgré
cette tendance, 46% du trafic Internet en Europe et en Amérique du Nord sont toujours générés
par les applications de partage de fichiers P2P, qui sont, par conséquent, toujours prédominantes.

Parmi ces applications de partage de fichiers P2P, BitTorrent demeure la plus importante et
la plus active, classée au premier rang grace a ses dizaines de millions d’utilisateurs simultanés
et ses millions de torrents? disponibles. Ces derniéres années, le systéme a évolué vers une ap-
proche totalement distribuée avec I'introduction de tables de hachage distribuées pour remplacer
les traqueurs. Ces DHTS, basées sur le protocole Kademlia|?], offrent un unique niveau d’index-
ation, reliant les torrents & leurs pairs et permettant ainsi aux utilisateurs de trouver les sources
nécessaires au téléchargement d’un contenu particulier. Une des failles de la décentralisation ré-
side néanmoins dans la réduction du niveau de sécurité avec différents types d’attaques qui sont
ainsi rendus possibles au sein des DHTS. Le réseau eDonkey (ed2k) se classe en seconde position
dans le classement des applications de fichiers P2P les plus utilisées, représentant un tiers de
toute lactivité de partage de fichiers P2P (les deux autres tiers étant réalisés par BitTorrent).
En 2004, le principal client du réseau eDonkey, & savoir eMule, a présenté un nouveau réseau P2P
totalement décentralisé appelé Kad, concu pour étre compatible avec eDonkey. Son architecture
totalement distribuée et la nature "open source"de ses clients (eMule et aMule) ont fait de Kad
un réseau largement étudié et par 14 méme amplement amélioré.

4. Metadonnées sur les fichiers & télécharger.

Chapitre 2. Contributions

Nous pensons que ’application BitTorrent pourrait aisément profiter des performances et
des fonctions de sécurité de Kad pour 'indexation du contenu et que Kad pourrait a son tour
bénéficier des performances de I'algorithme de téléchargement de BitTorrent ; les deux réseaux
tirant ainsi profit d’'une possible collaboration.

2.1.1 Comparaison des DHTs

Les deux DHTs a l’étude, a savoir Mainline et Kad, sont ici évaluées sous deux angles dif-
férents. Nous devons d’une part déterminer leur niveau de sécurité face a différentes attaques,
mais aussi établir leurs performances en termes de temps de publication et du nombre de messages
échangés.

Comparaison du niveau de sécurité

Nous étudions tout d’abord le niveau de protection de la DHT Mainline contre une attaque
de la table de routage, qui constitue la base pour de futures attaques plus complexes. Nous
décrivons ensuite les mécanismes de protection mis en place dans la DHT Kad pour empécher
les attaques dans le réseau.

Afin d’évaluer le niveau de protection de la DHT Mainline, nous considérons 'attaque décrite
par Steiner et al. [?], et communément appelée "empoisonnement de la table de routage". Nous
laissons d’abord le nceud pair cible atteindre un nombre stable de contacts, normalement autour
de 170. Nous lancons ensuite ’attaque, durant laquelle 160 requétes sont envoyées simultanément.
Il en résulte un remplissage de la table de routage du nceud pair cible avec presque entiérement
des faux contacts, dont le nombre total est d’environ 310. Cholez et al. |?| a mené une étude
sur les trois mécanismes de sécurité de Kad, mécanismes qui ont été progressivement introduits
dans les différentes versions. Chaque nouveau mécanisme de sécurité vise la table de routage de
Kad et rajoute des restrictions lors de ’ajout de nouveaux nceuds pairs. Lorsque le noeud pair
cible active ces 3 mécanismes de protection, aucun faux contact ne peut étre placé dans sa table
de routage. La DHT Kad présente ainsi une barriére de protection permettant & un nceud de
résister & une attaque certes simple, mais tres efficace, d’empoisonnement de sa table de routage,
contrairement & la DHT Mainline, qui est largement vulnérable face & ce méme type d’attaque.

Comparaison des performances

Méme si les deux DHTSs sont basées sur Kademlia, une certaine liberté dans leur mise ceuvre a
conduit a d’importantes variations de performance, comme déja démontré par Crosby et Wallach
[?]. Pour notre analyse, nous nous concentrons sur trois caractéristiques :

— Temps de publication : combien de secondes sont-elles nécessaires & la publication d’une

valeur dans la DHT ?

— Charge réseau pendant la publication : combien de messages sont-ils nécessaires a la

publication d’une valeur dans la DHT ?

— Durée de vie de l’information stockée : combien de temps une valeur précédemment

stockée dans la DHT va-t-elle durer ?

Les deux DHTs ont un comportement similaire lorsqu’il est question des temps de publication,
avec environ entre 30 et 40 secondes pour stocker une valeur. La DHT Mainline semble a priori
plus rapide de quelques secondes. Cependant, Kad dispose d’une fenétre de 3 secondes entre
I'extraction des pairs les plus proches et la demande de publication, fenétre dont la durée pourrait
étre ramenée a une demi-seconde sans affecter ’algorithme de routage, comme 'ont démontré
Steiner et al. [?].

4

2.1. Amélioration de l'indexation du contenu dans [’environnement de partage de fichiers BitTorrent

Pour chaque publication, la DHT Kad génére en moyenne entre 25 et 30 messages, tandis
que ce nombre monte jusqu’a 40 messages pour la DHT Mainline. Il est important de noter
que ces valeurs incluent les messages de routage ainsi que les messages de service. Les messages
de routage permettent de localiser les pairs les plus proches et, une fois ces pairs localisés, un
message de service précis est émis. Comme un seul et unique message de service est envoyé, la
différence entre le nombre de messages nécessaires aux deux DHTs provient donc des messages
de routage et, par la méme, la surcharge réseau durant la publication s’explique par le protocole
de routage de la DHT Mainline.

Afin d’évaluer la durée de vie de l'information dans les deux DHTs, nous avons conservé
I’ensemble de pairs ol nous avions initialement publié des milliers de valeurs aléatoires tout en
vérifiant périodiquement si ces pairs/nceuds étaient toujours actifs. Pour la DHT Kad et apres
les 30 premiéres minutes, nous avons constaté que 84% des noeuds étaient toujours actifs; ce
chiffre baissant jusqu’a 50% aprés une durée de cinq heures. Vingt-quatre heures plus tard,
seulement 28% des nceuds étaient accessibles. La DHT Mainline présente un taux de déperdition
plus important, avec 41% de nceuds actifs aprés 30 minutes et seulement 9% apres 24 heures.

La DHT Kad surpasse ainsi la DHT Mainline en termes de sécurité et de performance. La
table de hachage distribuée Kad, qui met en jeu trois mécanismes de protection, permet d’éviter
des attaques diverses et variées telles que ’empoisonnement de la table de routage. De plus, elle
requiert moins de messages de routage lors de la publication d’une valeur et présente un taux de
churn moins important.

