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INTRODUCTION

Mesoscopic physics can be viewed as the study of transport and manipulation of electrons in
solid-state systems in analogy with photons in vacuum. A major goal in this field is to observe
and control quantum coherence effects on macroscopic quantities, such as the electric cur-
rent in engineered on-chip devices. The main challenge is to preserve the phase-coherence
of electron wave packets when flowing through a conductor. This means that the only effect
for the wave packet |Φ〉 of an electron traversing the conductor is to add an overall phase φ(l )
depending on the path l which has been covered. The general idea is pictured in Fig. I. As a
quantum particle can cover coherently different paths simultaneously, the wave-packet can
acquire different phases, engendering interference effects typical of quantum mechanics.

The possibility to realize this situation is non-trivial for electrons propagating in solid-
state devices such as semi-conductors. There are various physical effects responsible for the
loss of phase-coherence and they are partly pictured on the right part of Fig. I. Decoherence
is essentially caused by the interaction of electrons with their environment. This includes in-
teractions with other electrons, magnetic impurities and the phonons corresponding to the
vibration modes of the underlying crystal. This does not prevent to define a typical length
scale below which electrons keep their phase coherence. This quantity is the phase coher-
ence length Lφ [1] and defines the mesoscale: the domain of validity of all the experimental
and theoretical studies carried out in mesoscopic physics. The interest in observing phase-
coherent phenomena on electron transport has then spurred the technological progress of
these last thirty years in nano-fabrication, to clean samples, and cryogenics, to lower temper-
atures down to the milli-Kelvin. Electron-electron interactions are a fundamental obstacle to
the preservation of coherence in bulk metals at very low temperature. They affect the coher-
ence time τφ of electron wave packets depending on the dimensionality of the system. For
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Figure I: Left) Ideal situation of mesoscopic physics. If phase coherence is preserved, the only effect on
the wave function |Φ〉 of electrons propagating in a solid-state system (here a 2DEG) is to acquire a
well-defined phase φ(l ). This phase depends on the path l which has been covered. Quantum particles
can cover coherently different paths at the same time, leading to different phases which are responsi-
ble for the interference effects typical of quantum mechanics. Right) Effects responsible for the loss of
quantum coherence, essentially electron-electron / electron-phonon / electron-magnetic disorder inter-
actions. All these processes cause decoherence on typical length scales L′. It is then possible to define a
phase-coherence length Lφ ≪ L′ below which electron propagation is phase coherent.

quasi-1D systems the decoherence time scales with the temperature as [2]

1

τφ
= AT 2/3 +BT 3 , (i)

with A and B non-universal parameters depending on the sample. The first term, which
dominates at low temperatures, corresponds to the dephasing caused by electron-electron
interactions, while the second term, governing the behavior of τφ at high temperatures, cor-
responds to the dephasing caused by electron-phonon interactions. The experimental va-
lidity of Eq. (i) was proven in Ref. [3] by performing magneto-resistance measurements on
quasi-1D metallic wires composed of different metals. The results are reported in Fig. 2(a).
The saturation of the coherence time at lower temperatures is caused by the interaction of
electrons with magnetic impurities [4, 5, 6], leading to Kondo physics1, see Fig. 2(b). For
disordered samples, the propagation of electron wave packets is diffusive and the phase co-
herence length is given by the diffusion relation

Lφ =
√

Dτφ , (ii)

where D = vF le /d is the Einstein relation for the diffusion constant D, with vF being the
Fermi velocity, le the mean-free path and d the dimensionality of the sample. Looking at
Figs. 2(a) and 2(b), we can consider phase-coherence times of the order τφ ∼ 10 ns. In the
experiment of Ref. [5], D ∼ 0.029 m2/s and Eq. (ii) sets a phase coherence length Lφ ∼ 1 µm.

1Kondo physics is a prominent topic of this Thesis and we will discuss it extensively in Chapter 4.
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(a) (b)

Figure II: a) Measurements of the phase coherence time τφ from the magneto-resistance measurements
in Ref. [3]. Measurements are carried out for wires composed of silver (•), less pure silver (◦), gold (∗)
and copper (■) and they are compared to Eq. (i). The dashed line plots the first term in Eq. (i), while
the behavior at large temperatures is governed by the second term in Eq. (i). The coherence times are in
extremely good agreement with Eq. (i) for silver and gold, while sizable deviations are observed at small
temperatures for the less pure silver and copper. b) Same measurements from Ref. [5] carried out for
different silver wires with different manganese (Mn) doping, “bare” and “implanted” respectively. The
behavior of the coherence time is different from the “pure” behavior described by Eq. (i). The “bare” and
“implanted”solid lines fit the experimental data if the corrections to Eq. (i) brought by Kondo correla-
tions are taken into account [4, 6]. TK is the Kondo temperature.

For the purposes of this Thesis, the case of the two-dimensional electron gas (2DEG) is es-
pecially relevant. It was involved in the first experimental realization of the quantum RC
circuit [7, 8], that we address theoretically in this Thesis. For a 2DEG, the first term of Eq.
(i) vanishes linearly with the temperature T [9]. For a perfectly clean sample (kF le ≫ 1) the
propagation of electrons is ballistic and the phase coherence length is then obtained from
the phase coherence time τφ through the relation

Lφ = vFτφ . (iii)

In the experimental conditions of Refs. [7, 8], at T = 1 K, Lφ was estimated to be of the order
of ∼ 200 µm, while samples are of the order of ∼ 10 µm. Below these length scales, the prop-
agation of electrons is phase coherent. One of the first and most striking demonstrations
of emergent phase coherent phenomena in the quantum transport of electrons was given
by Webb and collaborators in their works starting in 1985. Measuring the conductance of a
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Figure III: Aharonov-Bohm effect on the conduc-
tance of a mesoscopic circuit. Left) Experiment of
Ref. [11]. The conductance of a gold ring oscil-
lates as a function of the magnetic field, with pe-
riodicity fixed by Φ0 = 2φ0, twice the quantum of
flux φ0 = h/2e through the ring. The oscillations
result in a pronounced peak in the Fourier trans-
form. Right) Experiment of Ref. [12]. The peak
appears even for a ring external to the circuit, a
sign of the non-locality of quantum transport.

Figure IV: Conductance quantization in 2DEGs
connected by a QPC. The conductance increases
by finite quanta of 2g0 = 2× e2/h as a function
of the applied gate voltage Vg on the QPC. The
factor 2 comes from spin degeneracy of electrons.
A scanning probe microscope measures the local
conductance of electrons, accessing local proper-
ties of quantum coherent transport. All images
are extracted from Ref. [13].

gold ring as a function of the magnetic field, they observed periodical oscillations by varying
the magnetic flux inside the ring [10, 11], see Fig. III. This was a clear consequence of the
Aharanov-Bohm effect on the electron transport in the gold wire, an exquisite phase coher-
ent effect. They also pointed out the non-locality of quantum transport. They showed that
the conductance of a phase-coherent circuit is sensitive to the magnetic flux through an ex-
ternal connected ring [12], as pictured in Fig. III, which has no classical counterpart. This
engendered a real change of paradigm in the theory of quantum circuits with respect to clas-
sical ones. The conductivity, a local quantity, lost its interest with respect to the conductance
of the whole device, sensitive to non local effects. We mention in passing that recent exper-
iments, reported in Fig. IV, imaging spatial current paths with scanning probe microscopes
[13, 14, 15], motivate a renewed interest in local properties of quantum transport [16].

Another striking manifestation of quantum coherence effects in mesoscopic devices is
conductance quantization. The most paradigmatic example involves 2DEGs separated by
a quantum point contact (QPC) [17, 18], also illustrated in Fig. IV. 2DEGs are realized by
confining electrons along a spatial dimension in the quantum well which can be engineered
at the contact between two different hetero-structures (Ga-As and Ga-Al-As in Refs. [7, 8]). A
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QPC is realized by putting on top of the 2DEG two metallic plates as sketched in Fig. IV. When
charged with a negative potential, these plates deform the underlying electron gas control-
ling its shape. The gas can be cut in two and electron transfer is possible only by tunnel
effect. These mesoscopic constrictions are much smaller than Lφ and current flows through
them violating Ohm’s law. The conductance of the system does not increase linearly with
the applied bias, but by universal quanta of g0 = e2/h, multiplied by a factor two if electrons
are spin degenerate. Analogously, the same phenomenon is observed by gradually opening
the QPC at fixed bias, see Fig. IV. Alternative experiments observe the same phenomenon
by mechanically breaking the contact between two bulk metals up to reducing it to a single
atom [19], in quantum wires [20] and carbon nanotubes [21].

A further remarkable manifestation of the quantum of conductance g0 arises for the con-
ducting edges of topological insulators [22]. These exotic states of matter are characterized
by the non-trivial topology of their band structure, quantified by the Chern invariant [23].
The transition from a topological to a trivial insulator, as the ionic insulator, where all elec-
trons are bond to nuclei, enforces the closing of the gap at the boundaries. A robustly quan-
tized number of zero energy states appears then at the edges. Whereas the bulk remains insu-
lating, they are conducting channels, which were first observed in 2DEGs under strong per-
pendicular magnetic fields as a manifestation of the integer [24] and fractional [25] quantum
Hall effect. The integer quantum Hall edges are pictured in the framework of the quantum
RC circuit in Figs. V and VI. Their conductance is g0 and they are chiral, that is charge carri-
ers can move only in one sense depending on the orientation of the perpendicular magnetic
field. The discovery of non trivial topological states of matter in the absence of a magnetic
field, giving rise to the quantum spin Hall effect [26, 27], has completely revitalized the field.
The restoring of time-reversal symmetry and spin-orbit coupling for electrons are respon-
sible for the appearance of two helical counter-propagating edge modes at the boundaries.
In these states electrons of opposite spin flow in opposite directions. Pure spin currents can
be observed without a net charge flow. This could provide further implementation of the
quantum RC circuit that we outline in the Conclusion.

All these experiments deal with the stationary properties of quantum transport, which is
conveniently described by the Landauer-Büttiker scattering theory. This theory describes
electron propagation as diffusive wave packets [28, 29, 30] and we illustrate it in Chapter 1.
Recent technological progress paved the way to the possibility of controlling and probing in
real time the phase-coherent evolution of quantum devices such as quantum dots and super-
conducting circuits, an important requirement for the implementation of quantum informa-
tion protocols. The engineering of local Coulomb potentials in semiconductors succeeded
in manipulating single electrons and spins confined in the three spatial dimensions. Regions
of confinement can reach the order of the nano-meter and behave as highly tunable artificial
impurities, so called quantum dots. Quantum dots can be engineered by confining regions of
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the order of the µm in 2DEGs [31], or by connecting leads with carbon nanotubes [32] or sin-
gle atoms [33], see Fig. VII. Since the pioneering proposal by Loss & DiVicenzo [34], coupled
single-electron quantum dots have been revealed to be promising candidates to become
the building block of a quantum processor. In spite of the stronger coupling of solid-state
qubits to their electronic environment, the possibility to perform fast operations (frequen-
cies above the GHz) on these systems [35] allows for the coherent manipulation of coupled
electron spins [36]. This same issue is being addressed with different devices in the field of
circuit quantum electrodynamics (Circuit-QED). These architectures [37] involve two-level
artificial atoms composed of superconducting Josephson junctions coupled to photon res-
onators. These on-chip systems compete nowadays with experiments performed with real
atoms in cavity-QED setups [38, 39]. Coherence and relaxation times of the order of the µ-
second have been reached for transmon qubits [40], arbitrary quantum states of light can be
synthesized in the resonator [41] and the trajectories of the qubit stabilized relying on quan-
tum feedback [42]. Quantum dot circuits and circuit-QED architectures have been recently
cross coupled in new experimental setups. On-chip microwave resonators are coupled to
quantum dots, allowing for the simultaneous and entangled measurement of electron and
photon transport in phase-coherent nanodevices [43, 44, 45, 46], see also Fig. VIII.

In this framework, it is an important task to investigate the typical time scales governing
the dynamics of single electrons in quantum coherent devices. This problem has been di-
rectly addressed by the theoretical and experimental study of the quantum RC circuit. Its first
experimental realization, carried out at the Laboratoire Pierre Aigran (LPA) in 2006 by Gabelli
and collaborators [7], is pictured in Fig. V. A two-dimensional electron gas in a strong per-
pendicular magnetic field is in the integer quantum Hall regime. Only the edge states of the
sample allow for electron transport and exchange coherently electrons with a quantum dot
through a quantum point contact. A metallic gate is placed on top of the quantum dot with-
out the possibility of exchanging electrons with it. The peculiarity of this system is that it does
not allow for the stationary transport of current. A current can be measured only when the
system is dynamically driven by a time-dependent gate potential. In Chapter 1, we discuss in
detail that, when driven at low frequencies, the system has the same behavior as a classic RC
circuit. For this reason, the device of Fig. V is also called the mesoscopic capacitor. This de-
vice has remarkable properties, predicted in the seminal works by Büttiker and collaborators
[48, 49, 50, 51, 52]. It displays a quantum capacitance Cq = e2N (E f ), proportional to the lo-
cal density of states N (EF ) in the quantum dot at the Fermi energy EF . Its resistance is called
the charge relaxation resistance and it is universally quantized to Rq = h/2e2 ≃ 12.9 kΩ, see
also Figs. 1.5 and 1.6. The interest in this last quantity resides in the fact that its value is dif-
ferent from that observed in direct current (DC) experiments RDC = h/De2, which depends
on the transparency D of the quantum point contact. Rq is then a new fundamental quantity
connected to the coherent dynamics of electrons in phase coherent systems. Its appearance
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Figure V: Experimental realization of the quan-
tum RC circuit [7]. The integer quantum hall edge
states of a two-dimensional electron gas exchange
electrons through a quantum point contact with
a quantum dot. The quantum dot is coupled ca-
pacitively to a top metallic gate driven by the gate
voltage Vg . The charge relaxation resistance of
the circuit is universally quantized to Rq = h/2e2.
Courtesy of David Darson, LPA.

Figure VI: Hong-Ou-Mandel interference experi-
ment from Ref. [47]. In the top-right, the work-
ing principle of the quantum RC circuit as a sin-
gle electron emitter (see main text). Electrons are
emitted with a time delay τ on the same QPC
working as a beam splitter. In the bottom-right,
the fermionic nature of electrons causes a sup-
pression of the current noise when electrons ar-
rive on the QPC at the same time.

is a consequence of the violation of the classical Kirchhoff’s laws in phase coherent devices.
This is a further example of the non-locality of electron transport in phase-coherent devices:
the conductance of a resistive circuit component (the quantum point contact) is different
whether the systems is driven by a DC or an AC bias. This device has also been suggested
to be relevant for the non-invasive charge readout in quantum dot devices [53] and for the
detection of topological excitations [54, 55]. The RC time of the circuit provides a time-scale
for the electron coherent dynamics. The investigation of the mesoscopic capacitor in the
non-linear regime has revealed an efficient tool for the triggered emission of single electron
wave packets [56]. Its working principle is illustrated in Fig. VI. A sudden variation of the gate
potential Vg quenches the discrete levels of the dot, causing the time-controlled emission of
an electron in the nearby integer quantum Hall edge. A variation of the opposite sign of Vg

brings the same level below the Fermi energy, ensuring the emission of a hole in the edge.
This led to the realization in nanodevices of the electron analog of quantum optics experi-
ments previously done with single quantum particles in the vacuum, that is Hanbury-Brown
and Twiss [57, 58] and Hong-Ou-Mandel [47] interference experiments, see Fig. VI.

This Thesis addresses the problem of the effect of electron-electron interactions in the
quantum dot on the conduction properties of the quantum RC circuit. Quantum dots are
almost zero-dimensional structures in which electrons are close to each other and Coulomb
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∆V

Vg

Figure VII: Top) Quantum dots engineered by
putting negatively charged metallic plates on top
of a 2DEG. The first two images are extracted from
Ref. [31]. Bottom) Coulomb blockade observed
for the conductance through a quantum dot com-
posed of silicon atoms exchanging electrons with
leads [33]. Restricting to the case of small VSD

biases, the conductance is completely suppressed
for a quantized number of charges on the dot and
displays a peak at the charge degeneracy points.
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Figure VIII: Kondo effect in direct transport exper-
iments. A Kondo ridge arises at zero bias VSD in
the conductance when a single electron is con-
fined in the quantum dot. We signal also the
sensitivity of photons to Kondo electronic correla-
tions in quantum dot circuits. The phase-shift of
the signal in a microwave resonator capacitively
coupled to a quantum dot has the same behav-
ior as the electronic conductance through it (in-
sets from Ref. [43]).

screening is less effective. Interactions on the quantum dot are controlled by the charging
energy Ec , the energy required to add a charge on the dot. The experimental measurements
at the LPA were carried out for Ec ≪∆, ∆ being the energy level spacing on the quantum dot,
and driving frequencies ħω∼ Ec . In these conditions a mean-field approach for interactions
justifies the original scattering approach of Refs. [48, 49, 50, 51, 52]. The issue of considering
strong interactions is promising if we refer to the striking effects they already have on direct
transport experiments. The most paradigmatic effect is Coulomb blockade [59]. It arises in
quantum dots connected to biased macroscopic electron reservoirs through quantum point
contacts, see Fig. VII. The applied gate voltage VG and strong Coulomb interaction allow to
set a quantized number of electrons on the quantum dot [60], see also Fig. 3.1. For tempera-
tures and applied bias voltages much lower than the charging energy Ec , incoming electrons
on the quantum dot do not have enough energy to change the charge on the dot. This results
in the suppression of the conductance through the device, with the exception of the charge
degeneracy points in which two different charge occupations on the dot become degenerate
in energy, see Fig. VIII. This phenomenon cannot be explained by the single-body perspec-
tive of scattering theory. The charge occupation on the dot triggers the current transfer by
electron-electron interactions. A direct treatment of these interactions on the dot is then
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required. The quantum RC circuit of Fig. V is described, in the simplified case of spinless
electrons, by the Coulomb blockade Hamiltonian [60]

HCBM =
∑

kσ

εk c†
kσckασ+

∑

lσ

εl d †
lσdlσ+ t

∑

klσ

(

c†
kσdlσ+d †

lσckσ

)

+Ec (n̂ −N0)2 , (iv)

where free electrons of dispersion εk can tunnel in a multilevel quantum dot through the
channel σ. The last term describes the capacitive coupling Cg between the dot and the top
metallic gate, controlled by the charging energy Ec = e2/2Cg . For large charging energies,
this coupling forces the local quantized number of charges n̂ = ∑

lσ d †
lσdlσ to be as close as

possible to the classical occupation of the top metallic gate controlled by the gate voltage
N0 = Cg Vg /e, see also Fig. 3.1. The extension to the situation with two leads of Fig. VII is
readily obtained considering more reservoirs in Eq. (iv).

Even more interesting is the spinful case, giving rise to one of the most paradigmatic many-
body phenomena in mesoscopic physics, the Kondo effect [61]. Spin exchange between
a single-electron charged quantum dot and itinerant electrons leads to the emergence of
many-body Kondo anti-ferromagnetic correlations. The increase of the electronic conduc-
tance caused by the opening of the Kondo channel in Coulomb blockade regimes demon-
strates the possibility to study many-body phenomena in mesoscopic physics [62, 63, 64],
see also Fig. VIII. This phenomenon is captured by the Anderson model

HAn =
∑

kσ

εkσc†
kσckσ+ t

∑

kσ

(

c†
kσdσ+d †

σckσ

)

+εd

∑

σ

n̂σ+U n̂↑n̂↓ , (v)

describing 1/2 spin electrons tunneling inside a single-level interacting quantum dot. The
determination of the admittance of the quantum RC circuit obeying to these Hamiltonians
is the purpose of this Thesis. This problem has already received a large attention in re-
cent works. The electron dynamics in the presence of interactions in the dot [65, 66] and
its spin/charge separation [67] have been studied. For small metallic islands the problem
has been addressed at intermediate temperatures [68] and in the many channel case [69].
In particular, the two-channel case has been argued to exhibit non-Fermi liquid behavior
[70, 71]. The universality of Rq still holds if interactions in the dot [72] or not too strong
interactions in the lead [73, 74] are taken into account in an exact manner. Increasing the
size of the dot results in a mesoscopic crossover for Rq from h/2e2 to h/e2 [72]. For strong
enough interactions in the lead, i.e. a Luttinger parameter below 1/2, the system undergoes
a Kosterlitz-Thouless phase transition to an incoherent regime where Rq is no longer quan-
tized [73, 74]. The main problem was to understand for which reason the charge relaxation
resistance showed the same universal behavior as if interaction did not play any role, recov-
ering, surprisingly, the results of scattering theory even in Coulomb blockade regimes. In
this Thesis we provide a general Fermi liquid theory to describe the dynamics of low energy
electrons in the quantum RC circuit for systems governed by the Hamiltonians Eq. (iv) and
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generalized SU(N) symmetric versions of Eq. (v). Our main achievement is the proof that
a generalized Korringa-Shiba relation [75] gives the condition to observe a universal charge
relaxation resistance even in the presence of strong interactions on the dot at zero temper-
ature. The study of this formula for spinful electrons in the presence of a magnetic field
allows us also to describe analytically the emergence of a giant charge relaxation resistance
caused by the destruction of Kondo correlations, in agreement with previous Hartree-Fock
[66] and numerical renormalization group results [76]. Moreover, the analytical renormaliza-
tion group approaches developed in this Thesis can be also extended to more exotic devices
displaying SU(4) symmetries. In particular, we derive an analytical expression for the SU(4)
Kondo temperature.

Here follows the structure of the Thesis:

Chapter 1 We discuss the original scattering approach of Büttiker and coworkers [48, 49, 50,
51, 52] to describe the quantum RC circuit and make the link with the Hamilto-
nian approach adopted in this Thesis. This will allow us to define the differential
capacitance C0, connected to the static charge susceptibility of the quantum dot,
and introduce the link between charge relaxation resistance universality and the
Korringa-Shiba relation.

Chapter 2 We give a general and heuristic overview of our approaches and results. In par-
ticular, we demonstrate how a Fermi liquid approach consistent with the Friedel
sum rule [77] allows us to derive a generalized form of the Korringa-Shiba re-
lation and predict non-universal behaviors for the charge relaxation resistance
when both the SU(2) symmetry and the particle-hole symmetry are broken.

Chapter 3 The low energy Fermi liquid fixed point discussed in Chapter 2 is explicitly de-
rived by applying analytical renormalization group techniques and with the help
of a new representation of the Coulomb blockade model Eq. (iv) with slave-
states.

Chapter 4 The demonstration of Chapter 3 is extended to the Anderson model Eq. (v), with
the additional difficulty of dealing correctly with diverging Kondo correlations.
Relying on the exact solution of this model provided by the Bethe ansatz [78,
79], we test our Fermi liquid approach in the whole region of parameters and
fully characterize the behavior of the giant charge relaxation resistance and the
quantum capacitance.

Chapter 5 We extend our Fermi liquid approach to describe the behavior of the charge re-
laxation resistance in SU(4) symmetric quantum dot circuits in the presence of a
magnetic field. We rely on renormalization group techniques to derive the SU(4)
Kondo temperature and the dot occupation in the Coulomb blockade regime.
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In this chapter the results of the seminal works of Büttiker, Thomas and Prêtre [48, 49, 50,
51, 52] are presented. They were the first to address theoretically the mesoscopic capacitor
as the quantum analog of a classical RC circuit, an analogy detailed in Section 1.1. Their work
is based on the Landauer-Büttiker scattering formalism [28, 30, 29], discussed in Section 1.2.
The scattering approach describes the dynamics of lead electrons and treats the mesoscopic
capacitor as a sort of “black box” in which electrons propagate coherently and escape with
a well defined phase. Büttiker, Thomas and Prêtre introduced the quantum capacitance Cq ,
a new capacitive contribution in series with the geometrical capacitance Cg . The quantum
capacitance reflects the spectral structure of the quantum dot. One of the key results of these
authors was to predict a universal charge relaxation resistance Rq = h/2e2, regardless of the
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Top view Side view

Figure 1.1: Schematic representation of the quantum RC circuit. Left) View from the top: electrons in
the edge states of a two dimensional electron gas in the integer quantum Hall regime can tunnel inside a
quantum dot through a quantum point contact. The dot is driven by a top metallic gate. Right) The dot
and the gate are separated by an insulator. The two components cannot exchange electrons, forming the
two plates of a capacitor C . The quantum point contact controls the transmission of electrons, giving
rise to a resistance R. These two circuit elements are in series, and define a quantum coherent RC circuit.

opening of the quantum point contact. This result is in striking contrast with the resistance
measured in DC experiments. An alternative approach to derive the results of scattering
theory is presented in Section 1.3. It is based on the Hamiltonian description of the quantum
RC circuit, considering explicitly the internal structure of the quantum dot. In Section 1.3.1,
we discuss how linear response theory links the mesoscopic admittance of the quantum RC
circuit to the dynamical charge susceptibility χc (ω) of the quantum dot. We show that the
capacitance is actually given by the differential capacitance C0, proportional to the static
charge susceptibility of the dot and that charge relaxation universality relies on the Korringa-
Shiba relation [75]. Both these results will predict non-trivial behaviors in the interacting
case. In Section 1.3.2, we illustrate how these quantities and relations can be readily obtained
for a simple non-interacting resonant level model, recovering the results of scattering theory.
This allows us to introduce the path integral formalism, largely exploited all along this text.

1.1 Phenomenology

The heuristic argument that motivates the study of the device pictured in Fig. V as the quan-
tum analog of a classical RC circuit is clarified in Fig. 1.1. The metallic gate on top of the
quantum dot cannot exchange electrons with it. These two components, the first one de-
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scribed by a classical theory and the second one quantum coherent, constitute the two plates
of a capacitance on which electrons accumulate following the variation of the gate potential
Vg . The value of this capacitance will depend on the geometry of the contact and, in the
experiment of Ref. [7], the geometrical capacitance Cg was estimated to be of the order of
∼ 10−100 fF. This capacitance is in series with a quantum point contact. The direct transport
measurements [17, 18], discussed in the Introduction, show that this behaves as a resistive
element, whose resistance is given by

RDC = h

e2D
, (1.1)

where D is the transparency, to be defined through scattering theory in Section 1.2. This
quantity depends on the probability r for electrons to be backscattered when arriving at the
tunnel barrier constituted by the quantum point contact. D therefore depends on the open-
ing of the quantum point contact. These considerations explain why the device in Fig. 1.1
can be viewed as an RC circuit. The admittance of a classical RC circuit reads

G(ω) = −iωC

1− iωRC
. (1.2)

For the following discussion, it is useful to expand this expression to second order in the
frequency ω

G(ω) =−iωC
(

1+ iωC R
)

. (1.3)

The question is then to establish whether the admittance of the device in Fig. V respects the
RC structure of Eq. (1.3) when quantum coherence effects are considered for electrons. We
will see that it is the case.

1.2 Scattering theory of the quantum RC circuit

Coherence effects between electrons, in the absence of interactions, are fully taken into ac-
count by scattering theory [28, 30]. The principle of this approach is sketched in Fig. 1.2.
Let us consider a two-dimensional spinless electron gas as the one pictured in Fig. 1.2. A
difference of potential δV = µL −µR is applied between the left and right metallic contacts.
It coincides with the difference of their respective chemical potentials µα=L,R = EF + eVL,R ,
EF being the Fermi energy that, from now on, we fix to zero. It is a fundamental assumption
of the scattering formalism to consider the electron reservoirs (the metallic leads) to be at
equilibrium. This implies that the energy distribution of electrons emitted from the leads
obeys the Fermi-Dirac distribution

fα(ε) = 1

1+eβ(ε−µα)
. (1.4)
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Figure 1.2: Principle of scattering theory for a two-dimensional electron gas. Thermalized leads of
chemical potential µα=L,R emit electrons towards the phase coherent region smaller than Lφ. The oper-
ators aα are associated to the state of these electrons, which are emitted back to the leads in the state bα

as a unitary superposition of the incoming modes.

An operator aα,n(ε) is associated to every electron in the state n of energy ε, entering the
mesoscopic region from the reservoir α. An operator bα,n(ε) is associated to every mode
n of energy ε coming out of the mesoscopic region joining the reservoir α. This assumes
implicitly the hypothesis that there exist ideal regions between the mesoscopic scatterer and
the reservoirs in which electrons propagate freely without any backscattering in the state n.
Scattering theory is characterized by the fundamental assumption that the only effect of the
mesoscopic region on incoming states, described by aα,n(ε), is a unitary evolution. This is
formally stated with the help of the scattering matrix S(ε) defined by

(
[

bL
]

[

bR
]

)

=
(

[

sLL
] [

sLR
]

[

sRL
] [

sRR
]

)(
[

aL
]

[

aR
]

)

. (1.5)

[

aα

]

and
[

bα

]

are the vectors collecting all the modes n in the ideal region between the reser-
voir α and the mesoscopic scatterer. Unitary evolution is fulfilled by imposing the unitarity
of the scattering matrix SS† = S†S = 1. We stress that the matrix S(ε) relates modes with the
same energy ε. This translates the fact that all processes considered in the mesoscopic scat-
terer are elastic. They do not modify the energy of electrons, excluding the inelastic processes
which could be caused by interactions. The expression for the current operator Iα flowing
in the reservoir α is readily derived as a difference between the ingoing and outgoing states
[1, 80]

Iα(x, t ) = e

h

∫

dεdε′
[

a†
α(ε)aα(ε′)−b†

α(ε)bα(ε′)
]

e i (ε−ε′)(t−x/vF )/ħ , (1.6)
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with vF the Fermi velocity. Applying Eq. (1.5) the stationary conductance is given by

gLR (ω= 0) =−
〈IL〉
δV

= e2

h

∫

dεTr
{

[

sLR (ε)
]†[sLR (ε)

]

}

· fL(ε)− fR (ε)

eδV
. (1.7)

In the linear regime δV → 0 it becomes

gLR (ω= 0) = e2

h

∫

dεTr
{

[

sLR (ε)
]†[sLR (ε)

]

}

·
(

−∂ f

∂ε

)

= e2

h
D , (1.8)

where we applied the relation −∂ f /∂ε = δ(ε− EF ), valid at zero temperature. This result
provides the formal definition of the transparency D of the scattering region, which we in-
troduced for the DC resistance (the inverse of the DC conductance) in Eq. (1.1)

D = Tr
{

[

sLR (EF )
]†[sLR (EF )

]

}

. (1.9)

This quantity encodes all information about the backscattering and transmission of elec-
trons in the mesoscopic region. Eqs. (1.8) and (1.9) constitute the notorious Landauer-
Büttiker formula, a powerful tool to describe electron transport in a variety of situations in
mesoscopic physics. As an example we discuss the case of the QPC in a 2DEG of Fig. IV. In
the single channel case, that is for a single electronic state traversing the QPC, the S-matrix
reads

S =
(

r t
t r

)

, (1.10)

where r and t are the back-reflection and transmission amplitudes for electrons coming on
the QPC. Eq. (1.9) states that D = t 2, the probability for electrons to pass through the QPC.
The progressive opening of the QPC governs the transition D = 0 → 1, explaining the transi-
tion of the conductance from 0 to e2/h in Fig. IV. The progressive opening of further channels
give rise to the other steps of the conductance always present in Fig. IV.

