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Chapter 1

Introduction

1.1 Research context

This last decade has known an explosion of the wireless access connectivity, mostly domi-
nated by Wireless Local Area Networks (WLAN), 3GPP-based cellular networks (3G and
4G), and to a lesser extent by Digital Video Broadcast (DVB) networks. WLANSs ensure a
high data rate with short coverage (about a hundred of meters). It is mainly used for do-
mestic accesses (through an ADSL Box), in companies and few large public deployments
(e.g. airports, shopping malls, and train stations). Cellular networks are operated net-
works. They offer higher coverage (in the range of kilometers) supporting high data rates
(mainly with Long Term Evolution — LTE or 4G [1]|). Besides the radio access, known
as Radio Access Network (RAN), a cellular network consists of a wired core network or
Evolved Packet Core (EPC) that connects RAN to Packet Data Networks, e.g., Internet.
Combined with the emergence of smartphones and tablet PCs, wireless connectivity has
changed the users’ way to connect to the Internet, where we clearly observe that most of
the connection to video platforms (e.g., Youtube, video on demand and IPTV) and social
network applications are originated from wireless as well as mobile networks. However,
massive accesses to these applications from wireless networks introduce several issues re-
lated to the increasing traffic, and the real-time property of some of these applications,
which require a guarantee of Quality of Service (QoS) and Quality of Experience (QoE).
These issues give rise to several challenges:

e The need for network operators to have efficient mechanisms and protocols to avoid
congestion and to support QoS;

e The need for content providers to consider the user context, in terms of bandwidth,
user terminal, resolution, etc.), when creating and encoding an audio/video content.

Each wireless network has its own conception, which makes it different from the other.
WLANSs (or IEEE 802.11 [2]) are based on a distributed mechanism to share the wireless
channel among the stations. Each station, independently from the other, uses the Carrier
Sense Multiple Access/Collision Avoidance (CSMA/CA) algorithm to access the wireless
channel. The main principle of CSMA/CA is that before sending a packet, a wireless
station senses the medium for a fixed duration. If the medium is free, it then transmits
its packet and awaits an acknowledgment from the receiver. Otherwise, it backs off its
transmission for a random duration.

Unlike WLAN, the RAN part of the cellular network is centralized around the Base Station
(BS), where this latter selects stations (or User Equipment — UE in the 3GPP terminology)
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having the possibility to transmit in the Uplink frame. The BS, through the Downlink
frame, forwards packets destined to UEs. RAN is known as a collision-free access as there
is no contention to handle since UEs are attached to the network. Moreover, cellular
networks are composed by a wired core network or EPC, which manages the mobility of
UEs and forwards the IP packets to the destination.

In the following sections, we will detail the research context of our work for each wireless
network, by including the case of wireless terminals having both connectivity (WLAN and
3G) at the same time. Independently from the used network technology, we were also
interested in adapting the content format regarding users’ context. The ultimate goal of
our contributions is to efficiently handle network resources to ensure QoS for real-time
applications and to therefore maximize user’s QoE.

1.1.1 WLAN or IEEE 802.11

Initially developed to support only best-effort applications, the IEEE 802.11 standard used
in WLAN does not include indications to differentiate the channel access between flows
from different traffic classes. Indeed, all flows contend for the channel access with the
same priority, which is not acceptable in case of real-time applications that usually require
strict temporal constraints. Furthermore, it is difficult to guarantee QoS for real-time
applications in WLAN without taking in consideration its characteristics, in terms of: (i)
topological changes (due to mobility of users); (ii) the dynamic nature of the wireless chan-
nel conditions; (iii) the unavailability of information on the network configuration (e.g., the
number of stations). In this context, the IEEE 802.11e group has established principles and
mechanisms to ensure QoS in WLAN [2|. These mechanisms enable service differentiation
between Access (traffic) Classes (AC) and flows. However, there are still some challenges to
address in order to efficiently support QoS in WLAN. Indeed, the Medium Access Control
(MAC) procedures, proposed by 802.11e group, are static and do not adapt well to the
network dynamics. When the number of nodes increases, the QoS for high priority classes
cannot be guaranteed. This also highlights another issue that remains unsolved by the
802.11e group, which is admission control procedure. Usually, an admission control algo-
rithm is used to accept or reject a new incoming flow. The main goal of using admission
control is to accept enough flows to maximize the network resources utilization without
degrading the QoS performances of admitted flows. An effective resource allocation in
IEEE 802.11 is difficult to achieve due to the intrinsic nature of the CSMA /CA scheme.
The difficulty lies in estimating the value of the achievable QoS performance in WLAN;
this value depends on several time-varying factors including the number of active flows,
the active traffic volume for each AC, etc.

Efficient multicast support is another challenge to address when deploying multimedia ap-
plications over WLAN. We recall that a number of real-time applications are based on
multicast communications, such as IPTV, visio-conference, and network gaming. Cur-
rently, each wireless station has the choice to use a physical data rate depending on its
wireless channel quality. When the channel quality degrades, in terms of Signal Noise Ratio
(SNR), the wireless station uses robust modulations (to the Bit Error Rate — BER), which
achieves low data rate to transmit data packets. But, when the channel is good, the wire-
less station can use less robust physical modulations, ensuring high data rate to transmit
data packets. For instance, the 802.11b [4] allows using a data rate ranging from 1 Mbps
(basic rate with the most robust modulation) to 11 Mbps (lowest robust modulation).
Besides avoiding using data acknowledgement to avoid overloading the network when the
group size is large, the 802.11 standard proposes using the basic rate for transmitting the
multicast packets. In fact, multicast communications in 802.11 are transmitted with the
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lower physical data rate to address the lack of reliability in the wireless channel. Accord-
ingly, using basic rate for multicast communication is not optimal for bandwidth-intensive
real-time applications, such as IPTV and network gaming. It is worth noting that there
is a new 802.11 group, 802.11aa [5|, which aims at proposing new MAC procedures for an
efficient handling of multicast-based video streaming applications in WLAN. However, the
proposed solutions are still in their infancy and need to be yet tested and validated.

Last but not least, energy consumption is a critical issue, which needs to be solved in
WLAN, particularly for real-time application. The Power Save Mode (PSM), proposed in
the 802.11 standard, aims at minimizing energy consumption when the wireless station is
not active. When PSM is enabled, a wireless station goes to sleep for a fixed duration (i.e.,
multiple times of the Beacon interval) once that there is no data to send or to receive. In
this case, packets, destined to this station, are buffered at the Access Point (AP). Since the
sleep duration expires, the station wakes up and checks if there are any pending packets
at the AP. If so, the station requests these packets from the AP. Otherwise, it goes to
sleep for another duration. PSM performs well for best-effort applications, but achieves
worst performance in case of real-time applications. In fact, the increase of the end-to-end
delays, caused by the fact that data packets can remain for an unknown duration at the
AP, represents the main drawback of activating PSM in case of real time applications.

1.1.2 Cellular networks (3G and LTE)

Unlike WLAN, 3GPP-based cellular networks efficiently guarantee QoS for real-time ap-
plications. Through the centralized architecture of RAN around BS, cellular networks
easily solve the problems cited in the previous WLAN-relevant section. It supports service
differentiation by implementing efficient scheduling algorithms at BS, which can give high
priority to the real-time applications over the best-effort ones for accessing the channel.
Moreover, 3GPP has recently defined new mechanisms around the Multimedia Broadcast
and Multicast Services (MBMS) [6] concept, which can handle and manage multicast and
broadcast communications in a more efficient way at RAN. The MBMS concept is now
gaining great attention; it is even proposed to replace DVB for broadcasting television
programs for mobile stations.

Nevertheless, the massive traffic generated by the emerging applications, such as Machine
to Machine (M2M) and social networks, has begun to introduce congestion in the EPC part
of cellular networks. This kind of applications exhibits a traffic pattern (the uplink traffic
is higher or equal to the downlink traffic) highly different from the usual one (downlink
traffic is higher than the uplink traffic) handled in the cellular network, such as http and
video streaming. It is worth noting that EPC nodes that may be particularly affected by
congestion, are the Mobility Management Entity (MME), the Serving Gateway (S-GW)
and the Packet Data Network Gateway (PDN-GW).

Cellular-based Machine-to-Machine (M2M) or Machine Type Communications (MTC) are
about enabling automated applications that involve machine or device communication
without any human intervention over cellular networks. MTC will enable an endless num-
ber of applications in a wide range of domains impacting different environments and mar-
kets. It will connect a huge number of MTC devices to the Internet and the networks.
Depending on the use case, a MTC device transmits or receives a determined amount of
data at a determined frequency, e.g., a smart meter sending measurement results every
day at 23:00h. MTC devices can be either fix installed (e.g., implemented in a factory’s
machine, gas meters, etc.) or mobile (e.g., fleet management devices in trucks). Conges-
tion in EPC, particularly at its control plane, occurs when a potential number of MTC
devices attempt attaching/connecting to the network all at once, after detecting an event.
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As mentioned earlier, this congestion particularly impacts the MME, S-GW and PDN-GW
nodes, which ultimately results in the degradation of the network performance and hence
affects the QoS support of non-MTC traffic.

Another type of traffic that can affect the EPC nodes and may incur congestion is the
one generated by social network applications. Indeed, many social network platforms (e.g.,
Twitter and Facebook) or news tickers (e.g. CNN and sport events) are based on a one-to-
many communication paradigm, i.e., one entity posts a message of the same content which
is then received by many users that have “subscribed” to this “news feed". For example, in
Japan there is a popular application, called Bijin-Tokei [7], that enables users to receive a
photo of a “beautiful girl” holding a black board that shows the current time. These photos
are sent to all subscribers (including mobile ones) every one minute as photos need to be
updated at the same frequency. Other mobile web applications that involve the delivery
of the same content to multiple users being in the same location are location-based “check
in” services such as Foursquare (1 million users), Facebook places, Gowalla, Brightkite,
Yelp, and Google’s Latitude. These applications allow users, particularly mobile users, to
check in at locations they visit as a way to find other friends, coordinate gatherings and
exchange content of common interest among a “social network” of users. There are fur-
ther many emerging mobile games, allowing users to play a game relevant to their current
location and with other users in the same location, e.g., SCVNGR and Zynga, resulting
therefore in a frequent and dynamic exchange of content among a group of mobile users in
the same neighborhood. The problem today is that every user establishes a point-to-point
communication to the Web server to request the HTML/XML data. While this solution
works fine for low-interest information (i.e. where only few users are interested), for high-
interest feeds (i.e. information that are “followed” by many users in real-time) this solution
introduces a significantly high, and above all unnecessarily duplicate load on the mobile
network and the Web servers.

1.1.3 Wireless Heterogeneous access

In today’s wireless networking domain, diverse wireless technologies are utilized for sharing
data and providing data services. Among the available technologies, the leading example
is the widely-deployed 3GPP cellular networks (including the 3G and LTE) and WLANS.
This opens the opportunity for: (i) network operator to offload part of the 3G /4G traffic
through the WLAN; (ii) users to choose the best connection regarding some criteria (e.g.
bandwidth, cost of communication, security, etc.). However, the selection of the network
access has to consider attributes and criteria defined by the operator as well as the user.
Criteria defined by the user aims to maximize its QoS (data rate, security, delays) and min-
imize communication cost. Those defined by the network operator are mainly related to
the network resources optimization (e.g. load balancing between wireless networks). There
are many works that addressed the problem of network selection in heterogeneous wireless
networks. These solutions are based either on mathematical techniques (e.g., stochastic
programming to model the random aspect of user connection) or on multi-criteria opti-
mization techniques. Usually, the network selection mechanism is called when the mobile
station enters into a zone covered by different wireless access technologies.

There are also standardisations activities that facilitate the handover procedure when user
is roaming among heterogeneous wireless. IEEE 802.21 group has defined the Media In-
dependent Handover (MIH) [8] in order to allow mobile terminals to select the wireless
network in a transparent way to the user by avoiding service disconnection. MIH specifica-
tions are complementary procedures to the above-mentioned network selection mechanism.
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1.1.4 Hierarchical video coding

Independently from the network access technology, it is possible to increase the QoS sup-
port for real-time applications and especially for video services by taking in consideration
the user context when creating the content. In fact, user context (e.g. used terminal,
network access technology, and used bandwidth) gives interesting information, which can
help to adapt the content format to the undelrying environment. For example, there is
no need to send a High Definition (HD) video to a user connected from a smartphone or
a low-resolution terminal. But, encoding the same content in different formats is costly
in terms of data storage. Thus, one solution is to use hierarchical coding such as the
Scalable Video Coding (SVC) introduced in the H.264 standards [9]. Scalability in SVC
is achieved by taking advantage of the layered approach already known from former video
coding techniques. Three fundamental types of scalability could be used in SVC, namely
spatial, temporal, and quality. Usually, a SVC stream includes one base layer and one or
several enhancement layers. The removal of an enhancement layer still leads to reasonable
quality of the decoded video.

By employing SVC, it is possible to constitute a set of layer combinations to create the
video streams, which allows targeting several spatial, temporal and quality scales, depend-
ing on the users’ context. Furthermore, SVC optimizes the network resources as it avoids
the usage of additional bandwidth for sending useless content for the receiver.

It is worth noting that there are two ways in SVC to adapt to a user environment: (i)
at the server level, by selecting the number of SVC layers to send to the receiver; (ii) at
an intermediate node in the network (also known as Media Aware Network Element or
MANE [10]), which withdraws useless layers. But, the main challenge associated to this
adaptation is how to map (define) the number of SVC layers to a user context.

1.2 Contributions

In order to address the challenges described above, the novelty of our contributions are
in proposing dynamic and adaptive mechanisms to control network functionalities. The
adaptive approaches are useful to tackle issues related to: (i) the network dynamics and
changes in terms of congestion and contention level; (ii) the wireless channel dynamics
and changes in terms of signal quality; (iii) the application dynamics and changes in terms
of generated traffic; (iv) the users experience dynamics and changes in terms of QoE
degradation/enhancement. Generally speaking, the conducted research work considers the
network (or an application in the network) and the network functionality to control as a
closed loop system. The objective is to modify (control) the system inputs (e.g., accept or
reject a new flow in the network, increase the sleep duration for a wireless station, control
congestion, etc.) and monitor the system outputs (e.g., delays, QoE, Queue size, etc.) in
order to use these outputs for the next decision epoch of the controlled network mechanism.
The monitoring processes could be implemented at different levels, namely network, user
terminal or application. The principle of this controlled system is depicted in Figure 1.1.
Similar to the monitoring process, the mechanism or function used to control the network
could be located at different levels: network node (e.g. router, AP, BS, etc.), a user terminal
(e.g. MAC, network or transport layer) or at the application. The control mechanism has
a direct impact on the network (or an application in the network). For instance: (i)
accepting a new flow in the network may reduce the available resources or increase the
network load; (ii) increasing the sleep duration for a station may reduce QoE perceived at
the application level. The control mechanism does not influence the network only when it
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Figure 1.1: Principle of our contributions.

is used in unidirectional-based network such as DVB. In order to control the network, it is
necessary to take measures (monitoring process) of the network or the application variable
(system outputs) in a real-time fashion. These variables will be used as input of the network
control mechanism. Note that these variables could represent the network performance (e.g.
traffic load, the Queue size of a router, etc.), or the application performance (e.g. data
rate, delays, QoE, etc.). Our contributions are classified according to the type of monitored
variable (system output) used by the network control mechanism. The first class of our
research work pertains to QoS/Network centric (e.g. delays, the network load, the queue
size of a MME, delays, data rate) information, while the second class is based on human
centric information by monitoring users’ QoE. From hereunder, we refer to the first class
as network-centric contributions, and to the second class as human-centric contributions.
To the best of our knowledge, human-centric contributions are the first that put user
at the hear of the of network control mechanism. The only work that considered such
information is the one dedicated to the adaptation of VoIP [11| data rate over Real Time
Protocol (RTP), whereby the QoE information is sent back to the receiver through Real
Time Control Protocol (RTCP) packets.

