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Résumé

Dans cette thèse nous introduisons une approche nouvelle pour la reconstruc-

tion d'un front d'ondes en Optique Adaptative (OA), à partir des données de

gradients à basse résolution en provenance de l'analyseur de front d'ondes, et

en utilisant une approche non-linéaire issue du Formalisme Multiéchelles Mi-

crocanonique (FMM). Le FMM est issu de concepts établis en physique statis-

tique, il est naturellement approprié à l'étude des propriétés multiéchelles des

signaux naturels complexes, principalement grâce à l'estimation numérique

précise des exposants critiques localisés géométriquement, appelés exposants

de singularité. Ces exposants quanti�ent le degré de prédictabilité localement

en chaque point du domaine du signal, et ils renseignent sur la dynamique du

système associé. Nous montrons qu'une analyse multirésolution opérée sur

les exposants de singularité d'une phase turbulente haute résolution (obtenus

par modèle ou à partir des données) permet de propager, le long des échelles,

les gradients en basse résolution issus de l'analyseur du front d'ondes jusqu'à

une résolution plus élevée. Nous comparons nos résultats à ceux obtenus

par les approches linéaires, ce qui nous permet de proposer une approche

novatrice à la reconstruction de fronts d'onde en Optique Adaptative.
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Abstract

In this thesis, we introduce a new approach to wavefront phase reconstruc-

tion in Adaptive Optics (AO) from the low-resolution gradient measurements

provided by a wavefront sensor, using a non-linear approach derived from the

Microcanonical Multiscale Formalism (MMF). MMF comes from established

concepts in statistical physics, it is naturally suited to the study of multiscale

properties of complex natural signals, mainly due to the precise numerical

estimate of geometrically localized critical exponents, called the singularity

exponents. These exponents quantify the degree of predictability, locally,

at each point of the signal domain, and they provide information on the

dynamics of the associated system. We show that multiresolution analysis

carried out on the singularity exponents of a high-resolution turbulent phase

(obtained by model or from data) allows a propagation along the scales of

the gradients in low-resolution (obtained from the wavefront sensor), to a

higher resolution. We compare our results with those obtained by linear ap-

proaches, which allows us to o�er an innovative approach to wavefront phase

reconstruction in Adaptive Optics.

v



Résumé substantiel en français 
 
Dans cette thèse, nous présentons une approche nouvelle pour la reconstruction de la phase d'un front 
d'onde en optique adaptative (AO) en nous plaçant dans le cadre du Formalisme Multi-échelles Micro-
canonique (FMM). Les idées fondamentales de ce formalisme sont introduites ainsi que ses 
applications notamment au cas du traitement du signal image, et nous l'utilisons avec succès dans le 
cadre d'une analyse multi-résolution associée aux ondelettes pour résoudre le problème de l'estimation 
de la phase turbulente pour l'AO. L'idée réside dans  l'utilisation d’une ondelette permettant une 
inférence optimale le long des échelles d'un signal complexe dans l'analyse multi-résolution. La 
détermination effective d'une ondelette optimale restant pour l'instant hors de portée dans un cadre 
temps-réel, nous nous sommes limités à travailler uniquement avec une version approximative de 
l'ondelette optimale. Cette limitation nous a conduit à définir dans cette thèse une technique alternative 
pour l'inférence optimale le long des échelles. Nous avons montré que les exposants de singularité 
associés à l'acquisition d'une phase turbulente sont des candidats idéaux pour inférer des informations 
entre les échelles d'un signal et peuvent être utilisés dans une approche d'analyse multi-résolution 
(associée à une transformation en ondelettes) pour reconstruire une phase turbulente en partant des 
gradients à basse résolution. La justification de cette idée, qui forme le cœur de cette thèse, a été faite 
en deux étapes. 
 
Dans la première étape, nous concluons qu'un signal complexe est bien décrit par l'arrangement 
géométrique de sa structure multi-échelle et que certaines de ses propriétés fines sont reliées aux 
propriétés de cascade multiplicative de certaines grandeurs physiques.  Les transitions dans ces signaux 
peuvent être bien définies par un sous-ensemble de points qui sont liés à la notion de bord dans des 
images naturelles. En effet les bords sont généralement considérés comme des caractéristiques multi-
échelles importantes dans un signal (des images dans notre cas) et notre objectif préliminaire a été de 
proposer une meilleure caractérisation des bords dans des signaux complexes et de montrer que ceux-ci 
peuvent se déduire de sa hiérarchie géométrique multi-échelle. En Physique Statistique on sait que les 
systèmes ayant des transitions d'ordre > 1 montrent des variables thermodynamiques qui ont une loi de 
puissance au voisinage d'un point critique.   Les exposants de ces lois de puissance, quand on sait les 
déterminer correctement, renfermer des informations clés sur un système complexe.  Le FMM propose 
une approche adaptée à la détermination de ces exposants critiques, appelés exposants de singularité, 
avec pour conséquence des algorithmes améliorés pour la détermination précise des caractéristiques 
multi-échelles dans les signaux réels. En particulier, les exposants de singularité donnent accès à un 
sous-ensemble de points, appelé variété la plus singulière (VPS) dont la structure est reliée aux bords et 
aux contours dans les images naturelles. Nous concluons que ce sous-ensemble de points permet de 
définir de bien meilleurs candidats pour caractériser les transitions dans des signaux complexes : en 
particulier ils surpassent les approches classiques associées aux meilleurs détecteurs de bord en filtrage 
linéaire notamment en termes de cohérence entre les échelles. Les bords détectés par analyse de 
singularité sont capables de conserver leur structure à travers les échelles. Ces résultats nous aident à 
conclure que les exposants de singularité sont en mesure de conserver les importantes caractéristiques 
multi-échelles d'un signal le long des échelles. 
 
Après avoir étudié les relations entre exposants de singularité et transitions dans un signal turbulent, 
nous passons à la deuxième étape de notre étude qui consiste à reconstruire un signal turbulent à partir 
des informations de sa structure multi-échelles associée aux transitions définies par les exposants de 
singularité. En effet, si les bords définis par ces exposants encodent de manière satisfaisante les 
caractéristiques multi-échelles plus importantes d'un signal, il devrait être possible de reconstruire un 
signal complexe quelconque à partir des bords. Nous étudions donc la performance des systèmes 
reconstructibles à la fois avec des transitions associées à des exposants de singularité et des pixels de 



bord fournis par les algorithmes classiques de détection de bord. Des exemples sont choisis parmi les 
signaux naturels les plus difficiles à analyser: acquisition de phénomènes turbulents (phase optique et 
observation satellitaire de la dynamique océanique). Les résultats montrent clairement la supériorité de 
la reconstruction obtenue à partir de la VPS sur les sous-ensembles définis par les operateurs classiques 
de détection de bord. Par l'application de différentes techniques pour reconstruire une image à partir de 
ses bords, on observe la supériorité générale de la reconstruction à partir de la VPS pour les signaux qui 
sont des images d'acquisitions de phénomènes naturels complexes. Les résultats nous permettent de 
tirer une autre conclusion importante : les exposants de singularité, non seulement conservent les 
caractéristiques multi-échelles d'un signal, mais il est également possible de reconstruire le signal à 
partir d'un sous-ensemble de ses points les plus informatifs.  
 
Ces études préliminaires étant destinées à valider l'utilisation des exposants de singularité pour 
l'inférence optimale dans l'analyse multi-résolution, nous démontrons le potentiel de cette idée, dans le 
chapitre 6, pour la reconstruction de la phase d'un front d'onde turbulent. Nous étudions un schéma 
d'analyse multi-résolution associée au signal d'exposants de singularité permettant une approximation 
acceptable d'une analyse multi-résolution optimale. Trois types de phase sont utilisés pour fournir des 
données d'entrée haute résolution nécessaires à l'analyse multi-résolution quasi-optimale. Le premier 
type de phase permet de valider les performances de notre algorithme en utilisant la vérité terrain, c'est 
à dire que nous utilisons la véritable phase haute résolution en entrée. La très bonne qualité des 
résultats obtenus dans ce cas nous conduit à utiliser d'autres données de phase haute-résolution: la 
moyenne de la phase vraie (calculée sur un intervalle centré sur l'instant courant et dont la demi-
longueur temporelle est de 10 phases d'acquisition) puis une phase atmosphérique dont le spectre de 
puissance respecte celui prévu par la théorie de Kolmogorov. Les résultats obtenus, comparés avec  
ceux obtenus par l'approche classique en AO par moindres carrés montre clairement le potentiel de 
notre approche en estimation de phase du front d’onde, notamment en présence de bruit, où l'approche 
basée sur le FMM se révèle supérieure. 
 
 
Perspectives 
 
La recherche présentée dans cette thèse a ouvert une nouvelle direction pour le problème de la 
reconstruction de la phase du front d'onde en AO. Les simulations indiquent clairement le potentiel de 
cette approche avec des résultats supérieurs ou égaux à ceux obtenus par des solutions linéaires 
classiques (avec une supériorité marquée dans le cas du bruit, au moins pour le type de bruit gaussien 
considéré dans cette thèse). 
 
Une première perspective sera de mettre en œuvre notre algorithme de reconstruction dans un système 
AO et voir sa performance en temps réel. En fait, les exposants de singularité, qui sont les ingrédients 
de base utilisés dans la technique de reconstruction, peuvent être calculés en temps réel avec une 
utilisation minimale de ressources.  
 
La technique de reconstruction que nous avons proposée dans cette thèse est généralisable au cas 
d'autres types de systèmes complexes. 
 
Ces futures extensions du présent travail sont susceptibles de justifier l'utilisation du FMM pour 
l'analyse des caractéristiques multi-échelles dans les signaux complexes. 
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- Chapter 1 -

Introduction

The research performed in this thesis is about proposing a novel approach to

wavefront phase reconstruction in Adaptive Optics (AO). The primary goal is

to make use of advanced non-linear and multiscale analysis methods in signal

processing for reconstructing the phase, through appropriate multiresolution

analysis, using ideas coming from the novel framework of Microcanonical

Multiscale Formalism (MMF); we apply these ideas for estimating a turbu-

lent wavefront phase from the low-resolution sensor measurements of an AO

system (a particular case of the general problem known sometimes as �super-

resolution� 1 in signal processing jargon [13, 56, 222, 25, 196]). The aim of

this research is to propose an alternative to the classicalinverse problem

formulations used in AO, with the objective of improved performance and

comparison with existing techniques.

Ÿ 1.1 Motivation of the research

Light emitted from distant spatial objects, before entering the Earth's at-

mosphere, are planar wavefronts. The Earth's atmosphere is a time-varying

1High-resolution gradients are generated from low-resolution gradients (correspond-
ing to low-resolution sensor measurements) and then the phase is estimated from these
high-resolution reconstructed gradients. We work with the complete set of low-resolution
gradient measurements and not selected measurement of the gradients.

1
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inhomogeneous medium. When a planar wavefront propagates through this

medium, refractive index variations of the air changes, to a considerable

extent, the phase associated to the wavefront. This gives rise to a turbu-

lent phase perturbation with the consequence of causing a limitation in the

optical resolution of ground-based astronomical devices : acquisitions are

�blurred� and there is a considerable loss in the spatial resolution of the

instrument, compared to its theoretical limit resolution power.

One of the most common technology employed for ground-based obser-

vation of astronomical objects, and to overcome the limitation of low spatial

resolution problems, is the Adaptive optics (AO). An AO system tries to elim-

inate the distortions in the wavefront phase, in real-time, with the help of a

deformable mirror (DM) and a well designed servo-loop. A wavefront sensor

(WFS) placed behind the mirror helps to measure these distortions, which is

then passed through the servo-loop, as command, to the DM. The DM then

tries to adjust its shape according to the shape of the incident wavefront to

reduce wavefront residual phase error. The process is repeated iteratively

to compensate the e�ects of atmospheric turbulence on the wavefront. The

�rst generation of AO system, also known as SCAO or Single-Conjugate

Adaptive Optics, was designed with a single DM and a single WFS. How-

ever, SCAO corrections are limited to a small �eld of view [158, 104] and

to overcome this limitation and to enhance the performance of ground-based

observations, several other AO concepts were introduced. For example in

Multi-Conjugate Adaptive Optics or MCAO systems [20, 48, 67], multiple

deformable mirrors and wavefront sensors are used to provide improved reso-

lution in a large �eld of view. Other techniques like Ground Layer Adaptive

Optics (GLAO) [160] and Extreme Adaptive Optics (XAO) [69] are also used

to enhance the performance of ground-based telescopes.

AO technology primarily �nds its application in ground-based astronomy

and in defense applications [164]. However, the technology is getting increas-

ingly popular in opthalmology [40, 49]. The principle of AO technique was

�rst proposed by Horace W. Babcock [12] in 1953. However, it was not un-

til the 1990's that the idea of AO was �rst demonstrated in astronomical

observations [171, 172]. Optical testing devices were the major source of in-

spiration for designing a WFS [170, 104]. The WFS records the wavefront
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distortions in the form of slope measurements (gradients of the phase) [164],

like the Shack-Hartmann (SH) WFS, or curvature measurements (Laplacian

of the phase) [163], like the curvature WFS. The primary objective of any

AO system is to estimate the wavefront phase values from the discrete mea-

surements (gradients or Laplacian of the phase) provided by a wavefront

sensor. The wavefront phase estimation is then classically formulated as an

inverse problem [170, 137]. The techniques generally used to estimate the

phase are: the maximum likelihood technique and the maximuma posteriori

technique. Both these techniques yield to the generalizedleast squares so-

lution, which is the solution classically used for estimating the phase under

real-time constraints [137].

Ÿ 1.2 Objective of the research

In this thesis, we propose, explore and experiment a completely di�erent ap-

proach for phase reconstruction in AO. The motion of the upper-layers in the

atmosphere, where the incoming wavefront are perturbated, are turbulent.

Turbulent �ows, although extremely chaotic in nature (since they belong, at

high Reynolds number, to the �eld of Fully Developed Turbulence (FDT)),

can be adequately described by a well de�ned multiscale and multifractal

hierarchy. They are the place where multiplicative cascade phenomena are

observed for intensive variables, and coherent structures are related to the

transfer of energy between the scales [7, 64, 202, 185]. Consequently, a careful

examination of the multiscale structure of turbulence has the potential of op-

timal inference across the scales of a turbulent acquisition.In this work, we

examine the problem of cross-scale information inference through

the determination of a multiresolution analysis that suits best the

multiscale structure of turbulence . The methodology encompasses a

large class of problems in Complex Systems Science and can be applied to

propagate information across the scales for a wide variety of complex sig-

nals [124, 217]. We demonstrate that the MMF, set up for understanding

and evaluating the mechanisms that govern the evolution of complex dynam-

ical systems, can be successfully applied to the problem of turbulent phase
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reconstruction from low-resolution gradient measurements. Consequently, we

�rst focus on the determination of appropriate parameters, necessary to char-

acterize the multiscale features of a complex signal. In non-linear physics, it

is well known for instance in the study of ferromagnetism, that susceptibility,

spontaneous magnetism, critical isotherm and heat capacity all have power-

law behaviour in the vicinity of a critical point t = tc with values, called

critical exponents , which can be predicted by the mean-�eld approxima-

tion [23]. Systems with high order transitions commonly re�ect a power-law

behaviour in their thermodynamical variables [202, 203]. This power-law be-

haviour of physical intensive variables around a critical point is known to be

a �ngerprint of scale invariance [109]. Moreover, the critical exponents are

universal : close to the critical point, the details of the microscopic dynam-

ics of the system become irrelevant, the macroscopic characteristics of the

system are determined by these critical exponents, and systems having same

distributions of critical exponents share equivalent macroscopic characteris-

tics [154, 187, 203]. As a consequence of universality, critical exponents stand

for a suitable mean for analysing complex systems as a whole [154]. There has

been a considerable amount of work done by researchers in the past decades

to characterize the multiscale and multifractal organization of complex sys-

tems; the most well-known approaches are related to the characterization of

singularity spectra and the methods to compute them [7, 213]. These tech-

niques require a lot of realizations for the computation of singularity spectra,

and they determine the power-laws appearing in the limiting behaviour of

moments of variables, not the geometrically localized critical exponents [202].

In the MMF, critical exponents are determined at high numerical precision

at each point of the signal domain, using only one realization (or acquisi-

tion) and speci�c vectorial measures associated to predictability [32, 155].

Consequently, the MMF provides a suitable approach in the determination

of localized critical exponents, which we callsingularity exponents in the

sequel; it is a formalism that has led to a sensible improvement in the design

of numerical techniques for the determination of multiscale characteristics of

natural complex signals.

Since turbulent signal possess a multiscale hierarchy which is closely re-

lated to the cascading properties observed in FDT, there must exist speci�c
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multiresolution analysis that allow optimal inference of physical intensive

variables across the scales of turbulent acquisition data. Similar and related

ideas have been pervasive in multiscale statistical inference these past few

years [191, 92, 58, 91]. This observation can be made precise through the

notion of optimal wavelet , introduced in other contexts such as econome-

try and oceanography [199, 198, 152, 156]. The proper determination of an

optimal wavelet, associated to turbulent wavefront acquisitions, would then

allow us to reconstruct, in an optimal way, a phase from its low-resolution

gradients with minimum error. Up to now, however, obtainig such a wavelet

at high numerical precision from acquired data turns out to be a very di�cult

problem, and the attempts made so far produce only an approximation of

it, not su�cient enough to ensure optimal transport across the scales (high

numerical precision is a key element in any processing of turbulent signals).

In this thesis we observe experimentally that, instead of comput-

ing a multiresolution analysis associated to an optimal wavelet, one

is able to obtain a close to optimal inference across the scales by

applying classical multiresolution analysis on the singularity expo-

nents of a phase signal. In other words, a classical multiresolution

analysis performed, not on the signal itself, but on its singular-

ity exponents, allows an (close to) optimal inference of physical

variables across the scales .

The primary reason behind this idea is the following : once determined

at high numerical precision, the singularity exponents provide a much richer

framework for describing the multiscale hierarchy present in turbulence, and

they can be used to retrieve singularity spectra as well. Singularity exponents

encode the transitions present in the signal and, particularly, in the case

of well de�ned rigid objets, they contain the classical notion of edge pixel.

Indeed, one of the main feature among multiscale characteristics in a signal is

given by the classical notion of edge. Edge pixels form the most informative

subset of an image, well known at least in the case of well de�ned objects,

and one can reconstruct the object from the knowledge of its edges [125].

There are many algorithms for computing edges in digital signals, and these

algorithms produce appropriate edge pixels in the case of rigid or slightly

deformed objects. But, in the case of turbulent signals, and speci�cally
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in the situation of FDT, the notion of edge is not well-de�ned by classical

edge detectors. We however see that, in the case of complex natural signals

and speci�cally in the case of turbulence, singularity exponents provide a

more adapted notion of edge [125, 124, 100]. Consequently, since singularity

exponents are ideal candidates in describing the multiscale organization of a

turbulent signal, and since they turn out to be the adequate (and physically

substantiated, an aspect which is very important to us) generalization of

edge pixel, it is logical to expect that a multiresolution analysis performed

on the signal of singularity exponents, instead of the signal itself, ensures

proper inference across the scales. We will see, in the following chapters of

this thesis, the e�ciency of this concept in the derivation of a new method for

reconstructing the wavefront phase for AO. However, because of the present

lack of a theoretical physics justi�cation of the above-mentioned equivalence,

we need to carry out an important preliminary work, which will be achieved

in this thesis, for showing that singularity exponents are better candidates for

detecting edges in the case of turbulent data. This is achieved in two steps,

and presented in chapter 5 : �rst we prove that singularity exponents provide

a consistent notion of edge pixel across the scales, much more consistent

than the classical edge detectors in the case of turbulent data. Then we

prove that this new notion of edge outperforms the classical edge detectors,

in terms of reconstructibility of the whole signal (image in our case) from

given edge pixels, and is naturally robust to noise. Armed with the results of

chapter 5, we can be con�dent that a multiresolution analysis performed on

the singularity exponents will provide good inference across the scales. This

idea is then exploited in chapter 6 for providing a new method for phase

reconstruction in AO.

Ÿ 1.3 Organization of the thesis

The thesis is organized as follows:

� In chapter 2, we recall the mathematical description of atmospheric

turbulence and its statistical descriptors. We talk about the e�ects of

turbulence on image formation in ground-based astronomy and the role
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of the descriptors in characterizing these e�ects. We also talk about the

various techniques used to simulate a turbulent phase, for experimental

purposes.

� In chapter 3, we discuss about the concepts of AO technique and its role

in reducing the wavefront phase distortions. We give a brief presenta-

tion of the principle components in an AO system and their functions.

The classical wavefront phase reconstruction techniques from the WFS

measurements are then discussed.

� In chapter 4, we introduce the MMF. We talk about the origin of this

formalism, and then discuss about its key parameters: the singular-

ity exponents and the singularity spectrum. The di�erent methods of

estimating the singularity exponents are then explained.

� In Chapter 5, we introduce the concept of optimal inference across the

scales of a given signal. We emphasize on the idea that singularity

exponents of a signal are well-justi�ed candidates for extracting infor-

mation, across scales, through a multiresolution analysis. We justify

this idea in section 5.2 and section 5.3.

In section 5.2, we discuss about the process of determining edges from

the singularity exponents. We show that the edges obtained from the

singularity exponents, for a given image, are much more consistent

across the scales compared to edges detected by classical edge detectors,

notably in the case of turbulence that interests us in this work. We

justify our approach using two scale-based representation of images: the

dyadic wavelet transform and the Lindeberg scale space representation.

In section 5.3, we prove the concept of edges (detected by singularity

analysis) as the most informative set, by its ability to give an accurate

reconstruction of the whole image compared to classical edges. In the

process, we re-examine image reconstruction from their edges [197, 203]

and show that it provides superior results, in terms of compact repre-

sentation [16, 17, 15], over the state-of-the-art surface reconstruction

techniques.
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� In chapter 6, we introduce our wavefront phase reconstruction tech-

nique, using MMF, associated to a multiresolution analysis on the

singularity exponents with an approximative version of the optimal

wavelet (related to the phase signal). We evaluate the quality of our re-

construction by comparing the power spectral density (PSD), the point

spread function (PSF) and the modulus of the optical transfer function

(OTF) of the reconstructed phase with that of the true phase. We also

compare the results of our reconstruction technique with classical least

squares reconstruction technique.

� Finally, we conclude in chapter 7.



- Chapter 2 -

Atmospheric turbulence and wavefront

propagation

Ÿ 2.1 Atmospheric turbulence

The Earth's atmosphere is a turbulent environment. Solar energy heats up

the Earth's surface, and the boundary layers of the atmosphere gets heated

giving rise to local unstable air masses that are always in motion (known as

convection current). The motion of the air masses results in the formation

of kinetic energy that creates turbulence. This energy causes the formation

of vortices, also known asturbulent eddies[192], with a characteristic size

ranging from hundreds of meters (outer scale of turbulenceL0) to the order

of a few millimeters (internal scale turbulencel0). Energy is transmitted

successively from the higher size vortices to increasingly lower size vortices,

until they are no longer able to retain their distinct characteristics. The

area between these two characteristic sizes (or scales, i.e.L0 and l0), where

turbulence is fully developed, is called theinertial range. Knowledge of this

domain is important in describing the major reasons behind the degradation

of images in ground-based astronomy [65]. It is of primary importance to re-

call the statistical description of a turbulent wavefront used in optics in order

to understand the type of correction used in classical approaches for phase

reconstruction in AO, and also to underline the novelty of the reconstruction

9



10 Chapter 2. Atmospheric turbulence and wavefront propagation

process undertaken in this thesis.

2.1.1 Variations in the refractive index

The starting point of getting insight into the properties of atmospheric tur-

bulence is to view the refractive index of the atmosphere as a random pro-

cess [6]. The atmospheric refractive indexn, at a given point r in space, can

be expressed in terms of temperature and pressure variations as:

n(r ) = k(� )
P(r )
T(r )

(2.1)

where k(� ) is a coe�cient that depends on the optical wavelength� (for

� = 0:5�m; k (� ) = 77:6 � 10� 6) [93], P is the pressure in millibars, and

T is the temperature in Kelvins. A precise knowledge of the atmospheric

refractive index for all pointsr and at every moment of time is inaccessible [6].

This gives rise to the necessity of a statistical descriptor to best represent

the atmosphere [179].

