R. Nandi and S. Sengupta, Microbial Production of Hydrogen: An Overview, Critical Reviews in Microbiology, vol.14, issue.1, pp.61-84, 1998.
DOI : 10.1080/00021369.1982.10865291

H. Gaffron, Reduction of Carbon Dioxide with Molecular Hydrogen in Green Alg??, Nature, vol.143, issue.3614, pp.204-205, 1939.
DOI : 10.1038/143204a0

H. Gaffron, REDUCTION OF CARBON DIOXIDE COUPLED WITH THE OXYHYDROGEN REACTION IN ALGAE, The Journal of General Physiology, vol.26, issue.2, pp.241-267, 1942.
DOI : 10.1085/jgp.26.2.241

M. Morimoto, Why is the anaerobic fermentation in the production of the biohydrogen attractive, The Proceedings of Conversion of Biomass into Bioenergy. Organized by New energy and Industrial Technology Development Organization (NEPO), Japan and Malaysian Palm oil Board (MPOP), 2002.

B. O. Solomon, A. Zeng, H. Biebl, H. Schlieker, C. Posten et al., Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol, Journal of Biotechnology, vol.39, issue.2, pp.107-117, 1995.
DOI : 10.1016/0168-1656(94)00148-6

S. Kengen, A. Stams, W. Vos, and . De, Sugar metabolism of hyperthermophiles, FEMS Microbiology Reviews, vol.18, issue.2-3, pp.119-137, 1996.
DOI : 10.1111/j.1574-6976.1996.tb00231.x

P. H. Janssen and H. Morgan, sp. strain FjSS3.B1, FEMS Microbiology Letters, vol.96, issue.2-3, pp.213-218, 1992.
DOI : 10.1111/j.1574-6968.1992.tb05419.x

S. Kengen and A. Stams, Formation of l-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus, Archives of Microbiology, vol.124, issue.2, pp.168-175, 1994.
DOI : 10.1007/BF00276479

H. Schlegel and J. Barnea, Microbial energy conversion, pp.201-204

M. D. Redwood, M. P. Beedle, and L. Macaskie, Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy, Reviews in Environmental Science and Bio/Technology, vol.91, issue.4, pp.149-185, 2009.
DOI : 10.1007/s11157-008-9144-9

M. A. Rachman, Y. Furutani, Y. Nakashimada, T. Kakizono, and N. Nishio, Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes, Journal of Fermentation and Bioengineering, vol.83, issue.4, pp.358-363, 1997.
DOI : 10.1016/S0922-338X(97)80142-0

N. Kumar and D. Das, Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08, Process Biochemistry, vol.35, issue.6, pp.589-593, 2000.
DOI : 10.1016/S0032-9592(99)00109-0

N. Kumar, A. Ghosh, and D. Das, Redirection of biochemical pathways for the enhancement of H 2 production by Enterobacter cloacae, Biotechnology Letters, vol.23, issue.7, pp.537-541, 2001.
DOI : 10.1023/A:1010334803961

P. A. Claassen, J. B. Van-lier, L. Contreras, A. M. Van-niel, E. Sijtsma et al., Utilisation of biomass for the supply of energy carriers, Applied Microbiology and Biotechnology, vol.52, issue.6, pp.741-755, 1999.
DOI : 10.1007/s002530051586

R. Conrad and B. Wetter, Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria, Archives of Microbiology, vol.129, issue.1, pp.94-98, 1990.
DOI : 10.1007/BF00291281

E. Van-niel, P. Claassen, and A. Stams, Substrate and product inhibition of hydrogen production by the extreme thermophile,Caldicellulosiruptor saccharolyticus, Biotechnology and Bioengineering, vol.128, issue.3, pp.255-262, 2003.
DOI : 10.1002/bit.10463

J. Andel, . Van, G. R. Zoutberg, P. M. Crabbendam, and A. Breure, Glucose fermentation byClostridium butyricum grown under a self generated gas atmosphere in chemostat culture, Applied Microbiology and Biotechnology, vol.16, issue.1, pp.21-26, 1985.
DOI : 10.1007/BF02660113