The rest of this document is organized in the following fashion. Chapter 2 presents the
network-centric contributions; particularly focusing on two representative works: admission
control in WLAN and congestion control in LTE. In Chapter 3, we introduce research
work belonging to the human-centric class, where the focus is on three representative
contributions: QoE metric, QoE-based in-network adaptation of SVC flows in DVB-T2 and
multicast optimization in WLAN. Concluding remarks and future research perspectives are
provided in Chapter 4.
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Network-centric contributions
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2.1 Introduction

In the network-centric contributions, the network control mechanism is based on the infor-
mation measured from the network state and/or the QoS performance at the application
level. These contributions allow adapting to the network or application changes by mon-
itoring in real-time the network or application state. This kind of solutions was used to

address the following issues:
e Admission control in WLAN ([1][2]) (Details in section 2.2)

e WLAN operating in a noisy channel ([3]):

In 802.11-based wireless networks, a packet error means transmission failures be-
tween a pair of wireless stations due to: (i) collision with other packets; (ii) Bit Error
Rate (BER)-corrupted packet. When detecting an erroneous packet, receiver station
must automatically reject this packet, and no ACK is transmitted. Accordingly, the
sender station assumes that packet loss is an effect of collision and takes measures to
avoid further collision in the network by delaying the retransmission of this packet
(i.e. increase its Contention Window - CW). This is obviously sub-optimal in case
of BER corrupted packets: contention window should not be increased to avoid col-
lisions when loss is due to noise, so it is important for the sender to differentiate
between the origins of the lost packet.

To tackle this issue we introduced a new mechanism that allows wireless station to
differentiate between collision and BER loss through adapting the RTS/CTS hand-
shake mechanism to noisy channel environments. The main contribution was to

9
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respond to a packet loss following the RT'S/CTS exchange by invoking the retrans-
mission routine; however instead of increasing the CW, we proposed to maintain its
current value.

e VoIP over WLAN (VoWLAN) ([4]):

In this contribution we optimized the support of VoOWLAN service, by proposing
a cross-layer mechanism that adapts the voice coder’s rate according to the MAC
layer feedbacks, which reflects the network state in term of network load and physical
rate. Indeed, we proposed to use different voice coders at the application layer; one
high quality coder such as G.711 and one medium quality coder such as G.728 or
G.729. The application layer is allowed then to switch between these two voice coders
according to the triggers announced by the MAC layer. That is, if the network is
congested and/or the physical rate is reduced (until a certain threshold) then the
G.729 coder is used, guarantying thus an acceptable VoIP quality while reducing
the network overload. If the network is in a relax situation and the physical rate is
using higher bit rate, then the G.711 coder is used, ensuring thus a high VolIP service
quality.

e Congestion control in LTE in case of

— MTC traffic ([5][6]) (Details in section 2.3)

— social network traffic (|7]):
The proposed contribution is based on content detection systems such as Deep
Packet Inspection (DPI) to identify traffic belonging to a group of users (shar-
ing the same content) of a social network. Upon detecting the type of traffic,
we proposed to control it by creating a multicast group. This would reduce
the amount of traffic exchanged by switching from unicast communications to
multicast communications.
Another solution is to cache, at the geographically nearest base station, the
shared content among users. Here we positioned ourselves in the case where the
social network traffic comes from the same geographical region.

In this chapter, we will concentrate further on two representative works belonging to this
class of contributions: (i) admission control in WLAN; (ii) congestion control in LTE: the
case of MTC.

As stated in the Introduction chapter, admission control is crucial in 802.11-based WLAN.
It allows regulating the wireless traffic by maximizing network resources utilization while
ensuring acceptable QoS for admitted flows. Our contribution is two-fold: (i) a new 802.11
MAC protocol that derives the CW value according to the network state (contention level)
and the application tolerated delay; (ii) based on this new protocol, a distributed admis-
sion control was proposed.

The second contribution presented in this chapter is about supporting MTC in LTE,
and particularly controlling the congestion that can occur in this case. We proposed a
congestion-aware admission control solution, which selectively rejects signaling messages
from MTC devices at the RAN following a probability that is set based on a Proportional
Integrative Derivative (PID) [27] controller reflecting the congestion level of a relevant EPC
node.
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2.2  Admission Control in IEEE 802.11

2.2.1 Research context and related work

In its basic form, the IEEE 802.11 Distributed Coordination Function (DCF) provides a
simple and flexible mechanism for sharing the medium, but lacks the ability to guarantee
service levels to meet the demands of multimedia applications. As a consequence, there
has been a considerable effort to improve the MAC’s ability to serve and interact with
higher level QoS mechanisms. IEEE’s 802.11e Task Group has worked towards designing
and developing a framework for QoS support. Based on the basic DCF, the 802.11e pro-
posals focus primarily on providing differentiated access to individual traffic classes (TCs).
In particular, the Enhanced Distributed Control Access (EDCA) uses priority concepts to
alter the existing MAC scheme. During initialization, EDCA assigns static MAC parame-
ters for each TC. Based on these parameters, the MAC protocol provides different service
levels to different TCs. It is readily realized that EDCA parameters do not accommodate
all network configurations in terms of relative (per-class) network load [8]. Particularly,
EDCA is unable to absorb a high number of multimedia flows due to a too narrow backoff
range (0, 31) assigned to high-priority flows, which lead to high intra-TC contention level.
This situation entails high collision rate, poor medium utilization, and increased medium
access delays.

Furthermore, there is a key trade-off between fully filling the network capacity and main-
taing acceptable QoS, even when using the 802.11e specifications. Admission control is
mandatory to achieve this goal in 802.11. Indeed, if there are no restrictions to limit the
volume of traffic being introduced to the service set, performance degradation will result
due to higher backoff time and collision rate.

There are several works that addressed the admission control issue in WLAN. We can
classify them into two categories:

e Model-based admission control, where performance metrics are constructed to esti-
mate the network status,

e Measurement-based admission control, where the admission control decisions are
based on the continuous measured network conditions.

Model-based mechanisms are mainly derived from the analytical models introduced in
([9]{10]), which evaluated the 802.11 performance in terms of throughput and delay. Based
on the throughput model developed in [9], work in [11] predicts the achievable through-
put of each flow. If the predicted throughput satisfies the new flow’s need, it is accepted.
Otherwise, it is rejected. However, this admission control mechanism is not realistic, as it
is based on analytical results derived in saturation condition (i.e. each station always has
packets to transmit). In [12], the authors use an analytical model to estimate an average
delay for the traffic of different priorities in the unsaturated 802.11e WLAN. Based on the
delay criterion the authors propose an admission control mechanism. This latter considers
the effect of admitting a new real-time flow on the channel utilization and the delay ex-
perienced by existing real-time flows, ensuring that the channel is not overloaded and the
delay requirements are not violated. The authors affirm that the used analytical model
overestimates the access delay and hence the decisions are made with a certain security
margin. However, this overestimation results in rejecting new flows even if the network
can satisfy their requirement in term of delay.

Measurement-based mechanisms, on the other hand, represent most works on admission
control in WLAN. This is due to the flexibility and low computation requirements of these
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approaches. In what follows, we will details three representative solutions in this category.
Here, we focus more on measurement-based mechanisms as our proposed admission control
belongs to this category.

Based on local network measurements, authors in [13] propose to control the arrival rate at
each station to achieve a given objective such as, maximum throughput, maximum delay,
jitter or loss rate in the network. The developed analytical model is able to assess the
capability of the 802.11 for supporting major QoS metrics. The model is further extended
in [14] to control the admission of network flows based on a new metric (channel busyness
ratio) as a good indicator of the network state; channel busyness ratio is used to derive a
rate control algorithm (CARC - Call Admission and Rate Control). Besides not being ap-
plicable to 802.11e-like protocol where several traffic classes (having several requirements)
may simultaneously operate in the network and even coexist at a single station, CARC
tries to find the optimal network utilization (maximize the throughput), while barely con-
sidering delay fluctuations.

Distributed Admission Control (DAC) and Two-level Protection and Guarantee Mech-
anisms [15][16] are combined to propose an efficient admission control mechanism for
802.11e-based WLAN. DAC is a measurement-based admission control mechanism that
was considered by the 802.11e working group. In this algorithm, the resource budget for
each TC is periodically announced by the AP in the beacon frame, so that each station
may decide whether to accept or not new flows. A new stream to be admitted tries first
to access the network and it rejects itself after a certain period if its requirements are not
met. With this algorithm, the residual network resources are fairly distributed among the
competing streams (streams seeking for acceptance) at different stations in the sense that
different TC’s (in different stations) compete to accommodate their new entering streams;
the stream is then locally accepted if it reaches its targeted throughput. This situation
may cause spectrum waste because there may be enough resources to admit one additional
stream, but due to the algorithm fairness and absence of coordination none of the compet-
ing streams is accepted and the available bandwidth remains unfilled.

Another shortcoming of DAC algorithm resides in the lack of protection to existing flows
only when the network load is not too heavy. If the network resources are not sufficient
to admit the new stream, the performance degradation will affect all TC’s streams (as
much as it does for other TCs active in the network). This is due to the fact that entering
streams are aggregated with other active streams in the same TC queue. The above men-
tioned phenomenon is usually referred to as “spill over” effect in WLAN — when traffic is
overloaded in a TC, performance in other TCs will also be affected. Still, the major prob-
lem with DAC-based approaches consists in the fact that the overall network bandwidth is
statically allocated among different TCs, so each TC receives a fixed share of bandwidth
that cannot be exceeded. This may severely affect the flexibility of the admission control
mechanism since it is very difficult to beforehand forecast the per-TC traffic volume in re-
alistic multimedia-dedicated WLANs. Therefore, streams from a given TC may be rejected
while some bandwidth still unfilled in other TCs, which means bandwidth wasting or addi-
tional revenue loss for network operator. Another side effect is that the admission decision
depends only on local measurements collected at the admitting station level. However, the
stream admission may have different impacts at different stations (resp. flows) depending
on the load of each active station. The stream admission may actually cause QoS violation
at certain stations while not effecting at all other active stations in the network; this is
particularly prevalent for high-bit-rate stations, which usually cannot carry the load in a
sufficiently timely manner as the load (resp. medium access delay) increases.

Virtual MAC and Virtual Source Algorithms [17][18] propose a fully distributed VMAC



Chapter 2. Network-centric contributions 13

(Virtual MAC) algorithm that operates in parallel to the real MAC in the mobile host
but the VMAC does not handle real packets; rather, it handles “virtual packets”. Each
station runs a VMAC instance that monitors the capability of the wireless channel and
passively estimates whether the channel can support new service demands (e.g., delay and
loss). Unlike the case of real packets, VMAC doesn’t transmit anything but estimates the
probability of collision. When a collision is “detected”, the VMAC enters a backoff proce-
dure, just as a real MAC would do. The virtual source (VS) algorithm consists of a virtual
application; an interface queue, and the VMAC. The virtual application generates virtual
packets like a real application. Packets are time-stamped and placed in a virtual buffer.
After a virtual packet has been processed in the VMAC, the total delay is calculated.

VMAC’s main criterion to make an admission control decision is based only on delay and
collision estimates. It does not provide any achievable throughout information, which is
also useful to multimedia applications. The achievable QoS is estimated only at the admit-
ting station, although flow admission may unevenly affect the different backlogged flows,
provoking delay violation at certain flows while other flows in the network still experi-
ence acceptable delays. As mentioned earlier, the outcome of stream admission should be
beforehand assessed at all active stations. In fact, flows belonging to the same TC use
roughly the same CWs’ ranges, and thus they more or less experience the same packet-
service times (i.e., the time needed to successfully transmit the frame located at the front
of the queue). Hence, depending on the volume of their offered load, different flows may
suffer from widely different enqueuing delays. In other words, admission of a new flow
means a slightly increased packet-service time with different outcomes on different active
flows. The impact of a stream admission should be therefore assessed at all active stations.

2.2.2 Contribution

We proposed a per-flow based admission control, where the flow’s constraints in term of QoS
are taken in consideration for the admission decisions. Of course, the proposed admission
control considers also the impact of a stream admission on the network state in order to
protect the admitted flows’ QoS. However, to implement this admission control mechanism,
there is a need to translate the flow’s requirement into MAC parameters. Actually, the
current 802.11e MAC protocol is not able to ensure such per-flow differentiation. In fact,
the 802.11e specifications consider the same MAC parameters for two flows belonging to
the same TC, even they have different constraints. To address this issue, we proposed a
new MAC 802.11 protocol featuring delay-driven CW adjustment. By analyzing all factors
that influence the medium access delay, we derived a distributed model able to accurately
predict the achievable delay at each network flow using different network measurements.
Delays bounds associated to each traffic class are assumed to be communicated to MAC
layer through a top-down cross-layer interaction. Based on the latter model, we derived
an admission control algorithm that allows to “a-priori” assess the achievable throughput
before admitting new incoming streams taking into considerations their QoS requirements.
This could contribute in improving network utilization; the objective being to preserve
the QoS of already active flows while maximizing the volume of QoS-enabled services,
providing to network operators an improved resource control mechanism (i.e., allows to
generate more revenues).

Figure 2.1 represents the global overview of the proposed admission control, and the
interaction with the new 802.11 MAC protocol.
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Figure 2.1: Overview of the proposed admission control mechanism.

New IEEE 802.11 MAC protocol featuring Delay-driven CW adjustment

Conventional IEEE 802.11 backoff schemes have many shortcomings that make it difficult
to provide deterministic guarantees. The exponential CW increasing is more likely to pro-
duce probabilistic service assurances and high oscillations in delays (throughput) since the
CW is reinitialized to its minimum value (CW,,;y,) after each successful transmission. In
order to limit the effect of high inter-TC contention, different Arbitrary Inter Frame Space
(AIFS[i]s) may be assigned to different traffic classes T'C|[i]; this would defer transmis-
sions of low-priority flows only when their respective transmission attempts coincide with
high priority flow transmission. At this point, managing the contending flows through
appropriate CW scheme is a key component to effectively maintain acceptable QoS level
for multimedia flows.