2.1.1.1 Structure function of the refractive index variations

In astronomy and other physical sciences, the description of the random

variations, either in space or time, in the index of refraction, is making use

of the terminology set up in probability theory for second order stochastic

processes and is called in physics as the structure functions. The structure

function, Dn (r ), of the index of refraction can be de�ned as the mean-square

di�erence of n(r ) between two given points:

Dn (r1; r2) = h[n(r1) � n(r2)]2i (2.2)

where r1 and r2 are the two given points in space andh�i is an ensemble

average. Assuming that the refractive index �uctuations maintain stationary

increments [6], the covariance function of any two random processesn(r1) and

n(r2) can be simpli�ed to:

Bn (� ) = hn1(r1)n1(r1 + � )i (2.3)

so that the covariance functionBn (� ) becomes independent of the spatial

position and is only dependent on the distance between the two points of
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interest: � = r1 � r2 . The structure function is related to the covariance

function by [65]:

Dn (� ) = 2[ Bn (0) � Bn (� )] (2.4)

Following a dimensional analysis [145], it can be shown that the structure

function follows a2=3 power-law and can be written as:

Dn (� ) = C2
n � 2=3 for l0 � � � L0 (2.5)

where C2
n is the refractive index structure constant. The parameterC2

n is

expressed inm� 2=3 units and is generally referred to as the strength of the

turbulence [6, 167].

2.1.1.2 Power spectral density of the refractive index variations

Another means of characterizing the statistical �uctuations of the refractive

index is to consider its power spectral density (PSD). The PSD can be ex-

pressed as the Fourier transform of the covariance functionBn (� ) (refer to

equation (2.3)) and can be written as:

� n (f) =
Z 1

�1
Bn (� )e� 2�i f� d� (2.6)

where f represents the spatial frequency. The power spectrum of the refractive

index �uctuations can be expressed, in terms ofC2
n , as:

� n (f) = 0 :033(2� )� 2=3C2
n jfj � 11=3 (2.7)

Equation (2.7) is generally referred to as theKolmogorovpower-law spectrum

and is only valid over the inertial range i.e. for1=L0 � j fj � 1=l0.

The Kolmogorov power spectrum can be easily extended to other power

spectrum models in order to increase the valid range for the PSD. The most

common among them is theVon Karman power spectrum and can be ex-

pressed as :

� n (f) = 0 :033(2� )� 2=3C2
n (jfj2 + f20)� 11=6exp

�
�

jfj2

f2m

�
(2.8)

where fm = 5:92=l0 and f0 = 1=L0.
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2.1.1.3 Refractive index structure constant

The refractive index structure constantC2
n is a measure of the strength of

the optical turbulence [65]. It is usually expressed as a function of altitude

h. The precise characterization of theC2
n (h) pro�le above an astronomical

observatory is very important for the design of adaptive optics systems. The

integrated C2
n pro�le is de�ned as:

C2
n =

Z
C2

n (h)dh (2.9)

The C2
n is highly sensitive to changes in location, time and weather condi-

tions. Di�erent instruments have been developed to determine experimen-

tally the C2
n (h) pro�le. The most common of them are the Meteorologi-

cal Balloons [11], Scintillation Detection and Ranging (SCIDAR) [80, 207],

Multi-Aperture Scintillation Sensor (MASS) [194] and Slope Detection and

Ranging (SLODAR) [214].

2.1.1.4 Fried parameter

Another essential parameter that can measure the e�ects of atmospheric

turbulence on the propagation of light waves and image formation in ground-

based observatory is theFried parameterr0 [61]. It is de�ned as the diameter

that �xes the resolution limit of the telescope introduced by turbulence [65].

As a result, imaging from telescopes with aperture diameter smaller than

r0 results in reduced e�ect of atmospheric seeing1. Using telescopes with

aperture size more thanr0 results in the opposite e�ect. The Fried parameter

at wavelength � can be expressed [84] in terms ofC2
n as:

r0 =
�
0:42

� 2�
�

� 2 1
cos

Z 1

0
C2

n (h)dh
� � 3

5

(2.10)

with  the zenith angle (angle of observation measured from the zenith).

1seeing refers to the blurring of spatial objects caused due to the high frequency �uc-
tuations in the refractive index of the Earth's atmosphere.
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Inhomogeneous Medium

Incoming wavefront

Phase shifted wavefront

Telescope Pupil

Lenslet Array

Figure 2.1: The e�ects of atmospheric turbulence on an incoming spatial

wavefront. The incoming planar wavefront from a distant spatial object, upon

entering the Earth's atmosphere (a homogeneous medium), gets distorted re-

sulting in a phase degradation in the wavefront.

Ÿ 2.2 Effects of turbulence on wavefront

phase

Turbulence in the Earth's atmosphere results in refractive index variations

that interfere with the propagation of light. This leads to a distortion in the

planar wavefront from outer space trying to reach the ground giving rise to

a phase degradation in the wavefront. The resultant complex �eld arising

out of turbulence exhibits random �uctuations in its phase� (r ) and can be
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expressed mathematically, at the telescope pupil, as [162]:

	 0(r ) = A(r )exp[i� (r )] (2.11)

where A(r ) is the amplitude of the resultant �eld. The phase� (r ) of the

wavefront, after traversing through the atmosphere, is a function of the re-

fractive index n(r; h) at altitude h [65] and can be expressed as:

� (r ) =
2�
�

Z
n(r; h)dh (2.12)

where� is the observing wavelength and integration is made along the optical

path.

It is now clear from the above discussions, that the magnitude of the e�ect

of turbulence is most noticeable in the phase� (r ) of the electromagnetic wave

reaching the ground. We will now characterize the phase statistically by its

structure function and power spectral density.

2.2.1 Structure function of the turbulent phase

The structure function of the phase� (r ), considered as a random process [193],

can be written as:

D � (� ) = h[� (r + � ) � � (r )]2i (2.13)

The equation can be further reduced [143], following the Kolmogorov-Obukhov

law of turbulence, as:

D � (� ) = 6 :88

 
j� j
r0

! 5=3

(2.14)

wherer0 is the Fried parameter (refer to section 2.1.1.4).

2.2.2 Power spectrum of the turbulent phase

Like the structure functions, we are also interested in calculating the power

spectrum of the turbulent phase. The power spectrum of a wavefront, fol-

lowing the law in equation (2.14), is commonly known as the Kolmogorov

power spectrum and can be written as [143]

~�( f) = 0 :023r � 5=3
0 jfj � 11=3 (2.15)



2.3. Imaging through turbulence 15

Kolmogorov's PSD holds true only within a bandwidth proportional to the

inertial range i.e. 1=L0 � j fj � 1=l0. In this thesis, we use a Von Kar-

man power spectrum, which can overcome the limitations of the Kolmogorov

spectrum in terms of range. It takes into account two additional parameters

(the inner and the outer scale) and can be written as

~�( f) = 0 :023r � 5=3
0 (jfj2 + L � 2

0 )� 11=6 (2.16)

where L0 is the outer scale of turbulence. WhenL0 ! 1 , equation (2.16)

approaches the Kolmogorov spectrum.

Ÿ 2.3 Imaging through turbulence

After discussing the e�ects of turbulence on the degradation of a light wave,

we will now study how the formation of images in ground-based telescopes

are a�ected by this turbulence. We will focus in particular the problem of

imaging through turbulence and the de�nition of the point spread function,

which is the quantity that characterizes the damage su�ered by the image of

the observed object [65].

2.3.1 The point spread function (PSF)

The PSF describes the response of an imaging system to a point source or

point object and characterizes atmospheric blurring e�ects that are spatially

invariant in the immediate �eld of view [42]. The resultant image is therefore

the PSF of the telescope+ atmosphere optical system [167]. The PSF can

be broadly divided based on the e�ects of short-exposure and long-exposure

response of an imaging system towards a point source. Theshort-exposure

PSF can be de�ned by its dependence on the wavefront pro�le	 0(r ), as [42,

47, 65]:

kse[� ] = jF � 1[	 0(r )P(r )]� j2 (2.17)

where F denotes the 2-D Fourier transform andP(r ) denotes the pupil,

or aperture, function i.e. is1 inside the pupil and 0 otherwise. Thelong-

exposurePSF can be considered as the ensemble average of the short-exposure
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PSFs [158]:

kle[� ] = hkse[� ]i (2.18)

The PSF is determined by the size and shape of the pupil and also the

phases across the pupil [47]. The goal of any AO system is to remove the

phase error� from the incoming wavefronts (i.e. the e�ect of the atmosphere

optical system). If done exactly, the resulting PSF then has the form:

k[0] = jF � 1f P(r )gj2 (2.19)

which is also known as the thedi�raction-limited PSF of the telescope, and

the image formed in this case is known as the di�raction-limited image [18].

In an ideal case, for a perfect telescope, the image of a point source (star)

would be equal to an Airy pattern. A typical example of a di�raction lim-

ited PSF and the e�ect of turbulence on image formation in ground-based

telescopes is shown in table 2.1.

2.3.2 The optical transfer function (OTF)

The optical transfer function (OTF) of an imaging system is de�ned as the

Fourier transform of the PSF. Similar to the PSF, the long-exposure OTF

can be de�ned as the ensemble average of short-exposure OTF's [193]:

Ole(f) = hOse(f)i (2.20)

The long-exposure OTF is the result of the contribution of the telescope and

the atmospheric turbulence and can be expressed as [193, 65]:

Ole(f) = Oturb (f)Otel (f) (2.21)

For large telescopes with good optical quality the e�ect ofOtel (f) is negligi-

ble [193], so the OTF becomes a function of the OTF of the atmosphere i.e.

Ole(f) � Oturb (f). The atmospheric OTF can be expressed as a function of

the phase structure functionD � (� ) [162], as:

Oturb (f) =

"

�
1
2

D � (� f)

#

(2.22)
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Table 2.1: E�ects of turbulence on image formation in ground-based as-

tronomy. Top row (from left to right): Simulated negative image of a point

source (star) in an ideal telescope without atmosphere (corresponds to an

Airy function), the X cut and Y cut of the image. Bottom row (from left

to right): Simulated negative image showing what a point source (star) would

look like through a ground-based telescope in presence of atmosphere (the

speckle formation of the image is due to the turbulence in the atmosphere),

the X cut and Y cut of the speckle image.

Point source X cut Y cut

Following the Kolmogorov model of turbulence, substitutingD � (� ) = 6 :88
� j � j

r 0

� 5=3

(refer to equation (2.14)), in the above equation, we get a �nal expression of

Oturb (f) as:

Oturb (f) =

"

� 3:44

 
� f
r0

! 5=3#

(2.23)

The long-exposure OTF has the e�ect of averaging the high frequencies that

were present in the short-exposure OTFs [65]. It has a cut-o� frequency of

f � r0=� , beyond which any high-frequency information is completely lost.

Partial recovery of this high frequency information is possible with the use of

Adaptive Optics as well as techniques like deconvolution [59, 139, 138, 94, 169]
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Table 2.2: Zernike Polynomials.

Mode(i ) n m Polynomials Name

1 0 0 Z1 = 1 Piston

2 1 1 Z2 = 2 � cos� x tilt

3 1 -1 Z3 = 2 � sin � y tilt

4 2 0 Z4 =
p

3(2� 2 � 1) Defocus

5 2 -2 Z5 =
p

6� 2 sin 2� x primary astigmatism

6 2 2 Z6 =
p

6� 2 cos 2� y primary astigmatism

7 3 -1 Z7 =
p

8(3� 3 � 2� ) sin � x primary coma

8 3 1 Z8 =
p

8(3� 3 � 2� ) cos� y primary coma

9 3 -3 Z9 =
p

8� 3 sin 3� x trefoil

10 3 3 Z10 =
p

8� 3 cos 3� y trefoil

11 4 0 Z11 =
p

5(6� 4 � 6� 2 + 1) Primary spherical

and speckle interferometry [106].

Ÿ 2.4 Modal decomposition of the phase

It is a common practice in AO design to represent the turbulent wavefront

phase, within the telescope aperture (or pupil), as the weighted sum of power

series terms, where each term helps in explaining the wavefront distortion due

to a particular aberration (or mode) [123]. Due to the circular nature of the

telescope pupil, it is convenient to expand the wavefront phase distortion in

terms of some basis functions that are orthogonal over a circular aperture.

The most commonly used basis functions are the Zernike polynomials [143]

and the Karhunen - Loëve (KL) functions. The Zernike polynomials are

preferred in AO due to their simplicity in analytical representation [164];

they form a set of basis functions (or modes) that are orthogonal over a

unitary circular aperture. This makes them ideal candidates for accurate

description of a distorted wavefront.
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The Zernike polynomials, named after the renowned physicist Frits Zernike,

are two dimensional polynomials that can be expressed in function of radial

order n and the azimuthal frequencym [167] as:

Z m
n (�; � ) =

p
n + 1Rm

n (� )
p

2 cos(m� ) (2.24)

Z � m
n (�; � ) =

p
n + 1Rm

n (� )
p

2 sin(m� ) (2.25)

for m 6= 0 and

Z 0
n (�; � ) =

p
n + 1R0

n (� ) if m = 0 (2.26)

where (�; � ) are the polar coordinates of the normalized position vector�

(� = r=R, where R is the desired screen radius). The functionRm
n (� ) is

de�ned as:

Rm
n (� ) =

(n� m)=2X

s=0

(� 1)s(n � s)!
s![(n + m)=2 � s]![n � m)=2 � s]!

� n� 2s (2.27)

In 1976, Noll [143] proposed an ordering scheme (mapping ofm and n in

terms of a single indexi ), by which the Zernike polynomials can be identi�ed

in terms of optical aberration. The indexi is a function of n and m and

is called the mode ordering number. Table 2.2 shows the ordering of the

modes for the �rst 11 polynomials. The Zernike polynomials form a normal,

orthogonal basis set [65] and can be expressed for any two polynomialsZ i

and Z j , as:

Z 2�

0

Z 1

0
Z i (�; � )Z j (�; � )d� d� =

(
0 if i 6= j

1 if i = j

A turbulent phase � (r; � ) can be expressed in terms of polynomial expan-

sion over a circle of radiusR as [143]:

� (R�; � ) =
1X

i =1

zi Z i (�; � ) (2.28)

� (r; � ) =
1X

i =1

zi Z i (
r
R

; � ) (2.29)

whereZ i (r ) is the i th Zernike polynomial andzi is the corresponding Zernike

coe�cient. The shapes of the �rst 28 polynomials of Zernike are illustrated

in Fig 2.3.
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Figure 2.2: Graphical representation of the �rst 28 Zernike Polynomials.

Ÿ 2.5 Simulation of the turbulent phase

For experimental and validation purposes of the work done in high-resolution

imaging, it is important to do the numerical simulation of the phase after

propagation through atmospheric turbulence [65]. There are two main ap-

proaches in the generation of atmospheric phase screens [9]: modal techniques

(using basis functions like Zernike polynomials or KL modes) and sample

based techniques. The sample based techniques can be either Fourier trans-

form based [134, 108, 182] or covariance based [83]. However, for computing

reasons, the Fourier based methods are more commonly used.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 2.3: Zernike realization of a turbulent wavefront phase with the

addition of increasing number of polynomials. Realization of the phase with :

(a) all Zernike polynomials (b) piston only (i=1) (c) �rst 3 polynomials (d)

�rst 5 polynomials (e) �rst 9 polynomials (f ) �rst 13 polynomials (g) �rst 28

polynomials (f ) �rst 37 polynomials.

2.5.1 Zernike realization of the phase screen

As explained in section 2.4, an atmospheric phase screen can be represented

as a sum of all the Zernike polynomials in the wavefront as [165]:

� (r; � ) =
1X

i =2

zi Z i (
r
R

; � ) (2.30)

where zi is the coe�cient associated with the i th Zernike polynomial. The

Zernike coe�cients can be recovered from a given phase screen, using the

following equation [143]:

zi =
1

R2

Z
P(r=R)� (r; � )Z i (r=R; � )d2r (2.31)
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(a) (b) (c)

Figure 2.4: Fourier representation of a turbulent phase using: (a) Kol-

mogorov power spectrum (b) Von Karman power spectrum (c) PSD compar-

ison of (a) and (b).

where P(r=R) is the characteristic function of the unitary disk [167]. A

typical example of the realization of a phase screen with increasing number

of Zernike polynomials is shown Fig 2.3.

2.5.2 Fourier based representation of the phase screen

This method, proposed by B. McGlamery [134, 141] in 1976, is widely ac-

cepted due to its simplicity and speed. The analysis of atmospheric turbu-

lence is based on the assumption that atmospheric turbulence follows a Kol-

mogorov spectrum and has a phase whose frequency is uniformly, randomly

distributed over the interval � � to � [134, 108]. A phase can be statistically

described by means of its power spectrum (described in section 2.2.2). The

phase screen is obtained by the inverse Fourier transform of the product of an

complex array of Gaussian random numbers and the square root of the phase

spectrum [134, 44](Kolmogorov spectrum or the Von Karman spectrum). A

typical example of Fourier generated phase screen is shown in Fig 2.4.

Although simple and computationally e�cient, this method su�ers from

certain drawbacks. The model su�ers from periodicity and the low frequency

components are not well represented in this technique [9]. Solutions, however,

exist to digitally enhance the low frequencies by the addition of subharmon-

ics [108, 182].
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Ÿ 2.6 Conclusion

In this chapter, we have recalled the statistical descriptors of atmospheric

turbulence. The e�ects of turbulence creates a distortion in the planar wave-

front from outer space thereby resulting in a phase distortion in the wave-

front. The knowledge of the statistical descriptors then helps to measure

the e�ects of turbulence on the wavefront phase and also the blurring ef-

fects in ground-based image formation of astronomical objects. As a result,

astronomers are able to recover a distorted wavefront or restore a blurred

image, to a large-extent, given this statistical information of turbulence. It

is also possible to simulate a turbulent phase, with thea priori knowledge

of these descriptors, which is very important for experimental and validation

purposes in ground-based astronomy. In this matter, the Zernike polyno-

mials plays a useful role in representing an atmospherically distorted phase

screen. Numerous other methods also exist, that are well known for their

simplicity and speed: The Fourier based phase generation techniques using

the power spectrum descriptor knowledge of turbulence are, however, widely

preferred due to their simplicity and speed. In the next chapter, we will focus

on the principle of operation of an AO system and the techniques it employ

for estimating the distorted phase of a wavefront.
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- Chapter 3 -

Adaptive Optics and wavefront

reconstruction

Turbulence in the Earth's atmosphere leads to a distortion in the planar

wavefront from outer space resulting in a phase error. This phase error is

responsible for the refractive blurring of images accounting to the loss in

spatial resolution power of ground-based telescopes. Adaptive Optics (AO)

is an opto-mechanical system that helps to remove this phase error, in real

time, introduced in the wavefront due to atmospheric turbulence. In AO

systems, an estimate of the phase error, or simply the phase, is obtained

from the gradient measurements of the wavefront collected by a wavefront

sensor. The correction estimate is then passed through a servo-control loop to

a deformable mirror which deforms itself to adapt to the incident wavefront

(on the telescope pupil) to correct and obtain an output plane wavefront.

The chapter is organized as follows: in section 3.1, we introduce the

principal components and their functions in the AO system, in section 3.2

we discuss about the classical wavefront phase reconstruction techniques in

AO, where in section 3.2.4, we talk about the inverse problem approach in

wavefront phase reconstruction. Conclusion follows in section 3.3.

25



26 Chapter 3. Adaptive Optics and wavefront reconstruction

Figure 3.1: Schematic representation of an Adaptive Optics system (Cour-

tesy: J. Vallerga [204]).

Ÿ 3.1 The Adaptive Optics system

An AO system is made up of three key elements [65, 164]. They are:

� the deformable mirror (DM) that changes its shape to �t to the

incident wavefront,

� the wavefront sensor (WFS) that measure the wavefront distortions

caused due to atmospheric turbulence,

� and the controller that generate the control signals to drive the DM

based on the measurements provided by the WFS.

A schematic representation of an AO system is shown in Fig 3.1. We will

summarize the operation of each of these elements in the following sections.

3.1.1 Deformable mirrors

The wavefront compensation in an AO system is physically performed by

the DMs [158]. Depending on the type of AO system, the number of DMs

can vary from one to many. For example, in SCAO and GLAO systems,

only one DM is used whereas in MCAO systems, two to three DMs are in-

corporated. The movement of the DM, or in other words the change in the
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shape of its surface is the result in the orientation of a continuous re�ec-

tive facesheet which is deformed by a set of actuators glued to the back of

it. The actuators expand or contract in length with the application of volt-

age signals, thereby pushing or pulling the mirror to deform its shape. The

actuators are generally made of piezoelectric material (PZT) or Lead magne-

sium niobate (PMN). Many di�erent technologies exist for the development

of the DMs, the most common among them are the Stacked array mirrors

(SAMs) [97, 161], Bimorph deformable mirrors [163], Micro deformable mir-

rors (or MEMS) [149, 220] and Voice coil deformable mirrors [8, 159]. A

complete review of di�erent types of DM technologies can be found in [181].

Irrespective of the technology used for the DM, the correction principle is

always the same. When the perturbated wavefront arrives on the telescope

pupil, the re�ective facesheet of the deformable mirror is deformed to �t to

the wavefront, and corrects the phase error introduced by the turbulence.

The whole procedure of wavefront compensation can be summarized as:

� res(r; � ) = � turb (r; � ) � � cor (r; � ) (3.1)

where� res(r; � ) is the residual phase (tends to zero with the AO correction)

and � cor (r; � ) corresponds to the phase obtained by the mirror deformation

(correction by AO).

3.1.2 Wavefront sensors

Wavefront sensors (WFS) are the measuring devices of an AO system that are

capable of recording the wavefront distortion in terms of slope measurements

or curvature measurements, depending on the type of WFS used. The Shack-

Hartmann (SH) WFS works on the principle of measuring the local slope of

the wavefront i.e. the spatial �rst derivatives (gradients) [164]. The curvature

WFS, proposed by F. Roddier [163], measures the second derivative of the

phase (Laplacian) of the incoming wavefront. The curvature WFS �nds its

application generally with bimorph DMs in curvature SCAO systems [158].

The SH WFS, designed by J. F. Hartmann [85] in 1900 and later modi�ed

by R. Shack [183] in 1960, is the most popular WFS used in AO systems. In

this thesis, the proposed wavefront phase estimation algorithm will be based

on the slope measurement technique of the SH sensor.
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3.1.2.1 Shack-Hartmann wavefront sensor

A Shack-Hartmann wavefront sensor is used to measure the slope of an in-

coming wavefront. In a SH sensor, an array of lenses (also called a lenslet

array) is placed in a conjugate pupil plane at the entrance of the telescope.

Each lenslet covers a small part of the aperture (or pupil), the area covered

is known as the sub-aperture area. A wavefront incident on the telescope

pupil, is sampled by these lenslets and an image of the source is formed on

a detector1, placed in the focal plane of the lenslet array. When the wave-

front is plane, each lenslet forms an image of the object (source) at its focus.

But, in general, due to turbulence when the wavefront gets distorted, each

lenslet sees a tilted version of the wavefront and the corresponding images

are shifted from their reference position [137, 173, 170]. This shift in posi-

tion is proportional to the mean slope of the wavefront and therefore can be

measured [170]. The centroids (xc; yc) of the displaced spot are proportional

to the gradient of � (r ) averaged over the sub-aperture areaS [193, 65, 170],

and can be written as:

xc =
f l �
2�S

Z

S

@�
@x

dxdy + nx (3.2)

yc =
f l �
2�S

Z

S

@�
@y

dxdy + ny (3.3)

where� is the central wavelength of the detector andf l is the focal length of

the lenslet. nx and ny takes into account any type of noise associated with

the WFS measurements. The principle of operation of SH WFS is shown in

Fig 3.2.

The measurement noise for SH type WFS is due to the contribution of

the photon noise and the detector noise. Every image formed on a detector is

a percentage of the amount of photons (generally 50-80% that are converted

to electrons) [193] received by a lenslet, and the noise associated with the

incoming �ux of photons from the source is known as the photon noise. An

expression for the photon noise variance (� 2
ph) and detector noise variance

1The detector can be a four quadrant detector for each sub-aperture or a charged-
coupled device (CCD) [164].
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Figure 3.2: Schematic representation of a Shack-Hartmann wavefront sen-

sor. An incident wavefront travelling along theZ-axis, after entering the

telescope pupil, is sampled by an array of lenses (called lenslet array), and

forms an image of the source on the CCD array. If the wavefront is plane,

each lenslet forms an image of the source at its focus (marked by red). If the

wavefront is distorted, the images are shifted from their reference position

(marked by black). This shift in position is proportional to the mean slope of

the wavefront and can be measured with equation( 3.2) and equation( 3.3).

(� 2
det) is given by [170]:

� 2
ph =

� 2

2
1

nph

�
X T

X D

� 2

(rad2) (3.4)

� 2
det =

� 2

3
� 2

e�

n2
ph

�
X 2

S

X D

� 2

(rad2) (3.5)
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wherenph is the number of photons received per sub-aperture,X T is the size

of the image formed on a sub-aperture,X D is the di�raction-limited size of

the image formed on a sub-aperture,X 2
S is the total number of pixels used

in calculating the position of the image formed on a sub-aperture and� e� is

the rms value of electron noise per pixel and per sub-aperture.

