R. Abraham and J. Delmas, A note on conditioned Galton-Watson trees

D. Aldous, The Continuum random tree II: an overview, In Stochastic analysis London Math. Soc. Lecture Note Ser, vol.167, pp.23-70, 1990.
DOI : 10.1017/CBO9780511662980.003

D. Aldous, The Continuum Random Tree III, The Annals of Probability, vol.21, issue.1, pp.248-289, 1993.
DOI : 10.1214/aop/1176989404

D. Aldous, Recursive Self-Similarity for Random Trees, Random Triangulations and Brownian Excursion, The Annals of Probability, vol.22, issue.2, pp.527-545, 1994.
DOI : 10.1214/aop/1176988720

D. Aldous, Triangulating the Circle, at Random, The American Mathematical Monthly, vol.101, issue.3, 1994.
DOI : 10.2307/2975599

D. Aldous and R. Lyons, Processes on Unimodular Random Networks, Electronic Journal of Probability, vol.12, issue.0, pp.1454-1508, 2007.
DOI : 10.1214/EJP.v12-463

J. Ambjørn, B. Durhuus, and T. Jonsson, Quantum geometry. Cambridge Monographs on Mathematical Physics, 1997.

O. Angel, Scaling of percolation on infinite planar maps, I. arXiv, p.501006

O. Angel, Growth and percolation on the uniform infinite planar triangulation, Geometric and Functional Analysis, vol.13, issue.5, pp.935-974, 2003.
DOI : 10.1007/s00039-003-0436-5

O. Angel and N. Curien, Percolations on infinite random maps, half-plane models

O. Angel and O. Schramm, Uniform Infinite Planar Triangulations, Communications in Mathematical Physics, vol.28, issue.2-3, pp.191-213, 2003.
DOI : 10.1007/s00220-003-0932-3

URL : http://arxiv.org/abs/math/0207153

A. Avez, Théorème de Choquet-Deny pour les groupes à croissance non exponentielle, C. R. Acad. Sci. Paris Sér. A, vol.279, pp.25-28, 1974.

M. T. Barlow and T. Kumagai, Random walk on the incipient infinite cluster on trees, Illinois J. Math, vol.50, issue.1-4, pp.33-65, 2006.

B. Benedetti and G. M. Ziegler, On locally constructible spheres and balls, Acta Mathematica, vol.206, issue.2, pp.205-243, 2011.
DOI : 10.1007/s11511-011-0062-2

I. Benjamini and N. Curien, On limits of graphs sphere packed in Euclidean space and applications, European Journal of Combinatorics, vol.32, issue.7, pp.975-984, 2011.
DOI : 10.1016/j.ejc.2011.03.016

I. Benjamini and N. Curien, Ergodic theory on stationary random graphs, Electronic Journal of Probability, vol.17, issue.0, pp.1-20, 2012.
DOI : 10.1214/EJP.v17-2401

I. Benjamini and N. Curien, Recurrence of the $\mathbb{Z}^d$-valued infinite snake via unimodularity, Electronic Communications in Probability, vol.17, issue.0, pp.1-10, 2012.
DOI : 10.1214/ECP.v17-1700

I. Benjamini and N. Curien, Simple random walk on the uniform infinite planar quadrangulation: subdiffusivity via pioneer points, Geometric and Functional Analysis, vol.8, issue.2, pp.501-531, 2013.
DOI : 10.1007/s00039-013-0212-0

I. Benjamini, N. Curien, and A. Georgakopoulos, The Liouville and the intersection properties are equivalent for planar graphs, Electronic Communications in Probability, vol.17, issue.0, pp.1-5, 2012.
DOI : 10.1214/ECP.v17-1913

I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Group-invariant Percolation on Graphs, Geometric And Functional Analysis, vol.9, issue.1, pp.29-66, 1999.
DOI : 10.1007/s000390050080

I. Benjamini and O. Schramm, Harmonic functions on planar and almost planar graphs and manifolds, via circle packings, Inventiones Mathematicae, vol.126, issue.3, pp.565-587, 1996.
DOI : 10.1007/s002220050109

I. Benjamini and O. Schramm, Recurrence of distributional limits of finite planar graphs, Electron. J. Probab, vol.6, issue.13, p.pp, 2001.