At MAC layer, packets are serviced with a variable latency that depends on the current
CW size, the mean frame size (E[P]), and the mean number of transmission attempts be-
fore effectively gaining access to the medium. Besides, the network load (i.e., transmission
volume from other nodes) may strongly affect the end-to-end communication latency as
a substantial amount of time slots is occupied, which ends up provoking frequent backoff
freezing. Actually, each new packet selects a random backoff interval (E[CW]) that is more
or less quickly decremented depending on the number of time slots where the medium was
observed as busy. The packet transmission deferring period depends on the selected backoff
interval as much as it does depend on the degree of network load.

We define PST (Packet Service Time) as the time needed to successfully transmit a packet;
this delay is defined as the time interval elapsed between the time when a packet arrives at
the front of the queue and the time when it is received by the receiver. The delay considers
only channel access delay, transmission delay, and associated overhead (i.e., queuing delay
is not included).

Let B(T) = % be the number (B) of busy time slots over the number (I) of idle slots
observed during the last 7' time slots (T' = B + I). The total deferring time for a packet
can be approximated by E(CW) * (1 + ?); this delay takes into account both the backoff
interval and the freezing period. Compared to the technique that achieves direct mea-
surement of the freezing period at each flow [10], our technique is based on continuous
monitoring of the overall network load, which could be better exploited to predict network
load trends. Measuring the freezing period for each transmitted packet may exhibit high
oscillations, not to mention the involved complexity. Using the overall network occupancy
(?) to estimate the access delay leads to inherent measurements coordination between
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different active flows as they observe the same network activities.

We define E[P] as the mean number of time slots occupied by a single packet transmission
including PHY/MAC overhead, Short Inter Frame Space (SIFS), and Acknowledgment
(ACK) when considering the DCF basic mode. It is worth mentioning that within DCF
basic method (without Request To Send (RTS)/ Clear To Send (CTS) handshaking), each
failing transmission (due to frame collision or bit alteration) occupies roughly the same
number of slots as a successful transmission [8]. In the following we assume a DCF MAC
protocol operating without RTS/CTS handshaking, and that packet loss provoked by wire-
less link interferences (BER) is negligible. The overall packet service time (PST) may be
quantitatively estimated as follows

PST = [E(CW) * (1 + B(T)) + E(P)] * E[TransAtt] (2.1)

Here, E[TransAtt] is the mean number of transmission attempts needed to successfully
access the medium; this parameter depends on the PER (Packet Error Rate) and the
automatic retransmission (ARQ) scheme being used at MAC layer. Generally speaking,
a packet is kept in the transmitter queue until either a timer times out (i.e., after 7
failed transmission attempts), or the packet is successfully received and acknowledged by
the receiver. Since the backoff process have a geometric distribution with probability of
success p, the mean number of transmission attempts E[T'ransAtt] would be 1/p. At this
point, the probability of transmission success, p, can be approximated as the fraction of
the number of transmitted frames over the number of transmission attempts. Thus, the
mean number of transmission attempts E[TransAtt] can be estimated as

1 TransAttempts

E[TransAtt] = N (2.2)

Collisionbs SucceedT ransmissions
TaransmissAttempts

Note that E[TransAtt] may return different values depending on the flow’s traffic class and
its associated AIFS. Obviously, inter-TC collisions are most of the time avoided since flows
with the highest priority seize the medium while other flows enter in differing state. As
B(T) is calculated based on the overall network load, it is inherently coordinated between
stations. Each station averages the measurements over the period T required to sense
“CWaz idle time slots. By choosing the frequency of measuring ? in this way, we are
ensured that all backlogged flows (regardless of priority) would have attempted to access
the medium at least once within this period. Thus, ? measurement is more accurate
by considering all active flows, and also more stable as they are averaged over a long-
enough period. Thus, the value of T is set to 1024 “idle” slots. For the same reasons,
E[TransAtt] values are also averaged over the period needed to sense 1024 idle time slots.
As apparent from Figure 2.2, each station in the network may have different traffic classes
with different requirements in terms of QoS metrics performances. Several MAC queues
are indeed implemented within a single station. Fach queue supports one TC, behaving
similar to a single DCF entity within the 802.11 standard. In this context, the last packet
in the queue (packet #N) should not exceed the maximum delay tolerated by the traffic
class (TC) to which it belongs. By considering that both the arrivals (A) and the service
() are exponential, the PST will be therefore constrained by

PST < MaxDelay

(2.3)
The formula above generalize our PST estimation model to estimate the enqueuing time
by taking into account the number of packets (V) currently in the MAC queue (the N
packets ahead of the last packet entering the queue). From the formulas (2.1) and (2.3),
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Figure 2.2: MAC layer queue for T'C;.

and given the queue length (N), the appropriate maximum CW size (CW,4,) that would
satisfy the delays constraints associated with each service class (regardless its bit-rate) is
obtained as follows

2« (MaxDelay — N x E[TransAtt] « E[P))
N x (14 B(T)) = E[TranAtt]

CWinaw = 2 % E[CW] < (2.4)

It is commonly accepted [10] that WLAN capacity (i.e., channel utilization) decreases with
an increasing number (M) of active flows. This is caused by high contention level in which
case the medium is often occupied by collisions. In this situation, the mean number of
attempts to successfully transmit a frame would grow resulting in additional delays at
active flows. The contention window size (CW) should be continuously adapted, thereby
reacting to changing network conditions while meeting QoS constraints. Actually, when M
increases, the CW size is increased to absorb the increasing number of contending flows,
and hence minimizing the collision probability for these flows. On the other hand, when
M becomes small, the CW size is decreased, which reduces the spacing between successive
frame transmissions; large values of CW size may indeed strongly limit the throughput of
fewer backlogged flows. As a matter of fact, the current CWg;,. in use should be always
larger than a certain variable threshold (C'W,i,) to avoid network performance collapse.
From [19], and [20], the minimum CWj;,. that maximizes network performances with M
contending flows is given by

CWinin > | M /2T, | (2.5)
v Blo@)] + (ET[OMCW] +1) (26)

Here, T is the average time (in time slots) of channel unavailability upon a collision. Tt is
dependent on the physical layer, and is equal to PHY hdr 4+ E[F|+ DIFS when RTS/CTS
mode is disabled. E[oldCW] is the current mean backoff value. O(T') is the number of
slots where the medium was observed as busy out of the previous 7" slots (B). Like all other
network measured parameters (i.e., E[TransAtt] and B(T')), O(T) is weighted in respect
to past measures using EWMA (Exponential Weighted Moving Average).

Although not accurate (i.e., much incertitude still exists due to different flows’ priorities
and bit rates), the estimate of the number (M) of active flows is quite pertinent since it still
precisely reflects the overall trends of the network contention level, which allow readjusting
the CW to optimize the network performance. In fact, constraining the contention window
by CWipnin helps to keep a low collision rate, and hence an acceptable mean transmission
attempts (i.e., E[TransAtt]) lower than 1.5, which means 3 transmission attempts for 2
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successful transmissions). The new CW to be maintained by each TC is given by

newCWsi,e = CWinin ;L CWinaa (2.7)

with CWinae > CWinin

If CWihae is smaller than CW,,;,,, we assign CWin to CWipas. In this case newC'Wsize
is simply reinitialized with CW,,;, value. This situation does not guarantee MaxDelay;
instead, it keeps network collisions within an acceptable level. Using the above introduced
CWsize adjustment model, a given flow would use the interval [0, newCW size| to randomly
draw a backoff interval. Note that the parameter CW,,;, is not necessarily coordinated
between flows since its value is, in part, based on current CW size that is maintained by
the flow. Accordingly, flows calculate different CW,;, values depending on their class of
service (MazxDelay constraints) and their offered load as well.

Multimedia services admission and protection

Since delay estimation is based on inter-packet interval assessment, the achievable through-
put together with potential degradations (mean loss rate) may be predictable as well. Using
the packet arrival rate (), which is a-priory known for a given traffic class (TC), it is pos-
sible to capture the queue dynamics based on instantaneous network activities; the packet
arrival rate may be for example provided by pre-established Service Level Agreements
(SLA). The objective is to predict the impact of new stream’s acceptance on the overall
network performance. In other words, we assess the consequences resulting from increasing
the arrival rate of a given TC/station (i.e., stream admission) before actually admitting
any new entering service. As illustrated in Figure 2.2, we consider a MAC queue with a
buffer size k. Service is exponential with parameter y and inter-arrival times are exponen-
tial with parameter A. A loss occurs whenever an arriving packet finds the queue full. The
queue occupation rate is thus

p= A Ax E[PST] (2.8)
7
The queue model is assumed to be a single-server queue with finite waiting room (M/M/1/K).
Certainly, the Poisson assumption for the arrivals of packets is not the most realistic, but
considering the exponential case reveals essential features of the system and is a fairly
appropriate assumption for an aggregate of different streams (TC). The mean loss rate

(L) of an M/M/1/K queue is given by

(1—p)p"

Lri = 1— pk—i-l

(2.9)

Since the maximum tolerated loss rate (MaxDrop = L,) is a-priori known for each TC
i, we can numerically fix p since the MAC queue size (K) is as well known. In fact,
the network operator may propose different levels of QoS guarantees, where each level is
characterized by maximum QoS metrics performances bounds (MaxDelay and MaxLoss).
Table 2.1 illustrates an example of traffic classes when using Diffserv classes mapping.
For instance, assuming a queue length of £ = 30 packets and with a maximum tolerated
loss rate of MaxDrop=1%, the queue occupation rate p should be lower than 0.935. In
the same manner, p = 0.97 for a maximum tolerated loss rate of MaxDrop=2%. In this
contribution, we aim to categorize the traffic into service classes where each service class
has a maximum delay and a maximum loss rate to not violate.
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Table 2.1: A Cross-Layer QoS Mapping.

Conversational Streaming  ser- | Best Effort
services vices services
Streaming au- Web b
Type of ap- | Interactive voice | dio/video, Multi- | | eb brows-
o . . . ing, E-mail,
plication and video gaming | media broadcast-
. Telnet
ing
1P Diffserv EF AF11 Best effort
class
IP  trans-
mission 600 ms 800 ms Unspecified
Delay
Loss  Per-
t
centage 1% 2% Unspecified
Resiliency
(ai)

Based on the delay analysis (i.e., PST) and the mean tolerated loss rate, we can now
determine the appropriate u (i.e., E[P%) that satisfies the relation (2.9). Thus, we an-
alytically figure out the appropriate CW that provides a mean inter-packet transmission
interval (E[PST]) necessary to maintain a queue occupation rate at the desired level (p).
By combining formula (2.1) and formula (2.8), we obtain the appropriate contention win-

dow size that satisfies the loss requirements associated to a given TC

0 _ BIP] + E[TransAtt
NewCWiize = 2 E[CW] = 2 2 [P] « BlTransAt] (2.10)

(1+ B(T)) * E[TransAtt]
with CWin = newCWsy;,e and newCWyie < CWiaa

While the contention window (CWs;,.) given by formula (2.7) ensures an acceptable delay
with regards to TC’s requirements, formula (2.10) allows to avoid TC’s queue overflow
by each time checking if the current PST (i.e., NewCWy;.,.) is able to absorb the packet
arrival rate (A). More precisely, the new CW size ensures that the TC’s flow in which the
entering stream will be aggregated will not violate its maximum tolerated loss rate. The
new calculated CW size (NewCWy;,.) should be also larger than CW,;,. This means
that the network is able to accommodate the new stream’s offered load while still meet-
ing delays guarantees (NewCWs;,e < CW,nae) and keeping an acceptable contention level
(NewCWyize > CWipnin) to avoid network performances collapse.

Combined with the delay-driven CW adjustment introduced in formula (2.7), the above
formula may be used to accept new streams in the network. This consists in assessing if
a new stream may be serviced while not interfering with already active flows. As high-
lighted already, an over-admission will unavoidably affect all currently serviced flows as
the medium is shared and an increasing in the contention level affects all flows regardless
their bitrates or priorities. On the other hand, different active flows may simultaneously
maintain widely different CW sizes due to different values of CW,,;, and CW,,4.. The
maintained CW contention window depends, actually, as much on the flow’s offered load
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as it does on the flow’s traffic class. In certain circumstances, an over-admission may cause
certain flow to violate its C'Wpy,;,, limit, while other flows still use CW sizes larger than
their calculated CWy;; flows with high bitrates are generally the first flows to reach their
CWin limits. At this point, it is readily realized that the impact of new stream admission
should be estimated at all stations.

At new stream admission, each flow in the network recalculates the values of CW,;n,
CWaz-, and NewCWy;,e according to formulas (2.4), (2.5), and (2.10). The new values
of these parameters should take into account changes in network availability entailed by
admitting a new stream. Accordingly, certain determinant measurement-based parameters
such as B(T'), O(T), and E[TransAtt] should be reconsidered. While E[TransAtt] fluctu-
ations are limited by using an appropriate CWp,,, both B(T)and O(T') exhibit significant
changes that should be considered to accurately re-estimating the new achievable QoS per-
formances. Again, it is worth mentioning, that A is actually the arrival rate of streams’
aggregate belonging to the same TC. At new stream admission, the overall arrival rate at
the TC’s queue would increase as follows A = A 4+ A\, where A\ is the packet arrival rate
of the new entering stream. In this case, the network load should be updated to reflect the
additional load induced by the new stream.