3.1.3 The controller

The purpose of the controller, in an AO system, is to minimize the phase vari-

ance of the observed wavefront [166]. Given the measurements of the WFS,

the objective of the controller is to control the movement of the deformable

mirror to obtain the best possible correction phase� corr (see equation (3.1)).

The WFS provides a vector of measurmentsM , corresponding to the sam-

pling of the wavefront by sub-apertures. From theseM measurements, the

controller generatesN corrected signals (corresponding toN corrected phase

values over the detector) of the wavefront [164, 166]. These signals are then

applied as high voltages (after passing through Digital-to-Analog converters)

to the actuators beneath the DM. The actuators then push or pull the DM

to update the shape of the mirror according to the wavefront.

The optimal correction of the wavefront phase by the controller depends

not only on the WFS measurements, but also on the di�erent temporal as-

pects of the control loop [65], which must be taken into consideration. A

good source of information on the temporal aspects of the controller can be

found in [34, 46, 53, 122]. Some examples of AO correction of spatial images

are shown in Fig 3.3.

After discussing about the functioning of an AO system and its key el-

ements, we will now focus on the problem of wavefront reconstruction from

the measurements of the WFS.

Ÿ 3.2 Wavefront reconstruction

The goal of any AO system is to reconstruct the wavefront phase values from

the discrete measurement of its gradients (slope measurements) or Laplacian

provided by the wavefront sensor. The problem of reconstruction can also be
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(a) (b)

(c) (d)

Figure 3.3: AO correction of astronomical images. Top row : H-band

image of Uranus and the moon Miranda (faint point at the bottom) captured

using ground-layer adaptive optics system (GLAS). (a) Uncorrected image.

(b) with AO correction. Image courtesy: Isaac Newton Group of Telescopes.

Bottom row : 20 � 20 arcsecond region near the center of the globular clus-

ter Omega Centauri. (c) without AO correction. (b) with MCAO correction.

Image courtesy: Enrico Marchetti.

viewed as a surface reconstruction approach from a given gradient �eld [164].

The slope measurements obtained from a SH sensor are a measure of the

wavefront phase di�erence in two directions: thex direction and the y di-

rection. Depending on the way of measurement of the wavefront shape in

the optical pupil, the phase reconstruction process can be viewed either as a
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� i;j � i +1 ;j

� i +1 ;j +1� i;j +1

� y;i;j

� x;i;j

Figure 3.4: Fried Geometry for the (i; j )th sub-aperture. A measurement

of the gradient of the phase is provided by a wavefront sensor at (x i ; yj ). The

phase values at the corners of the sub-aperture are then estimated.

zonal approach or a modal approach [186].

3.2.1 The Zonal approach

In the zonal approach, the wavefront phase� is expressed as a discrete set of

points determined by each zone (or sub-aperture) of the mirror responding

to the incident wavefront on the telescope pupil and let� be a vector of this

discretized phase values that we are searching for. The relation between the

slope measurements of the wavefront sensor g and the unknown� can be

generalized into a linear equation of matrix framework [18, 164, 193] as:

g = �� + n (3.6)

where � is the discrete di�erential operator, also known as theinteraction

matrix, and n � N (0; � 2I) is the noise vector. It should be noted here that

the measurement g corresponds to a sampled version of the derivative of the

phase, which results in g being corrupted by an overlapping error. As a result,

a periodization is introduced in its spectrum in the Fourier domain [65].

Depending on the shape of the spectrum and the sampling rate, some error

will therefore remain in the low frequency components of the phase.
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Some well-known geometrical models exist that are able to express the

discrete measurements g (assumed to be centered within each sub-aperture)

in terms of the phase values at the four corners of a sub-aperture in the

wavefront sensor [62, 88] (i; j being the co-ordinates of the sub-aperture con-

sidered). According to Fried geometry [62] (see Fig 3.4), the phase gradients

at (x i ; yj ) can be expressed, in its two directionsx and y as [164]:

� x;i;j �
1
2

[(� i +1 ;j +1 + � i +1 ;j ) � (� i;j + � i;j +1 )] (3.7)

� y;i;j �
1
2

[(� i +1 ;j +1 + � i;j +1 ) � (� i;j + � i +1 ;j )] (3.8)

where the grid spacing is assumed to be 1. If the unknown� is a vector of

N phase values (orN command signals applied to the actuators in the DM

through the controller) over a grid and the measurement vector g consists of

M elements, then the interaction matrix� is a N � M matrix and describes

the response of the WFS to each actuator [164, 166].

3.2.2 The Modal approach

In the modal approach, the wavefront phase is expressed in terms of polyno-

mial expansion of some basis functionsZ i , also called modes (can be Zernike

or KL modes). The objective is then to calculate the coe�cients ofZ i

from which the phase can be reconstructed [164] using the equation (see

section 2.4):

� (r; � ) =
X

i

zi Z i (�; � ) (3.9)

where zi are the coe�cients of Z i . Taking the derivatives on both sides of

the equation (3.9), we obtain a set of equations that can be expressed in the

matrix framework as:

s = cA (3.10)

where s is the array containing the slope measurements of the wavefront

sensor andA = f z2; z3; :::; zng (�rst mode or piston mode removed). The

derivatives of the modes in the two directions are expressed as [164, 65]:

cx
ij =

f
S

Z

subap j

@Zi
@x

dxdy and cy
ij =

f
S

Z

subap j

@Zi
@y

dxdy (3.11)
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wheref is the focal length of the lenslet array,i represents the mode number,

j the number of sub-apertures andS represents the area of the sub-aperture.

3.2.3 Least squares wavefront reconstruction

A general approach to estimate the phase is to minimize the least squares

error function given by:

argmin
�

k�� � gk2
2 (3.12)

The solution to this function can be, for the zonal approach, written as:

� T �� = � T g (3.13)

and, for the modal approach, as:

cT cA = cT s (3.14)

where � T is the transpose of� . It should be noted that, the ground matrix

� T � (or cT c) should be well-conditioned [137, 65, 164] to verify the standard

solution of equation (3.13) (or equation (3.14)).

Equation (3.13) (or equation (3.14)) can also be viewed as a discrete

Poisson equation with Neumann boundary conditions [86, 144, 164]. So,

surface reconstruction techniques based on solving the Poisson equation can

also be used for reconstructing the phase. A general discussion on di�erent

surface reconstruction methods can be found in section 5.3.1, Chapter 5.

3.2.4 Wavefront reconstruction as an inverse problem

The wavefront reconstruction can also be viewed as an inverse problem [137,

164], where one searches for the unknown� in the equation g= �� + n. An

estimate the wavefront phaseb� from the slope measurements can be written

as:
b� = Bg (3.15)

where B is known as thereconstruction matrix.

Most of the existing methods for solving the inverse problem can be

broadly classi�ed into two types: the maximum likelihood (ML) technique

and the maximum a posteriori (MAP) technique [98, 164].
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3.2.4.1 Maximum likelihood method

The ML method tries to determine the unknown� such that it maximizes

the probability of producing the measurement vector g. In other words, it

tries to maximise the probability P(gjb�) and we can write [137, 110]:

P(gjb�) / expf�
1
2

(� b� � g)T C � 1
n (� b� � g)g (3.16)

whereCn is the covariance matrix of the noise n whose statistics are assumed

to be known. To �nd the maximum of equation (3.16), we take the derivative

of its logarithm and equate it to zero [164, 110]:

@

@b�
ln(P(gjb�)) = 0 (3.17)

The resulting solution is rearranged to give an estimate of the phase as [177]:

b� = (� T C � 1
n �) � 1� T C � 1

n g (3.18)

and the reconstruction matrix has the form:

B = (� T C � 1
n �) � 1� T C � 1

n (3.19)

Equation (3.18) is known as the maximum likelihood estimate of the phase

� . The invertibility of the matrix � T C � 1
n � , should however be checked in all

circumstances. IfM � N there is generally no problem, but the matrix can

be ill-conditioned. But in generalM < N . In this case the matrix � has

N -M null eigenvalues, and thus can not be directly invertible. The classical

solution consists in setting the eigenvalues associated to this subspace to0.

In other words, the solution is projected into a subspace of dimensionM . In

the case of Fourier transform (deconvolution, aperture synthesis) the solution

is commonly known as the Bracewell solution [36, 35].

If the statistics of the noise is not known,Cn is assumed to be equal to

I, where I is the identity matrix [110]. In this case, the maximum likelihood

solution of equation (3.18) reduces to the least squares solution.

3.2.4.2 Maximum a posteriori method

Unlike the ML method, which tries to estimate the unknown phase� without

any a priori knowledge of it, the MAP estimator works on the idea of includ-

ing any available information of� in the solution process. This corresponds
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to including a regularization criteria in the solution process of this ill-posed

inverse problem, where there are less data than unknowns. The separation

between ML and MAP can therefore be foreseen from this applied criterion.

The idea is, given the measured data g and somea priori information

of � , the MAP estimator tries to maximize the probability P(b� jg). From

Bayes' theorem we can say:

P(b� jg) / P(gjb�) � P(b�) (3.20)

where P(gjb�) is the conditional a priori probability and P(b�) is the prior

probability on � . We assume that� is Gaussianly distributed with a known

covariance matrixC� . We therefore have:

P(b� jg) / expf�
1
2

(� b� � g)T C � 1
n (� b� � g)g � expf�

1
2

� T C � 1
� � g (3.21)

The resulting solution is obtained by minimizing the logarithm of P(b� jg) [164,

177, 63] and can be written as:

b� = (� T C � 1
n � + C � 1

� )� 1� T C � 1
n g (3.22)

3.2.4.3 Minimum variance wavefront reconstruction

The minimum variance wavefront reconstruction is generally preferred over

the least squares method as the latter is unstable for large scale AO systems.

The minimum variance estimator tries to minimize the statistical average of

the wavefront phase residual error� and can be written as:

� = hkb� � � k2i = hkBg � � k2i (3.23)

The main goal of the minimization procedure is to determine the recon-

struction matrix B such that � is minimum [164]. The �nal solution leads

to [18, 65]:

B = (� T � + � 2C � 1
� )� 1� T (3.24)

and the estimated phase as:

b� = (� T � + � 2C � 1
� )� 1� T g (3.25)
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This solution is equivalent to the MAP solution of equation (3.22), when the

statistics of noise is not known andCn is assumed to be equal to I. Noise

statistics are then assumed to be Gaussian, and the solution is equivalent to

the inversion with a Wiener �lter.

There are many di�erent approaches to solving equation (3.25) that has

been of major interest in recent years. A direct method using sparse matrix

technique has been proposed in [54]. Multigrid techniques and precondition

conjugate gradient methods [75, 74, 18] have, however, proven to be the most

computationally e�cient approaches.

Ÿ 3.3 Conclusion

In this chapter, we have presented a summary on the basic principle of oper-

ation of an AO system and the techniques employed in the wavefront phase

reconstruction from the slope measurements (or curvature measurements) of

a wavefront sensor. We have talked about the operation of the SH WFS,

which is the most widely used WFS in AO. The reconstruction principle is

based on solving the least squares inverse problems. Multigrid solvers and

precondition conjugate gradient solvers have proved to be the most com-

putationally e�cient approaches to this problem. In the next chapter, we

introduce the framework of MMF (Microcanonical Multiscale Formalism)

based on which we formulate our phase reconstruction algorithm.
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- Chapter 4 -

The Microcanonical Multiscale

Formalism (MMF)

After having recalled in the previous chapter an overview of existing main

AO solution methods, we now turn to the necessary description of the for-

malism used in deriving a new approach to phase reconstruction through

inference across the scales. In this chapter, we delve into the formalism used

to achieve this goal: the MMF. The MMF is a speci�c microcanonical ap-

proach to multifractality. It allows the determination of the geometrical sets,

unattainable by linear �ltering techniques, that describe the cascading prop-

erties of intensive variables and the localization on information content in

turbulent signals. These sets, which form the basis of multifractal or mul-

tiscale hierarchy in turbulence, are determined by the computation of sin-

gularity exponents in a microcanonical formulation. As inference across the

scales will be achieved in chapter 6 by a multiresolution analysis performed

on the signal of singularity exponents, this chapter gives the foundation of

the key relevant quantities used in our thesis. We also recall the more clas-

sical approaches to multifractality devised in physics (canonical setting) to

ease the understanding between the di�erent introductions to this subject.

Most real-world signals are complex signals, usually di�cult to describe

but possess a high degree of redundancy [197]. The underlying dynamics

of such systems are such that, at the macroscopic scale, intensive variables

display a power-law in the vicinity of a critical point [203], the corresponding

39
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exponent being called a critical exponent, or, as it is usual in the multifrac-

tal formalism, a singularity exponent. The distribution of the singularity

exponents de�ne a universality class : if two di�erent systems have identical

distribution of their singularity exponents, all the macroscopic quantitities

and correlation functions that can be derived from their generalized phase

space will be equivalent i.e., these systems will share common macroscopic

features. This implies the presence of a common macroscopic behaviour in-

dependant of the microscopic dynamics of each system [119] which is one of

the basic justi�cations for the science of complex systems. The knowledge of

localized singularity exponents allow the retrieval of classical characteristics

in the multifractal formalism, such as the singularity spectrum, as computed

through a Legendre transform in the canonical approach to multifractality.

But the knowledge of localized singularity exponents goes much further in

the characterization of the dynamics of a complex system. For example in the

case of FDT (Fully Developed Turbulence), the multiscale hierarchy, whose

singularity spectrum is a well known signature, can be computed from the

localized singularity exponents. In the canonical approach to multifractal-

ity, developed by researchers since many years, the characteristic shape of

the singularity spectrum is only an indicator of the presence of a multiscale

hierarchy. The e�ective computation of the singularity spectrum in a canon-

ical setting, for instance in relation with wavelet modulus maxima, reamains

a computationally demanding problem. This makes the MMF particularly

interesting, because this formalism allows a direct computation of the local-

ized singularity exponents, hence a direct access of the multiscale hierarchy

whose existence goes back to the work of G. Parisi and U. Frisch [147] and

Z. S. She and E. Leveque [185]. The same type of conclusion can be inferred

from multiscale analysis of most complex signals [201]. As a consequence, the

paradigm of understanding natural signals as acquisitions of complex systems

with unknown phase space is a useful one [32]. The properties of physical

cascading variables re�ect the transfer of energy, or more generally informa-

tion, taking place from larger scales to smaller ones. The MMF proves to

be a suitable approach for the study of multiscale properties in real signals.

Recent developments in microcanonical framework for the computation of

singularity exponents and the derivation of singularity spectra have lead
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to a sensible improvement in the numerical techniques for the determination

of multiscale characteristics of real signals [154, 202]. Experimental anal-

ysis on di�erent real-world signals, ranging from stock market time series

to atmospheric perturbated optical phase shows that these systems are not

only found to have multiscale behaviour, but their singularity spectra are

also coincident [154]. Consequently, the precise numerical computation of

geometrically localized singularity exponents in single acquisitions of com-

plex systems, without the averages taken on grand ensembles, unveils the

determination of their universality class [151].

Before getting into the theory of MMF, it is imperative to discuss the

concept offractals. Fractal geometry constitutes an important part of this

formalism as they also exhibit scale-invariant phenomenon, although multi-

fractal systems are more �exible in describing the scale-invariant nature of

natural signals. A typical example of a fractal set is thevon Koch curve

shown in Fig 4.1.

The chapter is organized as follows: In section 4.1, we introduce the

concept of fractals and fractal dimension, in section 4.2 we describe a mul-

tifractal system, where in section 4.2.2 we introduce the concept of MMF.

In section 4.3 we discuss ways of estimating the singularity exponents and

conclude in section 4.4.

Ÿ 4.1 The concept of fractals

The term fractal was introduced by Mandelbrot [131] to describe objects that

exhibit an aspect of extreme irregularity and does not possess any length-

scale characteristics [7]; they have been used as a standard strategy to de-

scribe self-similar systems [154]. The degree of irregularity in fractal sets can

be realized with the help of theirfractal dimension, proposed by Hausdor� in

1919. A fractal object is characterized by its fractal dimension and the fractal

dimension of a set can be calculated in many ways. The di�erent methods of

computing it, however, may give di�erent values of dimension for the same

set. The most accepted methods for calculating the fractal dimensions are

the Box-counting dimensionand the Hausdor� dimension.
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Figure 4.1: The sequence of sets approaching the von Koch curve after

1, 2, 3 and 4 iterations.

4.1.1 Box-counting dimension

The Box-counting dimension is a way of determining the fractal dimension

of a given set. LetX be a non-empty, bounded subset ofRn and N (s) be

the least number of closed balls of diameters required to coverX , then, by

de�nition, the Box-dimension of the setX is:

dimB (X ) = lim
s! 0

sup
logN (s)
log(1=s)

(4.1)

Due to its simplicity and convenience to estimate in practice [55], the Box-

counting dimension (also known as the Minkowski�Bouligand dimension) is

one of the most widely used fractal dimensions.

4.1.2 Hausdor� dimension

Another de�nition of the concept of dimension, called Hausdor� dimension,

is de�ned as follows: for a subsetX of Rn and � > 0, we consider a countable

collection of sets(Ui ) required to coverX , then the � -dimensional Hausdor�

measureH � (X ) of X can be expressed as:

H � (X ) = lim
s! 0

inf
Ui

X

i

diam(Ui )� (4.2)

The � -dimensional Hausdor� measure ofX is therefore estimated as the sum

of the diam(Ui )� , with the in�mum taken over all the countable collections

(Ui ), such that diam(Ui ) < s [178]. The Hausdor� dimension ofX , dimH (X )
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is then de�ned as:

dimH (X ) = inff � j H � (X ) = 0 g (4.3)

The Hausdor� dimension for a fractal set, in practice, is however di�-

cult to be estimated by computational methods [19, 55] and although it is

mathematically more satisfactory than the Box-dimension, in practical ap-

plications we prefer to use the latter. However, in MMF we estimate the

Hausdor� dimension as Box-counting dimension is not well de�ned.

Ÿ 4.2 Description of a multifractal system

Similar to the fractals, a multifractal system is also a scale-free (scale invari-

ant) system i.e. the smaller regions exhibit the same statistical properties as

that of the whole system: they are statistically self-similar [154]. A multi-

fractal system is characterized by the distribution of Hausdor� dimensions

to describe its behaviour under changes of scale. The �rst attempt to exploit

the organizational behaviour of a multifractal system, and relate it with a

cascade process, was the Canonical Multiscale Formalism (CMF) [203].

4.2.1 Canonical approach to multifractals

According to Canonical Formulations (CMF), a signals is multifractal if for

a given family of functions� r we have:

hj� r sjpi = � pr � p + o(r � p )(r ! 0) (4.4)

where h� i denotes the average over an ensemble of signalss belongs to (� p

depends on the functional� r ) [203]. However, in general, such averages are

inaccessible. Instead, the average for di�erent points~x within the same signal

domain, as the one ofs, is calculated (ergodic assumption).

The existence of multiplicative cascade process was �rst justi�ed by Kol-

mogorov in his theory on turbulence [64]. Under conditions of intense tur-

bulence (fully developed turbulence), energy is passed down from the large-

scales to the smaller ones by an injection process until the �uid attains a state
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of dynamic equilibrium where we can expect a balance in the amount of en-

ergy stored in each scale. Kolmogorov proposed that for two given scales

r and L, 0 < r < L , we can de�ne the process of energy transfer by the

injection parameter � r=L as:

� r s
:= � r=L � L s (4.5)

where `:= 'means that both sides are equally distributed. According to Kol-

mogorov, the injection process� r=L depends only on the ratio of the scales

and can be written as� r=L = [ r=L ]� . From this we can say that thep-order

moments have the following relationship

hj� r sjpi = [ r=L ]�p hj� L sjpi = Apr �p (4.6)

whereAp = hj� L sjpi L � �p . Comparing the equation (4.4) and equation (4.6),

we can say that� p = �p, that is, the canonical exponents� p have a linear

relationship with p; a condition known asnormal scaling[203] and the system

is monofractal. However, experiments show that in the case of fully developed

turbulence (FDT), the relationship between� p and p is not linear, rather it

is a convex curve, a condition known asanomalous scaling[202]. To apply

Kolmogorov's decomposition in anomalous scaling, certain assumptions have

to be made:

� � r=L has to be interpreted as a random variable, independent ofL.

� The variable � r=L has to be inde�nitely divisible to ensure downward

process from scaleL to r is veri�ed directly or in several stages giving

rise to the cascade process.

It has been veri�ed [64] that an injection mechanism as the one proposed by

Kolmogorov leads to the understanding of a underlying geometrical struc-

ture in a multiplicative cascade process, together with the knowledge of the

exponents� p, for infering information along the scales of the signal. This

description of self-similarity led researchers to propose tractable models for

the determination of the geometric multiscale hierarchy. The Microcanonical

Mulstiscale Formalism allows this determination by localized singularity ex-

ponents, contemplated in a microcanonical formulation and without ergodic

hypothesis.
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4.2.2 Microcanonical approach to multifractals (MMF)

In equation (4.4) the exponants� p are not geometrically localized, because

of the use of average over ensembles. The microcanonical approach (MMF)

proposes to overcome this limitation by introducing localized versions of the

exponents, while providing e�ective means to compute them without sta-

tionarity hypothesis. We will say that a signals is multifractal in a micro-

canonical sense if, for at least one functional� r depending on the scaler , it

is assumed that for any point~x the following equation holds [202]:

� r s(~x) = � (~x)r h(~x) + o(r h(~x)) (r ! 0) (4.7)

The exponenth(~x), which is a function of the point~x, is called thesingularity

exponentor Local predictability exponent (LPE)at point ~x [202]. This is the

microcanonical approach to multifractal theory which says that a signal is

multifractal if every point in the signal is characterized by a local power-law

scaling behaviour. So, the two main quantities that de�ne a multifractal sig-

nal are the singularity exponents and the collection of its fractal dimensions:

the singularity spectrum.

4.2.2.1 Singularity exponents

According to MMF, a signal s(~x) is multifractal if it is characterized by an

hierarchy of fractal components [154]. In fact, decomposing a multifractal

signal results in partitioning the signal domain into componentsFh, which

are in general of fractal nature. In other words, each point~x in the signal

is characterized by a singularity exponenth(~x) which is typical to one com-

ponent Fh. The fractal components are level sets of the functionh(~x) [203]

and are de�ned as follows:

Fh = f ~x : h(~x) = hg (4.8)

and the multifractal hierarchy is equivalently de�ned by the familyGh = f ~x :

h(~x) � hg, which is such that whenh1 < h 2; Gh1 � G h2 . The knowledge

of the family Gh and Fh are equivalent, the multifractal hierarchy is usually

referred to the family Fh.
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(a) (b)

Figure 4.2: Singularity spectrum for the phase screen shown in Fig 2.3a.

(a) Reduced singularity spectraD(h) � d at the �nest scale (resolution) r0.

(b) Reduced singularity spectraD(h) � d, with errorbars, at the �nest possible

scaler0, twice the �nest possible scaler1 and three times the �nest scaler2.

In practice, the setsFh are determined by the value ofh(~x) not �xed,

but belonging to an interval de�ned by a threshold� h:

Fh = f ~x : h(~x) 2]h � � h; h + � h[g (4.9)

The central problem is to compute at best possible numerical precision the

value of h(~x) at point ~x since bad approximations of singularity exponents

lead to poor performances in signal processing applications.

4.2.2.2 Singularity spectrum

The singularity spectrum of a multifractal signal is the collection of all its

fractal dimensions, i.e. the di�erent Hausdor� dimensionsD(h) of the fractal

componentsFh, represented as a function ofh. The distribution of the

singularity exponents has a simple relation with the singularity spectrum

D(h) at a given scaler . The empirical histogram of the exponents (� r (h))

at small scaler veri�es [203, 99]:

� r (h) / r d� D (h) (4.10)
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where d is the dimension of the signal domain. Henceforth, we can obtain

D(h) from the log-log regression of equation (4.10) as:

d � D(h) = lim
r ! 0

log(� r (h))
logr

(4.11)

with, as stated,r ! 0. The process can however be numerically time consum-

ing. One important aspect of the singularity spectrum is that, the maximum

of the curve (obtained by the mapping ofD(h) as a function of h and is

convex) corresponds to the fractal dimension of the support of the measure

and is strictly positive [7]. This implies that there exists a fractal component

Fh1 of maximal fractal dimensionD(h1) = d, and we estimate the singularity

spectrum at the �nest resolution scaler0 as [202, 203]:

D(h) = d �
log(� r 0 (h)=� r 0 (h1))

logr0
(4.12)

where� r 0 (h1) = maxf � r 0 (h)g.