This formalism can be adapted to the case of the mesoscopic capacitor in Fig. V. A main
difference is the “mixed” nature of the quantum RC device, which is highlighted in Fig. 1.3.
The quantum RC circuit is composed of a phase-coherent part (the two-dimensional elec-
tron gas + the quantum dot) in direct contact to an incoherent one (the top metallic gate).
Moreover, these constituents cannot exchange electrons, preventing a direct current. To ob-
serve electron transport, the system must be driven dynamically. This is operated by apply-
ing a gate potential oscillating periodically in time

Vg (t ) =Vg +εω cos(ω t ) . (1.11)

For small oscillation amplitudes εω, the Landauer-Büttiker formalism allows for the calcula-
tion of the circuit admittance within linear response theory, to be discussed in Section 1.3.1.
In the case of a single conduction mode, this reads [49]

gL(ω) = e2

h

∫

dεTr
[

1− s†(ε)s(ε+ħω)
]

· f (ε)− f (ε+ħω)

ħω
. (1.12)
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Potential 
rescaling

Figure 1.3: The blue region composed of the two-dimensional gas is phase coherent, that is its size L ≪
Lφ. The top metallic gate is incoherent and driven by a time-dependent gate potential Vg (t ) inducing an
unknown uniform potential U (t ) on the dot. To compute the admittance of the phase coherent device,
all energies have to be shifted by −U (t ), allowing for the classical circuit analogy in the top right. The
admittance of the whole device results as a series of a charge relaxation resistance Rq and the electro-
chemical capacitance Cµ, composed of the series of a quantum capacitance Cq and the geometrical
capacitance Cg .

For one channel, the matrix s(ε) reduces to a pure phase s(ε) = e iη(ε), as the electrons entering
the dot come back to the lead with unit probability. This phase is related to the dwell-time
that electrons typically spend in the quantum dot, defined from the scattering matrix as a
Wigner-Smith delay time [81, 82]

τ(ε)

h
= 1

2πi
s†(ε)

d s(ε)

dε
= 1

2π

dη(ε)

dε
. (1.13)

The interpretation of τ as a dwell-time will become clear in a forthcoming example. Applying
this definition to the calculation of Eq. (1.12) in the limits T → 0 and ħω→ 0, we find

gL(ω) =−iω
e2

h

[

τ+ 1

2
iωτ2 +O

(

ω2)
]

. (1.14)

The dwell-time τ= τ(0) is considered at the Fermi energy. Notice that this expression has the
same structure as Eq. (1.3) for the RC admittance of a classical circuit. Matching Eq. (1.14)
with Eq. (1.3), one finds

Cq = e2

h
τ , Rq = h

2e2
. (1.15)
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The characteristic time that an electron spends in the quantum dot is given by τ = 2RqCq ,
twice the RC time because it includes the charging and relaxation time of the RC circuit.
We notice the emergence of a universally quantized relaxation resistance, regardless of any
microscopic detail of the quantum RC circuit, in contrast with the DC formula Eq. (1.1).

Before discussing these two quantities in detail, we would like to stress that the interpre-
tation of the device in Fig. V as a quantum analog of an RC circuit strictly holds at low fre-
quencies. Taking into account higher frequencies forces to introduce inductive constituents
if one wants to persevere with a classical circuit analogy [83]. Moreover, when the same
system is driven by large pulses of the gate potential as in the single-electron experiments
of Ref. [56, 57, 47], discussed in the Introduction, the linear response regime is definitively
abandoned and the resistance and capacitance computed here are not relevant anymore.

1.2.1 The quantum capacitance

The effect of the geometrical capacitance Cg has been left aside in the previous discussion
of the scattering formalism. The admittance Eq. (1.12) has been derived by applying linear
response theory for the driving potential U (t ) in the quantum dot, see Fig. 1.3. Electrons get-
ting at different times on the dot are differently phase-shifted, causing a local accumulation
of charges responsible for the emergence of quantum capacitive effects, described by Cq .
The time delay of the electron phase with respect to the driving potential U (t ) are respon-
sible for energy dissipation, controlled by Rq to be discussed in detail in Section 1.2.2. The
subtlety, in the presence of the geometrical capacitance Cg , is that the potential U (t ) does
not coincide with the gate potential Vg (t ). The situation is pictured in Fig. 1.3: the geometric
capacitance Cg is interposed between the gate and the dot, producing a drop of potential.
This potential drop depends on how Coulomb screening effects renormalize the potential
felt by electrons on the dot. In a mean-field or Hartree-Fock treatment, the potential on the
dot, denoted U (t ), is assumed to be uniform for each electron. This is also equivalent as
to assume the random phase approximation (RPA) for interactions between electrons in the
quantum dot, which can be justified for not too strong interactions or to leading order in a
1/N expansion, where N is the number of channels connected to the dot [65]. The potential
U can then be determined self-consistently from the constraint of charge/current conserva-
tion throughout the whole device. This requires that the current Idev running in the coherent
part of the device is the same as the current Igate flowing in the incoherent metallic gate

I = Idev = Igate . (1.16)

As all potentials are defined with respect to some constant energy, all energies can be shifted
by −eU (t ), setting the potential to zero in the quantum dot. In this case the currents in the
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Figure 1.4: Physical mechanism responsible for the arising of the quantum capacitance Cq . The Pauli
exclusion forces electrons coming from the lead in the quantum dot to pay a further energy price equal
to the local level spacing ∆. The associated capacitance is then Cq = e2/∆. On the top-right a one-
dimensional representation of the quantum RC circuit is provided, involving a dot of size L.

device and in the metallic gate are given by

Idev =−U (ω)gL(ω) , Igate =−iCgω
[

U (ω)−Vg (ω)
]

. (1.17)

Applying the current conservation condition Eq. (1.16), the potential U is eliminated, leading
to the admittance of the total device

G(ω) =− I

Vg
= 1

1
gL(ω) +

1
−iωCg

. (1.18)

Recalling that the low frequency behavior of gL(ω) in Eq. (1.12) is the same as for a classical
RC circuit, given by Eq. (1.3), Eq. (1.18) states that the whole device, including the capaci-
tance Cg , can be viewed as an RC circuit. Albeit with two capacitances in series, Eq. (1.18)
nevertheless still gives a universally quantized Rq = h/2e2. The series of Cq and Cg gives the
electro-chemical capacitance Cµ, see Fig. 1.3. This quantity provides the imaginary part of the
RC admittance Eq. (1.3), accessible in experiments. The concept of quantum capacitance
and geometric capacitance in series is restricted to a mean-field treatment of interactions.
Therefore this circuit description does not hold in the case of interactions.

Once the geometrical capacitance Cg has been included in the formalism, a heuristic ar-
gument clarifies the physical origin of the quantum capacitance Cq as a manifestation of the
fermionic statistics of electrons, more precisely the Pauli exclusion principle. When an elec-
tron is added on the quantum dot, in which energy levels are spaced by ∆, the Pauli exclusion
principle does not allow for the filling of an energy state already occupied by an other elec-
tron, see Fig. 1.4. The fermionic statistics imposes to pay a further energy price ∆ to put a
further electron in the dot. The capacitance associated to this process is then

Cq = δQ

δV
. (1.19)
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For one electron δQ = e and δV = ∆/e. Substituting these two expressions in Eq. (1.19), we
recover a uniform quantum capacitance

Cq = e2

∆
. (1.20)

This expression establishes that the quantum capacitance is proportional to the density of
states in the quantum dot at the Fermi energy Cq = e2N (EF ). The level spacing of the
quantum dot can be actually estimated and, in the experimental conditions of Ref. [7], it
was established to be of the order of ∆ ∼ 15 GHz, corresponding to a quantum capacitance
Cq ∼ 1 fF. The experimental measurement of Cµ, plotted in Fig. 1.6, gives an estimate also
for Cg , showing that Cq ≪Cg . This implies that the level spacing ∆ was much larger than the
charging energy Ec = e2/2Cg , of the order of fractions of the GHz, justifying the mean-field
approach to explain the experimental results.

The previous argument applies to the case of perfect transmission r = 0, in which the den-
sity of states of the completely open dot is uniform accordingly to Eq. (1.20). Finite reflection
r 6= 0 is responsible for resonant tunneling processes, engendering the oscillatory behavior
of the local density of states as a function of the gate potential Vg , in agreement with the
experimental findings in Fig. 1.6. All these arguments will be comforted by a quantitative
analysis in Sections 1.2.3 and 1.3.2.

1.2.2 The charge relaxation resistance

The predictions from Eq. (1.15) were verified experimentally at the Laboratoire Pierre Aigrain
in 2006 [7]. The results are shown in Figs. 1.5 and 1.6. In the quantum coherent regime the
charge relaxation resistance is universal. It does not depend on the backscattering proba-
bility of electrons at the entrance of the quantum dot. As we considered spinless electrons,
the 1/2 factor in Eq. (1.15) has nothing to do with spin degeneracy. It comes from the fact
that the dot is connected to a single reservoir in contrast to the source-drain reservoirs in DC
transport. The interpretation of Rq as a Sharvin-Imry contact resistance has been disputed
in Refs. [84, 85]. In direct transport, each metallic contact is responsible for a quantized con-
tact resistance Rc = h/2e2, the Sharvin-Imry resistance [86, 87]. Eq. (1.1) should be recast in
the form

RDC = h

2e2
+ h

e2

1−D

D
+ h

2e2
, (1.21)

to highlight the resistive contribution strictly associated to the quantum point contact RQPC =
h/e2 ·(1−D)/D and that of the contacts Rc . The reason for the universality of Rq in Eq. (1.15)
is that each electron emitted by the unique lead keeps its coherence until it goes back to it. To
recover the DC result Eq. (1.21) in an AC measurement, electrons have to loose completely
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Figure 1.5: Experimental measurement of the
charge relaxation resistance (coinciding with the
real part of the impedance Z ) in two different
samples as a function of the quantum point con-
tact potential V , which affects also the gate po-
tential Vg . Measurements were carried out for
T = 30mK and B = 1.3T . The charge relaxation
resistance is shown to be universally fixed to Rq =
h/2e2 within the uncertainties indicated by the
hatched areas.

Figure 1.6: Experimental measurements of the
electrochemical capacitance Cµ (series of Cg and
Cq ) for the same samples and the same experi-
mental parameters as in Fig. 1.5. This coincides
with the imaginary part of Z . The oscillatory be-
havior as a function of Vg is related to the density
of states in the dot and is qualitatively reproduced
in Fig. 1.8. The peaks correspond to the resonance
of an internal level of the dot (calibrated by Vg , see
Eq. (1.29)) with the Fermi energy in the lead.

their phase coherence inside the dot [84, 85]. The high temperature limit kB T ≫ ∆ is not
enough to recover Eq. (1.21), giving a charge relaxation resistance Rq = RDC −h/2e2, still
reflecting the presence of only one reservoir.

1.2.3 The example of a quantum RC circuit with a 2DEG

We provide in this section an application of the formal concepts of the previous discussion.
We consider the case of of Fig. 1.1, in which electrons propagate in the integer quantum Hall
edges of the quantum dot. This discussion is inspired from Refs. [7, 8, 88]. If l is the circum-
ference of the part of the edge state that forms the quantum dot and vd the drift velocity of
the electron, τ0 = l/vd is the time needed to cover a tour of the dot. Considering the usual

evolution operator e
i H t
ħ , acting on eigenfunctions of energy ε, an electric wave of energy ε

acquires then a phase φ(ε) = (ε−eU )τ0/ħ, when making a tour of the dot. Notice that we had
to shift the energy ε of the electron by −eU because of the potential shift schematized in Fig.
1.3. The chiral nature of the edge states allows for a one-dimensional representation of the
problem, pictured in the right-top of Fig. 1.4. For a quantum well of size L, close to the Fermi
energy, the spectrum can be linearized and the level spacing is constant and given by

∆= πħvF

L
. (1.22)
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The dwell-time for electrons of velocity vF is

τ0 =
2L

vF
. (1.23)

Substituting Eqs. (1.22) and (1.23) in Eq. (1.15), we find the uniform quantum capacitance,
derived heuristically, of Eq. (1.20). If the reflection amplitude at the entrance of the dot is
r and D = 1− r 2 the transmission probability, the dot can be viewed as a Fabry-Perot cavity
and the phase of the out-coming electron is

s(ε) = r −De iφ(ε)
∞
∑

q=0
r q e i qφ(ε) = r −e iφ(ε)

1− r e iφ(ε)
= e iη(ε) . (1.24)

Applying Eq. (1.13) we obtain the local density of states

N (ε) = τ0

h

1− r 2

1−2r cos
[2π

h

(

ε−eU
)

τ0
]

+ r 2
. (1.25)

This is plotted in Fig. 1.8 and reproduces the oscillatory behavior of the capacitance in Fig.
1.6. In the limit of small transmission (D ≪ 1 and r ≈ 1), Eq. (1.25) reduces to a sum of
Lorentzian peaks of width ħγ, γ= D/τ0:

N (ε) = 2

πħγ
∑

n

1

1+
(

ε−eU−n∆
ħγ/2

)2 . (1.26)

These peaks are the discrete spectrum of the dot energy levels.

To conclude, we mention that the generalization to N modes is readily obtained. The
mesoscopic admittance Eq. (1.12) can be still cast into the form Eq. (1.3) with the difference

Cq = e2

h

N
∑

n=1
τn , Rq = h

2e2

∑

n τ
2
n

(
∑

n τn
)2 , (1.27)

in which τn are the dwell-times in the quantum dot of electrons in the n-th mode. We discuss
now how these same results can be derived from a microscopic approach.

1.3 Hamiltonian description of the quantum RC circuit

The aim of this Thesis is to address the effects of interactions on the quantum capacitance
and the charge relaxation resistance. To do this, we cannot look anymore at the quantum
dot as a sort of “black-box”, but models must be considered that give an exact description of
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electron-electron interactions within it. In this section, the results of Section 1.2 are derived
from an Hamiltonian approach. We neglect for the moment interactions, which allows for
straightforward calculations. We establish the physical origin of the quantum capacitance
and the charge relaxation universality from this alternative point of view.

Considering spinless electrons, the Coulomb blockade model Eq. (iv) accounts explicitly
for the driving of charges on the dot and interactions. This can be understood by inspecting
the part of the Hamiltonian describing the capacitor

HCapa = Ec (n̂ −N0)2 . (1.28)

If the square is expanded and constant contributions are neglected, it results in a renormal-
ization of orbital energies εl in Eq. (iv) and in an interaction term, namely

HCapa =−eVg (t )n̂ +Ec n̂2 . (1.29)

We take into account explicitly the time dependence of the driving gate voltage to stress that
it couples to the charge occupation of the quantum dot Q̂ = en̂. We are interested in calcu-
lating the admittance of the system. The current of the whole device is a derivative in time of
the charge leaving the quantum dot, the admittance reads then, in Fourier frequency repre-
sentation,

G(ω) =−iω
Q(ω)

Vg (ω)
. (1.30)

For “small” oscillations εω of the gate voltage Eq. (1.11), the problem can be studied close to
equilibrium, and linear response theory provides the tools to calculate Eq. (1.30).

1.3.1 Linear response theory: basic notions for the quantum RC circuit

Linear response theory [89, 90] addresses the calculation of observables in time-dependent
problems which can be written in the form

H = H0 −λ f (t )Â . (1.31)

Â is a generic operator, f (t ) any function of time of order 1 and λ a perturbation parameter.
To first order in λ, the time-dependent corrections to any observable 〈Ô〉 can be written as a
functional of operators averaged at equilibrium

〈Ô〉 (t ) = 〈Ô〉0 +λ

∫∞

−∞
d t ′χ(t − t ′) f (t ′) . (1.32)

The notation 〈·〉0 means that the averages are carried out by taking traces involving the time-
independent part H0 of the Hamiltonian Eq. (1.31). For instance 〈Ô〉0 = Z−1Tr

[

Ôe−βH0
]

. Z =
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Tr
[

e−βH0
]

is the canonical partition function at equilibrium. χ(t − t ′) is the linear response
function

χ(t − t ′) = i

ħ
θ(t − t ′)〈

[

Ô(t ), Â(t ′)
]

〉0 , (1.33)

where the time dependence of operators is given in the interaction representation

Ô(t ) = e
i H0t
ħ Ôe− i H0t

ħ . (1.34)

The linear response function is then a correlator between Ô and Â at different times, but
always calculated for the equilibrium Hamiltonian H0. θ(t ) = 1 for t > 0 and 0 otherwise is
the Heaviside function.

Eq. (1.30) states that the admittance is related to the response to gate voltage variations
of the charge on the dot. Comparing the time-dependent terms in the Hamiltonians in Eqs.
(1.29) and (1.31), with Vg (t ) given by Eq. (1.11), all the identifications necessary to map our
problem on the language of linear response theory can be done

Ô(t ) → en̂(t ) ,
Â → en̂ ,

f (t ) → cos(ωt ) ,
λ → εω .

(1.35)

This leads to the following result for the admittance Eq. (1.30)

G(ω) =−iωe2χc (ω) , (1.36)

where χc (ω) is the Fourier transform of the dynamical charge susceptibility

χc (t − t ′) = i

ħ
θ(t − t ′)〈

[

n̂(t ), n̂(t ′)
]

〉0 . (1.37)

A low frequency expansion of χc (ω) in Eq. (1.36) provides a different way to define the ca-
pacitance and the charge relaxation resistance of the quantum RC circuit. To second order
in ω Eq. (1.36) takes the form

G(ω) =−iωe2 {

χc + i Im
[

χc (ω)
]}

, (1.38)

where we stress the fact that the even and odd part of the response function Eq. (1.37) coin-
cide respectively with its real and imaginary part, see Appendix A. We also define the static
charge susceptibility χc = χc (ω= 0). Identifying term by term Eq. (1.38) with the one for the
classical RC circuit Eq. (1.3), we define a differential capacitance C0 and the charge relaxation
resistance from microscopic quantities connected to the charge occupation of the dot

C0 = e2χc =−e2∂〈n̂〉
∂εd

, Rq = 1

e2χ2
c

Imχc (ω)

ω

∣

∣

∣

∣

ω→0
. (1.39)
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The differential capacitance is a quantity that differs from the capacitances considered in
the scattering formalism. Experimentally, it is directly measured from the real part of the
admittance. In Section 4.1.2.1, in the framework of the Kondo regime of the Anderson model,
we discuss how C0, in the presence of interactions on the dot, cannot be interpreted as the
geometrical capacitance Cg in series with the quantum capacitance Cq , proportional to the
local density of states of the dot. The differential capacitance is actually proportional to the
density of states of the charge excitations on the dot, which does not coincide in general to
the total density of states if strong interactions are present. The expression for Rq in Eq. (1.39)
is also interesting because it provides the general condition for the universal quantization of
Eq. (1.15). It is realized when the Korringa-Shiba relation [75]

Imχc (ω)
∣

∣

ω→0 =ħπωχ2
c (1.40)

holds. The proof of the Korringa-Shiba relation in interacting systems constitutes one of the
primary goals of our work. This is achieved through the Fermi liquid approach discussed
in Chapter 2. In the following discussion, we proceed with the proof of this formula in a
non-interacting systems, recovering the results of scattering theory.

1.3.2 Description of the quantum RC circuit with a resonant level model

In this section, we use a resonant level model to describe the quantum dot and the lead

HRes =
∑

k

εk c†
k ck + t

∑

k

(

c†
k d +d †ck

)

+εd d †d . (1.41)

We restrict for simplicity to the single-channel and the single-level case. The generalization
of the following calculations to the many-channel case is straightforward. In Appendix B, we
carry out explicitly the calculation of the differential capacitance in the multi-level case. The
model Eq. (1.41) describes the situation pictured in Fig. 1.4. It constitutes a simplification of
the Coulomb blockade model Eq. (iv), where the interacting term of Eq. (1.29) is neglected.
This is equivalent to consider Cg =∞, recovering the mean-field analysis of Section 1.2. We
take advantage of this section to introduce the notations that we shall use in the path integral
formalism in the following chapters. The partition function associated to the Hamiltonian
Eq. (1.41) can be written in the form [91]

Z =
∫

D
[

c,c†,d ,d †
]

e−S
[

c,c†,d ,d †
]

, (1.42)

where S
[

c,c†,d ,d †
]

is the action of the system. The action reads

SRes =
∫β

0
dτ

{

−
∑

k

c†
k (τ)G−1

k (τ)ck (τ)−d †(τ)D−1(τ)d(τ)+ t
∑

k

[

c†
k (τ)d(τ)+c.c.

]

}

, (1.43)
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with the free propagators

G−1
k (τ) =−∂τ−εk ,

D−1(τ) =−∂τ−εd ,
(1.44)

The fermionic nature of the operators ck and dl in Eq. (1.41) is translated in Eq. (1.43) by the
fact that these become Grassmann variables, with the commutation property

dl dl ′ =−dl ′dl , d †
l dl ′ =−dl ′d

†
l , (1.45)

and they are anti-periodic functions of τ

ck (0) =−ck (β) , dl (0) =−dl (β) . (1.46)

The case of bosons is much simpler: they are described by usual complex scalars which are
periodic in the interval

[

0,β
]

. It is practical to do the Fourier transform and switch to a fre-
quency representation of the fields in the action Eq. (1.43). For instance

ckσ(τ) = 1

β

∑

iωn

e−iωnτckσ(iωn) , (1.47)

where we defined the fermionic Matsubara frequencies iωn = (2n+1)π/β, n ∈Z. They satisfy
the anti-periodicity property Eq. (1.46). This operation leads to

SRes =
∑

iωn

{

−
∑

k

c†
k (iωn)G−1

k (iωn)ck (iωn)−d †(iωn)D−1(iωn)d(iωn)

+t
∑

k

[

c†
k (iωn)d(iωn)+d †(iωn)ck (iωn)

]

}

. (1.48)

The free propagators become diagonal in this representation

G−1
k (iωn) = iωn −εk ,

D−1(iωn) = iωn −εd
(1.49)

and they recover the usual retarded/advanced Green’s functions if the analytical continua-
tion iωn →ω±i 0+ is done. Reestablishing dimensions, the Fourier transform of the response
function Eq. (1.37) in this formalism reads

χc (iνn) = 1

ħ

∫ħβ

0
d(τ−τ′)e iνn (τ−τ′) 〈n̂(τ)n̂(τ′)〉0 . (1.50)

Notice that χc (iνn) is a normal scalar, recovering χc (ω) by performing the analytical contin-
uation iν→ ω+ i 0+. This function is periodic in imaginary time and its Fourier transform
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Figure 1.7: Top-Left) Diagrammatic representation of the full quantum dot electron propagator Eq.
(1.54). The arrow represents the creation and annihilation of a mode of frequency iωn in correlators.
Bottom-Left) Diagram giving the dynamical charge susceptibility Eq. (1.51). Its expression is made
explicit in Eq. (1.55). The external bosonic lines correspond to the real frequency ħω pumped in the
system by the drive Vg (t ) =Vg +εω cos

(

ωt
)

. Right) Paths in the complex plane for the calculation of the
Matsubara sum Eq. (1.55).

is a function of the bosonic Matsubara frequencies iνn = 2nπ/β. n̂(τ) = d †(τ)d(τ) counts
the number of charges on the dot. The cyclic invariance property of the trace implies that
〈n̂(τ)n̂(τ′)〉0 = f (τ−τ′), allowing us to write Eq. (1.50) in the form

χc (iνn) = 1

β

∑

iω1,2

〈d †(iω1)d(iω1 + iνn)d †(iω2)d(iω2 − iνn)〉 . (1.51)

To calculate this expression, involving solely the quantum dot fields d , we first integrate the
lead modes in Eq. (1.48), a Gaussian integration leading to the effective action S′

Res of the
resonant level model

S′
Res =−

∑

iωn

d †(iωn)D(iωn)d(iωn) , (1.52)

with

D−1(iωn) = iωn −εd − t 2
∑

k

Gk (iωn) , (1.53)

In the wide-band approximation this propagator reads

D−1(iωn) = iωn −εd + iΓsgn(ωn) , (1.54)

where we introduced the hybridization constant Γ= πν0t 2, ν0 being the density of states of
the lead electrons. The action Eq. (1.52) is quadratic and Wick’s theorem gives a diagram-
matic representation of the four-point correlator Eq. (1.51). For iνn 6= 0, this is represented
by the diagram pictured in Fig. 1.7. The result reads
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Figure 1.8: Peaked structure of the local density of states N (ε) on the dot as a function of the orbital
energy shift controlled by the gate potential eVg from Eq. (1.25). N (EF ) is plotted for different values of
the backscattering amplitude r . The progressive opening of the dot drives a transition from a Lorentzian
to an oscillatory behavior of Cq , coherent with the experimental measurements illustrated in Fig. 1.6.
For a completely transparent dot (r = 0) the density of states is uniform, which implies C0 = e2/∆.

χc (iνn) =− 1

β

∑

iωn

D(iωn)D(iωn + iνn)

→− 1

πΓ

∫∞

−∞
d x f (Γx +εd )

2x

(x2 +1)[x2 − (ω/Γ+ i )2]
,

(1.55)

where the analytical continuation iν → ω+ i 0+ has been performed to obtain the second
line. At zero temperature, the integral can be calculated analytically

χc (ω) = 1

πΓ

1
ω
Γ

(

ω
Γ
+2i

) ln
ε2

d +Γ
2

ε2
d − (ω+ iΓ)2

. (1.56)

Its low frequency expansion matches Eq. (1.3) and accesses the differential capacitance and
the charge relaxation resistance. Reestablishing correct dimensions ω → ħω, the result re-
covers Eq. (1.15) obtained within scattering theory

C0 =
e2

h
ν(εd ) , Rq = h

2e2
, (1.57)

where ν(εd ) is the density of states associated to the single orbital εd

ν(εd ) = 1

π

Γ

ε2
d +Γ2

. (1.58)
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In Appendix B, we carry out the calculation of the differential capacitance in the multi-level
case. Considering a constant level spacing ∆, we can write εl =−eVg + l∆ and, for an infinite
number of levels, we recover Eq. (1.25), plotted in Fig. 1.8, with the identification

πΓ

∆
= (1− r )2

1− r 2
. (1.59)

Notice that, for a single level and one channel, we also recover the universal charge relax-
ation resistance Rq = h/2e2. This means that the dynamical charge susceptibility Eq. (1.56)
fulfills the Korringa-Shiba relation Eq. (1.40). The generalization of the previous calculation
to multiple channels is straightforward. The model reads

HRes−Nch =
∑

kσ

εk c†
kσckσ+ t

∑

kσ

(

c†
kσdσ+d †

σckσ

)

+
∑

σ

εσd †
σdσ , (1.60)

with σ = 1, . . . , N the number of channels. This model readily provides expressions for the
differential capacitance and the charge relaxation resistance analog to Eq. (1.27)

C0 =
e2

h

N
∑

σ=1
νσ , Rq = h

2e2

∑

σν
2
σ

(
∑

σνσ
)2 , (1.61)

where the dwell-times are substituted by the density of states of the channels: ν(εσ) = ν(εσ)
from Eq. (1.58).

1.4 Conclusions

In this chapter we discussed the scattering formalism originally adopted by Büttiker, Thomas
and Prêtre to explain the dynamical properties of the quantum RC circuit. The main results
are the prediction of a quantum capacitance Cq and a charge relaxation resistance Rq , uni-
versally quantized in the single channel case. All these results are also derived with an Hamil-
tonian approach which constitutes the starting point of the forthcoming chapters, where
interactions on the dot are addressed. The differential capacitance C0 has been defined,
showing that the capacitance of the quantum RC circuit is actually proportional to the static
charge susceptibility of the quantum dot. We established that charge relaxation universality
relies on the Korringa-Shiba relation Eq. (1.40). We derived the results of scattering the-
ory from our Hamiltonian study of the quantum RC circuit in the non-interacting case. The
following chapters focus on a Fermi liquid method to give a general proof of the Korringa-
Shiba relation Eq. (1.40). While the quantum capacitance is a static quantity, the proof of the
Korringa-Shiba relation requires an understanding of the low-energy dynamics of electrons
in strongly interacting systems. This is the main problem to which this Thesis tries to give a
comprehensive answer.
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In the previous chapter, it has been shown how the dynamical charge susceptibility χc (ω)
of the dot contains information about the conduction properties of the quantum RC cir-
cuit. The linear expansion of this quantity in the frequency ω defines, to leading order, the
differential capacitance C0 and, to first order, the charge relaxation resistance Rq . A direct
calculation of χc (ω) is not an easy task in the presence of interactions in the dot. From a
formal point of view, the reason is the presence of a non-quadratic term in the Hamilto-
nian. In the Coulomb blockade and Anderson model, Eqs. (iv) and (v) respectively, this term
is controlled by the charging energy Ec , that cannot be treated perturbatively in Coulomb
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blockade regimes. The possibility to rely on Wick’s theorem, when performing perturbative
calculations in the tunneling coupling t , is also forbidden. Switching to a more physical
point of view, even if these difficulties are overcome, it remains quite difficult to understand
the underlying dissipation mechanisms. For example, the perturbative calculation in Ref.
[72] shows that the charge relaxation resistance is universally quantized to Rq = h

2e2 , exactly
the same value as for non-interacting electrons, while the differential capacitance behaves
in a different way. What is the physical reason?