= (2.11)

with B =X+ T % (20« 1076) x L
Here, L is the mean number of time slots occupied by a MAC packet of a given flow,
including the overhead involved by acknowledgement. O(T') should be as well updated
with the new flow arrival as follows

- B B+

T T

Given the above-mentioned parameters, all active stations calculate the new values of
CW il min, CWlilmaz, and NewCWTi|size for each TC i. If the new values satisfy all QoS
constraints (CW [i]min < NewCW/i|size < CWi]maz) associated to each T'Cj;, then the
station concludes that the entering stream will not affect its already serviced streams. If all
stations will not be affected by the entering stream, the AC algorithm may then proceed
with stream admission. Otherwise, it means that the stream admission may severely de-
grade the quality of currently servicing flows, which should lead to rejection of the entering
stream.
The first issue to tackle when designing a distributed AC mechanism is the coordination
between competing nodes. In fact, besides necessitating a unified admission model for all
stations, we further require to harmonize the estimation of achievable QoS at different
station in order to achieve a coordinated admission control decision. Particularly, mul-
tiple new real-time streams may be simultaneously admitted by individual nodes if not
coordinated, causing “over-admission”. To mitigate this problem while keeping the dis-
tributed feature of our protocol, we divide the time into admission cycles (epochs) where
only one single stream may be accepted in an admission cycle. The network is assumed to
operate on “slotted” synchronization epochs, where each epoch is actually equal to a bea-
con period. This way, the admission cycle is long enough to allow network measurements
(E[TransAtt]), at different stations, to converge towards accurate values reflecting the real
network conditions before admitting new stream in the next synchronization epoch.
To completely avoid the over-admission problem, we adopt a coordinator-aided admission
control scheme. In other words, all admission decisions are made by a coordinating node
(CN), which can record the current number of admitted real-time flows and their occupied

(2.12)
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channel bandwidth in the network; clearly, this will prevent over-admission situations. The
coordinator node is also in charge of other responsibilities related to service level agreement
(SLA).
It is important to note that a coordinator is available whether the WLAN is working in
infrastructure or in ad hoc mode. If the network is working in the infrastructure mode,
the access point is inherently the coordinator. Otherwise, a mobile node can be elected to
act as the coordinator in the network using one of many algorithms in the literature (see
[21], and references therein). A natural solution would be to appoint the node in charge of
sending the MAC-level beacon as the CN. As in 802.11 ad hoc mode, in case of failure a
distributed backoff-based mechanism would designate a new node to periodically send the
beacon.
Each time a station has a new stream to admit, it should beforehand evaluate locally its
impact using new values of B(T) and O(T) as given by formulas (2.11) and (2.12). Using
formula (2.10), the station S should as well assess the risk of having overflow by calculating
NewCWsi.e, where A is replaced by A + A); in Figure 2.3, A\; (i=1 to 3) stands for the
rate (AX) of a new entering stream.

If the new entering stream doesn’t affect the locally active TCs’ flows, the station S

Time
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Stream S_1 announcement (A1, L1) —:

Stream S_2 announcement (A2, L2)
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Figure 2.3: Admission control message exchange

announces the stream’s bit-rate (A) and nominal Maximum Service Data Unit (MSDU)
size (in terms of time slots) to the CN which, in turn, recalculates the new values of net-
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work occupancy parameters (B(7T) and O(T)) to be broadcasted. Then, all active stations
evaluate the impact of new stream admission (i.e., with new B(T) and O(T) changes)
on their TC’s flows and eventually deny the admission if the QoS of one of its TCs may
degrade. Note that each T'C[i]’s flow in the network calculate NewCW;,. using its own
packet-arrival rate (A\) and maximum queue-occupation-ratio p; corresponding to its traffic
class.

Figure 2.3 illustrates a scenario where in the first beacon period the coordinator receives 3
new streams announcements. The coordinator calculates and broadcasts parameters asso-
ciated to the first stream (S_1). The admission is then aborted by station n the admission
of S 1 interferes with its QoS constraints. In the second beacon period, the coordinator
broadcasts S 2 parameters and finish by accepting the stream as no active station have
denied the acceptation within the current beacon period. Typically, here S 2 should have
a lower packet rate than S 1.

For scalability reasons, AC handshake messages are kept to a minimum by broadcasting
CN messages (i.e., parameters broadcast and admission messages). Furthermore, response
messages (i.e., admission denial message) are sent by an active station only if one of their
QoS thresholds, associated to TCs’ flows, would be violated with the new stream admis-
sion. A single denial message suffices to abort the whole stream admission process, so
other stations don’t need any more to send denial messages, i.e., all stations overhear AC
messages.

To increase the reliability of CN’s broadcasted messages, we use efficient basic data rate
(1Mbps) usually employed to transmit the beacon, RT'S/CTS, and ACK messages. On the
other hand, during AC process, all directed messages exchanged between the coordinator
node and other stations are fully persistent in the sense that they are retransmitted until
successful reception.

Upon a first admission in a given beacon period, the other flows seeking admission in the
network should defer the announcement to the next beacon period and additional network
measurements are carried out before final admission. This allows all stations to take into
account the changes in network availability before accepting new streams (i.e., allows the
different competing stations to have a coherent perception of the network availability by
carrying out measurements during a long-enough period such as a beacon period).
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2.3 Congestion control in LTE: MTC case

2.3.1 Research context and related work

The 3GPP standard is currently working on the standardization process for supporting
MTC communication in LTE [22]. The envisioned 3GPP architecture with MTC sup-
port is shown in Figure 2.4. It consists of three main domains, namely the MTC device
domain, the communication network domain, and the MTC application domain. In the
network domain, most important nodes of a 3GPP Evolved Packet System (EPS) network
are shown. The MTC application domain consists of MTC servers, under the control of
the mobile network operator or a MTC provider. Table 2.2 provides a brief description of
the most important EPS nodes, shown in Figure 2.4. Two new entities related to MTC
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--------- Control plane ]| E———
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MTC Devices
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Figure 2.4: Architecture for MTC in 3GPP [22].

recently emerged in the 3GPP architecture. They are namely, MTC-IWF (InterWorking
Function) and SCS (Services Capability Server). A MTC-IWF may be a standalone en-
tity or a functional entity of another network element. The MTC-IWF hides the internal
PLMN (Public Land Mobile Network) topology and relays or translates signaling protocols
used over the Tsp interface to invoke specific functionality in the PLMN. SCS is an entity
that connects to the 3GPP network to communicate with MTC devices and the MTC-IWF
entity. As depicted in Figure 2.4, there are three ways of establishing connection between
MTC servers and MTC devices. In the direct model, a MTC server connects directly to the
3GPP network and gathers data (through the user plane) from the MTC devices. Indirect
model involves the services of SCS in order to use for example control plane device trigger.
In this case, SCS is either controlled by the MTC provider or by the network operator.
The final model is a hybrid model, whereby the MTC server can simultaneously use both
direct and indirect models.
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Table 2.2: EPS most important nodes.

Node

Description

eNB

Evolved Node B, the LTE’s base station.

MME

Mobility Management Entity, a control plane en-
tity for all mobility related functions, paging, au-
thentication, bearer management in EPS.

MTC-IWF

MTC Interworking Function hides the internal
Public Land Mobile Network (PLMN) topology
and relays or translates signaling protocols used
over Tsp to invoke specific functionality in the
PLMN

HSS

Home Subscriber Server, main database contain-
ing subscription-related information.

S-GW

Local mobility anchor for intra-3GPP handoffs.

P-GW

Packet Data Network Gateway, interfaces with
the Packet Data Network (e.g., Internet).

SCS

Services Capability Server is the entity that con-
nects MTC application domain to the network
domain.
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Whilst MTC represents an important business opportunity for mobile operators, mobile
operators fear the congestion that could come with the deployment of billions/trillions of
MTC devices, not to mention millions of smart mobile phones and their associated mobile
traffic. Most signaling congestion avoidance and overload control mechanisms proposed in
the context of MTC over cellular networks implement one of the following approaches: (i)
segregate MTC traffic from the normal UE traffic in order to separate the network access
for the two types; i.e., this helps to anticipate the congestion which may happen due to
MTC traffic; (ii) when congestion occurs, apply some back-off mechanisms rejecting MTC
traffic at the RAN equipment (eNodeB) or at the EPC nodes (e.g., MME, S-GW or even
PDN-GW).

To differentiate MTC traffic from the classical traffic, most proposed solutions group the
MTC devices into groups or clusters according to different metrics/features (e.g., low mo-
bility, QoS requirement [23|[24], belonging to macro or femtocell [25]). After grouping the
MTC devices, there are two methods for separating the access to the RAN, and avoid the
RACH (Radio Access CHannel) overload. The first one consists of defining “grant time
periods” when MTC devices are authorized to connect to the network. The network also
defines “forbidden time intervals” during which a MTC device is not allowed to connect to
the network, be it the home network or a visited network. Intuitively, a grant time interval
does not overlap with a forbidden time interval. Over the grant time, assigned to a MTC
device, the communication window is further limited. The access time of MTC devices is
also randomized over the communication window/grant time. In case of multiple MTC
devices attempting to connect to the network during a specific and short communication
window /grant time, to avoid signaling congestion and to cope with possible network over-
load during communication windows, the communication windows of the different MTC
devices can be distributed over the grant time interval, via for example, randomization
of the start times of the individual communication windows. This operation assists in
reducing peaks in signaling and data traffic from MTC devices. Another way to define the
duration of the grant interval is in the case where the network is aware of the period of
time the MTC devices have to transmit. In fact, the network can dynamically increase
the time grant duration dedicated to MTC devices if it is aware of the scheduling of MTC
traffic. In some scenarios the network can predict when access load will surge due to MTC
devices.

The second method consists in defining specific low levels parameters for separating Ran-
dom Access CHannel (RACH) resources for MTC and non-MTC devices. The separation of
RACH resources between MTC and non-MTC devices allows the limitation of the number
of MTC devices capable to connect to the network, while maintaining normal network ac-
cess for non-MTC traffic. To implement this separation, a simple way is to define a MTC
specific backoff scheme. With this mechanism, the access attempts from MTC devices
could be dispersed over a large time interval to prevent contending the RACH resources.
In addition to grouping MTC devices, there are also other solutions to anticipate the sys-
tem overload by rejecting MTC device attach request if there are not sufficient network
resources, or by grouping the signaling messages from a group of MTC in one common
bulk signaling message. In [23||24] the authors first group the MTC devices into clusters
according to their QoS characteristics and requirements, e.g., the cluster packet arrival
rate and the maximum tolerable jitter by the MTC devices composing the cluster. When
a MTC device attempts attaching to the network, it sends its QoS characteristics and
requirements to the current eNB. If there are enough resources to satisfy the MTC require-
ments, the MTC device is accepted and added to an existing MTC cluster having the same
constraints, or a new cluster is created. Otherwise, the attach request of the MTC device
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is rejected. In [20], the authors also show the potential of handling signaling messages
common to a group of MTC devices in bulk.

However, regrouping the MTC devices and separating their traffic from the other traffic
at the RAN level is not always efficient to avoid congestion. In some situations, there is
need to reduce the MTC traffic by a specific amount implementing admission control at
eNodeBs or even at MTC devices. Indeed, admission control can be activated at the eNB
upon receiving a congestion signal from the EPC nodes (MME/HSS). Or, it can be com-
municated to the MTC devices level as in the 3GPP Access Class Barring (ACB) solution.
ACB is a solution, which effectively reduces the collision probability of transmitting the
bulk of preambles at the same RACH resource. Based on the broadcasted parameters by
eNodeBs, a UE determines whether it is temporarily barred from accessing the cell. An
access class barring factor or access probability (p) determines the probability that access
is allowed. If a random number n generated by the UE is equal to or greater than p, then
access is barred for a mean access barring time duration. In the legacy ACB scheme, there
are 16 access classes. AC 0-9 represent normal UEs, AC 10 represents an emergency call,
and AC 11-15 represent specific high priority services, such as security services or public
utilities (e.g., water/gas suppliers). A UE may be assigned one or more access classes
depending on the particular cell access restriction scheme. Using network simulation, the
work in [26] evaluated and compared the performance of ACB and the backoff procedure
for reducing RACH contention. The findings of this work showed that using fixed ACB
parameters for MTC devices and UEs is not optimal, as high values of p and access barring
duration increase the access delay of MTC devices. In contrast, a low access probability
p and a short barring duration increase the contention on RACH resources under heavy
traffic load. Accordingly, the authors proposed using adaptive ACB parameters, by allow-
ing eNodeBs to periodically adjust these values based on the system load. In case of high
loads, higher values of p and access barring duration are assigned to the MTC devices,
whereas under low loads these values are decreased. The obtained results clearly show
that Adaptive ACB (A-ACB) can increase system performances when it operates under
high load while reducing the MTC access latency in case of low loads. In addition, the
work showed that A-ACB exhibits better performance compared to the Adaptive Backoff
procedure and ACB with fixed values. The authors also point out that ACB parameters
can be updated by sending SIB (system information block) that carries physical channel
information (such as Random Access Channel information, Random Access parameters
Hybrid Adaptive ReQuest (ARQ)). However, SIB broadcasting cycle is around a second
to several minutes.

2.3.2 Contribution

Similar in spirit to the Access Class Barring solution, we proposed the Congestion Aware
Admission Control (CAAC) scheme. In CAAC, MTC devices are grouped according to
their priority classes. In case of congestion, each class is blocked with a probability p
as in ACB. In contrary to ACB, where there is no indication on how this probability is
computed, in CAAC, the reject probability p is derived for each class by the relevant EPC
nodes (e.g., MME, S-GW and PDN-GW) being under congestion. Based on this proba-
bility, each eNodeB (at the RAN level) accepts/rejects MTC traffic belonging to a specific
class.

In this contribution, we particularly focused on congestion that may happen at a MME.
Such congestion can be directly induced from the delay in processing incoming packets
at the application layer. This delay may lead to high and variable latencies at the input
buffer, which may induce buffer overflow (i.e. packets loss). In contrast, congestion at
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EPC nodes, particularly PDN-GWs, concerns the link layer, which may affect the outgo-
ing buffer length. In CAAC, MMEs control their level of congestion by adjusting (through
the reject probability p) the amount of incoming signaling traffic from the MTC devices.
If the congestion is detected, the probability p is set to a high value. Otherwise, this prob-
ability remains low. This probability is then communicated, through dedicated signaling
packets or incorporated in existing ones, to the relevant eNodeBs that use it as part of
their admission control operation. To achieve the above-mentioned goal, CAAC uses PID
controller, a well-known controller in the field of classical control theory [27]. Each MME
implements an independent PID controller that uses only locally available information to
derive the probability p in order to maintain the MME’s queue around the optimal value
that avoids both system overloads and underutilization, at the same time. It shall be noted
that lots of research work in the literature have indicated that the queue length and the
queue length variation represent a good indication to quantify the severity of congestion
[28]; thus, our usage of queue length for congestion assessment in CAAC.

