N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1092, 1953.
DOI : 10.1063/1.1699114

P. Langevin, Sur la théorie du mouvement brownien, CR Acad. Sci. Paris, vol.146, pp.530-533, 1908.

A. Laio and M. Parrinello, Escaping free-energy minima, Proceedings of the National Academy of Sciences, pp.12562-12566, 2002.
DOI : 10.1073/pnas.202427399

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC130499

M. Iannuzzi, A. Laio, and M. Parrinello, Efficient Exploration of Reactive Potential Energy Surfaces Using Car-Parrinello Molecular Dynamics, Physical Review Letters, vol.90, issue.23, p.238302, 2003.
DOI : 10.1103/PhysRevLett.90.238302

F. Wang and D. P. Landau, Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States, Physical Review Letters, vol.86, issue.10, pp.2050-2053, 2001.
DOI : 10.1103/PhysRevLett.86.2050

F. Wang and D. P. Landau, Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram, Physical Review E, vol.64, issue.5, p.56101, 2001.
DOI : 10.1103/PhysRevE.64.056101

A. Szabo and N. S. Ostlund, Modern quantum chemistry : introduction to advanced electronic structure theory, 1996.

C. Møller and M. S. Plesset, Note on an Approximation Treatment for Many-Electron Systems, Physical Review, vol.46, issue.7, pp.618-622, 1934.
DOI : 10.1103/PhysRev.46.618

W. M. Foulkes, L. Mitas, R. J. Needs, and G. , Quantum Monte Carlo simulations of solids, Reviews of Modern Physics, vol.73, issue.1, pp.33-83, 2001.
DOI : 10.1103/RevModPhys.73.33

D. M. Ceperley and M. H. Kalos, Quantum many-body problems, Monte Carlo Methods in Statistical Physics, pp.145-194, 1986.
DOI : 10.1007/978-3-642-82803-4_4

J. L. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, The Journal of Chemical Physics, vol.123, issue.23, p.234505, 2005.
DOI : 10.1063/1.2121687

H. B. Casimir and D. Polder, The Influence of Retardation on the London-van der Waals Forces, Physical Review, vol.73, issue.4, pp.360-372, 1948.
DOI : 10.1103/PhysRev.73.360

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol.81, issue.8, pp.3684-3690, 1984.
DOI : 10.1063/1.448118

H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, The Journal of Chemical Physics, vol.72, issue.4, pp.2384-2393, 1980.
DOI : 10.1063/1.439486

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, vol.79, issue.2, pp.255-268, 1984.
DOI : 10.1080/00268978400101201

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical Review A, vol.31, issue.3, pp.1695-1697, 1985.
DOI : 10.1103/PhysRevA.31.1695

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, vol.81, issue.1, pp.511-519, 1984.
DOI : 10.1063/1.447334

G. J. Martyna, M. L. Klein, and M. Tuckerman, Nos?????Hoover chains: The canonical ensemble via continuous dynamics, The Journal of Chemical Physics, vol.97, issue.4, pp.2635-2643, 1992.
DOI : 10.1063/1.463940

D. Marx and J. Hutter, Ab initio molecular dynamics : basic theory and advanced methods, 2009.
DOI : 10.1017/CBO9780511609633

M. Born, K. Huang, M. Born, M. Born, G. Physicist et al., Dynamical Theory of Crystal Lattices, American Journal of Physics, vol.23, issue.7, 1956.
DOI : 10.1119/1.1934059

E. Deumens, A. Diz, R. Longo, and Y. Öhrn, Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems, Reviews of Modern Physics, vol.66, issue.3, pp.917-983, 1994.
DOI : 10.1103/RevModPhys.66.917

R. Car and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Physical Review Letters, vol.55, issue.22, pp.2471-2474, 1985.
DOI : 10.1103/PhysRevLett.55.2471

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.136, issue.3B, pp.864-871, 1964.
DOI : 10.1103/PhysRev.136.B864

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, pp.1133-1138, 1965.
DOI : 10.1103/PhysRev.140.A1133

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B, vol.23, issue.10, pp.5048-5079, 1981.
DOI : 10.1103/PhysRevB.23.5048

C. Lee, D. Vanderbilt, K. Laasonen, R. Car, and M. Parrinello, studies on the structural and dynamical properties of ice, Physical Review B, vol.47, issue.9, pp.4863-4872, 1993.
DOI : 10.1103/PhysRevB.47.4863

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.38, issue.6, p.3098, 1988.
DOI : 10.1103/PhysRevA.38.3098

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.37, issue.2, p.785, 1988.
DOI : 10.1103/PhysRevB.37.785

M. Sprik, J. Hutter, and M. Parrinello, molecular dynamics simulation of liquid water: Comparison of three gradient???corrected density functionals, The Journal of Chemical Physics, vol.105, issue.3, p.1142, 1996.
DOI : 10.1063/1.471957

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.77, issue.18, p.3865, 1996.
DOI : 10.1103/PhysRevLett.77.3865

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, p.5648, 1993.
DOI : 10.1063/1.464913

J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing et al., Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Computer Physics Communications, vol.167, issue.2, pp.103-128, 2005.
DOI : 10.1016/j.cpc.2004.12.014

G. Lippert, J. Hutter, and M. Parrinello, A hybrid Gaussian and plane wave density functional scheme, Molecular Physics, vol.48, issue.3, pp.477-487, 1997.
DOI : 10.1080/002689797170220

S. Goedecker, M. Teter, and J. Hutter, Separable dual-space Gaussian pseudopotentials, Physical Review B, vol.54, issue.3, p.1703, 1996.
DOI : 10.1103/PhysRevB.54.1703

URL : http://arxiv.org/abs/mtrl-th/9512004

C. Hartwigsen, S. Goedecker, and J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Physical Review B, vol.58, issue.7, p.3641, 1998.
DOI : 10.1103/PhysRevB.58.3641

J. Klime? and A. Michaelides, Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory, The Journal of Chemical Physics, vol.137, issue.12, pp.120901-120901, 2012.
DOI : 10.1063/1.4754130

M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, and E. Kaxiras, Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment, The Journal of Chemical Physics, vol.114, issue.12, p.5149, 2001.
DOI : 10.1063/1.1329889

Q. Wu and W. Yang, Empirical correction to density functional theory for van der Waals interactions, The Journal of Chemical Physics, vol.116, issue.2, p.515, 2002.
DOI : 10.1063/1.1424928