2.1.2 Algorithmes de téléchargement de BitTorrent et Ed2k

Les caractéristiques de la DHT Kad en matiére de performance, alliées a ses fonctions de
sécurité, en font une excellente table de hachage distribuée. Cependant, ’aspect performant de
cette table est éclipsé aux yeux de 'utilisateur par I’efficacité de ’algorithme de téléchargement.
L’utilisateur est, en effet, plus sensible a la durée globale de téléchargement d’un fichier, in-
dépendamment de ’algorithme d’indexation. Afin de pouvoir évaluer lefficacité des algorithmes
de téléchargement de Kad/Ed2k et de BitTorrent, nous avons mesuré le temps nécéssaire pour
télécharger un fichier de 700 MB. Nous avons, pour notre expérience, utilisé le banc d’essai
PlanetLab, avec 50 nceuds distribués et un méme scénario répété 10 fois. Nous avons conservé
un schéma classique de téléchargement dans ’environnement du partage de fichiers, & savoir le
téléchargement d’un seul fichier & la fois.

Temps de téléchargement avec un seule seeder

Commencer avec un seul et unique seeder (fournisseur) semble logique, puisque le pair d’o-
rigine se définit au départ comme étant la seule source, pour étre éventuellement rejointe ensuite
par de nouveaux pairs qui vont compléter la procédure de téléchargement et ainsi devenir de
nouveaux seeders. Nos expériences ont montré que les clients BitTorrent ont pu télécharger leur
fichier dans son intégralité en 315 minutes, tandis qu’il aura fallu environ 7 heures de plus,
a savoir 745 minutes au total, aux clients Kad pour télécharger le méme fichier. L’algorithme
de téléchargement de BitTorrent est ainsi plus performant et permet d’effectuer, en moyenne,
un téléchargement en 42% du temps requis par Kad/Ed2k. Comme le nombre de fournisseurs
augmente tres rapidement lorsqu’il s’agit d’un contenu partagé populaire, nous avons mené une
seconde expérience mettant en jeu 10 sources initiales afin d’évaluer le temps de téléchargement
finalement requis.

Chapitre 2. Contributions

Temps de téléchargement avec dix seeder

Bien que la normalité consiste en un seul fournisseur de fichiers & partager, les nouveaux
contenus tendent & étre diffusés trés rapidement et, avec eux, 'apparition logique de nouveaux
"seeders". Nous avons donc établi que 10 fournisseurs initiaux pouvaient étre & l'origine du
partage d’un contenu. Dans ce cas précis, le téléchargement des clients BitTorrent a pris 224
minutes, tandis que celui des clients Kad/Ed2k aura pris 395 minutes au total. Les clients Bit-
Torrent n’auront ainsi eu besoin que de 57% du temps nécessaire a ceux de Kad/Ed2k pour
télécharger leur fichier. Considérant les résultats de ces expériences, il apparait que ’algorithme
de téléchargement BitTorrent surpasse clairement celui de Kad/Ed2k, qu'’il s’agisse du télécharge-
ment d’un seul fichier pour lequel 2% des nceuds/pairs sont seeders (1 nceud fournisseur sur 50)
mais également dans le cas ou 20% des noeuds/pairs sont seeders (soit 10 nceuds sur 50). Dans
les deux cas, le temps de téléchargement pour les clients BitTorrent ne représente que 50% de
celui pour les utilisateurs de Kad/Ed2k.

Nous avons évalué les algorithmes de téléchargement Ed2k et BitTorrent et démontré que
I’algorithme BitTorrent est plus performant que ’algorithme Ed2k lorsqu’il s’agit de télécharger
un fichier unique. Nous nous proposons ici de créer un modeéle hybride en exploitant le meilleur des
deux réseaux, avec une indexation du contenu réalisée par la DHT Kad, tandis que la publication
du contenu sera réalisée via ’algorithme de téléchargement BitTorrent.

2.1.3 Un modéle de partage de fichiers hybride BitTorrent & KAD /Ed2k

Notre précédente étude a montré que la DHT Kad offre plus de sécurité et met en jeu différents
mécanismes de protection qui la protége d’attaques complexes, contrairement a la DHT Mainline,
vulnérable face & une simple attaque d’empoisonnement de la table de routage. Cependant, pour
le téléchargement d’un fichier unique, ’algorithme de téléchargement BitTorrent a permis un gain
de temps de prés de 50% comparé a ’algorithme Ed2k. Sur la base de ces résultats, nous avons
envisagé une approche combinée : le graphique 2.1 représente notre modéle d’interconnexion,
créé avec les deux réseaux BitTorrent et Kad/Ed2k, ou la couche d’interconnexion est formée
par des nceuds hybrides appelés hMule.

Interconnection “
layer 63 Y
g IS : i 5
hiylul /hMuleds
,Hl\l‘ule }Y'“ & / . S
/ / /
A /

20 e

KAD/Ed2k Network BitTorrent Network

FIGURE 2.1 — Instanciation du modeéle hybride avec les réseaux BitTorrent et Kad/Ed2k.

Le client hMule est le point de rencontre des deux réseaux et il est capable de rechercher du
contenu BitTorrent dans la DHT Kad avec des mots clés différents. Une fois le contenu trouvé,

2.2. Amélioration de la disponibilité du contenu dans l’environnement de partage de fichiers I2P

il est téléchargé par le biais de 'algorithme de téléchargement BitTorrent. De cette maniére,
n’importe quel utilisateur de hMule peut bénéficier d’'un mécanisme d’indexation sécurisé basé
sur des mots clés tout en utilisant 1’algorithme de téléchargement BitTorrent. En plus de pouvoir
exploiter les deux réseaux, les clients hMule sont "retro-compatibles" : ils peuvent se connecter &
des clients BitTorrent classiques et télécharger du contenu sur le seul réseau Bit Torrent, mais aussi
se connecter a des clients Kad/Ed2k et télécharger du contenu provenant de clients aMule/hMule.

Le nceud/client hMule est le point d’interconnexion entre les réseaux BitTorrent et Kad/Ed2k,
améliorant 'indexation de contenu au sein de I’environnement BitTorrent. Les utilisateurs sont
tenus a l'utilisation de ce client hybride pour pouvoir profiter de notre mécanisme d’indexation
amélioré tout en pouvant toujours accéder aux réseaux BitTorrent et Kad/Ed2k classiques, avec
pour résultat un client totalement retro-compatible.

2.1.4 Synthése

D’une part, I’environnement BitTorrent a évolué vers une architecture totalement décentral-
isée, ott des DHTs basées sur le systéme d’indexation & un seul niveau Kadmelia sont utilisées,
jouant le méme role qu’'un traqueur mais de maniére distribuée. D’autre part, Kad/Ed2k présente
une architecture de partage de fichiers pair-a-pair totalement décentralisée, au sein de laquelle
la DHT Kad avec son mécanisme de double indexation offre un service de recherche par mot-clé
ainsi qu’une indexation de contenu distribuée.

Au travers de nos expérimentations, nous avons mis en évidence les failles et carences de la
DHT principale de BitTorrent en matiére de mécanismes de protection, la rendant vulnérable
face a des attaques basiques, tout en montrant, a l'inverse, que la DHT Kad pouvait, elle,
résister a ce méme type d’attaques. Aprés avoir évalué ensuite les performances des algorithmes
de téléchargement en se placant dans un environnement réel de chargement d’un fichier unique,
nous avons pu montrer que ’algorithme de téléchargement BitTorrent était approximativement
deux fois plus rapide que celui de Ed2k. C’est la raison pour laquelle nous avons proposé une
application de partage de fichiers hybride qui allient les performances de BitTorrent en matiére
de rapidité a la résistance de Kad du point de vue sécurité.