Figure 2.5 depicts the envisioned control system using a PID controller. The system in-
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Figure 2.5: The controlled system.

volves all elements impacting its length, including MTC devices, eNodeBs attached to a
MME and the MME itself. The PID controller takes as input the error signal e(k) that
represents the difference between the current queue length and the queue reference (Qrer)
value (i.e., the threshold above which, MME is considered overloaded), and gives as output
the Reject Factor (RF') that represents the amount of traffic to reject in order to reduce
the error signal. The principal objective is to retrieve the optimal value of the Reject Fac-
tor (reject probabilities) considering two metrics in conflict, for instance, the minimization
of the queuing delay (i.e., small buffers) and the maximization of the throughput (i.e.,
avoiding underflows). Note that the loop represents the action of rejecting MTC traffic
through the admission control operation enforced at eNodeBs. The envisioned system is
based on a PID controller. We therefore use PID control function [27] in order to express
the relationship between RF; for each class of traffic C; and e(k) as follows:

RF; = RF;(k— 1) + ky(1 + £ + %)e(k)

—kp(1+2%)e(k — 1) + kp He(k — 2) (2.13)
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where T, e(k), e(k — 1), and e(k — 2) denote the sampling period, the error signal at the
kth sampling instant (¢ = k = T'), the error signal at the (k — 1)th sampling instant and
the error at the (k — 2)th sampling period, respectively. The parameters T; and T, depend
on the proportional gain k,, the integral gain k;, and the derivative gain k4. They are
equal to (%’) and (ﬁ—i), respectively. The three parameters k,, k; and kg represent the
positive definite gains of the PID controller (i.e., proportional, integrative and derivative
gains, respectively), which have an important impact on the stability and the speed of
convergence of the system to the reference value. The proportional action (with k, gain) is
used to reduce the tracking error but does not eliminate it; the integrative action (with k;
gain) allows an asymptotic convergence and error rejection, and the derivative action (with
k4 gain) improves the stability and the transient response. It should be noted that these
values are obtained from empirical results and do not change the fundamental performance
of the controller under variable network conditions. Thanks to the developed controller,
the following actions are achieved:

e When the congestion is high, the tracking error is high (positive values): the system
triggers a reaction by increasing the RF; value for each class, which increases the
reject probability p; ; to be sent to eNodeBs.

e When the system workload is low, the tracking error takes a negative value (also the
RF; values), i.e., no need for rejecting MTC signalling traffic at eNodeBs.

Now, there is a need to translate the RF; values into a reject probability to be sent
to eNodeBs participating in the congestion alleviation; i.e., eNodeBs that forward MTC
signalling to the MME. We defined the following formulas in order to derive the value of
pi,j for each traffic class i at an eNodeB j:

. traf fic; .
min(—2 % RE(k), 1) if RE(E) >0
pi,j(k‘) = (Zzzo traf fic ( ) ) ( ) (2'14)
0 else

where traf fic; denotes the amount of traffic coming from eNodeB;. Indeed, the proba-
bilities p; ; represent the proportion of MTC signalling traffic that need to be rejected, in
order that the system reaches the reference value of the queue length at MME. Aiming at
ensuring fairness among eNodeBs, this probability was carefully dimensioned to depend
mostly on the amount of traffic generated by an eNodeB, which participates in the con-
gestion alleviation. Thus, the higher the traffic forwarded by an eNodeB is, the higher the
value of p (to be applied by this eNodeB to reduce the MTC traffic) will be. As mentioned
before and following 3GPP standards, the admission control is implemented at the RAN
level. Upon receiving an attach request from a MTC device, an eNodeB; applies admission
control based on the reject probability p; ; received from the MME. Requests from MTC
devices belonging to a class C; are, thus, rejected with the probability p; ;, by randomly
choosing a uniform value between zero and one. If this value is greater than p; j, the MTC
attach request is accepted. Otherwise, the request is rejected, and a backoff time value
is indicated to the M'TC device in order to ensure a good distribution of future incoming
attach requests over time.

2.4 Summary of results

To conclude, we can summarize our representative works belonging to the network-oriented
contributions as follows. For WLAN, we presented a delay-sensitive scheme and an ad-
mission control mechanism that are based on a thorough analysis of the tradeoff between
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high network utilization and achieving bounded QoS metrics in operated 802.11-based net-
works. Firstly, we derived a delay estimation model to adjust the contention window size
in real-time considering key network factors, MAC queue dynamics, and application-level
QoS requirements. We validated the proposed model through simulation. The aim were to
evaluate the accuracy of CW adaptation in monitoring MAC queuing delays. The simula-
tion results indicated that when the network is sufficiently relaxed, there are no violations
of the delay threshold for higher and medium priority flows. Also, the proposed MAC pro-
tocol ensures roughly the same delays to TC’s flows regardless their respective bit rates.
But, when the network load is high, there are several delay violations at high priority flows,
since it is more difficult to ensure delays below the fixed threshold (0.5 sec for high priority
flows).

Furthermore, we compared the proposed protocol to existing QoS-capable protocols (Adap-
tive EDCF (AEDCF) [29] and EDCA). Thanks to a more careful CW size adjustment, the
proposed protocol achieved better results in maintaing bounded delay for high priority
traffic, particularly in the case where the network load is high.

Secondly, we derived a fully distributed admission control, which provides protection for
existing flows in terms of QoS guarantees and overcomes the problem of delay violation in
high network load condition.

For LTE networks, we addressed the problem of congestion and system overload, which oc-
cur when MTC communications are deployed in EPS. We introduced a solution that rejects
MTC traffic at the RAN using feedback from core network nodes regarding their congestion
status. The system was modeled using a PID controller that controls and maintains the
congestion level around an acceptable value, by tuning the amount of MTC traffic to be
rejected at eNodeBs. Using computer simulation, we compared CAAC solution against the
conventional approach whereby no admission control, at eNodeBs, is used for MTC sig-
nalling traffic as well as against the ACB solution introduced by the 3GPP standards. We
considered three constant values of the reject probabilities p to be used in ACB. Our study
showed that the ACB and CAAC mechanisms can alleviate congestion at the MME level
and that is thanks to their admission control feature. The worst performances are observed
when no-admission control is used, where bursts of MTC signaling traffics affect the queue
length (i.e., over-utilization) resulting in packet drops. In case of ACB, we noticed that
using high reject probability (p=0.5) reduces considerably the congestion at MME, but
at the price of underutilizing the network resources (i.e., low throughput). Furthermore,
this situation may impact the QoS expected by the MTC provider, as the MTC traffic to
be sent to the remote server is severely decreased. In contrast, a low value of the reject
probability (p=0.1) increases the network resources utilization, but causes packet losses at
the MME. On the other hand, CAAC ensured a stable behaviour of the system, since no
packet drops due to congestion are noticed, even when receiving highly bursty traffic from
MTC devices.

Research work carried out in this category of contribution were done in collaboration with:
Abdelhamid Nafaa (senior researcher at University College Dublin), Tarik Taleb (senior
researcher at NEC Europe Laboratories), Ahmed Amokrane (Master student at University
of Rennes 1) and Yassine Hadjadj-Aoul (Associate Professor at University of Rennes 1).
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3.1 Introduction

Human-centric solutions have gained attention only the last few years. This is mainly due
to the fact that most of QoE monitoring tools cannot be used in real-time. Thanks to
Pseudo Subjective Quality Assessment (PSQA) tool, we were able to propose mechanisms
that consider user QoE when controlling network functions. PSQA is a real-time and a

parametric QoE monitoring tool developed at the INRIA Dionysos team.

It is worth noting that works in this category of contributions were not limited to the
network control mechanisms, but also in developing new PSQA modules for emerging

audio and video codecs.
Human-centric approaches were used to address the following issues:

e PSQA module for monitoring QoE
— Emerging VoIP codecs (Silk, Speex and iLBC) ([1]):

We built a new PSQA module for estimating user QoE in real-time for three
emerging codecs: iLBC, Speex and Silk (used by Skype). To develop the new
module, we replaced the subjective procedure, which is usually used to evaluate
the distorted sequences, by an objective technique, which is less time consum-
ing. This technique allowed us to reduce considerably the time needed for the

learning procedure.
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— Hierarchical SVC video coding (|2][3|) (Details in Section 3.2)

e Energy conservation for VOWLAN ([4][5]):

We addressed the problem of energy conservation in VoOWLAN application by propos-
ing a cross-layer solution. According to user QoE feedbacks (obtained at run-time),
we proposed to derive the sleep periods that maximize power conservation while
maintaining users’ QoE above a certain threshold. Since the sleep period has a di-
rect impact on user QoE, we modeled the transmission chain by using control theory.
In fact, we used a PID controller in order to derive the sleep period that maintains
user QoE around a fixed reference value.

Multicast optimization in WLAN ([6][7]) (Details in Section 3.4)

Network selection in the context of WLAN ([8]):

We tackled the problem of network selection and load balancing in the presence of
several WLAN AP, by proposing a QoE-oriented mechanism. Based on the concept
of 802.11k [48], instead of giving radio measurement information, we append QoE
information into Beacon and Probe Request frames. The QoE information (average
QoE) is gathered from the stations connected to the AP. Then, users select the
network that provides the highest score or they may not connect to any access point
if they consider that the current scores are too low for the requirement of their
applications. As a consequence, they will connect to the network where they will be
best connected and avoid high-loaded networks automatically due to the lower QoE
in those networks. Therefore, the scheme is profitable for preventing access networks
from over- or under-utilization.

Network selection in the context of Wireless Heterogeneous Networks ([9][10]):

We considered the network selection problem in case of heterogeneous wireless access
as a Multiple Attribute Decision Making (MADM) [50] problem. To solve it, we used
the Preference by Similarity to Ideal Solution (TOPSIS) technique. The originality
of our approach lies in the inclusion of the measured QoE value as an attribute for
the selection of the access network.

Two scenarios were considered. The first one represents the case where the access
networks (3G /4G and WiF1i) belong to different operators. Hence, the choice of the
network, and the execution of the TOPSIS algorithm are done by the station. To
facilitate the TOPSIS execution, potential access points communicate the mean MOS
value perceived by their users to the concerned station.

The second scenario denotes the case where the access networks belong to the same
operator. Unlike the first scenario, the choice of the network is performed by a central
entity at the operator core network. Here, the access points (WiFi and 3G) report
periodically the value of the QoE perceived by users to the central entity, which in
turn executes the TOPSIS algorithm. The selected network decision is then sent to
the station.

Uplink scheduling in 3G cellular networks ([11]):

Most of the proposed scheduling mechanisms for cellular networks (mainly 3G) are
taking into account only the signal quality and fairness as criteria, leaving user ex-
perience. To overcome this gap, our contribution consists of a novel QoE-oriented
scheduler. It takes into account the quality of experience when selecting the stations
having the opportunity to transmit on the uplink channel (scheduling process). The
main idea is to give priority to video streaming users, which have more constraints
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on the quality. For this, a coefficient is assigned to each user. This coeflicient is then
multiplied with a priority index as in traditional scheduling mechanisms. Based on
the QoE measured at the mobile station, the QoE-oriented scheduler differentiates
between the way of computing the coefficient of video users and the best-effort users
as follows: if the QoE perceived by a video user is below a specific threshold, the
scheduler increases the coefficient of these users and decreases those of best-effort
users. Accordingly, the video users will have a higher probability to transmit in the
next uplink frame.

e In-network adaptation of SVC streams

— Case of DVB-T2 ([12][13]) (Details in Section 3.3)

— Case of multipath communication in Video Delivery Networks (VDN) ([14][15]):
In this contribution we proposed an approach that couples the SNR scalable
video coding (SVC) extension of H264/AVC, with the path diversity provided
by VDN. Our method adapts to the heterogeneity of end-users using the scalable
video coding. Moreover, it adapts to network bandwidth fluctuation by observ-
ing the changes of the available bandwidth over the multiple overlay paths, and
updating the streaming strategy accordingly.

In this chapter, we will particularly focus on three representative contributions belonging to
the human-centric solutions: (i) QoE metric for SVC; (ii) QoE-based in-network adaptation
of SVC in DVB-T2;(iii) QoE-based Multicast adaptation in WLAN. The first contribution
shows an example of developing a new QoFE monitoring module based on PSQA. This
module is dedicated to the emerging SVC codec. The second contribution uses this QoE
monitoring tool to adaptively select the number of SVC layers to decode and to display
to the final user in DVB-T2 (unidirectional) networks. The third contribution shows the
case of using the QoE as a metric to control the data rate of multicast communications
in WLAN. Generally speaking, these three contributions show how we can use QokE for
controlling network functions with or without using user feedback.
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3.2 QoE metric

3.2.1 Research context and related work

Quality of Experience is defined in [16] as “the overall acceptability of an application or
service, as perceived subjectively by the end user”. Quality of Service is defined in [17] as
“the collective effect of performance which determines the degree of satisfaction of a user
of the service”. In telecommunications, QoS is usually a measure of performance of the
network itself. QoE instead focuses on the overall experience of the user. It depends on the
global system behavior, going from the source of the services until the user, including the
content itself and the network performance. There are several factors that can influence
QokE for video applications. Characteristics, such as frame rate of a video stream, may im-
pact the fluidity of the video: a lower frame rate means “choppiness” that can degrade the
perceived quality. Spatial video resolution is another significant factor: depending on the
limitations of the end device, users may prefer the highest available resolution. Another
important factor related to the video quality is the Quantization Parameter (QP). In fact,
this parameter relates to the compression of a video stream. Thus, during compression,
some amount of information is thrown away and this will introduce certain distortion in
the video that may, in turn, have an impact on QoE.
In addition to the preceding remarks, the type of video content, itself, may have significant
importance. For example, a video of a news reader might have low frame rate require-
ments, but higher quantization requirements. On the other hand, a fast moving video,
such as that of Formula One racing coverage, requires higher frame rates to ensure good
QoE. The network used to provide the service can significantly impact the video quality.
For example, packet losses can strongly degrade the video’s perceived quality. Delays and
jitter in the network may incur, first, a long initial delay before a video can start to play,
and then, play-out disruptions and eventual data losses because of the video packets that
miss the play-out deadline. In addition, other parameters, such as network bandwidth,
impose limitations on the video characteristics because some quality of the video will get
downgraded, either by lowering the frame rate or by using more compression, to accom-
modate the video with the available bandwidth.

Depending on the method used to evaluate user QoE, QoE measurement tools can be
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Figure 3.1: Examples of I'TU standard scales for subjective test methods.

classified into two categories. The first class is based on subjective evaluation tests while
the second class is based on objective evaluation (signal processing algorithm). Subjective
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evaluation tests are based on personal evaluation of users, where a panel of selected persons
rate video sequences. The output of these tests is a Mean Opinion Score (MOS), where
different scales can be used as specified by the I'TU-R, as shown in Figure 3.1. Indeed,
the ITU-R recommendation BT.500-10 formalizes the subjective test procedure by intro-
ducing several experimental conditions, such as viewing distance and viewing conditions.
Although subjective tests are highly accurate in estimating users’ QoE, their preparation
and execution are costly and time consuming. Furthermore, they cannot be used in real-
time or automatically.

Objective quality evaluations, on the other hand, are algorithms and formulas (i.e., gen-
erally signal processing algorithms) that measure, in a certain way, the quality of a video
stream. Objective video quality metrics range from very simple metrics to very complex
ones [18| (e.g., metrics based on human vision systems (HVS)). Objective quality met-
rics can be further classified into three different categories, namely Full-Reference (FR),
Reduced-Reference (RR) and No-Reference (NR), based on the amount of information
available for comparison with the original content. Full- and reduced reference mecha-
nisms are mainly used to evaluate video quality in non real-time scenarios where both the
original video reference (or reduced data set) and the distorted video are available.