S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, Journal of Computational Chemistry, vol.101, issue.12, pp.1463-1473, 2004.
DOI : 10.1002/jcc.20078

S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry, vol.10, issue.15, pp.1787-1799, 2006.
DOI : 10.1002/jcc.20495

P. Jure?ka, J. ?erný, P. Hobza, and D. R. Salahub, quantum mechanics calculations, Journal of Computational Chemistry, vol.19, issue.2, pp.555-569, 2007.
DOI : 10.1002/jcc.20570

O. A. Von-lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani, Optimization of Effective Atom Centered Potentials for London Dispersion Forces in Density Functional Theory, Physical Review Letters, vol.93, issue.15, p.153004, 2004.
DOI : 10.1103/PhysRevLett.93.153004

I. Lin, M. D. Coutinho-neto, C. Felsenheimer, O. A. Von-lilienfeld, I. Tavernelli et al., Library of dispersion-corrected atom-centered potentials for generalized gradient approximation functionals: Elements H, C, N, O, He, Ne, Ar, and Kr, Physical Review B, vol.75, issue.20, pp.205131-2075, 2007.
DOI : 10.1103/PhysRevB.75.205131

P. L. Silvestrelli, Van der Waals Interactions in DFT Made Easy by Wannier Functions, Physical Review Letters, vol.100, issue.5, p.53002, 2008.
DOI : 10.1103/PhysRevLett.100.053002

P. L. Silvestrelli, van der Waals Interactions in Density Functional Theory Using Wannier Functions, The Journal of Physical Chemistry A, vol.113, issue.17, pp.5224-5234, 2009.
DOI : 10.1021/jp811138n

Y. Zhao and D. G. Truhlar, Density Functionals with Broad Applicability in Chemistry, Accounts of Chemical Research, vol.41, issue.2, pp.157-167, 2008.
DOI : 10.1021/ar700111a

Y. Andersson, D. C. Langreth, and B. I. Lundqvist, van der Waals Interactions in Density-Functional Theory, Physical Review Letters, vol.76, issue.1, p.102, 1996.
DOI : 10.1103/PhysRevLett.76.102

M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Van der Waals Density Functional for General Geometries, Physical Review Letters, vol.92, issue.24, p.246401, 2004.
DOI : 10.1103/PhysRevLett.92.246401

M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Erratum, Mycopathologia, vol.91, issue.3, pp.246401-109902, 2004.
DOI : 10.1007/BF00446300

D. C. Langreth, M. Dion, H. Rydberg, E. Schröder, P. Hyldgaard et al., Van der Waals density functional theory with applications, International Journal of Quantum Chemistry, vol.64, issue.5, pp.599-610, 2005.
DOI : 10.1002/qua.20315

T. Sato, T. Tsuneda, and K. Hirao, Van der Waals interactions studied by density functional theory, Molecular Physics, vol.106, issue.6-8, p.1151, 2005.
DOI : 10.1080/00268977000101561

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, The Journal of Chemical Physics, vol.132, issue.15, p.154104, 2010.
DOI : 10.1063/1.3382344

J. P. Hansen and I. R. Mcdonald, Theory of simple liquids Academic press, 2006.

G. Palinkas, P. Bopp, G. Jancso, and K. Heinzinger, The effect of pressure on the hydrogen bond structure of liquid water, Zeitschrift für Naturforschung. Teil A : Physik, physikalische Chemie, Kosmophysik, pp.179-185, 1984.

F. H. Stillinger and A. Rahman, Molecular Dynamics Study of Temperature Effects on Water Structure and Kinetics, The Journal of Chemical Physics, vol.57, issue.3, pp.1281-1292, 1972.
DOI : 10.1063/1.1678388

H. Ma and J. Ma, Density dependence of hydrogen bonding and the translational-orientational structural order in supercritical water: A molecular dynamics study, The Journal of Chemical Physics, vol.135, issue.5, pp.54504-054504, 2011.
DOI : 10.1063/1.3620404

R. Stumm-von-bordwehr, A History of X-ray absorption fine structure, Annales de Physique, vol.14, issue.4, pp.377-465, 1989.
DOI : 10.1051/anphys:01989001404037700

P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Extended x-ray absorption fine structure???its strengths and limitations as a structural tool, Reviews of Modern Physics, vol.53, issue.4, pp.769-806, 1981.
DOI : 10.1103/RevModPhys.53.769

J. J. Rehr and R. C. Albers, Theoretical approaches to x-ray absorption fine structure, Reviews of Modern Physics, vol.72, issue.3, pp.621-654, 2000.
DOI : 10.1103/RevModPhys.72.621

A. Filipponi, EXAFS for liquids, Journal of Physics: Condensed Matter, vol.13, issue.7, p.23, 2001.
DOI : 10.1088/0953-8984/13/7/201

N. W. Ashcroft and N. D. Mermin, Solid state physics (saunders college, 1976.

S. Zabinsky, J. Rehr, A. Ankudinov, R. Albers, and M. Eller, Multiple-scattering calculations of x-ray-absorption spectra, Physical Review B, vol.52, issue.4, pp.2995-3009, 1995.
DOI : 10.1103/PhysRevB.52.2995

G. Ferlat, J. C. Soetens, A. Miguel, and P. A. Bopp, Combining extended x-ray absorption fine structure with numerical simulations for disordered systems, Journal of Physics: Condensed Matter, vol.17, issue.5, pp.145-157, 2005.
DOI : 10.1088/0953-8984/17/5/015

URL : https://hal.archives-ouvertes.fr/hal-00020224

. Hazemann, Silver in geological fluids from in situ x-ray absorption spectroscopy and firstprinciples molecular dynamics, Geochimica et Cosmochimica Acta, vol.106, pp.501-523, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00794819

G. S. Pokrovski, B. R. Tagirov, J. Schott, J. Hazemann, and O. Proux, A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling, Geochimica et Cosmochimica Acta, vol.73, issue.18, pp.5406-5427, 2009.
DOI : 10.1016/j.gca.2009.06.007

B. Guillot, A reappraisal of what we have learnt during three decades of computer simulations on water, Journal of Molecular Liquids, vol.101, issue.1-3, pp.219-260, 2002.
DOI : 10.1016/S0167-7322(02)00094-6

D. Kennedy and C. Norman, What Don't We Know?, Science, vol.309, issue.5731, pp.75-75, 2005.
DOI : 10.1126/science.309.5731.75