This is the main problem we address in this Thesis. We show that, at low energies, the lead
electrons in a rich variety of interacting quantum dot systems are described by an effective
non-interacting theory which captures the mechanism underlying energy dissipation, pro-
viding the condition for universality. As already discussed in Section 1.3.1, the condition for
universality is given by the verification of the Korringa-Shiba relation [75]

Imχc (ω)
∣

∣

ω→0 =ħπωχ2
c . (2.1)

This relation connects in a very specific way the first corrections to adiabaticity of the dy-
namic charge susceptibility to its zero frequency limit. Its proof requires diagrammatic cal-
culations in the case of the Anderson model [75]. In this chapter, we present the theory de-
scribing the dynamics of low energy electrons in these systems. This permits the derivation
of even generalized forms of Eq. (2.1), predicting new interesting non-universal behaviors of
the charge relaxation resistance within a very simple framework. The main steps for its proof
are summarized in Fig. 2.11. The Friedel sum rule [77, 61], discussed in detail in Section
2.1.1, sets the form of the Fermi liquid theory involving the static charge susceptibility of the
quantum dot χc = −∂〈n̂〉/∂εd . We recall that, in Chapter 1, we showed that this quantity is
proportional to the differential capacitance C0 = e2χc . This low energy theory is quadratic
and the power dissipated when the system is driven by an AC bias Vg (t ) is readily calcu-
lated. This power is a function of the static charge susceptibility of the dot and has to be
matched with the expression derived from the high energy model. Describing the periodic
oscillations of the orbital energy around an equilibrium value by εd (t ) = ε0

d +εω cos(ωt ), for
a small enough amplitude εω, linear response theory applies. In Appendix A, we show that
the dissipated power P , obtained from the high energy model, is given by

P = 1

2
ε2
ωωImχc (ω) . (2.2)

It is proportional to the imaginary part of the dynamical charge susceptibility χc (ω) which
we are interested in. Deriving the result of P from the low energy model

P = 1

2
ε2
ωω

2ħπχ2
c , (2.3)
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Figure 2.1: Main steps of our approach. For energies much lower than the charging energy Ec , the
Friedel sum rule sets the form of the low energy Fermi liquid, whose dissipated power P is readily
calculated. Identifying to the power obtained from the initial interacting model, proportional to the
imaginary part of the dynamic charge susceptibility χc (ω), the Korringa-Shiba relation, responsible for
the universality of Rq , is shown.

the Korringa-Shiba relation Eq. (2.1) is readily obtained by identifying Eqs. (2.2) and (2.3).
The universality of the charge relaxation resistance quantization Rq = h

2e2 is then shown in
the single channel case and in the presence of strong interactions on the dot.

The extension to the N channels case in this approach is straightforward and brings about
a slight modification of Eq. (2.1) by a factor N

Imχc (ω)
∣

∣

ω→0 =
ħπωχ2

c

N
, (2.4)

which also predicts the universality of the charge relaxation resistance to Rq = h/2Ne2. In
Section 2.4.1, the continuum limit for the levels in the dot is also discussed in detail pre-
dicting the mesoscopic crossover to a doubled value of the charge relaxation resistance [72].
The reason is that the continuum limit allows for energy dissipation inside the quantum dot,
which becomes a further reservoir in the system. This results in a factor 2 multiplying the
right hand side of Eq. (2.4). Even if the levels on the dot are actually spaced by ∆ because of
the finite size L of the dot, the condition for having a continuum is defined with respect to
the driving frequency

ħω>∆ . (2.5)

This condition simply states that electrons can be excited by the drive also in the dot, creating
particle-hole pairs which are responsible for energy dissipation, see also Fig. 2.4.
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The universal quantization of Rq relies on the fact that the susceptibility of every channel
χσ is the same, that is

χσ =−∂〈nσ〉
∂εd

= χc

N
. (2.6)

This implies that the imaginary part of χc (ω) is proportional to the square of the static charge
susceptibility χc in Eqs. (2.1) and (2.4). This is the case when the transmission channels are
degenerate in energy, but it is not a general feature. This degeneracy can be, for example,
lifted by applying a magnetic field for electron with an internal spin degree of freedom. Our
approach can be easily extended to this case and a generalized form of Eq. (2.4) is derived

Imχc (ω)
∣

∣

ω→0 =ħπω
∑

σ

χ2
σ . (2.7)

This is responsible for a non-universal expression for the charge relaxation resistance

Rq = h

2e2

∑

σχ
2
σ

(
∑

σχσ

)2 . (2.8)

This expression is completely similar to that obtained by Büttiker [66] reported in Eq. (1.27)
as a function of the densities of states, or dwell-times τσ, of the σ channel in the dot, which
in our case are replaced by the susceptibilities χσ. The single channel case is remarkable
in the sense that the numerator simplifies with the denominator in Eq. (2.8), leading to the
universal value h/(2e2). Nothing, except the condition Eq. (2.6), guarantees the universality
of Eq. (2.8) and, in Sections 2.5 and 2.6, we discuss how this formula predicts interesting non-
universal behaviors of Rq in the presence of a magnetic field. Within the Anderson model,
a giant peak arises for the charge relaxation resistance. It is triggered by breaking the Kondo
singlet and new scaling regimes described by universal functions are predicted.

In Section 2.1.1 we discuss how a Fermi liquid theory, coherent with the Friedel sum rule,
can be derived. In Section 2.2 we give the reason why this theory describes the Coulomb
blockade and Anderson models at zero temperature and in Section 2.3 we discuss how the
knowledge of the Friedel sum rule and a low energy Fermi liquid behavior allow one to derive
the Korringa-Shiba relation, which is generalized to the N channel case in Section 2.4. In
Section 2.5, we illustrate our predictions for the loss of universality of the charge relaxation
resistance caused by the presence of a magnetic field in the Anderson model and, in Section
2.6, we provide an extension to SU(4) Kondo regimes, showing a further application of our
renormalization group analysis to calculate the SU(4) Kondo temperatures.
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2.1 The Fermi liquid in the quasi static approximation

As already discussed in Section 1.3.1, linear response theory states the possibility to study
a time-dependent problem by looking at dynamical correlators considered at equilibrium.
So, neglecting for the moment the time-dependence through εd (t ) of our problem, we con-
sider the situation at equilibrium. It is a well established fact that both the Coulomb block-
ade model [60, 92] and the Anderson model [93] have a Fermi liquid behavior at low energy.
We refer to textbooks [94, 95] for a complete review about Fermi liquid theory. What is im-
portant for the following discussion is that a fermionic system behaving like a Fermi liquid
deploys the same qualitative physics as that of a free Fermi gas. Its constituents are then
called quasi-particles, which are still fermions whose mass and spectrum are renormalized
by the presence of interactions and which still carry the same quanta of charge and spin.
The effective Hamiltonian describing the behavior of these quasi-particles has then to be a
non-interacting Hamiltonian

HQP =
∑

kσ

εk a†
kσak ′σ , (2.9)

where the operators a†
kσ create fermions of momentum k and spin σ. The ground state of

this Hamiltonian is a Fermi sea. This feature is relevant for understanding the dynamics of
a quantum dot exchanging electrons with the leads. Far from the charge degenerate points,
the energy required to modify the charge occupation of the dot is Ec . In the situation that
we consider, Ec is far above the temperature and the energy ħω pumped in the system by
the gate. We recall here that this regime differs from the one of the experiment described
in Ref. [7], which has been carried for ħω ∼ Ec < ∆ and was the first to measure a universal
charge relaxation resistance. As discussed in Ref. [92], it is then clear that a further electron
cannot settle permanently in the dot, but it can spend there a (short) time within the un-
certainty principle ħ/Ec . At equilibrium, an electron of energy ε entering into the dot must
leave it without violating total energy conservation. This can happen by two different kind of
processes, which are shown in Fig. 2.2:

• Elastic processes: in this case the electron leaving the quantum dot has the same en-
ergy as the incoming one. The presence of the quantum dot affects then by a phase-
shift the asymptotic behavior of the single-electron wave function far from the dot;

• Inelastic processes: in this case the electron entering in the quantum dot causes the
creation of particle-hole pairs and the emitted electron will have a lower energy than
the incoming one.

In the case of systems behaving like a Fermi liquid at low energy, the probability of inelastic
processes goes to zero as (ε/Ec )2 [95]. The Fermi liquid picture implies then that the low en-
ergy description of the system maps onto a single-particle problem which has to somewhat
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Figure 2.2: Illustration of the difference between elastic (left) and inelastic (right) events for electrons
entering and leaving the quantum dot. See main text.

encode the information about the electron scattering with the quantum dot. The simplest
model embodying these features is a free Fermi gas with a potential scattering term localized
at the entrance of the dot [61]

H =
∑

kσ

εk c†
kσckσ+W (εd )

∑

kk ′σ
c†

kσck ′σ . (2.10)

In the language of second quantization, the second term in this Hamiltonian describes a
delta barrier located in x = 0. It is indeed the Fourier transform in the momentum represen-
tation of the electron operator Ψ†(x = 0)Ψ(x = 0) and it does not conserve the momentum of
incoming electrons. This is not particularly surprising as the introduction of a quantum dot
breaks the translational invariance of the system and therefore momentum conservation. As
a matter of fact, the Hamiltonian Eq. (2.10) is still quadratic and can be always put into the
diagonal form Eq. (2.9). The dependence on the orbital energy εd of the potential scatter-
ing coupling W is explicitly put forward. In Section 2.2, we show that it naturally appears in
the models we address, and allows us to understand their time dependence at low energy, as
discussed in Section 2.3. The potential scattering coupling W is actually related to the local
charge occupation of the quantum dot. The coupling of the dot with the non-interacting
leads is responsible for a displacement of electrons. This translates into a local variation of
their density and so a variation of their local occupation number 〈N̂〉. In the following sec-
tion we show that this variation of the electron number corresponds to the quantum dot
occupation and it is a function of the potential scattering coupling W . The relation between
the dot occupation and W is set by the Friedel sum rule.
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2.1.1 An illustration of the Friedel sum rule for non-interacting electrons

The Friedel sum rule [77] relates the charge occupation of the dot 〈n̂〉 to the phase-shift δ(ε)
that the presence of the quantum dot causes on the wave function of the lead electrons at
the Fermi surface. It reads

〈n̂〉 = δ(0)

π
(2.11)

and the phase-shift is considered at the Fermi energy EF = 0. In this section, we provide an
illustration of the Friedel sum-rule for the Anderson model Eq. (v) in the absence of inter-
actions, U = 0. The extension to the interacting case is more difficult and it is given in Ref.
[96, 97]. As the σ=↑, ↓ spin sectors are decoupled, we can neglect the electron spin and cal-
culate the occupation of the quantum dot described by a resonant level as in Eq. (1.41). To
do this, the total electron occupation 〈N̂〉 of the electron gas has to be calculated. It is given
by

〈N̂〉 =
∑

α

∫∞

−∞
dωAα(ω) f (ω) , (2.12)

the sum on the label α running over all the eigenstates of the Hamiltonian. Aα(ω) is the
spectral function of the state α and it is defined as

Aα(ω) =− 1

π
ImGαα(ω+ i 0+) , (2.13)

Gαα being the retarded Green’s function associated to the state α. In this section, we adopt
the notation Gdk (t − t ′) = −iθ(t − t ′)〈d(t )c†

k (t ′)〉. In the absence of the quantum dot, de-
scribed by the operators d in the Anderson Hamiltonian Eq. (v), Gkk (ω+i 0+) = (ω+i 0+−εk )−1

and Eq. (2.12) reduces to a sum over the Fermi function
∑

k f (εk ) giving the total number of
electrons 〈N̂〉 composing the system. When the quantum dot is taken into account, a fur-
ther resonant level is introduced. Working at fixed chemical potential, the total number of
electrons Eq. (2.12) will be modified, and the difference with the previous one will give the
amount of electrons displaced by the presence of the quantum dot. We already calculated in
Section 1.3.2 the retarded Green’s function of the quantum dot electrons Eq. (1.54). The re-
tarded Green’s function of the lead electrons can be also obtained writing down the equation
of motions

(ω−εd )Gdd (ω) = 1+ t
∑

k

Gkd (ω) , (ω−εk )Gkk ′(ω) = δkk ′ + tGdk ′(ω) , (2.14)

(ω−εk )Gkd (ω) = tGdd (ω) , (ω−εd )Gdk = t
∑

k ′
Gk ′k (ω) . (2.15)

Solving the system, the Green’s function for the lead electrons reads

Gkk ′(ω) = δkk ′

ω−εk
+ 1

ω−εk
t 2Gdd (ω)

1

ω−εk ′
. (2.16)
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The T-matrix of the lead electrons, defined in Appendix C, is then given by

T (ω+ i 0+) = t 2Gdd (ω+ i 0+) = t 2

ω−εd + iΓ
= t 2

√

(ω−εd )2 +Γ2
e iδ , (2.17)

where we define the phase-shift

δ(ω) = π

2
−arctan

(εd −ω

Γ

)

. (2.18)

A detailed explanation of the reason why δ can be viewed as the phase-shift of the lead elec-
tron wave function is given in the framework of scattering theory in Appendix C. In the wide-
band limit, the contribution from the second term in Eq. (2.16) can be neglected in the cal-
culation of 〈N̂〉 given by Eq. (2.12) [61]. The number of displaced electrons is given solely by
the Green’s function of the quantum dot d electrons

〈N̂〉with dot −〈N̂〉without dot = 〈n̂〉 =− 1

π
Im

∫∞

−∞
dωGdd (ω) f (ω) = 1

2
− 1

π
arctan

(εd

Γ

)

, (2.19)

what is coherent with Eqs. (2.11) and (2.18). Eq. (2.19) is also meaningful for the two follow-
ing reasons. 1) In the wide-band approximation, the number of displaced electrons is given
by the local Green’s function Gdd and can then be interpreted as the charge occupation of
the quantum dot. 2) The number of displaced electrons by the quantum dot depends on the
orbital energy εd . This provides a further explanation of how a time dependence of this en-
ergy on the gate potential Vg (t ) drives a current in the system. A variation of εd triggers the
displacement of electrons in the leads and it will allow us to access the AC admittance of the
system. The generalization of Eq. (2.11) to the N channels case is straightforward

〈n̂〉 =
∑

σ

δσ(0)

π
, (2.20)

with σ= 1, . . . , N labeling channels.

As a final remark, if the Friedel sum rule Eq. (2.11) applies for a system described by the low
energy Fermi liquid Hamiltonian Eq. (2.10), the coupling W (εd ) is fixed by the quantum dot
occupation. In Appendix D, we calculate the phase-shift induced on the low energy quasi-
particles of the Fermi liquid by the potential scattering term. It reads

δW =−arctan(πν0W ) . (2.21)

Applying Eq. (2.11), the following correction to the dot occupation is found

〈n̂〉 =− 1

π
arctan(πν0W ) . (2.22)

This is an important result, which is involved in the demonstration of the Korringa-Shiba
relation in Section 2.3. In the case of the Coulomb blockade Hamiltonian Eq. (iv), there is
no formal demonstration of the validity of the Friedel sum rule and we prove it in the large
number of channels N limit and for a small tunneling t . We give a flavor of this proof in
Section 2.2, extended also to the Anderson Hamiltonian Eq. (v).
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2.2 The Schrieffer-Wolff transformation

In this section, we give a simple and more intuitive explanation of why a low energy Hamilto-
nian such as Eq. (2.10) for the Coulomb blockade and Anderson model is expected. A more
formal proof up to higher orders in the tunneling t within the analytical renormalization
group will be given in Chapters 3 and 4. We also show the direct dependence of the cou-
pling W on the gate potential Vg , important to understand in Section 2.3 that the creation of
particle-hole pairs described by the potential scattering term is responsible for energy dissi-
pation at low energy.

To do this we rely on the Schrieffer-Wolff transformation [98, 95], first devised for the An-
derson Hamiltonian [99], to derive the Coqblin-Schrieffer model [100] and that we extend
here to the Coulomb blockade model. This procedure has much to do with the idea of renor-
malization that we will discuss later on. The problem is the following. Far from the charge
degeneracy points, the lowest energy charge configuration n is fixed by the gate potential Vg

and the possibility to fluctuate to n±1 occupations requires an energy of the order of Ec . For
temperatures much lower than Ec , the charge degrees of freedom of the quantum dot are
frozen, acting but virtually on the low energy behavior of the system. They can be somewhat
eliminated and to do this the Hamiltonian in the absence of tunneling can be then separated
in a low energy sector, were the charge is fixed to n, and a high energy one where the charge
in the dot has different values

H0 =
[

HLow 0
0 HHigh

]

. (2.23)

The presence of the (small) tunneling term couples these different energy sectors, and in this
language is then anti-diagonal

HT =
[

0 hT

h†
T 0

]

. (2.24)

The Schrieffer-Wolff transformation is nothing more than the unitary transformation gener-
ated by the operator U that diagonalizes by blocks this Hamiltonian

U [H0 +HT ]U † =
[

H ′
Low 0

0 H ′
High

]

, (2.25)

including in the low energy sector all the virtual excursions in the high energy one induced
by the presence of HT and vice versa. It is important to notice that the inclusion of HT in the
Hamiltonian is responsible for the breaking of charge conservation in the dot and n is not a
good quantum number anymore.

For interacting systems, this diagonalization can be performed exactly only in principle,
but practically only by a perturbative approach. Unitarity allows one to write U = e i S , where
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S is a Hermitian operator. As S has to be at least of order t , we can expand the exponential
and find to the leading order

H ′ = H0 +HT + i [S, H0]+O
(

t 2) . (2.26)

This Hamiltonian is then block diagonal if the following condition is fulfilled

i HT = [S, H0] . (2.27)

The fact that H ′ is block diagonal and coincides formally with H0 should not give the wrong
impression that different sectors can be defined where the charge in the dot is still quantized
to integer values given by 〈∑α d †

αdα〉 = n, α being any label (including spin) for electrons in
the dot. This is not possible anymore, as the hybridization HT has been taken into account
and it does not commute with the operator

∑

α d †
αdα, giving the electron occupation on the

quantum dot. The transformation Eq. (2.25) implies a change of basis and the new operators
dα and d †

α in H ′ do not describe the electrons in the quantum dot anymore, but an excitation
very close to them hybridized with the lead electrons. This is a way to understand how the
concept of quasi-particle arises in many-body systems.

Even if the condition Eq. (2.27) takes into account the first charge fluctuations in the dot,
it is not enough to obtain the residual interaction between lead and dot electrons induced by
the presence of the hybridization term HT . The term of second order in t in Eq. (2.26) must
be considered and Eq. (2.27) implies

H ′ = H0 +
i

2
[S, HT ] , (2.28)

which can be always put into a block diagonal form. We show in the following sections that
this correction gives the potential scattering contribution to the low energy Hamiltonian Eq.
(2.10).

2.2.1 Coulomb blockade model

Following Grabert [101, 102], to perform the operations required by the Schrieffer-Wolff trans-
formation sketched in the previous section, it is useful to decouple the charge occupation of
the dot from the fermionic degrees of freedom of the electrons in it. This can be done by
adding to the Coulomb blockade Hamiltonian Eq. (iv) a new operator n̂, giving the occu-
pation number on the dot fixed by the gate voltage. The fermionic operators dl and d †

l in

Eq. (iv) are replaced by new operators (that we shall also call dl and d †
l ) describing only a

free electron gas in the dot and charge fluctuations are now taken into account by a new
expression of the hybridization term

HT = t
∑

n,k,l

[

d †
l ck |n +1〉〈n|+ c†

k dl |n −1〉〈n|
]

. (2.29)
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The operator S = s + s† fulfilling Eq. (2.27) is given by

s =i t
∑

k,l ,n

sklnc†
k dl |n −1〉〈n| , (2.30a)

skln = 1

εl −εk +Ec (2n −1)+εd
. (2.30b)

This operator, when substituted into Eq. (2.28) to obtain the effective quasi-particle interac-
tion, is responsible for a coupling between sectors of charge n and n ±2. This coupling can
be eliminated by performing a further Schrieffer-Wolff transformation, giving further cor-
rections of order t 3 irrelevant for the purposes of the current discussion. The Hamiltonian
becomes then block diagonal in the sectors given by different values of n. For −Ec < εd < Ec ,
the lowest energy sector corresponds to n = 0 and the effective Hamiltonian reads H ′

CBM =
H0 +HB , with

HB = t 2

2

∑

kk ′l l ′

(

skl0d †
l ′ck ′c†

k dl − skl1c†
k dl d †

l ′ck ′ +h.c.
)

. (2.31)

This interaction can be simplified by a mean-field treatment

d †
l ck c†

k ′dl ′ = 〈d †
l dl ′〉ck c†

k ′ +〈ck c†
k ′〉d †

l dl ′ = δl l ′θ(−εl )ck c†
k ′ +δkk ′θ(εk )d †

l dl ′ , (2.32)

which is justified in the renormalization group framework 1. We are then left with marginal
operators giving a potential scattering contribution which corresponds to the backscattering
of electrons at the lead-dot boundary. After the simplification in Eq. (2.32) we can carry out
part of the sums in Eq. (2.31) and obtain, for example, for the first term in Eq. (2.32)

t 2

2

∑

kk ′
ck ′c†

k

∑

l l ′
δl l ′θ(−εl )skl0 =

=
∑

kk ′
ck ′c†

k

ν0t 2

2

∫0

−D0

dεl

εl −εk −Ec +εd
=

=
∑

kk ′
c†

k ck ′
ν0t 2

2
ln

(

εk +Ec −εd +D0

εk +Ec −εd

)

. (2.34)

We inserted a high energy cut-off D0 which is sent to infinity without any divergence at the
end of calculations. As we are concerned only with electrons close to the Fermi surface, the

1As a matter of fact, this expansion is justified by the RG flow of operators. To classify them one must look at
the normal ordered form

d †
l ck c†

k ′dl ′ = δl l ′θ(−εl )ck c†
k ′ +δkk ′θ(εk )d †

l dl ′+ : d †
l ck c†

k ′dl ′ : , (2.33)

where the last normal ordered operator describing interaction between electrons is irrelevant at low energy and
then neglected in Eq. (2.32). The terms kept are marginal in the RG sense. A formal discussion of the operator
classification in the RG flow is given within the path-integral formalism in Chapter 3.



30 CHAPTER 2. A THEORY FOR THE INTERACTING QUANTUM RC CIRCUIT

energies εk,l appearing in the logarithm can be sent consistently to zero. In Section 3.3.3,
we discuss in detail that all the corrections to this approximation, being energy dependent,
are irrelevant at low energy in the RG flow, and can then be neglected. Summing up all the
contributions, D0 can be safely sent to infinity. The effective low energy model, to leading
order in the dimensionless conductance g = (ν0t )2, is obtained

H ′
CBM = H0 +

g

ν0
ln

(

Ec −εd

Ec +εd

)

[

∑

l l ′
d †

l dl ′ −
∑

kk ′
c†

k ck ′

]

. (2.35)

This expression of the Hamiltonian describes two Fermi gases completely decoupled, but
affected by potential scattering interactions with opposite amplitudes. This is the feature
responsible for the mesoscopic crossover to a double universal charge relaxation resistance
Rq = h/e2 in the continuum limit of the dot, and it will be discussed in Section 2.4.1. The
model then recovers the Hamiltonian (2.10) for the lead electrons. The phase-shift δW is
given by Eq. (2.21) and the charge occupation of the dot is calculated to leading order by
applying the Friedel sum rule Eq. (2.11)

〈n̂〉 = δ

π
= g ln

(

Ec −εd

Ec +εd

)

. (2.36)

This result is in complete agreement with a direct perturbative calculation of the charge on
the dot [60, 101, 102]. The extension to the N channel case is trivial and one has to simply
substitute g → N (ν0t )2 in Eq. (2.36).

As previously claimed, the potential scattering coupling W in Eq. (2.35) directly depends
on the orbital energy εd and therefore on the gate potential Vg , which tunes it. This is the
requirement setting the dissipation term in the quasi static approximation of Section 2.3. We
switch now to the spin-full case for a single level. The system is described by the Ander-
son model and the mapping onto Eq. (2.10) will present further difficulties because of the
emerging of Kondo correlations.

2.2.2 Anderson model

As already mentioned, the Schrieffer-Wolff transformation has been expressly devised for
the Anderson Hamiltonian to better understand the behavior of localized moments in dilute
alloys [103]. The main result of Ref. [99] is the mapping of the Anderson Hamiltonian onto
the Kondo Hamiltonian including a potential scattering term out of particle-hole symmetry

H ′
AM = H0 + J0S ·s+W0

∑

kk ′σ
c†

kσck ′σ . (2.37)
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This mapping applies for a single electron occupying the dot at energies lower than Ec . This
requires −U ≪ εd ≪ 0, as it can be seen in the phase diagram of the isolated quantum
dot, pictured in Fig. 4.1. The spin of the electron in the quantum dot S is coupled anti-
ferromagnetically to the local spin of the lead electrons s = ∑

kk ′ττ′ c†
kσ

σττ′
2 ck ′σ′ , with σττ′ the

vector composed of the Pauli matrices, and

J0 = 2t 2
(

1

εd +U
− 1

εd

)

, (2.38)

W0 =− t 2

2

(

1

εd +U
+ 1

εd

)

. (2.39)

W0 = 0 at the particle-hole symmetric point εd = −U /2 and, if we forget for the moment
the Kondo anti-ferromagnetic coupling controlled by J0, we recover again the Hamiltonian
Eq. (2.10) with a potential scattering coupling which depends on the energy of the dot oc-
cupation εd . In Chapter 4, we show that the anti-ferromagnetic coupling in Eq. (2.37) can

Λ

Ec

TK

0

High energy

model

Residual

interaction

Phase-shift

Anderson Hamiltonian

Charge

freezing

Kondo

regime

JS · s + W 1

δK = π

2
δW =−arctan πν0W

Figure 2.3: Sketch of the renormalization behavior of the Anderson Hamiltonian. For energy scales Λ
for the lead electrons below the charging energy Ec , the charge degrees of freedom of the quantum dot
are frozen. The lead electrons interact anti-ferromagnetically with the spin of the electron in the dot and
also feel a potential backscattering. In the zero energy limit, below the Kondo crossover, these two terms
are responsible for different phase-shifts δK and δW for the lead electrons, which can be calculated
independently.

be actually ignored following the renormalization scheme sketched in Fig. 2.3. The anti-
ferromagnetic coupling is exclusively responsible for a δK =π/2 phase-shift of the low energy
quasi-particles of the system. The actual origin of this phase-shift will be discussed in Section
4.2.3, but we can understand it by simple considerations. As already mentioned, the Friedel
sum rule applies for the Anderson Hamiltonian [96]. At particle-hole symmetry, the charge
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on the dot is fixed to one by symmetry, W in Eq. (2.39) is zero and then only the Kondo cou-
pling in Eq. (2.37) is responsible for the phase-shift of the low energy quasi-particles. Then,
in the absence of any magnetic field, the two opposite spin channels are symmetric and the
Friedel sum rule states

〈n̂〉 = 2
δK

π
. (2.40)

The fact that 〈n̂〉 = 1 sets δK = π/2. Relying on the works by Cragg and Lloyd [104, 105, 106],
which addressed a Kondo Hamiltonian corrected by a potential scattering contribution as in
Eq. (2.37), it is possible to show that the phase-shift δW , caused by the potential scattering
term on the low energy quasi-particles, is additive to δK :

δ= δK +δW , (2.41)

and can then be calculated independently. This can be verified to leading order in t with the
Schrieffer-Wolff transformation Eqs. (2.37), (2.38) and (2.39). Eq. (2.21) gives the phase-shift
caused by the potential scattering term for every spin channel

δW =−arctan(πν0W0) (2.42)

and the Friedel sum rule provides the correction to the charge in the dot to the leading order

〈n̂〉 = 2

π
[δK −arctan(πν0W )] = 1+ Γ

π

(

1

εd +U
+ 1

εd

)

. (2.43)

The validity of this expression can be tested and compared to the static charge susceptibility
χc obtained with Bethe ansatz calculations at particle-hole symmetry [107]

χc = −∂〈n̂〉
∂εd

∣

∣

∣

∣

εd=−U
2

= 8Γ

πU 2

(

1+ 12Γ

πU
+ . . .

)

. (2.44)

The equations (2.43) and (2.44) are coherent and written as an expansion in powers of Γ/U .
Our approach provides, through the Schrieffer-Wolff transformation, the static susceptibility
even out of particle-hole symmetry:

χc =
Γ

π

[

1

(εd +U )2
+ 1

ε2
d

]

. (2.45)

In Chapter 4, more extended expressions of Eqs. (2.43) and (2.45) are provided, including
the next to leading order corrections in the tunneling t . These are verified to be coherent
with Eq. (2.44), showing the validity of our approach. Moreover, the analytical knowledge
of χc out of particle-hole symmetry is a completely new result, turning out to be useful to
determine the analytic expression of the envelope of the giant peak of Rq , to be discussed in
Sections 2.5.1 (briefly) and 4.4.1 (in more detail).
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2.3 The quasi static approximation

In the previous discussion, we showed that the potential scattering coupling W of the low
energy Fermi liquid Hamiltonian Eq. (2.10) is a direct function of the orbital energy of the
dot εd . As discussed in Chapter 1, this energy is renormalized by the gate potential εd →
εd −eVg (t ), see Eq. (1.29). For an AC bias, this is a periodic function of time oscillating at the
frequency ω, given by

εd (t ) = ε0
d +εω cos

(

ωt
)

. (2.46)

The quasi-static approximation consists in substituting Eq. (2.46) directly in Eq. (2.10). This
condition assumes that the low energy Hamiltonian Eq. (2.10), derived for the equilibrium
problem, follows, without any delay, the orbital oscillations given in the high energy theory.
The quasi-static approximation is then a statement about a behavior close to adiabaticity
and requires that the energy ħω pumped in the system is much smaller than all the other
energy scales of the problem.

