M. Adimy and F. Crauste, Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulations, Mathematical and Computer Modelling, vol.49, issue.11-12, pp.11-122128, 2009.
DOI : 10.1016/j.mcm.2008.07.014

M. Adimy, F. Crauste, and A. Abdllaoui, DISCRETE-MATURITY STRUCTURED MODEL OF CELL DIFFERENTIATION WITH APPLICATIONS TO ACUTE MYELOGENOUS LEUKEMIA, Journal of Biological Systems, vol.16, issue.03, pp.395-424, 2008.
DOI : 10.1142/S0218339008002599

URL : https://hal.archives-ouvertes.fr/hal-00750276

F. Álvarez, J. Bolte, J. F. Bonnans, and F. J. Silva, Asymptotic expansions for interior penalty solutions of control constrained linear-quadratic problems, Mathematical Programming, vol.77, issue.1, pp.473-507, 2012.
DOI : 10.1007/s10107-011-0477-8

L. Ambrosio, Lecture Notes on Optimal Transport Problems, Mathematical aspects of evolving interfaces, pp.1-52, 2003.
DOI : 10.1007/978-3-540-39189-0_1

L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, 2000.

T. S. Angell and A. Kirsch, On the necessary conditions for optimal control of retarded systems, Applied Mathematics & Optimization, vol.5, issue.1, pp.117-145, 1990.
DOI : 10.1007/BF01447323

J. L. Avila, C. Bonnet, J. Clairambault, H. Ozbay, S. Niculescu et al., A new model of cell dynamics in acute myeloid leukemia involving distributed delays, Time Delay Systems, pp.55-60, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00766709

V. L. Bakke, A maximum principle for an optimal control problem with integral constraints, Journal of Optimization Theory and Applications, vol.13, issue.1, pp.32-55, 1974.
DOI : 10.1007/BF00935608

A. Ballesta, F. Mehri, X. Dupuis, C. Bonnet, J. F. Bonnans et al., In vitro dynamics of LAM patient blood sample cells and their therapeutic control by aracytine and an Flt3 inhibitor

C. Basdevant, J. Clairambault, and F. Lévi, Optimisation of time-scheduled regimen for anti-cancer drug infusion, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.6, pp.1069-1086, 2005.
DOI : 10.1051/m2an:2005052

A. Ben-tal and J. Zowe, A unified theory of first and second order conditions for extremum problems in topological vector spaces, Math. Programming Stud, pp.39-76, 1982.
DOI : 10.1007/BFb0120982

J. T. Betts, Practical methods for optimal control and estimation using nonlinear programming, volume 19 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), 2010.

F. Billy and J. Clairambault, Designing proliferating cell population models with functional targets for control by anti-cancer drugs, Discrete and Continuous Dynamical Systems - Series B, vol.18, issue.4, pp.865-889, 2013.
DOI : 10.3934/dcdsb.2013.18.865

URL : https://hal.archives-ouvertes.fr/hal-00726195

F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre et al., Synchronisation and control of proliferation in cycling cell population models with age structure Available online, Math. Comput. Simulation, 2012.

J. F. Bonnans, The shooting approach to optimal control problems, IFAC Proceedings Volumes, vol.46, issue.11
DOI : 10.3182/20130703-3-FR-4038.00158

URL : https://hal.archives-ouvertes.fr/hal-00830896

J. F. Bonnans, C. De, and L. Vega, Optimal control of state constrained integral equations. Set-Valued Var, Anal, vol.18, pp.3-4307, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00473952

J. F. Bonnans, C. De, X. Vega, and . Dupuis, First- and Second-Order Optimality Conditions for Optimal Control Problems of State Constrained Integral Equations, Journal of Optimization Theory and Applications, vol.1, issue.2, pp.1-40, 2013.
DOI : 10.1007/s10957-013-0299-3

URL : https://hal.archives-ouvertes.fr/hal-00697504

J. F. Bonnans, X. Dupuis, and L. Pfeiffer, Second-Order Necessary Conditions in Pontryagin Form for Optimal Control Problems, SIAM Journal on Control and Optimization, vol.52, issue.6, 2013.
DOI : 10.1137/130923452

URL : https://hal.archives-ouvertes.fr/hal-00825273

J. F. Bonnans, X. Dupuis, and L. Pfeiffer, Second-order sufficient conditions for strong solutions to optimal control problems, ESAIM Control Optim. Calc. Var, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00825260

J. F. Bonnans and A. Hermant, No-gap second-order optimality conditions for optimal control problems with a single state constraint and control, Mathematical Programming, vol.32, issue.4, pp.21-50, 2009.
DOI : 10.1007/s10107-007-0167-8