A. Nilsson and L. Pettersson, Perspective on the structure of liquid water, Chemical Physics, vol.389, issue.1-3, pp.1-34, 2011.
DOI : 10.1016/j.chemphys.2011.07.021

D. Asthagiri, L. R. Pratt, and J. D. Kress, molecular dynamics, Physical Review E, vol.68, issue.4, p.41505, 2003.
DOI : 10.1103/PhysRevE.68.041505

J. C. Grossman, E. Schwegler, E. W. Draeger, F. Gygi, and G. Galli, Towards an assessment of the accuracy of density functional theory for first principles simulations of water, The Journal of Chemical Physics, vol.120, issue.1, p.300, 2004.
DOI : 10.1063/1.1630560

E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli, Towards an assessment of the accuracy of density functional theory for first principles simulations of water. II, The Journal of Chemical Physics, vol.121, issue.11, p.5400, 2004.
DOI : 10.1063/1.1782074

M. V. Fernández-serra and E. Artacho, Network equilibration and first-principles liquid water, The Journal of Chemical Physics, vol.121, issue.22, p.11136, 2004.
DOI : 10.1063/1.1813431

I. W. Kuo, C. J. Mundy, M. J. Mcgrath, J. I. Siepmann, J. Vandevondele et al., Liquid Water from First Principles:?? Investigation of Different Sampling Approaches, The Journal of Physical Chemistry B, vol.108, issue.34, pp.12990-12998, 2004.
DOI : 10.1021/jp047788i

M. V. Fernández-serra, G. Ferlat, and E. Artacho, Two exchange-correlation functionals compared for first-principles liquid water, Molecular Simulation, vol.7, issue.5, pp.361-366, 2005.
DOI : 10.1103/PhysRevLett.92.255507

J. Vandevondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik et al., molecular dynamics simulation of liquid water, The Journal of Chemical Physics, vol.122, issue.1, p.14515, 2005.
DOI : 10.1063/1.1828433

P. H. Sit and N. Marzari, Static and dynamical properties of heavy water at ambient conditions from first-principles molecular dynamics, The Journal of Chemical Physics, vol.122, issue.20, p.204510, 2005.
DOI : 10.1063/1.1908913

M. J. Mcgrath, J. I. Siepmann, I. W. Kuo, C. J. Mundy, J. Vandevondele et al., Toward a Monte Carlo program for simulating vapor???liquid phase equilibria from first principles, Computer Physics Communications, vol.169, issue.1-3, pp.289-294, 2005.
DOI : 10.1016/j.cpc.2005.03.065

M. J. Mcgrath, J. I. Siepmann, I. Kuo, W. Feng, C. J. Mundy et al., Isobaric-Isothermal Monte Carlo Simulations from First Principles: Application to Liquid Water at Ambient Conditions, ChemPhysChem, vol.5, issue.9, pp.1894-1901, 2005.
DOI : 10.1002/cphc.200400580

M. J. Mcgrath, J. I. Siepmann, I. F. Kuo, and C. J. Mundy, Vapor???liquid equilibria of water from first principles: comparison of density functionals and basis sets, Molecular Physics, vol.94, issue.22-24, p.3619, 2006.
DOI : 10.1038/35053024

H. Lee and M. E. Tuckerman, molecular dynamics performed in the complete basis set limit, The Journal of Chemical Physics, vol.125, issue.15, p.154507, 2006.
DOI : 10.1063/1.2354158

M. Guidon, F. Schiffmann, J. Hutter, and J. Vandevondele, molecular dynamics using hybrid density functionals, The Journal of Chemical Physics, vol.128, issue.21, p.214104, 2008.
DOI : 10.1063/1.2931945

J. Schmidt, J. Vandevondele, I. W. Kuo, D. Sebastiani, J. I. Siepmann et al., Isobaric???Isothermal Molecular Dynamics Simulations Utilizing Density Functional Theory: An Assessment of the Structure and Density of Water at Near-Ambient Conditions, The Journal of Physical Chemistry B, vol.113, issue.35, pp.11959-11964, 2009.
DOI : 10.1021/jp901990u

S. Yoo, X. C. Zeng, and S. S. Xantheas, On the phase diagram of water with density functional theory potentials: The melting temperature of ice Ih with the Perdew???Burke???Ernzerhof and Becke???Lee???Yang???Parr functionals, The Journal of Chemical Physics, vol.130, issue.22, p.221102, 2009.
DOI : 10.1063/1.3153871

B. Chen, I. Ivanov, M. L. Klein, and M. Parrinello, Hydrogen Bonding in Water, Physical Review Letters, vol.91, issue.21, p.215503, 2003.
DOI : 10.1103/PhysRevLett.91.215503

J. A. Morrone and R. Car, Nuclear Quantum Effects in Water, Physical Review Letters, vol.101, issue.1, p.17801, 2008.
DOI : 10.1103/PhysRevLett.101.017801

P. L. Silvestrelli, Improvement in hydrogen bond description using van der Waals-corrected DFT: The case of small water clusters, Chemical Physics Letters, vol.475, issue.4-6, pp.285-288, 2009.
DOI : 10.1016/j.cplett.2009.05.049

A. K. Kelkkanen, B. I. Lundqvist, and J. K. Nørskov, Density functional for van der Waals forces accounts for hydrogen bond in benchmark set of water hexamers, The Journal of Chemical Physics, vol.131, issue.4, p.46102, 2009.
DOI : 10.1063/1.3193462

G. Murdachaew, C. J. Mundy, and G. K. Schenter, Improving the density functional theory description of water with self-consistent polarization, The Journal of Chemical Physics, vol.132, issue.16, p.164102, 2010.
DOI : 10.1063/1.3385797

I. Lin, A. P. Seitsonen, M. D. Coutinho-neto, I. Tavernelli, and U. Rothlisberger, Importance of van der Waals Interactions in Liquid Water, The Journal of Physical Chemistry B, vol.113, issue.4, pp.1127-1131, 2009.
DOI : 10.1021/jp806376e

V. Weber, S. Merchant, P. D. Dixit, and D. Asthagiri, hybrid Monte Carlo and different exchange-correlation functionals, The Journal of Chemical Physics, vol.132, issue.20, p.204509, 2010.
DOI : 10.1063/1.3437061

J. Wang, G. Román-pérez, J. M. Soler, E. Artacho, and M. Fernández-serra, Density, structure, and dynamics of water: The effect of van der Waals interactions, The Journal of Chemical Physics, vol.134, issue.2, p.24516, 2011.
DOI : 10.1063/1.3521268

S. Yoo and S. S. Xantheas, Communication: The effect of dispersion corrections on the melting temperature of liquid water, The Journal of Chemical Physics, vol.134, issue.12, p.121105, 2011.
DOI : 10.1063/1.3573375

A. Møgelhøj, A. K. Kelkkanen, K. T. Wikfeldt, J. Schiøtz, J. J. Mortensen et al., Ab initio van der waals interactions in simulations of water alter structure from mainly tetrahedral to high-density-like, The Journal of Physical Chemistry B, 2011.