2.2 Amélioration de la disponibilité du contenu dans 1’environ-
nement de partage de fichiers I12P

Les communications anonymes sont en constante augmentation et I’Internet est en train
d’évoluer vers un environment privacy-aware. Les utilisateurs prennent conscience de l'impor-
tance de maintenir un certain degré d’anonymat lorsqu’ils naviguent sur le Web afin de séparer
leurs opinions en-ligne de leur réelle identité. Le partage de fichiers pair-a-pair occupe une grande
partie des communications réalisées anonymement sur Internet. Il est important pour un utilisa-
teur de maintenir son identité secréte afin d’éviter la censure ou le profilage pendant le télécharge-
ment de données en ligne. Malgré le large éventail d’options de partage de fichiers anonymes, le
contenu disponible dans ces systémes est réduit et souvent obsoléte; les réseaux publics restent
encore la principale source de contenu. Par conséquent, I’enjeu devient d’accéder au contenu pub-
lic anonymement, soit par l'introduction systématique des nouveaux contenus publics dans les
environnements anonymes, soit en permettant aux utilisateurs anonymes d’accéder & ce contenu
en préservant leur anonymat.

Chapitre 2. Contributions

2.2.1 Disponibilité du contenu dans le réseau I2P

Les contenus populaires sont en premier lieu disponibles dans les réseaux publics avant de
I’étre dans les réseaux anonymes. Inévitablement, la quantité de contenus disponibles dans les
environnements de partage de fichiers anonymes est significativement faible comparée a celle
des réseaux publics. Nous avons procédé a des prises de mesure s’étalant sur trente jours pour
déterminer le taux de nouveaux contenus introduits dans le réseaux BitTorrent et dans le réseaux
de partage de fichiers I2P. Par le biais de ces expériences, nous avons pu observer une moyenne de
720 nouveaux torrents ajoutés quotidiennement dans Torrentz® contre environ 8 dans le traqueur
Postman®. Nous avons également remarqué des disparités concernant I'évolution de ces taux
d’ajouts dans ces deux réseaux. En effet, Torrentz présente un taux d’ajouts relativement stable
au cours du temps alors que des pics d’ajouts peuvent étre observés sur Postman, généralement
a I'approche des week-ends. Torrentz compte plus de 19 millions de torrents actifs, tandis que
Postman en compte environ 12000 et seulement 1% des torrents disponibles dans Torrentz sont
aussi présents dans le réseau I2P. Malgré les efforts des différents utilisateurs, le manque de
nouveaux contenus dans le réseau de partage de fichiers I2P reste un fait avéré, appuyant ainsi
notre idée d’instaurer un mécanisme on-demand pour accéder aux contenus publics.

2.2.2 Interconnexion entre les réseaux I2P et BitTorrent

L’ensemble des contenus disponibles dans le réseau de partage de fichiers I2P est de taille
réduite. Pour cette raison, nous présentons un schéma d’interconnexion entre le réseau BitTorrent
et le réseau I2P, visant & améliorer la mise en disponibilité des contenus dans ce dernier. Ce schéma
permet en effet de mettre en place un systéme d’indexation et de distribution des contenus de
fagon totalement anonyme. La figure 2.2 présente ’ensemble des composants de notre modéle
d’interconnexion, ou la couche d’interconnexion est formée par I'intermédiaire de nceuds hybrides
appelés BiTIIP. Les clients BiTIIP permettent & un swarm (essaim)’ I2P d’interagir avec un
swarm BitTorrent, et de former ainsi un swarm unique partageant un méme contenu et indexé
dans la DHT Mainline de I2P. Cette indexation est anonyme et distribuée par le réseau 12P,
conduisant donc & une distribution anonyme du contenu partagé.

L’anonymat dans la couche d’interconnexion

Nous définissons une interaction entre environnements anonymes et non anonymes dans laque-
lle nous souhaitons maintenir 'anonymat des utilisateurs issus du réseau I2P. Le réseau 12P
emploie des tunnels unidirectionnels pour acheminer anonymement les communications entre ses
utilisateurs. Chaque utilisateur définit la longueur de ses propres tunnels, et donc son propre
compromis entre anonymat et performance : des tunnels courts sont plus performants que des
tunnels longs (moins de chiffrement), mais rendent I’anonymat plus faible.

Les clients BiTIIP n’ont pas besoin eux méme d’anonymat. Ils ont effet une interface sur
le réseau public et se connectent directement aux clients BitTorrent. De ce fait, ils utilisent des
tunnel & 0-hop pour se connecter aux utilisateurs I2P privilégiant ainsi ’aspect performance. Par
contre, 'anonymat des utilisateurs 2P est préservé car ils établissent avec les clients BiTTIP des
tunnels a plusieurs hops (3 par défaut).

5. Torrentz est un méta-moteur de recherche pour le contenu de BitTorrent, qui indexe les torrents de divers
sites, dont The Pirate Bay et Bitsnoop.

6. Postman est le traqueur le plus important dans le réseau 12P.

7. Ensemble de tous les pairs qui partagent le méme torrent.

2.2. Amélioration de la disponibilité du contenu dans l’environnement de partage de fichiers I2P

Interconnection

BitllP BitllP BitllP
layer ﬁ : ’%
> gv
P ~ -~ A
- s ,/’, »\ s oo N

\

D X7 My
s -7\ ol —L)
\ (B 3%

4 / -~
rd - -
1 A \ \BT'S Mainline
Lo @ | DHT

=

connetMe.i2p

I2P Swarm BitTorrent Swarm

FIGURE 2.2 — Instanciation de notre modéle hybride avec les réseaux BitTorrent et 12P.

Du point de vue d’'un attaquant, il est seulement possible de lier un téléchargement public
a un client BiTIIP particulier. Méme si un client BiTIIP malicieux est intégré dans la couche
d’interconnexion, il ne ne pourra pas désanonymiser un utilisateur 12P.

2.2.3 Performance du client BiTIIP

BiTIIP est un client développé en Java qui utilise la bibliothéque BitTorrent Snark® et la
bibliotheque de partage de fichiers I2PSnark. La bibliothéque Snark permet au client BiTIIP
d’interagir avec les clients BitTorrent, alors que la bibliothéque I2PSnark lui permet de commu-
niquer avec d’autres utilisateurs I2P. BiTIIP instaure un interfagage entre ces deux bibliotheques,
synchronisant ainsi les demandes d’un réseau a ’autre, tout en effectuant la mise en cache des
pieces (parties d'un fichier) de fagon opportuniste. Sur la base de nos expérimentations, un client
BiTTIP unique atteint une vitesse de téléchargement de 17 Kbps en moyenne. Chaque client
BiTIIP supplémentaire augmente ce débit de facon proportionnelle. Il est donc tout a fait pos-
sible d’ajouter de nouveaux clients BiTIIP & une interconnexion existante afin d’augmenter la
performance globale de cette liaison, notamment lors des téléchargements.

