. A. Bibliographie-[-aa99-]-m and . Aziz-alaoui, Differential equations with multispiral attractors, International Journal of Bifurcation and Chaos, vol.09, issue.06, pp.1009-1039, 1999.

. [. Aziz-alaoui, Synchronization of Chaos, Encyclopedia of Mathematical Physics, pp.213-226, 2006.
DOI : 10.1016/B0-12-512666-2/00105-X

. S. Abj-+-00a-]-v, A. G. Anishchenko, N. B. Balanov, N. B. Janson, G. V. Igosheva et al., Entrainment between heart rate and weak noninvasive forcing, International Journal of Bifurcation and Chaos, vol.10, issue.10, pp.2339-2348, 2000.

. S. Abj-+-00b-]-v, A. G. Anishchenko, N. B. Balanov, N. B. Janson, G. V. Igosheva et al., Synchronization of cardiorhythm by weak external forcing, Discrete Dynamics in Nature and Society, vol.4, issue.3, pp.201-206, 2000.

]. J. Bbc-+-92, J. Banks, G. Brooks, G. Cairns, P. Davis et al., On Devaney's definition of chaos, Amer. Math. Monthly, vol.99, issue.4, pp.332-334, 1992.

A. [. Buzsaki and . Draguhn, Neuronal Oscillations in Cortical Networks, Science, vol.304, issue.5679, pp.1926-1938, 2004.
DOI : 10.1126/science.1099745

I. Bendixson, Sur les courbes d??finies par des ??quations diff??rentielles, Acta Mathematica, vol.24, issue.0, pp.1-88, 1901.
DOI : 10.1007/BF02403068

R. Berger, The undecidability of the domino problem, Memoirs of the American Mathematical Society, vol.0, issue.66, p.72, 1966.
DOI : 10.1090/memo/0066

E. [. Blanchard, S. Glasner, A. Kolyada, and . Maass, On Li-Yorke pairs, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.2002, issue.547, pp.51-68, 2002.
DOI : 10.1515/crll.2002.053

. Bhm-+-05-]-l, F. M. Becks, H. Hilker, K. Malchow, H. Jurgens et al., Experimental demonstration of chaos in a microbial food web, Nature, vol.435, pp.1226-1229, 2005.

B. [. Blanchard, S. Host, and . Ruette, Asymptotic pairs in positive-entropy systems, Ergodic Theory and Dynamical Systems, vol.22, issue.03, pp.671-686, 2002.
DOI : 10.1017/S0143385702000342

N. J. Balmforth, A. Provenzale, and R. Sassi, A hierarchy of coupled maps, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.12, issue.3, pp.719-731, 2002.
DOI : 10.1063/1.1502929

M. Benedicks and L. Young, Sinai-Bowen-Ruelle measures for certain H???non maps, Inventiones Mathematicae, vol.287, issue.4, pp.541-576, 1993.
DOI : 10.1007/BF01232446

E. [. Campos-cantón, J. S. Campos-cantón, H. C. Murguía, and . Rosu, A simple electronic circuit realization of the tent map, Chaos, Solitons & Fractals, vol.42, issue.1, pp.12-16, 2009.
DOI : 10.1016/j.chaos.2008.10.037

L. Chua, M. Komuro, and T. Matsumoto, The double scroll family, IEEE Transactions on Circuits and Systems, vol.33, issue.11
DOI : 10.1109/TCS.1986.1085869

R. [. Colet and . Roy, Digital communication with synchronized chaotic lasers, Optics Letters, vol.19, issue.24, pp.2056-2058, 1994.
DOI : 10.1364/OL.19.002056

. [. Díaz-guilera, Dynamics towards synchronization in hierarchical networks, Journal of Physics A: Mathematical and Theoretical, vol.41, issue.22, p.41224007, 2008.
DOI : 10.1088/1751-8113/41/22/224007

[. Jong and D. Thieffry, Modélisation, analyse et simulation des réseaux génétiques, Médecine/Science, vol.18, pp.492-502, 2002.