4.2.3 Relation between canonical exponents � p and sin-

gularity spectrum D(h)

The canonical exponents� p can be computed from the Legendre transform

of the singularity spectrumD(h) by the simple relationship [147]:

� p = infhf hp + d � D(h)g (4.13)

which is known as the Parisi-Frisch formula. One of the advantages of this

formula is that it can be inverted. By de�nition, the Legendre spectrum

D l (h) corresponds to the Legendre transform of� p [202]:

D l (h) = infhf hp + d � � pg (4.14)

where d stands for the dimension of the signal domain as before. By con-

struction D l (h) is convex, and if not, the Legendre spectrum will equal its

convex hull [202].

We will therefore summarize the MMF approach as follows: A signals(~x)

is multifractal in the microcanonical sense if it satis�es the following three

conditions [203]:
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1. there exists at least a family of functionalsf � r gr such that equa-

tion (4.7) is veri�ed for every point ~x in the signal.

2. at any scaler , equation (4.14) holds for the same curveD l (h).

3. the singularity spectrumD l (h) derived from equation (4.14) is a convex

function of h.

The singularity spectrum of an experimental phase screen is shown in Fig 4.2.

The same behaviour of the curve is observed for other phase screens also. The

convex shape of the singularity spectra is the characteristic of the presence

of a multiscale hierarchy in the signal de�ned by equation (4.8). The re-

sult shown in Fig 4.2 clearly indicates that the perturbated optical phase

has multiscale properties, which justi�es the use of MMF in exploiting its

features.

We will now focus our attention on the computation of the singularity

exponentsh(~x). From this part onwards, we will be adressing the applications

of MMF for the case of 2-D signals only, since the purpose of this thesis is

to validate the MMF model on image processing applications in Adaptive

Optics.

Ÿ 4.3 Estimating the singularity exponents

Let I be a scalar image de�ned over a compact subset ofR2 and kr I k is the

norm of its gradient. We work with an additive normalization ofI (~x) de�ned

as [197]I (~x) � h I i , wherehI i is the average of luminance intensities over the

signal domain. We then de�ne a measure� through its density d� (~x), so

that the measure of a ballBr (~x) of radius r centered around the point~x

corresponds to summing the norm of the gradient overBr (~x):

� (Br (~x)) =
Z

Br (~x)
d(~y)kr I k(~y) (4.15)

A measure� as the one de�ned above is a multifractal measure, in a micro-

canonical sense, if for any point~x 2 
 the following equality holds [203]:

� (Br (~x)) = � (~x)r h(~x) + o(r h(~x)) (r ! 0) (4.16)
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where � (~x) is a signal-dependent amplitude prefactor andh(~x) is the sin-

gularity exponent at point ~x. The singularity exponents for experimental,

discretized data can be calculated using di�erent methods [202, 155]. We

will discuss about the two methods that has been widely popular for their

simplicity and e�ectiveness.

4.3.1 Singularity analysis via log-log regression

A direct log-log regression of equation (4.16) gives an estimate ofh(~x) as:

h(~x) = lim
r ! 0

log(� (Br (~x))=� (~x))
log(r )

(4.17)

for a very small value ofr , such that the term o(r h(~x)) of equation (4.16) is

diminished. One can choose� (~x) as the average of the norm of the gradi-

ents [202]. For multiple values ofr , r = f r0; r1; � � � ; rng, equation (4.17) can

be written as:

log(� (Br 0 (~x))) = log( � (~x)) + h(~x) log(r0)

log(� (Br 1 (~x))) = log( � (~x)) + h(~x) log(r1)
... =

... +
...

log(� (Br n (~x))) = log( � (~x)) + h(~x) log(rn )

(4.18)

and can be expressed in the matrix framework as:
2

6
6
6
6
4

log(� (Br 0 (~x)))

log(� (Br 1 (~x)))
...

log(� (Br n (~x)))

3

7
7
7
7
5

| {z }
A

=

2

6
6
6
6
4

1 log(r0)

1 log(r1)
...

1 log(rn )

3

7
7
7
7
5

| {z }
B

�

"
log(� (~x))

h(~x)

#

| {z }
Y

(4.19)

Equation (4.17) can then be solved using the Least-square approach:

Y = ( B T B)� 1B T A (4.20)

with Y(2) = h(~x). This approach, however, doesn't hold good for small

images and is a special case only for large images [202]. This method for

small images yields a coarse approximation of the exponents.
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(a) (b)

Figure 4.3: (a) Image of a simulated optical phase perturbated by atmo-

spheric turbulence. The image corresponds to a128 � 128pixels sub-image

extracted from an original256 � 256pixels image to avoid the pupil bound-

ary. (b) Image of the singularity exponents computed on the phase data using

� -Lorentzian wavelet.

4.3.2 Singularity analysis via wavelet projection

The standard technique used to overcome the problem in thelog-log tech-

nique involves the use of wavelet projections as singularity analyzers. The

wavelet theory is a valuable tool in analysing the multiscale properties of a

signal. The choice of wavelet plays an important role in the determination of

h(~x), and it has been seen [201] that the wavelets� -Lorentzian and Gaussian

prove to be a good choice:

� � Lorentzian :  (~x) =  � (~x) =
1

(1 + j~xj2)�
(4.21)

Gaussian:  (~x) = e
�j ~x j 2

2 (4.22)

It should be noted here that both types of wavelet are isotropic, i.e., they

do not privilege any particular direction [203]. The wavelet projection of the
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measure� at scaler and point ~x is then de�ned as:

T � (~x; r) =
Z

kr I k(~y)
1
r d

 (
~x � ~y

r
)d~y (4.23)

whered is the dimension of the signal domain. Equation (4.16) can then be

re-written as:

T � (~x; r) = �  (~x)r h(~x) + o(r h(~x)) (4.24)

and h(~x) is obtained by a linear regression oflog(T � (~x; r)) vs. log(r ) as:

h(~x) = lim
r ! 0

log(�  � (~x; r)=�  (~x))
log(r )

(4.25)

where �  (~x) is a constant depending on the choice of the wavelet and is

independent of the scaler . The singularity exponents of an optical phase

computed via wavelet projection is shown in Fig 4.3.

Ÿ 4.4 Conclusion

In this chapter, we have introduced the concept of multifractal systems and

the Microcanonical Multiscale Formalism, which tries to explore the mul-

tiscale behaviour of complex systems and its underlying dynamics related

to the cascading behaviour in real-world signals [147, 64]. We have shown

the existence of multiscale features, in a perturbated optical phase signal,

through the multifractal analysis of its singularity spectrum. In the next

chapter, we will justify the use of singularity exponents as the right can-

didate for describing the multiscale behaviour of turbulent signals, like the

optical phase, and in the process on natural images as well. We will show that

the critical exponents (the singularity exponents as we name them)h(~x) give

access to a notion of transition in the case of turbulent data, in a way that

generalizesedge detectionby classical operators in the case of non-turbulent

data. Edges convey the multiscale information of a signal, and we show that

edges detected by MMF are not only consistent along the scales of a signal,

but are also ideal candidates for reconstructing the signal.
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- Chapter 5 -

Critical exponents and inference across

the scales

Transmission of information across the scales of a complex signal has some in-

teresting potential, notably in the derivation of sub-pixel information, cross-

scale inference and data fusion. It follows the structure of complex signals

themselves, when they are considered as acquisitions of complex systems.

In this section, we contemplate the problem of cross-scale information infer-

ence through the determination of appropriate multiscale decomposition. We

demonstrate that microcanonical formulations, for understanding and evalu-

ating the mechanisms that govern the evolution of dynamical systems, lead

to accurate inference schemes across the scales in complex signals. Conse-

quently, we study the notion of optimal wavelet [152, 200, 45] for inferring

information across the scales. Such a wavelet is capable of extracting the

essential multiscale features of a signal, thereby allowing information extrac-

tion across scales with minimal error. For the case of wavefront phase recon-

struction in AO, a multiresolution analysis associated to an optimal wavelet

(related to the turbulent phase signal) would therefore allow a near lossless

extraction of details in the intermediate scales. Knowledge of the details with

high precision, would then allow us in reconstructing high-resolution gradi-

ents from its low-resolution version, and subsequently the phase using any

surface reconstruction algorithm. However, the accurate determination of an

optimal wavelet for real data is still a challenge, and the attempts made so

53



54 Chapter 5. Critical exponents and inference across the scales

far (we give an example of computing it on synthetic data in section 5.1.2)

produce only approximative versions of it, thereby limiting the probability

of maximum inference across scales. This leads us to de�ne an alternative

approach by which maximum cross-scale information inference is possible.

As discussed in the previous chapter, the singularity exponents carry the

most relevant multiscale features of a signal. They give access to a notion

of transition in the case of turbulent data, in a way that generalizes edge

detection by classical operators in the case of non-turbulent data. Edges

convey the multiscale information of a signal, and it is seen that edges ob-

tained through singularity analysis are not only consistent along the scales

of a signal, but are also ideal candidates for reconstructing the signal (from

information contained in the edges [201, 125]). One possible way of an opti-

mal inference across the scales can therefore be achieved by a multiresolution

analysis on the signal of the singularity exponents. In order to justify this

approach we �rst validate, through experimental analysis, the potential of

the singularity exponents in encoding the most relevant multiscale features

of a signal. We do this in two steps:

� We �rst prove that singularity exponents provide a notion of edge, well-

adapted to the case of turbulent signals and coherent across the scales

of the signal (see section 5.2).

� We then show that, compared to edges detected by classical edge de-

tectors, better reconstruction of the signal is achieved from the edges

obtained through singularity analysis (see section 5.3).

The choice of a mother wavelet for multiresolution analysis on the signal of

singularity exponents also has some consequences on the optimality of cross-

scale inference and quality of reconstruction. In section 5.1.3, we investigate

the possibility of �nding a �good� wavelet for the case of the turbulent phase

data.

The chapter is orgainzed as follows: In section 5.1, we introduce the

concept of optimal wavelets in realizing the optimal information inference

procedure from a given turbulent signal, we talk about appropriate function-

als to realize such processes, where in section 5.1.1, we introduce the concept
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of multiresolution analysis to perform the inference operation. We then intro-

duce the concept of edge detection using singularity exponents in section 5.2,

where edge consistency across the scales is addressed in section 5.2.2. Re-

constructing a signal from its edge representation is discussed in section 5.3

with results of the reconstruction in section 5.3.5. Finally, we conclude in

section 5.4.

Ÿ 5.1 Optimal Inference across scales : Re-

alizing the microcanonical cascade

As discussed in the previous chapter, in MMF, a commonly used function� r

for equation (4.7) is obtained through a measure� de�ned by the norm of

the signal's gradient in the following way:

� r (~x) = � (B r (~x)) =
Z

B r (~x)
kr sk(~y)d~y (5.1)

whereB r (~x) is a ball of radiusr centered at pixel location~x. We recall the

Kolmogorov theory on energy cascades (see section 4.2, chapter 4), where

two functionals � r and � L , representing the same operation at scalesr and

L respectively,0 < r < L , are related by an energy transfer parameter� r=L

and can be written as:

� r s
:= � r=L � L s (5.2)

The above equation, however, relate only the laws of the distribution and

would not imply any corresponding relation pointwise i.e.� r s(~x) 6= � r=L � L s(~x).

However, one can formally de�ne the variables of equation (5.2) as [217]:

� r=L (~x) =
� r (~x)
� L (~x)

(5.3)

But in general, the variables� r=L (~x) de�ned by the above equation are such

that there is no independence between� r=L (~x) and � L (~x). The random vari-

ables� r (~x) carry the multiscale properties of the signal, but it is impossible

to retrieve the cascading properties pointwise (called the microcanonical cas-

cade) from its de�nition.
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To tackle this problem, we make use of multiresolution analysis associated

to wavelet transform. We say that for a given wavelet	 , and the original

signals, there is a multiscale operator which will be able to extract the infor-

mation pointwise from the cascading properties of the signal. This multiscale

operator can be de�ned as:

� 	 � (~x; r) =
Z

kr sk(~y)	(
~x � ~y

r
)d~y (5.4)

Exactly like in equation (5.3), we can now de�ne a random process� r=L (~x)

as:

� 	 � (~x; r) = � r=L (~x)� 	 � (~x; L) (5.5)

Now, we can talk about a wavelet	 which, if determined, will make� r=L (~x)

independent of� 	 � (~x; L). Such a wavelet is called anoptimal wavelet: it

has the potential of unlocking the signal's microcanonical cascading prop-

erties through simple wavelet multiresolution analysis. We can thus de�ne

optimality of a wavelet as the degree of independence of� r=L (~x) vs � 	 � (~x; L).

Before getting into the details of an optimal wavelet analysis, it is impor-

tant to realize the microcanonical cascade process of a turbulent signal. We

achieve this realization with the help of multiresolution analysis and wavelet

transform, which is discussed in the subsequent section.

5.1.1 Multiresolution Analysis & wavelet transform

In this section, we recall the notion of multiresolution analysis and its prac-

tical implementation with digital �lters [128]. Multiresolution analysis is

mathematically formulated by the L2 sub-space decomposition associated to

wavelet projection. In order to realize the di�erent sub-spaces, the wavelet

theory suggests the use of certain functions� and 	 , also known as thescal-

ing function and the wavelet functionrespectively. � and 	 forms the basis

for multiscale functions in multiresolution analysis. In order to minimize data

redundancy, so that the di�erent sub-spaces convey new information of the

object, we make use of dyadic wavelet sequences [128] which are geometric

sequences of factor2.
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V0 V1 V2 V0 W0W1

(a) (b)

V1 = V0 � W0

V2 = V0 � W0 � W1

V0 � V1 � V2

Figure 5.1: Realization of sub-space by scaling and wavelet functions: (a)

Sub-space relationship of scaling functions. (b) Sub-space relationship of scal-

ing and wavelet functions.

5.1.1.1 Realizing the scaling function

The scaling function� can be realized as thescaledandshiftedversion of some

basis function. � is then de�ned in terms of two parameters:p which is the

scale parameter andq the shift parameter, wherep; q2 Z and �( ~x) 2 L2(R),

as:

� p;q(~x) = 2 p=2�(2 p~x � q) (5.6)

Let us take an example, where we de�ne�( ~x) as:

�( ~x) =

(
0 if x 2 [0; 1]

1 otherwise

This function is also known as the Haar function. Whenp = 0; q = 0,

� 0;0(~x) = �( ~x), when p = 1; q = 0, � 1;0(~x) =
p

(2)�(2 ~x) i.e. the width of

� 1;0(~x) is half of that of � 0;0(~x). As a result � 0;0(~x) cannot be used to ap-

proximate � 1;0(~x). But, by scaling and shifting � 1;0(~x) one can approximate

� 0;0(~x) as:

� 0;0(~x) =
1

p
2

� 1;0(~x) +
1

p
2

� 1;1(~x) (5.7)

Let us now de�ne a sub-spaceV0 corresponding top = 0 and covering the

width of � 0;0(~x). Now, we increase the scalep by unity. The next sub-space

V1 is then realized by� 1;q(~x). So,V1 forms a super-set ofV0, since whatever
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can be measured by� 0;0(~x), can also be measured by� 1;0(~x). Similarly V2

is realized by� 2;q(~x). We can say that the sub-space covered by the scaling

functions at lower scales is contained within the sub-space covered by those

at higher scales and is given by the relationship (see Fig 5.1(a)):

V�1 � � � � � V� 1 � V0 � V1 � V2 � � � � � V1 (5.8)

The scaling functions of sub-spaceV0 can therefore be expressed as a weighted

summation of scaling functions of higher-order sub-spaces as:

�( ~x) =
X

n

h� (n)
p

2�(2 ~x � n) (5.9)

whereh� (n) are the scaling function coe�cients.

5.1.1.2 Realizing the wavelet function

Let us now consider the di�erence in sub-spaces (we will call them as detail

sub-spaces from here on) i.e.V1 � V0 = W0 which is also a sub-space. From

Fig 5.1(b), we can write:

V2 = V1 � W1 = V0 � W0 � W1 (5.10)

So, we must develop functions that can cover the detail sub-space. Consid-

ering the Haar example of�( ~x), if this function is applied over a signal, a

kind of averaging, i.e. low-pass �ltering is done. For de�ning a function that

should cover the detail sub-space, we are essentially trying to cover the dif-

ference in the spaces covered by two low-pass �lters i.e. a high pass �ltering

operation. So the class of �lters that can cover the detail sub-space has to be

a high-pass �lter and the class of functions that are used to cover the detail

sub-space are given by:

	 p;q(~x) = 2 p=2	(2 p~x � q) (5.11)

	 p;q(~x) 2 L2(R) is known as thewavelet functionor just the wavelet. Al-

though the functional forms of� and 	 are the same, the scaling functions

and the wavelet functions di�er by their spanning sub-spaces. Also, the

wavelet 	 has the following properties [128]:



5.1. Optimal Inference across scales : Realizing the microcanonical cascade59

� The shifted version of	 p;q(~x) has to be orthogonal with each other.

� 	 p;q(~x) must be functions which should be oscillatory in nature i.e. it

should go to the positive as well as the negative.

� The area under these functions should be zero i.e. the area covered by

the positive part is nulli�ed by the area covered by the negative part.

The relation between the scaling functions and the wavelets can be sum-

marized accordingly: lets(~x) be a function belonging to theV1 sub-space,

and not V0. A crude approximation of s(~x) is then provided by the scaling

functions of V0 and the wavelet functions ofW0 provide the details. We can,

therefore, say that the scaling functions and the wavelet functions help to

analyze, respectively, a low-pass and a high-pass �ltered version ofs(~x). The

wavelet function can be expressed in terms of the scaling function as:

	( ~x) =
X

n

h	 (n)
p

2�(2 ~x � n) (5.12)

whereh	 (n) are the wavelet function coe�cients.

5.1.1.3 Multiscale representation of a signal using wavelet trans-

form

Any signal s(~x) can be represented in a dyadic wavelet basis of mother wavelet

	 [128] as:

s(~x) =
X

q

� p0 ;q� p0 ;q(~x) +
1X

p= p0

X

q

� p;q	 p;q(~x) (5.13)

where � p0 ;q and � p;q are the corresponding expansion coe�cients. The �rst

term of the above equation, involving the scaling functions, provide approx-

imations of s(~x) at scalep0, while the second term having the wavelet func-

tions provide details of the approximation at scalep0 and higher. � p;q are

also known as thewavelet coe�cients. The coe�cients of equation (5.13) can

be obtained from the following equations:

� p0 ;q =
Z

� p0 ;q(~x)s(~x)d~x (5.14)

� p;q =
Z

	 p;q(~x)s(~x)d~x (5.15)
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Figure 5.2: Representation of the decomposition in multiresolution analysis.

� � j � is the approximation of the initial image � � 0� at the resolution j . � � 1
j �,

� � 2
j � and � � 3

j � are the horizontal, vertical and diagonal details respectively

at the resolutionj .

This process of decomposing (or analyzing) the signal into aprroximation and

detail coe�cients is known as theforward wavelet transform. The process of

decomposition can be repeated over di�erent scalesp to realize the di�erent

sub-spaces necessary.

In the case of 2D signals, we have to apply the wavelet transform in two

directions: rows(n1) and columns(n2). Since, we are discretizing the signal

by the use of dyadic wavelets, we will expresss(~x) as s(n1; n2) from now

on. The notations for the scale parameter and shift parameter are changed

to j and k1; k2 respectively. The decomposition process in images therefore

realizes the necessity of four �lters that can be recursively applied along the

rows and columns to produce four coe�cients (one approximation and three

details: horizontal, vertical and diagonal). The four �lters can be de�ned as:

�( n1; n2) = �( n1)�( n2)

	 H (n1; n2) = �( n1)	( n2)

	 V (n1; n2) = 	( n1)�( n2)

	 D (n1; n2) = 	( n1)	( n2)

(5.16)

Therefore, in a �rst level decomposition (scalej = 1), a low-pass �ltering

along the rows and columns gives rise to the approximation coe�cient� 0
1 (we

write � 0
1 instead of� 0 for simplicity), a low-pass �ltering along the rows and
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then a high-pass �ltering along the columns gives rise to the horizontal detail

� 1
1, a high-pass �ltering along the rows followed by a low-pass �ltering along

the columns results in the vertical detail� 2
1 and �nally high-pass �ltering

in both the rows and columns of the image results in the diagonal details

� 3
1. And in all cases, we have to do a decimation by a factor of2 i.e. an

overall decimation by a factor of4. Hence, the decomposition process using

multiresolution analysis gives rise to an approximation image fourth smaller

than the previous one. Since, images are generally rich in low-frequency

components, the decomposition process is repeated over the approximation

coe�cient for further levels. The process can be viewed in Fig 5.2.

Reconstruction from the expansion coe�cients �nds each� j from � i
j +1 ,

where i represents the orientation (i = 0 represents the approximation of

the image � 0
j at the resolution j , i = 1 represents the horizontal details

� 1
j , i = 2 the vertical details � 2

j , and r = 3 the diagonal details� 3
j at the

dyadic scale2j and at position 2j k1; 2j k2). This process of reconstructing

(or synthesis) the signal from its coe�cients is known as theinverse wavelet

transform. Generalizing� 0
j as the approximation coe�cient, equation (5.13)

can be simpli�ed, in the discrete sense, as:

s(n1; n2) =
X

i =0 ;1;2;3

X

j

X

k1 ;k2

� i
j;k 1 ;k2

	 i
j;k 1 ;k2

(n1; n2) (5.17)

where	 0
j;k 1 ;k2

(n1; n2) represents the scaling function� j 0 ;k1 ;k2 (n1 ;n2 ) .

The 2D scaling and wavelet functions (generalized as	 i
j;k 1 ;k2

(n1; n2) in

equation (5.17)), used in the multiresolution decomposition and reconstruc-

tion of a signal, can be realized through separable, one-dimensional FIR

digital �lters of impulse responsesh� (� n) and h	 (� n). The choice of the

�lters depends on the choice of the scaling function and the wavelet. The

relation betweenh� and h	 is given by:

h	 (n) = ( � 1)nh� (1 � n) (5.18)

These �lters, which act as the high-pass and low-pass �lters, are applied

along the rows and columns of an image to obtain the desired coe�cients

� i
j;k 1 ;k2

. The process is more elegantly expressed by Fig 6.2 and Fig 6.3, in

chapter 6.
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Notice that when obtaining the multiresolution decomposition of an image

the details at each resolution level refer to the same physical positions, but

after each iteration they are de�ned at a coarser scale [217, 157]. Therefore,

eachparent coe�cient � p = � i
j +1 ;k1=2;k2=2, at the coarser scale, covers the same

spatial extent of four children coe�cients � c = � i
j;k 1 ;k2

at the �ner scale.

5.1.2 Approximating the microcanonical cascade

The e�ective determination of an optimal wavelet for a given turbulent ac-

quisition is a very complicated and unsolved problem. The child-parent de-

pendancy valid for most wavelets, which are not too far from the optimal

case, can be described in terms of a particular model (see equation (5.5) for

explanation):

� c = � 1� p + � 2 (5.19)

with � c: `child' wavelet coe�cient, � p: `parent' wavelet coe�cient, � 1,� 2:

random variables independant of� c and � p and also independant of each

other. For an optimal wavelet the above equation takes the form� c = � 1� p

with � 1 independent of� p. We can therefore write for all scalesj and position

k, the wavelet coe�cients � j;k as:

� j;k = � j;k � j � 1;[k=2]

= � j;k � j � 1;[k=2]� j � 2;[k=4]

= � j;k � j � 1;[k=2]� j � 2;[k=4]::::� 0;0

=
Y

j 0;k

� j 0;[k=2j � j 0]� 0;0 (5.20)

for all orientation i .