URL : https://hal.archives-ouvertes.fr/inria-00070189

J. F. Bonnans and A. Hermant, Revisiting the analysis of optimal control problems with several state constraints, Control Cybernet, vol.38, issue.4A, pp.1021-1052, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00778363

J. F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.2, pp.561-598, 2009.
DOI : 10.1016/j.anihpc.2007.12.002

URL : https://hal.archives-ouvertes.fr/hal-00778357

J. F. Bonnans, P. Martinon, and V. Grélard, Bocop v1.0.3: A collection of examples, 2012.

J. F. Bonnans and N. P. Osmolovskii, Second-order analysis of optimal control problems with control and initial-final state constraints, J. Convex Anal, vol.17, pp.3-4885, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00335869

J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer Series in Operations Research, 2000.

M. J. Cáceres, J. A. Cañizo, and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations, Journal de Math??matiques Pures et Appliqu??es, vol.96, issue.4, pp.334-362, 2011.
DOI : 10.1016/j.matpur.2011.01.003

G. Carlier and R. Tahraoui, On some optimal control problems governed by a state equation with memory, ESAIM: Control, Optimisation and Calculus of Variations, vol.14, issue.4, pp.725-743, 2008.
DOI : 10.1051/cocv:2008005

URL : https://hal.archives-ouvertes.fr/hal-00361008

D. A. Carlson, An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation, Journal of Optimization Theory and Applications, vol.8, issue.1, pp.43-61, 1987.
DOI : 10.1007/BF00940404

C. Castaing, Sur les multi-applications mesurables, Revue fran??aise d'informatique et de recherche op??rationnelle, vol.1, issue.1, pp.91-126, 1967.
DOI : 10.1051/m2an/1967010100911

URL : http://archive.numdam.org/article/M2AN_1967__1_1_91_0.pdf

C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, vol.580, 1977.
DOI : 10.1007/BFb0087685

G. Choquet, Cours d'analyse, Tome II: Topologie. Espaces topologiques et espaces métriques. Fonctions numériques. Espaces vectoriels topologiques. Deuxième édition, revue et corrigée. Masson et Cie, 1969.

J. Clairambault, S. Gaubert, and T. Lepoutre, Comparison of Perron and Floquet Eigenvalues in Age Structured Cell Division Cycle Models, Mathematical Modelling of Natural Phenomena, vol.4, issue.3, pp.183-209, 2009.
DOI : 10.1051/mmnp/20094308

URL : https://hal.archives-ouvertes.fr/hal-00344039

F. Clément, J. Coron, and P. Shang, Optimal Control of Cell Mass and Maturity in a Model of Follicular Ovulation, SIAM Journal on Control and Optimization, vol.51, issue.2, pp.824-847, 2013.
DOI : 10.1137/120862247

R. Cominetti, Metric regularity, tangent sets, and second-order optimality conditions, Applied Mathematics & Optimization, vol.25, issue.1, pp.265-287, 1990.
DOI : 10.1007/BF01445166

C. De and . Vega, Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation, J. Optim. Theory Appl, vol.130, issue.1, pp.79-93, 2006.

A. V. Dmitruk, Maximum principle for the general optimal control problem with phase and regular mixed constraints, Computational Mathematics and Modeling, vol.2, issue.3, pp.364-377, 1993.
DOI : 10.1007/BF01128760

A. V. Dmitruk, Approximation theorem for a nonlinear control system with sliding modes, Proceedings of the Steklov Institute of Mathematics, vol.256, issue.1, pp.102-114, 2007.
DOI : 10.1134/S0081543807010063

A. V. Dmitruk, Jacobi type conditions for singular extremals, Control Cybernet, vol.37, issue.2, pp.285-306, 2008.

A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control, Mathematics of Computation, vol.70, issue.233, pp.173-203, 2001.
DOI : 10.1090/S0025-5718-00-01184-4

A. J. Dubovicki?-i and A. A. Miljutin, Extremal problems with constraints, ?. Vy?isl. Mat. i Mat. Fiz, vol.5, pp.395-453, 1965.