2.2.4 Syntheése

Nous avons montré qu’a peine 1% des contenus disponibles dans le réseau BitTorrent le
sont aussi dans le réseau I2P. Il s’avére de plus que le réseau I12P contient principalement des
fichiers obsoletes. Ce constat nous a poussé & rendre possible ’accés aux contenus disponibles
dans BitTorent depuis I2P. Le modeéle hybride que nous proposons dans cette optique permet
aux utilisateurs I12P d’accéder a ces contenus publics tout en préservant leur anonymat, menant
ainsi & une indexation et une distribution des contenus publics de facon totalement anonyme.
Nous avons validé notre modéle par 'intermédiaire d’un client hybride appelé BiTIIP. Ce client
offre des performances satisfaisantes en termes de débit comparées & celles d’un client standard
dans le réseau I12P, et permet également de préserver I'anonymat de ses utilisateurs. Un client
BiTIIP se présente comme un point de liaison entre les utilisateurs I2P et ceux de BitTorent en
offrant une connexion bidirectionnelle. Par I'usage de tunnels propres aux communications 12P,
un utilisateur du réseau anonyme peut contacter un client BiTIIP et ainsi accéder aux contenus
publics de BitTorrent, sans pour autant mettre en péril son anonymat.

8. Le projet Snark est disponible sur https://code.google.com/p/snark/.

https://code.google.com/p/snark/

Chapitre 2. Contributions

2.3 Caractérisation de ’environnement anonyme I12P

Une analyse de suivi & grande échelle d’'une communauté de partage de fichiers fournit une
vue d’ensemble du réseau [?, 7, ?|, permettant de déterminer le type de contenu distribué au
sein de ’environnement anonyme, le nombre d’utilisateurs partageant des fichiers mais aussi
le type d’utilisateurs téléchargeant un contenu spécifique. La surveillance et 1’étude a grande
échelle des réseaux et environnements anonymes n’ont cependant jamais été menées en profondeur
jusqu’alors, et se sont focalisées principalement sur le réseau Tor |?, ?]. Nous présentons ici la
premiére architecture de supervision de I’environnement anonyme I2P et analysons l'utilisation
faite de ce type de réseaux, ainsi que le profil de ses utilisateurs. Nous sommes ainsi parvenus
a identifier la plupart des applications I2P anonymes, y compris les applications anonymes de
partage de fichiers. Nous avons aussi déterminé leur usage au cours du temps sur le réseau et géo
localisé leurs utilisateurs.

2.3.1 La netDB d’I2P

Le réseau I12P permet a deux entités de communiquer anonymement par le biais d’'une couche
d’abstraction qui brise I’association entre 'utilisateur d’une application et son identité. Les util-
isateurs d’I2P sont en mesure de déployer des applications au dessus du réseau 12P. Ils peuvent
étre contactés au moyen d’un identifiant indépendant d’une quelconque localisation et désigné par
le terme destination ; 'anonymat de I’utilisateur ayant a 'origine déployé ces applications restant
ainsi préservé. Les informations relatives a un nceud I2P sont représentées par une routerinfo et
les informations relatives & une destination sont représentées par un leaseset. Ces informations
sont stockées dans la table de hachage distribuée I12P, appelée netDB. La netDB est une DHT
basée sur Kadmelia et formée par un sous-groupe de pairs 12P appelés pairs floodfill, bien inté-
grés au réseau, dont la bande passante disponible est supérieure a 256 KB/s. Le nombre connu
de pairs floodfill est d’environ 500 ; n’importe quel pair 12P standard pouvant automatiquement
devenir un nceud floodfill. Cette approche distribuée, couplée a une décision locale des pairs I12P
de devenir des nceuds floodfill, renforce le réseau I2P qui, n’étant pas caractérisé par la présence
d’un élément central principal, contrairement au répertoire principal de Tor, ne présente pas un
point unique de vulnérabilité.

2.3.2 Exploitation de la netDB d’I2P

Nous exploitons la netDB en tirant parti de son mode de fonctionnement afin de recueillir
le plus de métadonnées I2P possible. N'importe quel pair I12P pouvant se présenter comme un
nouveau nceud floodfill, nous avons donc déployé un ensemble de nceuds floodfill au sein de la
netDB afin de procéder & une surveillance passive, pour laquelle nos noeuds floodfill se comportent
comme des sondes distribuées, ciblant différentes zones de la netDB. Ces nceuds floodfill "espions"
se comportent comme des nceuds floodfill standard, venant s’ajouter a d’autres nceuds floodfill
pour former la netDB et stockant des métadonnées I12P. Nous avons ainsi pu collecter une grande
quantité de métadonnées réseau, les analyser et établir les caractéristiques du réseau I2P. Les
routerinfos sont utilisées pour géolocaliser les noceuds I12P et analyser leur comportement en ligne
au sein du réseau I2P. Les leasesets sont utilisés pour identifier les applications déployées et
déterminer leur durée de fonctionnement au sein du systéme.

10

2.3. Caractérisation de l’environnement anonyme I2P

PostgreSQL

[~ I_QE{}, I2PStats.loria fr
L

il
L]
(]

@ Floodfill node

[:] Floodfill monitor node

FIGURE 2.3 — A passive distributed monitoring architecture for the 12P network.

2.3.3 Architecture de surveillance

Nous avons détaillé la maniére avec laquelle nous avons exploité avec succes la netDB d’'I2P
Nous avons proposé une architecture de supervision distribuée passive, dans laquelle des noeuds
de surveillance sont distribués au sein du réseau tout en y restant indétectables puisqu’ils se
comportent de la méme maniére que des nceuds standard. Le graphique 2.3 représente notre
architecture : un ensemble de noeuds de surveillance floodfill sont placés au sein de la netDB afin
de collecter des routerinfos et des leasesets I2P. Une fois ces métadonnées analysées, les résultats
sont stockés dans une base de données centrale. Ils sont ensuite regroupés et affichés sur un site
web statistique.

Le déploiement des nceuds de surveillance floodfill est totalement flexible puisque ces noeuds
peuvent étre ajoutés de maniére dynamique a la netDB, augmentant ainsi la quantité de mé-
tadonnées réseau pouvant étre extraites et analysées. Nous nous sommes ensuite intéresses aux
moyens d’analyse des routerinfos et des leasesets, ainsi qu’au nombre de nceuds de surveillance
floodfill nécessaires & une couverture totale du réseau.

Analyse des Routerinfos et Leasesets

Une routerinfo permet d’identifier un nceud I12P au sein du réseau grace a ses coordonnées
de contacts. Elle est analysée dans le but de d’obtenir la localisation géographique du pair I12P
qu’elle représente en utilisant différents services de géolocalisation. En comparaison, analyser un
leaseset requiert une procédure plus complexe. Une destination est une représentation 12P d’une
adresse IP et d’'un numéro de port, par le biais de laquelle nous pouvons envoyer des messages
TCP ou UDP. En fonction des réponses recues, nous essayons de déterminer quelle application
est représentée par tel leaseset, comme par exemple une application de partage de fichiers, une
application Messenger ou un site web anonyme.

Déploiement des nceuds de surveillance floodfill

Il est important de prendre en compte la couverture réseau de notre architecture de surper-
vision. Pour calculer le nombre de ncoeuds de surveillance floodfill requis dans la netDB, nous
considérons le nombre total de noeuds floodfill dans la netDB et le replica factor (facteur de
réplication) . Ce dernier nous indique le nombre de nceuds ou une valeur va étre stockée. I’équa-
tion 2.1 représente le nombre minimum de nceuds de surveillance floodfill requis pour assurer
une couverture compléte du réseau, avec N le nombre total de nceuds floodfill et X la variable

11

Chapitre 2. Contributions

actuelle du facteur de réplication. Pour notre netDB en cours d’analyse, avec N = 500 et X = 5,
100 neceuds de surveillance floodfill sont nécessaires & une couverture totale du réseau.

nb_monitors = [N / X |, N= #floodfills , X= replica factor (2.1)

2.3.4 Le réseau I12P en temps réel

Afin de procéder a une évaluation de notre architecture de surveillance, nous présentons les
résultats obtenus au cours d’une période de 6 jours, du 18 juin 2013 12h00 CEST au 24 juin 2013
12h00 CEST, avec un total de 70 nceuds de surveillance floodfill déployés sur le reseau PlanetLab
(nombre maximal possible dans le cadre de 'expérimentation).