C. Zhang, D. Donadio, F. Gygi, and G. Galli, First Principles Simulations of the Infrared Spectrum of Liquid Water Using Hybrid Density Functionals, Journal of Chemical Theory and Computation, vol.7, issue.5, pp.1443-1449, 2011.
DOI : 10.1021/ct2000952

G. Murdachaew, C. J. Mundy, G. K. Schenter, T. Laino, and J. Hutter, Semiempirical Self-Consistent Polarization Description of Bulk Water, the Liquid???Vapor Interface, and Cubic Ice, The Journal of Physical Chemistry A, vol.115, issue.23, pp.6046-6053, 2011.
DOI : 10.1021/jp110481m

M. D. Baer, C. J. Mundy, M. J. Mcgrath, I. W. Kuo, J. I. Siepmann et al., Re-examining the properties of the aqueous vapor???liquid interface using dispersion corrected density functional theory, The Journal of Chemical Physics, vol.135, issue.12, p.124712, 2011.
DOI : 10.1063/1.3633239

B. S. Mallik, A. Semparithi, and A. Chandra, Vibrational Spectral Diffusion and Hydrogen Bond Dynamics in Heavy Water from First Principles, The Journal of Physical Chemistry A, vol.112, issue.23, pp.5104-5112, 2008.
DOI : 10.1021/jp801405a

]. T. Tassaing, P. A. Garrain, D. Bégué, and I. Baraille, On the cluster composition of supercritical water combining molecular modeling and vibrational spectroscopic data, The Journal of Chemical Physics, vol.133, issue.3, p.34103, 2010.
DOI : 10.1063/1.3457483

E. Fois, M. Sprik, and M. Parrinello, Properties of supercritical water: an ab initio simulation, Chemical Physics Letters, vol.223, issue.5-6, pp.411-415, 1994.
DOI : 10.1016/0009-2614(94)00494-3

M. Boero, K. Terakura, T. Ikeshoji, C. C. Liew, and M. Parrinello, Hydrogen Bonding and Dipole Moment of Water at Supercritical Conditions: A First-Principles Molecular Dynamics Study, Physical Review Letters, vol.85, issue.15, p.3245, 2000.
DOI : 10.1103/PhysRevLett.85.3245

M. Boero, K. Terakura, T. Ikeshoji, C. C. Liew, and M. Parrinello, Water at supercritical conditions: A first principles study, The Journal of Chemical Physics, vol.115, issue.5, pp.2219-2227, 2001.
DOI : 10.1063/1.1379767

M. Boero, M. Parrinello, K. Terakura, T. Ikeshoji, and C. C. Liew, First-Principles Molecular-Dynamics Simulations of a Hydrated Electron in Normal and Supercritical Water, Physical Review Letters, vol.90, issue.22, p.226403, 2003.
DOI : 10.1103/PhysRevLett.90.226403

O. V. Ved-', D. L. Gurina, M. L. Antipova, and V. E. Petrenko, Hydrogen bond and dipole moment in sub-and supercritical water close to the saturation curve, Russian Journal of Physical Chemistry A, vol.84, pp.1359-1363, 2010.

D. Kang, J. Dai, and J. Yuan, Changes of structure and dipole moment of water with temperature and pressure: A first principles study, The Journal of Chemical Physics, vol.135, issue.2, p.24505, 2011.
DOI : 10.1063/1.3608412

D. L. Gurina, M. L. Antipova, and V. E. Petrenko, Radial distribution functions of sub- and supercritical water according to the nonempirical molecular dynamics data, Russian Journal of Physical Chemistry A, vol.85, issue.5, pp.797-803, 2011.
DOI : 10.1134/S0036024411050153

V. E. Petrenko, D. L. Gurina, and M. L. Antipova, Structure of supercritical water: The concept of critical isotherm as a percolation threshold, Russian Journal of Physical Chemistry B, vol.6, issue.8, pp.899-906, 2012.
DOI : 10.1134/S1990793112080155

R. Jonchiere, A. P. Seitsonen, G. Ferlat, A. M. Saitta, and R. Vuilleumier, water at ambient and supercritical conditions, The Journal of Chemical Physics, vol.135, issue.15, p.154503, 2011.
DOI : 10.1063/1.3651474

URL : https://hal.archives-ouvertes.fr/hal-00794836

A. K. Soper, The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa, Chemical Physics, vol.258, issue.2-3, pp.121-137, 2000.
DOI : 10.1016/S0301-0104(00)00179-8

R. Mills, Self-diffusion in normal and heavy water in the range 1-45.deg., The Journal of Physical Chemistry, vol.77, issue.5, pp.685-688, 1973.
DOI : 10.1021/j100624a025

K. Yoshida, C. Wakai, N. Matubayasi, and M. Nakahara, A new high-temperature multinuclear-magnetic-resonance probe and the self-diffusion of light and heavy water in sub- and supercritical conditions, The Journal of Chemical Physics, vol.123, issue.16, p.164506, 2005.
DOI : 10.1063/1.2056542

K. R. Harris and L. A. Woolf, Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.76, issue.0, p.377, 1980.
DOI : 10.1039/f19807600377

M. Bernabei, A. Botti, F. Bruni, M. A. Ricci, and A. K. Soper, Percolation and three-dimensional structure of supercritical water, Physical Review E, vol.78, issue.2, p.21505, 2008.
DOI : 10.1103/PhysRevE.78.021505

M. Bonetti, G. Romet-lemonne, P. Calmettes, and M. Bellissent, Small-angle neutron scattering from heavy water in the vicinity of the critical point, The Journal of Chemical Physics, vol.112, issue.1, pp.268-274, 2000.
DOI : 10.1063/1.480633

W. J. Lamb, Self???diffusion in compressed supercritical water, The Journal of Chemical Physics, vol.74, issue.12, p.6875, 1981.
DOI : 10.1063/1.441097