N. Bernasconi, K. Panagiotou, and A. Steger, On properties of random dissections and triangulations, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.132-141, 2008.
DOI : 10.1007/s00493-010-2464-8

J. Bertoin and A. Gnedin, Asymptotic Laws for Nonconservative Self-similar Fragmentations, Electronic Journal of Probability, vol.9, issue.0, pp.575-593, 2004.
DOI : 10.1214/EJP.v9-215

URL : https://hal.archives-ouvertes.fr/hal-00103546

J. D. Biggins, Chernoff's theorem in the branching random walk, Journal of Applied Probability, vol.12, issue.03, pp.630-636, 1977.
DOI : 10.1214/aop/1176996611

G. Borot, J. Bouttier, and E. Guitter, ) model on random maps via nested loops, Journal of Physics A: Mathematical and Theoretical, vol.45, issue.4, 2012.
DOI : 10.1088/1751-8113/45/4/045002

J. Bourgain, On the Hausdorff dimension of harmonic measure in higher dimension, Inventiones Mathematicae, vol.95, issue.3, pp.477-483, 1987.
DOI : 10.1007/BF01389238

J. Bouttier, P. D. Francesco, and E. Guitter, Planar maps as labeled mobiles, Electron. J. Combin, vol.11, issue.27, p.pp, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00586658

N. Broutin and H. Sulzbach, The dual tree of a recursive triangulation of the disk, The Annals of Probability, vol.43, issue.2, p.2012
DOI : 10.1214/13-AOP894

URL : https://hal.archives-ouvertes.fr/hal-00773362

D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol.33, 2001.
DOI : 10.1090/gsm/033

G. Chapuy, M. Marcus, and G. Schaeffer, A Bijection for Rooted Maps on Orientable Surfaces, SIAM Journal on Discrete Mathematics, vol.23, issue.3, pp.1587-1611, 2009.
DOI : 10.1137/080720097

URL : https://hal.archives-ouvertes.fr/hal-00713482

P. Chassaing and B. Durhuus, Local limit of labeled trees and expected volume growth in a random quadrangulation, The Annals of Probability, vol.34, issue.3, pp.879-917, 2006.
DOI : 10.1214/009117905000000774

URL : https://hal.archives-ouvertes.fr/hal-00137910

P. Chassaing and G. Schaeffer, Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields, pp.161-212, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00005090

R. Cori and B. Vauquelin, Planar maps are well labeled trees. Canad, J. Math, vol.33, issue.5, pp.1023-1042, 1981.

N. Curien, A Glimpse of the Conformal Structure of Random Planar Maps, Communications in Mathematical Physics, vol.333, issue.3
DOI : 10.1007/s00220-014-2196-5

URL : https://hal.archives-ouvertes.fr/hal-01122764

N. Curien, Strong Convergence of Partial Match Queries in Random Quadtrees, Combinatorics, Probability and Computing, vol.21, issue.05, pp.683-694, 2012.
DOI : 10.1214/10-AOP608

N. Curien and B. Haas, The stable trees are nested. Probab. Theory Related Fields, pp.7-2012
URL : https://hal.archives-ouvertes.fr/hal-00935528

N. Curien, B. Haas, and I. Kortchemski, The CRT is the scaling limit of random dissections, Random Structures & Algorithms, vol.2, issue.2
DOI : 10.1002/rsa.20554

URL : https://hal.archives-ouvertes.fr/hal-00823219

N. Curien and A. Joseph, Partial match queries in two-dimensional quadtrees: a probabilistic approach, Advances in Applied Probability, vol.9, issue.01, pp.178-194, 2011.
DOI : 10.1137/S0097539702412131