The �rst ideas of �nding an optimal wavelet for natural images were

explored in [199, 198]. Generalizing equation (5.17), a given signals(~x) can

be expressed in the form of a wavelet series (set of signals) with the help of

its wavelet coe�cients as:

s(~x) =
X

j;k

� j;k  j;k (~x) (5.21)
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Comparing with equation (5.20), this gives us:

s(~x) =
X

j;k

Y

j 0;k

� j 0;[k=2j � j 0]� 0;0 j;k (~x)

=
X

j 6=0 ;k

Y

j 0;k

� j 0;[k=2j � j 0]� 0;0 j;k (~x) + � 0;0 0;0(~x)

=
X

j 6=0 ;k

� j;k  j;k (~x) + � 0;0 0;0(~x) (5.22)

where  j;k now forms the wavelet basis for the optimal wavelet. Now, the

expectation of the signalhs(~x)i = 0 as h� 0;0i = 0 and h� j;k i = 0 due to

symmetry. However, if we consider� 0;0 to be the sign of� 0;0, we can write

� 0;0 = sign(� 0;0)abs(� 0;0) = � 0;0j� 0;0j. We can then consider an ensemble

average of dynamically equivalent signals, sayhsp(~x)i to get the expected

value for all these signals (p is the index of an ordering of the signals). Equa-

tion (5.22) can then be generalized to:

h� p
0;0jsp(~x)i =

X

j 6=0 ;k

h� 0;0ih� j;k i  j;k (~x) + h� 0;0� 0;0i  0;0(~x)

=
X

j 6=0 ;k

h� 0;0ih� j;k i  j;k (~x) + h� 0;0� 0;0j� 0;0ji  0;0(~x)

=
X

j 6=0 ;k

h� 0;0ih� j;k i  j;k (~x) + hj� 0;0ji  0;0(~x) (5.23)

whereh�j�i denotes the standard Hermitian product onC2. � 0;0 is independent

of all the terms except� 0;0. So the term h� 0;0ih� j;k i  j;k (~x) is zero due to

h� j;k i = 0. Hence equation (5.23) reduces to:

h� p
0;0jsp(~x)i = hj� 0;0ji  0;0(~x) (5.24)

We don't know the sign, so we try to estimate the sign of� 0;0. Let � 0;0 be

the estimation, we then have:

h� p
0;0jsp(~x)i = h� 0;0� 0;0j� 0;0ji  0;0(~x) /  0;0(~x) (5.25)

So, a correct estimate ofh� p
0;0jsp(~x)i will lead us to the optimal wavelet. The

product � 0;0� 0;0 in the above equation, can either be positive or negative. If

we have correct estimate of the sign, the product will be positive.
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Now, � 0;0 is the sign of � 0;0 = sign of the projection of the signals(~x)

on the wavelet  0;0(~x) = signhs(~x)j 0;0(~x)i . Since we don't know 0;0, we

try to make the projection of the signal on the element which has the most

dependancy with all the other elements (i.e. dominant presence of the term

hj� 0;0ji  0;0(~x)). We will call this element as the most central element or

MCE. The principle of �nding the MCE on a given realization of signals is

explained in algorithm 1.

Algorithm 1 Finding the MCE

Step 1 : Subdivide a given imagesp(~x) over small areas of equal sizes and

normalize individually every sub-image. Do this for all the realizations ofp.

Step 2 : We denote every sub-image assp
u;v (~x), where u; v gives the sub-image

position in p. Let N be the total number of sub-images.

Step 3 : For every sub-image, �nd its correlation with all the other sub-images

(for all p) i.e., Cp;p0 = hsp
u;v (~x)jsp0

u0;v0(~x)i .

Step 4 : Find the average of the correlation for every sub-image i.e.,1N
X

N

jCp;p0j.

Step 5 : Find for which sp
u;v (~x), the average correlation is maximum. Let it be

sp�
u � ;v � (~x).

Step 6 : We call sp�
u � ;v � (~x) as the MCE.

Step 7 : Repeat and check for di�erent sizes ofsp
u;v (~x), to get the best result.

After determining the MCE, we estimate the sign of everysp
u;v (~x), by ori-

enting it with the sign of the MCE. For ease of understanding, we �x the

sub-image size as the image size i.e.sp
u;v (~x) = sp(~x) which is the same as

repeating Algorithm 1, not with sub-images but with the image itself. In this

case, we assume that the MCE is a signal within the realizationp, denoted

by sp� (~x), and we estimate the sign as:

� p
0;0 = � (Cp;p� ) = � (hsp(~x)jsp� (~x)i )

= h� 0;0s(~x)j� �
0;0j� �

0;0ji  0;0(~x)

= j� �
0;0j� 0;0� �

0;0hs(~x)j 0;0(~x)i (5.26)

j� �
0;0j being a constant, we are left with the projection of the signal on the

wavelet and its sign� 0;0� �
0;0. If we have a correct estimate of the sign, we
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(a) (b) (c)

Figure 5.3: (a) Realization of h� 0;0js(~x)i , from equation (5.27), for the

Benzi model [24], at48 � 48 pixels resolution. (b)X -cut of (a). (c) Y-cut

of (a).

can sayh� p
0;0jsp(~x)i / h � p

0;0jsp(~x)i i.e., we can have a �eld, for a particular

realization p, whose distribution will be close to the optimal wavelet (see

equation (5.25)). Considering this process repeated over all the realizations

and then summed, should magnify the presence of the wavelet in the resultant

image. The resultant image is therefore obtained accordingly:

h� 0;0js(~x)i =
X

p

h� (Cp;p� )jsp(~x)i =
X

p

h� (hsp(~x)jsp� (~x)i )jsp(~x)i (5.27)

We have tested this algorithm on Benzi model [24]. We recall the computa-

tion of multia�ne functions in Benzi model. A random �eld R(~x) is generated

by wavelet decomposition such that:

R(~x) =
+ 1X

j = �1

+ 1X

k= �1

� j;k  j;k (~x) (5.28)

with the wavelet family  j;k (~x) = 2 j= 2 (2j ~x � k). The coe�cients � j;k are

generated such that:

� 1;0 = � 1;0� 1;0� 0;0; � 1;1 = � 1;1� 1;1� 0;0;

� 2;0 = � 2;0� 2;0� 1;0; � 2;1 = � 2;1� 2;1� 1;0;

� 2;2 = � 2;2� 2;2� 1;1; � 2;3 = � 2;3� 2;3� 1;1; (5.29)

and so on with� j;k = � 1 with equal probability; � j;k are independent random
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variables having the same distributionP(� ) given by:

P(� ) = y� (� � � 0) + (1 � y)� (� � � 1) (5.30)

where a typical realization ofR(~x) in [24] is obtained fory = 0:125, � 0 = 2 � 1=2

and � 1 = 2 � 5=6. The wavelet  (~x) considered for the Benzi model is a

mexican-hat function obtained from di�erentiation of a Gaussian:

 (~x) =
d2

dr 2
exp(�

r 2

2� 2
) with r 2 = k~xk2 (5.31)

For this particular model the optimal wavelet should correspond to , which

is a mexican-hat function.

We compute overp = 1000 realizations of the Benzi data. The prelimi-

nary results are shown in Fig 5.3. It is clear from the results, that although

the essence of a mexican-hat function can be realized from the data (the X-

cut), it is still not close to the ground truth (the Y-cut does not correspond

to a mexican-hat function). The process is also computationally highly de-

manding. The failure of the approach, even for the case of synthetic data,

makes it obviously more challenging for the case of real world signals. This

leads us to de�ne an alternative approach for optimal inference across the

scales of a signal. Nevertheless, a close approximation of an optimal wavelet

for a given turbulent signal will play a crucial role in the multiresolution

analysis process. In the next section, we concentrate on �nding such an

approximative wavelet for turbulent phase signals.

5.1.3 Choice of wavelet

As discussed in section 5.1.2, the child-parent dependancy, for an optimal

wavelet, takes the form� c = � 1� p. A log domain representation of it implies:

ln j� cj = ln j� 1j + ln j� pj (5.32)

Therefore, the local probability maxima in the conditional histogram ofln j� cj

in terms of ln j� pj, for an optimal wavelet, must be a straight line of slope

1 [157]. However, for a sub-optimal wavelet we will observe a deviation in

the linearity, a horizontal bend is observed on the left. This is obvious as

per equation (5.19), where the term� 2 becomes dominant when the value of
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(a) Approximation (b) Diagonal details

(c) Horizontal details (d) Vertical details

Figure 5.4: Conditional histograms of the experimental phase data. The wavelet

used for this experiment is the order 3 Battle-Lemarié wavelet with 41 central coef-

�cients. The horizontal axis corresponds toln j� pj and the vertical to ln j� cj. Top:

Approximation coe�cients are shown in the left image, diagonal details (orthogo-

nal complements) are shown in the right image.Bottom: Horizontal details are

shown in the left image, vertical details on the right image (both correspond to the

orthogonal complements in multiresolution analysis).
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� p becomes smaller. We will therefore be interested in observing a linearity

in the conditional histograms (for di�erent wavelet coe�cients) for higher

values of � p. So, to test the optimality of a wavelet, we examine the con-

ditional expectation value E(ln j� cjj ln j� pj) for the di�erent types of wavelet

coe�cients. We have used 37 standard wavelets belonging to di�erent fam-

ilies. They are: Haar, Daubechies (orders 2 to 20), Coi�et (orders 1 to 5),

Symlet (orders 4 to 10) and Battle-Lemarié (orders 1, 3, 5, 7 and 9). The

conditional histograms are plotted over a set of 1000 sub-images extracted

from the dataset of 1000 turbulent phase screens (data described in sec-

tion 6.1) provided by ONERA. Fig. 5.4 shows the linear/a�ne character for

the Battle-Lemarié wavelet of order 3; the functional dependancies for the

approximation as well as the orthogonal (horizontal, vertical and diagonal)

complements provide a qualitative estimation of the optimality of a wavelet

decomposition. The two parallel lines, seen for the higher values of� p in the

horizontal and vertical details, show some tendencies in the data revealing a

deviation from optimality.

Following the program announced previously in this thesis, we are now

in place for devising an alternative optimal multiresolution analysis since, as

we have seen, the computation of a high precision optimal wavelet from long

exposure turbulent phase data is not possible at this moment. We turn to-

wards one of the main results obtained in this thesis which shows that a very

good approximation of an optimal multiresolution analysis can be obtained

by considering a classical multiresolution analysis on the signal of singularity

exponents (computed on the phase data), instead of the phase itself. The pro-

found reason behind this idea lies in the ability of the singularity exponents

to encode e�ciently the transitions in a turbulent signal. We will indeed see

that, in the case of turbulent data, classical edge detection algorithms fail

to produce the exact location of transition points, although they can work

satisfactorily for non-turbulent data.

As said before, our experimental validation is done in two steps. In sec-

tion 5.2, we show the potential of the singularity exponents in providing a

notion of edge, consistent along the scales of a turbulent signal. Then in

section 5.3, we prove that better signal reconstruction is achieved from edges

obtained through singularity analysis, than from edges obtained through clas-
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sical edge detectors. Since we are working with 2D signals, we will limit our

justi�cation for the case of images only.

Ÿ 5.2 Edge detection and critical exponents

As algorithms dedicated to the computation of edges in digital images started

to emerge [184, 223, 135, 121, 117, 120, 96, 133, 82, 190, 150, 37, 176, 142],

Torre and Poggio [195], while observing that most methods rely on the ill-

posed problem of di�erentiating digital images, proposed a general qualitative

description of edges: they noted that edges are naturally associated to the

concepts ofcompact representation[16, 17, 15], i.e. edges encode most infor-

mation of an image [50]. Similarly, other authors note that edges represent

an image's independent features [22] (similar to the case of 3D modelling

where a 2D sketched curve is considered as the basic ingredient [111, 146]).

In [195] the authors focus on edge detection as the process of computing

derivatives, and, while attempting to do so in a well-posed form, they are

led naturally to the problem of pre�ltering the image by a (e.g. Gaussian)

kernel, which transforms the input signal into a di�erentiable mapping in

the continuous domain, hence allowing the characterization of edges by dif-

ferential operators. An instance of this formalism is the zero-crossing of

second-order derivatives, as in [133, 87, 82, 37, 209, 90, 103], or [5] to cite

few, including a recent nonlinear derivative approach (called NLFS) [107].

This formal setting allowed the development of edge characteristics in the

framework of di�erential geometry, a perspective that has become pervasive

in image processing [57, 33]. The multiscale nature of edges was recognized

very early and it was noted that tracing edge properties across scales would

gain insight into the physical process behind image formation. Neurophysics

was demonstrating that, in the optical pathway, spatial �lters of di�erent

sizes operate at the same location [219]. This is related to the processing of

information in the early visual system [201], where cells tend to take advan-

tage of the statistical regularities of the input signal in order to get compact

representations out of redundancy [10, 205, 206].

The convolution of the input image signal by a Gaussian kernel intro-



70 Chapter 5. Critical exponents and inference across the scales

duces a scale parameter (the standard deviation of the Gaussian kernel)

corresponding to a simple linear scale-space associated to the heat equation.

This is often used as an argument for advocating multiscale properties of

Gaussian pre�ltering [195, 215, 26, 41, 95]. In general, however, the mul-

tiscale properties of complex systems do not comply with such an extreme

simpli�cation [109]. The advent of scale-space theory in Computer Vision

allowed more complex multiscale representations corresponding, among oth-

ers, to anisotropic di�usion schemes [114, 148, 113, 71], which can incorpo-

rate probabilistic models of both sensor noise and operators' responses (to

better estimate the gradient's magnitude threshold in case of noise [132]).

However the simple example of an image corresponding to the acquisition

of a turbulent �uid, like, for instance, a remotely sensed acquisition over

the oceans, contains coherent structures associated to the cascading proper-

ties of intensive variables in Fully Developped Turbulence (FDT) [217]. It

has an associated multiscale hierarchy consisting of sets having a multifrac-

tal nature [64] and, as such, cannot be contemplated within a di�erentiable

scale-space framework. Incidentally note that in [52] authors write that an

appropriate spatial scale depends upon the local structure of the edge, and

thus variesunpredictablyover the image.

In a seminal paper, Mallat and Zhong [130] relate multiscale Canny edge

detection to the local maxima of a wavelet transform and study the comple-

tion of multiscale edges associated to the maxima of wavelet coe�cients (mul-

tiscale edge detection [130, 128]). Local maxima of wavelet coe�cients are

also used by other authors to form the basis of the Wavelet Transform Modu-

lus Maxima (WTMM) methodology [129], which can be used to relate edges

to a concept oftransition as understood in statistical physics, but, in WTMM,

the use of structure functions and moments necessitate large amounts of data

for an accurate numerical computation, and, most importantly to our point

of view, contains implicitelyergodicity hypothesis which can be leveraged for

better numerical computations [202]. Moreover, these methods are sensitive

to multifractal noise. Note that, edge detection algorithms based on Markov

�eld formulations share also stationarity hypotheses. The use of wavelet

coe�cients have been more recently extended to include better orientation

feature detection through theX-lets (i.e. curveletsetc.) [188] formulations.
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Edge-preserving image smoothing can also be formulated in Bayesian frame-

works [112] (and their neural network counterpart [189]) originating from

well known reference [72]. We will not review all the Markov formulations

in Computer Vision, but we note, for our purpose, that they basically detect

transitions in the stationary case, and that the problem of threshold selection

can be a di�cult one. Edges can also be understood as alignment of Fourier

or wavelet phases across scales [136, 105, 211].

In this section, we present a new de�nition of edge, based on critical expo-

nents de�ned in statistical physics, consistent across the scales in acquisitions

of natural phenomena, such as high-resolution natural images or turbulent

acquisitions. Edges belong to the multiscale hierarchy of an underlying dy-

namics, they are understood from a statistical perspective well adapted to

�t the case of natural images. We show that recent developments around

the notion of transition in nonlinear physics, along with enhanced compu-

tational methods of its quantitative parameters (most notablysingularity

exponents) [217], lead to a notion of edge whose consistency can be tested

across scales. We give speci�c attention to the case of turbulent images,

whose edges are not well de�ned in the classical context of edge detection,

and we show that in this context the new notions introduced in this article

work much better than the previous ones.

5.2.1 Edges, unpredictability and critical exponents

The distribution of critical exponents in a system determines its multiscale

properties which are accessible statistically. In particular, the classical no-

tion of gradient, which serves as the basic ingredient in most edge detection

algorithm, is not clearly de�ned in such context and one must �nd more ac-

curate statistical description of transitions across the scales. This allows us

to consider images, and most particularly natural images, as acquisitions of

complex systemswith undetermined extented phase space, and to compute

inside the acquired data (images) the quantitites known to play a role in the

predictability properties of the system. The �rst step concerns the de�nition

of an appropriate multifractal measure.

As explained in section 4.3, chapter 4, we take the measure as the density
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(a) (b)

Figure 5.5: (a) Flowers - image imk01305 of van Hateren database. (b) vi-

sualization of the singularity exponentsh(~x) computed via Lorentzian wavelet

over the image.

function d� (~x) de�ned for a given imageI over a ball Br (~x) of radius r

centered around the point~x in the given image, as:

� (Br (~x)) =
Z

Br (~x)
d(~y)kr I k(~y) (5.33)

such that the measure� holds true for the following equation:

� (Br (~x)) = � (~x)r h(~x) + o(r h(~x)) (~r ! 0) (5.34)

The exponenth(~x), which is a function of the point ~x, quanti�es the mul-

tiscale behaviour of the measure� [203]. The existence of a multifractal

measure implies a strong hierarchical organization, with multiscale charac-

teristics, in images. The multiple fractal character shows up when the image

is split into di�erent singular components Fh (refer to equation (4.8), sec-

tion 4.2.2.1, chapter 4).

This family of setsFh is naturally associated to the multiscale hierarchy

in a signal and in the case of natural images, there exists a distinguished

set of points, called the Most Singular Manifold (MSM), where the features

of the system are well recorded [203]. The MSM points are the singularity

components associated with the smallest possible valueh1 and can be inter-

preted as the most informative set, in the sense that the whole signal can be
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reconstructed from the information of the gradients restricted to the MSM.

We will denote this set byF1 and it can be expressed as:

F1 = f ~x : h(~x) = h1 = min(h(~x))g (5.35)

noting that in digital signals, the value ofh1 is thresholded and must corre-

spond to a (small) tolerance interval. In practical terms, we write:

F1 = f ~x : h(~x) 2]h1 � � h; h1 + � h[g (5.36)

The MSM plays a fundamental role in the multiscale geometrical hierarchy

of natural images. Visual inspection of this set reveals a structure which is

characterized by the presence of `edges' or contours in natural images [197].

The second step of the approach now concerns on the computation of

singularity exponents with high numerical precision.

5.2.1.1 Computation of the singularity exponents

As discussed in section 4.3, chapter 4, the singularity exponents can be ob-

tained by a log-log regression of equation (5.34) as:

h(~x) = lim
r ! 0

log(� (Br (~x))=� (~x))
log(r )

(5.37)

A very fast but crude version of computingh(~x) is known as the Gradient

histogram method [202], which takes into account the multifractal measure

de�ned in equation (5.34), at a minimum resolutionr0. The scaler0 is chosen

such that the whole image corresponds to size1; in other words, if the image

is an array of discretize values of sizem � n, one choosesr0 = 1=
p

m � n.

Approximating � (~x) as the average of the norm of the gradients, an estimate

of h(~x) is obtained as:

~h(~x) �
log(kr I k(~x)=hkr I ki )

logr0
(5.38)

The method however fails to produce satisfactory results for natural images

and is highly sensitive to noise [202]. A better solution would consist in

performing the regression on wavelet projection of measures [203], discussed

in section 4.3.2, chapter 4. However, a wavelet projection of the measure
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(a) (b)

(c)

Figure 5.6: Edges corresponding to the MSM points for the image imk01305

of van Hateren database. (a) compact representation of MSM points corre-

sponding to 35 % pixel density. (b) MSM points corresponding to 25 % pixel

density. (c) MSM points corresponding to 15 % pixel density.

at various scales is costly in computation time and only serves to enhance

the resolution of less singular structures at the cost of coarsening the most

singular ones [202]. Since the objective is to recover the most singular struc-

tures, a better optimized and cost-e�ective way is to use a point estimation

of the singularity exponents. From the perspective of reconstructible sys-

tems, good evaluation algorithms come from the observation that the set of

most unpredictable pointsF1 (see equation (5.35)) that provides a perfect
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reconstruction is such that [155]:

div (r I jF c ) = 0 : (5.39)

whereF c is the complementary set ofF1 . As a consequence, singularity ex-

ponents can be calledLocal Predictability Exponents, they encode predictabil-

ity information [31], like Lyapunov exponents, and are better evaluated in

digital signals by one of the following approximation [155, 153]:

h(~x) =
log(T	 � (~x; r0)=hT	 � (�; r0)i )

logr0
+ o

�
1

logr0

�
(5.40)

whereT	 � (~x; r0) is the wavelet projection of the measure� at scaler0 and

point ~x (see section 4.3.2),hT	 � (�; r0)i is the average value of the wavelet

projection over the measure andr0 is chosen to diminish the relative ampli-

tude of the correction term o
�

1
log r 0

�
. The preferred wavelet of choice are

the wavelets from the family	 � (~x) = 1 =(1 + j~xj2)� (for � = 1; 2; 3; 4), and

averaging the resulting coe�cients.

Algorithm 2 Edge detection: Finding the MSM points

Step 1 : Normalize an input image I as: I (~x) � h I i .

Step 2 : Compute the singularity exponentsh(~x), at each point ~x on the imageI ,

from equation (5.40).

Step 3 : Determine the value of the most singular exponenth1 from the

distribution of the singularity exponents h(~x) by sorting them and determining

the appropriate quantile corresponding to the desired density.

Step 4 : De�ne the density function � F 1 as: � F 1 (~x) = 1 if h(~x) � h1 ; � F 1 (~x) = 0

otherwise.

Step 5 : � F 1 (~x) is a binary mask that locates the MSM points.

The singularity exponents of an experimental image is shown in Fig 5.5.

Fig 5.6 shows the MSM points, with di�erent densities, for an experimental

image (imk01305 of the van Hateren image database [206]). The procedure

for computing the MSM points, corresponding to the edge pixels of an image,

is presented in algorithm 2.
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Figure 5.7: This �gure illustrates the complexity of edge detection in the

case of turbulent images. The edge pixels are marked red or blue according

to the sign of the scalar product between the normal to the set of edge and

the image gradient at that point.Top row (from left to right): an excerpt

from the sea surface temperature (SST) image (MODIS data) of the Agulhas

current below the coast of South Africa, set of edge pixels computed by MSM

corresponding to 25% of pixel density in the selected area.Bottom row

(from left to right): singularity exponents of the SST image, edges produced

by algorithm NLFS [107] which behaves the best among the classical edge

operators tested (see table 5.8). The coherent structures are not respected by

NLFS, showing the superiority of MSM.

5.2.1.2 Comments: The case of turbulent signals

Examination of the results for SST (turbulent phenomena) images are par-

ticularly interesting: an edge in a turbulent signal is poorly characterized by

a �lter's response to step functions, and the case of Fully Developed Turbu-

lence is paradigmatic for the existence of a multiscale hierarchy associated to

cascading dynamics of physical variables [64]. Tuning with the scale-space

parameter given by the kernel's standard deviation modi�es the input signal

incoherently w.r.t. to the real multiscale hierarchy present in the data. Uni-

versality classes are not well characterized by the transitions associated to

classical edge operators. We compare with the NLFS operator [107] due to its

superior performance over the other classical edge detectors and robustness

to noise.

NLFS is a non-linear approach to edge detection. The method aims at the

localization of edge pixels in a signal, according to the sign of the slope of the
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transition, with simultaneous noise cancellation. For this two �lters are used:

one for detecting the positive-slope edge points and the other for detecting

the negative-slope edge points. The result are two signals containing positive

and negative variations. In the case of limited noise the disturbances are

detected, by these positive and negative variations of the signal, as peaks at

the same location and are thereby removed. In Fig 5.7, we show an extended

part of the SST data and illustrate the sensitivity of edge detection between

MSM and NLFS.

5.2.2 Edge consistency across the scales

Edges are primary features naturally associated to scale invariant properties

of natural images, speci�cally in the case of turbulent signals where symmetry

is restored only in statistical sense [201, 64]. As a consequence, the algorithms

used in computing edge features should be consistent across the scales: if

one has di�erent acquisitions of a same phenomenon at di�erent scales, the

resulting edge pixels computed by these algorithms must produce matching

edge pixels accross the scales. To check this, we set up an experiment where

a same signal at di�erent resolution is generated and their outputs produced

by some classical edge detection algorithms are evaluated. To generate the

di�erent resolutions, we use two methods. The �rst one consists in computing

a multiscale version of the signal by using a standard Haar discrete wavelet

transform [128]. The second one consists in using the well-known linear

scale-sace representation developed by Lindeberget al [115, 116]. A linear

scale-space familyL(:; t) associated to an original signalf is obtained by

convolving f with a Gaussian kernelg such that:

L(:; t) = g(:; t) � f (5.41)

where the Gaussian kernel is given by

g(x; t ) =
1

2�t
e� (x2+ y2 )=2t (5.42)

and t > 0 is the scale parameter.

We take two images: the clock image from SIPI image database [3], which

is a standard rigid object, and an excerpt of the SST image. The SST im-

age corresponds to the acquisition of a turbulent phenomenon, for which the
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Table 5.1: Inconsistent behaviour of edges along the scales . Image used is

an excerpt from the sea surface temperature (SST) image. Di�erent resolutions of

the SST image are the approximation coe�cients resulting from a standard Haar

discrete wavelet transform. We show the results of the following edge detection

algorithms: MSM (proposed edge detection algorithm), Canny and multiscale Canny

(mC) edge detection [130]. D corresponds to the pixel density of the respective edges.