C. Zhang, J. Wu, G. Galli, and F. Gygi, Structural and Vibrational Properties of Liquid Water from van der Waals Density Functionals, Journal of Chemical Theory and Computation, vol.7, issue.10, pp.3054-3061, 2011.
DOI : 10.1021/ct200329e

C. Zhang, L. Spanu, and G. Galli, Entropy of Liquid Water from Ab Initio Molecular Dynamics, The Journal of Physical Chemistry B, vol.115, issue.48, 2011.
DOI : 10.1021/jp204981y

I. Lin, A. P. Seitsonen, I. Tavernelli, and U. Rothlisberger, Structure and Dynamics of Liquid Water from ab Initio Molecular Dynamics???Comparison of BLYP, PBE, and revPBE Density Functionals with and without van der Waals Corrections, Journal of Chemical Theory and Computation, vol.8, issue.10, 2012.
DOI : 10.1021/ct3001848

Z. Ma, Y. Zhang, and M. E. Tuckerman, Ab initio molecular dynamics study of water at constant pressure using converged basis sets and empirical dispersion correctionsGeneralized gradient approximation made simple, The Journal of Chemical Physics Physical Review Letters, vol.137, issue.80, pp.44506-044506, 1998.

C. Aymonier and F. Cansell, Supercritical fluid techniques, Annales de Chimie Science des Mat??riaux, vol.31, issue.3, pp.317-337, 2006.
DOI : 10.3166/acsm.31.317-337

URL : https://hal.archives-ouvertes.fr/hal-00096827

M. C. Henry and C. R. Yonker, Supercritical Fluid Chromatography, Pressurized Liquid Extraction, and Supercritical Fluid Extraction, Analytical Chemistry, vol.78, issue.12, pp.3909-3915, 2006.
DOI : 10.1021/ac0605703

C. Aymonier, A. Loppinet-serani, H. Reveron, Y. Garrabos, and F. Cansell, Review of supercritical fluids in inorganic materials science, The Journal of Supercritical Fluids, vol.38, issue.2, pp.242-251, 2006.
DOI : 10.1016/j.supflu.2006.03.019

URL : https://hal.archives-ouvertes.fr/hal-00102072

G. Brunner, Applications of Supercritical Fluids, Annual Review of Chemical and Biomolecular Engineering, vol.1, issue.1, pp.321-342, 2010.
DOI : 10.1146/annurev-chembioeng-073009-101311

P. Munshi and S. Bhaduri, Supercritical CO2 : a twenty-first century solvent for the chemical industry, Current Science, vol.97, pp.63-72, 2009.

M. Skerget, Z. Knez, and M. Knez-hrncic, Solubility of Solids in Sub- and Supercritical Fluids: a Review, Journal of Chemical & Engineering Data, vol.56, issue.4, pp.694-719, 2011.
DOI : 10.1021/je1011373

A. Kruse and H. Vogel, Heterogeneous Catalysis in Supercritical Media: 2. Near-Critical and Supercritical Water, Chemical Engineering & Technology, vol.1, issue.6901, pp.1241-1245, 2008.
DOI : 10.1039/b310152e

Y. E. Gorbaty and A. G. Kalinichev, Hydrogen Bonding in Supercritical Water. 1. Experimental Results, The Journal of Physical Chemistry, vol.99, issue.15, pp.5336-5340, 1995.
DOI : 10.1021/j100015a016

M. Bellissent-funel, T. Tassaing, H. Zhao, D. Beysens, B. Guillot et al., The structure of supercritical heavy water as studied by neutron diffraction, The Journal of Chemical Physics, vol.107, issue.8, pp.2942-2949, 1997.
DOI : 10.1063/1.475155

Y. E. Gorbaty and R. B. Gupta, The Structural Features of Liquid and Supercritical Water, Industrial & Engineering Chemistry Research, vol.37, issue.8, pp.3026-3035, 1998.
DOI : 10.1021/ie970907e

Y. Ikushima, K. Hatakeda, N. Saito, and M. Arai, Raman spectroscopy study of subcritical and supercritical water: The peculiarity of hydrogen bonding near the critical point, The Journal of Chemical Physics, vol.108, issue.14, pp.5855-5860, 1998.
DOI : 10.1063/1.475996

T. Tassaing, M. Bellissent-funel, B. Guillot, and Y. Guissani, The partial pair correlation functions of dense supercritical water, Europhysics Letters (EPL), vol.42, issue.3, p.265, 1998.
DOI : 10.1209/epl/i1998-00240-x

T. Tassaing and M. Bellissent, The dynamics of supercritical water: A quasielastic incoherent neutron scattering study, The Journal of Chemical Physics, vol.113, issue.8, pp.3332-3337, 2000.
DOI : 10.1063/1.1286599

T. Tassaing, Y. Danten, and M. Besnard, Infrared spectroscopic study of hydrogen-bonding in water at high temperature and pressure, Journal of Molecular Liquids, vol.101, issue.1-3, pp.149-158, 2002.
DOI : 10.1016/S0167-7322(02)00089-2

P. Wernet, D. Testemale, J. Hazemann, R. Argoud, P. Glatzel et al., Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water, The Journal of Chemical Physics, vol.123, issue.15, p.154503, 2005.
DOI : 10.1063/1.2064867

URL : https://hal.archives-ouvertes.fr/hal-00371422

V. Marques-leite-dos-santos, F. B. Moreira, and R. L. Longo, Topology of the hydrogen bond networks in liquid water at room and supercritical conditions: a small-world structure, Chemical Physics Letters, vol.390, issue.1-3, pp.157-161, 2004.
DOI : 10.1016/j.cplett.2004.04.016

A. Kalinichev and J. Bass, Hydrogen bonding in supercritical water: a Monte Carlo simulation, Chemical Physics Letters, vol.231, issue.2-3, pp.301-307, 1994.
DOI : 10.1016/0009-2614(94)01245-8

L. B. Pártay and P. Jedlovszky, Line of percolation in supercritical water, The Journal of Chemical Physics, vol.123, issue.2, pp.24502-024502, 2005.
DOI : 10.1063/1.1953547

L. B. Partay, P. Jedlovszky, I. Brovchenko, and A. Oleinikova, Formation of mesoscopic water networks in aqueous systems, Phys. Chem. Chem. Phys., vol.80, issue.97, p.1341, 2007.
DOI : 10.1039/B617042K

L. B. Pártay, P. Jedlovszky, I. Brovchenko, and A. Oleinikova, Percolation transition in supercritical water : A monte carlo simulation study, The Journal of Physical Chemistry B, vol.111, pp.7603-7609, 2007.