S. [. Eytan and . Marom, Dynamics and Effective Topology Underlying Synchronization in Networks of Cortical Neurons, Journal of Neuroscience, vol.26, issue.33, pp.8465-76, 2006.
DOI : 10.1523/JNEUROSCI.1627-06.2006

[. Eckmann, D. Ruelle, and . Addendum, Addendum: Ergodic theory of chaos and strange attractors, Reviews of Modern Physics, vol.57, issue.4, p.1115, 1985.
DOI : 10.1103/RevModPhys.57.1115

]. J. Fer99 and . Ferrell, Building a cellular switch : more lessons from a good egg, Bioessays, vol.21, issue.10, pp.866-870, 1999.

]. J. Fer02 and . Ferrell, Self-perpetuating states in signal transduction : positive feedback, double-negative feedback and bistability. Current opinion in cell biology, pp.140-148, 2002.

B. Fernandez, GLOBAL SYNCHRONIZATION IN TRANSLATION INVARIANT COUPLED MAP LATTICES, International Journal of Bifurcation and Chaos, vol.18, issue.11, pp.3455-3459, 2008.
DOI : 10.1142/S0218127408022494

C. [. Gardner, J. J. Cantor, and . Collins, Construction of a genetic toggle switch in escherichia coli, Nature, issue.6767, pp.403339-403381, 2000.

J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems , and bifurcations of vector fields, Applied Mathematical Sciences, vol.42

C. Bryan and . Goodwin, Oscillatory behavior in enzymatic control processes Advances in enzyme regulation, pp.425-428, 1965.

[. Goodman-strauss, Matching Rules and Substitution Tilings, The Annals of Mathematics, vol.147, issue.1, pp.181-223, 1998.
DOI : 10.2307/120988

[. Goodman-strauss, Aperiodic Hierarchical Tilings, Foams and emulsions (Cargèse, pp.481-496, 1997.
DOI : 10.1007/978-94-015-9157-7_28

J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Publications math??matiques de l'IH??S, vol.10, issue.1, pp.59-72, 1979.
DOI : 10.1007/BF02684769

E. Hopf, Abzweigung einer periodischen Lösung von einer stationären eines Differentialsystems, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl, vol.95, issue.1, pp.3-22, 1943.

X. [. Huang and . Ye, Devaney's chaos or 2-scattering implies Li???Yorke's chaos, Topology and its Applications, vol.117, issue.3, pp.259-272, 2002.
DOI : 10.1016/S0166-8641(01)00025-6

[. Iooss, R. Helleman, and R. Stora, Comportement chaotique des systèmes déterministes, Applied Mathematical Sciences, 1983.

G. Iooss and D. D. Joseph, Elementary stability and bifurcation theory. Undergraduate Texts in Mathematics, 1990.

H. De, J. , and J. Geiselmann, Modeling and simulation of genetic regulatory networks by ordinary differential equations, Differential Equations, vol.294, pp.766-769, 2003.

M. [. Jost and . Joy, Spectral properties and synchronization in coupled map lattices, Physical Review E, vol.65, issue.1, p.16201, 2001.
DOI : 10.1103/PhysRevE.65.016201

[. Kaneko, Theory and applications of coupled map lattices. Nonlinear Science : Theory and Applications, 1993.

]. A. Kat80 and . Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. HautesÉtudesHautes´HautesÉtudes Sci. Publ. Math, issue.51, pp.137-173, 1980.

]. H. Kit02a and . Kitano, Looking beyond the details : a rise in system-oriented approaches in genetics and molecular biology, Current Genetics, vol.41, issue.1, pp.1-10, 2002.

]. H. Kit02b and . Kitano, Systems biology : A brief overview, Science, vol.295, issue.5560, pp.1662-1664, 2002.

R. [. Kramer, . Neri, and . Erratum, obtained by projection, Acta Crystallographica Section A Foundations of Crystallography, vol.40, issue.5, pp.580-587, 1984.
DOI : 10.1107/S0108767384001203

C. [. Kaufman, R. Soulé, and . Thomas, A new necessary condition on interaction graphs for multistationarity, Journal of Theoretical Biology, vol.248, issue.4, pp.676-685, 2007.
DOI : 10.1016/j.jtbi.2007.06.016

]. Y. Kur84 and . Kuramoto, Chemical oscillations, waves, and turbulence, volume 19 of Springer Series in Synergetics, 1984.