Détection des utilisateurs d’I2P

Nous avons pu détecter en moyenne presque 28 000 utilisateurs quotidiens. Nous avons observé
des pics récurrents autour de 18h00, nous indiquant que les utilisateurs d’I2P sont plus actifs
en fin d’aprés-midi - heure CEST - avec 31 000 utilisateurs en moyenne. A 'inverse, nous avons
constaté une chute quotidienne du nombre d’utilisateurs autour de minuit CEST, avec des pics
inversés tournant autour de 24 000 utilisateurs seulement. Ce phénoméne est dia au shifting
mechanism ou "mise & jour", de la netDB d’I2P, qui se produit tous les jours & minuit. Chaque
neeud de surveillance floodfill, ainsi que tout neeud floodfill standard, change de position au sein
de la netDB et commence ainsi a recevoir de nouvelles métadonnées, tandis que les métadonnées
stockées précédemment ne sont désormais plus valides. Ce phénoméne affecte le fonctionnement
du réseau pendant une courte période, au cours de laquelle certaines requétes netDB peuvent
échouer, ayant pour conséquence d’affecter également les résultats de notre surveillance autour
de minuit. Le comportement des utilisateurs d’I2P présente un profil similaire & celui des réseaux
P2P [?], décrivant, sur une période de 24 heures, une courbe sinusoidale dont le pic se situe &
18h00 CEST. En se basant sur le nombre de nceuds floodfill actifs lors de notre surveillance, nous
avons pu couvrir presque 70% de tout le réseau I2P avec 70 nceuds de surveillance floodfill. Sur
la base de ces résultats, nous estimons donc le nombre réel d’utilisateurs quotidiens d’I2P a une
moyenne d’environ 40 000.

Caractérisation a 1’échelle du pays

Nous avons détecté un total de 113 433 utilisateurs d’I2P disséminés a travers le monde. De
tous ces utilisateurs, 40% proviennent de Russie, nous indiquant une participation considérable
des utilisateurs russes au réseau [2P. Nous avons également recensé 159 pays, nous indiquant que
le réseau I2P est bel et bien déployé a 1’échelle mondiale, comme le montre le graphique 2.4.

Caractérisation a I’échelle de la ville

Nous avons pu comptabiliser 13 547 villes. Nous avons pu constater que 12 villes sur le top
des 15 villes étaient des villes russes. De plus, sur les 1108 villes russes officiellement recensées
[?], nous en avons détecté 813 lors de notre analyse, indiquant que le réseau I12P est utilisé dans
presque 75% du pays.

Clients du partage de fichiers anonyme

Nous avons pu observer que I2PSnark était 'application la plus utilisée, avec en moyenne 450
clients. Les clients iMule représentent une part peu significative de ’activité, avec une moyenne

12

2.3. Caractérisation de l’environnement anonyme I2P

12P Usage

+ [<=2

FIGURE 2.4 — Répartition mondiale des utilisateurs 12P.

descendant parfois jusqu’a 6 clients seulement. Pour finir, [2Phex compte en moyenne 3 clients,
avec une légére augmentation d’activité durant les week-ends. Le client I12PSnark est déja intégré
au réseau et, par conséquent, accéde directement a I’application, ce qui facilite son utilisation.
A T'inverse, les deux autres clients du partage de fichiers anonymes résultent de modifications de
clients non-anonyme de partage de fichiers, ce qui rend leur déploiement au sein du réseau 12P
plus complexe et son utilisation finalement plus contraignante et donc plus décourageante.

Les serveurs web anonymes

Nous avons pu établir une moyenne de 510 serveurs web anonymes. Nous avons également
observé que ces serveurs, pourtant concus pour fonctionner de maniére plus stables que les appli-
cations de partage de fichiers, présentent eux-aussi un schéma sinusoidal. Cela nous indique que
les utilisateurs d’I2P hébergeant leurs serveurs web anonymes se connectent et se déconnectent
du réseau I2P, tout comme le reste des utilisateurs. Contrairement au programme statistique
Tino?, nous prenons en compte chaque serveur web anonyme actif dans la netDB et fournissons
ainsi un cliché précis et en temps réel du réseau, y compris pour des eepsites non-référencés.

2.3.5 Synthése

Nous avons focalisé notre analyse sur I2P et son environnement anonyme, le caractérisant
de maniére détaillée au travers d’une surveillance distribuée. Avec de 'exploitation de sa base
de données distribuée, appelée netDB, nous avons été capables de déployer un ensemble de
sondes distribuées passives et de collecter ainsi une large quantité de métadonnées réseau. En
analysant avec précision ces métadonnées, nous avons pu déterminer diverses caractéristiques des
utilisateurs d’I2P, mais aussi des applications 12P. Nous avons établi que la Russie représentait

9. Accessible a 'adresse tino.i2p.in|

13

tino.i2p.in

Chapitre 2. Contributions

quasi 40% de tous les utilisateurs localisés d’I2P et avons pu identifier 75% des villes russes
que nous avons détectées. Nous avons également montré que le client 12PSnark, tel un client
BitTorrent, manifestait une activité importante sur le réseau, avec une moyenne de 450 clients.
Nous avons ensuite évalues le nombre de serveurs web anonymes hébergeant des eepsites, qui
atteint une moyenne de 510, confrontant ainsi nos résultats au programme statistique Tino, qui
n’annonce que 350 sites web anonymes accessibles, pour ainsi montrer qu’un certain nombre de
sites web anonymes n’étaient pas référencés dans le réseau 12P. Le facteur de réplication de la
netDB d’I2P a évolué suivant le niveau d’exigence de notre surveillance, dans le but d’augmenter
le nombre de noeuds nécessaires & une couverture totale du réseau. Initialement de 8 nceuds, il
a été réduit a 5. En diminuant le facteur de réplication dans la netDB, les concepteurs I12P ont
certes rendu plus difficile la couverture totale du réseau, mais ils ont en contrepartie, affaibli la
netDB vis a vis de la résilience au churn.

2.4 Caractérisation fondée sur les groupes dans I’environnement
anonyme I2P

Nous avons décrit précédemment une architecture de surveillance distribuée de 1’environ-
nement anonyme I2P, qui nous a permis de caractériser & la fois des utilisateurs d’I2P mais aussi
des applications anonymes au sein du systéme. Nous présentons la premiére étape vers une carac-
térisation de groupe, pour laquelle nous ciblons le réseau anonyme I2P tout entier. Pour ce faire,
nous menons une analyse de corrélation basée sur des données collectées par notre architecture
de surveillance distribuée, prenant en compte les utilisateurs des villes les plus actives et 'ap-
plication 12PSnark. Notre objectif est d’évaluer dans quelle mesure ces utilisateurs contribuent
a lactivité globale de partage de fichiers sur I2P en nous basant sur le coefficient de corrélation
de Pearson.