M. Heyndrickx, A. Vansteenbeeck, P. Vos, . De, L. Ley et al., Hydrogen gas production from continuous fermentation of glucose in a minimal medium with Clostridium butyricum LMG 1213t1, Systematic and Applied Microbiology, vol.8, issue.3, pp.239-244, 1986.
DOI : 10.1016/S0723-2020(86)80087-X

M. Heyndrickx, P. Vos, . De, L. Ley, and . De, H2 production from chemostat fermentation of glucose byClostridium butyricum andClostridium pasteurianum in ammonium- and phosphate limitation, Biotechnology Letters, vol.31, issue.10, pp.731-736, 1990.
DOI : 10.1007/BF01024730

F. Taguchi, N. Mizukami, T. Saito-taki, and K. Hasegawa, Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp, 1995.

N. Kataoka, A. Miya, and K. Kiriyama, Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria, Water Science and Technology, vol.36, issue.6-7, pp.41-47, 1997.
DOI : 10.1016/S0273-1223(97)00505-2

H. Yokoi, T. Tokushige, J. Hirose, S. Hayashi, and Y. Takasaki, H 2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes, Biotechnology Letters, vol.20, issue.2, pp.143-147, 1998.
DOI : 10.1023/A:1005372323248

H. Yokoi, A. Saitsu, H. Uchida, J. Hirose, S. Hayashi et al., Microbial hydrogen production from sweet potato starch residue, Journal of Bioscience and Bioengineering, vol.91, issue.1, pp.58-63, 2001.
DOI : 10.1016/S1389-1723(01)80112-2

Y. Ueno, T. Kawai, S. Sato, S. Otsuka, and M. Morimoto, Biological production of hydrogen from cellulose by natural anaerobic microflora, Journal of Fermentation and Bioengineering, vol.79, issue.4, pp.395-397, 1995.
DOI : 10.1016/0922-338X(95)94005-C

Y. Ueno, S. Otsuka, and M. Morimoto, Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture, Journal of Fermentation and Bioengineering, vol.82, issue.2, pp.194-197, 1996.
DOI : 10.1016/0922-338X(96)85050-1

S. Tanisho, Y. Suzuki, and N. Wakao, Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005, International Journal of Hydrogen Energy, vol.12, issue.9, pp.623-627, 1987.
DOI : 10.1016/0360-3199(87)90003-6

S. Tanisho, S. Wakao, and Y. Kosako, Biological hydrogen production by Enterobacter aerogenes., Journal of Chemical Engineering of Japan, vol.16, issue.6, pp.529-530, 1983.
DOI : 10.1252/jcej.16.529

N. Kumar and D. Das, Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08, Process Biochemistry, vol.35, issue.6, pp.589-593, 2000.
DOI : 10.1016/S0032-9592(99)00109-0

M. T. Gencoglu and Z. Ural, Design of a PEM fuel cell system for residential application, International Journal of Hydrogen Energy, vol.34, issue.12, pp.5242-5248, 2009.
DOI : 10.1016/j.ijhydene.2008.09.038

T. A. Nguyen, S. J. Han, J. P. Kim, M. S. Kim, and S. Sim, Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition, Bioresource Technology, vol.101, issue.1, pp.38-41, 2010.
DOI : 10.1016/j.biortech.2009.03.041

C. Monteiro, Brazilian experience with the disposal of wastewater from the cane and alcohol industry, Process Biochemistry, vol.10, issue.33 9, p.33, 1975.

S. Hassuda, Impactos da infiltração da vinhaça de cana no aqüífero Bauru, 1989.

M. Da-silva, N. P. Griebeler, and L. Borges, Uso de vinha??a e impactos nas propriedades do solo e len??ol fre??tico, Revista Brasileira de Engenharia Agr??cola e Ambiental, vol.11, issue.1, pp.108-114, 2007.
DOI : 10.1590/S1415-43662007000100014

M. J. Cuetos, X. Gomez, A. Escapa, and A. Morian, Evaluation and simultaneous optimization of bio-hydrogen production using 32 factorial design and the desirability function, Journal of Power Sources, vol.169, issue.1, pp.131-139, 2007.
DOI : 10.1016/j.jpowsour.2007.01.050

B. Calli, W. Boënne, and K. Vanbroekhoven, Bio-Hydrogen Potential of Easily Biodegradable Substrate Through Dark Fermentation, WHEC, vol.16, 2006.