W. Lu and T. Chen, Synchronization analysis of linearly coupled networks of discrete time systems, Physica D: Nonlinear Phenomena, vol.198, issue.1-2, pp.148-168, 2004.
DOI : 10.1016/j.physd.2004.08.024

J. Leloup and A. Goldbeter, Incorporating the Formation of a Complex between the PER and TIM Proteins, Journal of Biological Rhythms, vol.380, issue.1, pp.70-87, 1998.
DOI : 10.1177/074873098128999934

N. Edward and . Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci, vol.20, issue.2, pp.130-141, 1963.

[. Lozi and A. Saidi, Etude des motifs dans les oscillations de la réaction de Bélousov-Zhabotinsky(I) : Existence d'un confineur principal pour un modèle contraint particulier. Les annales de l'Enit, pp.69-98, 1989.

T. Y. , L. , and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, vol.82, issue.10, pp.985-992, 1975.

]. F. Ly85a, L. Ledrappier, and . Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula, Ann. of Math, vol.122, issue.23, pp.509-539, 1985.

]. F. Ly85b, L. Ledrappier, and . Young, The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension, Ann. of Math, vol.122, issue.23, pp.540-574, 1985.

A. [. Mcadams and . Arkin, Stochastic mechanisms in gene expression, Proceedings of the National Academy of Sciences, vol.94, issue.3, pp.814-819, 1997.
DOI : 10.1073/pnas.94.3.814

Y. Meyer and . Quasicrystals, Diophantine approximation and algebraic numbers, Beyond quasicrystals (Les Houches, pp.3-16, 1994.

. Misiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon

F. [. Monod and . Jacob, General Conclusions: Teleonomic Mechanisms in Cellular Metabolism, Growth, and Differentiation, Cold Spring Harbor Symposia on Quantitative Biology, vol.26, pp.389-401, 1961.
DOI : 10.1016/B978-0-12-460482-7.50044-0

[. Morales, M. J. Pacífico, and E. R. Pujals, On C1 robust singular transitive sets for three-dimensional flows, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.326, issue.1, pp.81-86, 1998.
DOI : 10.1016/S0764-4442(97)82717-6

[. Munteanu and R. V. Solé, Phenotypic diversity and chaos in a minimal cell model, Journal of Theoretical Biology, vol.240, issue.3, pp.434-442, 2006.
DOI : 10.1016/j.jtbi.2005.10.013

]. J. Mur93 and . Murray, Mathematical biology, Biomathematics, vol.19, 1993.

J. [. Novak and . Tyson, Numerical analysis of a comprehensive model of m-phase control in xenopus oocyte extracts and intact embryos, Journal of cell science, vol.106, issue.4, pp.1153-1168, 1993.

H. Othmer, The qualitative dynamics of a class of biochemical control circuits, Journal of Mathematical Biology, vol.221, issue.1, pp.53-78, 1976.
DOI : 10.1007/BF00307858

M. Thattai, H. N. Lim, B. I. Shraiman, and A. Van-oudenaarden, Multistability in the lactose utilization network of escherichia coli, Nature, issue.6976, pp.427737-740, 2004.

M. Louis, T. L. Pecora, and . Carroll, Synchronization in chaotic systems, Phys. Rev. Lett, vol.64, pp.821-824, 1990.

M. Louis, T. L. Pecora, and . Carroll, Driving systems with chaotic signals, Phys. Rev. A, vol.44, pp.2374-2383, 1991.

E. Pécou and M. Domijan, The interaction graph structure of mass-action reaction networks, Journal of Mathematical Biology, 2011.

[. Pécou, Desychronization of one-parameter families of stable vector fields, Nonlinearity, vol.19, issue.2, pp.261-276, 2006.
DOI : 10.1088/0951-7715/19/2/001

[. Pécou, Mathematical comments on basic topics in systems biology Mathematical and computational methods in biology : proceedings CIMPA-UNESCO summer school, 2006.

[. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants, 1996.
DOI : 10.1007/978-1-4613-8476-2

E. Pécou, A. Maass, D. Remenik, J. Briche, and M. Gonzalez, A mathematical model for copper homeostasis in Enterococcus hirae, Mathematical Biosciences, vol.203, issue.2, pp.222-239, 2006.
DOI : 10.1016/j.mbs.2006.04.009

C. Poignard, Inducing chaos in a gene regulatory network by coupling an oscillating dynamics with a hysteresis-type one, Journal of Mathematical Biology, vol.78, issue.2, 2012.
DOI : 10.1007/s00285-013-0703-5

URL : https://hal.archives-ouvertes.fr/hal-00586219

C. Poignard, Discrete synchronization of hierarchically organized dynamical systems, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00755688

[. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization : a universal concept in nonlinear sciences, volume 12 of Cambridge Nonlinear Science Series, 2001.

A. Richard and J. Comet, Stable periodicity and negative circuits in differential systems, Journal of Mathematical Biology, vol.1, issue.3, pp.593-600, 2011.
DOI : 10.1007/s00285-010-0388-y

URL : https://hal.archives-ouvertes.fr/hal-01242441

M. Rosenblum and A. Pikovsky, Synchronization: From pendulum clocks to chaotic lasers and chemical oscillators, Contemporary Physics, vol.216, issue.5, pp.401-416, 2003.
DOI : 10.1103/PhysRevLett.90.088101

]. L. Shi65 and . Shilnikov, A case of the existence of a denumerable set of periodic motions, Sov. Math. Dokl, vol.6, pp.163-166, 1965.

S. Smale, Diffeomorphisms with Many Periodic Points, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp.63-80
DOI : 10.1515/9781400874842-006

T. [. Shimojo, R. Ohtsuka, and . Kageyama, Oscillations in notch signaling regulate maintenance of neural progenitors, International Journal of Developmental Neuroscience, vol.26, issue.8, p.58, 2008.
DOI : 10.1016/j.ijdevneu.2008.09.140

C. Soulé, Graphic Requirements for Multistationarity, Complexus, vol.1, issue.3, pp.123-133, 2003.
DOI : 10.1159/000076100

. J. John, K. Tyson, B. Chen, and . Novak, Sniffers, buzzers, toggles and blinkers : dynamics of regulatory and signaling pathways in the cell, Current Opinion in Cell Biology, vol.15, issue.2, pp.221-231, 2003.

R. Thomas and R. Ari, Biological Feedback, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00087681

R. Thomas, On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations, pp.180-193, 1981.
DOI : 10.1007/978-3-642-81703-8_24

R. Thomas, DETERMINISTIC CHAOS SEEN IN TERMS OF FEEDBACK CIRCUITS: ANALYSIS, SYNTHESIS, "LABYRINTH CHAOS", International Journal of Bifurcation and Chaos, vol.09, issue.10, pp.1889-1905, 1999.
DOI : 10.1142/S0218127499001383

]. C. Tre84 and . Tresser, About some theorems by L. P. ? Sil nikov

[. Théor, P. A. Tresser, H. Worfolk, and . Bass, Master-slave synchronization from the point of view of global dynamics, Chaos, vol.40, issue.54, pp.441-461693, 1984.

]. A. Tyc52 and . Tychonoff, Systems of differential equations containing small parameters in the derivatives, Mat. Sbornik N. S, vol.31, issue.73, pp.575-586, 1952.

[. Tyson, On the existence of oscillatory solutions in negative feedback cellular control processes, Journal of Mathematical Biology, vol.9, issue.4, pp.311-315, 1975.
DOI : 10.1007/BF00279849

M. Viana, What???s new on lorenz strange attractors?, The Mathematical Intelligencer, vol.50, issue.1, pp.6-19, 2000.
DOI : 10.1007/BF03025276

S. Wiggins, Global bifurcations and chaos Analytical methods, Applied Mathematical Sciences, vol.73, 1988.

G. Herbert, L. Winful, and . Rahman, Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers, Phys. Rev. Lett, vol.65, pp.1575-1578, 1990.

C. Wu, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity, vol.18, issue.3, 2005.
DOI : 10.1088/0951-7715/18/3/007

L. Young, What are SRB measures, and which dynamical systems have them ?, Journal of Statistical Physics, vol.108, issue.5/6, pp.733-754, 2002.
DOI : 10.1023/A:1019762724717