Comme déja mentionné, les utilisateurs russes sont trés largement représentés parmi les util-
isateurs d'I2P et nous pourrions ainsi les considérer comme exclusivement & 1’origine de I’activité
réseau engendrée par le partage de fichiers anonyme. Cependant, nous ne considérons ici qu'une
quantité d’utilisateurs, et non leur comportement au sein du systéme, et ne pouvons donc pas tirer
de conclusion valable de ce simple facteur. En revanche, en tenant compte des comportements
respectifs spécifiques des utilisateurs et des applications anonymes, nous pourrons déterminer si
les deux données sont liées ou pas et, le cas échéant, évaluer la portée de cette relation.

2.4.1 Cadre de ’expérimentation

Nous avons considéré que 'analyse de la corrélation sur une seule journée ne représenterait
pas l'utilisation réelle du réseau. En effet, des particularités présentes un jour peuvent biaiser
les échantillons, les ceefficients de corrélation seraient donc sous- ou sur-estimés. Nous avons
donc choisi une période de quinze jours incluant trois week-ends pour avoir une bonne fenétre
de temps et détecter une corrélation a long terme entre une ville et les applications 12PSnark.
Notre analyse de corrélation utilisent des données provenant du réseau réel I12P du 15/03/2013
au 30/03/2013.

Au cours de notre période d’analyse, nous établissons un classement des villes suivant le
nombre d’utilisateurs détectés, prenant également en compte leur activité journaliére durant les
15 jours de notre expérience. Nous avons ainsi, au fil de notre analyse, détecté 16 085 villes au
final, dont la plupart ne comptaient finalement pas plus de 10 utilisateurs sur toute la période de
15 jours. Moscou et Saint-Pétersbourg, en revanche, ont présenté un nombre élevé d’utilisateurs

14

2.4. Caractérisation fondée sur les groupes dans l’environnement anonyme I2P

300

- Lineérity
mm——— Homoscedasticity
———— Homoscedasticity

025 T T T T T T T T 17T

250 | |02

200

150

100 |

Detected I2PSnark apps

Moscow Users

FIGURE 2.5 — Analyse de Pearson pour Moscow /I2PSnark.

détectés, ceux de Moscou représentant prés de 8% du nombre total d’utilisateurs détectés. Ces
deux villes contribuant le plus largement a ’activité sur le réseau 12P, nous les avons considérées
tout d’abord comme cas d’étude pour notre analyse de corrélation. Nous avons ensuite examiné
une ville de moindre importance, pour établir la pertinence et le poids de sa participation, ou
non, & l'activité de partage de fichiers détectée.

2.4.2 Analyse de corrélation : Moscou

Le graphique 2.5 représente la distribution des données analysées. Les résultats montrent que
les données suivent une distribution normale et décrivent, en outre, une ligne droite, répondant
ainsi au critére de linéarité requis pour 'application du cecefficient de Pearson. Nous constatons
enfin que la dispersion des données est constante et que 'on peut donc parler d’homoscedasticité,
dernier paramétre nécessaire a ’application du ceefficient de Pearson.

Le ccefficient de Pearson a ici une valeur de r = 0.4901, indiquant une forte corrélation.
Ceci nous montre que les utilisateurs d’IP2 moscovites ont hautement contribué a 'activité de
partage de fichiers sur le réseau durant la période analysée. Le ccefficient de détermination de
r? = 0.2401, nous indique qu'un quart de la variabilité des applications I2PSnark détectées (c’est-
a-dire de l'activité détectée) sur cette période de 15 jours est expliqué par la relation avec les
utilisateurs de Moscou.

2.4.3 Analyse de corrélation : Saint-Pétersbourg

Le graphique 2.6 représente la distribution des données analysées. Les résultats montrent
que les données suivent une distribution se rapprochant de la normale. Linéarité et homoscedas-
ticité caractérisent l'interprétation des résultats obtenus, avec des mécanismes similaires a ceux
observées pour la ville de Moscou.

Pour le cas de Saint-Pétersbourg, nous pouvons établir une corrélation modérée, avec un
ceefficient de Pearson d’une valeur de r = 0.3952. Le coefficient de détermination indique que les
utilisateurs de Saint-Pétersbourg expliquent a hauteur de 15,61% 'activité de partage de fichiers
(variation des applications I2PSnark) durant notre période d’analyse.

15

Chapitre 2. Contributions

300 |
~ Linearity
S Homoscedasticity
g . P HOmOSCedasticity
3
< 200 .
. J—
: N - sl s'. S . ’.‘“ .gi' o, -
L Lo o e
2 RS AN
: e ""c"sh.zz.,_ 3......" ----------------- —
Q 50 L

Saint Petersburg Users

FIGURE 2.6 — Analyse de Pearson pour Saint Petersburg/I2PSnark.

2.4.4 Analyse de corrélation : Munich

De l’analyse des deux villes les plus actives basée sur le ccefficient de Pearson, nous avons
montré que l'on pouvait en extraire, d'une part, une corrélation forte avec les applications de
partage de fichiers IP2Snark pour la ville de Moscou et, d’autre part, une corrélation modérée
pour la ville de Saint-Pétersbourg. Considérons maintenant une ville telle que Munich : cette
ville présente, en terme d’activité, une participation journaliére non-négligeable sur le réseau,
mais ne représente pourtant que 0,2% du nombre total d’utilisateurs détectés.

Le graphique 2.7 met en avant les propriétés statistiques des données analysées, qui présentent
une distribution anormale. De plus, les données présentent un caractére hétéroscedastique : plus
la valeur représentant le nombre d’utilisateurs est importante, plus la variance est faible, se
rapprochant ainsi de la représentation d’une droite de tendance. Nous ne pouvons, dans ce
cas, mettre en application le ceefficient de Pearson, car les caractéristiques de nos données ne
répondent pas aux critéres requis. Nous pouvons visuellement constater que la majorité des
points se concentre entre 14 et 24 utilisateurs, alors que le nombre d’applications détectées varie
de 50 & 150. Cette tendance est observable sur notre histogramme, sur lequel apparaissent deux
pics pour des intervalles correspondant & un nombre d’utilisateurs compris entre 14 et 18, et 18
et 22 seulement, mais représentant 65% des points de données recueillis, nous indiquant qu’'un
changement dans le nombre d’applications IP2Snark détectées n’était pas représentatif de, ni lié
a, un changement dans le nombre d’utilisateurs basés & Munich. Sur la base de cette analyse
visuelle, nous en concluons ainsi que ces utilisateurs ne constituent pas une part significative du
partage de fichiers et de l'activité sur le réseau.

2.4.5 Synthése

Nous avons démontré qu’il était possible d’analyser simultanément le comportement spé-
cifique des utilisateurs d’I2P et de ses applications, tout en caractérisant le réseau I12P. Cette
caractérisation de groupe nous a permis d’établir un profil plus précis des utilisateurs d’I2P et de
déterminer les groupes qui contribuaient de la maniére la plus significative au partage de fichiers
et, par-la méme, a l'activité sur le réseau I12P.