S. Gosh, Pilot-scale gasification of MSW by high-rate and twophase anaerobic digestion, International symposium on Anaerobic Digestion of Solid Waste, 1999.

G. Zeeman and S. W. , Potential of anaerobic digestion of complex waste(water) Water Science and Technology, pp.115-122, 2001.

Y. Miron, G. Zeeman, J. B. Van-lier, and G. Lettinga, The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems, Water Research, vol.34, issue.5, pp.1705-1713, 2000.
DOI : 10.1016/S0043-1354(99)00280-8

J. Reith, Report of the Workshop Biological Hydrogen Production, Dutch, 2001.

R. Cammack, M. Frey, and R. Robson, Hydrogen as a fuel: learning from Nature, 2001.
DOI : 10.1201/9780203471043

P. Agrawal, R. Hema, and S. Kumar, Experimental investigation on bioogical hydrogen production using different biomass, Jurnal Teknologi, pp.47-60, 2007.

M. Matsumoto and Y. Nishimura, Hydrogen production by fermentation using acetic acid and lactic acid, Journal of Bioscience and Bioengineering, vol.103, issue.3, pp.236-241, 2007.
DOI : 10.1263/jbb.103.236

D. Zurawski, M. Meyer, and R. Stegmann, Fermentative production of biohydrogen from biowaste using digested sewage sludge as inocullum, 2005.

D. B. Levin, L. Pitt, and M. Love, Biohydrogen production: prospects and limitations to practical application, International Journal of Hydrogen Energy, vol.29, issue.2, pp.173-185, 2004.
DOI : 10.1016/S0360-3199(03)00094-6

J. K. Kim, L. Nhat, Y. M. Chun, and S. Kim, Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785, Biotechnology and Bioprocess Engineering, vol.43, issue.4, pp.499-504, 2008.
DOI : 10.1007/s12257-008-0142-0

D. T. Jones and D. Woods, Acetone-Butanol Fermentation Revisited, 1986.

D. Das, N. Khanna, and T. Verzigloru, Recent developments in biological hydrogen production processes, Chemical Industry and Chemical Engineering Quarterly, vol.14, issue.2, pp.57-67, 2008.
DOI : 10.2298/CICEQ0802057D

R. Thompson, Hydrogen Production by Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System, 2008.

K. Nath and D. Das, Improvement of fermentative hydrogen production: various approaches, Applied Microbiology and Biotechnology, vol.65, issue.5, pp.520-529, 2004.
DOI : 10.1007/s00253-004-1644-0

R. Gheshlaghi, J. M. Scharer, M. Moo-young, and C. Chou, Metabolic pathways of clostridia for producing butanol, Biotechnology Advances, vol.27, issue.6, pp.764-781, 2009.
DOI : 10.1016/j.biotechadv.2009.06.002

J. I. Horiuchi, T. Shimizu, K. Tada, T. Kanno, and M. Kobayashi, Selective production of organic acids in anaerobic acid reactor by pH control, Bioresource Technology, vol.82, issue.3, pp.209-213, 2002.
DOI : 10.1016/S0960-8524(01)00195-X

H. Q. Yu and H. Fang, Inhibition on Acidogenesis of Dairy Wastewater by Zinc and Copper, Environmental Technology, vol.22, issue.12, pp.1459-1465, 2001.
DOI : 10.1080/09593332208618183

C. Winter, Into the hydrogen energy economy?milestones, International Journal of Hydrogen Energy, vol.30, issue.7, pp.681-686, 2005.
DOI : 10.1016/j.ijhydene.2004.12.011