URL : https://hal.archives-ouvertes.fr/hal-00518352

N. Curien and T. Konstantopoulos, Iterating Brownian Motions, Ad Libitum, Journal of Theoretical Probability, vol.65, issue.5
DOI : 10.1007/s10959-012-0434-3

URL : https://hal.archives-ouvertes.fr/hal-01009749

N. Curien and I. Kortchemski, Random stable looptrees, Electronic Journal of Probability, vol.19, issue.0
DOI : 10.1214/EJP.v19-2732

URL : https://hal.archives-ouvertes.fr/hal-01316629

N. Curien and J. Gall, The Brownian Plane, Journal of Theoretical Probability, vol.46, issue.4
DOI : 10.1007/s10959-013-0485-0

N. Curien and J. Gall, The harmonic measure of balls in random trees, The Annals of Probability, vol.45, issue.1
DOI : 10.1214/15-AOP1050

N. Curien and J. Gall, Random recursive triangulations of the disk via fragmentation theory, The Annals of Probability, vol.39, issue.6, pp.2224-2270, 2011.
DOI : 10.1214/10-AOP608

N. Curien, J. Gall, and G. Miermont, The Brownian cactus I. Scaling limits of discrete cactuses, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.49, issue.2, pp.340-373, 2013.
DOI : 10.1214/11-AIHP460

URL : https://hal.archives-ouvertes.fr/hal-00567333

N. Curien, L. Ménard, and G. Miermont, A view from infinity of the uniform infinite planar quadrangulation, Lat. Am. J. Probab. Math. Stat
URL : https://hal.archives-ouvertes.fr/hal-00935525

N. Curien and G. Miermont, Uniform infinite planar quadrangulations with a boundary, Random Structures & Algorithms, vol.1875, issue.1
DOI : 10.1002/rsa.20531

URL : https://hal.archives-ouvertes.fr/hal-01489682

N. Curien and Y. Peres, Random laminations and multitype branching processes, Electronic Communications in Probability, vol.16, issue.0, pp.435-446, 2011.
DOI : 10.1214/ECP.v16-1641

N. Curien and W. Werner, The Markovian hyperbolic triangulation, Journal of the European Mathematical Society, vol.15, issue.4, pp.1309-1341, 2013.
DOI : 10.4171/JEMS/393

URL : https://hal.archives-ouvertes.fr/hal-00935514

P. G. De-gennes, La percolation : un concept unificateur, La Recherche, vol.7, pp.919-927, 1976.

M. Drmota, A. De-mier, and M. Noy, Extremal statistics on non-crossing configurations, Discrete Mathematics, vol.327
DOI : 10.1016/j.disc.2014.03.016

B. Duplantier and S. Sheffield, Liouville quantum gravity and KPZ, Inventiones mathematicae, vol.477, issue.2, pp.333-393, 2011.
DOI : 10.1007/s00222-010-0308-1

T. Duquesne, A limit theorem for the contour process of conditioned Galton-Watson trees, Ann. Probab, vol.31, issue.2, pp.996-1027, 2003.

T. Duquesne and J. Gall, Random trees, Lévy processes and spatial branching processes, Astérisque, issue.281, p.147, 2002.

T. Duquesne and J. Gall, Probabilistic and fractal aspects of Lévy trees. Probab. Theory Related Fields, pp.553-603, 2005.