For edges computed using Canny edge detector,� speci�es the lower sensitivity

threshold and� is the standard deviation of the Gaussian �lter.

Original MSM Canny mC

256 � 256 D = 16 :24% D = 16 :24% D = 16 :98%
pixels � = 0:1,� = 0:03

128 � 128 D = 17 :45% D = 17 :45% D = 17 :96%
pixels � = 0:13,� = 0:03

64 � 64 D = 16 :89% D = 16 :89% D = 17 :91%
pixels � = 0:15,� = 0:03

32 � 32 D = 18 :55% D = 18 :55% D = 19 :04%
pixels � = 0:16,� = 0:03
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Table 5.2: Inconsistent behaviour of edges along the scales . Image

used is the clock image from SIPI image database [3]. Di�erent resolutions of

the clock image are formed by taking the approximation coe�cients of Haar

discrete wavelet transform.

Original MSM Canny mC

256 � 256 D = 17 :19% D = 17 :19% D = 17 :35%
pixels � = 0:03, � = 0:03

128 � 128 D = 16 :86% D = 16 :86% D = 16 :62%
pixels � = 0:03, � = 0:03

64 � 64 D = 16 :74% D = 16 :74% D = 17 :09%
pixels � = 0:05, � = 0:03

32 � 32 D = 16 :21% D = 16 :21% D = 16 :40%
pixels � = 0:3, � = 0:03

existence of a multiscale hierarchy comes from the turbulence associated to

Navier-Stokes equations [64]. The results for the SST image are shown in

Table 5.1. In this table are diplayed (left column) the SST image at various
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Table 5.3: Evaluation of edge consistency across scales using Lin-

deberg [115] scale space representation . Row 1 (from left to right):

di�erent resolutions of the clock image obtained by changing the scale param-

eter t (explained in section 5.2.2).Row 2 : compact representation of MSM

points. Row 3 : edges computed using Lindeberg edge detector.

t = 1 :0 t = 4 :0 t = 16 :0 t = 64 :0 t = 256 :0

D = 16 :53% D = 16 :50% D = 7 :58% D = 3 :82% D = 3 :23%

D = 16 :53% D = 16 :50% D = 7 :58% D = 3 :82% D = 3 :23%

resolutions using the Haar discrete wavelet transform. Columns 2, 3 and 4

show the edge pixels produced by three di�erent algorithms: the algorithm

called MSM, which is the proposed edge detection algorithm (explained in

subsection 5.2.1.1), classical Canny edge detector (column 3) and the Mallat-

Zhong edge detection technique [130], also known as multiscale Canny edge

detection (which is also related to the WTMM (Wavelet Transform Modulus

Maxima) [129] method). It is clear from these results that Canny edge pixels

are not consistent across the scales: �rst the boundary of the main coher-

ent structure (the temperature front depicted by the boundary between the

dark and light area) is not properly described by Canny edge pixels across

the scales. Second, it is di�cult to match the corresponding edge pixels

across the scales. This can, however, be related to the fact that Canny edge
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Table 5.4: Evaluation of edge consistency across scales using Lin-

deberg scale space representation . Row 1 (from left to right): di�erent

resolutions of the SST image obtained by changing the scale parametert.

Row 2 : compact representation of MSM points (pixel density �xed at 16%).

Row 3 : edges computed using Lindeberg edge detector.

t = 1 :0 t = 4 :0 t = 16 :0 t = 64 :0 t = 256 :0

D = 16 :53% D = 16 :50% D = 7 :58% D = 3 :82% D = 3 :23%

detector encodes all edges regardless of scale, and that is why we also use

multiscale Canny in our comparison. Considering the multiscale Canny edge

pixels, they behave more consistently compared to Canny edge pixels, but

they are still outperformed by MSM, the latter being speci�cally designed

to retain consistency across the scales. Note that in Table 5.1, MSM points

encode in a particularly e�cient way the main boundary of the temperature

front across the scales. The same is reproduced in Table 5.2 on the clock

image, with similar results. In Table 5.3 and Table 5.4, we make a similar

comparison between the MSM points and the edges produced by the mul-

tiscale edge detection of Lindeberg [115]. Here again, we see that in both

cases, consistency across the scales is better achieved by MSM. In Table 5.4,

the density of the MSM points are kept around 16% precisely; but because
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Lindeberg edges take the zero-crossings of image intensity, further �ltered by

a third order directional derivative, the number of candidate edge pixels are

automatically reduced with increased blurring, resulting in a limited density

across the scales. From these experiments we see that, specially in the case

of acquired turbulent phenomena, some classical edge detection algorithms,

even those based on linear scale-space theory, do not behave consistently

across the scales.

In this context, one might argue about a comparison with Elder-Zucker's

algorithm [52]. Elder-Zucker's algorithm on the detection of edges is inspired

by its own local scale control method that determines a unique scale, as a

function of �lter scale � , for local estimation at each point in an image [52,

51]. Therefore, aminimum reliable scalei.e., a �lter with smallest standard

deviation � that can be used reliably, is being determined for each point in

the gradient map and used locally to derive logical inferences from derivative

estimates of the signal (that are key to edge detection). The choice of� and

the de�nition of reliability rest with the prior computation of a critical value

function that depends on some statistical parameters [50]. A good choice

of these statistical parameters are necessary for the proper functioning of

the algorithm; incorrect estimate may lead to reduced performances. The

performance of MSM, on the other hand, is independent of the choice of any

a priori inputs and is applied directly on di�erent scale-based representation

of images (without doing any processing to enhance the performance of edge

detection) and verify its performance across scales. We are interested in

extracting the most singular components that are related to edges in an image

(by proper computation of singularity exponents on the image), irrespective

of the scale or the spatial representation of the image.

In this section, we have shown that critical exponents de�ned in statisti-

cal physics lead to a coherent de�nition of edges, consistent across the scales

in acquisitions of natural phenomena, such as high-resolution natural im-

ages or turbulent acquisitions. Edges belong to the multiscale hierarchy of

an underlying dynamics, they are understood from a statistical perspective

well adapted to �t the case of natural images. In the next section, we will

prove that this new de�nition edge outclass the performance of classical edge

detectors in terms of reconstructing an image from its edge representation.



5.3. Reconstructing an image from its edge representation 83

Ÿ 5.3 Reconstructing an image from its edge

representation

Early methods dedicated to the reconstructability of signals from their edge

pixels lacked completeness in terms of compact representation and failed to

provide a near estimate of the original signal [50]. The �rst theoretical in-

stance of reconstructing a one-dimensional signal from its zero-crossing was

found in the Logan theorem [118]. Logan proved that for a signal which

is one-dimensional and strictly band-limited to a single octave, the time of

the zero-crossings can form a complete representation of the signal and are

su�cient candidates to reconstruct the signal. The �ndings of Logan were

used in [133] to further investigate the possibility of complete representation

of an image from the zero-crossings and gradient magnitudes of the image,

convolved with a Laplacian of Gaussian (LoG) �lter, at multiple scales. The

proof of the theoretical completeness of the zero-crossing was further ex-

tended to the case of one-dimensional �nite polynomial signal [218] and for

a restricted class of band-limited two-dimensional signals [43].

It was acknowledged, however, in [118] that �the problem of actually re-

covering functions from their zero-crossing appears to be di�cult (to say the

least), under the most general conditions of uniqueness�. The completeness

of zero-crossings in representing an image feature and its ability to produce

stable reconstructions, in practice, was further argued in [89]. In [38] an al-

gorithm was introduced that computes an approximate reconstruction of an

image from information coded at the image edges. The edges were computed

in a manner quite similar to [133], but were further thresholded based on

outputs from gradient based �lters [50]. The method however lacked com-

pleteness to a large extent and was reintroduced in [39] by modifying the edge

representation from a sub-sampled low-pass residual image [50]. In [221], it

was proposed that images are well represented by the partial information

con�ned to zero-crossings and a new reconstruction technique was proposed.

The results, although better than the previous techniques [38, 39], lacked

completion. A method based on minimizing equation error for stable recon-

struction of image, from the restriction of its gradient measure over edges,
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was proposed in [89]. A new contour based image reconstruction technique

was proposed in [76], by taking the edge as a Gaussian-blurred step discon-

tinuity and considering a number of parameters, like luminance, brightness,

contrast, blur and `contour width' [50], in the process of calculating them.

In a seminal paper, Mallat and Zhong [130] described an algorithm to re-

construct images from their multiscale edges; the edges were detected by

applying local maxima on a wavelet transformed version of the image. While

this representation is far more compact in the case of 1-D signals, it misses

certain details and some defocused structures are not recovered [50] in the

case of images.

In [197], the authors have proposed a new technique of image reconstruc-

tion from their edges, based on the most informative fractal set contained

within an image. Inspired by the quality of the reconstruction achieved by

them, we have moved on to de�ne an alternate approach to derive a similar

reconstruction formula as in [197, 203]. The derivation of the new approach,

tries to relate the concept of Poissonian di�usion to image reconstruction

from edges and has equivalent performance as that in [197, 203].

When an intensity image I (x; y) is considered as a mathematical sur-

face [208], edges can be detected as irregular distribution of intensity values

over this surface. The idea of constructing complete surface speci�cations

from the information contained in the zero-crossings was illustrated in [79].

In fact, a common surface reconstruction technique of regularization has been

exploited in an attempt to reconstruct from contour line information [140],

and in [175], a regularized fusion approach to the problem of reconstruction

from color edge maps was applied. In this context, one should mention about

3D modelling of objects from

In this section, we test the performance of di�erent edge detection al-

gorithms through the framework ofreconstructible systems. We show that

`state-of-the-art' surface reconstruction techniques, like fast Poisson solver [73],

M-estimator, regularization [4] and di�usion [212], can be successfully applied

to reconstruct images from their edge representation. In the process, we study

image reconstruction from edge pixel data that better suits turbulence.
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5.3.1 Framework of Reconstructible Systems

5.3.1.1 Problem Formulation

Let f x ; f y denote a given non-integrable1 gradient �eld over a L � B rectan-

gular grid of image pixels. Givenf x ; f y, the goal is to obtain an imageI , such

that r I is �as close as� possible to the vector �eld(f x ; f y). Let I x ; I y denote

the gradient �eld of I . Note that in our experimentsf x ; f y represents the den-

sity of the gradient measure corresponding to the MSM i.e.,f x = I x � F 1 and

f y = I y � F 1 , where� F 1 stands for the standard density measure restricted to

the setF1 i.e., � F 1 denotes the Dirac measures associated to the setF1 . A

common approach is to minimize the least squares error function such that:

argmin
I

Z Z
((I x � f x )2 + ( I y � f y)2)dxdy (5.43)

The associated Euler-Lagrange equation gives the Poisson equation:

div(I x ; I y) = div(f x ; f y) (5.44)

where `div' refers to the divergence operator and is de�ned as div(f x ; f y) =
@fx
@x + @fy

@y. The aim of all the reconstruction algorithms is to �nd a solution

for (I x ; I y) of equation (5.44) which minimizes the error function in equa-

tion (5.43).

5.3.1.2 Linear systems

In this section, we try to summarize some existing techniques for reconstruc-

tion from a given gradient �eld. Readers are referred to [73, 4, 148] for a

more detailed explanation of the algorithms.

Fast Poisson solver : A well known approach to solving the Poisson equa-

tion was proposed in [73]. The idea is to project the non-integrable gradient

�eld on to a set of integrable slopes using discrete cosine functions. The Pois-

son equation can be written as@
2 I

@2x + @2 I
@2y = f (x; y), wheref (x; y) = div(f x ; f y)

1In the sense that the di�erential form f x dx + f y dy is not supposed to be exact.
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is the divergence of the gradient �eld. An associated �nite di�erence equation

reads:

I j +1 ;l + I j � 1;l + I j;l +1 + I j;l � 1 � 4I j;l = f j;l (5.45)

where every coe�cient can be expanded with the 2D discrete cosine transform

as:

I j;l =
4

JL

J � 1X

m=0

L � 1X

n=0

Î m;n cos
�jm

J
cos

�ln
L

(5.46)

Substituting the values of the expansion coe�cients in equation (5.45), we

get the �nal solution as

Î m;n =
f̂ m;n

2(cos�m
J + cos�n

L � 2)
(5.47)

M-estimator : M-estimators is viewed as an iterative re-weighted least

square solution [4] and can be written as:

argmin
I

Z Z
(w(� k� 1

x )( I x � f x )2 + w(� k� 1
y )( I y � f y)2)dxdy (5.48)

where the weights at each iterationk depends on the residual at iterationk� 1

i.e., j� k
x j = jI k� 1

x � f x j and j� k
y j = jI k� 1

y � f y j. The weightswx = w(� k� 1
x ); wy =

w(� k� 1
y ) are calculated using Huber function [81]. Applying Euler-Lagrange

over equation (5.48) we get div(wx I x ; wyI y) = div(wx f x ; wyf y). I can then be

recovered by solving the linear equationLw I = f w , wheref w = div(wx f x ; wyf y)

and Lw is the sparse Laplacian matrix of sizeLB � LB .

Regularization : The L2 regularization can be written as [4]:

argmin
I

Z Z
((I x � f x )2 + ( I y � f y)2 + � (� (I x ) + � (I y))) dxdy (5.49)

where� is called the regularization parameter using function� . Some com-

monly used variations of� are � (d) =
p

1 + d2 and � (d) = log(1 + d2).

Applying Euler-Lagrange to equation (5.49) and after simpli�cation, the so-

lution can be achieved by iterative minimization [4].
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Anisotropic di�usion : The anisotropic di�usion equation, commonly

de�ned as I t = div(c(x; y; t )r I ), of [148] was generalized in [212] asI t =

div(cr I ), wherec is the di�usion tensor and can be de�ned as a2 � 2 sym-

metric, positive-de�nite matrix at each pixel. A generalized Poisson equation

using c was proposed in [4] as

div(c

"
I x

I y

#

) = div(c

"
f x

f y

#

) (5.50)

Several methods have been proposed for obtaining the di�usion tensorc. The

method followed in [4] suggests an edge preserving di�usion tensor at each

pixel, by convolving component wise

"
f 2

x f x � f y

f x � f y f 2
y

#

with a Gaussian

kernel. The �nal solution is given by L cI = f c, where f c = div(c

"
f x

f y

#

) and

L c is the Laplacian matrix.

5.3.2 Reconstruction from MSM (R msm)

In this section, we turn back to the propagator introduced in [197], and derive

a parallel propagator from the concept of Poisson equation applied to surface

reconstruction problems from non-integrable gradient �elds. We consider

the gradient measure of the signalr I (~x) and integrate it over the set of

most unpredictable pointsF1 . A practical expression for the reconstruction

formula is given by [197]:

I (~x) =
Z

h~g(~x � ~y)jr 1 I (~y)i d~y = ~g� r 1 I (~x) (5.51)

where
R

F 1
d~y means integration over the MSM,~grepresents the desired prop-

agator. The essential gradient of the signalr 1 I (~x) is de�ned as the following

distribution:

r 1 I (~x) = r I (~x)� F 1 (~x) (5.52)

where� F 1 (~x) is the density of the gradient measure restricted to the MSM.

Accordingly, equation (5.51) can be expressed in the Fourier domain as:

Î (~! ) = ĥ~g(~! )j [r 1 I (~! )i (5.53)
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where b represents the Fourier transform.

To derive an exact formulation for the reconstruction kernel̂~g, we begin

with the idea presented in [197, 203], but follow the derivation presented in [4]

(in the case of di�erentiable �elds), so that it relates in an interesting way

Poisson di�usion and the reconstruction from the MSM explained in [197,

203]. In that context, one seeks a smooth vector �eld~f de�ned over the

whole image and which minimizes theL2 distance with the original gradient

r I (~x) and can be expressed as

argmin
I

Z Z
(r I (~x) � ~f (~x))2 d~x (5.54)

We then follow the derivation explained in [4] to get a version of the recon-

struction kernel ~̂g in the smooth case. Taking the Euler-Lagrange variational

formulation of equation (5.54) we get

div(r I )(~x) = div( ~f )(~x) (5.55)

Taking the Fourier transform of equation (5.55), we get as in [4]

Î (~! ) = � i
! x f̂ x (~! ) + ! y f̂ y(~! )

! 2
x + ! 2

y
(5.56)

where the vector �eld ~f (~x), after Fourier transformation gives rise to a com-

plex vector �eld ~̂f = ( f̂ x (~! ); f̂ y(~! )) . For ~! 0 = ( ! x = 0; ! y = 0) , Î ( ~! 0) is

unde�ned, which corresponds to the mean ofI (DC component). We set

a null value in this case. Comparing with equation (5.53), this suggest the

kernel as

~̂g(~! ) =
~!

ik~! k2
(5.57)

and we have the �nal expression of the reconstruction formula over the MSM

F1 i.e., Rmsm, in the Fourier domain, as:

Î (~! ) =
h~! j [r 1 I (~! )i

ik~! k2
(5.58)

Fourier inversion of this formula gives the reconstruction of the image from

the restriction of the gradient �eld to the MSM. It should be noted that the
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Table 5.5: Images used for our experiments . Row 1 (from left to

right): Harrington weave, Hibiscus, Car, Lena, Turbulence degraded atmo-

spheric phase, imk01310, imk03324, imk04050.Row 2 : Brick wall, House,

imk03322, Boat, Camille, Aerial view of a truck, Julia Roberts, Sea Surface

Temperature (SST) image of the Agulhas current below the coast of South

Africa. Image description is available in table 5.6.

MSM edge points are de�ned irrespective of any reconstruction formula. In

fact, � F 1 holds true for edges detected by any edge detector and can be in-

corporated likewise to createf x ; f y and subsequently perform reconstruction.

The algorithmic formulation of Rmsm is presented in algorithm 3, below.

Algorithm 3 Reconstructing the signal from the MSM

Step 1 : Calculate the singularity exponentsh(~x) for every point ~x in the image.

Step 2 : Determine h1 .

Step 3 : De�ne the density function � F 1 as the mask relative to the setF1 .

Step 4 : Calculate the �eld r 1 I (~x) = r I (~x)� F 1 (~x) i.e., the values of the gradient

over the MSM.

Step 5 : Go to Fourier domain to obtain [r 1 I (~! ) = ( \r 1 I x (~! ); \r 1 I y(~! )) .

Step 6 : Calculate the scalar product~! � [r 1 I (~! ) = ! x \r 1 I x (~! ) + ! y \r 1 I y(~! ).

Step 7 : Calculate Î (~! ) = h~! j \r 1 I (~! )i
i k~! k2 with ! 2 = ! 2

x + ! 2
y .

Step 8 : Do an inverse Fourier transform ofÎ (~! ) to obtain I (~x).

5.3.3 Computational complexity

Rmsm is essentially based on Fourier transform computation. We use fast

Fourier transform (FFT) where the computational complexity is N logN ,
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N being the total number of pixels in the image. We use FFT only once

in our operation and very fast implementations of FFT already exists e.g.

Fastest Fourier Transform in the West (FFTW). Poisson solver is using the

discrete cosine transform (DCT) instead of FFT. The other solvers are using

one or more linear systems (e.g. M-estimator is using7 � 8 iterations) and

the complexity depends on the solvers used. Multigrid solvers are the fastest

solvers available till now, with the complexity o(N ), but still their fastest

implementations are slow compared to the fastest implementations of FFT.

5.3.4 Choice of images

Images of di�erent entities are chosen trying to cover a broad spectrum of

natural images starting from textures (Harrington weave) to an object (Brick

wall, House, Car), landscape (imk01310, imk03322, imk03324), aerial view

(Truck), face (Julia Roberts, Camille, Lena) and turbulent acquisitions of

signals (sea surface temperature, turbulence degraded atmospheric phase) as

is shown in table 5.5. These experimental images are chosen from standard

databases like SIPI image database [3], CMU image database [1] and the van

Hateren database [206]. The description of the images are given in table 5.6.

5.3.5 Results

In this section, we discuss about the experiments performed. We perform

three sets of experiment on di�erent natural images (described in section 5.3.4).

Visual quality of the reconstructed images are evaluated based on the struc-

tural similarity index metric (SSIM) [210]. The SSIM measure between two

windows x and y of similar sizeN � N is:

SSIM(x,y) =
(2� x � y + c1)(2� xy + c2)

(� 2
x + � 2

y + c1)( � 2
x + � 2

y + c2)
(5.59)

where � x ; � y are the average ofx and y; � 2
x ; � 2

y are the variance ofx and y;

� xy the covariance ofx and y; c1 and c2 are two normalizing parameters. We

also illustrate the pertinence of the framework of reconstructible systems for

evaluating an edge operator's compact representation e�ectiveness using the

mean square error(MSE) and peak signal to noise ratio(PSNR, expressed



5.3. Reconstructing an image from its edge representation 91

Table 5.6: Description of the experimental images shown in ta-

ble 5.5 .

Image Size Source

Harrington weave 1024 � 1024pixels SIPI image database

Hibiscus 512 � 512 pixels SIPI image database

Car 260 � 320 pixels CMU image database

Lena 512 � 512 pixels SIPI image database

Phase 128 � 128 pixels French aerospace lab ONERA

imk01310 512 � 512 pixels van Hateren database

imk03324 512 � 512 pixels van Hateren database

imk04050 512 � 512 pixels van Hateren database

Brick wall 512 � 512 pixels SIPI image database

House 256 � 256 pixels SIPI image database

imk03322 512 � 512 pixels van Hateren database

Boat 512 � 512 pixels SIPI image database

Camille 256 � 256 pixels Internet download

Aerial view of a truck 512 � 512 pixels SIPI image database

Julia Roberts 256 � 256 pixels Internet download

Sea surface temperature 512 � 512 pixels MODIS acquisition of the Agulhas
(SST) image current below the coast of South Africa

in decibels dB) de�ned by:

MSE =
1

m � n

X

i;j

jI (x i;j ) � I r (x i;j )j2 (5.60)

PSNR = 20:0 � log10
max(I (~x))

p
MSE

(5.61)

whereI r (x) represents the reconstructed image.

The three sets of experiments performed, are discussed elaborately with re-

sults in `Experiment 1', `Experiment 2' and `Experiment 3' in the subsequent

sections. In Experiment 1, we test the quality of the edges obtained from

di�erent edge detectors in terms of reconstructibility of the whole image from

its edges. In Experiment 2, we test the performance of Rmsm over classical
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surface reconstruction techniques in its ability to reconstruct the image from

edges. Finally, in Experiment 3 we test the best possible combination (edge

detector + reconstructor) that gives the best reconstruction results.

It should ne noted that we do not use any kind of denoising while testing

the performance of our reconstruction algorithm over noisy gradient data,

as we wanted to check the robustness of our algorithm in the presence of

noise. With the use of denoising the results may di�er, but if we denoise

the gradients it will still be a non-integrable gradient �eld. This means

reconstructing from them will still introduce artifacts.
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Experiment 1

In this experiment we try to study the performance of our edge detection algo-

rithm over all the previous declined versions encountered in image processing

in terms of reconstructibility of the whole image from its edges. The clas-

sical edge algorithms tested are Matlabc implementations. Reconstruction

is performed over edges, calculated from di�erent edge detection algorithms,

using Rmsm. The pixel density of the edges calculated using di�erent edge

detectors are kept within a close range (given the constraint imposed by the

Gaussian sigma), with the pixel density of MSM points kept lowest.

Discussion

Reconstruction results over edges obtained from di�erent edge detectors are

shown in table 5.8. Performance of the reconstruction under di�erent levels

of noise (SNR = 26 dB, 14 dB and 6 dB) is shown in Table 5.9. Visual quality

of the reconstructed images, shown in Table 5.8 and Table 5.9, are evaluated

based on SSIM [210]. SSIM's for the reconstructed images show that MSM

outperforms the classical edge detectors in majority of the cases. Similar

conclusion is derived from the quantitative analysis of the results, using MSE

and PSNR metrics, as shown in Table 5.7 and Table 5.10. The performance of

NLFS is sometimes better in the noisy environment (as seen in Table 5.10),

due to the algorithm's natural con�guration to noise cancellation. MSM,

however, outperforms it in majority of the cases.

Tested classical edge detection algorithms are reviewed in this experi-

ment in the sense that they lack compact representation. It happens that

MSM points lead, for most images used in this experiment, the best quan-

titative results in terms of PSNR, SSIM and MSE. But MSM points are

de�ned irrespective of any reconstruction formula. Consequently, the eval-
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Table 5.7: Quantitative analysis: Evaluation of the reconstruction over di�erent
edge detection algorithms, in terms of PSNR and MSE, correspnding to Table 5.8. D
represents the pixel density of the edges.