R. Oztekin, I. K. Kapdan, F. Kargi, and H. Argun, Optimization of media composition for hydrogen gas production from hydrolyzed wheat starch by dark fermentation, International Journal of Hydrogen Energy, vol.33, issue.15, pp.4083-4090, 2008.
DOI : 10.1016/j.ijhydene.2008.05.052

J. A. Cruwys, R. M. Dinsdale, F. R. Hawkes, and D. Hawkes, Development of a static headspace gas chromatographic procedure for the routine analysis of volatile fatty acids in wastewaters, Journal of Chromatography A, vol.945, issue.1-2, pp.195-209, 2002.
DOI : 10.1016/S0021-9673(01)01514-X

P. Hallenbeck, Fermentative hydrogen production: Principles, progress, and prognosis, International Journal of Hydrogen Energy, vol.34, issue.17, pp.7379-7389, 2009.
DOI : 10.1016/j.ijhydene.2008.12.080

M. D. Collins, P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandes-garayzabal et al., The Phylogeny of the Genus Clostridium: Proposal of Five New Genera and Eleven New Species Combinations, International Journal of Systematic Bacteriology, vol.44, issue.4, 1994.
DOI : 10.1099/00207713-44-4-812

B. Wang, W. Wan, and J. Wang, Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production, International Journal of Hydrogen Energy, vol.33, issue.23, pp.7013-7019, 2008.
DOI : 10.1016/j.ijhydene.2008.09.027

P. Hallenbeck and D. Ghosh, Advances in fermentative biohydrogen production: the way forward? Trends in Biotechnology, pp.287-297, 2009.

M. Chong, V. Sabaratnam, Y. Shirai, and M. Hassan, Biohydrogen production from biomass and industrial wastes by dark fermentation, International Journal of Hydrogen Energy, vol.34, issue.8, pp.3277-3287, 2009.
DOI : 10.1016/j.ijhydene.2009.02.010

F. R. Hawkes, I. Hussy, G. Kyazze, R. Dinsdale, and D. Hawkes, Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress, International Journal of Hydrogen Energy, vol.32, issue.2, pp.172-184, 2007.
DOI : 10.1016/j.ijhydene.2006.08.014

R. K. Thauer, K. Jungerman, and K. Decker, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev, vol.41, issue.68, pp.100-180, 1977.

A. Cohen, A. M. Breure, J. G. Van-andel, and A. Van-deursen, Anaerobic digestion of glucose with separated acid production and methane formation, Water Research, vol.13, issue.7, pp.571-580, 1979.
DOI : 10.1016/0043-1354(79)90003-4

L. T. Angenent, K. Karim, M. H. Al-dahhan, B. A. Wrenn, and R. Domiguez-espinosa, Production of bioenergy and biochemicals from industrial and agricultural wastewater, Trends in Biotechnology, vol.22, issue.9, pp.477-485, 2004.
DOI : 10.1016/j.tibtech.2004.07.001

M. Ruzicka, The effect of hydrogen on acidogenic glucose cleavage, Water Research, vol.30, issue.10, 1996.
DOI : 10.1016/0043-1354(96)00112-1

P. M. Crabbenbaum, O. M. Neijssel, and D. W. Tempest, Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture, 1985.

S. W. Van-ginkel and B. Logan, Increased biological hydrogen production with reduced organic loading, Water Research, vol.39, issue.16, pp.3819-3826, 2005.
DOI : 10.1016/j.watres.2005.07.021

M. Gassap, Nitrogen Metabolism and Solvent Production in Clostridium beijerinckii NRLL B593. Thesis, 2002.

A. Prazmowski, Untersuchungen über die Entwickelungsgeschichte und Fermentwirkung einiger Bacterien-Arten. Thesis, 1880.

S. G. Won and A. Lau, Effects of key operational parameters on biohydrogen production via anaerobic fermentation in a sequencing batch reactor, Bioresource Technology, vol.102, issue.13, pp.6876-6883, 2011.
DOI : 10.1016/j.biortech.2011.03.078