J. Skvor and I. Nezbeda, Percolation line, response functions, and Voronoi polyhedra analysis in supercritical water, Condensed Matter Physics, vol.15, issue.2, pp.1-8, 2012.
DOI : 10.5488/CMP.15.23301

]. N. Yoshii, H. Yoshie, S. Miura, and S. Okazaki, A molecular dynamics study of sub- and supercritical water using a polarizable potential model, The Journal of Chemical Physics, vol.109, issue.12, pp.4873-4884, 1998.
DOI : 10.1063/1.477098

J. Martí, Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations, The Journal of Chemical Physics, vol.110, issue.14, pp.6876-6886, 1999.
DOI : 10.1063/1.478593

A. A. Chialvo, E. Yezdimer, T. Driesner, P. T. Cummings, and J. M. Simonson, The structure of water from 25??C to 457??C: comparison between neutron scattering and molecular simulation, Chemical Physics, vol.258, issue.2-3, pp.109-120, 2000.
DOI : 10.1016/S0301-0104(00)00131-2

I. Skarmoutsos and J. Samios, Local Density Inhomogeneities and Dynamics in Supercritical Water:?? A Molecular Dynamics Simulation Approach, The Journal of Physical Chemistry B, vol.110, issue.43, pp.21931-21937, 2006.
DOI : 10.1021/jp060955p

I. Skarmoutsos and E. Guardia, Effect of the local hydrogen bonding network on the reorientational and translational dynamics in supercritical water, The Journal of Chemical Physics, vol.132, issue.7, p.74502, 2010.
DOI : 10.1063/1.3305326

P. Bordat, D. Bégué, R. Brown, A. Marbeuf, H. Cardy et al., The IR spectrum of supercritical water: Combined molecular dynamics/quantum mechanics strategy and force field for cluster sampling, International Journal of Quantum Chemistry, vol.134, issue.1, pp.2578-2584, 2012.
DOI : 10.1002/qua.23286

URL : https://hal.archives-ouvertes.fr/hal-00713263

H. Ma, Density dependence of the entropy and the solvation shell structure in supercritical water via molecular dynamics simulation, The Journal of Chemical Physics, vol.136, issue.21, pp.214501-214501, 2012.
DOI : 10.1063/1.4720575

K. Yoshida, N. Matubayasi, Y. Uosaki, and M. Nakahara, Density effect on infrared spectrum for supercritical water in the low- and medium-density region studied by molecular dynamics simulation, The Journal of Chemical Physics, vol.137, issue.19, pp.194506-194506, 2012.
DOI : 10.1063/1.4767352

C. J. Sahle, C. Sternemann, C. Schmidt, S. Lehtola, S. Jahn et al., Microscopic structure of water at elevated pressures and temperatures, Proceedings of the National Academy of Sciences, 2013.
DOI : 10.1073/pnas.1220301110

G. Galli and D. Pan, A closer look at supercritical water, Proceedings of the National Academy of Sciences, 2013.
DOI : 10.1073/pnas.1303740110

L. W. Diamond, Review of the systematics of CO2???H2O fluid inclusions, Lithos, vol.55, issue.1-4, pp.69-99, 2001.
DOI : 10.1016/S0024-4937(00)00039-6

K. Tödheide and E. U. Franck, Das Zweiphasengebiet und die kritische Kurve im System Kohlendioxid???Wasser bis zu Drucken von 3500 bar, Zeitschrift f??r Physikalische Chemie, vol.37, issue.5_6, pp.387-401, 1963.
DOI : 10.1524/zpch.1963.37.5_6.387

S. Takenouchi and G. C. Kennedy, The binary system H 2 O-CO 2 at high temperatures and pressures, American Journal of Science, vol.262, issue.9, pp.1055-1074, 1964.
DOI : 10.2475/ajs.262.9.1055

S. M. Sterner and R. J. Bodnar, Synthetic fluid inclusions; X, Experimental determination of P-V-T-X properties in the CO 2 -H 2 O system to 6 kb and 700 degrees C, American Journal of Science, vol.291, issue.1, pp.1-54, 1991.
DOI : 10.2475/ajs.291.1.1

J. G. Blencoe, J. C. Seitz, and L. M. Anovitz, The CO2-H2O system. II. calculated thermodynamic mixing properties for 400??C, 0???400 MPa, Geochimica et Cosmochimica Acta, vol.63, issue.16, pp.2393-2408, 1999.
DOI : 10.1016/S0016-7037(98)00296-8

R. Bakker and L. Diamond, Determination of the composition and molar volume of H2O-CO2 fluid inclusions by microthermometry, Geochimica et Cosmochimica Acta, vol.64, issue.10, pp.1753-1764, 2000.
DOI : 10.1016/S0016-7037(99)00334-8

J. G. Blencoe, M. T. Naney, and L. M. Anovitz, O system: III. A new experimental method for determining liquid-vapor equilibria at high subcritical temperatures, American Mineralogist, vol.86, issue.9, pp.1100-1111, 2001.
DOI : 10.2138/am-2001-8-918

J. G. Blencoe, ??? 150 MPa, American Mineralogist, vol.89, issue.10, pp.1447-1455, 2004.
DOI : 10.2138/am-2004-1012

R. Sun and J. Dubessy, Prediction of vapor???liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part I: Application to H2O???CO2 system, Geochimica et Cosmochimica Acta, vol.74, issue.7, pp.1982-1998, 2010.
DOI : 10.1016/j.gca.2010.01.011

URL : https://hal.archives-ouvertes.fr/hal-00468306

R. Sun and J. Dubessy, Prediction of vapor???liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part II: Application to H2O???NaCl and CO2???H2O???NaCl System, Geochimica et Cosmochimica Acta, vol.88, pp.130-145, 2012.
DOI : 10.1016/j.gca.2012.04.025

URL : https://hal.archives-ouvertes.fr/hal-00468306

A. W. Islam and E. S. Carlson, Application of SAFT equation for CO2+H2O phase equilibrium calculations over a wide temperature and pressure range, Fluid Phase Equilibria, vol.321, pp.17-24, 2012.
DOI : 10.1016/j.fluid.2012.02.016

F. L. Celso, R. Triolo, F. Ferrante, A. Botti, F. Bruni et al., CO2???water supercritical mixtures: Test of a potential model against neutron diffraction data, Journal of Molecular Liquids, vol.136, issue.3, pp.294-299, 2007.
DOI : 10.1016/j.molliq.2007.08.011