If this condition is satisfied, the linear response regime allows for an expansion in εω of
the coupling W (εd ). Restricting ourselves to the single channel case (the extension to the
multi-channel case is straightforward)

H =
∑

k

εk c†
k ck +

[

W (ε0
d )+W ′(ε0

d )εω cos
(

ωt
)]

∑

kk ′
c†

k c ′k . (2.47)

The time independent part of this Hamiltonian can be diagonalized, leading to [108]

H =
∑

kk ′
εk a†

k ak +
W ′(ε0

d )

1+
[

πν0W (ε0
d )

]2εω cos
(

ωt
)
∑

kk ′
a†

k ak ′ , (2.48)

where the operators a and a† describe the new quasi-particles diagonalizing the time inde-
pendent part of the Hamiltonian (2.47). The renormalization of the bulk spectrum εk can be
neglected in the following calculations. Realizing that the Friedel sum rule, in the form Eq.
(2.22) for the potential scattering Hamiltonian, sets

χc =
ν0W ′(ε0

d )

1+
[

πν0W (ε0
d )

]2 , (2.49)

the Hamiltonian (2.48) can be cast in the more compact and transparent form

H =
∑

kk ′
εk a†

k ak +
χc

ν0
εω cos

(

ωt
)
∑

kk ′
a†

k ak ′ . (2.50)

This Hamiltonian shows which mechanism is responsible for energy dissipation at low en-
ergy for a rich variety of strong interacting systems satisfying the Friedel sum rule and a Fermi
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liquid behavior at low energy. The time dependent term pumps energy in the system, which
is then dissipated by the creation of free particle-hole pairs controlled by the static charge
susceptibility χc of the quantum dot. The non-interacting Hamiltonian Eq. (2.50) explains
why the scattering formalism, discussed in Chapter 1, predicts the correct universal charge
relaxation resistance also in the presence of interactions on the quantum dot, the dissipation
mechanism being that of a non-interacting system.

2.4 Generalized form of the Korringa-Shiba relation

The Hamiltonian (2.50), devised for the low energy behavior of the lead electrons in devices
including quantum dots, is easy to handle. Recalling the results of Appendix A, the time
dependent Hamiltonian Eq. (2.50) dissipates the power

P = 1

2
ε2
ωωImχÂ(ω) , (2.51)

where the linear response function

χÂ(t − t ′) = i

ħ
θ(t − t ′)〈

[

Â(t ), Â(t ′)
]

〉0 (2.52)

is a correlator at different times of the potential scattering operator

Â = χc

ν0

∑

kk ′
a†

k ak ′ , (2.53)

responsible for the creation of particle-hole pairs. As we are interested only in the zero tem-
perature limit, the calculation is conveniently performed directly in real time, differently
than in Section 1.3.2. Nevertheless, comparing to the calculation in the Matsubara formal-
ism remains an instructive exercise and we sketch it in parallel 2. The Fourier transform of

2The expression of the Fourier transform of the response function Eq. (2.52) in the Matsubara formalism
follows from that given in Eq. (1.50)

χÂ(iνn) = 1

ħ

∫ħβ

0
d(τ−τ′)e iνn (τ−τ′) 〈Â(τ)Â(τ′)〉0 . (2.54)

All the steps in the main text can be repeated with the substitution i t → τ in Eq. (2.57). The main difference is
given by the fact that the commutator in Eq. (2.56) has been replaced by an upper bound ħβ in the imaginary
time integral. The repetition of the steps in the main text leads to the formula

χÂ(ω) = 1

ħ
χ2

c

ν2
0

∑

pp ′
fp (1− fp ′ )

1

iνn +
εp′−εp

ħ

(

eβ(εp−εp′ ) −1
)

, (2.55)

which recovers Eq. (2.58) if the analytical continuation iνn →ω+ i 0+ is done and the zero temperature limit is
taken.
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the response function Eq. (2.52) reads

χÂ(ω) = i

ħ

∫∞

0
d(t − t ′)e i (t−t ′)(ω+i 0+) 〈

[

Â(t ), Â(t ′)
]

〉0 . (2.56)

The time dependence of the operators a and a† is easily obtained in the Heisenberg repre-
sentation

ak (t ) = ak e− i
ħ tεk , a†

k (t ) = a†
k e

i
ħ tεk . (2.57)

Applying Wick’s theorem and that 〈a†
p ak〉0

= δpk f (εp ) and 〈ak a†
p〉0

= δkp [1− f (εp )] one can
transform Eq. (2.56) into the form

χÂ(ω) =−1

ħ
χ2

c

ν2
0

∑

pp ′
θ(−εp )θ(εp ′)

[

1

ω+ εp−εp′
ħ + i 0+

− 1

ω+ εp′−εp

ħ + i 0+

]

, (2.58)

where the zero temperature limit for the Fermi distribution has been carried out. Taking the
imaginary part and the continuum limit

ImχÂ(ω) =πχ2
c

∫∞

−∞
dεdε′θ(−ε)θ(ε′)

[

δ(ħω+ε−ε′)−δ(ħω+ε′−ε)
]

. (2.59)

This expression is easily integrated and gives

ImχÂ(ω) =πħωχ2
c . (2.60)

Identifying with the dissipated power expected from the initial model Eq. (2.2), the Korringa-
Shiba relation

Imχc (ω) =πħωχ2
c (2.61)

is proven, predicting a universal value for the charge relaxation resistance

Rq = h

2e2
. (2.62)

This result holds then even in the presence of strong interactions in the dot, provided a
Fermi liquid low energy behavior, effectively non-interacting. This reasoning can be eas-
ily extended to the N channel case leading to a Korringa-Shiba relation of the form Eq. (2.4)
and EQ = h/2Ne2.

2.4.1 A continuum in the dot

In Section 2.2.1, we argued that the Fermi liquid picture still applies to a large dot described
by the Coulomb blockade model Eq. (iv). The subtlety is that dot and lead constitute two
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Figure 2.4: Mesoscopic crossover in the charge relaxation resistance. Left) In a small dot, the level spac-
ing ∆ is larger than the driving energy ħω and energy levels in the dot are not excited. The universal
resistance Rq = h/2e2 of the equivalent RC circuit is furnished exclusively by the lead electron reservoir.
Right) Excitation of energy levels inside the dot are permitted in the large dot limit, which acts as a
further reservoir in series to the lead.

separate Fermi liquids, one describing the electrons in the lead and the other the electrons
in the quantum dot, see Eq. (2.35). At first glance, it may seem that the quantum dot simply
adds an additional channel for dissipation so that Rq = h/2Ne2 would apply with N = 2. The
situation is actually different. The energy cost Ec to modify the dot occupation prevents at
low energy the transfer of electrons between the dot and the lead [92]. The electrons of both
these gases are then only backscattered at the lead/dot boundary with opposite amplitudes.
In the quasi-static approximation, all the steps carried in the previous discussion can be
repeated for the Hamiltonian Eq. (2.35). The main difference is that the time variation of the
orbital energy εd couples also to the residual fermionic degrees of freedom of the electrons
in the dot. The operator responsible for energy dissipation becomes

Â = χc

ν0

(

∑

kk ′
c†

k ck ′ −
∑

l l ′
d †

l dl ′

)

, (2.63)

where we remember that the operators c†
k and d †

l create lead and dot electrons of energy εk,l

respectively. The presence of this further element in the operator Â adds a further contribu-
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tion to Eq. (2.58), completely analog to the contribution of particle-hole pairs excited in the
lead Eq. (2.58),

− 1

ħ
χ2

c

ν2
0

∑

l l ′
θ(−εl )θ(εl ′)

[

1

ω+ εl−εl ′
ħ + i 0+

− 1

ω+ εl ′−εl
ħ + i 0+

]

. (2.64)

The continuum limit ∆→ 0 for a large dot had been already taken to obtain the low energy
Hamiltonian Eq. (2.35). In Eq. (2.64) the limits ω→ 0 and ∆→ 0 do not actually commute,
giving a result equal to zero if the frequency is sent to zero before the level spacing. If the op-
posite limit is taken the condition Eq. (2.5) is fulfilled and the delta functions that are present
also in Eq. (2.59) give a non zero contribution exactly equal to Eq. (2.60). The Korringa-Shiba
relation is then modified by a factor two

Imχc (ω) = 2πħωχ2
c , (2.65)

which implies a new universal value for the charge relaxation resistance in the single channel
case

Rq = h

e2
. (2.66)

The extension to N channels remains straightforward and give Rq = h/Ne2. The above dis-
cussion is summarized in Fig. 2.4. Driving at a frequency higher than the dot level spacing
induces the creation of particle/hole pairs inside the dot, enhancing energy dissipation with
respect to the small dot limit ħω<∆. The result is a charge relaxation resistance which coin-
cides with a series of two contact resistances. The dot acts effectively as a further reservoir in
the system in series with the lead.

2.5 The loss of universality

The discussion of the previous sections provides a quite general understanding of why inter-
acting quantum dots behave as non-interacting ones, at least for what concerns the charge
relaxation resistance Rq . The generalization to the N channel case, Rq = h/(2Ne2), is how-
ever not general. This result requires an effective Hamiltonian similar to Eq. (2.50)

H =
∑

kk ′σ
εk a†

kσakσ+
χc

Nν0
εω cosωt

∑

kk ′σ
a†

kσak ′σ , (2.67)

with the assumption of a complete symmetry between the channels, see Eq. (2.6). In the
case of spinful electrons, for example, this symmetry is broken in the presence of a magnetic
field and the more general form holds at low energy

H =
∑

kk ′σ
εk a†

kσakσ+εω cosωt
∑

σ

χσ

ν0

∑

kk ′
a†

kσak ′σ , (2.68)
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Figure 2.5: Behavior of Rq as a function of the
Zeeman splitting ∆Z in Ref. [66], within the
Hartree-Fock approximation for interactions in
the dot. γ corresponds to the hybridization con-
stant Γ. In the inset delimited by the red rectangle
we indicate the zone described by the Anderson
Hamiltonian. All the energies are given in units
of the bare level spacing ∆ and Rq of h/e2.

Figure 2.6: Dependence of Rq on the Zeeman
splitting ∆Z in the Kondo regime from Ref. [76].
These results have been obtained by numerical
renormalization group calculations withΓ= 0.02
and Ec = 0.2. They show that for Zeeman ener-
gies of the order of the Kondo temperature a gi-
ant non-universal peak appear in the charge re-
laxation resistance.

where

χσ =−∂〈n̂σ〉
∂εd

, (2.69)

is the susceptibility of the occupation of every single level σ in the dot. The channel sym-
metry corresponds to χσ = χc /N , ∀σ. In the asymmetric case, the model (2.68) results in
the new generalized form of the Korringa-Shiba relation Eq. (2.7), corresponding to the non-
universal charge relaxation resistance Eq. (2.8).

2.5.1 Dependence of Rq on the magnetic field: giant and universal peaks.

Lifting the orbital level degeneracy by a magnetic field breaks the channel symmetry and the
charge relaxation resistance is no longer universal. As shown in Fig. 2.5, in the Hartree-Fock
approximation for interactions in the dot, it is possible to predict a peak at Rq ≃ h/(2e2) at
the resonance between different spin populations driven by the magnetic field [66]. It is also
interesting to notice that, for certain values of the orbital energy εd (EF in Fig. 2.5), Rq is
insensitive to the magnetic field.

The Hartree-Fock approximation does not describe properly the strong correlations brought
by the Kondo singlet to be discussed in Chapter 4. This can be addressed, for instance, using
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Figure 2.7: Charge occupation and magnetization of the dot. Both quantities reproduce quite well the
phase diagram of the isolated dot in Fig. 4.1. The insets show the same quantities on a logarithmic
scale. The charge is not sensitive to the formation of the Kondo singlet for Zeeman energies below the
Kondo temperature, while the magnetization becomes zero.

the numerical renormalization group (NRG) [109, 110, 108]. The charge relaxation resistance
has then been calculated for the Anderson model in Ref. [76] showing that, for Zeeman split-
tings of the order of the Kondo temperature, the charge relaxation resistance can reach up
to 100 times the universal value of the charge relaxation resistance in the two-fold spin de-
generate case Rq = h/(4e2). In the next sections, we show that the Fermi liquid approach de-
veloped in this Thesis provides a general framework to predict and explain these behaviors
analytically. We show how particle-hole symmetry protects the charge relaxation resistance
universality even when the SU(2) symmetry is broken and vice versa. We then exhibit scaling
behaviors for the peak of the charge relaxation resistance both in the Kondo and in the mixed
valence regime, described by universal analytical functions.

2.5.1.1 The giant peak of the charge relaxation resistance

Expression (2.8) for the charge relaxation resistance does not give explicitly the reasons for
universality in the many channel case. One of these is surely the symmetry between chan-
nels ensuring χσ = χc /N and so Rq = h/(2Ne2). In the case of two spin channels and an
interacting dot, described by the Anderson Hamiltonian, Eq. (2.8) can be actually recast in
the more expressive form

Rq = h

4e2

(

1+
χ2

m

χ2
c

)

, (2.70)
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Figure 2.8: Comparison of Rq as a function of the magnetic field between NRG calculations (dots) (ex-
tracted from Ref. [76]) and our Bethe Ansatz results (solid lines) for different εd /U and U /Γ= 20, show-
ing good agreement.

where the charge-magneto susceptibility

χm =−2
∂〈m̂〉
∂εd

(2.71)

has been defined. This is twice the derivative of the dot magnetization 〈m̂〉 = (〈n̂↑〉−〈n̂↓〉)/2,
with respect to the orbital energy εd . This quantity is quite atypical in the framework of
quantum dot systems, where the magnetic susceptibility χH =−∂〈m̂〉/∂H is usually studied
to obtain information about the sensitivity of the local moment of the quantum dot to a
local variation of the magnetic field H . Moreover, Eq. (2.70) states that the susceptibility
of the magnetization of the dot, and not its total charge, is responsible for the departure
from the universal quantization to h/(4e2) for the charge relaxation resistance. Eq. (2.70)
is also remarkable as it separates explicitly the charge and spin degrees of freedom of the
electrons in the quantum dot. They can display very different behaviors in 1D systems and a
manifestation of it can be observed in Fig. 2.7.

Indeed the Bethe ansatz, presented in Appendix G, diagonalizes the Anderson Hamilto-
nian and provides, through coupled integral equations, the physical properties of the ground
state. As we will discuss in Chapter 4, these equations can be solved numerically for any pa-
rameter of the Anderson Hamiltonian and the numerical solutions for the charge and the
magnetization are plotted in Fig. 2.7. A detailed discussion of the different behaviors and
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Figure 2.10: Universal function Φ0(H/TK ) de-
scribing the peak in Rq in the Kondo scaling limit.
The maximum is at H/TK = 1.0697 and signals
then the breaking of the Kondo singlet.

regimes, that can be identified by inspecting the respective behavior of the dot charge and
magnetization, is given in Section 4.1. For the present discussion, it is enough to notice
that these two quantities exhibit different behaviors, especially in the Kondo regime, de-
fined for one charge blocked on the dot and Zeeman energies below the Kondo temperature
[78, 79, 93, 111]

TK = 2

√

UΓ

πe
e

πǫd (ǫd+U )
2UΓ . (2.72)

Kondo physics strongly affects the magnetization of the dot, but not its charge occupation.
χc and χm are computed numerically and they are plotted in Fig. 4.2. The points where χm

behaves differently from χc give a non-universal value of the charge relaxation resistance. In
Fig. 2.8, the values obtained by our approach are compared to those obtained by numerical
renormalization group calculations [76]. The agreement between the two consolidates the
validity of our low energy Fermi liquid model Eq. (2.68). A main achievement of our work
is to give also an exact analytical description of this peak in the Kondo regime and in the
valence-fluctuation region. The Kondo scaling limit corresponds to U /Γ≫ 1, ε∗d /Γ≪ 1 and
H/Γ≪ 1, where ε∗d = εd +Γ/π ln(πeU /4Γ) is the renormalization of orbital energy because of
the presence of interactions [78, 93]. In this limit, the charge relaxation resistance assumes
the following form

Rq = h

4e2

[

1+
(

U

Γ

)4

F0(y)Φ2
0

(

H

TK

)]

, (2.73)

where y = 1+2εd /U is the asymmetry parameter, simply describing the distance to particle-
hole symmetry. The scaling functions Φ0 and F0 are universal and they are plotted in Figs.
2.9 and 2.10. They describe respectively the shape and the envelope of the peak as a function
of the magnetic field and the particle-hole asymmetry parameter. These analytical functions
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actually capture the behavior of the giant peak in the whole Kondo regime, even far from the
scaling limit. This is discussed in detail in Section 4.4.1, where the NRG results of Ref. [76]
are compared to our numerical solution of the Bethe ansatz equations.

The behavior of the scaling function in Eq. (2.73) conveys an interesting message about
charge relaxation universality in strongly correlated systems. First of all it indicates that the
universal quantization Rq = h/(4e2) is protected by particle-hole symmetry. For εd =−U /2,
the envelope function F0 is zero and the charge relaxation resistance does not feel the pres-
ence of a magnetic field. Additionally, breaking particle-hole symmetry alone is not sufficient
to destroy universality. A simultaneous breaking of the SU(2) and particle-hole symmetry is
required to observe an increase of the charge relaxation resistance and the emergence of a
giant peak. This scales as the 4th power of U /Γ and appears for Zeeman splittings of the or-
der of the Kondo temperature. This physically means that breaking the Kondo singlet by a
magnetic field activates spin-flip processes of the quantum dot that dissipate energy through
the creation of particle-hole pairs [76].

2.5.1.2 A universal peak in the mixed-valence region

The behavior of the envelope function F0 in Fig. 2.9 predicts, with Eq. (2.73), that the charge
relaxation resistance universal quantization to h/4e2 should be restored for any magnetic
field for εd = 0 and −U . These points correspond to the transitions between different charge
occupations of the quantum dot, see Section 4.1. Actually this is not true and the analytical
description devised for the Kondo regime breaks down close to the mixed-valence region,
defined for ε∗d ∼ 0. This is the subject of the discussion in Section 4.4.2.1. The fate of the peak
out of the Kondo regime can already be guessed by looking at Fig. 2.5 and the inset of Fig.
2.6, where Rq varies from h/4e2 to h/2e2 as a function of the magnetic field. We provided an
exact analytical description of Rq by performing perturbation calculation to second order in
the tunneling t . The Fermi liquid formula Eq. (2.70) remains valid also in this regime and,
as shown in Fig. 2.11, only the states |1,↑〉 and |0〉 are now competing for the ground state
of the quantum dot, such that Kondo correlations are no longer present. For H = 2εd these
two states become resonant and the spin down state of the quantum dot can be initially
neglected, discarding also the double occupied state |2〉. The model of the system becomes
then a single resonant level model

H =
∑

k

εk c†
k↑ck↑+εd↑d †

↑d↑+ t
∑

k

(

c†
k↑d↑+d †

↑ck↑
)

, (2.74)

which gives Rq = h/2e2 as we discussed in Section 1.3.2. This is the reason why, in the scaling
limit εd ≫ Γ, at the resonance between the |0〉 and |1,↑〉 states, the charge relaxation resis-
tance is twice the 2 channel value h/4e2. The dependence of the charge relaxation resistance
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Figure 2.11: Spectrum of the Anderson dot iso-
lated from the lead on the left. For a positive εd

in the presence of a magnetic field, only the states
|0〉 and |1,↑〉 compete in the low energy sector.
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Figure 2.12: Scaling form of the charge relaxation
resistance Rq in the limits Γ≪ εd ≪U (solid line)
and Γ≪U ≪ εd (dashed line). In circles, the re-
sistance Rq is plotted for U = εd .

on the magnetic field is determined by allowing spin fluctuations, that is taking into account
the spin down state of the quantum dot. The behavior of the peak is captured by considering
the first order correction to the ground state in the tunneling term

HT ↓ = t
∑

k

(

c†
k↓d↓+d †

↓ck↓
)

. (2.75)

This term activates the interaction energy U when virtual fluctuation to the doubly occupied
state |2〉 are considered. This calculation, discussed in Section 4.4.3, is in full agreement with
the results obtained by Bethe ansatz as shown in Fig. 4.14. Two interesting scaling limits in
the εd ≫ Γ limit are found. They are plotted in Fig. 2.12. Before the resonance, that is for
x = H/2εd < 1, the crossing between h/4e2 and h/2e2 is universally described by the formula

Rq = h

4e2

[

1+ 4x2

(x2 +1)2

]

, (2.76)

independently of the value of the interaction U . This is because, in the limit Γ → 0, the
ground state is |0〉 and, to first order in t , it cannot fluctuate to the double occupation |2〉.
Once x > 1 the ground state becomes |1,↑〉, which can fluctuate with both the empty and
the doubly occupied states. In the U →∞ limit any fluctuation to the |2〉 state is forbidden
again and the system remains described solely by Eq. (2.74), corresponding to Rq = h/2e2

irrespective of the magnetic field. In the opposite scaling limit Γ≪U ≪ εd , Eq. (2.76) also
holds for Zeeman energies H > 2εd , describing a progressive decrease of Rq towards h/4e2.
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2.6 The SU(4) Anderson model

As a further demonstration of the generality of our approach, we also consider the electron
dynamics in the case of a further orbital degree of freedom for the quantum dot. A twofold
orbital degeneracy is responsible for more exotic manifestations of SU(4) Kondo regimes
[112, 113, 114, 115, 116], see Fig. 2.13. This has been experimentally demonstrated in sys-
tems where the role of the quantum dot is played by a finite size carbon nanotubes [117, 118]
(see Fig. 2.14) or in single dopant Silicium devices [119, 120].

+

- +

-

Figure 2.13: The fourfold degeneracy of the quan-
tum dot allows for flipping at the same time the
spin and orbital state of the lead electrons, giving
rise to SU(4) Kondo processes.

Figure 2.14: Fourfold splitting of the DC conduc-
tance peak as observed in Ref. [117] for a finite
size carbon nanotube dot in the presence of a
magnetic field. This is a demonstration of SU(4)
Kondo behaviors.

The dot states can be labelled by |+,↑〉, |+,↓〉, |−,↑〉 and |−,↓〉, where ± stand for the or-
bital degrees of freedom and ↑,↓ for the spin ones. Without any loss of generality, we can
label these states by a new quantum number ν = 1, . . . ,4 and the system is described by a
generalized SU(4) version of the Anderson Hamiltonian

H =
∑

kν

εk c†
kνckν+ t

∑

kν

(

c†
kνdν+d †

νckν

)

+εd

∑

ν

n̂ν+U
∑

ν<ν′
n̂νn̂ν′ . (2.77)

In the case where the charge is fixed to q = 1, 2 or 3, a Schrieffer-Wolff transformation [121]
maps Eq. (2.77) onto a Kondo Hamiltonian like Eq. (2.37) with couplings

Jq =−2t 2
(

1

εd + (q −1)U
− 1

εd +qU

)

, (2.78)

Wq =− t 2

N

(

q

εd + (q −1)U
+ N −q

εd +qU

)

. (2.79)

Here the “spin” operators S = ∑

νν′ d †
ν
λνν′

2 dν′ and s = ∑

kk ′νν′ c†
kν

λνν′
2 ck ′ν′ are generated by the

15 matrices λ composing the 4×4 fundamental representation of the SU(4) group, see Ap-
pendix E. The generalization to the SU(N) case of Eqs. (2.77), (2.78) and (2.79) is straightfor-
ward.
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Figure 2.15: Envelope functions Fq in the sectors where the charge is frozen to 1, 2 or 3, that is when
εd /U ∈ [-1,0], [-2,-1] or [-3,-2] respectively. The function becomes zero in the middle of the Coulomb
valleys, while the circles correspond to the values of εd /U for which the potential scattering couplings
Wq in Eq. (2.79) becomes zero.

In Section 5.1 we show that steps completely analog to those outlined in Section 2.5.1.1,
can be repeated with slight modifications to predict again a Kondo scaling behavior for the
charge relaxation resistance of the form

Rq = h

8e2

[

1+
(

U

Γ

)4

Fq
(

yq
)

Φ
2
q

(

H

T q
K

)]

, (2.80)

where now yq = 2εd /u +2q −1 gives the deviations from the centers of the Coulomb valleys
where the charge is fixed to q = 1, 2 or 3. The form of the envelope is given in Fig. 2.15, while
that of the peak is analog to that plotted in Fig. 2.10, valid in the SU(2) case. Interestingly, the
function Fq for q = 2 coincides with the function of the envelope in the SU(2) case examined
in Section 2.5.1.1. But for q = 1 and 3 this function is strongly asymmetric and would permit
to distinguish between a SU(4) and a SU(2) Kondo regime in nanodevices. Moreover, we also
notice that the values of εd /U for which F1,3 becomes zero do not coincide with the values for
which the potential scattering correction to the SU(4) Kondo mapping Eq. (2.79) is absent.
These values imply the cancellation of the couplings Wq in Eq. (2.79) and are represented by
the circles in Fig. 2.15. We suppose that the approach to the scaling behavior described by
the function Φq will be faster at these points. By coincidence, the envelope at these points is
closer to its maxima instead of zero, a remark of experimental relevance.
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2.6.1 Determination of the SU(4) Kondo temperature

In this introductory presentation of our results, we did not pay a particular attention to the
renormalization group techniques we developed to show the low energy Hamiltonian be-
yond Schrieffer-Wolff calculations. These techniques allow us to exactly determine the form
of the fixed point potential scattering interaction in Eq. (2.10) and then to extract the charge
on the dot through the Friedel sum rule Eq. (2.22). These calculations are presented in Sec-
tions 3.4, 4.3 and 5.2 for all the models considered in this work. Actually it is also of interest
to describe here these calculations as they also allowed for the achievement of further funda-
mental results in determining analytically the SU(4) Kondo temperatures in different charge
sectors, previously unknown.

In the presence of SU(N) Kondo physics, all the information about the interaction in the
system at low energy is embodied by the renormalized vertex of the theory V R [122, 123]. This
is a physical quantity, which can be directly measured and that we define for the Coulomb
blockade and the Anderson model in Chapters 3 and 4. We show that for the SU(N) Anderson
Hamiltonian Eq. (2.77), it assumes the same form as in the SU(2) case [104, 105, 106, 124]

V R = V R
J S ·s+V R

W 1 . (2.81)

In this equation, S and s are the vectors composed of the N 2−1 matrices of the fundamental
representation of the SU(N) group acting respectively on the subspace of the quantum dot
and of the lead electrons. To one loop calculation, V R

J assumes the following form [125, 126]

V R
J = J − Nν0

2
J 2 ln

Λ

D
+ . . . (2.82)

where D is the bandwidth and Λ is an infra-red cut-off. This last quantity must be introduced
to avoid the divergencies caused by the ill definition of a perturbation approach in the cou-
pling J . The Kondo model being a renormalizable theory [127], the choice of the couple of
parameters (J ,D) is actually arbitrary. This can be seen by considering Eq. (2.82) which is
invariant, to second order in J , under the following transformation

J → J +a J 2 ,

D → De
2a

Nν0 .
(2.83)

This is a particular transformation, but, in general, all the possible choices of (J ,D) giving
the same value of V R

J belong to the same universality class which is defined by the Kondo
temperature [122, 123]

TK = D
N

√

Nν0 J

2
e
− 2

Nν0 J , (2.84)
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Figure 2.16: Functions fq (εd /U ) in Eq. (2.85) plotted for q=3, 2 and 1 (left to right).

which is also invariant under the transformation Eq. (2.83). Notice that for Λ of the order
of TK , the second order correction in Eq. (2.82) becomes of the same order as the leading
contribution J . TK defines the energy scale at which a perturbative approach in J breaks
down. As we will discuss in Chapter 4, the Kondo temperature is the energy scale at which
Kondo correlations appear because of the formation of the Kondo singlet. It is a quantity
of experimental relevance and its exact dependence on the orbital and charging energy in
SU(4) regimes is unknown.

Calculating the renormalized vertex V R up to fourth order in t within the SU(4) Anderson
model Eq. (2.77) and rewriting it in the form Eq. (2.81) allows one to fix the high energy cut-
off D in Eq. (2.82) as a function of the charge and orbital energy Ec and εd . In Section 5.2 we
perform this calculation and provide an analytical expression for the Kondo temperature in
the form

T q
K = 4

√

4ΓU 3

π
fq

(εd

U

)

e
− 1

2ν0 Jq , (2.85)

where the functions fq (x) are plotted in Fig. (2.16).
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In this section, we develop a renormalization group approach to show that the action de-
scribing the low energy quasi-particles in the Coulomb blockade model corresponds to the
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Fermi liquid Hamiltonian Eq. (2.35), that is

S =
∫β

0
dτ

{

−
∑

kσ

c†
kσ(τ) (∂τ−εk )ckσ(τ)−

∑

lσ

d †
lσ(τ) (∂τ−εl )dlσ(τ)+

+V R

[

∑

kk ′σ
c†

kσ(τ)ck ′σ(τ)−
∑

l l ′σ
d †

lσ(τ)dl ′σ(τ)

]}

. (3.1)

To prove the Friedel sum rule to fourth order in t , we calculate the potential scattering cou-
pling in the limit of a large number of channels N . It reads

V R = ν0t 2 ln
Ec +εd

Ec −εd
+Nν3

0t 4 (A[εd ]− A[εd ]) , (3.2)

with

A[εd ] = −εd

2Ec

(

4π2

3
+ ln2 Ec +εd

Ec −εd

)

+
8
(

2E 2
c −2Ecεd −ε2

d

)

(3Ec +εd )(Ec −εd )
ln

Ec +εd

Ec
+

(2Ec +εd )

Ec

[

ln2 Ec +εd

4Ec +2εd
+2Li2

(

3Ec +εd

4Ec +2εd

)

− 4Ec (2Ec +εd )

(Ec +εd )(3Ec +εd )
ln

4Ec +2εd

Ec

]

(3.3)

where Li2(x) is the dilogarithm function

Li2(x) =
∫0

x
d t

ln(1− t )

t
. (3.4)

V R in Eq. (3.2) is the renormalized vertex of the theory, to be defined in Section 3.4. Eqs. (3.1)
and (3.2) allow to readily show the validity of the Friedel sum rule Eq. (2.11) in the Coulomb
blockade model. The potential scattering term, in the second line of Eq. (3.1), is responsible
for a phase-shift of the lead electrons. Its expression is obtained from Eq. (2.21)

δ=−arctan
(

πν0V
R)

. (3.5)

Inserting this result in the Friedel sum rule Eq. (2.11), we verify that it provides the correct
value for the charge occupation of the quantum dot

〈n̂〉 = g ln
Ec −εd

Ec +εd
− g 2 (A[εd ]− A[−εd ]) . (3.6)

The validity of this result is tested by comparing to previous calculations carried out by
Grabert [101, 102] in the large-N limit, using a completely different perturbative approach.
These corrections describe the smearing of the coulomb staircase close to charge degener-
acy and they are plotted in Fig. 3.1. Notice that Eq. (3.6) actually diverges for εd /Ec = ±1,
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Figure 3.1: Smearing of the Coulomb staircase for the charge 〈n̂〉 on the quantum dot. The black and
red lines are obtained for g = 0.001 and g = 0.03 respectively from the formula provided by Grabert in
Ref. [102]. It interpolates between Eq. (3.6), describing the charge blocked on the dot, and the behavior
close to charge degeneracy derived by Matveev Eq. (3.7). The blue straight line describes the limit of an
open dot, in which the charge on the dot is continuous.

corresponding to the charge degeneracy points N0 = Cg Vg /e = ±1/2. The behavior of the
charge on the dot close to these points has been derived by Matveev in Ref. [60]. It reads

〈n̂〉 = −g∗ lnζ∗

1−2g∗ lnζ∗
+O(ζ) , (3.7)

with g∗ = g [1+6g +O(g 2)] and ζ∗ = ζ[1+9.7762g +O(g 2)] [102]. ζ= 1/2−N0 is the distance
from the charge degeneracy point N0 = 1/2. Eq. (3.7), interpolated with Eq. (3.6), allows one
to obtain the finite results plotted in Fig. 3.1.