16

2.4. Caractérisation fondée sur les groupes dans l’environnement anonyme I2P

350 flos T .
%) 04 [7
S 300 o, | . U
< s l* [I] e l
g o; r : I I m. .. T } e - e e
o200 e
N e
g 180 Y T 1
g 100]
[a) Ve - Linearity
50 Homoscedasticity
0 : : -- Homoscedasticity
0 20 40 60 80 100

Munich Users

FIGURE 2.7 — Distribution des données pour Munich/I2PSnark

En appliquant en paralléle le ceefficient de corrélation de Pearson aux données recueillies par
notre architecture distribuée, nous avons pu établir une forte corrélation entre la ville la plus
représentée sur le réseau 12P, a savoir Moscou, et I'application phare de partage de fichiers de
ce méme réseau, 4.e. I2PSnark. Nous avons également mis en avant une corrélation modérée
entre les utilisateurs de Saint-Pétersbourg et les clients d’I2P, pour finalement étre en mesure de
constater que plus de 30% de Pactivité relative au partage de fichiers sur le réseau I2P que nous
avons détectée lors de la période étudiée est liée aux utilisateurs de ces deux villes.

17

Chapitre 2. Contributions

18

Chapitre 3

Conclusion

Sommaire
3.1 Environnements hybrides de partage de fichiers 19
3.2 Caractérisation des environnements anonymes 20

Nous avons présenté nos deux principales contributions. D’une part, nous avons concu et
évalué deux architectures hybrides de partage de fichiers visant & améliorer 'indexation du con-
tenu et la disponibilité de ce dernier dans des environnements de partage de fichiers basés sur
BitTorrent. D’autre part, nous avons déployé & grande échelle une architecture de controle dis-
tribuée qui permet de caractériser le réseau anonyme I2P.

3.1 Environnements hybrides de partage de fichiers

Nous avons étudié les environnements hybrides de partage de fichiers selon deux angles de vue.
Premiérement, nous avons amélioré le systéme d’indexation de contenu dans I’environnement de
partage de fichiers BitTorrent via une approche BitTorrent-Kad/Ed2k hybride, en considérant
les points forts de chacun des deux réseaux. Dans un second temps, nous avons amélioré la
disponibilité de contenu dans l’environnement de partage de fichiers 12P, en permettant aux
utilisateurs anonymes d’I2P d’accéder & du contenu BitTorrent & travers une approche a la
demande.

Amélioration du ’indexation de contenu dans 1’environnement de partage de
fichiers BitTorrent

Les applications de partage de fichiers pair-a-pair générent, encore, une quantité considérable
du trafic Internet. Prés de la moitié du trafic européen correspond & du trafic BitTorrent et
Kad/Ed2k, ce qui indique que les deux réseaux sont trés largement utilisés et déployés.

D’une part, BitTorrent est la plate-forme de distribution de contenu la plus populaire mais
reposant sur une base de données décentralisée (DHT) peu sécurisée, qui rend 1’ensemble de ’ar-
chitecture trés vulnérable. Le réseau Kad/Ed2k, au contraire, utilise une table de hachage dis-
tribuée avec un mécanisme de double indexation offrant plusieurs niveaux de protection. D’autre
part, I’algorithme de téléchargement de BitTorrent réduit de prés de 50% le temps de télécharge-
ment par rapport & l'algorithme Ed2k, dans le cas d’'un téléchargement d’un seul fichier. Par
conséquent, nous soutenons que les deux réseaux peuvent tirer parti I'un de l'autre grace a la
réalisation d’un environnement hybride de partage de fichiers.

19

Chapitre 8. Conclusion

Nous avons concu, évalué et mis en ceuvre un client de partage de fichiers hybride nommé
hMule. Ce client est capable d’indexer le contenu BitTorrent dans la DHT Kad, offrant ainsi
aux nceuds du réseau BitTorrent la possibilité d’utiliser le service de double indexation de Kad
ot non seulement les tuples <content,peers> sont pris en compte, mais également les tuples
<keyword,contents>. Cette double indexation introduit un niveau d’indexation supplémentaire
dans le réseau BitTorrent, une fonctionnalité absente dans I’ensemble des clients actuels. Le
client hMule permet également aux utilisateurs de télécharger du contenu en utilisant ’algorithme
performant de téléchargement de BitTorrent, combinant ainsi (i) un systéme robuste d’indexation
de contenu et (ii) une excellente plate-forme de distribution de contenu.

Le client hMule démontre comment un systéme d’interconnexion hybride entre deux réseaux
de partage de fichiers peut conduire & un environnement amélioré. Le client hMule est rétro-
compatible; il a été testé a la fois dans le réseau BitTorrent et dans le réseau Kad/Ed2k. Le
projet hMule'® propose aux internautes d’installer et d’utiliser le client hMule afin de bénéficier
de cette coopération hybride.

Amélioration de la disponibilité de contenu dans I’environnement de partage
de fichiers I2P

Les communications anonymes se développent de plus en plus avec des utilisateurs d’Internet
soucieux de préserver leur anonymat et leur vie privée. Dans ces communications anonymes, les
environnements de partage de fichiers anonymes représentent un domaine important, conduisant
a des réseaux dédiés. Le réseau I2P permet ainsi aux utilisateurs d’indexer et de distribuer du
contenu anonymement. Toutefois, le contenu disponible via le systéme 12P est largement réduit,
et les réseaux publics non anonymes, tels que le réseau BitTorrent, sont encore les principales
sources de contenu.

Nous avons ainsi développé un client de partage de fichiers hybride nommé BiTIIP, permet-
tant aux utilisateurs d’I2P anonymes d’accéder aux contenus de BitTorrent publics sans compro-
mettre leur anonymat. Le client BiTIIP propose une approche a la demande, ou les utilisateurs
d’I2P précisent le contenu de BitTorrent désiré et une interconnexion entre les deux réseaux
est créée pour répondre a cette demande. Le client indexe le contenu dans la table de hachage
distribuée BitTorrent de I2P, ce qui permet une indexation de contenu anonyme, alors que le
contenu est distribué par le réseau anonyme 12P, offrant une distribution de contenu anonyme.

Le projet connectME ! constitue la premiére étape vers I'interconnexion des réseaux anonymes
et non anonymes, avec un accent particulier sur les environnements de partage de fichiers. Les
internautes peuvent installer un client BiTIIP, en augmentant ainsi le nombre de clients BiTIIP
disponibles.

3.2 Caractérisation des environnements anonymes

Nous avons effectué la premiére supervision & grande échelle du réseau anonyme I2P, carac-
térisant les utilisateurs et les services qui s’exécutent au-dessus du réseau. Nous avons d’abord
déployé une architecture de surveillance basée sur des sondes distribuées placées dans le NetdB
de I'I2P, ce qui nous permet de collecter une grande quantité de métadonnées du réseau. En-
suite, nous avons effectué une analyse de corrélation entre le comportement des utilisateurs et le
comportement des clients de partage de fichiers anonymes pour parvenir & une caractérisation de

10. Accessible & http://hmule.gforge.inria.fr/.
11. Accesible & http://connectme.gforge.inria.fr/.

20

http://hmule.gforge.inria.fr/.
http://connectme.gforge.inria.fr/

3.2. Caractérisation des environnements anonymes

groupe afin de déterminer quelles villes sont liées le plus & l'activité de partage de fichiers dans
le réseau 12P.