S. Rittmann and C. Herwig, A comprehensive and quantitative review of dark fermentative biohydrogen production, Microbial Cell Factories, vol.11, issue.1, 2012.
DOI : 10.1007/s10529-007-9527-y

J. Chang, K. Lee, and P. Lin, Biohydrogen production with fixed-bed bioreactors, International Journal of Hydrogen Energy, vol.27, issue.11-12, pp.1167-74, 2002.
DOI : 10.1016/S0360-3199(02)00130-1

D. Lee, Y. Li, and T. Noike, Continuous H2 production by anaerobic mixed microflora in membrane bioreactor, Bioresource Technology, vol.100, issue.2, pp.690-695, 2009.
DOI : 10.1016/j.biortech.2008.06.056

H. S. Zhang, M. A. Bruns, and B. Logan, Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor Water Res, pp.728-734, 2006.

A. A. Zeidan and E. Van-niel, A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT, International Journal of Hydrogen Energy, vol.35, issue.3, pp.1128-1137, 2010.
DOI : 10.1016/j.ijhydene.2009.11.082

H. Alshiyab, M. S. Kalil, A. A. Hamid, and W. Yusoff, Effect of Salts Addition on Hydrogen Production by C. acetobutylicum, Pakistan Journal of Biological Sciences, vol.11, issue.18, pp.2193-2200, 2008.
DOI : 10.3923/pjbs.2008.2193.2200

N. Kumar and D. Das, Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08, Process Biochemistry, vol.35, issue.6, pp.589-593, 2000.
DOI : 10.1016/S0032-9592(99)00109-0

S. Kumar, N. Das, and D. , Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices, Enzyme and Microbial Technology, vol.29, issue.4-5, pp.280-287, 2001.
DOI : 10.1016/S0141-0229(01)00394-5

M. Chen and M. Wolin, Influence of heme and vitamin B12 on growth and fermentations of Bacteroides species, J Bacteriol, vol.145, pp.466-471, 1981.

T. Doi, H. Matsumoto, J. Abe, and S. Morita, Feasibility study on the application of rhizosphere microflora of rice for the biohydrogen production from wasted bread, International Journal of Hydrogen Energy, vol.34, issue.4, 2009.
DOI : 10.1016/j.ijhydene.2008.12.060

B. Ewan and R. Allen, A figure of merit assessment of the routes to hydrogen, International Journal of Hydrogen Energy, vol.30, issue.8, pp.809-819, 2008.
DOI : 10.1016/j.ijhydene.2005.02.003

B. Hu and S. Chen, Pretreatment of methanogenic granules for immobilized hydrogen fermentation, International Journal of Hydrogen Energy, vol.32, issue.15, pp.3266-3273, 2007.
DOI : 10.1016/j.ijhydene.2007.03.005

G. Liu and J. Shen, Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria, Journal of Bioscience and Bioengineering, vol.98, issue.4, pp.251-256, 2004.
DOI : 10.1016/S1389-1723(04)00277-4

C. Z. Liu and X. Cheng, Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment, International Journal of Hydrogen Energy, vol.35, issue.17, pp.8945-8952, 2010.
DOI : 10.1016/j.ijhydene.2010.06.025

Y. Mu, H. Q. Yu, and Y. Wang, The role of pH in the fermentative H2 production from an acidogenic granule-based reactor, Chemosphere, vol.64, issue.3, pp.350-358, 2006.
DOI : 10.1016/j.chemosphere.2005.12.048

B. H. Kim, P. Bellows, R. Datta, and J. Zeikus, Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields, Appl Environ Microb, vol.48, pp.764-770, 1984.