The PSNR metric is one of the most widely used full-reference metrics for objective video
quality assessment, thanks to its simplicity and its low computational requirements. It
calculates the ratio between the maximum value of a signal and the background noise.
PSNR is used because of its physical significance and simplicity but the performance of
this metric is quite poor, as it usually does not correlate well with subjective scores. Also,
it is difficult to reliably derive MOS from this metric, despite the existence of heuristic
mappings of PSNR to MOS. The Structural Similarity (SSIM) approach [19] provides an
alternative and complementary way to tackle the problem of video quality assessment. It
is based on a top-down assumption that HVS is highly adapted for extracting structural
information from the scene, and hence a measure of structural similarity should be a good
approximation of perceived image quality. Nevertheless, the SSIM index achieves the best
performance when applied at an appropriate scale (i.e., viewer distance/screen height).
Calibrating the parameters, such as viewing distance and picture resolution, represents an
important challenge for this approach. Video Quality Metric (VQM) [20] is a standard-
ized method for objectively measuring video quality by making a comparison between the
original and the distorted video sequences based only on a set of features extracted inde-
pendently from each video. The algorithm used by VQM measures the perceptual effects
of several video impairments, such as blurring, jerky /unnatural motion, global noise, block
distortion, and color distortion. These measurements are combined into a single metric
that gives a prediction of the overall quality. For more details on FR methods reader can
refer to [19].

Despite their efficiency in evaluating the video quality, FR methods are only applicable
when the original video sequence is available. This constitutes a limitation when there
is a need to evaluate QoE in real-time at the decoder side or at an intermediate network
node. To address such situation, NR methods have been proposed. The main goal of NR
methods is to create an estimator based on the proposed features that would predict the
MOS of human observers, without using the original image or sequence data. Further-
more, since the model does not require any comparison of signals, the calculations can
be performed in near real-time. Previously introduced NR methods do not estimate the
overall user quality but estimate the degree of blockiness [21|, which is the most prominent
artifact of block-DCT based compression methods such as H.26x, MPEG and their deriva-
tives. To increase the estimation accuracy, work in [22| uses the bit-stream information
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which depends on the compression algorithm. Such a method suffers from the fact that it
cannot differentiate video quality degradation from features of the video itself and those
introduced by the network (e.g., loss and delay). Other NR methods incorporate network
information to enhance user quality prediction. The ITU recommendation ITU G.1070
[23] (also known as “opinion model”) is a NR model which uses the bit rate and frame rate
of the compressed video along with the expected packet loss rate of the channel to predict
video quality. Work in [24]| showed that it is possible to enhance this model and make it
more precise by replacing, for example, packet loss rate with packet loss event rate. A
further extension of this mechanism is proposed in [25].

On other hand, PSQA is a quality assessment tool that is a hybrid between subjective
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Figure 3.2: PSQA methodology.

and objective evaluation techniques. The idea is to do subjective tests for several distorted
videos and use the results of this evaluation to teach a learning function f() based on Ran-
dom Neural Network (RNN) the relation between the parameters that cause the distortion
and the perceived quality. The PSQA methodology is shown in Figure 3.2 and is explained
in the following text.

The procedure consists in first identifying the parameters that have an impact on QoE
in the given context. These parameters may vary from one context to another and some
examples of these parameters are: type of codec, packet loss rate, delay, jitter, etc. A
video database is then generated by simulating the identified parameters after choosing a
set of representative values for each of them, together with an interval for the parameter,
according to the conditions under which we expect the system to work. Then, a uniformly
sampled subset ) of this video database is subjectively evaluated by a panel of humans.
After statistical processing of the answers (designed for detecting and eliminating bad
observers whose answers are not statistically coherent with the majority), each video se-
quence in €2 receives a QoE value (often, this is a Mean Opinion Score, or MOS). It results
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in € configurations of the parameters and a corresponding QokE score or MOS. Then some
of the configurations are used for training the RNN and the remaining ones are used for
validation that, in turn, are not shown to the RNN during training.

In order to validate the trained RNN, a comparison is done between the value given by
the trained RNN at the point corresponding to each configuration in the validation set
and to its actual MOS value; if they are close enough (having low mean square error), the
training is validated. If the validation fails, a review of the chosen architecture and its
configurations is needed.

Note that a comparison between PSQA and other QoE metric tools is presented in [27].

3.2.2 Contribution

One of the multimedia market trends is audiovisual service (TV or VoD) anywhere, at
any time. To support such service, a Video Service Provider has to manage, store, and
distribute content towards multiple kinds and scales of terminals, and over different and
transient access technologies to reach the end user. To solve such issues, video scalabil-
ity seems to be the most relevant solution. We recall that with SVC, it is possible to
constitute a set of layer combinations to create the video streams. But to evaluate such
combinations, and monitor the performance of the SVC encoding scheme, in term of user
experience, there is a need to estimate automatically the QoE of SVC video streams.

To Build PSQA for SVC, we need to clearly identify the parameters impacting the per-
ceived quality of the video streams (as SVC is composed by several layers). There are
different parameters that affect the quality of H.264/SVC videos. They include parame-
ters related to the content itself (such as brightness, contrast, sharpness, color, motion),
the encoding parameters (such as QP) and other parameters dependent on the transport
network (such as delays, loss rate, bandwidth). To efficiently use PSQA, it is important to
consider parameters that can be obtained in real-time and with low complexity. The first
parameter affecting the quality of the SVC streams is the frequency of IDR (Instantaneous
Decoder Refresh) at the encoding side. Unlike coding mechanisms such as MPEG, SVC
uses a different structure of the Group Of Picture (GOP). In SVC, the GOP structure
consists of one key frame (IDR and P) and the remaining are B frames [28]. In addition,
SVC adopts a hierarchical coding structure for B frames, as illustrated in Figure 3.3, to
facilitate the temporal scalability implementation.

IDR frames (I frame) are special frames due to the fact that they are encoded without
reference to another frame. From hereunder, we indifferently denote them as IDR or I
frames. The IDR frames are periodically sent in order to refresh the decoder buffer and
create a new point of reference. In fact, an increase in IDR frequency (IDR period) means
an increase in the number of IDR frames that, in turn, decreases the number of P frames
and B frames. High numbers of IDR frames are beneficial to reduce error propagation
during the refresh period. In Figure 3.4 we illustrate the dependence of affected frames
on the location of key picture within the intra refresh period. The affected frames vary
according to the lost frame type (I, P or B) as well as to the position of the lost frame
in the intra-refresh-period (or IDR period). Unlike MPEG, loosing a B frame has impact
on other B frames, of course depending on its position in the hierarchy. For instance, in
Figure 3.3, loosing frame B4 impacts all other B frames in GOP. However, loosing frame
B1 has no impact. Loosing a P frame has an impact on all frames (B frames) that use this
frame as a reference. The worst case occurs when an IDR frame is lost. Indeed, loosing
such frame causes distortion not only on the current GOP, but also to precedent GOPs.
Loosing IDR frames affects both P and B frames.

As noticed in the precedent versions of PSQA, the packet loss rate is an important pa-
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Figure 3.4: Frames range affected by the loss of key frames (single layer case).

rameter that affects the video quality. This is more evident in case of streaming SVC over
UDP-based networks or over DVB, where the transport layer is not reliable. For SVC,
we must consider the packet loss rate for each layer composing the SVC stream. The
NALU (Network Abstraction Layer Unit) is the transport unit of video packet used in
H.264 (SVC and AVC). In case of SVC, NALU can only carry information of one layer.
The loss of a NALU affects only a single layer. However, it is worth noting that losing a
NALU belonging to the base layer has more impact on the video quality, than the loss of
a NALU belonging to other enhancing layers (particularly when using spatial or quality
scalabilities). Besides affecting the other frames belonging to the base layer (Figure 3.4),
a loss of base layer NALU impacts the other layers as all the other layers in SVC use the
base layer as reference and any error in this layer propagates to other layers (see Figure 3.5
for intra layer prediction in case of SNR (CGS) scalability). Hence, this situation seriously
downgrades video quality.

Usually, a NALU packet consists of one header (as AVC header), and a specific header ex-
tension (Figure 3.6). This extension has particular fields D, Q and T, which are used
to identify the spatial quality and temporal layers, respectively. We denote by P =
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Figure 3.6: A typical NALU format.

{Lpr,L1,Lo,...,Ln, fipr} the set of affecting parameters, where frppr represents the IDR
frequency, Lpr, and Ly denote the NALU loss rate of the base layer and layer N, respec-
tively. It is important to note that there is another parameter that affects the quality of
H.264/SVC videos, which is the error concealment procedure used by the decoder. Indeed,
such a mechanism can help the decoder to replace information lost due to NALU losses.
In this SVC module of PSQA, the error concealment is implicitly taken into consideration
as the distorted videos are evaluated at the subjective phase and are obtained after the
decoder has applied the error concealment procedure. Therefore, in this version of PSQA,
we are relying on the error concealment provided by the SVC decoder.

In order to train the learning function f(), which monitors user QoE, we used five dif-
ferent video sequences (m) (Table 3.1) for constituting the set of the media sample (d,,).
We encoded the different videos by using the JSVM encoder [29]. For the decoder side, we
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Table 3.1: Videos used for training

Video NAL number
CITY 300
CREW 300
HARBOUR 300
ICE 240
SOCCER 300

Table 3.2: Video parameters

Fixed parameter Value
Resolution 704x576 (4CIF)
Frame Rate 30
Layer(QP) BL(34) - EL1(28) - EL2(22)

used the openSVC soft [30]. The resolution is 4CIF (704 x 576), the frame rate is set to 30
frames/s, and the values of Quantization Parameter (QP) are set to 34, 28, 22, respectively
for layer 0 (Base Layer), 1 and 2 as shown in Table 3.2. The video scalability is based on
the SNR (CGS) quality, by reducing the QP parameter for each enhanced layer by Delta
QP (DQP). As our focus is on employing only quality-based scalability, we used only key
frames (IDR and P frames) to constitute the GOP of each video sequence. In this case
the GOP size is equal to 1, which means that no B frames are used and the GOPs are in
the form of “IPPP...PIPPP...”. Since the NALU losses (Lpr, L1, L2) have a serious impact
on the final quality of a video, we proposed that each value of these parameters (NALU
losses) is to be taken from the set noted V' = {0,0.3,0.5,1,3,5,10}. The set V represents
the loss rate (i.e., from 0% to 10%, quality is already very bad at 10% loss). Regarding
the parameter frpg, three values were considered: 75, 150 and 300. Table 3.3 shows the
set of values associated with each parameter.

A large number of videos were created using different combinations of the above parame-
ters and their values given in Table 3.3. The obtained sequences correspond to the set of
configurations {1, Qy,...,Q,}. For instance, 27 = {0,0,0, 75} represents a configuration,
where Lpr, = 0%, L1 = 0%, Lo = 0%, frpr = 75. Next steps consist of: (i) reducing
the set of video sequences {d1g, ..., d;is} to 500 by employing uniform sampling; (ii) using
manual evaluation to select around 100 among 500 for the subjective test session, such
that 25 videos corresponded to a MOS score between 1 and 2, 25 videos between 2 and 3,
and so on. The MOS scale, shown in Table 3.4, was used for all quality evaluations.

Table 3.3: The values of parameters affecting QoE.

Parameter Set of values
NALU loss rate for Base Layer (%) (Lpr) | 0, 0.3, 0.5, 1, 3, 5, 10
NALU loss rate for Layer 1 (%) (L1) 0,0.3,0.5,1, 3,5, 10
NALU loss rate for Layer 2 (%) (L2) 0,0.3,0.5,1, 3,5, 10
IDR Frequency 75, 150, 300
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Table 3.4: The values of parameters affecting QoE.

MOS | Quality Level of Impairment
5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

These 100 video sequences were evaluated by 15 humans using the DSIS (Double Stimulus
Impairment Scale) methodology [31]. Indeed, the reference video is first shown to the eval-
uators’ panel, and then followed by the distorted sequences. This method is more useful for
evaluating clearly visible impairments caused by transmission. The obtained scores were
then pre-processed, as in [32], to check for inconsistent scorers. Then the data was used to
train the learning function.
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3.3 QoE-based in-network adaptation of SVC flows in DVB-
T2

3.3.1 Research context and related work

DVB-T2 [33] is the new standard for digital video broadcasting that aims at replacing the
DVB-T (i.e., the first generation of the terrestrial broadcasting standard) for broadcasting
terrestrial television. Based on advances made in digital signal processing, and specifi-
cally in channel coding, DVB-T2 brings a new flexibility in services’ broadcasting with an
increased transfer capacity of 50%, when compared to DVB-T. Besides using the Coded
Orthogonal Frequency Division Multiplexing (COFDM) in order to be more robust against
multipath channels [34], the DVB-T2 physical layer data channel is divided into logical en-
tities called Physical Layer Pipes (PLP). Each PLP carries one logical data stream that
could be an audio-visual multimedia stream along with the associated signaling informa-
tion, or hierarchical video streams which can address at the same time different qualities.
The PLP architecture is designated to be flexible so that arbitrary adjustments of robust-
ness and capacity can be easily done. Thus, using different PLPs enables broadcasting,
on a single radio channel, multiple services, or groups of services, with different channel
coding and modulation settings. Broadcasting several service components over the same
channel has thus become possible, with differentiated levels of robustness, which was not
possible with the previous DVB-T standard or other broadcasting technologies [35]. Using
this new capability allows handling users’ channel diversity, where users with good channel
condition can decode all PLPs and access to high quality contents, while users with poor
channel conditions (such as mobile terminals) can decode only robust PLP but at least can
access the lowest service quality; i.e., in case of DVB-T all services are lost. Needless to say
that associating SVC with DVB-T2 can easily address the problem of broadcasting added
value services to high number of users, despite their radio environments and terminal capa-
bilities, which represent an interesting solution for operators [36]. In fact, the hierarchical
physical layer provided by DVB-T2 can be easily combined with hierarchical video coding
features proposed by SVC. Thus, each SVC layer is broadcasted through different PLPs.
The base layer is sent through the most robust PLP, usually PLP0O. The enhanced layers
are sent through other PLPs, which use less robust physical modulation, but allow using
higher data rates. Thus, stations with good physical channel conditions can decode all the
SVC layers and benefit from high video quality, while users with poor channel conditions
can at least decode the base layer and benefit from acceptable quality.

Apart from the work presented in [37], most of related research works on SVC and DVB-T2
have focused on exploiting each technology separately. In [37], the authors discuss the de-
ployment of SVC in DVB-T2, and particularly concentrate on providing optimal usage of
DVB-T2 features from SVC’s point of view. In addition, they provide modifications to the
error protection mechanism, at the physical layer, in order to improve users’ experience.
Besides considering only physical layer enhancements, the authors employed the PSNR
tool to calculate user perception, which is known for its lack of efficiency to reflect user’s
QoE.