To perform renormalization group calculations, we develop a new path integral formula-
tion of the Coulomb blockade Hamiltonian introducing bosonic slave-states. The theory is
projected back to the original (and physical) Hilbert space by applying the Abrikosov’s pro-
jection technique [122, 123], exposed in Section 3.1. In this slave-boson representation, the
action is quadratic and, in Section 3.2, the high energy charge sectors are integrated, pro-
viding an alternative tool to the Schrieffer-Wolff transformation. In Section 3.3, we illustrate
the renormalization group arguments justifying the mapping onto the low-energy action Eq.
(3.1) and the need of calculating the renormalized vertex V R to obtain the potential scatter-
ing coupling. In the slave-boson formalism, Wick’s theorem applies and, in Section 3.4, we
carry out the diagrammatic calculation of V R .
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3.1 Slave states and Abrikosov’s projection technique

The states |n〉, adopted by Grabert [101, 102] and introduced in Eq. (2.29) to decouple charge
and fermionic degrees of freedom on the quantum dot, do not find a convenient formula-
tion in the path integral formalism. We circumvent this problem by introducing slave-boson
fields. The procedure is sketched in Tab. 3.1. A slave-state is an accessory degree of freedom

Charge Occupation En Grabert’s basis Slave-boson basis
. . . . . . . . . . . .

2 4Ec +2εd |2〉 b†
2 |0〉b

1 Ec +εd |1〉 b†
1 |0〉b

0 0 |0〉 b†
0 |0〉b

-1 Ec −εd |−1〉 b†
−1 |0〉b

-2 4Ec −2εd |−2〉 b†
−2 |0〉b

. . . . . . . . . . . .

Table 3.1: Representation of the states describing the charge occupation on the dot and their energy
within Grabert’s and the slave-boson representation.

which is introduced to simplify calculations. The price to pay is that unphysical states are
added to the Hilbert space spanned by the new Hamiltonian and a projection technique is
required to obtain correct results. Further examples of analog approaches can be found in
Refs. [125, 128, 129, 130] for the U →∞ limit in the Anderson model. In our case, to every
Fock state |n〉, describing the occupation by n charges on the dot, we associate a bosonic
operator b†

n which creates a state of energy En = Ec n2 +εd n when acting on a new vacuum
called |0〉b . This vacuum must be distinguished from the zero charge state, which is given
by b†

0 |0〉b in this new representation. |0〉b is a fictitious state where the quantum dot does
not even exist. A quantum dot occupied by n charges is described by the state b†

n |0〉b . The
redefinition of the tunneling Hamiltonian Eq. (2.29) in this representation is readily obtained

HT = t
∑

klσn

(

c†
kσdlσb†

n−1bn +d †
lσckσb†

n+1bn

)

(3.8)

and the Hamiltonian without this tunneling term is quadratic

H0 =
∑

kσ

εk c†
kσckσ+

∑

lσ

εl d †
lσdlσ+

∑

n
Enb†

nbn . (3.9)

An infinite series of free slave-bosons replaces the interaction term of Eq. (iv). The interest
of this slave-boson representation is that Wick’s theorem applies, diagrammatic calculations
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are possible and the higher energy modes can be integrated, as illustrated in the following
section. The action corresponding to Eqs. (3.8) and (3.9) reads

SCBM =
∫β

0
dτ

{

−
∑

kσ

c†
kσ(τ)G−1

k ckσ(τ)−
∑

lσ

d †
lσ(τ)D−1

k dlσ(τ)−

−
∑

n
b†

n(τ)F−1
n bn(τ)+ t

∑

klσn

[

c†
kσ(τ)dlσ(τ)b†

n−1(τ)bn(τ)+d †
lσ(τ)ckσ(τ)b†

n+1(τ)bn(τ)
]

}

, (3.10)

in which the free Green’s operators have been defined

G−1
k (τ) =−∂τ−εk , (3.11)

D−1
l (τ) =−∂τ−εl , (3.12)

F−1
n (τ) =−∂τ−En −λ . (3.13)

The introduction of the para-energy λ in Eq. (3.13) is necessary to project our theory back
to the physical space. The theory Eq. (3.10) contains unphysical states as, for instance,
b†

nb†
m |0〉b , describing the simultaneous existence of two dots occupied by n and m charges

respectively. The elimination of these states requires the implementation of the following
constraint

N̂b =
∑

n
b†

nbn = 1, (3.14)

which is realized sending λ to infinity at the end of calculations. This is the Abrikosov’s pro-
jection technique [122], first devised for the fermionic representation of the dot spin in the
Kondo problem, to be discussed in Section 4.2.1. The introduction of λ in Eq. (3.13) corre-
sponds to adding a chemical potential associated to the number of slave-bosons N̂b in Eq.
(3.9). This operator commutes with the rest of the Hamiltonian, which can then be block-
diagonalized in sectors with fixed number n of slave-bosons. Any trace involving the Boltz-
mann weight e−βH and physical observables O , which must commute with N̂b , can then be
written into the form

Tr
[

Oe−βH−βλN̂b

]

= Tr0

[

Oe−βH
]

+e−βλTr1

[

Oe−βH
]

+e−2βλTr2

[

Oe−βH
]

. . . (3.15)

The notation Trn [·] means that the trace is carried out in the Hilbert sector in which 〈N̂b〉 = n.
In this notation, the physical average of the operator O reads

〈O〉 =
Tr1

[

Oe−βH
]

Tr1
[

e−βH
] . (3.16)

Calling 〈O〉λ = Tr[Oe−βH−βλN̂b ]/Tr[e−βH−βλN̂b ] the expectation value of the operator O in the
whole Hilbert space spanned by the action Eq. (3.10), Eq. (3.16) is recovered by the following
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1
0
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Figure 3.2: Virtual path of the charge occupation of the dot back and forth from the lowest energy sector.
This is defined by zero charges on the quantum dot if −Ec ≪ εd ≪ Ec . The arrows indicate the effect of
the repeated action of the tunneling term Eq. (3.8) on this state. To fourth order in the tunnel coupling
t , only virtual excursions up to the occupations ±2 have to be taken into account.

prescription [68]

Z = lim
λ→∞

∂

∂e−βλ Zλ ,

〈O〉 = lim
λ→∞

[

〈O〉λ+
Zλ

Z

∂

e−βλ 〈O〉λ
]

,
(3.17)

where Z = Tr1
[

e−βH
]

is the physical partition function associated to the Coulomb blockade
Hamiltonian.

3.2 Integration of the high energy charge sectors

Assuming −Ec ≪ εd ≪ Ec , the lowest energy sector corresponds to the zero charge occupa-
tion of the dot. The translational symmetry between charge sectors makes this choice irrele-
vant and what we discuss applies to any charge sector. As shown in Fig. 3.2, perturbative cal-
culations to fourth order in t involve virtual occupations on the dot from −2 to +2 charges.
All the bosonic degrees of freedom associated to |n| > 2 appearing in Eq. (3.10) can then
be discarded to this order. In Coulomb blockade regimes, charge fluctuations are frozen,
what suggests the integration of the bosonic modes b±1 and b±2. The action Eq. (3.10) being
quadratic, the integrations over the fields b±2 are Gaussian, bringing the following contribu-
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tions to the effective action

S2 = t 2
∑

kk ′l l ′σσ′
Tr

[

c†
kσdlσb†

1F2d †
l ′σ′ck ′σ′b1

]

,

S−2 = t 2
∑

kk ′l l ′σσ′
Tr

[

d †
lσckσb†

−1F−2c†
k ′σ′dl ′σ′b−1

]

.
(3.18)

In these expressions, we adopted a formulation independent from the specific representa-
tion of the fields in imaginary time or Matsubara frequencies. By writing

Tr
[

c†
kσG−1

k ckσ

]

, (3.19)

we mean from now on equally

∫β

0
dτc†

kσ(τ)G−1
k (τ)ckσ(τ) or

∑

iωn

c†
kσ(iωn)G−1

k (iωn)ckσ(iωn) . (3.20)

This choice simplifies the integration and the expansion in t of operators, which becomes
clear in the following calculations. Eqs. (3.18) renormalize the slave-boson propagators F±1.
The resulting action can be cast in the form S′

CBM = S0 +S1 +S−1 with

S0 =
∑

kσ

Tr
[

c†
kσG−1

k ckσ

]

+
∑

lσ

Tr
[

d †
lσD−1

l dlσ

]

+Tr
[

b†
0F−1

0 b0

]

,

S1 =−Tr
[

b†
1Φ

−1
1 b1

]

+
∑

klσ

Tr
[

c†
kσdlσb†

0b1 +d †
lσckσb†

1b0

]

,

S−1 =−Tr
[

b†
−1Φ

−1
−1b−1

]

+
∑

klσ

Tr
[

c†
kσdlσb†

−1b0 +d †
lσckσb†

0b−1

]

,

(3.21)

and

Φ
−1
1 = F−1

1 − t 2
∑

kk ′l l ′σσ′
c†

kσdlσF2d †
l ′σ′ck ′σ′ ,

Φ
−1
1 = F−1

−1 − t 2
∑

kk ′l l ′σσ′
d †

lσckσF−2c†
k ′σ′dl ′σ′ .

(3.22)

The integration of the b±1 modes is also Gaussian and leads to the following action

S′′
CBM = S0 + t 2

∑

kk ′l l ′σσ′
Tr

[

c†
kσdlσb†

0Φ1d †
l ′σ′ck ′σ′b0 +d †

lσckσb†
0Φ−1c†

k ′σ′dl ′σ′b0

]

. (3.23)

The operators Φ±1 can be linearly expanded in the tunneling t

Φ1 = F1 + t 2
∑

kk ′l l ′σσ′
F1c†

kσdlσF2d †
l ′σ′ck ′σ′F1 ,

Φ−1 = F−1 + t 2
∑

kk ′l l ′σσ′
F−1d †

lσckσF−2c†
k ′σ′dl ′σ′F−1 ,

(3.24)
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Free propagators Six-leg vertices Ten-leg vertex

Figure 3.3: Vertex structure of the effective theory Eq. (3.25). The free propagators Gk , Dl and F0 de-
scribe lead, dot and slave-bosons respectively. We give their representation in the Matsubara frequency
domain. The six- and ten-leg bare vertices correspond to the t 2 and t 4 order interactions in Eq. (3.25).
The ten-leg vertex representing the last line in Eq. (3.25) is omitted. Energy must be conserved, implying
that the sum of all the external frequencies is zero. The smallest arrows pointing to the center of these
vertices indicate the frequency dependence of the high-energy propagators included in the interaction.

leading to the final form of the effective action

S′′′
CBM = S0 + t 2

∑

kk′l l ′
σσ′

Tr

[

c†
kσdlσb†

0F1d †
l ′σ′ck ′σ′b0 +d †

lσckσb†
0F−1c†

k ′σ′dl ′σ′b0

+t 2
∑

k′′k′′′l ′′l ′′′
σ′′σ′′′

c†
kσdlσb†

0F1c†
k ′′σ′′dl ′′σ′′F2d †

l ′′′σ′′′ck ′′′σ′′′F1d †
l ′σ′ck ′σ′b0

+ t 2
∑

k′′k′′′l ′′l ′′′
σ′′σ′′′

d †
lσckσb†

0F−1d †
l ′′σ′′ck ′′σ′′F−2c†

k ′′′σ′′′dl ′′′σ′′′F−1c†
k ′σ′dl ′σ′b0

]

.

(3.25)

This action describes the Coulomb blockade regime with zero charges on the dot. All charge
fluctuations are frozen and do not appear in the action anymore. They affect virtually the ef-
fective interaction between the lead and dot electrons. This is manifested by the presence in
Eq. (3.25) of the propagators F±1 and F±2. The only residual slave-boson is b0. The diagram-
matic structure of the theory Eq. (3.25) is pictured in Fig. 3.3. Virtual fluctuations to charge
sectors differing by |n| with the low energy sector are responsible for an effective interaction
of order t 2|n|. The exponent corresponds to the number of times the tunneling Eq. (3.8) must
operate to go back and forth from the low energy charge sector as in the paths shown in Fig.
3.2. This is a sensible difference to the SU(2) Anderson model, where the high energy charge
occupations can differ a maximum of one from the single charge occupation of the dot. As
we discuss in Section 4.2.1, only an effective t 2 order interaction is found for the SU(2) An-
derson model, while a contribution to t 4 order is found again in the SU(4) case, where larger
charge fluctuations are permitted again.
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3.3 The renormalization group

The effective action Eq. (3.25) is quite different from that corresponding to a Fermi liquid Eq.
(3.1). In this section we illustrate the arguments, derived from the renormalization group,
which allow for the mapping of the Coulomb blockade model, in the zero temperature limit,
to a non-interacting Fermi liquid.

The renormalization group was originally formulated, in the context of Condensed Mat-
ter Physics, by Kenneth G. Wilson [109]. It provided a comprehensive description of critical
phenomena and paved the way to the solution of a huge class of difficult problems in which
perturbative approaches revealed unsuccessful because of the appearance of logarithmic di-
vergences ∝ lnE/EF , when the low energy limit E → 0 was investigated. An example is the
logarithmic divergence of Eq. (3.6) at the charge degeneracy points. The presence of an in-
finite number of degrees of freedom, like the lead/dot electrons interacting with each other
described by Eq. (3.25), is responsible for the failure of perturbative calculations. The small-
ness of the coupling constants, say the tunnel coupling t in Eq. (3.25), is not a sufficient
condition to justify a perturbative approach with the associated operator. One must look
indeed at the large number of degrees of freedom that it correlates in the regime which one
is interested in. The renormalization group directly addresses this question. It is defined by
the steps summarized in Fig. 3.4, which we apply here to determine the low energy action
corresponding to the Coulomb blockade model.

Energy

Integration Rescaling

1) 2) 3)

Figure 3.4: Steps defining the renormalization group analysis. 1) Integration of the modes above the
running energy scale Λ, 2) progressive reduction of the running energy scale and 3) rescaling to the
initial Λ. This works as a sort of zoom of the low energy processes.

3.3.1 Integration of high energy degrees of freedom

The first step has the deepest physical intuition. It has analogies with the Schrieffer-Wolff
transformation [99] and with the integration of the high energy slave-bosons of the previous
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section. Close to zero temperature, much smaller than an arbitrary running energy scale Λ, it
is a reasonable assumption to think that particle or hole excitations do not play any relevant
role if their energy is larger than Λ. The path integral formulation allows one to get correctly
rid of these excitations by integrating them and derive an effective action. In the case of Eq.
(3.25), this assumes the form SΛ = SΛ

0 +SΛ

I [131, 132], with

SΛ

0 =−
<Λ
∑

kσiωn

c†
kσ

[

GΛ

k

]−1
ckσ−

<Λ
∑

lσiωn

d †
lσ

[

DΛ

l

]−1
dlσ−

<Λ
∑

iνn

b†
0

[

FΛ

0

]−1
b0 ,

SΛ

I =
<Λ
∑

kk ′σ,iω,iν

V Λ

c c†
kσck ′σb†

0b0 +
<Λ
∑

l l ′σ,iω,iν

V Λ

d d †
lσdl ′σb†

0b0 + . . .

(3.26)

The notation
<Λ
∑

means that the summations run over Matsubara frequencies and momenta
whose absolute value is smaller than Λ. We omit the field dependence on Matsubara fre-
quencies only to simplify notations, but it must be always considered in calculations and re-
spect energy conservation. GΛ

k , DΛ

l and FΛ

0 are the full propagators associated to the fields
ckσ, dlσ and b0 respectively. Their exact expression is given by the Dyson equation. For in-
stance, in the case of the lead electrons, this reads

GΛ

k (iωn) = 1

Gk (iωn)−1 −ΣΛ(iωn)
. (3.27)

Σ
Λ denotes the self-energy, composed of the series of irreducible diagrams appearing in the

diagrammatic expansion of the propagator [133], as those that are calculated in Fig. 3.5 for
the slave-boson self-energy. The superscript Λ means that all the internal lines of the dia-
grams, contributing to the self-energy Σ

Λ, are integrated for frequencies and momenta larger
than the running energy scale Λ. The importance of this prescription will become manifest
when we will encounter the Kondo infra-red divergencies in Section 4.3. The same applies
for the vertex functions V Λ. Restricting us to the case of lead electrons, this reads [133]

V Λ

c (k, iω1, iν1;k ′iω2, iν2) =−β
〈ckσ(iω1)b0(iν1)b†

0(iν2)c†
k ′σ(iω2)〉

∣

∣

∣

c

Gk (iω1)Gk ′(iω2)F0(iν1)F0(iν2)
. (3.28)

The denominator cuts away the external lines of the two-particle Green’s functions, appear-
ing in the numerator. The notation 〈·〉c means that only connected irreducible diagrams, as
those from Fig. 3.6 to 3.10, are considered. In Section 3.4.5, we shall discuss that total charge
conservation implies

V Λ

c =−V Λ

d , (3.29)

in close connection with the Friedel sum rule and in strict analogy with Eq. (2.35), obtained
by applying the Schrieffer-Wolff transformation on the Coulomb blockade model. All the
terms omitted in the second line of Eq. (3.26) involve further interactions with more dot/lead
operators. They can be neglected by applying scaling arguments, provided by the remaining
steps of Wilson’s renormalization approach.
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3.3.2 Rescaling

The second step involves the concept of rescaling. Integrating all the modes with an energy
belonging to the interval [Λ/s,Λ] with s > 1, Eq. (3.26) remains unchanged, but with the
substitution Λ→Λ/s. To know the effect of this operation on the couplings in the action, we
have to compare with the initial action and rescale the energy shell to its initial value, that is
reestablishing Λ/s →Λ, see Fig. 3.4. This is not equivalent to come back to the initial action
with running energy scale Λ, because some high energy modes have been integrated in the
meanwhile and so irremediably lost. The T → 0 limit justifies the continuum limit also for
the Matsubara frequencies and this rescaling can be done by making the substitutions

iω′ = s iω ,

ε′k = s εk .
(3.30)

As we are interested in exploring the possibility of having a free electron gas at low energy,
we wish to know if free quasi-particles are “stable” upon this operation. Quantum dots in
nanodevices have only a local effect on the wave function of bulk electrons, typically the
phase-shift controlled by the Friedel sum rule discussed in Section 2.1.1. The integration of
the high energy modes presented in Section 3.3.1 has then no effect on the Green’s functions
of bulk electrons, which remain that of a free Fermi gas, that is Gk = Gk and Dl = Dl in Eq.
(3.26). We give an explicit proof of it in Section 3.4.2. The stability of a free electron gas
can then be explored leaving invariant the non-interacting part of the action Eq. (3.26). The
transformation Eq. (3.30) forces then the choice to rescale lead/dot fields according to the
following transformation

c ′ = s−3/2c ,

c ′† = s−3/2c† ,

d ′ = s−3/2d ,

d ′† = s−3/2d † .
(3.31)

The rescaling of the free fields and energies gives the criterion to establish which perturba-
tion to the free Fermi liquid must be taken into account or not.

3.3.3 Relevant, irrelevant and marginal operators

For instance, let us consider one of the operators neglected in the second line of Eq. (3.26),
namely

∫<Λ

kk ′l l ′
V Λ

cd c†
k ck ′d †

l dl ′ , (3.32)

where V Λ

cd is defined like in Eq. (3.28), substituting the slave-boson operators b0 with the
quantum dot electron operators dl . The interaction Eq. (3.32) is completely local and de-
scribes lead/dot interactions at the boundary between them, that we fix at x = 0. Longer
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range interactions, like Coulomb electron-electron interactions, would involve less sums
over momenta, with different conclusions that will not be discussed here, see Ref. [131] for
a general discussion. As we are interested in the low energy behavior, we expand the vertex
function V Λ

cd close to iω = 0 and k = kF , both for lead and dot electrons. The first contribu-
tion is then given by a constant and exits from the integral in Eq. (3.32). Once the scaling
steps Eqs. (3.30) and (3.31) are performed, Eq. (3.32) transforms to

V Λ

cd

s

∫<Λ

kk ′l l ′
c ′†k c ′k ′d

′†
l d ′

l ′ . (3.33)

The fact that s > 1 implies that V Λ

cd /s is smaller than the initial coupling V Λ

cd . The importance
of this operator decreases when lowering the running energy scale Λ. It vanishes in the limit
Λ→ 0 and it is called for this reason an irrelevant operator, as it does not affect the free Fermi
gas behavior of the lead/dot electrons. This is the reason why, in Chapter 2, the normal or-
dered operators could be neglected to the fourth order in t to obtain the effective interaction
Eq. (2.32). The frequency corrections to Eq. (3.33), coming from the frequency/momentum
expansion of Vc , can be also neglected as they scale even faster to zero. Operators whose
coupling increases with the scaling analysis are called relevant operators. They tell that a free
Fermi gas is actually unstable with respect to these operators and one must look for differ-
ent low energy behaviors. The arising of the superconducting phase, because of long-range
attractive electron-electron interaction, is a typical example [131]. Operators that remain
unchanged upon the scaling transformation are called marginal and they turn out to be the
only ones affecting the Fermi liquid in the Coulomb blockade model. The operators involv-
ing slave-boson fields kept in Eq. (3.26) are marginal. The scaling analysis of these fields is
more subtle and deserves a separate discussion.

The slave-boson fields b0 are completely different from the lead/dot ones, mainly for two
reasons. Firstly, they are not associated to a continuum, but to a set of well discretized levels.
Secondly, they are subject to the constraint Eq. (3.14), setting the number of slave-states in
the λ→∞ limit. It is a non-trivial issue to establish how this prescription evolves once some
of the slave-states entering in Eq. (3.14) are integrated. This question has been addressed
in Refs. [134, 135] dealing with the Bose-Fermi Kondo model and in Ref. [68] for the Kondo
model, even in out of equilibrium contexts [136]. To define the renormalization of local slave-
fields one must look at the behavior of the slave-boson propagator F0 upon decreasing the
energy shell Λ of the lead/dot electrons. The slave-boson propagator also obeys to the Dyson
relation

F0(iνn) = 1

F−1
0 (iνn)−Σ0(iνn)

. (3.34)

Notice that we omit the superscript Λ. In the Coulomb blockade model all the internal lines
in diagrams can be integrated up to zero energies for Λ→ 0, what is assumed in all the cal-
culations carried in Section 3.4. To appreciate how the slave-boson evolves in the scaling
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analysis, Eq. (3.34) must be compared to the initial free propagator F0. This can be done
expanding Eq. (3.34) close to its pole, defined by the implicit equation

iνn −λ−Σ0(iνn) = 0. (3.35)

This is solved, to leading order, by

iνn = Ẽ0 =λ+Σ0 , (3.36)

where we defined Σ0 = Σ0(iνn → λ), to stress that Σ0 does not depend on λ. This is verified
in Eq. (3.45) and it is relevant for the following discussion. Expanding Eq. (3.34) close to Ẽ0,
this can be cast into the form

F0 =
Z0

iν− Ẽ0
, (3.37)

with

Z0 =
1

1−∂ωΣ0
. (3.38)

This is the slave-boson quasi-particle weight. We precise also that ∂ωΣ0 = ∂ωΣ(ω)|ω→λ does
not depend on λ, which is verified in Eq. (3.46). Through Eq. (3.37), Z0 appears to be the
renormalization of the slave-boson wave function, while Ẽ0 is the renormalized energy of the
slave-boson. To complete the mapping onto the free propagator, a different rescaling of the
fields is necessary

b′
0 →

b0
√

Z0

, b′†
0 →

b†
0

√

Z0

. (3.39)

Eq. (3.26) transforms to

S′
0 =−

∑

kσiωn

c†
kσG−1

k ckσ−
∑

lσiωn

d †
lσD−1

l dlσ−
∑

iνn

b′†
0

(

iνn − Ẽ0
)

b′
0 ,

S′
I =V R

∑

iνn

(

∑

kk ′σ,iω

c†
kσck ′σ−

∑

l l ′σ,iωn

d †
l dl ′

)

b′†
0 b′

0 ,
(3.40)

where we defined the renormalized vertex

V R =Z0 ·Vc . (3.41)

Also in this case, the frequencies of the vertex function are fixed to the renormalized poles of
the propagators (iω→ 0, k → kF and iν→ Ẽ0), all the corrections to this approximation give
irrelevant contributions which can be discarded. The steps 2) and 3) of the scaling analysis
of Fig. 3.4 can be repeated for the Coulomb blockade model. They leave invariant the free
quadratic part of the action Eq. (3.26), which is only affected by the marginal interaction in
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Eq. (3.40). The renormalization group can be performed up to Λ→ 0 and the action recov-
ered in this limit is the fixed point describing the zero temperature behavior of the Coulomb
blockade Hamiltonian.

The Hamiltonian Eq. (3.40) corresponds to the Fermi liquid action Eq. (3.1) To see it, we
switch back to the imaginary-time representation, in which Eq. (3.40) reads

S′
0 =

∫β

0
dτ

{

∑

kσ

c†
kσ

(

∂τ+εk
)

ckσ+
∑

lσ

d †
kσ

(

∂τ+εl
)

dlσ+b†
0

(

∂τ+λ+Σ0
)

b0

}

,

S′
I = V R

∫β

0
dτ

(

∑

kk ′σ
c†

kσck ′σ−
∑

l l ′σ
d †

lσdl ′σ

)

b′†
0 b′

0 ,

(3.42)

where all fields are taken at the same imaginary time τ. The presence of the para-energy λ in
Eq. (3.42) still works as an effective chemical potential setting the constraint [68, 136]

b′†
0 b′

0 = 1, (3.43)

when λ is sent to infinity, as it was discussed in Section 3.1. We recover then the Fermi liquid
action Eq. (3.1). In the following sections, we calculate the renormalized vertex Eq. (3.2),
showing that it is in agreement with the Friedel sum rule.

3.4 Calculation of the vertex

The proof of the Friedel sum rule to higher orders in the tunneling coupling t requires the
calculation of the renormalized vertex V R . In this section we carry out all the calculations
necessary to this purpose.

3.4.1 Slave-boson self-energy

The leading contributions to Σ0 are given by the diagrams illustrated in Fig. 3.5. Their ex-
pression is readily obtained in the zero temperature limit

Σ0(iνn) =− t 2

β2

∑

klσiω1,2

Gk (iω1)Dl (iω2) [F1(iνn + iω1 − iω2)+F−1(iνn + iω2 − iω1)]

=−N (ν0t )2
∫

dε1dε2

[

θ(ε1)θ(ε2)

ε1 +ε2 +E1 +λ− iνn
+ θ(ε1)θ(ε2)

ε1 +ε2 +E−1 +λ− iνn

]

.

(3.44)

The pole renormalization is then obtained from Eq. (3.36)

Ẽ0 =λ−N (ν0t )2
∫

dε1dε2

[

θ(ε1)θ(ε2)

ε1 +ε2 +E1
+ θ(ε1)θ(ε2)

ε1 +ε2 +E−1

]

, (3.45)
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Figure 3.5: Leading order diagrams for the slave-boson self-energy.

with the quasi-particle weight from Eq. (3.38)

Z0 = 1−N (ν0t )2
∫

dε1dε2

[

θ(ε1)θ(ε2)

(ε1 +ε2 +E1)2
+ θ(ε1)θ(ε2)

(ε1 +ε2 +E−1)2

]

. (3.46)

All these integrals are divergent. Adopting a “sharp” ultra-violet (UV) cutoff D0 for the inte-
grals ∝

∫D0
−D0

dε, they scale as ∼ D0 lnD0. The summation of all the contributions to fourth

order in t to the renormalized vertex V R allows one to safely perform the D0 → ∞ limit at
the end of calculations. This is discussed in Appendix F. The divergence of Σ0 affects both
the renormalized energy Ẽ0 and the quasi-particle weight Z0, which is only logarithmically
divergent. Their contribution to the renormalized vertex V R appears as t 4 order corrections
to the one-loop diagrams that we calculate in Section 3.4.3. We stress again that the correc-
tions in the tunnel coupling t in Eqs. (3.45) and (3.46) do not depend on λ, verifying the
assumptions used to derive the fixed-point action Eq. (3.42).

3.4.2 Lead/dot electrons self-energy

The diagrams giving the leading contributions to the lead/dot electrons self-energy are simi-
lar to those illustrated in Fig. 3.5, with the difference that the slave-boson lines are contracted
instead of the dot/lead ones. The self-energy of the lead electrons reads

Σc (iωn) =− t 2

β2

∑

l ,iνn ,iω1

F0(iνn)Dl (iω1) [F1 (iνn + iωn − iω1)+F−1 (iνn + iω1 − iωn)]

= t 2

β

∑

l ,iω1

Dl (iω1)

[

b(λ)

(

1

iωn − iω1 −E1
+ 1

iω1 − iωn −E−1

)

+

+ b(λ+E1)

iω1 − iωn
+ b(λ+E−1)

iωn − iω1 +E−1

]

,

(3.47)

with b(ε) =
(

eβε−1
)−1

the Bose-Einstein distribution. In the projection limit λ → ∞ this
expression vanishes and can then be neglected. This proves the validity of the assumption of
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Figure 3.6: Illustration of the one-loop contribution to the vertex.

Section 3.3.2, stating the invariance of the bulk Green’s functions upon the integration of the
high energy modes for a local interaction. The calculation in the case of the dot electrons is
completely similar and leads to the same result.

3.4.3 One-loop diagrams

The one-loop diagrams in Fig. 3.6, are the leading contribution to the vertex function Eq.
(3.28). They are similar to those giving the self-energy in Fig. 3.5, but without the contraction
of the lead electrons lines. They read

V ′
a =− t 2

β

∑

l ,iωn

Dl (iωn)F1(iν+ iω− iωn)

=−ν0t 2
∫

dε
1− f (ε)

ε+E1 −Σ0(λ)
,

V ′
b =− t 2

β

∑

l ,iωn

Dl (iωn)F−1(iν+ iωn − iω)

=−ν0t 2
∫

dε
f (ε)

ε−E−1 +Σ0(λ)
.

