Acoustic Space Mapping: A Machine Learning Approach to Sound Source Separation and Localization

Antoine Deleforge 1
1 PERCEPTION - Interpretation and Modelling of Images and Videos
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Résumé : Dans cette thèse, nous abordons les problemes longtemps etudiés de la séparation et de la localisation binaurale (deux microphones) de sources sonores par l'apprentissage supervisé. Dans ce but, nous développons un nouveau paradigme dénommé projection d'espaces acoustiques, à la croisée des chemins de la perception binaurale, de l'écoute robotisée, du traitement du signal audio, et de l'apprentissage automatise. L'approche proposée consiste à apprendre un lien entre les indices auditifs perçus par le système et la position de la source sonore dans une autre modalité du système, comme l'espace visuel ou l'espace moteur. Nous proposons de nouveaux protocoles expérimentaux permettant d'acquérir automatiquement de grands ensembles d'entraînement qui associent de telles données. Les jeux de données obtenus sont ensuite utilisés pour révéler certaines propriétés intrinsèques des espaces acoustiques, et conduisent au développement d'une famille générale de modèles probabilistes permettant la projection localement linéaire d'un espace de haute dimension vers un espace de basse dimension. Nous montrons que ces modèles unifient plusieurs méthodes de régression et de réduction de dimension existantes, tout en incluant un grand nombre de nouveaux modèles qui généralisent les précédents. Les popriétés et l'inférence de ces modèles sont d'etaillées en profondeur, et le net avantage des méthodes proposées par rapport à des techniques de l'etat de l'art est établit sur différentes applications de projection d'espace, au delà du champs de l'analyse de scènes auditives. Nous montrons ensuite comment les méthodes proposées peuvent être étendues probabilistiquement pour s'attaquer au fameux problème de la soirée cocktail, c'est à dire, localiser une ou plusieurs sources sonores émettant simultanément dans un environnement réel, et reséparer les signaux mélangés. Nous montrons que les techniques qui en découlent accomplissent cette tâche avec une précision inégalée. Ceci démontre le rôle important de l'apprentissage et met en avant le paradigme de la projection d'espaces acoustiques comme un outil prometteur pour aborder de façon robuste les problèmes les plus difficiles de l'audition binaurale computationnelle.
Liste complète des métadonnées

Littérature citée [107 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-00913965
Contributeur : Team Perception <>
Soumis le : mercredi 4 décembre 2013 - 16:16:04
Dernière modification le : mercredi 11 avril 2018 - 01:59:11
Document(s) archivé(s) le : samedi 8 avril 2017 - 04:00:19

Fichier

Identifiants

  • HAL Id : tel-00913965, version 1

Citation

Antoine Deleforge. Acoustic Space Mapping: A Machine Learning Approach to Sound Source Separation and Localization. Machine Learning [cs.LG]. Université de Grenoble, 2013. English. 〈tel-00913965〉

Partager

Métriques

Consultations de la notice

1411

Téléchargements de fichiers

3488