Image Params MSM NLFS Canny Lindeberg LoG Sobel Prewitt
[107] [115]

Weave D (%) 31.5 32.87 29.56 31.86 31.28 31.57 31.67
( 1024 � 1024 MSE 0.1439 0.1977 0.6600 0.3955 0.2790 0.2148 0.2158

pixels) PSNR (dB) 17.38 16.01 10.76 13.99 14.51 15.64 15.62

Hibiscus D (%) 28.55 28.87 28.55 29.15 29.98 29.43 29.22
( 512 � 512 MSE 0.0906 0.0944 0.4005 0.3139 0.2657 0.1690 0.1622

pixels) PSNR (dB) 22.43 21.92 16.04 17.04 17.76 19.72 19.80

Car D (%) 30.00 36.03 32.28 36.28 37.58 36.86 37.24
( 260 � 320 MSE 0.0794 0.1321 0.7350 0.3972 0.4038 0.2150 0.2262

pixels) PSNR (dB) 25.59 23.37 15.84 18.68 18.53 21.26 21.04

Lena D (%) 32.00 32.93 28.80 32.20 32.36 30.13 30.26
( 512 � 512 MSE 0.0563 0.0587 0.5898 0.3718 0.3775 0.2298 0.2305

pixels) PSNR (dB) 21.17 20.99 10.98 12.98 12.91 15.06 15.05

imk01310 D (%) 30 30.12 27.98 31.09 31.24 29.90 30.40
( 512 � 512 MSE 0.0626 0.0923 1.1389 1.0744 0.9434 0.2150 0.1933

pixels) PSNR (dB) 29.43 27.74 16.88 17.08 17.65 24.07 24.53

imk03324 D (%) 30.00 30.14 32.48 35.43 36.46 36.06 36.82
( 512 � 512 MSE 0.0854 0.1057 0.7808 0.3879 0.3168 0.1634 0.1705

pixels) PSNR (dB) 23.08 22.15 13.42 16.51 17.38 20.26 20.07

imk04050 D (%) 31.00 31.32 31.22 32.59 32.95 32.61 32.93
( 512 � 512 MSE 0.0652 0.0974 0.4634 0.3554 0.2996 0.1358 0.1361

pixels) PSNR (dB) 25.79 24.05 17.23 19.17 22.60 20.50 22.59

Phase D (%) 25.00 27.27 24.63 23.62 29.15 25.91 25.42
( 128 � 128 MSE 0.0184 0.0187 0.8025 1.3023 0.9307 0.1660 0.1745

pixels) PSNR (dB) 23.97 23.14 7.08 5.29 5.34 14.24 14.02

SST D (%) 25.00 30.73 21.62 22.64 23.95 23.80 24.01
( 512 � 512 MSE 0.0114 0.0404 0.8105 0.8257 0.7545 0.2035 0.2011

pixels) PSNR (dB) 23.99 18.50 5.56 5.40 5.79 11.48 11.54

uation procedure based on the reconstruction formula is independent of the

de�nition of edge pixels. Indeed, if one suppose that a reconstructor is able

to generate the whole signal from its setK of edges, using a linear functional

G, then equation (5.51) must be valid, withF1 replaced byK. Then as-

suming linearity, translational invariance and isotropy, one gets the following

reconstruction formula for testing the validity of the setK of edge pixels:

dI (~! ) =
h~! j [r I jK i

i k~! k2
(5.62)

In that sense, we can say that the reconstruction technique presented in this

section is universal.
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Table 5.8: Results of reconstruction over di�erent edge detection algo-

rithms . Image description: Row 1 : Harrington weave, Row 2 : Hibiscus, Row

3: Car, Row 4 : Lena, Row 5 : imk01310, Row 6 : imk03324, Row 7 : imk04050,

Row 8 : Phase,Row 9 : SST.

Original MSM NLFS Canny LoG Sobel Prewitt

SSIM = 1 SSIM = 0.9881 SSIM = 0.9848 SSIM = 0.9464 SSIM = 0.9839 SSIM = 0.9837 SSIM = 0.9844

SSIM = 1 SSIM = 0.9899 SSIM = 0.9886 SSIM = 0.9683 SSIM = 0.9773 SSIM = 0.9862 SSIM = 0.9863

SSIM = 1 SSIM = 0.9921 SSIM = 0.9879 SSIM = 0.9347 SSIM = 0.9624 SSIM = 0.9805 SSIM = 0.9797

SSIM = 1 SSIM = 0.9938 SSIM = 0.9935 SSIM = 0.9424 SSIM = 0.9632 SSIM = 0.9771 SSIM = 0.9769

SSIM = 1 SSIM = 0.9927 SSIM = 0.9903 SSIM = 0.8989 SSIM = 0.93in77 SSIM = 0.9823 SSIM = 0.9848

SSIM = 1 SSIM = 0.9925 SSIM = 0.9931 SSIM = 0.9443 SSIM = 0.9773 SSIM = 0.9879 SSIM = 0.9873

SSIM = 1 SSIM = 0.9954 SSIM = 0.9924 SSIM = 0.9621 SSIM = 0.9784 SSIM = 0.9911 SSIM = 0.9913

SSIM = 1 SSIM=0.9986 SSIM=0.9983 SSIM=0.9293 SSIM=0.9326 SSIM=0.9886 SSIM=0.9878

SSIM = 1 SSIM=0.9988 SSIM=0.9957 SSIM=0.9182 SSIM=0.9202 SSIM=0.9665 SSIM=0.9881
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Table 5.9: Performance under noise : Reconstruction results on di�erent edge

detection algorithms under di�erent levels of Gaussian white noise.

Original MSM NLFS Canny LoG Sobel Prewitt

SSIM=0.9937 SSIM=0.9934 SSIM=0.9407 SSIM=0.9616 SSIM=0.9764 SSIM=0.9758

SSIM=0.9932 SSIM=0.9927 SSIM=0.9343 SSIM=0.9611 SSIM=0.9722 SSIM=0.9755

SSIM=0.9895 SSIM=0.9886 SSIM=0.9206 SSIM=0.9524 SSIM=0.9650 SSIM=0.9686

Table 5.10: Quantitative analysis (noisy environment) : Evaluation of the
reconstruction over di�erent edge detectors. The 1st, 2nd and 3rd row, for every image,
represents the performance under input SNR of 26 dB, 14 dB and 6 dB respectively.

Image MSM NLFS Canny LoG Sobel Prewitt
PSNR , MSE PSNR , MSE PSNR , MSE PSNR , MSE PSNR , MSE PSNR , MSE

16.89 , 0.1763 15.49 , 0.2384 10.37 , 0.7858 14.45 , 0.2964 15.60 , 0.2278 15.51 , 0.2356

Weave 16.68 , 0.2388 15.21 , 0.3301 10.05 , 0.8449 14.24 , 0.4103 15.48 , 0.3344 15.22 , 0.3245

14.51 , 0.5388 14.61 , 0.6217 9.75 , 1.0993 13.53 , 0.7520 13.98 , 0.6500 13.57 , 0.6169

22.18 , 0.0954 21.88 , 0.1078 16.01 , 0.4336 17.72 , 0.2755 19.69 , 0.1762 19.66 , 0.1728

Hibiscus 20.64 , 0.1553 20.24 , 0.1708 15.26 , 0.5146 16.93 , 0.3385 18.96 , 0.2590 18.29 , 0.2685

17.66 , 0.4300 16.07 , 0.4420 13.49 , 0.9930 14.20 , 0.8359 15.53 , 0.6033 16.24 , 0.6487

25.48 , 0.0837 22.87 , 0.1535 15.80 , 0.7351 18.52 , 0.4040 21.22 , 0.2260 20.99 , 0.2364

Car 23.69 , 0.1416 22.05 , 0.2189 15.72 , 0.7951 18.12 , 0.4612 20.81 , 0.2796 20.02 , 0.3071

19.41 , 0.3952 17.96 , 0.4794 15.40 , 1.0349 16.61 , 0.7574 18.39 , 0.9708 17.98 , 0.5778

29.23 , 0.0627 27.53 , 0.0951 16.82 , 1.1749 17.57 , 0.9494 23.83 , 0.2232 24.46 , 0.1938

imk01310 26.21 , 0.1247 25.23 , 0.1595 15.98 , 1.3719 17.45 , 0.9709 22.34 , 0.3155 22.16 , 0.2756

19.64 , 0.3872 18.75 , 0.4196 13.28 , 1.5785 14.23 , 1.3095 16.67 , 0.6838 17.99 , 0.6100

23.07 , 0.0921 21.98 , 0.1216 13.39 , 0.8802 17.34 , 0.3571 20.10 , 0.1932 19.43 , 0.2217

imk03324 22.16 , 0.1551 21.80 , 0.1568 13.13 , 0.8853 17.15 , 0.4636 19.52 , 0.2753 19.33 , 0.2911

18.82 , 0.4310 18.22 , 0.4578 12.10 , 0.9979 16.13 , 0.6700 18.13 , 0.5482 17.40 , 0.5882

25.53 , 0.0696 23.95 , 0.1005 17.21 , 0.4712 18.95 , 0.3149 22.49 , 0.1429 22.45 , 0.1422

imk04050 23.25 , 0.1317 21.80 , 0.1697 16.46 , 0.5960 18.05 , 0.3875 20.60 , 0.2379 19.74 , 0.2580

18.06 , 0.4295 17.66 , 0.4450 14.35 , 0.9353 15.36 , 0.7492 16.59 , 0.6069 16.07 , 0.6592

23.30 , 0.0230 22.77 , 0.0261 7.69 , 0.8889 6.55 , 1.0722 13.07 , 0.2603 12.63 , 0.2604

Phase 19.35 , 0.0884 19.02 , 0.0883 7.17 , 0.9437 6.00 , 1.2843 10.65 , 0.5678 10.97 , 0.5775

15.39 , 0.3784 15.87 , 0.3693 6.59 , 0.93in51 5.03 , 1.3440 9.80 , 1.1675 9.26 , 0.9469

23.47 , 0.0159 18.02 , 0.0427 5.22 , 0.8383 5.41 , 0.7707 10.11 , 0.3280 10.74 , 0.2852

SST 19.21 , 0.0822 17.85 , 0.0979 5.09 , 0.9554 4.96 , 0.8102 9.74 , 0.4179 10.53 , 0.3253

15.09 , 0.3686 15.03 , 0.3797 4.86 , 1.3826 4.14 , 0.9676 9.00 , 0.7962 9.76 , 0.7958
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Experiment 2

We take the edge representation of di�erent natural images given by their

MSM points and reconstruct from them an approximation of the original

image, using equation (5.58). We compare our reconstruction with the re-

sults of the reconstruction, over the MSM points, obtained from standard

reconstruction techniques discussed in subsection 5.3.1.2. The pixel density

of the edges, for the experimental images, are kept the same (30%) while

performing reconstruction. The results are shown in Table 5.11. Table 5.12

shows the performance evaluation of the reconstructed images using PSNR

and MSE metrics and Table 5.13 shows the performance of the reconstruc-

tion under di�erent levels of input SNR using the same metrics.

Discussion

Visual quality of the reconstruction in Table 5.11, evaluated using SSIM,

shows that Rmsm outperforms the classical reconstruction algorithms in ma-

jority of the cases. Quantitative analysis of the results, shown in Table 5.12

(without noise) and Table 5.13 (with noise) also shows the superiority of

Rmsm over other reconstruction algorithms.

The ability to reconstruct an image from its edge representation lies in

the e�ciency of the edge detection algorithm as well as in the ability of the

reconstruction algorithm to estimate an accurate approximation of the orig-

inal image from the information coded in its edges. The e�ciency of an edge

detector lies not only in extracting features of real information from an image,

but at the same time discarding redundant or perceptually irrelevant infor-

mation. The Rmsm permits a quantitative evaluation of the compactness
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Table 5.11: Performance of di�erent reconstruction algorithms . Row

1: Brick wall Row 2 : House Row 3 : imk03322 Row 4 : Aerial view of a truck

Row 5 : Julia Roberts Row 6 : SST image.

Original R msm Poisson solver Regularization M-estimators Di�usion

SSIM = 1 SSIM = 0.9922 SSIM = 0.9509 SSIM = 0.9182 SSIM = 0.9403 SSIM = 0.8895

SSIM = 1 SSIM = 0.9987 SSIM = 0.9954 SSIM = 0.9922 SSIM = 0.9951 SSIM = 0.9945

SSIM = 1 SSIM = 0.9986 SSIM = 0.9972 SSIM = 0.9964 SSIM = 0.9966 SSIM = 0.9962

SSIM = 1 SSIM = 0.9813 SSIM = 0.9519 SSIM = 0.9456 SSIM = 0.9530 SSIM = 0.9536

SSIM = 1 SSIM = 0.9901 SSIM = 0.9809 SSIM = 0.9707 SSIM = 0.9742 SSIM = 0.9783

SSIM = 1 SSIM = 0.9991 SSIM = 0.9989 SSIM = 0.9909 SSIM = 0.9990 SSIM = 0.9989

of a representation, leading to highly accurate approximation of an original

image from its edge pixels.
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Table 5.12: Quantitative analysis: Evaluation of the reconstruction algo-

rithms, correspnding to Table 5.11, in terms of PSNR (in dB) and MSE.

Image Rmsm Poisson solver Regularization M-estimators Di�usion

Brick wall PSNR 24.33 16.84 14.39 15.98 12.67
MSE 0.0909 0.5102 0.8975 0.6204 1.3284

House PSNR 24.90 20.77 19.09 20.48 20.62
MSE 0.0183 0.0478 0.0733 0.0543 0.0493

imk03322 PSNR 30.63 27.72 26.75 27.05 26.75
MSE 0.0170 0.0329 0.0409 0.0382 0.0415

Aerial PSNR 21.01 17.06 16.41 17.25 17.19
MSE 0.2209 0.4948 0.5682 0.4780 0.4661

Julia PSNR 18.31 15.47 13.64 14.33 14.79
MSE 0.0934 0.1805 0.2758 0.2364 0.2068

SST PSNR 25.10 24.82 16.25 24.61 24.58
MSE 0.0088 0.0110 0.0820 0.0114 0.0121

Table 5.13: Quantitative analysis for noisy environment : Evaluation of the
reconstruction algorithms, in terms of PSNR and MSE, under di�erent levels of noise.

Image Algorithm SNR = 40 dB SNR = 20 dB SNR = 14 dB SNR = 6 dB
MSE, PSNR MSE, PSNR MSE, PSNR MSE, PSNR

R msm 0.0912, 24.26 0.0952, 23.98 0.1180, 23.28 0.2357, 21.46

Poisson solver 0.5119, 16.79 0.5187, 16.69 0.5264, 16.54 0.5952, 16.27

Brick wall Regularization 0.8978, 14.31 0.8992, 14.18 0.9556, 13.22 0.9891, 12.84

M-estimator 0.6213, 15.92 0.6343, 15.76 0.6408, 15.70 0.8261, 14.91

Di�usion 1.3296, 12.64 1.3342, 12.59 1.4321, 12.48 1.4565, 12.35

R msm 0.0183, 24.88 0.0269, 23.37 0.0475, 21.33 0.1723, 18.16

Poisson solver 0.0472, 21.20 0.0607, 19.88 0.0805, 19.41 0.2057, 16.87

House Regularization 0.0745, 18.91 0.0775, 18.88 0.0889, 18.26 0.2057, 16.92

M-estimator 0.0548, 20.32 0.0629, 19.68 0.0820, 19.50 0.2009, 17.68

Di�usion 0.0497, 20.40 0.0590, 20.15 0.1106, 18.34 0.4236, 14.34

R msm 0.0171, 30.59 0.0248, 28.69 0.0478, 25.60 0.1780, 20.93

Poisson solver 0.0331, 27.67 0.0425, 26.40 0.0687, 23.65 0.2023, 18.76

imk03322 Regularization 0.0411, 26.72 0.0452, 26.32 0.0674, 24.14 0.1918, 19.12

M-estimator 0.0386, 26.98 0.0449, 26.28 0.0638, 24.74 0.1972, 17.57

Di�usion 0.0419, 26.63 0.0557, 25.47 0.0871, 23.18 0.3066, 15.93

R msm 0.2210, 21.00 0.2311, 20.67 0.2577, 20.02 0.3862, 18.87

Poisson solver 0.4960, 17.03 0.4966, 16.61 0.5029, 16.52 0.6099, 14.71

Aerial Regularization 0.5684, 16.39 0.6011, 16.11 0.6607, 16.06 0.7021, 14.63

M-estimator 0.4783, 17.03 0.4854, 16.84 0.4993, 16.38 0.5889, 15.77

Di�usion 0.4669, 17.08 0.5046, 16.79 0.6174, 15.66 0.8075, 14.00

R msm 0.0936, 18.18 0.1343, 17.93 0.1699, 17.10 0.2412, 16.34

Poisson solver 0.1776, 15.37 0.2098, 15.11 0.2393, 14.98 0.4882, 13.76

Julia Regularization 0.2736, 13.54 0.2812, 13.11 0.3119, 12.43 0.3908, 11.94

M-estimator 0.2367, 14.26 0.2619, 13.99 0.3323, 13.98 0.4940, 13.51

Di�usion 0.2256, 14.38 0.3718, 13.54 0.3864, 12.92 0.7331, 12.65

R msm 0.0091, 25.08 0.0169, 23.23 0.0384, 21.42 0.1699, 17.54

Poisson solver 0.0112, 24.68 0.0182, 23.26 0.0386, 20.68 0.1874, 17.61

SST Regularization 0.0853, 16.09 0.0889, 15.30 0.1756, 14.05 0.1820, 12.39

M-estimator 0.0115, 24.55 0.0182, 23.14 0.0499, 20.13 0.1701, 17.40

Di�usion 0.0118, 24.49 0.0216, 22.38 0.0489, 20.37 0.3598, 14.21



100 Chapter 5. Critical exponents and inference across the scales

Experiment 3

In this experiment, we compare the performance of di�erent reconstruction

algorithms over di�erent edge detection techniques and in the process check

the best possible combination (edge detector+ reconstructor) that gives the

best results in terms of reconstruction. We choose Rmsm and other recon-

structors, already discussed in this chapter, for reconstructing test images

from their edge pixels (obtained from di�erent edge detection techniques).

The pixel density of the edges, calculated using di�erent edge detectors, are

kept within a close range (between25� 35%), with the pixel density of MSM

points kept minimum. The classical edge algorithms tested are Matlabc im-

plementations. Results are shown in table 5.14 and table 5.15.

Discussion

We have presented a quantitative analysis on the performance of di�erent

reconstruction algorithms over di�erent edge detectors and have compared

all possible combinations of them to verify the best performing duo (edge

detector + reconstructor). It happens that, in majority of the cases, the

combination of MSM and Rmsm gives the best possible results. Infact, in

table 5.14 we can see that the combination of the reconstructors with MSM

gives the best results (data underlined) compared to any other edge detec-

tor. For certain edge detectors, the combination with Poisson solver gives

better results: for example, Hibiscus (with Sobel edge detector) and Boat
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Table 5.14: Quantitative analysis of the performance of di�erent re-

construction algorithms over di�erent edge detectors : Data marked in blue

indicates the reconstructor that performs the best, over other reconstruction tech-

niques, for a particular edge detection algorithm. Data underlined indicates the

edge detection algorithm that gives the best result, in terms of reconstruction, over

all the other edge detectors, for a particular reconstructor.

Image Algorithm Rmsm Poisson solver Regularization M-estimator Di�usion

MSE, PSNR MSE, PSNR MSE, PSNR MSE, PSNR MSE, PSNR

MSM 0.0906, 22.08 0.1042, 21.96 0.1530, 20.37 0.1163, 21.42 0.1168, 21.43

NLFS 0.0944, 21.92 1.4791, 10.41 1.3846, 10.75 1.2795, 11.12 1.4393, 10.46

Hibiscus Canny 0.4005, 16.04 0.4889, 15.38 0.6270, 14.20 0.7614, 13.42 1.0162, 12.08

LoG 0.2657, 17.76 1.6979, 9.83 1.6545, 10.08 1.5900, 10.09 1.7405, 9.76

Sobel 0.1690, 17.72 0.1571, 20.19 0.2285, 18.56 0.1826, 19.52 0.5453, 14.79

Prewitt 0.1622, 19.80 0.1443, 20.49 0.2270, 18.45 0.1795, 19.61 0.5062, 15.13

MSM 0.0794, 25.59 0.1033, 24.45 0.1617, 22.50 0.1242, 23.65 0.1095, 24.19

NLFS 0.1321, 23.37 0.2330, 20.91 0.2547, 20.52 0.2931, 19.92 0.4530, 18.03

Car Canny 0.7350, 15.84 1.0848, 14.14 1.1642, 13.83 1.2375, 13.57 1.1917, 13.73

LoG 0.4038, 18.53 1.5238, 12.75 1.5087, 12.80 1.4763, 12.89 1.5260, 12.76

Sobel 0.2150, 21.26 0.7679, 15.73 0.8179, 15.46 0.4536, 18.02 0.6453, 16.49

Prewitt 0.2262, 21.04 0.9510, 14.80 0.9629, 14.75 0.5347, 17.30 0.7295, 15.95

MSM 0.0969, 18.71 0.1567, 16.62 0.1617, 22.50 0.1466, 16.91 0.1970, 15.63

NLFS 0.0997, 18.58 0.2271, 15.01 0.2547, 20.52 0.4923, 11.65 0.4648, 11.90

Boat Canny 0.9636, 8.72 0.7153, 10.01 1.1642, 13.83 0.9272, 8.88 0.93in67, 8.98

LoG 0.4145, 12.40 1.2415, 7.64 1.5087, 12.80 1.2606, 7.57 1.3018, 7.43

Sobel 0.3296, 13.39 0.7788, 9.66 0.8179, 15.46 0.8205, 9.44 0.4706, 11.85

Prewitt 0.3708, 12.88 0.7365, 9.90 0.9629, 14.75 0.7814, 9.65 0.5439, 11.22

MSM 0.0521, 15.60 0.0743, 14.06 0.0852, 13.47 0.0723, 14.18 0.0910, 13.18

NLFS 0.0529, 15.53 0.0792, 13.78 0.1412, 11.28 0.0834, 13.56 0.3865, 6.90

Camille Canny 0.3550, 7.26 0.3927, 6.82 0.4094, 6.64 0.4665, 6.07 0.5704, 5.19

LoG 0.2639, 8.56 0.8539, 5.09 0.8301, 5.15 0.7235, 5.41 0.8237, 5.16

Sobel 0.1114, 12.19 0.1808, 10.20 0.1771, 10.29 0.1432, 11.21 0.3831, 6.94

Prewitt 0.1133, 12.23 0.2888, 8.16 0.2388, 9.09 0.1541, 10.89 0.4681, 6.07

MSM 0.0854, 23.08 0.1456, 20.76 0.1848, 19.72 0.2604, 18.24 0.5899, 14.69

NLFS 0.0960, 22.57 0.1887, 19.63 0.2285, 18.80 0.3536, 17.35 1.1471, 11.79

imk03324 Canny 0.7808, 13.42 1.4146, 10.85 1.4535, 10.72 1.4446, 10.75 1.5041, 10.58

LoG 0.3168, 17.38 2.3025, 8.77 2.3019, 8.79 2.3256, 8.73 1.4650, 10.73

Sobel 0.1634, 20.26 1.3966, 10.94 1.4782, 10.69 1.4603, 10.75 1.5532, 10.48

Prewitt 0.1705, 20.07 1.4172, 10.88 1.4859, 10.67 1.4926, 10.65 1.4189, 10.87

(with Canny edge detector). However, they are always outperformed by the

combination of MSM and Rmsm.
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Table 5.15: Performance of di�erent reconstructors over di�erent edge

detectors. Each row indicates the performance of the reconstructors for a given

edge detection algorithm. Every column shows the edge detection algorithm that

gives the best result, in terms of reconstruction, for a particular reconstructor.
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Ÿ 5.4 Conclusion

In this chapter, we have discussed about the ability of the singularity expo-

nents in capturing the important multiscale features of a signal. We have

justi�ed this claim, experimentally, by a two step procedure. In the �rst

step, we have proved that edges obtained from singularity exponents better

represent the transitions within a turbulent signal and are much more consis-

tent across the scales of the signal. In the second step, we show that better

reconstruction of the signal is achieved from the edges obtained through sin-

gularity analysis of the signal. Indeed, if edges encode the most important

features of a signal, it should also be possible to reconstruct the signal from

its edge representation. This arguement is well justi�ed in section 5.3.