A. J. Dubovicki?-i and A. A. Miljutin, Necessary conditions for a weak extremum in optimal control problems with mixed constraints of inequality type

X. Dupuis, Optimal Control of Leukemic Cell Population Dynamics, Mathematical Modelling of Natural Phenomena, vol.9, issue.1, 2013.
DOI : 10.1051/mmnp/20149102

URL : https://hal.archives-ouvertes.fr/hal-00858208

G. Feichtinger, G. Tragler, and V. M. Veliov, Optimality conditions for age-structured control systems, Journal of Mathematical Analysis and Applications, vol.288, issue.1, pp.47-68, 2003.
DOI : 10.1016/j.jmaa.2003.07.001

G. B. Folland, Real analysis, Modern techniques and their applications, 1999.

P. Gabriel, Long-time asymptotics for nonlinear growth-fragmentation equations, Communications in Mathematical Sciences, vol.10, issue.3, pp.787-820, 2012.
DOI : 10.4310/CMS.2012.v10.n3.a4

URL : https://hal.archives-ouvertes.fr/hal-00565863

P. Gabriel, S. P. Garbett, V. Quaranta, D. R. Tyson, and G. F. Webb, The contribution of age structure to cell population responses to targeted therapeutics, Journal of Theoretical Biology, vol.311, pp.19-27, 2012.
DOI : 10.1016/j.jtbi.2012.07.001

URL : https://hal.archives-ouvertes.fr/hal-00649178

R. V. Gamkrelidze, On sliding optimal states, Dokl. Akad. Nauk SSSR, vol.143, pp.1243-1245, 1962.

L. Göllmann, D. Kern, and H. Maurer, Optimal control problems with delays in state and control variables subject to mixed control-state constraints, Optimal Control Applications and Methods, vol.76, issue.5, pp.341-365, 2009.
DOI : 10.1002/oca.843

T. Guinn, Reduction of delayed optimal control problems to nondelayed problems, Journal of Optimization Theory and Applications, vol.3, issue.3, pp.371-377, 1976.
DOI : 10.1007/BF00933818

A. Halanay, Optimal Controls for Systems with Time Lag, SIAM Journal on Control, vol.6, issue.2, pp.215-234, 1968.
DOI : 10.1137/0306016

R. F. Hartl, S. P. Sethi, and R. G. Vickson, A Survey of the Maximum Principles for Optimal Control Problems with State Constraints, SIAM Review, vol.37, issue.2, pp.181-218, 1995.
DOI : 10.1137/1037043

H. Hermes and J. P. Lasalle, Functional analysis and time optimal control, Mathematics in Science and Engineering, vol.56, 1969.

M. R. Hestenes, Applications of the theory of quadratic forms in Hilbert space to the calculus of variations, Pacific Journal of Mathematics, vol.1, issue.4, pp.525-581, 1951.
DOI : 10.2140/pjm.1951.1.525

M. R. Hestenes, Calculus of variations and optimal control theory, 1966.

R. P. Hettich and H. T. Jongen, Semi-infinite programming: Conditions of optimality and applications, Optimization techniques, Part 2, pp.1-11, 1978.
DOI : 10.1007/BFb0006502

P. Hinow, S. Wang, C. Arteaga, and G. Webb, A mathematical model separates quantitatively the cytostatic and cytotoxic effects of a HER2 tyrosine kinase inhibitor, Theoretical Biology and Medical Modelling, vol.4, issue.1, p.14, 2007.
DOI : 10.1186/1742-4682-4-14

M. I. Kamien and E. Muller, Optimal Control with Integral State Equations, The Review of Economic Studies, vol.43, issue.3, pp.469-473, 1976.
DOI : 10.2307/2297225

H. Kawasaki, An envelope-like effect of infinitely many inequality constraints on second-order necessary conditions for minimization problems, Math. Programming, pp.73-96, 1988.
DOI : 10.1007/BF01580754

U. Ledzewicz, H. Maurer, and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, Mathematical Biosciences and Engineering, vol.8, issue.2, pp.307-323, 2011.
DOI : 10.3934/mbe.2011.8.307

URL : https://hal.archives-ouvertes.fr/inria-00636033

U. Ledzewicz and H. Schättler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy, Mathematical Biosciences, vol.206, issue.2, pp.320-342, 2007.
DOI : 10.1016/j.mbs.2005.03.013

A. Liapounoff, Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR], vol.4, pp.465-478, 1940.

M. C. Mackey, Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis, Blood, vol.51, issue.5, pp.941-956, 1978.

K. Malanowski and H. Maurer, Sensitivity analysis for optimal control problems subject to higher order state constraints, Annals of Operations Research, vol.101, issue.1/4, pp.43-73, 2001.
DOI : 10.1023/A:1010956104457

C. Marquet and M. Adimy, On the stability of hematopoietic model with feedback control, Comptes Rendus Mathematique, vol.350, issue.3-4, pp.3-4173, 2012.
DOI : 10.1016/j.crma.2012.01.014

URL : https://hal.archives-ouvertes.fr/hal-00763154

H. Maurer, On the minimum principle for optimal control problems with state constraints, 1979.

H. Maurer, First and second order sufficient optimality conditions in mathematical programming and optimal control, Math. Programming Stud, issue.14, pp.163-177, 1981.
DOI : 10.1007/BFb0120927

H. Maurer and J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems, Mathematical Programming, vol.15, issue.1, pp.98-110, 1979.
DOI : 10.1007/BF01582096

P. Michel, S. Mischler, and B. Perthame, General relative entropy inequality: an illustration on growth models, Journal de Math??matiques Pures et Appliqu??es, vol.84, issue.9, pp.1235-1260, 2005.
DOI : 10.1016/j.matpur.2005.04.001

A. A. Milyutin and N. P. Osmolovskii, Calculus of variations and optimal control, volume 180 of Translations of Mathematical Monographs, 1998.