(3.48)

The analytical continuations iω → 0 and iν → Ẽ0 must be taken after the summation over
the Matsubara frequencies to deal correctly with the analytic structure of the free Green’s
functions. The continuum limit has been taken for the summation running over the band-
width. In the zero temperature limit, the summation of the two contributions V ′ = V ′

a +V ′
b ,

expanded to second order in t 2, reads

V ′ = ν0t 2 ln
E1

E−1
+Nν3

0t 4
∫

ε1,2,3>0
dε1,2,3

(

∑

s=±1

1

ε1 +ε2 +Es

)[

∑

s±1

s

(ε3 +Es)2

]

. (3.49)

The first term of this expression makes the connection with the Schrieffer-Wolff transforma-
tion that we applied in Section 2.2. The second contribution exhibits a divergence essentially
coming from the renormalized pole Eq. (3.45). The number of variables in the integral can
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be reduced switching to the exponential regularization
∫D0

0 dε→
∫∞

0 dεe−ε/D0 . Following the
change of variable ε1 +ε2 → ε1, ε2 can be integrated obtaining

V ′ = ν0t 2 ln
E1

E−1
+Nν3

0t 4
∫

ε1,3>0
dε1,3

(

∑

s=±1

ε1

ε1 +Es

)[

∑

s±1

s

(ε3 +Es)2

]

e
− ε1+ε3

D0 . (3.50)

We can switch back again to the sharp regularization, what allows one to calculate the re-
maining integrals as shown in Appendix F. This procedure must be carried out in the same
way for all diverging integrals to obtain the correct result and it is tacitly assumed in the fol-
lowing. Notice that the first term in Eq. (3.50) provides the leading contribution to Eq. (3.2),
corresponding to the Schrieffer-Wolff transformation.

The necessity to multiply the vertex function by the slave-boson quasi-particle weight Z0,
required by Eq. (3.41), provides a further contribution to fourth order in t

V ′′ =−Nν3
0t 4 ln

E1

E−1

∫

ε>0
dε

∑

s=±1

ε

(ε+Es)2
. (3.51)

3.4.4 The large-N limit and second order diagrams

We consider now the genuine second order diagrammatic contributions to the vertex func-
tion Eq. (3.28). They can be divided in two classes. The first ones are discussed in Section
3.4.4.1 and involve the repeated action of the bare interaction of order t 2 in Eq. (3.10) re-
ported as six-leg vertices in Fig. 3.3. The second ones imply different contractions of the lead
or dot lines in the bare interaction of order t 4 in the action Eq. (3.10). They are reported in
Fig. 3.3 as ten-leg vertices and their contribution is discussed in Section 3.4.4.2. The calcu-
lation can be further simplified by considering the limit of a large number of channels N ,
where certain diagrams are eliminated. Nevertheless our approach remains valid for any
value of N .

3.4.4.1 Diagrams from combinations of the six-leg vertex

Part of the diagrams contributing to the vertex function Eq. (3.28) are listed in Fig. 3.7. They
are built by combining two six-leg vertices from Fig. 3.3. These contributions are all of order
Nν3

0t 4 and dominate in the large-N limit. In Fig. 3.8, we show which diagrams are neglected
in this approximation. They result from the contraction of the quantum dot electron d lines
within the same six-leg vertex.
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Figure 3.7: Diagrams of order N t 4 derived by the repeated action of the six-leg vertices in Fig. 3.3. The
diagrams V3,4, particle-hole symmetric to V1,2, are readily obtained by inverting the overall signs and
making the substitution En → E−n .

To give a general illustration of how calculations work, only the calculation of the diagram
V1 is explicitly provided, the others being similar. This reads

V1 =
N t 4

β3

∑

klm,iω1,2,3

Gk (−iω1)Dl (iω2)Dm(−iω3)×

F 2
1 (iν+ iω+ iω3)F0(iν+ iω+ iω1 + iω2 + iω3) . (3.52)

The choice of the signs of the Matsubara frequencies inside the free propagators is different
from that, more natural, illustrated in Fig. 3.7. This choice is actually arbitrary, but it is useful
to simplify calculations. Positive signs for the frequencies in the argument of the bosonic
propagators F0,1 allow one to automatically discard all the contributions from their poles,
proportional to +λ. For instance, when performing the summation over iω1, the pole of F0

is responsible for a contribution proportional to f (λ), which vanishes in the λ → ∞ limit.
This is similar to what happens for the lead/dot electron self-energies in Eq. (3.47). Only
poles coming from lead/dot fermion propagators give non zero contributions. The result



3.4. CALCULATION OF THE VERTEX 67

Figure 3.8: Example of diagram derived from the
repeated action of the six-leg vertex in Fig. 3.3
which is neglected in the large-N limit.

Figure 3.9: Example of diagram derived from the
ten-leg interaction in Fig. 3.3 which is neglected
in the large-N limit.

reads

V1 = N t 4
∑

klm

f (−εk ) f (εl ) f (−εm)

(εm +E1)2(εl −εk −εm)

=−Nν3
0t 4

∫

ε1,2>0
dε1,2

ε1

(ε2 +E1)2(ε1 +ε2)
.

(3.53)

It can be checked that a different choice for the frequency sign in Eq. (3.52) leads to the
same result. In Fig. 3.7 the diagrams V3 and V4 are omitted. These terms are the particle-
hole symmetric of the diagrams V1 and V2. They are readily obtained by inverting the overall
sign of these contributions and making the substitution En → E−n and they are reported in
Appendix F. Notice that, to order t 4, the corrections to the pole Eq. (3.44) and the quasi-
particle weight Z0 are subleading and one can safely make the analytical continuation iν→
λ.

3.4.4.2 Diagrams from the ten-leg vertex

Most of the previous considerations also apply to the diagrammatic contributions involving
the ten-leg interaction of order t 4 in the action Eq. (3.10). The diagrams dominating in the
large-N limit are plotted in Fig. 3.10. Only “particle” contributions are illustrated. Their
particle-hole symmetric equivalents V10,11,12 are obtained in the same way as in the previous
section, that is by inverting the overall sign and making the substitution En → E−n . The
results are summarized in Appendix F. In Fig. 3.9 we report, as an example, a diagram which
is neglected in the large-N limit.
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Figure 3.10: Contributions to the vertex from the ten-leg interaction of order t 4 in Fig. 3.3. Also in this
case we omit V10,11,12. These diagrams can be readily obtained by inverting the sign and making the
substitution En → E−n . Notice V9 = V a

9 +V b
9 = 2V a

9 .

The summation, carried out in Appendix F, of all the leading contributions in the large-N
limit to fourth order in t results in Eqs. (3.2) and (3.3), in agreement with the Friedel sum
rule.

3.4.5 Total charge conservation and the Friedel sum rule

We come back to Eq. (3.29). All the calculations performed for the vertex function Vc can be
repeated for Vd in Eq. (3.26), with the result that Vd =−Vc . The proof of the Friedel sum rule
gives more physical insight on why Eq. (3.29) holds. Using the fact that the total number of
electrons in the system N̂t is conserved by the Hamiltonian, one can replace n̂ = N̂t − n̂L , n̂L

being the number of electrons in the lead, and transfer the Coulomb interaction to the lead.
Therefore, the low energy model for the dot is the same as for the lead, namely Eq. (2.35), but
the strength of the scattering potential for dot electrons, noted Vd (εd ), is now given by the
Friedel sum rule

N̂t −〈n̂〉 = 〈n̂L〉 =− 1

π
arctan

[

πν0Vd (εd )
]

= Nt −
(

− 1

π
arctan

[

πν0Vc (εd )
]

)

. (3.54)

An alternative formulation is that the phase shift accumulated after backscattering at the
boundary is δ(εd ) for lead electrons and δt −δ(εd ) for dot electrons, where δt = N̂t /π.
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3.5 Conclusions

In this chapter, we illustrated in detail the renormalization group arguments which allow us
to determine the low energy Fermi liquid fixed point of the Coulomb blockade Hamiltonian
Eq. (iv). The result was checked to fulfill the Friedel sum rule. The ability to integrate the
high energy modes and rely on diagrammatic techniques to carry out perturbative calcula-
tion in the tunnel coupling t , motivated our introduction of slave-bosons corresponding to
the charge occupation of the quantum dot. The integration of the high energy slave-bosons
is a first step to obtain the effective action in Coulomb blockade regimes. It provides a gen-
eral method to obtain precise results more easily than with the Schrieffer-Wolff transforma-
tion. Diagrammatic calculations to fourth order in the tunnel coupling t are then carried
out to calculate the renormalized vertex of the Coulomb blockade theory. This provides the
potential scattering coupling affecting, with opposite amplitudes, lead and dot electrons,
coherently with the Friedel sum rule.

This chapter also has the merit of introducing part of the techniques adopted in the fol-
lowing chapters where spinful electrons are considered. This case is more difficult because
of the emergence of Kondo correlations. But, despite these complications, the final result
is essentially the same, that is the validity of the Korringa-Shiba relation, leading to charge
relaxation resistance universality.
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In this chapter we develop the analytical methods to obtain the behavior of the differential
capacitance and the charge relaxation resistance in a quantum RC circuit described by the
Anderson model. The attested Fermi liquid behavior at low energy [93] and the validity of
the Friedel sum rule [96] for the Anderson model are actually sufficient to ensure the validity
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of the low energy effective Hamiltonian Eq. (2.10). As illustrated in Section 2.5, this allows
us to show the generalized Korringa-Shiba relation Eq. (2.7), leading to Eq. (2.8). For a num-
ber of channels N = 2, this formula predicts universality of the charge relaxation resistance
Rq = h/4e2. The possibility to break channel-symmetry Eq. (2.6) by switching on a magnetic
field is responsible for the loss of universality out of particle-hole symmetry. Eq. (2.70) de-
scribes this loss and requires the knowledge of the charge occupation and magnetization of
the quantum dot. In this chapter, we illustrate a variety of analytical methods to calculate
exactly these quantities. In Section 4.1, the numerical solution of the Bethe ansatz equa-
tions for the ground state of the Anderson model is presented. The behavior of the charge
and charge-magneto susceptibilities, χc and χm respectively, is obtained for the whole phase
diagram of the Anderson Hamiltonian Eq. (v). The validity of the Fermi liquid approach is
tested and compared to numerical renormalization group calculations [76], as previously
shown in Fig. 2.8. In Section 4.2, switching to the path-integral formalism we show that
the introduction of slave-states allows for an exact mapping of the Anderson model onto
the Kondo Hamiltonian. The difficulties peculiar to Kondo physics and its solution within a
Fermi liquid theory are discussed. In Section 4.3, renormalization group methods, similar to
those presented in the previous chapter for the Coulomb blockade model, are applied to de-
rive the low energy Fermi liquid Hamiltonian Eq. (2.10). Relying on previous works by Cragg
and Lloyd [104, 105, 106], the low energy Fermi liquid action is shown to read

S =
∫β

0
dτ

{

∑

kσ

c†
kσ(τ) (∂τ+εk )ckσ(τ)+V R

W

∑

kk ′σ
c†

kσ(τ)ck ′σ(τ)

}

. (4.1)

The proof that this action describes the low energy quasi-particles in the lead is interesting
for essentially two reasons. On one hand, it applies to any order in t and extends the proof
of the low energy potential scattering Hamiltonian provided in Section 2.2.2. On the other
hand, it has a practical interest. The calculation to the fourth order in t of V R

W in Eq. (4.1)
provides, with the Friedel sum rule, an analytical formula for the charge susceptibility of the
dot out of particle-hole symmetry in the Kondo regime

χc =
Γ

π

{

1

(εd +U )2
+ 1

ε2
d

+ 2Γ

π
.

[

1

(εd +U )3
− 1

ε3
d

]

+

+ Γ

π

[

(

1

εd +U
− 1

εd

)3

+2

(

1

εd +U
− 1

εd

)

(

1

ε2
d

− 1

(εd +U )2

)

ln
εd +U

−εd

]}

. (4.2)

This expression extends previous analytical results obtained by Bethe ansatz at particle-hole
symmetry [107] and it is useful to carry out the analytical description of the giant charge
relaxation resistance, to be discussed in Section 4.4.

An important point of the following discussion is that V R
W in Eq. (4.1) is only a part of

the total renormalized vertex, to be defined in a similar way as in Section 3.3.1. The total
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renormalized vertex reads, see Eq. (2.81),

V R = V R
J S ·s +V R

W 1 , (4.3)

with S and s the vector composed of the SU(2) Pauli matrices acting on the spin of the quan-
tum dot and that of the conduction electrons and 1= δσσ′δττ′ is the diagonal matrix. Eq. (4.3)
includes a spin-exchange and a potential scattering contribution, V R

J and V R
W respectively.

The fate of the spin-exchange part has been already sketched in Fig. 2.3, being responsible
for the universal phase-shift δK = π/2 of the low energy quasi-particles. The rigorous argu-
ment for the additivity of the spin-exchange and potential scattering phase-shifts Eq. (2.41)
is discussed in Section 4.2.4.

4.1 The Bethe ansatz solution of the Anderson model

In this section the zero temperature behavior at equilibrium of a quantum dot described by
the Anderson Hamiltonian is illustrated. We exploit the integrability of this model through
the Bethe ansatz. We observe the manifestations of Kondo physics, which cannot be ad-
dressed by perturbative approaches.

4.1.0.1 Phase diagram

The phase diagram in Fig. 4.1 represents the state of the isolated quantum dot in the An-
derson model as a function of the orbital energy εd and the Zeeman energy H . It is readily
obtained by diagonalizing the last two terms in Eq. (v) and describes the atomic limit, in
which the dot is decoupled from the lead. The Hilbert space of the quantum dot is com-
posed of four states defined by the charge occupation n and spin σ of electrons on the dot,
see Fig. 4.5. Charge and spin symmetry allow us to confine to the colored region of Fig. 4.1,
the same that is spanned by the Bethe ansatz equations. One could expect that a small hy-
bridization (Γ≪U ), between the quantum dot and itinerant electrons in the leads, does not
critically modify the phase diagram of the isolated quantum dot, the only important effect
being to smoothen the transitions between different states of the dot. We already mentioned
in Chapter 2, looking at Fig. 2.7, that this is not the case, in particular for what concerns
the quantum dot magnetization. It vanishes in the single charge region for Zeeman energies
below the Kondo temperature TK associated to the Anderson model [93, 111, 79, 78]

TK = 2

√

UΓ

πe
e

πǫd (ǫd+U )
2UΓ . (4.4)
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Figure 4.1: Phase diagram of the isolated dot in the presence of a magnetic field for the Anderson model
Eq. (v). The colored region is that spanned by the Bethe ansatz equations.

This reduced magnetization at low field is a signature of the formation of the Kondo singlet
to be discussed in detail in Section 4.2.3.

Outside the single charge region, strong spin-exchange correlations are suppressed and
the phase diagram of the dot weakly hybridized with the lead electrons follows that of the
isolated dot in Fig. 4.1, see also Fig. 2.7. H < 2εd and εd ≫ Γ define the empty orbital region,
where there are zero charges on the dot. Zeeman energies lower than H1 = ΓU /(U + 2εd )
and |εd | ∼ Γ define the mixed-valence region. This is the transient region from an empty to
a single-occupied quantum dot, in which Kondo correlations start setting up. Nevertheless,
the transition from an empty to a single occupied orbital out of the mixed-valence region
(H and 2εd > H1) lacks of Kondo correlations. This defines the valence fluctuation region
and can be addressed by perturbative approaches as it is shown in Section 4.4.3. The region
in which the charge on the dot is one and H > TK is the local moment region, first studied by
Anderson to explain the appearance of local moments in metals [103]. We start by discussing
the Kondo regime of the quantum dot.

4.1.1 The Bethe ansatz equations

The emergence of Kondo correlations can be understood by considering the mapping of the
Anderson Hamiltonian onto the Kondo Hamiltonian Eq. (2.37), that was obtained within the
Schrieffer-Wolff transformation [99] in Section 2.2.2. We showed that perturbative calcula-
tions give the behavior of the charge on the dot out of particle-hole symmetry, see Eq. (2.43).
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The validity of these perturbative calculations does not extend to observables related to the
spin of the quantum dot. Let us assume particle-hole symmetry, W0 = 0 in Eq. (2.39) and the
problem is mapped onto a pure Kondo Hamiltonian. We recall here that it reads

HKondo =
∑

kσ

εk c†
kσckσ+ JS ·s , (4.5)

with S the vector composed of the operators acting on the projections of the 1/2 spin of the
quantum dot in the three spatial dimensions and s = ∑

kk ′ττ′(c†
kτσττ′ck ′τ′)/2, with σττ′ the

matrix elements of the vector composed of the Pauli matrices. A perturbative calculation in
J of the magnetic susceptibility diverges logarithmically for temperatures going to zero [137]

χH = ∂〈m〉
∂H

= 1

4T

[

1−ν0 J + (ν0 J )2 ln
2πT

DeC+ 3
4

+ . . .

]

, (4.6)

where C = 0.5772. . . is Euler’s constant. This expression gives the physical interpretation of
the Kondo energy scale discussed in Section 2.6.1. If Eq. (4.6) is cast into the form

χH = ∂〈m〉
∂H

= 1

4T

[

1−
(

ln
T

TK

)−1

+ . . .

]

, (4.7)

this expression diverges for T = TK , giving the energy scale at which a perturbative approach
fails. The identification with Eq. (4.6) gives

TK = D

2π
eC+ 3

4 e
− 1

ν0 J (4.8)

and, performing calculations to higher orders in J , one obtains [61]

TK = D

2π
eC+ 3

4
√

ν0 Je
− 1

ν0 J (4.9)

in the SU(2) case. There are different ways to define the Kondo temperature [61]. They differ
by meaningless prefactors, as the definition given in Eq. (2.84) obtained from the expression
of the renormalized vertex. The necessity of mentioning these different definitions of TK will
become manifest in Section 4.3.1. Eq. (4.6) shows that it is not possible to obtain the zero
temperature expression of the quantum dot magnetization from perturbative calculations.
Eq. (2.70), proven in Section 2.5.1 for Rq in the Anderson model, requires the knowledge of
the charge-magneto susceptibility χm to study the charge relaxation resistance. This moti-
vates the search for methods alternative to perturbation theory, as the solution of the Bethe
ansatz equations for the ground state of the Anderson Hamiltonian.

The Bethe ansatz technique provides exact solutions for integrable one-dimensional prob-
lems. In the case of the Anderson Hamiltonian, it was devised by Wiegmann and Tsvelick
[78, 79, 138] and Okiji and Kawakami [139, 140]. The ground state is described using two
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Figure 4.2: Charge susceptibility (left) and charge-magneto susceptibility (right) as a function of the
orbital energy εd and the Zeeman energy H. The susceptibilities are in units of 1/Γ. In the insets the
same quantities are plotted on a logarithmic scale and the zone of appearance of the giant peak of the
charge relaxation resistance can be appreciated. It is the region, following TK , in which χc is close to
zero, while χm acquires important values because of the formation of the Kondo singlet.

separate spin and charge excitations called spinons and holons, carrying respectively a quan-
tum of spin 1/2 and charge e. Their respective distribution functions ρ(k) and σ(λ) satisfy
a system of coupled integral equations detailed in Appendix G. Analytical results from this
approach are possible only at particle-hole symmetry or in the absence of a magnetic field
in the mixed-valence region. We take advantage of them in Section 4.4.1, to obtain the scal-
ing limit Eq. (2.73) for the charge relaxation resistance in the Kondo regime. The numerical
solution of the Bethe ansatz equations provides the charge occupation and magnetization
of the quantum dot as functions of the orbital energy εd and the magnetic field H . An ex-
ample is given in Fig. 2.7 for U /Γ = 20. Focusing on the logarithmic insets of Fig. 2.7, we
observe markedly different behaviors for the charge and spin responses of the system, as
a consequence of spin-charge separation in the solution of the model. The charge still re-
produces a behavior which is coherent with the phase diagram of the isolated dot in Fig.
4.1, except that the position of the Coulomb peak of the static charge susceptibility χc , ex-
pected at εd = 0, is strongly renormalized and given by ε∗d = 0, see Fig. 4.3. We recall that
ε∗d = εd+Γ/π ln(πeU /4Γ) [78, 93]. This is not the case for the magnetization. The zero magne-
tization regime penetrates in the local moment region for Zeeman energies which are lower
than the Kondo temperature Eq. (4.4). This is plotted in green in the insets of Figs. 2.7 and
4.2.
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Figure 4.3: Left) Charge susceptibility χc for U /Γ = 20. The circles (left to right) correspond to H/Γ =
0.1, 5 and 15 respectively and show the displacement of the Coulomb peak, also visible in Fig. 4.2. The
solid line is obtained for H/Γ= 0.0001 and almost coincides with H/Γ= 0.1, showing the very weak de-
pendence of χc on the magnetic field in the Kondo regime. For higher Zeeman energies, H/Γ= 5 and 15,
χc converges to the Lorentzian form Eq. (4.62) (dashed lines) derived in the valence-fluctuation region.
Right) Comparison of χc obtained at zero magnetic field with Bethe ansatz (dashed lines) and analyti-
cal calculations (solid lines). χ1

c is the leading contribution Eq. (2.45), while χ2
c the corrected version Eq.

(4.2). These two functions diverge for εd = 0, where the Coulomb peak appears and the perturbation
approach to derive Eqs. (2.45) and (4.2) breaks down.

4.1.2 Preliminary considerations on C0 and Rq

From the numerical calculation of the charge occupation and magnetization of the quantum
dot in Fig. 2.7, the susceptibilities χc and χm are readily obtained, see Fig. 4.2. Considering
Eq. (2.70) for the charge relaxation resistance, the presence of a peak along TK for χm , in a re-
gion in which χc is almost constant, is responsible for the giant charge relaxation resistance,
discussed in detail in Section 4.4.1. Otherwise the two quantities have the same behavior for
large magnetic fields along the H = 2εd line. Looking at Eq. (2.70), this feature gives a hint of
the asymptotic behavior of Rq = h/2e2, to be discussed in detail in Section 4.4.3.

We recall here Eq. (1.39), stating that the differential capacitance C0 coincides with e2χc .
The numerical calculation by Bethe ansatz and the analytical expression Eq. (4.2) of the
charge susceptibility χc allow us to study the differential capacitance in the Anderson quan-
tum RC circuit. We focus especially on the insensitivity of χc to the magnetic field in the
region of appearance of the Kondo peak of χm . This is proven in Fig. 4.3, where χc is plotted
as a function of the orbital energy εd for different magnetic fields. χc displays a Coulomb
peak for ε∗d = 0 which starts moving following the line H = 2εd . At large fields and asym-
metries (H and 2εd ≫ H1), χc assumes the Lorentzian shape Eq. (4.62), that we shall obtain
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Figure 4.4: Left) Density of states of local holons on the dot Nh(ε). ε is the excitation energy. A Coulomb
peak emerges increasing the interaction parameter U /Γ and vanishes at zero energy as 8Γ/πU 2. This
quantity is the same as χc [141], which is plotted in Fig. 4.3. Right) Density of states of local spinons
Ns(ε). It behaves as the holonic one for U /Γ = 0 and develops the Abrikosov-Suhl resonance at zero
energy, the signature of the formation of the strongly correlated Kondo singlet state.

by a direct perturbative calculation in Section 4.4.3. A comparison with the analytical for-
mula Eq. (4.2), valid in the single charge region, is also plotted in Fig. 4.3. We notice that the
next-to-leading order corrections are important in the Kondo regime to obtain a quantitative
agreement. The divergence of Eq. (4.2) at εd = 0 signals the transition to the empty orbital
regime.

4.1.2.1 The differential capacitance C0 is proportional to the charge density of states

In Chapter 1, in the case of weak electron-electron interactions on the dot, we gave the inter-
pretation of the quantum capacitance Cq as the contribution, in series with the geometrical
Cg , caused by the fermionic statistics of electrons. We also showed that Cq , in the absence
of interactions, is proportional to the local density of states of the dot and so the differential
capacitance C0. The spin/charge separation arising in the Anderson model has deep conse-
quences on the physical interpretation of the differential capacitance in strongly interacting
systems. We recall that charge and spin on the dot are carried by different dressed parti-
cles, called holons and spinons respectively. We report in Fig. 4.4 the density of states of
these excitations in the particle-hole symmetric case εd = −U /2. In the absence of interac-
tions (U /Γ = 0) they have the same shape, but their behavior becomes considerably differ-
ent with the increasing of the interaction parameter U /Γ. Both develop well pronounced
peaks but for different excitation energies, signaling the appearance of separated charge and
spin states. In the case of the holons, the excited charge state appears for energies close to
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ε = U /2, exactly the energy required to change the charge on the dot at particle-hole sym-
metry. In Ref. [141], it is shown that the density of states of the holons is equal to the static
charge susceptibility χc , giving then the differential capacitance C0. At particle-hole sym-
metry, this quantity scales to zero as 8Γ/πU 2, see Eq. (4.2). This in striking contrast to what
happens for the spinon density of states: a huge peak appears at zero energy as a signature
of the strongly correlated Kondo singlet. It is called the Abrikosov-Suhl resonance [142]. The
differential capacitance C0 is completely insensitive to this peak, which strongly affects the
total density of states on the dot.

4.2 Kondo physics in the Anderson model

In this section we illustrate a renormalization group analysis of the Anderson model. We dis-
cuss the reason for the failure of perturbative approaches in the Kondo regime within a renor-
malization group framework and its solution with a Fermi liquid theory. As for the Coulomb
blockade model, the introduction of slave-states provides a platform to perform systematic
perturbative computations. We adopt Barnes’ formulation of the Anderson Hamiltonian
[143]: slave-bosons and para-fermions are introduced to describe the Hilbert space of the
quantum dot. For a single electron on the dot, the high energy sectors, corresponding to
zero and two charges on the dot, can be integrated, which gives a rigorous mapping of the
Anderson model onto the Kondo Hamiltonian.

4.2.1 Path integral approach with slave states and link to the Schrieffer-
Wolff transformation

In Fig. 4.5, the basis introduced by Barnes is illustrated. The states describing a single spin σ

electron on the dot are created by para-fermion operators f †
σ acting on a new vacuum called

|0〉λ. The empty and doubly occupied states of the quantum dot orbital are created by slave-
boson operators b†

0 and b†
2 respectively. The original quantum dot operators dσ can then be

expressed as a function of these new operators

dσ = b†
0 fσ+σ f †

−σb2 . (4.10)

The factor σ is necessary to respect the fermionic commutation relations of the original
quantum dot operators dσ. The action corresponding to this new representation is readily



80 CHAPTER 4. THE ANDERSON MODEL AND THE KONDO REGIME

obtained

SAM =−
∑

iωn kσ

c†
kσ(iωn)G−1

kσ(iωn)ckσ(iωn)−
∑

iωnσ

f †
σ(iωn)F−1

σ (iωn) fσ(iωn)

−
∑

iνn

(

b†
0(iνn)F−1

0 (iνn)b0(iνn)+b†
2(iνn)F−1

2 (iνn)b2(iνn)
)

+ t
√

β

∑

iωn iνn
kσ

(

c†
kσ(iωn)b†

0(iνn) fσ(iνn + iωn)+σc†
kσ(iωn) f †

−σ(iνn − iωn)b2(iνn)+c.c.
)

, (4.11)

with the free propagators

G−1
kσ(iωn) =iωn −εk , (4.12a)

F−1
σ (iωn) =iωn −λ , (4.12b)

F−1
0 (iνn) =iνn +εd −λ , (4.12c)

F−1
2 (iνn) =iνn −εd −U −λ . (4.12d)

Notice that the para-energy λ has been inserted to perform Abrikosov’s projection, discussed
in Section 3.1. It eliminates unphysical states like, for instance, f †

σ f †
−σ |0〉λ. All the energies of

the dot slave-states have been shifted by −εd for practical purposes. For −U ≪ εd ≪ 0, one
charge is fixed on the dot and the quadratic form of the action Eq. (4.11) allows for the exact
integration of the high energy charge sectors associated to the slave-boson fields b0 and b2.
A mapping onto a Kondo action plus a potential scattering term is obtained

S′
AM =−

∑

iωn kσ

c†
kσ(iωn)G−1

kσ(iωn)ckσ(iωn)−
∑

iωnσ

f †
σ(iωn)F−1

σ (iωn) fσ(iωn)+

1

β

∑

kk′σσ′ττ′
iω1iω2iνn

[

J Sττ′ ·sσσ′ +W δσσ′δττ′
]

c†
kσ(iω1)ck ′σ′(iω2) f †

τ (iνn + iω2) fτ′(iνn + iω1) ,

(4.13)

Energy

2εd+U

εd

0

1st

quantization

|2〉
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d
†
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†
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†
σ |0〉

|0〉

b
†

2
|0〉

λ

f
†
σ |0〉λ

b
†
0
|0〉

λ

Figure 4.5: Different representations of the Hilbert space of the quantum dot. The energies are given for
an isolated dot.
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Free propagators Bare interaction

Figure 4.6: Diagrammatic structure of the Anderson model. The arrow pointing to the center of the
vertex gives the values of the Matsubara frequencies in Eqs. (4.14) and (4.15).

with

J =−2t 2 [F2(iνn + iω1 + iω2)+F0(iνn)] , (4.14)

W = t 2

2
[F2(iνn + iω1 + iω2)−F0(iνn)] . (4.15)

The diagrammatic structure of the theory is pictured in Fig. 4.6. Recalling the discussion of
Section 3.3, to leading order in t , it is possible to discard the frequency dependence of the
couplings and the results of the Schrieffer-Wolff transformation Eqs. (2.37), (2.38) and (2.39)
are readily obtained. The poles of the free propagators Eqs. (4.12a) and (4.12b) define the low
energy fixed point to the leading order. Performing the substitutions iω1,2 → 0 and iνn → λ,
Eqs. (4.14) and (4.15) recover Eqs. (2.38) and (2.39). Before repeating the steps performed for
the vertex calculations for the Coulomb blockade Hamiltonian in Section 3.4, the problems
raised by the anti-ferromagnetic Kondo coupling in Eq. (4.13) deserve a separate discussion.