A. Botti, F. Bruni, R. Mancinelli, M. A. Ricci, F. Lo-celso et al., Study of percolation and clustering in supercritical water-CO2 mixtures, The Journal of Chemical Physics, vol.128, issue.16, p.164504, 2008.
DOI : 10.1063/1.2898538

Y. Danten, T. Tassaing, and M. Besnard, = 1, 2), The Journal of Physical Chemistry A, vol.109, issue.14, pp.3250-3256, 2005.
DOI : 10.1021/jp0503819

Y. Danten, T. Tassaing, and M. Besnard, Infrared and molecular-dynamics studies of the rotational dynamics of water highly diluted in supercritical CO2, The Journal of Chemical Physics, vol.123, issue.7, p.74505, 2005.
DOI : 10.1063/1.1953561

URL : https://hal.archives-ouvertes.fr/hal-00109082

T. Tassaing, R. Oparin, Y. Danten, and M. Besnard, Water???CO2 interaction in supercritical CO2 as studied by infrared spectroscopy and vibrational frequency shift calculations, The Journal of Supercritical Fluids, vol.33, issue.1, pp.85-92, 2005.
DOI : 10.1016/S0896-8446(04)00113-5

URL : https://hal.archives-ouvertes.fr/hal-00106905

C. Destrigneville, J. Brodholt, and B. Wood, Monte Carlo simulation of H2O???CO2 mixtures to 1073.15 K and 30 kbar, Chemical Geology, vol.133, issue.1-4, pp.53-65, 1996.
DOI : 10.1016/S0009-2541(96)00069-1

Y. Liu, A. Z. Panagiotopoulos, and P. G. Debenedetti, O Mixtures, The Journal of Physical Chemistry B, vol.115, issue.20, pp.6629-6635, 2011.
DOI : 10.1021/jp201520u

S. Balasubramanian, A. Kohlmeyer, and M. L. Klein, molecular dynamics study of supercritical carbon dioxide including dispersion corrections, The Journal of Chemical Physics, vol.131, issue.14, p.144506, 2009.
DOI : 10.1063/1.3245962

Y. Yagi, H. Tsugane, H. Inomata, and S. Saito, Density dependence of fermi resonance of supercritical carbon dioxide, The Journal of Supercritical Fluids, vol.6, issue.3, pp.139-142, 1993.
DOI : 10.1016/0896-8446(93)90012-M

M. I. Cabaço, S. Longelin, Y. Danten, and M. Besnard, Local Density Enhancement in Supercritical Carbon Dioxide Studied by Raman Spectroscopy, The Journal of Physical Chemistry A, vol.111, issue.50, pp.12966-12971, 2007.
DOI : 10.1021/jp0756707

M. I. Cabaço, M. Besnard, S. Longelin, and Y. Danten, Evolution with the density of CO2 clustering studied by Raman spectroscopy, Journal of Molecular Liquids, vol.153, issue.1, pp.15-19, 2010.
DOI : 10.1016/j.molliq.2009.09.007

C. F. Windisch, V. Glezakou, P. F. Martin, B. P. Mcgrail, and H. T. Schaef, Raman spectrum of supercritical C 18 O 2 and re-evaluation of the fermi resonance, Phys. Chem

J. Texter, J. J. Hastreiter, and J. L. Hall, Spectroscopic confirmation of the tetrahedral geometry of tetraaquasilver(+) ion (Ag(H2O)4+), The Journal of Physical Chemistry, vol.87, issue.23, pp.4690-4693, 1983.
DOI : 10.1021/j100246a029

T. Seward, C. Henderson, J. Charnock, and B. Dobson, An X-ray absorption (EXAFS) spectroscopic study of aquated Ag+ in hydrothermal solutions to 350??C, Geochimica et Cosmochimica Acta, vol.60, issue.13, pp.2273-2282, 1996.
DOI : 10.1016/0016-7037(96)00098-1

J. L. Fulton, S. M. Kathmann, G. K. Schenter, and M. Balasubramanian, Hydrated Structure of Ag(I) Ion from Symmetry-Dependent, K- and L-Edge XAFS Multiple Scattering and Molecular Dynamics Simulations, The Journal of Physical Chemistry A, vol.113, issue.50, pp.13976-13984, 2009.
DOI : 10.1021/jp9064906

X. Liu, X. Lu, R. Wang, and H. Zhou, Silver speciation in chloride-containing hydrothermal solutions from first principles molecular dynamics simulations, Chemical Geology, vol.294, issue.295, pp.294-295, 2012.
DOI : 10.1016/j.chemgeo.2011.11.034

R. Armunanto, C. F. Schwenk, and B. M. Rode, Structure and Dynamics of Hydrated Ag (I): Ab Initio Quantum Mechanical-Molecular Mechanical Molecular Dynamics Simulation, The Journal of Physical Chemistry A, vol.107, issue.17, pp.3132-3138, 2003.
DOI : 10.1021/jp027769d

C. , M. Blauth, A. B. Pribil, B. R. Randolf, B. M. Rode et al., Structure and dynamics of hydrated Ag + : An ab initio quantum mechanical/charge field simulation, Chemical Physics Letters, vol.500, pp.251-255, 2010.

S. Guiot, Comparison of chemical properties of silver, halide and thiocyanate ions Thermodynamics of hydrothermal systems at elevated temperatures and pressures, Annales De Chimie France American Journal of Science, vol.4, issue.267 7, pp.235-729, 1969.

T. M. Seward, The stability of chloride complexes of Silver in hydrothermal solutions up to 350??C, Geochimica et Cosmochimica Acta, vol.40, issue.11, pp.1329-1341, 1976.
DOI : 10.1016/0016-7037(76)90122-8

S. Wood, D. Crerar, and M. Borcsik, Solubility of the assemblage pyrite-pyrrhotite-magnetite-sphalerite-galena-gold-stibnite-bismuthinite-argen- tite-molybdenite in H 2 O-NaCl-CO 2 solutions from 200 degrees to 350 degrees C degrees, Economic Geology, vol.82, issue.7, pp.1864-1887, 1987.
DOI : 10.2113/gsecongeo.82.7.1864

C. Gammons and A. Williams-tones, The solubility of Au???Ag alloy + AgCl in HCl/NaCl solutions at 300??C: New data on the stability of Au (1) chloride complexes in hydrothermal fluids, Geochimica et Cosmochimica Acta, vol.59, issue.17, pp.3453-3468, 1995.
DOI : 10.1016/0016-7037(95)00234-Q