3.3.2 Contribution

The aim of this contribution is to further concentrate on the enhancement achieved, at
the user side, when associating SVC and DVB-T2. We concentrate on user’s experience,
in terms of QoE, as the main criteria for evaluating this association, and demonstrate how
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QoE can help optimizing this association for providing context-aware video services to an
end-user through the broadcast channel. Let us consider Figure 3.7, which presents the
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Figure 3.7: A typical NALU format.

PSQA scores computed for the following three cases: (i) the three layers are decoded and
displayed to users, where the enhanced layer 2 experiences NALU loss; (ii) the two lower
layers are decoded; (iii) only the base layer is decoded. Although NALUs belonging to
the enhanced layer 2 have less importance than those of the base layer, loosing NALUs
from this layer degrades the user’s QoE. Therefore, if the enhanced layer 2 (highest layer)
experiences losses, for the sake of maintaining good QoE, it is worthwhile withdrawing
this layer and not displaying it to the end users. Indeed, decoding only the base layer
and the enhanced layer 1 achieves better MOS than decoding all layers, particularly if the
Ly’s NALU Loss Rate exceeds 1%. It is clear that, in some cases, withdrawing one SVC
layer can maintain higher MOS than the case where this layer is decoded. Accordingly, we
proposed QoE-BASD, a new scheme that dynamically selects the number of SVC layers to
be decoded and shown to the end-user aiming at maximizing the user’s QoE. Based on the
results of Figure 3.7, we proposed to use QoE as the main criteria for selecting or with-
drawing a SVC layer at the receiver side. The proposed QoE-BASD algorithm assists the
decoder to decide which layers to be displayed at the end user. QoE-BASD is compatible
with DVB-T2 unidirectional communication principle, since it is executed at the receiver
side without the need for any feedback or signaling messages.
Let us assume that n layers compose the broadcasted video stream. We consider represent-
ing the initial SVC stream with a Matrix noted Mat. Indeed, the aim of this matrix is to
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Algorithm 1

1: loop

2. fori=1tondo

3: Ali] < Compute QoE(Mat;) // Mat; is a vector constituted by the line 7 of the
matrix Mat.

4:  end for

5. Alk]<—max(A)

6 Decode and display the k layers
7: end loop

decompose the initial SVC stream into a combination of layers composing n streams. Each
line of the matrix corresponds to a possible SVC stream composed of k layers (n > k > 1),
whereby each column represents a layer. The element Mat(i,j) is equal to one if the jth
layer is present in the ith SVC stream. Otherwise, the element Mat(i, ) is equal to null.
Usually, the received SVC stream at the decoder side represents the last line of the ma-
trix. Using QoE-BASD, the aim is to build the matrix Mat and selects the line of the
matrix (SVC stream) that maximizes the user’s QoE. In contrast, the classical approach
systematically decodes all the layers composing the last line of the matrix.

1000
1100

Mat474 = 1110 (3.1)
1 111

For simplicity, we consider the above matrix Maty 4, which represents the case of an
initial SVC stream composed by 4 layers. For instance, the first line shows the case of a
SVC stream (noted 1) composed only by the base layer, while the 4th line represents a SVC
stream (noted 4) constituted by the base layer and 3 enhanced layers. The QoE-BASD
algorithm is illustrated in Algorithm 1. First, for each line of the matrix Mat, QoE-BASD
computes MOS by considering the parameters (frpr, Lpr, L1, L2) for line . We denote
by A = (A1, Ag, As, .., A;) the vector containing the ¢ MOS values obtained for each line.
After that, the maximum value of MOS (noted Ay) of this vector is selected. Accordingly,
the kth layers composing the SVC stream are decoded and displayed to the user, while
the other layers (layers higher than k) are withdrawn. The execution periodicity of QoE-
BASD (the loop) is repeated every ¢ seconds, which corresponds to the duration of a GOP.
To build the vector A, we used the PSQA SVC module. As stated before, PSQA needs
to be able to measure the parameters (frpr, Lpr, L1, L2) affecting the SVC quality auto-
matically, above all in real-time. Usually, f;pr is a static value; it can be obtained when
encoding the video stream. Another way of obtaining frpg is by tracking the appearance
of the IDR frames in the video stream. An IDR frame, in turn, can be identified by parsing
the NALU headers that contain the information about whether its payload corresponds
to an IDR frame or not. As mentioned before, higher values of the IDR frequency means
higher resilience to the error propagation, but for the price of larger video sizes. On the
other hand, the NALU loss rate (Lpyr, L1, Lo, ..., Ly) for each SVC layer is obtained by
relying on the Real Time Protocol layer. Combined with RTP simple packetisation mech-
anism (Single NAL Unit) [38], we propose using a multi-session RTP connection for each
layer. In other words, for each layer an independent RTP session is established, where
one NALU is conveyed in one RTP packet. Thus, we can obtain the NALU loss rate for
each SVC layer at the RTP level, either at the decoder side, or by enabling the RTCP
protocol for a remote monitoring if there is a return channel available from the receiver
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to the server. IP traffic is supported in DVB-T2 by either using MPEG-TS encapsulation
or through the Generic Stream Encapsulation (GSE) [39] that provides an appropriate IP
encapsulation over PLPs.

It is important to note that the complexity of the QoE-BASD algorithm mainly depends
on the number of layers n composing the SVC video stream. Since most of the existing
implementations of SVC use three layers (i.e., one base layer and two enhancement layers),
QoE-BASD can be easily implemented in most DVB-T2 products; even in those with low
CPU capacities.
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3.4 QoE-based Multicast optimization in WLAN

3.4.1 Research context and related work

Various applications support multicast; for example, conference meeting, mobile commerce
(mobile auctions), military command and control, distance education, entertainment ser-
vices, and intelligent transport systems. In WLAN, multicast traffic has been set to the
lowest transmission rate (basic rate) in order to reach all mobile nodes especially the fur-
ther ones, because they suffer from important signal fading and interference. The lower
rates disadvantage transmission in terms of channel occupancy since they take longer time
than the higher rates to send the same amount of information. This performance anomaly
has been presented in [40], where it is mentioned that a slow host may considerably limit
the throughput of other hosts roughly to the level of lower rate. Another constraint in mul-
ticast transmission is the lack of acknowledgment and retransmission due to huge amount
of traffic overhead generated by these packets. This is severe when transmission mode is
multicast because the number of acknowledgments/retransmissions will be multiplied by
the number of recipients in the multicast group; this could cause collision due to feedback
implosion.

Rate-adaptation in WLAN has gained high interest, not only in the multicast context but
also for unicast communications. The first and widely used rate adaptation protocol in
commercial products is Auto Rate Fallback (ARF) proposed in [41]. In ARF, when SNR
decreases, an access point tries to recover by decreasing the bandwidth. In fact, the access
point switches to a higher rate when a certain number (ten) of packets has been successfully
received; it switches back to the lower rate when a failure occurs right after rate increase.
If a failure occurs when the number of consecutive successful transmissions is less than ten,
the access point switches to a lower rate only after two consecutive failures. Regardless
of its wide implementation in commercial products, the protocol has a drawback resulting
from the static-threshold approach, which does not adapt well to varying condition in wire-
less networks. To solve disadvantages from the static-threshold approach, Adaptive ARF
(AARF) has been introduced in [42]. The authors also use threshold-based mechanism as
in ARF but instead of setting it to a fixed number, the threshold follows binary exponential
backoff continuously at runtime to better reflect to the channel conditions. In other words,
they multiply by two the number of consecutive successful transmission required to switch
to a higher rate. The mechanism increases the period between successive failed attempts to
use a higher rate results in fewer failures and retransmissions, thus the overall throughput
is improved. Despite that AARF is an efficient mechanism, it cannot be used in multicast
transmission since the implementation of this protocol requires acknowledgment and re-
transmission, which are disabled in multicast. Another popular protocol is Receiver-Based
Auto Rate (RBAR) presented in [43]. It enables the RT'S/CTS mechanism in order to
get /send feedback from receiver. In fact, RTS is sent out before each transmission by the
sender and it is received by the receiver which computes the SNR of the frame. After
consulting a table mapping of SNR and rate, the receiver sends back the transmission rate
for the sender to use in the next transmissions in CTS. RTS and CTS headers have been
modified for this purpose. This mechanism is based on SNR (computed with a priory
channel model), which is a physical parameter that does not always correlate well with
human perception. Moreover, RT'S/CTS mechanism is unusable in multicast transmission.
Based on similar idea of using RTS/CTS in RBAR, Rate Adaptive Multicast protocol
(RAM) has been proposed in [44] for channel estimation and rate selection. In this pro-
tocol, multicast receivers use the RTS packet to measure channel condition and send back
the transmission rate to be used by the sender through CTS packet. In case that a member
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does not receive the data frame correctly, it will send a NACK (Not Acknowledge). For en-
hancing the throughput, the authors added a frame sequence field to RTS. This field is used
by the member to check whether multicast data frame is a new frame or retransmission. If
a frame is a retransmission of a previously successfully received frame, a member will not
participate in this multicast transmission. This reduces the number of retransmissions. It
can be noticed that the protocol makes use of RT'S/CTS, NACK and retransmission, which
are disabled in multicast. In addition, there are many modifications to existing frames. To
overcome the feedback implosion problem, the Leader-based Rate Adaptive Multicasting
for WLANs (LM-ARF) protocol that deploys a leader-based feedback approach and adapts
data rate according to ARF is introduced in [45]. One of the receiving stations, which is
the leader, is responsible for sending ACK on behalf of the participating multicast stations.
If any multicast receiver, which is not the leader, fails to receive a multicast frame, it will
send a negative acknowledgment (NAK) to request retransmission. The AP adjusts the
contention window size in a manner same as for unicast transmission, thus keeping fairness
between unicast flows. A new frame type called CTS-to-Self has been added in order to
guarantee the channel access and announcing the transmission of a multicast frame. This
mechanism covers several aspects such as fairness, reliability, and performance; however,
since it uses ARF, it also inherits the static-threshold approach and drawback of ARF as
well.

To avoid using RT'S/CTS, Auto Rate Selection for Multicast (ARSM) protocol is proposed
in [46], which uses a multicast channel probe operation (MCPO), where a multicast probe
frame sent out by AP before sending multicast traffic. In this protocol, the user having
the lowest SNR will be the one in charge of replying to the AP by a multicast response.
The AP then selects the multicast data rate based on feedback in three different ways:
explicit, implicit, and no feedback. For avoiding collision, multicast users select backoff
timer according to their SNR value.

Taking into account user perception, SNR-based Auto Rate for Multicast (SARM) is pre-
sented in [47]. It adapts transmission rate according to SNR of the node experiencing the
worst channel condition. SNR references are obtained from a table listing required SNR
for PSNR (peak signal to noise ration) to be higher than 30 (representing good quality)
for each transmission rate. By changing multicast transmission rate on the basis of SNR
values reported by mobile nodes, the wireless channel is used more efficiently. To over-
come the lack of feedback mechanism in multicast, the authors propose a channel probing
mechanism to inform the access point of the channel quality at mobile nodes. To avoid
collision when nodes transmit feedback to the access point, the author also proposed a
backoff timer for each mobile node based on the received SNR. But using PSNR as the
metric for changing rate does not always reflect accurately the user experience.

For better comprehension, we summarized the described schemes in Table 3.5.

3.4.2 Contributions

Similar to the SARM mechanism, we proposed two human-centric mechanisms for control-
ling the data rate of multicast communications in WLAN. Unlike SARM, we used PSQA
which is more efficient to reflect user satisfaction than PSNR. The first contribution uses a
static threshold for deploying the multicast communication data rate, whereas the second
one employs a dynamic threshold depending on the network conditions.
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Table 3.5: Summary of rate adaptation protocols

Protocol | Threshold Metric Feedback
Unicast ARF static tx failure ACK
AARF dynamic tx failure ACK
RBAR static SNR RTS/CTS
Multicast RAM static SNR RTS/CTS, NACK
ARSM static SNR Channel probing
LM-ARF static tx failure Leader-based
SARM static SNR, PSNR | Channel probing

Static Approach

We used QoE as indicator for switching from one transmission rate to another because it
is more relevant to adapt the transmission rate taking into account the quality perceived
at the end-user rather than other signal parameters. Also, as we explained earlier, the
physical modulation plays an important role in such an environment and hence adapting
modulation would help facing the bad condition.

Assuming PSQA running on every multicast client, Figure 3.8 illustrates the behavior of an
access point in our scheme during a multicast session. At the beginning, the access point
transmits multicast traffic at its highest rate. For communications between access point
and mobile nodes, the IEEE 802.11k standard is used, which specifies many measurement
requests and reports that are useful for our schemes. It can be noticed that with IEEE
802.11k measurements, our control traffic is less significant in terms of overhead as control
traffic is sent much less frequently than other packet-level schemes. For example, control
traffic can be sent every second in our scheme comparing to every single packet in the
other packet-level schemes. An access point in our schemes initiates requests for the actual
QoE to users at different timestamps at the beginning of monitoring period in the order
of session joining. This is to avoid collision explosion of reports sent back by all users.
With PSQA running on every station, users compute their QoE and return it to the access
point. Thanks to this information, when condition changes, the access point adapts its
transmission rate accordingly. The AP monitors its attached clients every monitoring
interval (m;). Note that our scheme uses time scale in order of a second, which is more
reasonable than using a per-packet scale when dealing with human perception. When
the timer expires, the AP begins by sending requests to multicast members in order of
membership precedence, which avoids collision of reports sent back from members. When
a report is received, AP updates the minimum MOS (min) of the group accordingly. Once
the last report has been received, it compares min with the lower bound (Ib). This b
is computed by adding a margin (mg) to a reference score (rf), which is an acceptable
score for the application. If min is less than b, then AP switches immediately to one-step
lower rate until minimum rate. If min is higher than [b, then AP increases the counter
(representing the duration that AP has been waiting). If the counter reaches a threshold
(th), then AP switches to one-step upper rate until maximum rate.

It can be noticed that when condition degrades, the AP decreases the transmission
rate immediately. This is to adapt instantly to bad conditions because it is essential to
recover from the bad situation rapidly. When network condition becomes better (i.e. min
is higher than [b) for a certain number of times, the AP switches to higher rate. This
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Figure 3.8: Access point behavior during multicast session

waiting threshold is used to avoid a ping-pong effect; before sending at higher rate (higher
risk of BER), we make sure that this condition remains quite stable.

Dynamic Approach

We have noticed from previous works that all proposed schemes use a static-threshold rate
adaptation for multicast, and none of them has considered dynamic threshold adaptation;
the parameters are number of transmission failure or SNR, as shown in Table 3.5. The prob-
lematic issue associated with static approach is the adaptability to the network condition
fluctuation, which is common in wireless environment.