4.2.2 The failure of a perturbative approach

The perturbative calculations in J leading to Eq. (4.6) have been carried out taking as unper-
turbed ground state a spin S on the dot disconnected from the lead electrons. The divergence
at low energies of Eq. (4.6) reveals that the real ground state is considerably different from
it. The spin-exchange interaction in Eq. (4.5) correlates an infinite number of degrees of
freedom in the lead with the spin on the dot. This is a signature of the emergence at low en-
ergy of strong Kondo correlations. This could seem in contradiction with the scaling analysis
presented in Section 3.3, classifying both the potential scattering and the spin-exchange cou-
pling as marginal interactions and then not really critical for the low energy physics. Indeed,
we did not specify that the scaling analysis actually describes the renormalization flow of op-
erators only to leading order (0-loop). Next-to-leading order corrections must be taken into
account to fully determine the behavior of marginal operators. Abrikosov [122, 123] was the
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first to introduce para-fermion states for the path-integral description of the Kondo model

SK =
∫β

0
dτ











∑

kσ

c†
kσ(∂τ+εk )ckσ+

∑

σ

f †
σ(∂τ+λ) fσ+ J

∑

σσ′ττ′
kk ′

(

c†
kσsσσ′ck ′σ′

)

·
(

f †
τ Sττ′ fτ′

)











(4.16)

and calculate the next-to-leading corrections to the vertex function, defined in a similar way
as in Eq. (3.28),

V Λ

σσ′,ττ′(k, iω1, iΩ1;k ′iω2, iΩ2) =−β
〈ckσ(iω1) fτ(iΩ1) f †

τ′(iΩ2)c†
k ′σ′(iω2)〉

∣

∣

∣

c

Gk (iω1)Gk ′(iω2)Fτ(iΩ1)Fτ′(iΩ2)
. (4.17)

This reads

V Λ

J = Sττ′ ·sσσ′

(

J − ν0 J 2

2
ln

Λ

D
+ . . .

)

(4.18)

and diverges logarithmically forΛ→ 0. The anti-ferromagnetic coupling of the Kondo Hamil-
tonian, even if marginal according to the scaling analysis, increases logarithmically lowering
the running scale energy. The spin-exchange coupling is then a marginally relevant contri-
bution, that strongly affects the low energy quasi-particles of the system. We mention that
this is also the case for the BCS pairing, leading to superconductivity [131].

4.2.3 A Fermi liquid theory for the Kondo Hamiltonian

The proof of the Fermi liquid behavior at low energy for the Kondo Hamiltonian has required
a huge effort and has been definitively demonstrated with the numerical renormalization
group devised by Wilson. The interested reader can find a comprehensive review in Refs.
[61, 109]. A more intuitive explanation of his conclusions is given by the following argument
by Nozières [95, 144]. A spatial representation of the Kondo problem is pictured in Fig. 4.7
and it is described by the Hamiltonian

H = t
∞
∑

i=0,σ
c†

i ,σci+1,σ+ J
∑

σσ′
S ·

(

c†
0σsσσ′c0σ′

)

, (4.19)

with t the hopping constant and a the lattice spacing. Only electrons adjacent to the impu-
rity interact with the spin of the quantum dot. At half-filling, the asymptotic behavior of the
wave-function for low energy electrons far from the dot is ψ(x) ∝ sin(kF x), with kF = π/2a.
The wave-function has to vanish at the boundary of the chain x = 0, defined by the quantum
dot site. The discussion of the previous section predicts that a strong coupling regime appears
for energies Λ∼ TK and the effective coupling V Λ

J cannot be treated perturbatively anymore.
This situation is described by taking J =∞ in Eq. (4.19). Minimizing the anti-ferromagnetic
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Lead electrons chain

Quantum
dot

Figure 4.7: Spatial representation of the Kondo problem in the quantum RC circuit. In the strong cou-
pling limit, the adjacent electron to the quantum dot screens its spin preserving the Fermi liquid behav-
ior at long distance of the quasi-particles, phase-shifted by δK =π/2.

coupling requires just one conduction electron in x = 0 with a spin opposite to that of the
electron in the quantum dot. An electron is then trapped close to the dot to screen its spin,
which becomes invisible to the others electrons in the one-dimensional chain. This situa-
tion is pictured in the lower part of Fig. 4.7 and it is equivalent to eliminate one site from the
lead electron chain. Here, the lead electron wave-function has to vanish in x = a instead of
x = 0, what implies a phase-shift of the lead electrons by δK =π/2. This is exactly the Kondo
phase-shift previously derived by symmetry considerations in Section 2.2.2. This discussion
points out that the wave-function of the lead electrons remains that of free quasi-particles,
justifying the Fermi liquid behavior at low energy.

4.2.4 Cragg & Lloyd’s argument for the potential scattering correction

How this kind of considerations is affected by the presence of a potential scattering term,
breaking particle-hole symmetry, was addressed by Cragg and Lloyd [104, 105, 106]. They
realized the additivity of the Kondo phase-shift δK with the phase-shift caused by potential
scattering, summarized by Eq. (2.41). What is remarkable about this relation is that the two
phase-shifts can be calculated independently. The strong Kondo coupling limit for the low
energy quasi-particles forces δK to equal π/2, regardless of the value of the spin-exchange
coupling J . This is a manifestation of the universality of the Kondo problem. The potential
scattering term in Eq. (2.37) can be diagonalized by defining new operators [145, 146]

q†
kσ = c†

kσ+
∑

k ′
c†

k ′σ

〈k ′|TW |k〉
k −k ′+ i 0+ , (4.20)
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leading to

H =
∑

kσ

εk q†
kσqkσ+

∑

kk ′σσ′
Jkk ′S ·

(

q†
kσsσσ′qk ′σ′

)

, (4.21)

with

Jkk ′ = J |Γ(k)|2 , (4.22)

Γ(k) =
∑

k

[

δ(k −k ′)+
〈k ′|TW |k〉

k −k ′+ i 0+

]

. (4.23)

TW is the T-matrix associated to the potential scattering interaction, see Appendix C. As the
low energy theory is that of a Fermi liquid, some quasi-particle operators a†

kσ must exist to
fully diagonalize Eq. (2.37) and not only the potential scattering term. A transformation like
Eq. (4.20) should apply with the whole T-matrix T instead of TW

a†
kσ = c†

kσ+
∑

k ′
c†

k ′σ

〈k ′|T |k〉
k −k ′+ i 0+ , (4.24)

leading to a full diagonal Fermi liquid Hamiltonian like Eq. (2.9)

H ′ =
∑

kσ

εk a†
kσak ′σ . (4.25)

At the same time, also Eq. (4.21) is diagonalized by an analog transformation

a†
kσ = q†

kσ+
∑

k ′
q†

k ′σ

〈k ′|TJ |k〉
k −k ′+ i 0+ , (4.26)

involving TJ , the T-matrix associated to the spin-exchange interaction in Eq. (4.21). Eqs.
(4.20), (4.24) and (4.26) lead to the following relation [106]

〈k|T |k〉 = 〈k|TW |k〉+〈k|TJ |k〉−2πi 〈k|TW |k〉〈k|TJ |k〉 . (4.27)

Applying Eq. (C.9) the additivity of the phase-shifts δK and δW claimed in Eq. (2.41) is readily
checked and has been verified with numerical renormalization group calculations [104]. The
contribution to the total phase-shift given by the potential scattering term is non-universal
and gives the corrections to the charge occupation of the quantum dot out of particle-hole
symmetry thanks to the Friedel sum rule, as we show in the following discussion.

4.3 Calculation of the vertex in the Anderson model

The steps required for the calculation of the renormalized vertex to fourth order in t in the
Anderson model recover those carried in Section 3.4 for the Coulomb blockade model. There
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Figure 4.8: Diagrammatic series for the vertex function Eq. (4.17).

are essentially two differences. The first one is that the limit Λ→ 0 cannot be carried out for
V R

J in Eq. (4.3) because of the appearance of infra-red logarithmic divergencies. The second
one is that less diagrams have to be calculated because of the smaller number of vertices
associated to the action Eq. (4.13), see Fig. 4.6 and Fig. 4.8.

In a similar way as in Section 3.4, the expression of the full para-fermion propagator can
be written with the help of a Dyson equation

Fσ(iωn) =−〈 fσ(iωn) f †
σ(iωn)〉 = Z0

iωn −Σ(iωn)
. (4.28)

The self-energy is given, to leading order, by the one-loop diagram in Fig. 4.9, whose corre-
sponding expression is

Σ(iωn) = 2

β

∑

k,iΩn

Gk (iΩn)W (iωn − iΩn , iΩn , iΩn)

= t 2
∑

k

[

f (εk )+b(εd +U +λ)

iωn +εk −εd −U −λ
− f (εk )+b(−λ+εd )

iωn −εk −λ+εd s

]

.
(4.29)

Notice that the spin-exchange part of the interaction in Eq. (4.13) does not give any contri-
bution to the self-energy. This is a direct consequence of the antisymmetric properties of the
SU(2) Pauli matrices, whose trace is zero. The limit λ→∞ can be taken with the continuum
limit for the summation over momenta with a sharp cutoff D0

Σ(iωn) = Γ

π

[

ln
εd +U +λ− iωn

D0
+ ln

λ−εd − iωn

D0

]

. (4.30)

The self-energy is logarithmically divergent in the cutoff D0, which must be adopted in inter-
mediate calculations, but it can be sent safely to infinity when computing observables. The
corrections to the para-fermion pole and its quasi-particle weight are readily found

ε̃d =λ+ Γ

π

(

ln
εd +U

D0
+ ln

−εd

D0

)

, (4.31)

Z0 = 1− Γ

π

(

1

εd +U
− 1

εd

)

= 1− ν0

2
J0 . (4.32)
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Figure 4.9: One-loop contribution to the self-energy of the para-fermions.

J0 is the spin-exchange coupling obtained within the Schrieffer-Wolff transformation [99] in
Eq. (2.38). We recall that the Kondo regime in the Anderson model requires −U < εd < 0,
implying that the arguments of the logarithms in Eq. (4.31) are positive. Notice also that the
quasi-particle weight, differently than in the Coulomb blockade model, does not diverge in
the D0 → ∞ limit. The diagrammatic series for the four-point vertex function Eq. (4.17) is
illustrated in Fig. 4.8. The renormalized vertex, defined as in Eq. (3.41), can then be written
as the sum of four contribution V R = Z0V = V1 + VZ + V a + V b . V1 is given by the leading
contributions in Fig. 4.8 and it can be put into the form

V1 = S ·sJ0 + 1W0 , (4.33)

with J0 and W0 given by the Schrieffer-Wolff transformation, Eqs. (2.38) and (2.39). The
corrections to this contribution given by the renormalized pole, Eq. (4.31), and the quasi-
particle weight, Eq. (4.32), are collected in VZ , namely

VZ = S ·s

[

ν0

(

J 2
0

4
+4W 2

0

)(

ln
−εd (εd +U )

D2
0

)

−
ν0 J 2

0

2

]

+ 1
ν0 J0W0

2

[

ln
−εd (εd +U )

D2
0

−1

]

. (4.34)

The contributions V a and V b correspond to the two last diagrams in Fig. 4.8. Only the cal-
culation of V a needs to be illustrated, that of V b being similar:

V a =− 1

β

∑

k,iωn

Fσ(iωn)Gk (iωΛ+ iω− iωn)×
[

Sβτ ·sασJiωn−iω,iωΛ+iω−iωn ,iω+δβτδασWiωn−iω,iωΛ+iω−iωn ,iω
]

×
[

Sτ′β ·sσ′αJiωn−iω,iω,iωΛ+iω−iωn +δβτ′δασ′Wiωn−iω,iω,iωΛ+iω−iωn

]

. (4.35)

Applying Eq. (E.6), for N = 2, the relation

(

Sβτ ·sασ
)(

Sτ′β ·sσ′α
)

=−1

2
Sτ′τ ·sσ′σ+

3

16
δττ′δσσ′ , (4.36)



4.3. CALCULATION OF THE VERTEX IN THE ANDERSON MODEL 87

allows one to readily cast V a in the form of Eq. (4.3), with

V a
J = 4

t 4

β

∑

k,iωn

F (iωn)Gk (iωΛ+ iω− iωn)×
[

F 2
2 (iωΛ+ iω)+F2(iωΛ+ iω)F0(iωn − iω)

]

, (4.37)

V a
W =− t 4

β

∑

k,iωn

F (iωn)Gk (iωΛ+ iω− iωn)×
[

F 2
0 (iωn − iω)+F 2

2 (iωΛ+ iω)+F0(iωn − iω)F2(iωΛ+ iω)
]

. (4.38)

The Matsubara sums are carried out as in the previous chapter. Here we notice that logarith-
mic divergences prevent to perform the limit Λ → 0. These divergences are circumvented
by performing integrals over momenta within the interval Λ < |ε| < D0. This is equivalent
to modify the analytical continuations of the external frequencies in the diagrams, following
Solyom [124]

iωΛ → ε̃d −Λ ,

iω→ 0.
(4.39)

The result reads

V a
J =−4ν0t 4

[

1

(εd +U )2
ln

Λ

D0
+ 1

εd (εd +U )

(

ln
−εd

D0
− ln

Λ

D0

)]

, (4.40a)

V a
W = ν0t 4

[

1

ε2
d

(

1− ln
−εd

D0
+ ln

Λ

D0

)

+ 1

εd (εd +U )

(

ln
−εd

D0
− ln

Λ

D0

)

+ 1

(εd +U )2
ln

Λ

D0

]

.

(4.40b)

The same kind of considerations can be carried for V b , reading

V b =− 1

β

∑

k,iωn

Fσ(iωn)Gk (iωn + iω− iωΛ)×
[

Sτ′β ·sασJiωΛ−iω,iωn+iω−iωΛ,iω+δβτ′δασWiωΛ−iω,iωn+iω−iωΛ,iω
]

×
[

Sβτ ·sσ′αJiωΛ−iω,iω,iωn+iω−iωΛ
+δβτδασ′WiωΛ−iω,iω,iωn+iω−iωΛ

]

. (4.41)

The relation dual to Eq. (4.36)

(

Sτ′β ·sασ
)(

Sβτ ·sασ′
)

=+1

2
Sτ′τ ·sσ′σ+

3

16
δττ′δσσ′ , (4.42)
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is applied to obtain the final result in the form of Eq. (4.3), with

V b
J =−4ν0t 4

[

1

ε2
d

ln
Λ

D0
+ 1

εd (εd +U )

(

ln
εd +U

D0
− ln

Λ

D0

)

]

, (4.43a)

V b
W =−ν0t 4

[

1

(εd +U )2

(

1+ ln
Λ

D0
− ln

εd +U

D0

)

+ 1

εd (εd +U )

(

ln
εd +U

D0
− ln

Λ

D0

)

+ 1

ε2
d

ln
Λ

D0

]

.

(4.43b)

The summation of all the contributions from Eqs. (4.33), (4.34), (4.40) and (4.43) leads to the
final result

V R
J = J0 −

ν0

2
J 2

0 −ν0 J 2
0 ln

(

Λ
√

−εd (εd +U )

)

, (4.44a)

V R
W =W0 +

ν0

2
J0 W0 +

ν0

8
J 2

0 ln

(

εd +U

−εd

)

. (4.44b)

Notice that the UV cutoff D0 is absent from these equations and can be sent to infinity.
The potential scattering contribution Eq. (4.44b) becomes zero for εd = −U /2, according
to particle-hole symmetry. Moreover, the invariance property of the theory to transforma-
tions like Eqs. (2.83) is not valid anymore for both Eqs. (4.44a) and (4.44b). In the Anderson
model, the choice of the couple (J , D) is not arbitrary and physically meaningless, as in the
case of a pure Kondo model, see Section 2.6.1.

4.3.1 Kondo temperature and agreement with the Friedel sum rule

The calculation of the spin-exchange contribution Eq. (4.44a) provides an alternative way to
obtain the Kondo temperature for the Anderson model. This was first obtained by Haldane
[93, 111], by calculating the magnetic susceptibility for the Anderson model and matching it
with Eq. (4.7). The resulting expression for the Kondo temperature was found to be

TK = e
1
4+C

2π

√

2ΓU

π
e

πεd (εd+U )
2UΓ . (4.45)

This same result can be obtained by matching Eq. (4.44a) to the corresponding expression
Eq. (4.18) for a pure Kondo model. Choosing arbitrarily the high energy cutoff

D =
√

−εd (εd +U ) , (4.46)

we obtain the corresponding value for the effective spin-exchange coupling constant J =
J0 − (ν0/2)J 2

0

ν0 J =− 2ΓU

πεd (εd +U )
− 2Γ2U 2

π2ε2
d (εd +U )2

. (4.47)
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Inserting Eqs. (4.46) and (4.47) into expression Eq. (4.9), we find Eq. (4.45)1. In the Ander-
son model, the cutoff divergence is eliminated by the charging energy, a physical quantity,
which acts as an effective cutoff of the theory, setting the Kondo universality class through
the Kondo temperature Eq. (4.45).

A further test of the validity of our approach is obtained by verifying the compatibility
of Eq. (4.44b) with the Friedel sum rule. Relying on Cragg and Lloyd’s study of the Kondo
problem, the Fermi liquid action Eq. (4.1) describes the low energy quasi-particles of the
system. Applying the Friedel sum rule Eq. (2.20) and the additivity of the phase-sifts Eq.
(2.41), one finds the charge occupation on the dot to fourth order in t

〈n̂〉 = 1−2ν0V
R

W . (4.48)

Its derivative gives the charge susceptibility Eq. (4.2). For εd = −U /2, the results coincides
with Eq. (2.44) obtained from the Bethe ansatz analytical solution at particle-hole symmetry.

To summarize, Cragg and Lloyd’s argument, exposed in Section 4.2.4, allows us to com-
pletely forget about the spin exchange interaction in the initial action Eq. (4.13). At zero
temperature this is responsible of a δk = π/2 of the low energy quasi-particles in the leads.
We consider then exclusively the renormalization of the potential scattering coupling look-
ing at the renormalized vertex. As previously done in Section 3.3 for the Coulomb blockade
model, we get rid of the residual para-fermions fields fσ by switching back to the imaginary
time representation and setting the constraint

∑

σ f †
σ fσ = 1, imposed by sending the para-

energy λ to infinity. The mapping onto the effective Fermi liquid action Eq. (4.1) is eventually
obtained, giving a formal proof of the approach carried out in Chapter 2.

4.4 A (giant) peak for the charge relaxation resistance

The analytical results of the preceding analysis show that the Fermi liquid action Eq. (4.1) de-
scribes the low energy quasi-particles of the Anderson quantum RC circuit and it is coherent
with the Friedel sum rule. The approach illustrated in Section 2.4 then applies to calculate
the charge relaxation resistance, leading in particular to Eq. (2.70). In this section, we give a
comprehensive study of the behaviors predicted by Eq. (2.70) in the Kondo and in the mixed
valence regime.

1A different choice for the cutoff D implies a different expression for J from Eq. (4.44a). However the combi-
nation of D and J always leads to the same expression for TK given by Eq. (4.45). This is a consequence of the
renormalizability of the Kondo model [123, 127].
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Figure 4.10: Left) Universal shape of the magnetization as a function of H from Ref. [147]. TK sets the
transition from the strong coupling (Kondo) regime to the local moment regime. Right) ∂〈n〉/∂H as a
function of the orbital energy εd and the Zeeman energy H. It has exactly the same behavior as χm in
Fig. 4.2 and verifies Eq. (4.58).

4.4.1 The giant charge relaxation resistance in the Kondo regime

The Kondo scaling limit coincides with the symmetric limit for the Anderson model (U /2+
εd )/

p
UΓ≪ 1 [79]. It means that the analytical solution of the charge-magneto susceptibility

χm can be obtained from the analytical solution of the Bethe ansatz equations at particle-
hole symmetry [79]. It is possible to show that all physical quantities, in particular the mag-
netization, are universal functions of H/TK [147, 148]

〈m̂〉 = f

(

H

TK

)

, (4.49)

with TK a function of the orbital energy εd given by Eq. (4.4). The magnetization is plotted in
Fig. 4.10. Its asymptotic behaviors are

f (x) =
{

xp
2πe

x ≪ 1
1
2 −

1
4ln x x ≫ 1

. (4.50)

In this limit the charge-magneto susceptibility Eq. (2.71) is readily obtained. We recall that
this quantity is defined as χm =−2∂〈m̂〉/∂εd . Assuming the scaling form for the magnetiza-
tion Eq. (4.49), this leads to

χm = 2
∂ lnTK

∂εd

H

TK
f ′

(

H

TK

)

. (4.51)

Substituting Eq. (4.4) for the Kondo temperature, we obtain

χm = π

Γ

2εd +U

U
Φ0

(

H

TK

)

, (4.52)
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with Φ0(x) = x f ′(x), plotted in Fig. 2.10. Its maximum is given for x0 = 1.0697 and Φ0(x0) =
0.1257.

Switching to χc , assuming U /Γ≫ 1, only the leading contribution Eq. (2.45) is taken into
account for the charge susceptibility Eq. (4.2). Furthermore, Fig. 4.3 shows that any depen-
dence of χc on the magnetic field can be neglected in this regime. The peak of Φ0 raises
for Zeeman energies of the order of TK , which is much smaller than Γ close to particle-hole
symmetry. Together with Eq. (4.52), Eq. (2.70) for the charge relaxation resistance can be
expressed in the scaling form first presented in Eq. (2.73)

Rq = h

4e2

[

1+
(

U

Γ

)4

F0(y)Φ2
0

(

H

TK

)]

. (4.53)

The universal function of the envelope is plotted in Fig. 2.9 and reads

F0(y) =
(

π2

8

)2
y2(y2 −1)4

(y2 +1)2
. (4.54)

We recall here that y = 1 + 2εd /U is the asymmetry parameter, vanishing at particle-hole
symmetry.

4.4.2 Corrections to the Kondo scaling limit: a numerical approach

The numerical solution of the Bethe ansatz equations allows one to test the relevance of the
analytical scaling solution Eq. (4.53) out of the scaling limit, which is of interest to under-
stand how quantitative it is for real systems. In Fig. 2.8, we plot the behavior of the charge
relaxation resistance obtained from Eq. (2.70) by calculating numerically χc and χm from
the Bethe ansatz. The results agree with numerical renormalization group calculations [76]
and prove the validity of our Fermi liquid approach. To test the quantitative relevance of the
analytical scaling Eq. (4.53), we extend the definition of the envelope and peak functions

F =
(

Γ

U

)4 (

πy

Γχc

)2

, Φ= Γχm

πy
, (4.55)

such that they coincide with F0 and Φ0 in the scaling limit. F and Φ do not depend only on
y = 1+2εd /U and H/TK respectively, but on all the energy scales of the problem U , εd , Γ and
H .

4.4.2.1 Persistence of the peak in the function Φ

In Fig. 4.11 the comparison of the analytical scaling limit Φ0 (also plotted in Fig. 2.10) is done
with the numerical solution of the Bethe ansatz equations for different U /Γ. This numeri-
cal analysis permits to distinguish between two regimes separated by the interaction value
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Figure 4.11: Function Φ defined in Eq. (4.55) for different εd /U (squares and circles) and U /Γ obtained
from the numerical solution of the Bethe ansatz. The results are compared with the universal scaling
Φ0 (solid line). The values of TK for the numerical data are fixed by matching the values of Φ at low
fields to the linear behavior of Φ0. These are plotted in Fig. 4.12.

U /Γ = 5. For U /Γ > 5, the scaling limit shows to be robust against the breaking of particle-
hole symmetry. The shape of the analytical scaling limit is reproduced faithfully by numeri-
cal calculations until εd ∼ Γ, that is when the Coulomb peaks of the differential capacitance
C0 = e2χc are approached, see Fig. 4.3. A good measure of this robustness is the numerical
verification of the Kondo temperature according to Eq. (4.4). The numerical definition of TK

is operated by matching the behavior of Φ at low fields with that of the analytical scaling

Φ0

(

H

TK

)

= H/TKp
2πe

, for
H

TK
≪ 1. (4.56)

The results are illustrated in Fig. 4.12. For U /Γ = 20 the agreement is perfect. For U /Γ ≤ 5,
Kondo physics starts to fade out. This is manifested by the fact that the peak of the functionΦ

Eq. (4.55) is less pronounced than the one of the scaling limit Φ0, even close to particle-hole
symmetry. Furthermore, the quantitative disagreement with Eq. (4.4) becomes manifest.

4.4.2.2 The Γ

U corrections to the envelope function F

In Fig. 4.13(a) NRG, BA and analytical calculations are compared showing a good agreement
between each other. The next to leading order corrections to χc in Eq. (4.2) are taken into
account to have quantitative agreement. In Fig. 4.13(b) the convergence of F onto the scaling
limit F0 Eq. (4.54) is illustrated, showing that a good quantitative agreement is reached only
for interactions of the order U /Γ ∼ 100. The analytical expression of F obtained through
Eq. (4.2) converges to the BA numerical results for interactions of the order of U /Γ ∼ 50,
illustrating a slow convergence to the scaling limit.

This last discussion completes our analytical study of the giant charge relaxation resis-
tance in the Kondo regime of the Anderson model.



4.4. A (GIANT) PEAK FOR THE CHARGE RELAXATION RESISTANCE 93

0.001

0.01

0.1

1

10

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

εd/U

TK/Γ

20

5

2
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20 (full circles, squares and empty circles respectively). They are compared to the analytical formula Eq.
(4.45) (solid lines).

4.4.2.3 Identity between χm and ∂〈n̂〉
∂H

The fact that the derivatives of the average over the Hamiltonian 〈H〉 give the value of the
magnetization and the charge occupation of the dot

〈m̂〉 =−∂〈H〉
∂H

and 〈n̂〉 = ∂〈H〉
∂εd

(4.57)

implies
∂〈n̂〉
∂H

=χm . (4.58)

This seems to be in contradiction with the fact the χm acquires “large” values, while ∂〈n̂〉/∂H
should remain small because 〈n̂〉 is weakly dependent on the magnetic field in the Kondo
regime. This is however not the case. As previously stated, in the Kondo regime, all physical
quantities, 〈n̂〉 included, are universal function of H/TK [79]

〈n̂〉 = 1+αg

(

H

TK

)

+ . . . (4.59)

We assume that the function g is of order one andαhas to be a small parameter in agreement
with the fact that 〈n̂〉 depends weakly on the magnetic field. If we take the derivative in the
magnetic field and consider adimensional quantities, we obtain

Γ
∂〈n̂〉
∂H

= Γ

TK
αg ′

(

H

TK

)

. (4.60)

Assuming that g ′(x) is also of order one, the small coupling α is multiplied by Γ/TK , which
is much larger than one, see Fig. 4.12. This implies that the left-hand-side of Eq. (4.58) can



94 CHAPTER 4. THE ANDERSON MODEL AND THE KONDO REGIME

0

0.01

0.02

0.03

0.04

0.05

0.06

-1 -0.5 0 0.5 1

y= 1+2
εd

U

F(y)

(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-1 -0.5 0 0.5 1

y= 1+2
εd

U

F(y)

10

50

150

∞

(b)

Figure 4.13: a) Comparison of NRG (points extracted from the results of Ref. [76]), BA (dashed line) and
analytical (solid line) results for the function F with U /Γ = 20. b) Approach to the scaling limit F0

Eq. (4.54) for different U /Γ. The dotted lines are obtained by BA while the solid ones correspond to the
analytical result Eq. (4.2).

also acquire “large” values, accordingly to the behavior of χm . The numerical verification of
this statement, proving Eq. (4.58) is shown in Fig. 4.10, in which ∂〈n̂〉/∂H displays exactly
the same behavior as χm in Fig. 4.2.

4.4.3 Universal scaling behaviors in the valence-fluctuation regime

The scaling limit for the charge relaxation resistance Eq. (4.53) is meaningless when the
Coulomb peaks of the charge are approached. In Fig. 4.11 it is shown that, for any value of
the interaction strength U /Γ, the peak decreases abandoning the scaling limit Φ0. To build
an intuition of what happens to the charge relaxation resistance once the Kondo regime is
left, one has to look at the phase diagram of the isolated quantum dot in Fig. 4.1. If εd > 0, a
positive magnetic field drives a transition between an empty orbital |0〉 and a polarized spin
in the dot |1,↑〉, see Fig. 2.11. These states become resonant at H = 2εd and the suppres-
sion of spin-exchange Kondo correlations allows for a perturbative approach. We consider
the perturbation in the spin down tunneling term Eq. (2.75) to the ground state

∣

∣ψ0〉 of the
resonant level Hamiltonian Eq. (2.74) confined to the spin up sector.

∣

∣ψ0〉 is characterized by
the charge occupation of a resonant level model

〈n̂↑〉0 = 〈ψ0
∣

∣ n̂
∣

∣ψ0〉 =
1

2
− 1

π
arctan

(

εd − H
2

Γ

)

(4.61)
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and 〈n̂↓〉0 = 0. In this case the charge and the charge-magneto susceptibilities have the same
Lorentzian behavior

χ0
c =χ0

m =χ0
↑ =

Γ

π

1

(εd −H/2)2 +Γ2
. (4.62)

Considering Eq. (2.70) this is coherent with a charge relaxation resistance quantized to Rq =
h/2e2, but also with the discussion about the resonant level model in Chapter 1. The Lorentzian
Eq. (4.62) reproduces the behavior of the charge susceptibility for εd ≫ Γ, as shown in Fig.
4.3. Including the spin down sector to first order in t , the corrections to the resonant level
ground state

∣

∣ψ0〉 are readily obtained

∣

∣ψ1〉 = t
∑

k

(

1

εk −U −εd − H
2

d †
↓ck↓n̂↑+

1

εk −εd − H
2

d †
↓ck↓(1− n̂↑)

)

∣

∣ψ0〉 . (4.63)

The projectors n̂↑ and 1−n̂↑ are necessary to determine the sectors in which
∣

∣ψ0〉 is occupied
by a spin up electron or not, implying the presence/absence of the interaction energy U in
the denominators. The populations 〈n̂σ〉 of the quantum dot are then calculated for the state
∣

∣ψ0〉+
∣

∣ψ1〉, leading to

〈n̂↑〉 = 〈n̂↑〉0 − Γ

π

U 〈n̂↑〉0 (1−〈n̂↑〉0)

(U +εd + H
2 )(εd + H

2 )
,

〈n̂↓〉 =
Γ

π

(

1−〈n̂↑〉0

εd + H
2

+
〈n̂↑〉0

εd +U + H
2

)

,

(4.64)

corresponding to the static susceptibilities

χ↑ =χ0
↑−

Γ

π

χ0
↑(1−2〈n̂↑〉0)U

(εd +U +H/2)(εd +H/2)
− Γ

π

〈n̂↑〉0 (1−〈n̂↑〉0)[U 2 +2U (εd +H/2)]

(εd +U +H/2)2(εd +H/2)2
,

χ↓ =
Γ

π

[

1−〈n̂↑〉0

(εd + H
2 )2

+
〈n̂↑〉0

(εd + H
2 +U )2

+ χ0
↑

(

1

εd + H
2 +U

− 1

εd + H
2

)]

.