N. Akinfiev and A. Zotov, Thermodynamic description of equilibria in mixed fluids (H2O-non-polar gas) over a wide range of temperature (25???700??C) and pressure (1???5000 bars), Geochimica et Cosmochimica Acta, vol.63, issue.13-14, pp.2025-2041, 1999.
DOI : 10.1016/S0016-7037(98)00304-4

D. Sverjensky, E. Shock, and H. Helgeson, Prediction of the thermodynamic properties of aqueous metal complexes to 1000??C and 5 kb, Geochimica et Cosmochimica Acta, vol.61, issue.7, pp.1359-1412, 1997.
DOI : 10.1016/S0016-7037(97)00009-4

N. Akinfiev and A. Zotov, Thermodynamic description of chloride, hydrosulfide, and hydroxo complexes of Ag(I) Cu(I), and Au(I) at temperatures of 25-500 degrees C and pressures of 1-2000 bar, Geochemistry International, vol.39, pp.990-1006, 2001.

D. Feller, E. D. Glendening, W. A. De, and J. , Structures and binding enthalpies of M+(H2O)n clusters, M=Cu, Ag, Au, The Journal of Chemical Physics, vol.110, issue.3, p.1475, 1999.
DOI : 10.1063/1.477814

R. Armunanto, C. F. Schwenk, and B. M. Rode, in 18.6% Aqueous Ammonia Solution:?? Structure and Dynamics Investigations, The Journal of Physical Chemistry A, vol.109, issue.20, pp.4437-4441, 2005.
DOI : 10.1021/jp0462916

P. M. Lichtenberger, A. E. Ellmerer, T. S. Hofer, B. R. Randolf, and B. M. Rode, Gold(I) and Mercury(II)???Isoelectronic Ions with Strongly Different Chemistry: Ab Initio QMCF Molecular Dynamics Simulations of Their Hydration Structure, The Journal of Physical Chemistry B, vol.115, issue.19, pp.5993-5998, 2011.
DOI : 10.1021/jp110736y

M. F. Camellone and D. Marx, in aqueous solution: electronic structure governs solvation shell patterns, Phys. Chem. Chem. Phys., vol.97, issue.2, p.937, 2012.
DOI : 10.1039/C1CP22961C

G. S. Pokrovski, A. Y. Borisova, and J. Harrichoury, The effect of sulfur on vapor???liquid fractionation of metals in hydrothermal systems, Earth and Planetary Science Letters, vol.266, issue.3-4, pp.345-362, 2008.
DOI : 10.1016/j.epsl.2007.11.023

URL : https://hal.archives-ouvertes.fr/hal-00317407

G. S. Pokrovski, B. R. Tagirov, J. Schott, E. F. Bazarkina, J. Hazemann et al., An in situ X-ray absorption spectroscopy study of gold-chloride complexing in hydrothermal fluids, Chemical Geology, vol.259, issue.1-2, pp.17-29, 2009.
DOI : 10.1016/j.chemgeo.2008.09.007

R. A. Bryce, J. M. Charnock, R. A. Pattrick, and A. R. Lennie, EXAFS and Density Functional Study of Gold(I) Thiosulfate Complex in Aqueous Solution, The Journal of Physical Chemistry A, vol.107, issue.14, pp.2516-2523, 2003.
DOI : 10.1021/jp021403j

X. Liu, X. Lu, R. Wang, H. Zhou, and S. Xu, Speciation of gold in hydrosulphide-rich ore-forming fluids: Insights from first-principles molecular dynamics simulations, Geochimica et Cosmochimica Acta, vol.75, issue.1, pp.185-194, 2011.
DOI : 10.1016/j.gca.2010.10.008

G. S. Pokrovski and L. S. Dubrovinsky, The S3- Ion Is Stable in Geological Fluids at Elevated Temperatures and Pressures, Science, vol.331, issue.6020, pp.1052-1054, 2011.
DOI : 10.1126/science.1199911

X. Liu, M. Sprik, and J. Cheng, Hydration, acidity and metal complexing of polysulfide species: A first principles molecular dynamics study, Chemical Physics Letters, vol.563, pp.9-14, 2013.
DOI : 10.1016/j.cplett.2013.01.046

J. Vandevondele and J. Hutter, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases, The Journal of Chemical Physics, vol.127, issue.11, pp.114105-114105, 2007.
DOI : 10.1063/1.2770708

A. Anderko and K. Pitzer, Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K, Geochimica et Cosmochimica Acta, vol.57, issue.8, pp.1657-1680, 1993.
DOI : 10.1016/0016-7037(93)90105-6

R. J. Bakker, Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties, Chemical Geology, vol.194, issue.1-3, pp.3-23, 2003.
DOI : 10.1016/S0009-2541(02)00268-1

R. Vuilleumier and M. Sprik, Electronic properties of hard and soft ions in solution: Aqueous Na+ and Ag+ compared, The Journal of Chemical Physics, vol.115, issue.8, pp.3454-3468, 2001.
DOI : 10.1063/1.1388901

R. J. Bakker, Package FLUIDS. Part 3: correlations between equations of state, thermodynamics and fluid inclusions, Geofluids, vol.5, issue.1, pp.63-74, 2009.
DOI : 10.1111/j.1468-8123.2009.00240.x

G. N. Phillips and K. A. Evans, Role of CO2 in the formation of gold deposits, Nature, vol.6, issue.6994, pp.860-863, 2004.
DOI : 10.1016/0016-7037(90)90368-U

J. J. Walther and P. M. Orwille, The extraction-quench technique for determination of the thermodynamic properties of solute complexes : application to quartz solubility in fluid mixtures, American Mineralogist, vol.68, pp.731-741, 1983.

R. C. Newton and C. E. Manning, Quartz solubility in H2O-NaCl and H2O-CO2 solutions at deep crust-upper mantle pressures and temperatures: 2???15 kbar and 500???900??C, Geochimica et Cosmochimica Acta, vol.64, issue.17, pp.2993-3005, 2000.
DOI : 10.1016/S0016-7037(00)00402-6

G. S. Pokrovski, N. N. Akinfiev, A. Y. Borisova, A. V. Zotov, and K. Kouzmanov, Gold speciation and transport in geological fluids : insights from experiments and physicalchemical modeling Geological Society of London Special Publication "Gold-transporting fluids in the Earth's crust, 2013. accepté, en attente de révisions mineures