Caractérisation de ’environnement I12P anonyme

Les systémes anonymes recueillent plus en plus d’adeptes. Le réseau I12P a ainsi doublé sa
base d’utilisateurs au cours de I'année 2012, mais il n’y a toujours pas d’analyse compléte de ce
réseau, ni un suivi caractérisant le systéme.

Notre architecture de surveillance distribuée permet de déterminer 1'utilisation des applica-
tions de partage anonyme de fichiers ainsi que celle des serveurs Web anonymes, ou eepsites,
disponibles dans le réseau I2P. Nous avons établi que le client I2PSnark est ’application de
partage de fichiers anonyme le plus utilisée, contrairement & d’autres solutions de partage de
fichiers, tels que iMule ou I2Phex. Nous avons trouvé ainsi plusieurs eepsites non référencés sur
le systéme, soit environ 30% du nombre total de eepsites détectés. Nous avons en outre déter-
miné la répartition géographique des utilisateurs d’I2P et observé que le réseau I12P est largement
déployé; la Russie étant le pays le plus actif.

Cette surveillance a grande échelle nous aide a comprendre comment le systéme évolue et
quels sont ses principaux usages.

Caractérisation groupe basé dans ’environnement anonyme I2P

Avec les analyses au niveau applicatif nous avons détecté le comportement de certaines appli-
cations, notamment leur période d’activité. En prenant en compte le comportement d’un service
anonyme particulier avec un ensemble particulier d’utilisateurs I2P, nous avons pu corréler cet
ensemble d’utilisateurs et lactivité du service anonyme.

Nous avons appliqué le coefficient de corrélation de Pearson afin d’établir une relation entre
le comportement des utilisateurs I2P des deux plus grandes villes avec le comportement du client
I2PSnark pendant une période de temps donnée. Nous avons ainsi déterminé que 38% de I'activité
de partage de fichiers détectée est liée aux utilisateurs de ces deux villes.

Nous avons montré que la surveillance a grande échelle peut non seulement nous permettre
d’avoir une vue globale d’un systéme anonyme mais elle peut aussi conduire & une caractérisation
plus fine des groupes d’utilisateurs. Le comportement des utilisateurs dans un réseau anonyme
est aussi important que 'anonymat lui-méme.

21

Chapitre 8. Conclusion

22

	Table of Figures
	List of Tables
	Introduction
	General Introduction
	Context
	Problem Statement
	Contributions
	First Part: State of the art
	Second Part: Hybrid peer-to-peer file-sharing architectures
	Third Part: Characterisation of anonymous environments

	Part I State of the Art
	Kademlia-based hash tables: Principles, monitoring techniques and security issues
	Introduction
	Principles of a DHT
	Main components of a distributed hash table
	Data storage procedure

	Kademlia distributed hash table
	Keyspace and k-buckets
	Kademlia operations
	Management of nodes' arrival and departure
	Current implementations

	Approaches for the monitoring of Kademlia-based DHTs
	Passive monitoring techniques
	Active monitoring techniques

	Security issues on Kademlia-based DHTs
	The Sybil attack
	Attacks in the Kad network
	Attacks in the BitTorrent distributed trackers

	Conclusion

	Cooperative overlay networks and hybrid peer-to-peer file-sharing architectures
	Introduction
	Cooperation among heterogeneous overlay networks
	Synapse
	Sinergy
	Network Symbiosis
	Organising the interconnection architecture

	Interconnection of heterogeneous file-sharing networks
	A multi-layered interconnection scheme
	Interconnecting pure and hybrid file-sharing networks

	Conclusion

	Anonymous file-sharing networks: current approaches and monitoring techniques
	Introduction
	Anonymous communications
	Anonymous paradigms
	The Tor network
	The I2P network

	Anonymous file-sharing approaches
	Fitting anonymity in the non-anonymous BitTorrent environment
	Fully-dedicated anonymous environments

	Monitoring anonymous networks
	Monitoring the Tor network
	Monitoring the I2P network
	Legals aspects on network monitoring

	Conclusion

	Part II Hybrid Peer-to-Peer File-Sharing Architectures
	Improving content indexation in the BitTorrent file-sharing environment
	Introduction
	Comparison of DHTs
	Security comparison
	Performance comparison

	The download algorithm of the BitTorrent and the Ed2k networks
	Download time with one seeder
	Download time with ten seeders

	A hybrid model with the BitTorrent and the Kad/Ed2k networks
	An abstract hybrid model for file-sharing
	An instantiation with the BitTorrent and the Kad/Ed2k networks
	The hMule client
	Evaluation of the hMule client

	Conclusion

	Improving content availability in the I2P file-sharing environment
	Introduction
	Content availability in the I2P network
	Interconnecting the I2P and the BitTorrent networks
	A hybrid file-sharing model for the BitTorrent and I2P networks
	Operation and interaction of BiTIIP clients
	Interconnection layer's anonymity

	Evaluation of the BiTIIP client
	Download performance of the I2P network
	A single BiTIIP client
	Multiples BiTIIP clients
	The connectME project

	Conclusion

	Part III Characterisation of Anonymous Environments
	Characterisation of the I2P network
	Introduction
	Exploiting the I2P network
	The netDB
	Exploiting the netDB
	Distribution of the monitoring floodfill nodes

	Monitoring architecture
	Monitoring architecture overview
	Analysis of Routerinfos and Leasesets
	Deployment of monitoring floodfill nodes

	A real time view of the I2P network
	I2P users
	I2P anonymous applications

	Conclusion

	Group-based characterisation of the I2P network
	Introduction
	Strategy for group-based characterisation
	Strategy for characterisation
	The Pearson's correlation coefficient

	Experimental results and analyses
	Experiment setup
	Methodology
	Case studies
	Analysis of low-end outliers

	Discussion
	Conclusion
	Conclusion
	General Conclusion
	Contributions summary
	Hybrid peer-to-peer file-sharing environments
	Characterisation of anonymous environments

	Limitations
	Limitations on hybrid file-sharing architectures
	Limitations on group-based characterisation through large-scale monitoring and de-anonymisation

	Perspectives
	User de-anonymisation
	Attack detection in I2P's netDB
	Content characterisation of I2P's eepsites

	Bibliography

	Table des figures
	Introduction
	Contexte
	Problématique

	Contributions
	Amélioration de l'indexation du contenu dans l'environnement de partage de fichiers BitTorrent
	Comparaison des DHTs
	Algorithmes de téléchargement de BitTorrent et Ed2k
	Un modèle de partage de fichiers hybride BitTorrent & KAD/Ed2k
	Synthèse

	Amélioration de la disponibilité du contenu dans l'environnement de partage de fichiers I2P
	Disponibilité du contenu dans le réseau I2P
	Interconnexion entre les réseaux I2P et BitTorrent
	Performance du client BiTIIP
	Synthèse

	Caractérisation de l'environnement anonyme I2P
	La netDB d'I2P
	Exploitation de la netDB d'I2P
	Architecture de surveillance
	Le réseau I2P en temps réel
	Synthèse

	Caractérisation fondée sur les groupes dans l'environnement anonyme I2P
	Cadre de l'expérimentation
	Analyse de corrélation: Moscou
	Analyse de corrélation: Saint-Pétersbourg
	Analyse de corrélation: Munich
	Synthèse

	Conclusion
	Environnements hybrides de partage de fichiers
	Caractérisation des environnements anonymes