Armed with the results of section 5.2 and section 5.3, and with an approx-

imative version of the optimal wavelet for a turbulent phase signal, we move

on to the next chapter of this thesis where we implement the idea of mul-

tiresolution analysis on the signal of the singularity exponents, for wavefront

phase reconstruction in AO.
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- Chapter 6 -

A multiscale approach to phase

reconstruction for AO

Turbulence in the di�erent layers of the Earth's atmosphere plays a fun-

damental role in limiting the resolution of ground-based instruments. These

turbulent layers perturbate to a great extent incoming light from outer space,

resulting in a phase distortion of the incoming planar wavefronts. AO is one

of the best known method to overcome this hurdle [66, 67, 68, 137, 164].

In most AO systems, the perturbated phase is acquired through a speci�c

WFS (wavefront sensor), in the form of slope measurement (or curvature

measurement) of the wavefront phase. The WFS measures the distortions

in the wavefront, which is then passed through a servo-loop to the DM (de-

formable mirror) which approximates its shape according to the shape of the

wavefront, to reduce the wavefront phase residual error. One of the most

commonly used wavefront sensor is the SH (Shack-Hartmann) sensor, which

measures the local slope (gradients) of the wavefront. The reconstruction

of the wavefront from the slope measurements of a SH sensor is generally

seen as an inverse problem and can be expressed in a matrix-algebra frame-

work [137, 164]. The commonly used techniques for estimating the phase

are [98, 164]:

� the ML (maximum likelihood)technique, and

� the MAP (maximum a posteriori) technique.

105
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The ML method yields to the generalizedleast squares solution[110, 164]

which is the solution classically used for estimating the phase under real-

time constraints.

In the case of long time exposures, the optical transfer function of the

imaging instrument is multplied by an atmospheric transfer function which is

expressed using classical correlation functions and related to the Kolmogorov

model of turbulence [164]. This suggests that an acquired image behaves like

a complex signal having multiscale properties [180]. Consequently, recent

advances in the framework of reconstructible systems for complex signals are

likely to apply to the case of an acquired perturbated optical phase, and, in

particular, other reconstruction techniques of the perturbated phase, based

on the cascading properties of fully developed turbulence can be taken into

consideration [203, 21]. The general organization of a multiscale structure in

complex signals has been related to the existence of cascade processes. The

MMF thereby proves to be a suitable approach for the study of multiscale

properties in real signals which generalize previous approaches [202].

This chapter focusses on the use of the MMF scheme for wavefront phase

reconstruction from the low-resolution slope measurement (gradients) of the

perturbated phase. We also check the reconstruction performance after

adding di�erent proportions of Gaussian white noise to the gradients. Instead

of using the conventional method of least squares estimation (or deconvolu-

tion [70, 138, 60, 168, 169] for image restoration), we try to obtain the phase

from its low-resolution gradients by propagating the information of a turbu-

lent phase along the scales, from low-resolution to high-resolution, using the

multiresolution analysis and speci�c wavelet projections [126, 127, 157, 217].

We have shown, in the previous chapter, that the singularity exponents en-

code important multiscale features of the signal (well noticed in the MSM).

We do a multiresolution analysis on the complete set of singularity exponents

computed on a turbulent phase map (and not just the MSM), to infer in-

formation along the scales and then reconstruct with this information. This

work, for the case of wavefront phase reconstruction, is new in comparison

to classical reconstruction techniques in AO. Wavelets are used widely in

astronomical imaging, now with the development ofX -lets (i.e. curvelets

etc.) [28, 27, 29, 30, 174, 188].
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The chapter is orgainzed as follows: In section 6.1, we describe the dataset

we have used for our experimental work. In section 6.2 we explain our wave-

front phase estimation algorithm. Results are shown in section 6.3. In sec-

tion 6.4, we compare our algorithm with the classical least squares technique.

Finally, we conclude in section 6.6.

Ÿ 6.1 Description of data

The datasets used in our work are of simulated turbulent optical phase

provided by the French Aerospace Lab-ONERA. We have 1000 occurences

(slices) of turbulent phase and their associated PSF for our experimental

purpose, with the following imaging characteristics:

� diameter of the telescope: 8 m,

� seeing at 5 microns: 0.85 arcseconds,

� Fried parameterr0 at imaging wavelengths: 70 cm,

� wind speed: 12.5 m/s,

� acquisition frequency: 250 Hz.

The pupil is de�ned on 256 � 256 pixels. Data is generated in the FITS

format [2]. For the statistical purpose of our experiment we need a set of

appropriate sub-images. These sub-images must be as large as possible (for

statistical con�dence) and clean (without missing pixels). In addition, due

to the requirements imposed by our wavelet analysis, we also require these

sub-images to be square sampled with the sampling size being a power of 2.

To avoid sub-reconstruction and Gibbs phenomena coming from the strong

transition associated to the pupil's boundary, we take a sub-image made of

128 � 128 pixels centered in the middle of the pupil of the original phase

data. An example of the experimental phase and its associated PSF is shown

in Fig 6.1.

The low-resolutionx and y components of the phase gradient are calcu-

lated as follows : From the given phase data, we compute the gradients of

the phase and produce an averaged gradient over a window of size8 � 8

pixels, normalized by the size of the window (64 square pixels) thus resulting
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(a) (b)

Figure 6.1: (a) Image of a simulated phase perturbated by atmospheric tur-

bulence (see section 6.1 for imaging characteristics). The image corresponds

to a 128 � 128pixels sub-image extracted from an original256 � 256pixels

image to avoid the pupil's boundary. (b) Point spread function (PSF) image

associated to the image of the perturbated phase.

in a 16 � 16 sub-image corresponding to thex and y slope measurement of

an SH WFS. For our experimental purpose, we have generated gradients of

size32 � 32pixels and64 � 64pixels by the same procedure, normalized by

their respective window size (i.e.4 � 4 pixels and2 � 2 pixels respectively).

Ÿ 6.2 Reconstruction technique

From the results and discussions presented in chapter 5, we have shown that

even if we are not able to compute directly an optimal wavelet, we can rely

on the results which proves that the singularity exponents are candidates

that carry the multiscale information of a turbulent signal. We can therefore

replace a �real� optimal wavelet and its associated multiresolution analysis

by a classical multiresolution analysis but performed on the signal of the
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Figure 6.2: Representation of the analysis process. We take as input a

high-resolution128 � 128 pixels phase screen. We then compute the singu-

larity exponents of this high-resolution phase screen and do a multiresolution

analysis (MRA) over the exponents. The high-resolution phase screen can be

the true phase itself, an average instance of the true phase over time or any

random phase screen with Kolmogorov turbulence statistics. Here,� j is the

approximation of the initial image (i.e. the image of the singularity expo-

nents) at the resolutionj . Level 1 MRA results in a coarser approximation

of � j i.e. � 0
j +1 (size: 64 � 64 pixels) and the details� 1

j +1 , � 2
j +1 and � 3

j +1 .

The process is repeated four times to get an aprroximation of size16 � 16

pixels.

singularity exponents. This is why we have a two step reconstruction process:

analysis consists in computing a multiresolution analysis on the signal of

singularity exponents, with a third order Battle Lemarié (B-L) wavelet, and

extract the details. Synthesis consists in using this details to obtain gradients

at higher resolution, from which the phase is estimated.

We therefore formulate the process of reconstructing the phase from its

gradient measurement accordingly. In the analysis part of the algorithm,

we try to extract the wavelet coe�cients from the signal of the singularity

exponents (denoted bysh(n1; n2) of sizeN1 � N2 computed on the phase
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Figure 6.3: Representation of the synthesis process. Here the low-resolution

16 � 16 pixels approximation obtained from the analysis part are replaced

with the low-resolution16 � 16 pixels gradient of the phase. Then with

the knowledge of the details at every level, the signal is reconstructed from

16 � 16 pixels to32 � 32 pixels, then to64 � 64 pixels (� 0
j +1 ) and �nally to

128 � 128 pixels i.e. � j . The process is repeated for bothx and y gradients

to obtain a high-resolution estimate of the phase gradients at128 � 128

pixels.

data) by a multiresolution analysis with an approximate optimal wavelet	

(here B-L wavelet), following the equation:

� i
j;k 1 ;k2

=
1

p
N1 � N2

N1 � 1X

n1=0

N2 � 1X

n2=0

	 i
j;k 1 ;k2

(n1; n2)sh(n1; n2) (6.1)

for all orientations i , scalej and positionsk1; k2 (see section 5.1.1.3 for de-

tails). Then with the knowledge of the wavelet coe�cients at the intermediate

scales, we try to reconstruct the signal (high-resolution gradients in this case)

by:

s(n1; n2) =
X

i =0 ;1;2;3

X

j

X

k1 ;k2

� i
j;k 1 ;k2

	 i
j;k 1 ;k2

(n1; n2) (6.2)

This is the second step of the approach and is known as the synthesis part of

the algorithm. The process of reconstruction can be summarized accordingly:
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� We �rst compute the third order B-L wavelet coe�cients associated to

the signal of the singularity exponents computed on the perturbated

phase signal. Considering a given phase map as an approximation im-

age at scalej , we compute the singularity exponents of this phase map

using equation (5.40). We then consider the image corresponding to

the singularity exponents (we consider all the exponents over the phase

map without any thresholding) as the input image to the multiresolu-

tion analysis.

� A multiresolution analysis on the input image (i.e., the image of the

singularity exponents) gives rise to an approximation image (� 0
j +1 ) and

the details i.e. the wavelet coe�cients (� 1
j +1 , � 2

j +1 and � 3
j +1 are the hor-

izontal, vertical and diagonal details respectively) for the next coarser

scalej + 1.

� Every level gives rise to an image fourth smaller than the previous

one. We repeat the operation4 times to an approximation of size

16 � 16 pixels. We store the details of the exponents obtained in the

intermediate levels.

� This part of the operation is the called the analysis part (decomposi-

tion), and is explained in Fig 6.2.

� The next part of the operation is called the synthesis part (reconstruc-

tion), and is shown in Fig 6.3.

� We replace the resultant approximation image (a coarser approximation

of the singularity exponents, obtained from the analysis operation) with

the low-resolutionx and y gradient measurements (16 � 16 pixels sub-

image, see section 6.1) of the phase data.

� For each component (x and y) of the phase gradient at low-resolution,

we back project the component (using equation (6.2)) to high-resolution

using the intermediate detail coe�cients (i.e. details of the singualrity

exponents obtained from the analysis operation), to get a phase's gra-

dient at higher spatial resolution of128 � 128pixels.
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Table 6.1: Left to right : True phase, reconstruction of the phase using

signal of the singularity exponents as input to the multiresolution decompo-

sition, comparison of the PSD between the true phase and the reconstructed

phase, reconstruction of the phase using the true phase as input to the mul-

tiresolution decomposition.

True phase Reconstructed phase Log-power spectrum Reconstructed phase
(using exponents) (using image)

� The estimation of the phase from its high-resolution gradients is ob-

tained by solving the discrete Poisson equation with Neumann bound-

ary conditions. We use a fast Poisson solver for this purpose (see sec-

tion 5.3.1.2).

Ÿ 6.3 Results

Results obtained show visual resemblance of the reconstructed signal with

the original one. Performance of reconstruction using the singularity expo-

nents and the image, as input to the analysis part of the algorithm, is shown

in table 6.1. The results clearly shows the necessity of using the signal of

the singularity exponents in the decomposition process. We also check the

performance of our reconstruction technique after adding di�erent propor-

tions of Gaussian white noise to the gradients, results are shown in table 6.2.

Quantitative analysis is presented in table 6.3. We also compute the PSF

and the modulus of the OTF for the reconstructed phase, and compare them

with that of the true phase. The results are shown in table 6.4 and table 6.5.
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Table 6.2: Results of the reconstruction in a noisy environment.Top row

: Reconstructed phase under di�erent levels of SNR.Bottom row : Com-

parison of the PSD between the true phase and the reconstructed phase under

di�erent levels of SNR.

SNR = 40 dB SNR = 20 dB SNR = 14 dB SNR = 6 dB

Table 6.3: Evaluation of the phase reconstruction of table 6.2 in terms of

MSE and PSNR metrics.

Params No noise 40 dB 20 dB 14 dB 6 dB

MSE 0.1978 0.2216 0.2253 0.2406 0.3125

PSNR 31.18 30.68 30.16 29.32 28.19
(dB)

Ÿ 6.4 Residual phase statistics

As discussed in section 3.1.1, chapter 3, the principle of AO correction is to

reduce the residual error in the equation:

� � (r; � ) = � turb (r; � ) � � cor (r; � ) (6.3)

where � � (r; � ) is the residual phase (tends to zero with the AO correction)

and � cor (r; � ) corresponds to the phase obtained by the mirror deformation
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Table 6.4: Performance under noise - Point spread function (PSF) .

The X cut and Y cut of the PSF are displayed. They-axis corresponds to the

square of the normalized image plane irradience and thex-axis corresponds

to the angular distance in arseconds.
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Table 6.5: Performance under noise - Modulus of OTF (MTF) . The

X cut and Y cut of the MTF are displayed with a logarithmic scale. The

y-axis corresponds to the logarithm of the MTF and thex-axis represents the

normalized frequency inD=� units.
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(correction by AO). We set up an experiment, in which we compare the PSD

of � � when� cor is obtained using our technique and the classical least squares

reconstruction technique (see section 3.2.4.3), which is the general solution

to the inverse problem solution methods [110]. Multigrid solvers and precon-

dition conjugate gradient solvers [75, 74, 18] are the most computationally

e�cient approaches in this regard. For comparing the reconstruction quality

using our method and the least squares approach, we set-up the following

experiment:

� We generate the estimated phase� cor with our method (derived from

the framework of MMF) using the singularity exponents, computed on

three di�erent high-resolution phase screen, as input to the decompo-

sition part of our algorithm (see section 6.2 and Fig 6.2).

� The three di�erent high-resolution phase screens are: (a) the true

phase, (b) an average phase obtained from the 10 previous and 10 post

instances of the true phase and (c) a �xed FFT based phase screen

obtained by McGlammery method [134] (see section 2.5.2) using the

Kolmogorov power spectrum.

� For calculating the average phase instance of (b), we consider a total

of 960phase instances from the original1000instances (start with the

21st phase screen and end on the 980th phase screen).

� Given the estimated phase (� cor ) and true phase (� turb ), we calculate

the residual phase� � by equation (6.3).

� We calculate the residual phase for all960instances of the phase (N =

960), using our technique (for all the three di�erent high-resolution

inputs) and the least squares technique.

� � cor is of size128 � 128 pixels. Reconstruction is repeated for three

di�erent size of the gradients: 64 � 64 pixels, 32 � 32 pixels and

16 � 16 pixels.

� The least squares reconstructed phases are oversampled to128 � 128

pixels resolution from their respective gradient resolution using bicubic

interpolation.
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(a) (b)

Figure 6.4: (a) Image of a simulated turbulent phase screen generated by the

FFT based method [134] using a Kolmogorov power spectrum. (b) Singularity

exponents computed on the phase data.

� The average residual phase PSD, for all the960 instances are then

calculated, as 1
N

NX

i =1

jF (� � )j2, whereF is the Fourier transform.

� We then plot the PSD against spatial frequency, for our technique and

least squares technique, and compare.

In table 6.6, we show the results of the residual phase PSD, with the

true phase as input high-resolution phase for our algorithm. Table 6.7 and

Table 6.8 shows the same results like table 6.6, but using an average phase

instance and a Kolmogorov phase screen (shown in Fig 6.4), respectively,

(instead of the true phase) as input high-resolution phase for our algorithm.

Ÿ 6.5 Results and discussion

We have shown the quality of our reconstruction algorithm, in comparison

to least squares technique (commonly used in AO for phase estimation) in

section 6.4. We have used three types of high-resolution phase screen as

inputs, in the analysis part of our algorithm, and computed the singularity

exponents on them. We have �rst tested our approach using the true phase
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Table 6.6: Comparison of the residual phase statistics with classical opera-

tors under di�erent levels of SNR. To estimate� cor using the MMF technique,

we use the singularity exponents computed over the true phase as input high-

resolution phase in the decomposition process of our algorithm.
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Table 6.7: Comparison of the residual phase statistics with classical operators

under di�erent levels of SNR. To estimate � cor using the MMF technique, we use

the singularity exponents computed over the average phase instance (obtained by

averaging the 10 previous and 10 post instances of the true phase) as input high-

resolution phase in the decomposition process of our algorithm.
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Table 6.8: Comparison of the residual phase statistics with the least squares

operator under di�erent levels of SNR. To estimate� cor using the MMF tech-

nique, we use the singularity exponents computed over a �xed FFT based

Kolmogorov phase screen (see Fig 6.4) as input high-resolution phase in the

decomposition process of our algorithm.

Gradients : 64 � 64 pixels Gradients : 32 � 32 pixels Gradients : 16 � 16 pixels
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as an input (which is the ideal case) to verify the potential of our algorithm

in estimating the phase. We then replaced the true phase with an average

instance of the true phase (obtained by averaging the 10 previous and 10 post

instances of the true phase) and with a �xed FFT based Kolmogorov phase

screen (see Fig 6.4), and performed reconstruction. For all the three di�er-

ent high-resolution inputs, the results obtained shows superior performance

under di�erent levels of SNR (see table 6.6, table 6.7 and table 6.8) when

compared with the classical least squares technique. It is seen that for the

case when reconstruction is made over gradients of size16 � 16 pixels, our

method has reduced performance compared to least squares method. The

performance however improves considerably, in comparison with the least

squares method, as the level of SNR increases. It should be noted here that

we have tested the performance of our algorithm in the case of Gaussian noise

only. One important aspect will be to test the robustness of our algorithm

in the case of sensor noise (photon noise + measurement noise), which is our

future objective.

Ÿ 6.6 Conclusion

In this chapter we have introduced a wavelet-based new method for the re-

construction of a high-resolution phase from its low-resolution gradients, by

propagating the information of a turbulent phase along the scales, from low-

resolution to high-resolution. We have proposed an alternate technique for

estimating the wavefront phase instead of using the conventional methods of

least squares solution [164]. The idea is the use of an optimal wavelet, which

provides a close approximation of the multiscale energy cascade through

wavelet decomposition. Since the deduction of an optimal wavelet remains

an unsolved problem, we determine the quality of reconstruction by a classi-

cal multiresolution analysis on the signal of the singularity exponents, which

we have proved in the previous chapter are the ideal candidates that retain

the multiscale features of a signal. The results clearly state the fact that

singularity exponents are the ideal candidates in capturing the turbulent in-

formation of the phase, and through the use of a proper wavelet (a third order
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B-L wavelet in our case) the turbulent features of the signal are extracted

along the scales, which is then used to reconstruct high-resolution gradients

from its low-resolution measurements. The phase is then estimated from the

high-resolution reconstructed gradients.
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Conclusion

In this thesis, we have presented a novel approach to wavefront phase recon-

struction in Adaptive Optics (AO) through the framework of MMF (Micro-

canonical Multiscale Formalism). We have presented a detailed explanation

of the MMF framework through its various applications on image processing

and have successfully applied this framework, together with the multiresolu-

tion analysis scheme associated to wavelet transform, in the wavefront phase

estimation problem for AO. The idea is the use of an optimal wavelet in mul-

tiresolution analysis, by which optimal inference along the scales of a signal

is possible. But, due to the lack of proper computation techniques, we are

limited to work only with an approximative version of the optimal wavelet.

This limitation has inspired us to de�ne, in this thesis, an alternate technique

by which maximum inference along the scales is possible. We have shown

that singularity exponents, associated to a turbulent phase acquisition, are

ideal candidates for inferring information along the scales of a signal and

can be used in a multiresolution analysis approach (associated to a wavelet

transform) for reconstructing a turbulent phase from its low-resolution gra-

dients. The justi�cation of this idea, which forms of the heart of this thesis,

has been done in two steps.

In the �rst step, we have studied the multiscale behaviour of a complex

signal, better understood from its complex arrangement of geometrical struc-

tures (that are related to the cascading properties of physical variables [203]).

123
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Transitions within these signals, can be well-de�ned by a subset of points that

are related to the concept of edges in natural images. This is a fundamental

topic as edges are usually considered as important multiscale features in a

signal (in our case images) and better characterization of edges in complex

signals can unfold its geometrical structure, which is our preliminary objec-

tive. From the concept of Statistical Physics, we see that systems with high

order transitions commonly re�ect a power-law behaviour in their thermody-

namical variables [203, 202]. The exponents of this power-law, if determined

correctly, can give tremendous insight into the underlying dynamics of such

systems. The MMF provides a suitable approach in the determination of

these critical exponents, the so-calledsingularity exponents, that has lead to

a sensible improvement in the numerical techniques for the determination of

multiscale characteristics in real signals. In particular, the singularity expo-

nents give access to a subset of points, called the Most Singular Manifold (the

MSM) whose structure is related toedgesor contours in natural images [197].

We see (in section 5.2, for the case of 2D signals) that this subset of points

are much better candidates for the characterization of transitions in complex

signals : they outperform the classicallinear �ltering approach of the state-

of-the-art edge detectors in terms of consistency across the scales. Edges

detected by singularity analysis are able to retain their structure across the

scales. The results of section 5.2, therefore helps us in concluding that the

singularity exponents are able to retain the important multiscale features of

a signal along the scales.

After studying this important property of the singularity exponents, we

move on to the second step of justi�cation i.e., being able to reconstruct the

signal from the basic information of its multiscale structure contained in the

edges of the signal. Indeed, if edges encode the most important features of a

signal, it should also be possible to reconstruct the whole signal from its edge

representation. We therefore study the performance of reconstructible sys-

tems both with transitions associated to singularity exponents and the edge

pixels provided by standard edge detection techniques. Examples are chosen

among the most di�cult natural signals: acquisition of turbulent phenomena

(perturbated optical phase and ocean dynamics acquired from space). The

results of section 5.3 clearly shows the superiority of the reconstruction, ob-
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tained from the MSM points than over edges from classical edge detectors.

By the application of di�erent techniques for reconstructing an image from

its edges, we see that the overall assumption of better reconstruction from

MSM remains unchanged. The results allow us to draw another important

conclusion : the singularity exponents not only retain the multiscale features

of a signal, but it is also possible to reconstruct the signal from a subset of

its most informative points.

After validating the idea of using the singularity exponents for optimal in-

ference in multiresolution analysis, we demonstrate the potential of this idea,

in chapter 6, for wavefront phase reconstruction. We study a multiresolution

analysis scheme associated to the signal of singularity exponents through

the approximation of an optimal wavelet. Three types of phase screens are

used as high-resolution inputs to the multiresolution analysis part of our

algorithm. The primary objective was to �rst validate the performance of

our algorithm, for phase reconstruction, using the ground truth (i.e. the true

phase) as input to the analysis part of the algorithm. The results encouraged

the use of a non-perfect high resolution phase screen and verify the perfor-

mance of reconstruction. We therefore took two examples of a non-perfect

high-resolution phase as input to the analysis part: an average instance of

the true phase (obtained by averaging the 10 previous and 10 post instances

of the true phase) and a �xed Fourier series based atmospheric phase screen

with Kolmogorov power spectrum. The results obtained, when compared

with the classical least squares technique, clearly shows the potential of our

approach in wavefront phase estimation, specially in the case of noise, where

the performance of MMF is better than the least squares method.

Ÿ 7.1 Future perspectives

The research reported in this thesis has opened a new direction to the problem

of wavefront phase reconstruction in AO. Simulations clearly suggest the

potential of this approach, as a new technique, superior or equal to classical

solutions (with marked superiority in the case of noise, at least for the type

of noise considered in this thesis).
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� The future goal is, therefore, to implement our reconstruction algo-

rithm in an AO system and see its performance in real-time. In fact,

the singularity exponents, which are the basic ingredients used in our

reconstruction technique, can be computed in real-time with minimum

utilization of resources.

� The reconstruction technique that we have proposed in this thesis is

general enough to suit the case of acquisitions of general complex sys-

tems. Therefore, the methodology is likely to be applicable to cases

that �ts the problem.

All these future extensions to the present work, may further justify the

establishment of the MMF framework as a powerful tool in the analysis of

multiscale features in complex signals. In fact, the potential of MMF is now

being tested on many signal processing applications in a quite diverse set of

scienti�c disciplines ranging from stock market series [151], phytoplankton

distribution in ocean [157], ocean dynamics [217], satellite imaging [78, 77,

216], speech signal analysis [101, 100, 102], computer graphics [14] to natural

image processing [197, 201].
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� S. K. Maji, H. Yahia and H. Badri: Reconstructing an image from

its edge representation,Digital Signal Processing, Elsevier ,

23 (6): 1867-1876, 2013.

� S. K. Maji and H. Yahia: Edges, Transitions and Criticality,Pat-

tern Recognition, Elsevier , Accepted, 2013.

� Peer-reviewed conferences/proceedings

� S. K. Maji, O. Pont, H. Yahia and J. Sudre: Inferring Informa-
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