S. N. Evans, Probability and real trees, Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, 1920.
DOI : 10.1007/978-3-540-74798-7

P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Mathematics, vol.204, issue.1-3, pp.203-229, 1999.
DOI : 10.1016/S0012-365X(98)00372-0

URL : https://hal.archives-ouvertes.fr/inria-00073493

O. Gurel-gurevich and A. Nachmias, Recurrence of planar graph limits, Annals of Mathematics, vol.177, issue.2, p.2012
DOI : 10.4007/annals.2013.177.2.10

B. Haas and G. Miermont, The Genealogy of Self-similar Fragmentations with Negative Index as a Continuum Random Tree, Electronic Journal of Probability, vol.9, issue.0, pp.57-97, 2004.
DOI : 10.1214/EJP.v9-187

URL : https://hal.archives-ouvertes.fr/hal-00000995

Z. He and O. Schramm, Hyperbolic and parabolic packings, Discrete & Computational Geometry, vol.26, issue.125, pp.123-149, 1995.
DOI : 10.1007/BF02570699

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Québec, vol.9, issue.2, pp.105-150, 1985.

V. A. Kaimanovich and A. M. Vershik, Random Walks on Discrete Groups: Boundary and Entropy, The Annals of Probability, vol.11, issue.3, pp.457-490, 1983.
DOI : 10.1214/aop/1176993497

H. Kesten, Subdiffusive behavior of random walk on a random cluster, Ann. Inst. H. Poincaré Probab. Statist, vol.22, issue.4, pp.425-487, 1986.

V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, Fractal structure of 2D-quantum gravity. Modern Phys, Lett. A, vol.3, issue.8, pp.819-826, 1988.

A. N. Kolmogorov, Zur lösung einer biologischen aufgabe [german : On the solution of a problem in biology, Izv. NII Matem. Mekh. Tomskogo Univ, vol.2, pp.7-12, 1938.

I. Kortchemski, Random stable laminations of the disk, The Annals of Probability, vol.42, issue.2
DOI : 10.1214/12-AOP799

I. Kortchemski, Invariance principles for Galton???Watson trees conditioned on the number of leaves, Stochastic Processes and their Applications, vol.122, issue.9, pp.3126-3172, 2012.
DOI : 10.1016/j.spa.2012.05.013

M. Krikun, Local structure of random quadrangulations. arXiv, p.512304
URL : https://hal.archives-ouvertes.fr/hal-00015811

M. Krikun, On one property of distances in the infinite random quadrangulation
URL : https://hal.archives-ouvertes.fr/hal-00278745

S. K. Lando and A. Zvonkin, Graphs on surfaces and their applications, 2004.
DOI : 10.1007/978-3-540-38361-1

URL : https://hal.archives-ouvertes.fr/hal-00307202

J. Gall, Uniqueness and universality of the Brownian map, The Annals of Probability, vol.41, issue.4
DOI : 10.1214/12-AOP792

J. Gall, Spatial branching processes, random snakes and partial differential equations, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, 1999.
DOI : 10.1007/978-3-0348-8683-3

J. Gall, Random trees and applications. Probability Surveys, 2005.

J. Gall, The topological structure of scaling limits of large planar maps, Inventiones mathematicae, vol.15, issue.3, pp.621-670, 2007.
DOI : 10.1007/s00222-007-0059-9

J. Gall, Geodesics in large planar maps and in the Brownian map, Acta Mathematica, vol.205, issue.2, pp.287-360, 2010.
DOI : 10.1007/s11511-010-0056-5

J. Gall and Y. Le, Branching processes in L??vy processes: the exploration process, The Annals of Probability, vol.26, issue.1, pp.213-252, 1998.
DOI : 10.1214/aop/1022855417

J. Gall and L. Ménard, Scaling limits for the uniform infinite quadrangulation, Illinois J. Math, vol.54, issue.3, pp.1163-1203, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01426081

J. Gall and F. Paulin, Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere, Geometric and Functional Analysis, vol.18, issue.3, pp.893-918, 2008.
DOI : 10.1007/s00039-008-0671-x

R. Lyons, R. Pemantle, and Y. Peres, Ergodic theory on Galton-Watson trees : speed of random walk and dimension of harmonic measure. Ergodic Theory Dynam, Systems, vol.15, issue.3, pp.593-619, 1995.