In order to overcome different limitations and to adapt to the environment and user
perception dynamically, we propose QoE-based Dynamic Rate Adaptive Multicast (Q-
DRAM). It is a novel mechanism that dynamically adjusts the transmission rate according
to end-user perception terms of QoE. Although it is similar to the static approach because
it also uses QoE as metric, this mechanism adds dynamic adaptability since it can adjust
to network condition dynamically.

The most important decision to make in rate adaptation is mainly on how long to wait
(backoff) before changing rate.

e For switching down, the decision is quite simple because we do not want to stay in
bad situation so we switch rapidly to a lower rate. From the literature, there are two
causes for switching down. The first one is failure due to varying network condition;
this is naturally happened when network condition changes due to mobility, inter-
ference, etc. In this case, the sender should wait for two consecutive failures before
switching down in order to avoid constantly changing rate up and down (ping-pong
effect). The second cause is due to the action that the sender just took to switch
to a higher rate; in this case of failure here, the sender switches immediately to the
previous rate because the new rate appears to be too high. For D-QRAM, we decided
to switch down immediately after both cases. Note that failure in this scheme occurs
when QokE is less than a desired threshold.

e For switching up, we use dynamic-threshold strategy called binary ezponential back-
off (BEB) similar to AARF. This strategy allows us to adapt to varying network
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condition. With BEB, we increase the backoff exponentially when failure occurs or
repeats after the successful attempt of rate increase. It means that if the QoE is less
than desired (fail) right after switching up (just up), we switch down immediately
and before trying to switch up again we wait longer by setting the backoff timer
to be twice of the previous value. For the other case of failure (varying condition),
we do not update the backoff stage. Figure 3.9 illustrates how BEB works in our
scheme. At the beginning, the backoff timer is set to minimum value (thMIN). Dur-
ing multicast session, it will be reset to thMIN again after a successful attempt of
rate increase. The backoff timer cannot exceed thMAX. Therefore, the backoff timers
corresponding to each stage in Q-DRAM are {0:1; 1:2, 2:4}.
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Figure 3.9: Binary exponential backoff in Q-DRAM
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We describe in Fig. 3.10, the behavior of an AP during a multicast session. We assume
PSQA running on every multicast node. At the beginning, the access point transmits
multicast traffic at its highest rate. The AP monitors its ongoing clients every monitoring
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interval (m;) in unit of second. When the timer expires, AP begins by sending requests to
multicast members in the order of membership precedence. This helps to avoid collision
of reports sent back from members. When a report is received, AP updates the minimum
MOS (min) of the group accordingly. Once the last report has been received, it compares
min with the desired QoE called as lower bound (/b), computed as in our static scheme.
If min is less than Ib, then AP switches immediately to one-step lower rate until minimum
rate; in case of unsatisfied QoE just after rate increase, the backoff stage is updated. If
min is higher than [b, then AP increases the counter (representing the duration that AP
has been waiting); if the counter reaches a threshold (th;) where i is backoff stage, then
AP switches to one-step upper rate and the backoff stage is reset.

3.5 Summary of results

To conclude, we can summarize our representative research works relaying on human-
oriented contributions as follows. We built a new automatic QoE measurement tool for
SVC. After describing the parameters that affect the quality of SVC streams and their re-
lationship with QoE, we explained how to capture this non-linear relationship with PSQA
tool. The results showed that our QoE estimation is highly accurate and the obtained
scores are close to those given by real users. This is reflected by the overall mean square
error of about 0.1777 on the MOS scale from 0 to 5. In addition, we used the Pearson
Correlation Coefficient (PCC) as recommended by the Video Expert Group (VQEG) [49]
to validate the objective models for video quality assessment. The mean PCC for the
tested video is equal to 0.9406, which represents a good result as the highest accuracy
obtained with a PCC equals to one. To the best of our knowledge, this automatic QoE
tool measurement is the only one that considered packet loss as a parameter to evaluate
user perception for SVC encoded videos.

We evaluated the concept of associating DVB-T2 with SVC in order to broadcast high
added-value video services to end-user. Based on the above mentioned SVC QoE tool
we conducted measurements, which showed that decoding all SVC layers is not always
the best way to enhance QoE, especially when SVC enhanced layers experience packet
losses. To improve user QoE, we demonstrated that, in some cases, it is better to with-
draw an enhanced layer that experiences packet losses rather than decoding its content.
We considered this observation when designing our proposed QoE-BASD mechanism that
dynamically selects the SVC layers to be decoded and displayed to end-users in order to
increase QoE. We modeled QoE-BASD using a Time Discrete Markov chain model, and
validated the analytical results using computer simulations. The obtained results clearly
demonstrated the enhancements achieved by QoE-BASD as it improves user QoE under
different channel conditions.

Another contribution that showed the efficiency of using QoE for controlling network re-
sources is the one that addressed the case of multicast communications in WLAN. We
have seen that using the default basic rate for multicast transmission (conservative ap-
proach), has disadvantages not only in network utilization but also in quality perception
at the users. Deploying the maximum rate achieves better performance if channel quality
is good, however when the channel condition degrades this high rate leads to poor net-
work performance. Unlike the existing schemes that used SNR as the main metric for
changing rate, we have proposed a novel mechanism using QoE to trigger rate adaptation
in wireless multicast. Our scheme is dynamic, in a sense that it can adapt to varying
wireless environment. By using simulation, we compared Q-DRAM approach to 1Mbps
fixed-rate multicast (conservative approach), 11Mbps fixed-rate (throughput maximizing
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approach), and SARM-like mechanism (user-perception approach). Thanks to PSQA, Q-
DRAM achieved the maximum MOS scores despite the considered network configurations
(in term of loads and user mobility). In addition, Q-DRAM successfully achieved a trade-
off between maximizing the network resources utilization (it uses the maximum rate since
it is possible), and increasing user QokE.

QoE metric contributions were conducted as part of the PhD program of Wael Cherif, and
in collaboration with Kamal Deep Singh (Post-doc at Dionysos team). Human-centric con-
tributions were done as part of the PhD program of Kandaraj Piamrat and Majd Ghareeb,
and in collaboration with Jean-Marie Bonnin (Professor at Télécom Bretagne) and César
Viho (Professor at the University of Rennes 1).
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Chapter 4

Conclusion

My works on WLAN were highly motivated by the ineffectiveness of the IEEE 802.11 stan-
dard and its extension 802.11e to guarantee QoS for emerging added-value applications like
VoIP, video streaming, IPTV and network gaming. In this context, we proposed several
contributions to improve the 802.11 QoS oriented procedures: intra and inter TC service
differentiation, admission control, efficient support of multicast communication, etc. Our
control-oriented approaches have the originality to be dynamic and adaptive to the wireless
network dynamic (contention level, channel conditions) as well as to service application
requirement (delays, bandwidth, QoE). Besides enhancing the user experience, our con-
tributions were also beneficial for the network operator, where we were able to efficiently
optimize the network resources for a better QoS support. Our contributions were based on
both network-centric and human-centric information to control network mechanisms. By
using human-centric information we were capable to consider user experience rather than
just technical QoS information, which represents one of the novel contribution in this field
of QoS support in WLAN.

Now, the 802.11-based WLANSs are mature and gained significant support from industrials
and academics to update and build new standards for increasing the capacity of WLAN to
support added-value applications, which impose strict QoS guarantee. Indeed, the IEEE
802.11 group has launched recent activities through new working groups, such as:

o [EEE 802.11aa: this group is dedicated to efficiently support video streaming and
multicast communication in WLAN|,

e IEEE 802.11ad [1]: this group aims to define new MAC and physical protocols to
support the very high throughput.

Accordingly, I will concentrate more on LTE-based cellular networks where there are many
challenges to address, especially in the EPC part. Indeed, mobile traffic is increasing at a
tremendous pace, exceeding far beyond the original capacities of mobile operator networks.
This huge mobile traffic is associated with a wide plethora of emerging bandwidth-intensive
mobile applications popular among an ever-growing community of mobile users. Besides
the non usual traffics generated by MTC and social networks, current mobile networks are
highly centralized, leading to high demand on central locations due to “backhauling” of all
data traffic, to dramatic increases in bandwidth requirements and processing load resulting
in undesirable bottlenecks, and last but not least, to long communication paths between
users and servers. The effects are wasting core network resources, leading to undesirable
delays, and ultimately resulting in poor QoE for the users.

Meanwhile, I will pursue working on the QoE monitoring techniques and their use to control
network mechanisms, where I am particularly interested to work on the QoE prediction
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techniques.
In the following I will detail some research perspective on the above-mentioned fields.

4.1 QoE prediction and its use for controlling network mech-
anisms

Most of our human-centric oriented contributions are based on the QoE information mea-
sured at a specific moment (the current user experience) with PSQA. But, what if we can
predict the future QoE values?

In fact, QoE prediction will allow the network operator to have a better view in time of the
evolution of QoE, and hence to better allocate the network resources. We begun exploring
this principle of QoE prediction in [2], where we proposed a model of prediction based on
the QoS log information of a network operator. Thanks to this model, we proposed an
admission control between Femtocell and Macrocell, which aims to maximize user QoE.
However, this work concentrates further on the benefits of using QoE prediction for enforc-
ing admission control algorithm, than on the details of the prediction mechanism. Indeed,
we used a static model which cannot adapt to the network dynamics. Therefore, there is
a gap to fill in order to develop an accurate QoE prediction model based on PSQA.

4.2 Mobile Cloud

A straightforward solution to the centralized issue of the cellular networks may consist
in having operators invest in speed or upgrading their core network nodes to comfortably
accommodate traffic peak hours of the emerging bandwidth-intensive mobile applications.
Whilst this is technically and technologically possible, it economically represents a signif-
icant challenge for operators, particularly due to the fact that the Average Revenue per
User (ARPU) is not growing as quickly as traffic demand, particularly given the trend
towards flat rate business models. There has been thus need for cost-effective solutions
that can help operators accommodate such huge mobile network traffic while keeping addi-
tional investment in the mobile infrastructure to the minimum. In addition to application
type-based traffic admission control techniques (e.g., throttling video traffic), an impor-
tant solution consists in Selective IP Traffic Offload (SIPTO) as close to the Radio Access
Network (RAN) as possible [3]. The key enabler of efficient SIPTO is to place data anchor
and mobility gateways close to RAN, essentially leading to a relatively decentralized mobile
network deployment.

On the other hand, cloud computing is gaining a great momentum. Its market is expanding
at a high speed, thanks to the multiple features it supports (e.g., multi-tenancy support,
pay as you go, elasticity and cost-efficient scalability) and the new business models it pro-
vides based on infrastructure sharing (Infrastructure-, Platform-, Software-as a Service —
IaaS, PaaS, and SaaS). In the telecommunications area, cloud computing has been gaining
lots of attention. Indeed, there are already many Telcos and carrier providers deploying
cloud-based services; some deployments are only for internal use whereas others are being
sold as a service. The fast growing business of clouding computing is calling for distributed
regional Data Centers (DC) [4][5].

There are mainly two perspectives which motivate us to explore the concept of using cloud
in the context of cellular networks: Follow Me Cloud (FMC) concept and EPC as a Service.
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Figure 4.1: FMC concept.

4.2.1 Follow Me Cloud (FMC)

Actually, cloud providers are distributing their DCs due to growing business. As for mobile
operators, they need to decentralize their networks to cope with the growing number of
smart phones and associated bandwidth-intensive services. The expected outcome network
architecture is as depicted in Figure 4.1. Indeed, the figure shows the case of a decentralized
mobile network architecture whereby core network gateways such as PDN-GWs and S-GW,
in the context of the EPS, are geographically distributed. Also shown is a distributed
cloud network consisting of multiple regional DCs, which are geographically distributed
and interconnected.

In such decentralized mobile networks, the main objective of any mobile operator behind
SIPTO is to ensure an optimal mobile connectivity service; i.e., a User Equipment shall
be always connected to the optimal data anchor and mobility gateways such as PDN-GWs
and S-GWs. However, it is very likely to have a UE connected to an optimal data anchor
gateway (as per its current location) but accessing a mobile service from a distant DC in
a distant location (e.g., UE being in location 2, having its data anchored at P-GW2, but
receiving service from DC 1). This intuitively results in an inefficient “mobile connectivity
service” given the absence of an optimal end-to-end connectivity. The objective of the
FMC concept is to enable a user to be always connected to the optimal data anchor
and mobility gateway and to access its data and/or service from the optimal DC, i.e.,
geographically /topologically nearest (or any other metric such as load, processing speed)
DC.

There are several interesting issues to study before that FMC concept will be a reality:

e [P Service continuity during UE mobility. It is important to maintain the service
continuity, as the user is mobile, and can change the anchor PDN-GW and hence the
IP address during its movement.
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e Service migration algorithm, where it is important to know the criterion used to
decide to migrate or not a service from one DC to another one.

e Use the concept of Software Defined Networking (SDN) in order to implement the
FMC concept

4.2.2 EPC as a Service

One solution to reduce the congestion at the cellular core nodes is by virtualizing the
EPC nodes like MME, PDN-GW and S-GW. In fact, virtualizing EPC nodes permits the
network operator to create or destroy a virtual instance of the network on demand. For
instance, it can increase the number of gateway nodes when the traffic grows.

This virtualization is now implemented with SDN tools, where it is possible to host the
virtualized EPC throughout the distributed regional DC of a cloud operator. Thus, it will
be easy to set up a network node on demand and in a distributed way, implementing thus
the concept of “EPC as a service”. Besides reducing operator cost (no need to invest in
more infrastructure elements), this virtualization can help to reduce congestion at the EPC
part.

We are interested in studying the concept of EPC as a service to build tools for network
dimensioning. These tools could be based on simulation or analytical methods, where the
aim is to establish relation between, for instance, the number of gateway to create and an
offered amount of traffic.

4.3 Small Cell Network (SCN)

SCN is a new architectural model for cellular networks, where the principle is to use
base stations (picocell, microcell, femtocell) with low radio coverage (about few meters).
Associated to the classical macrocell, SCN increases the capacity of a network operator to
handle more traffic and avoid congestion in the EPC (by offloading mobile traffic through
the SCN). Thanks to their reduced cost, SCN constitute an interesting opportunity to
extend the network operator coverage for regions where it is not profitable to invest in
network infrastructure (due to economic or technical reasons).

Due to their flexibility and the low cost deployment, SCNs have a strong potential to be
used for connecting areas like those in the emerging countries, where it is important to
propose solutions that: (i) minimize the cost of deployment and maintenance; (ii) minimize
the energy consumption or use other alternative energy sources.

Deploying SCN while considering the above constraints introduces several issues, such
as routing between the SCNs (there is no backhaul network), forcing the non active BS
to enter the sleep mode, sharing the infrastructure among the operators; which still are
untreated by the research community.

Rather than using SCN for offloading traffic, we intend to use the SCN concept as a
solution for increasing the operator coverage in areas where investing for costly network
infrastructure is not profitable.
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