L. W. Neustadt and J. Warga, Comments on the Paper ???Optimal Control of Processes Described by Integral Equations. I??? by V. R. Vinokurov, SIAM Journal on Control, vol.8, issue.4, p.572, 1970.
DOI : 10.1137/0308041

N. P. Osmolovskii, Sufficient quadratic conditions of extremum for discontinuous controls in optimal control problems with mixed constraints, Journal of Mathematical Sciences, vol.32, issue.5, pp.1-106, 2011.
DOI : 10.1007/s10958-011-0233-x

N. P. Osmolovskii, Necessary quadratic conditions of extremum for discontinuous controls in optimal control problems with mixed constraints, Journal of Mathematical Sciences, vol.32, issue.5, pp.435-576, 2012.
DOI : 10.1007/s10958-012-0824-1

N. P. Osmolovskii and H. Maurer, Applications to regular and bang-bang control Second-order necessary and sufficient optimality conditions in calculus of variations and optimal control, Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), vol.24

H. Özbay, C. Bonnet, H. Benjelloun, and J. Clairambault, Stability Analysis of Cell Dynamics in Leukemia, Mathematical Modelling of Natural Phenomena, vol.7, issue.1, pp.203-234, 2012.
DOI : 10.1051/mmnp/20127109

Z. Páles and V. Zeidan, Optimal Control Problems with Set-Valued Control and State Constraints, SIAM Journal on Optimization, vol.14, issue.2, pp.334-358, 2003.
DOI : 10.1137/S1052623401389774

D. Peixoto, D. Dingli, and J. M. Pacheco, Modelling hematopoiesis in health and disease, Mathematical and Computer Modelling, vol.53, issue.7-8, pp.1546-1557, 2011.
DOI : 10.1016/j.mcm.2010.04.013

B. Perthame, Transport equations in biology, Frontiers in Mathematics. Birkhäuser Verlag, 2007.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The mathematical theory of optimal processes, 1962.

S. M. Robinson, First Order Conditions for General Nonlinear Optimization, SIAM Journal on Applied Mathematics, vol.30, issue.4, pp.597-607, 1976.
DOI : 10.1137/0130053

S. M. Robinson, Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems, SIAM Journal on Numerical Analysis, vol.13, issue.4, pp.497-513, 1976.
DOI : 10.1137/0713043

R. T. Rockafellar, Integral functionals, normal integrands and measurable selections, Nonlinear operators and the calculus of variations, pp.157-207, 1975.
DOI : 10.1090/S0002-9947-1971-0282283-0

J. F. Rosenblueth and R. B. Vinter, Relaxation procedures for time delay systems, Journal of Mathematical Analysis and Applications, vol.162, issue.2, pp.542-563, 1991.
DOI : 10.1016/0022-247X(91)90168-Y

J. M. Rowe, Why is clinical progress in acute myelogenous leukemia so slow? Best Practice & Research Clinical Haematology, pp.1-3, 2008.

F. M. Scudo and J. R. Ziegler, The golden age of theoretical ecology, Lecture Notes in Biomathematics, vol.22, 1923.

G. Stefani and P. Zezza, Optimality Conditions for a Constrained Control Problem, SIAM Journal on Control and Optimization, vol.34, issue.2, pp.635-659, 1996.
DOI : 10.1137/S0363012994260945

T. Stiehl and A. Marciniak-czochra, Mathematical Modeling of Leukemogenesis and Cancer Stem Cell Dynamics, Mathematical Modelling of Natural Phenomena, vol.7, issue.1, pp.166-202, 2012.
DOI : 10.1051/mmnp/20127199

V. R. Vinokurov, Optimal Control of Processes Described by Integral Equations. I, SIAM Journal on Control, vol.7, issue.2, pp.324-336, 1969.
DOI : 10.1137/0307022

V. Volterra, Leçons sur les équations intégrales et les équations intégro-différentielles. Collection de monographies sur la théorie des fonctions, 1913.

V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, 1927.

J. Warga, Optimal control of differential and functional equations, 1972.

J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces, Applied Mathematics & Optimization, vol.13, issue.1, pp.49-62, 1979.
DOI : 10.1007/BF01442543