X. Zhao, D. Xing, N. Fu, B. Liu, and N. Ren, Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108, Bioresource Technology, vol.102, issue.18, pp.8432-8436, 2011.
DOI : 10.1016/j.biortech.2011.02.086

C. Pan, Y. Fan, P. Zhao, and H. Hou, Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3, International Journal of Hydrogen Energy, vol.33, issue.20, pp.5383-5391, 2008.
DOI : 10.1016/j.ijhydene.2008.05.037

M. Ferchichi, E. Crabbe, W. Hintz, G. Gil, and A. Almadidy, Influence of Culture Parameters on Biological Hydrogen Production by Clostridium saccharoperbutylacetonicum ATCC 27021, World Journal of Microbiology and Biotechnology, vol.69, issue.6-7, pp.855-862, 2005.
DOI : 10.1007/s11274-004-5972-0

K. Ho, Y. Chen, and D. Lee, Biohydrogen production from cellobiose in phenol and cresol-containing medium using Clostridium sp. R1, International Journal of Hydrogen Energy, vol.35, issue.19, pp.10239-10244, 2010.
DOI : 10.1016/j.ijhydene.2010.07.155

H. Yokoi, T. Ohkawara, J. Hirose, S. Hayashi, and Y. Takasaki, Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39, Journal of Fermentation and Bioengineering, vol.80, issue.6, pp.571-574, 1995.
DOI : 10.1016/0922-338X(96)87733-6

Y. Nakashimada, M. Rachman, T. Kakizono, and N. Nishio, Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states, International Journal of Hydrogen Energy, vol.27, issue.11-12, pp.1399-1405, 2002.
DOI : 10.1016/S0360-3199(02)00128-3

A. Bisaillon, J. Turcot, and P. Hallenbeck, The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli, International Journal of Hydrogen Energy, vol.31, issue.11, pp.1504-1508, 2006.
DOI : 10.1016/j.ijhydene.2006.06.016

X. Liangshu, Isolation and characterization of a high H 2 -producing strain Klebsiella oxytoca HP1 from a hot spring, Res Microbiol, vol.156, pp.76-81, 2005.

G. Antonopoulou, I. Ntaikou, H. N. Gavala, I. V. Skiadas, K. Angelopoulos et al., Biohydrogen production from sweet sorghum biomass using mixed acidogenic cultures and pure cultures of Ruminococcus albus, Global NEST J, vol.9, pp.144-151, 2007.

I. Ntaikou, H. N. Gavala, M. Kornaros, and G. Lyberatos, Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus, International Journal of Hydrogen Energy, vol.33, issue.4, pp.1153-1163, 2008.
DOI : 10.1016/j.ijhydene.2007.10.053

M. Talabardon, J. P. Schwitzguebel, P. Peringer, G. Ivanova, G. Rakhely et al., Anaerobic thermophilic (108) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies, Int J Hydrogen Energ, vol.34, issue.106, pp.3659-3670, 1999.

Y. Lo, W. Lu, C. Chen, and J. Chang, Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5, Bioresource Technology, vol.101, issue.15, pp.5885-5891, 2010.
DOI : 10.1016/j.biortech.2010.02.085

S. Pattra, S. Sangyoka, M. Boonmee, and A. Reungsang, Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum, International Journal of Hydrogen Energy, vol.33, issue.19, pp.5256-5265, 2008.
DOI : 10.1016/j.ijhydene.2008.05.008

D. B. Levin, R. Islam, N. Cicek, and R. Sparling, Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates, International Journal of Hydrogen Energy, vol.31, issue.11, pp.1496-1503, 2006.
DOI : 10.1016/j.ijhydene.2006.06.015

G. Antonopoulou, I. Ntaikou, H. N. Gavala, I. V. Skiadas, K. Angelopoulos et al., Biohydrogen production from sweet sorghum biomass using mixed acidogenic cultures and pure cultures of Ruminococcus albus, Global NEST J, vol.9, pp.144-151, 2007.

N. Ren, G. Cao, A. Wang, D. Lee, W. Guo et al., Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16, International Journal of Hydrogen Energy, vol.33, issue.21, pp.6124-6132, 2008.
DOI : 10.1016/j.ijhydene.2008.07.107

N. Ren, J. Li, B. Li, Y. Wang, and S. Liu, Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system, International Journal of Hydrogen Energy, vol.31, issue.15, pp.2147-2157, 2006.
DOI : 10.1016/j.ijhydene.2006.02.011

). S. Venkata-mohan, V. Lalit-babu, and P. N. Sarma, Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor, 2007.