R. Lyons, R. Pemantle, and Y. Peres, Biased random walks on Galton-Watson trees. Probab. Theory Related Fields, pp.249-264, 1996.
DOI : 10.1007/s004400050064

N. G. Makarov, On the Distortion of Boundary Sets Under Conformal Mappings, Proc. London Math. Soc. (3), pp.369-384, 1985.
DOI : 10.1112/plms/s3-51.2.369

J. Marckert and G. Miermont, Invariance principles for random bipartite planar maps, The Annals of Probability, vol.35, issue.5, pp.1642-1705, 2007.
DOI : 10.1214/009117906000000908

URL : https://hal.archives-ouvertes.fr/hal-00004645

J. Marckert and A. Mokkadem, Limit of normalized quadrangulations: The Brownian map, The Annals of Probability, vol.34, issue.6, pp.2144-2202, 2006.
DOI : 10.1214/009117906000000557

URL : https://hal.archives-ouvertes.fr/hal-00307498

J. Marckert and A. Panholzer, Noncrossing trees are almost conditioned Galton-Watson trees. Random Structures Algorithms, pp.115-125, 2002.
DOI : 10.1002/rsa.10016

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Ménard, The two uniform infinite quadrangulations of the plane have the same law, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.46, issue.1, pp.190-208, 2010.
DOI : 10.1214/09-AIHP313

G. Miermont, On the sphericity of scaling limits of random planar quadrangulations, Electronic Communications in Probability, vol.13, issue.0, pp.248-257, 2008.
DOI : 10.1214/ECP.v13-1368

URL : https://hal.archives-ouvertes.fr/hal-00200723

G. Miermont, Tessellations of random maps of arbitrary genus, Annales scientifiques de l'??cole normale sup??rieure, vol.42, issue.5, pp.725-781, 2009.
DOI : 10.24033/asens.2108

URL : https://hal.archives-ouvertes.fr/hal-00200685

G. Miermont, The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Mathematica, vol.210, issue.2, pp.319-401, 2013.
DOI : 10.1007/s11511-013-0096-8

URL : https://hal.archives-ouvertes.fr/hal-00627965

J. Neveu, Arbres et processus de Galton-Watson, Ann. Inst. H. Poincaré Probab. Statist, vol.22, issue.2, pp.199-207, 1986.

F. Paulin, Propriétés asymptotiques des relations d'équivalences mesurées discrètes, Markov Process. Related Fields, pp.163-200, 1999.

J. Rémy, Un proc??d?? it??ratif de d??nombrement d'arbres binaires et son application ?? leur g??n??ration al??atoire, RAIRO. Informatique th??orique, vol.19, issue.2, pp.179-195, 1985.
DOI : 10.1051/ita/1985190201791

R. Rhodes and V. Vargas, KPZ formula for log-infinitely divisible multifractal random measures, ESAIM: Probability and Statistics, vol.15, pp.358-371, 2011.
DOI : 10.1051/ps/2010007

URL : https://hal.archives-ouvertes.fr/hal-00293878

D. Rizzolo, Scaling limits of Markov branching trees and Galton???Watson trees conditioned on the number of vertices with out-degree in a given set, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.51, issue.2
DOI : 10.1214/13-AIHP594

. Rohde, Oded Schramm: From circle packing to SLE, The Annals of Probability, vol.39, issue.5, pp.1621-1667, 2011.
DOI : 10.1214/10-AOP590

G. Schaeffer, Conjugaison d'arbres et cartes combinatoires aléatoires, 1998.

S. Sheffield, Gaussian free fields for mathematicians. Probab. Theory Related Fields, pp.521-541, 2007.

A. Stoeckl and A. Wakolbinger, On clan-recurrence and -transience in time stationary branching Brownian particle systems In Measure-valued processes, stochastic partial differential equations, and interacting systems, of CRM Proc. Lecture Notes, pp.213-219, 1992.

Y. Watabiki, Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation, Nuclear Physics B, vol.441, issue.1-2, pp.119-163, 1995.
DOI : 10.1016/0550-3213(95)00010-P