). Lay, I. Sung, G. Kumar, and C. Chu, Optimizing biohydrogen production from mushroom cultivation waste using anaerobic mixed cultures, International Journal of Hydrogen Energy, vol.37, issue.21, pp.16473-16478, 2012.
DOI : 10.1016/j.ijhydene.2012.02.135

H. P. Herbert, C. Fang, T. Li, and . Zhang, Acidophilic biohydrogen production from rice slurry, International Journal of Hydrogen Energy, vol.31, pp.683-692, 2006.

M. Ferchichi, E. Crabbe, G. Gil, W. Hintz, and A. Almadidy, Influence of initial pH on hydrogen production from cheese whey, SST (117), pp.402-409, 2005.
DOI : 10.1016/j.jbiotec.2005.05.017

T. Ito, Y. Nakashimadda, K. Senba, T. Matsui, and N. Nishio, Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process, Journal of Bioscience and Bioengineering, vol.100, issue.3, pp.260-265, 2005.
DOI : 10.1263/jbb.100.260

S. V. Mohan, G. Mohanakrishna, R. K. Goud, and P. Sarma, Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization, Bioresource Technology, vol.100, issue.12, pp.3061-3068, 2009.
DOI : 10.1016/j.biortech.2008.12.059

L. T. Angenent and B. A. Wrenn, Optimizing mixed-culture bioprocesses to convert wastes into biofuels (chapter 15, pp.179-194, 2008.

K. Aoyama, I. Uemura, J. Miyake, and Y. Asada, Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis, Journal of Fermentation and Bioengineering, vol.83, issue.1, pp.17-20, 1997.
DOI : 10.1016/S0922-338X(97)87320-5

T. Jeffries, H. Timourien, and R. Ward, Hydrogen production by Anabaena cylindrica: Effect of varying ammonium and ferric ions, pH and light, 1978.

M. C. Margheri, M. R. Tredici, G. Allotta, L. Vagnoli, M. Polsinelli et al., Heterotrophic metabolism and regulation of uptake hydrogenase activity in symbiotic cyanobacteria. InDevelopments in plant and soil sciences ? biological nitrogen fixation, pp.481-486, 1990.

H. Yokoi, T. Tokushige, J. Hirose, S. Hayashi, and Y. Takasaki, H 2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes, Biotechnology Letters, vol.20, issue.2, pp.143-147, 1998.
DOI : 10.1023/A:1005372323248

E. Latrille, E. Trably, C. Larroche, E. B. Sydney, and C. Larroche, Production de biohydrogène : voie fermentaire sombre in Bioprocédés dans les domaines de l'énergie et de l'environnement, Boundrat J, Guezennec J, Monsan P. Editions T.I.. Publications ? Patent: Soccol, C.R, issue.126, pp.1005215-1005216, 2010.

A. L. Woiciecohwski, C. Larroche, and C. R. Soccol, Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage, Applied Energy, vol.88, pp.3291-3294, 2011.

. Microalgae, Cyanobacteria, and Macromycetes for Exopolysaccharides Production: Process Preliminary Optimization and Partial Characterization

@. Patent, C. R. Soccol, A. C. Novak, A. T. Soccol, E. B. Sydney et al., Processo para produção de exopolissacarídeos, biomassa e extratos antioxidantes, 2012.

@. Sarma, S. J. Brar, S. K. Sydney, E. B. Le-bihan, Y. Buelna et al., Microbial hydrogen production by bioconversion of crude glycerol: A review, International Journal of Hydrogen Energy, vol.37, issue.8, pp.37-6473, 2012.
DOI : 10.1016/j.ijhydene.2012.01.050

A. C. Novak, E. B. Sydney, and C. Soccol, Development of a vinasse nutritive solution for hydroponics, Journal of Environmental Management, vol.114, pp.8-12, 2013.

C. @bullet-book, Respirometric Balance and Carbon Fixation of Industrially Important Algae, Biofuels from Algae, 2013.