(4.65)

Their combination gives both χc =χ↑+χ↓ and χm =χ↑−χ↓ and provides an analytical expres-
sion for the charge relaxation resistance through Eq. (2.70). This is found to be in excellent
agreement with the numerical solution of the Bethe ansatz equations, as illustrated in Fig.
4.14. The analytical solution Eq. (4.65) allows one to carry out the limit εd ≫ Γ and find
the scaling limits discussed in Section 2.5.1.2 and plotted in Fig. 2.12. A clearer intuition of
how these scaling limits are recovered is possible by following the progressive increasing of
the orbital energy εd . For Γ ≪ εd ≪ U , the position of the maximum of Rq can be found
perturbatively

H

2εd
=1− Γ

πεd

U (4εd +U )

(2εd +U )2
, (4.66)

Rq = h

2e2

(

1+ Γ

πεd

U

2εd +U

)

. (4.67)
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Figure 4.14: Comparison between Rq obtained from the analytical results Eqs. (4.65) (solid line) and
the numerical solution of the BA equations (circles) for U /Γ= 20 and εd /Γ= 6.

Going towards the scaling limit, this maximum sets at H/2εd = 1 and, at the same time, the
solid line plotted in Fig. 2.12 is recovered with Rq = h/2e2 for all H > 2εd . Only when εd

becomes of the order of the charging energy U , the right part of this scaling starts lowering
and recovers the scaling limit obtained for Γ≪U ≪ εd .

4.5 Conclusions

In this chapter we gave a further demonstration of a path-integral RG approach to determine
the low energy Fermi liquid action of a quantum RC circuit described by the Anderson model
and coherent with the Friedel sum rule. In contrast with the Coulomb blockade model, spin-
exchange processes are responsible for logarithmic Kondo divergencies in the renormalized
vertex, preventing to directly carry out the Λ→ 0 limit. This problem is circumvented relying
on Cragg and Lloyd’s proof of the additivity of the universal Kondo phase-shift δK =π/2 with
the shift δW caused by the potential scattering interaction. We study the effects of a magnetic
field on the charge relaxation resistance given by Eq. (2.70). This requires the calculation of
the static susceptibilities χc and χm with analytical approaches and the numerical solution
of the Bethe ansatz equations for the ground state of the Anderson model. Our Fermi liquid
approach is in agreement with previous NRG calculations [76] and provides a comprehen-
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sive analytic description of the behavior of the charge relaxation resistance both in the Kondo
regime, where a giant peak arises, and in the mixed valence regime, where Rq follows a uni-
versal curve connecting h/4e2 to h/2e2 as a function of the magnetic field. The analytical
calculation of the vertex through the introduction of slave-states provides an alternative way
to access the charge occupation of the dot and the Kondo temperature, which is of interest
in the framework of SU(4) Kondo regimes discussed in the following chapter.

As a concluding remark, one may wonder why in our discussion, for magnetic fields larger
than any other energy scale in the problem, we do not recover the single-channel value of
the charge relaxation resistance Rq = h/2e2, corresponding to a polarized gas, but the one
associated to two spin channels Rq = h/4e2. This relies on the fact that we assumed the hy-
bridization constant Γ=πν0t 2 to be independent of the magnetic field. For QPCs in 2DEGs,
this approximation is justified as the tunneling becomes sensitive to the magnetic field when
the Zeeman splitting of the transverse modes in the QPC becomes of the order of their level
spacing, which is larger than TK [149]. The regime studied in Section 4.4.3 is then relevant
for setups where the tunneling is weakly dependent on the magnetic field, as for carbon nan-
otube dots. We neglect this dependence here, but it must be kept in mind that it controls the
closing of the anti-parallel spin channel bringing Rq back to h/2e2 in the large magnetic field
limit.
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The renormalization group approaches devised in the previous chapters find an impor-
tant extension to generalized versions of the Anderson Hamiltonian Eq. (2.77), displaying
SU(N) symmetries. We focus on the case N = 4, which can be observed in quantum dots
with further orbital degeneracy [112, 113, 114, 115, 116]. Our Fermi liquid approach allows
for the investigation of the charge relaxation resistance in recent carbon nanotube devices
displaying this symmetry [117, 118, 119, 120]. In Section 5.1, we address new manifestations
of the giant charge relaxation resistance caused by the breaking of the SU(4) Kondo singlet
by a magnetic field. In Section 5.2, we extend the representation of the quantum dot Hilbert
space with slave-bosons and para-fermions to the SU(4) case. This provides a more practical
path-integral representation of the action and paves the way to the calculation of the next to
leading order corrections to the renormalized vertex Eq. (2.81). New fundamental results in
the framework of impurity problems are obtained. We provide the analytical expression of
the SU(4) Kondo temperature in the form Eq. (2.85). Relying on the Friedel sum rule and on
the assumption that Cragg and Lloyd’s argument also applies in the SU(4) case, we obtain the
analytical expression for the charge occupation of the quantum dot in the Coulomb block-
ade regions. In Section 5.3, we discuss a possible generalization of our results to the SU(N)
case.
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5.1 A new giant peak for the charge relaxation resistance

The Fermi liquid nature of the ground state of the SU(4) Anderson model [126, 150, 151]
provides a further application for the field-theoretical methods developed in Chapter 4. The
discussion recovers the steps for the SU(2) Anderson model. For εd0 = (1− q − q/N )U the
potential scattering coupling Wq in Eq. (2.79) vanishes and the Hamiltonian Eq. (2.77) is

mapped onto a pure Kondo model with Jq = 2t 2

U
N 2

q(N−q) . Also in this case the Friedel sum rule

sets the value of the Kondo phase-shift at strong coupling, V R
J →∞,

δK = q

N
π . (5.1)

Relying on Cragg and Lloyd’s argument, illustrated in Section 4.2.4, the potential scattering
coupling Wq Eq. (2.79) adds a further phase-shift

δWq =−arctan
(

πν0Wq
)

(5.2)

to Eq. (5.1), see also Eq. (2.21). We showed that this has to be coherent with the Friedel sum
rule. The model Eq. (2.68) applies then to describe the low energy quasi-particles and, for
the charge relaxation resistance, leads to

Rq = h

2e2

∑

νχ
2
ν

(
∑

νχν

)2 . (5.3)

As in the SU(2) Kondo model, the appearance of infra-red logarithmic divergences prevents a
perturbative investigation of the single population susceptibilities χν =−∂〈n̂ν〉/∂εd . To cir-
cumvent this problem, the separation between spin, charge and orbital degrees of freedom
in the SU(4) Anderson Hamiltonian is made explicit by the following change of basis











χc

χm

χv

χmv











=











1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 1 −1 −1





















χ1

χ2

χ3

χ4











. (5.4)

This transformation defines the analog of the charge χc and the charge-magneto suscepti-
bility χm for the SU(4) Anderson model. χv is a new quantity that measures the sensitivity
of the orbital magnetization to a change in the gate voltage. χmv is given by the difference
between the spin magnetization of the two orbital states. The new expression for the charge
relaxation resistance becomes

Rq = h

8e2

(

1+
χ2

m +χ2
v +χ2

mv

χ2
c

)

. (5.5)
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This formula gives the condition for the non-quantization of the charge relaxation resistance,
that is when either χm , χv or χmv is non-vanishing. If spin and orbital degeneracies in the
quantum dot are not broken, we have χm =χv =χmv = 0 and Rq = h/8e2. The breaking of the
SU(2) symmetry by a magnetic field concerns only spin degeneracy, so χv and χvm remain
zero. Eq. (5.5) then recovers Eq. (2.70) up to a factor 2, caused by the participation of four
channels to transport instead of two. The Kondo scaling limit can be studied again. For U ≫
Γ and for Zeeman energies of the order of the SU(4) Kondo temperature, any dependence of
the charge susceptibility on the magnetic field is negligible. The charge susceptibility can be
analytically derived to leading order in t 2 from Eq. (2.79) by applying the Friedel sum rule

χ
q
c = 4ν0

∂Wq

∂εd
= Γ

π

[

q

(εd + (q −1)U )2
+ 4−q

(εd +qU )2

]

. (5.6)

The charge-magneto susceptibility can be also derived from scaling arguments. The defini-
tion of the magnetization is

〈m̂〉 = 1

2

∑

l ,σ

σ〈n̂l ,σ〉 , (5.7)

where l =±1 and σ=↑,↓ labels correspond to the orbital and the spin of electrons in the dot.
In the Kondo scaling limit, the mapping onto the SU(4) Kondo Hamiltonian Eq. (2.37) be-
comes exact. This is given by H/Γ≪ 1 and U /Γ≫ 1 and far enough from charge degeneracy.
The SU(N) version of the model Eq. (2.37), also called Coqblin-Schrieffer model [100], has
been solved by Bethe ansatz [126, 152], showing that the magnetization Eq. (5.7) is a smooth
and universal function fq

(

H/T q
K

)

going from 0 to 1/2 for q = 1 and 3 or from 0 to 1 for q = 2.
The charge-magneto susceptibility then assumes the form

χm = 2
∂ lnT q

K

∂εd
Φq

(

H

T q
k

)

, (5.8)

where we defined the dimensionless functions Φq (x) = x f ′
q (x). From the general form of the

functions fq (x) we expect Φq (x) to develop a peaked shape for Zeeman energies of the order
of T q

K in a similar way as Φ0(x) in the SU(2) case, see Fig. 2.10. The analytical determination
of Eq. (5.8) requires also the knowledge of the exact expression for the Kondo temperatures
T q

K , which motivates our vertex calculation in Section 5.2. The form of the SU(4) Kondo
temperature is, see Eq. (2.84),

T q
K =D 4

√

2ν0 Jq e
− 1

2ν0 Jq . (5.9)

Eq. (5.8) involves the derivative of the prefactor to the exponential in Eq. (5.9). In Section
5.2.1, we carry out the calculation to second order in Jq of the spin-exchange part of the
renormalized vertex and access the effective cutoff D. In the SU(4) case, we show that, in
contrast to the SU(2) case, see Eq. (4.4), the whole prefactor to the exponential in Eq. (5.9)
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depends on the orbital energy εd . Its derivative provides subleading corrections which can
be neglected in the U ≫ Γ limit. The result is

χ
q
m = π

2Γ

2εd + (2q −1)U

U
Φq

(

H

T q
K

)

. (5.10)

Combining Eqs. (5.5), (5.6) and (5.10), the scaling form for the charge relaxation resistance
Eq. (2.80) is obtained. We recall here its expression

Rq = h

8e2

[

1+
(

U

Γ

)4

Fq
(

yq
)

Φ
2
q

(

H

T q
K

)]

, (5.11)

It also predicts a giant peak for the charge relaxation resistance scaling as (U /Γ)4, for Zeeman
splittings of the order of T q

K . The envelope of the peak is given by the analog, in the SU(4)
case, of the envelope function F0(y) Eq. (4.54). This function is plotted in Fig. 2.15 as a
function of εd /U and reads

Fq (yq ) =
(

π2

32

)2 y2
q (y2

q −1)4

[

1+ y2
q + yq (q −2)

]2 . (5.12)

This expression depends on the number of charges blocked on the quantum dot q and on
the asymmetry parameter

yq = 2
εd

U
+2q −1. (5.13)

This is defined such that yq =±1 at the location of the Coulomb peaks, defining the transi-
tion between different charge occupations of the quantum dot, and yq = 0 in the middle of
the Coulomb valleys. Interestingly, the function F2 coincides with the envelope function F0

of the SU(2) case Eq. (4.54) up to the multiplicative factor 16. F1 and F3 are instead asym-
metric and can provide an experimental signature to distinguish between SU(2) and SU(4)
regimes. Notice that Eq. (5.12) always vanishes in the middle of the Coulomb valleys, see
also Fig. 2.15. In the SU(2) Anderson model, the vanishing of the envelope function, due
to particle-hole symmetry, establishes the quantization of the charge relaxation resistance.
The SU(4) Anderson model is particle-hole symmetric only for εd = −3U /2. Why then the
envelop function Fq (yq ) vanishes also at εd = −U /2 and εd = −5U /2, where the system is
not particle-hole symmetric? This is an artifact of the scaling limit U ≫ Γ. Looking at Fig.
5.1, we notice that, at the center of the Coulomb valleys, the two energy sectors closer to
the ground-state are degenerate. In the scaling limit, only the leading contributions in the
tunnel coupling t to χc and T q

K are considered. They involve virtual fluctuations only to the
closest charge states and excursions to farther ones are neglected, see also Fig. 5.3. This
approximation gives an effective particle-hole symmetry to the problem and implies a van-
ishing envelope function in the middle of the Coulomb valleys. The subleading corrections
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Figure 5.1: Spectrum of the isolated quantum dot. The energies associated to different charge occupa-
tions are plotted as functions of εd /U . The vertical lines signal the middle of the Coulomb valleys in
which q = 1, 2 or 3 charges are blocked on the dot (right to left respectively). The dots highlight the
degeneracy of the two closest energy sectors, providing effective particle-hole symmetry to leading order
in Γ/U , see main text.

to the Kondo temperature, obtained in the following sections, take into account the virtual
processes breaking particle-hole symmetry. This can be appreciated by inspecting the be-
haviors of the prefactors fq (εd /U ) of the Kondo temperature Eq. (2.85), plotted in Fig. 2.16.
Their derivatives are different from zero in the middle of the Coulomb valleys for q = 1 and
3, implying in particular non-zero corrections to the envelope function at εd = −U /2 and
εd = −5U /2, in contrast with the particle-hole symmetric point at εd = −3U /2, where the
derivative vanishes to all order in Γ/U . Notice also that the middle of the Coulomb valleys
does not coincide wiht the points ε

q
d0 for which the potential scattering coupling Eq. (2.79)

vanishes. These points are signaled in Fig. 2.15 by circles. These are close to the maxima of
the envelope function for q =1 and 3. We expect that the approach to the Kondo scaling be-
havior is faster at these points, what would allow one to observe more easily the giant charge
relaxation resistance than in the q = 2 region, in which this point coincides with the zero of
the envelope function, and is protected by particle-hole symmetry.

5.2 Path integral formulation of the SU(4) Anderson model

The representation via slave-states of the Hilbert space of a SU(4) symmetric quantum dot
is illustrated in Fig. 5.2. Slave-bosons are associated to states of the quantum dot involving
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Energy Charges

Figure 5.2: Representation of the SU(4) quantum dot Hilbert space with slave-boson and para-fermions.
The spin and valley occupation are represented with their energy and the total charge occupation. To
every configuration a slave-field is associated: bosons for even occupations of the dot and fermions for
odd occupations.

an even number of charges. b†
0 and b†

4 create the empty and completely filled quantum dot
respectively. In the case of two charges on the quantum dot, the occupied levels must be
specified and the operators b†

νν′ describe a quantum dot occupied by two charges set in the
states ν and ν′. Para-fermions are associated to odd occupations of the quantum dot, either
one or three charges. f †

ν creates an electron in the state ν, while the complementary operator
F †
ν creates the state with three electrons filling all the dot states except the one labeled by ν.

In this new basis, the expressions of the original quantum dot fermionic operators d †
ν read

d †
1 = f †

1 b0 +b†
12 f2 +b†

13 f3 +b†
14 f4 +b†

4F1 −F †
2 b34 +F †

3 b24 −F †
4 b23 ,

d †
2 = f †

2 b0 −b†
12 f1 +b†

23 f3 +b†
24 f4 +b†

4F2 +F †
1 b34 −F †

3 b14 +F †
4 b13 ,

d †
3 = f †

3 b0 −b†
13 f1 −b†

23 f2 +b†
34 f4 +b†

4F3 −F †
1 b24 +F †

2 b14 −F †
4 b12 ,

d †
4 = f †

4 b0 −b†
14 f1 −b†

24 f2 −b†
34 f3 +b†

4F4 +F †
1 b23 −F †

2 b13 +F †
3 b12 .

(5.14)

The choice of the signs is fixed to preserve the fermionic commutation relations
{

d †
ν,dν′

}

=

δνν′ and
{

d †
ν,d †

ν′

}

= 0 between original operators. The action of the system is readily written
in this new basis in the form SSU(4) = S0 +ST , where

S0 =−
∫β

0
dτ

{

c†
kνG−1

k ckν+ f †
ν D−1

1 fν+F †
νD−1

3 Fν+b†
0B−1

0 b0 +b†
νν′B

−1
2 bνν′ +b†

4B−1
4 b4

}

, (5.15)
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with

G−1
k =−∂τ−εk , (5.16a)

B−1
0 =−∂τ−λ , (5.16b)

D−1
1 =−∂τ−εd −λ , (5.16c)

B−1
2 =−∂τ−2εd −U −λ , (5.16d)

D−1
3 =−∂τ−3εd −3U −λ , (5.16e)

B−1
4 =−∂τ−4εd −6U −λ . (5.16f)

In Eq. (5.15), repeated labels are summed up with the prescription ν< ν′. The para-energy λ

has been introduced in free slave-state propagators to perform Abrikosov’s projection onto
the physical sector. This is defined by the constraint

b†
0b0 +

∑

ν

f †
ν fν+

∑

ν′>ν
b†
νν′bνν′ +

∑

ν

F †
νFν+b†

4b4 = 1. (5.17)

In Eqs. (5.16), we stress the difference between para-fermion and slave-boson propagators
by labeling them with different letters, D and B respectively. They depend respectively on
fermionic and bosonic Matsubara frequencies iω or iν. The tunneling contribution to the
action reads

ST =
∫β

0
dτt

∑

kν

(

c†
kνdν+d †

νckν

)

, (5.18)

in which the transformation Eq. (5.14) is assumed implicitly. In the following, the calculation
of the renormalized vertex is carried out in all the three charge sectors q = 1, 2, 3. The steps
are the same for all the three sectors and recover those already illustrated for the SU(2) An-
derson model in Chapter 4. Firstly, we integrate all the high energy sectors relevant to fourth
order in t and show that the effective interaction can always be cast in the form

SSU(4) =
1

β

∑

kk ′
c†

kµ(iω1)ck ′µ′(iω2)g †
ν(iν+ iω2)gν′(iν+ iω1)×

[

J (iω1, iω2, iν)Sνν′ ·Tµµ′ + 1W (iω1, iω2, iν)
]

. (5.19)

This involves a SU(4) spin-exchange and a potential scattering interaction. The fermionic
fields gν are differently defined, depending on the charge sector q . All spin labels are summed
up and run from one to four. S and T are the vectors composed of the fundamental represen-
tation of the SU(4) group illustrated in Appendix E. The renormalized vertex is then calcu-
lated as in Section 4.3. We show that it assumes the form of Eq. (2.81), allowing us to access
the SU(4) Kondo temperatures and the charge occupation of the quantum dot.
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Charges

Figure 5.3: Virtual paths in the SU(4) Anderson model to fourth order in the tunnel coupling t , for
different Coulomb blockade regimes q = 1, 2 and 3. The circles signal the departure state to which one
has to come back in Coulomb blockade regimes. We emphasize graphically the symmetry between the
sectors q = 1 and 3. Notice that, for q = 1 and 3, the charge sectors 4 and 0 can be respectively neglected
to fourth order in t .

5.2.1 The calculation of the SU(4) renormalized vertices

In this section we give a fully detailed illustration of the calculation of the renormalized ver-
tex to fourth order in t only for the sector of charge q = 1. Only the major differences arising
in the other charge sectors will be discussed, but there is no need to repeat in detail all cal-
culations, whose main steps are summarized in Appendix H.

5.2.1.1 Sector of charge q = 1

The quantum dot hosts a single charge if −U < εd < 0. In Fig. 5.3 we show that virtual pro-
cesses to fourth order in the tunneling t do not involve the charge sector occupied by four
charges, which can be neglected. The action of the system can then be written in the form
S = S0+S01+S12+S23, where S0 is the quadratic action Eq. (5.15) without the b4 field and the
notation Snm stands for the terms in Eq. (5.18) which hybridize the slave-fields associated
to n and m charges on the quantum dot. We first consider the simpler Gaussian integration
concerning the single mode b0, associated to the empty orbital sector. Adopting the general
notation with traces defined in Eqs. (3.19) and (3.20), S01 reads

S01 = t Tr

[

b†
0

∑

kν

c†
kνdν+h.c.

]

. (5.20)
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The integration of the b0 slave-field leads to an the effective interaction, recovering the form
Eq. (5.19)

S′
01 =− t 2

β

∑

kk ′νν′
B0(iν)c†

kν(iω1)ck ′ν′(iω2) f †
ν′(iν+ iω2) fν(iν+ iω1)

=− t 2

β

∑

kk ′µµ′νν′
B0(iν)c†

kµ(iω1)ck ′µ′(iω2) f †
ν (iν+ iω2) fν′(iν+ iω1)

[

2Sνν′ ·Tµµ′ − 1

4
1

]

.

(5.21)

To pass from the first to the second expression, Eq. (E.2) with q = 1 has been applied. The
integration of the remaining high energy fields is trickier. In a similar way as for the Coulomb
blockade model, the integration of the Fν modes renormalizes the bνν′ slave-bosons, but
more effort is required to write the effective interaction between the fields ckν and fν in the
form Eq. (5.19). We start with the integration of the highest energy slave-modes Fν. The
action S23 can be expressed in the following algebraic form

S23 = t Tr
[

F† ·C ·b
]

+h.c. (5.22)

with1

F =











F1

F2

F3

F4











, b =





















b12

b13

b14

b23

b24

b34





















and C =











0 0 0 c4 −c3 c2

0 −c4 c3 0 0 −c1

c4 0 −c2 0 c1 0
−c3 c2 0 −c1 0 0











. (5.23)

The integration of the para-fermions Fν leads to the following effective interaction

S′
23 = t 2 Tr

[

b† ·A2 ·b
]

, (5.24)

with A2 = C† ·D314 ·C, 14 the 4× 4 identity matrix and D3 given by Eq. (5.16e). This term
renormalizes the quadratic part of the action Eq. (5.15) and the interacting part Eq. (5.18),
involving the bνν′ slave-bosons,

S12 +S′
23 =−Tr

[

b† ·Φ−1
2 ·b

]

+ t Tr
[

b† ·w+w† ·b
]

, (5.25)

where

Φ
−1
2 = B−1

2 16 − t 2A2 and w =





















f2c1 − f1c2

f3c1 − f1c3

f4c1 − f1c4

f3c2 − f2c3

f4c2 − f2c4

f4c3 − f3c4





















. (5.26)

1To keep simple notations, we omit in the following the sum on the momentum index k for lead electrons.
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Eq. (5.25) is quadratic in b and its integration is also Gaussian. It leads to

S′
12 = t 2Tr

[

w† ·Φ2 ·w
]

= t 2Tr
[

w† ·B216 ·w
]

+ t 4 Tr
[

w† ·B2 ·A2 ·B2 ·w
]

, (5.27)

where, in the last equality, we expanded in t the operator Φ2. The mapping of the first term
of Eq. (5.27) onto Eq. (5.19) is possible considering the following identity

w† ·w =
∑

ν6=ν′
c†
νcν f †

ν′ fν′ −
∑

ν6=ν′
c†
νcν′ f †

ν′ fν =
∑

µµ′νν′
c†
µcµ′ f †

µ fν′
[

3

4
δµµ′δνν′ −2Sνν′ ·Tµµ′

]

. (5.28)

The last equality is obtained applying the relation

∑

ν6=ν′
f †
ν fν = 1− f †

ν′ fν′ . (5.29)

This is a direct consequence of the constraint Eq. (5.17). All the slave-states participating to
it, with the exception of the para-fermions fν, have been integrated out. In the effective ac-
tion, only the residual slave-fermion fν is controlled by the para-chemical potentialλ, which,
when sent to infinity, sets the constraint

∑

ν f †
ν fν = 1, responsible for Eq. (5.29). The effective

action can be finally cast into the form

S′
1 = S′

0 +SSU(4) + t 4 Tr
[

w† ·B2 ·A2 ·B2 ·w
]

, (5.30)

with S′
0 composed of the two first terms of Eq. (5.15). The frequency dependent couplings in

SSU(4) read

J1 =−2t 2 [B0(iν)+B2(iν+ iω1 + iω2)] , W1 =− t 2

4
[B0(iν)−3B2(iν+ iω1 + iω2)] . (5.31)

These two expressions recover the couplings obtained by the Schrieffer-Wolff transformation
Eqs. (2.78) and (2.79), for q = 1. This can be verified by substituting the frequencies of Eq.
(5.31) with the poles of Gk and F1 in Eq. (5.16), iν→ εd +λ and iω1,2 → 0.

A mean-field treatment of the quartic term in Eq. (5.30) provides the exact contribution to
fourth order in t to the four-point vertex function that we define as in Eq. (4.17)

V Λ

σσ′,ττ′(k, iω1, iΩ1;k ′iω2, iΩ2) =−β
〈ckσ(iω1) fτ(iΩ1) f †

τ′(iΩ2)c†
k ′σ′(iω2)〉

∣

∣

∣

c

Gk (iω1)Gk ′(iω2)D1(iΩ1)D1(iΩ2)
. (5.32)

One can realize, that the mean-field treatment of the four point interaction
(

c†c
)2

, as already
carried out in Section 2.2.1 for the Coulomb blockade model, permits to map this interaction
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onto Eq. (5.19). The calculations are quite tedious and they are detailed in Appendix H. The
last term in Eq. (5.30) can then be cast into the form

t 4
∑

kk ′µµ′νν′
Tr

{[

(8A1 −4A0 −4A2)Sνν′ ·Tµµ′ +
(

3

2
A0 +

3

2
A2 −3A1

)

δµµ′δνν′

]

c†
kµck ′µ′ f †

ν fν′
}

,

(5.33)
with the coefficients An also listed in Appendix H.

The calculation of the renormalized vertex involves the usual steps of the two previous
chapters. These are the calculation of the full renormalized para-fermion propagator, with
the corrections to the pole and its quasi-particle weight, and the calculation of all diagrams
up to fourth order in t contributing to the vertex function Eq. (5.32). All the details about
these calculations are given in Appendix H. The renormalized vertex is cast in the form Eq.
(2.81). The spin-exchange coupling reads

V R
J1

= J1 +2ν0 J 2
1 g1

(εd

U

)

−2ν0 J 2
1 ln

Λ

4
√

−εd (εd +U )3
, (5.34)

with

g1(x) = 1

4

3x −2

x +2
− 1

2

x2(x2 +3x +3)

(2+x)2
ln

2x +3

x +1
. (5.35)

The part concerning the potential scattering coupling is given by

V R
W1

=W1 +
1

ν0

(

Γ

πU

)2

h1

(εd

U

)

, (5.36)

where

h1(x) = 3

4

(

1

x2
+ 1

(x +1)2

)

+ 1

x2
ln

4
p
−x(x +1)

−x
+ 3

(x +1)2
ln

p
(x +1)(2x +3)

4
p
−x(x +1)

+

3

2

1

x(x +1)
ln

−x

x +1
+3

[

1

(x +2)2
ln

√

2x +3

x +1
− 1

(x +1)(x +2)

(

1

2
+ ln

2x +3

x +1

)

]

. (5.37)

One checks at this point that W1 vanishes in the middle of the Coulomb valley for εd =−U /2
but not h1, a consequence of the absence of particle-hole symmetry in this sector. Eq. (5.34)
can be mapped onto Eq. (2.82) with the choice for the effective cutoff

D1 = 4
√

−εd (εd +U )3 . (5.38)

This sets the choice of the corresponding spin-exchange coupling constant, that is the first
two terms in Eq. (5.34)

J = J1 +2ν0 J 2
1 g1

(εd

U

)

. (5.39)
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Figure 5.4: Comparison between the analytical prefactor f1(x) Eq. (5.40) and f2(x) Eq. (5.54) (solid line)
with numerical renormalization group calculations (points) [153]. The points were obtained by a dif-
ferent procedure leaving invariant J1 in Eq. (2.78) and U and varying εd /U and Γ/U , which implies a
different definition of the prefactors f1 → f ′

1. The same for the charge sector q = 2. The sector associated
to q = 3 is obtained by symmetry from q = 1.

From this definition the Kondo temperature Eq. (2.85) is found for q = 1, with

f1(x) =
p

1+xeg1(x) , (5.40)

plotted in Fig. 2.16. Applying the Friedel sum rule, the dot occupation reads

〈n̂1〉 = 1−4ν0V
R

W1
. (5.41)

To check the validity of our approach we report in Fig. 5.4 the comparison of our analytic
formula of the prefactor f1(x) in Eq. (2.85) to that obtained by numerical renormalization
group calculations [153].

5.2.1.2 Sector of charge q = 2

In this section, the discussion is limited to the main differences arising from the calculation
of the renormalized vertex in the case of two charges blocked on the dot. All further diffi-
culties with respect to the previous calculations come essentially from the fact that the local
modes describing the charge on the dot are not four para-fermions, what is the usual rep-
resentation of the SU(N) Kondo interaction Eq. (E.2) [154], but slave-bosons. They require
some further effort to make explicit the mapping onto the SU(4) para-fermionic effective
interaction Eq. (5.19).

For −2U < εd < −U , two charges are frozen at low energy on the dot. To fourth order in
the tunneling t , all the other charge sectors of the quantum dot contribute to the effective
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action describing this regime, see Fig. 5.3. None of the slave-states introduced in the new
representation Eq. (5.14) can then be neglected. The farthest charge modes in energy b0 and
b4 are integrated first and the effective action can be written in the following form

S2 =−Tr
[

b† ·B−1
2 16 ·b

]

−Tr
[

f† ·Φ−1
1 · f

]

−Tr
[

F† ·Φ−1
3 ·F

]

+ t Tr
[

B†
1 · f+ f† ·B1 +B†

3 ·F+F† ·B3

]

.
(5.42)

The vectors F and b are the same as in Eq. (5.23), and we defined the new vectors

f =











f1

f2

f3

f4











, B1 =











c†
2b12 + c†

3b13 + c†
4b14

−c†
1b12 + c†

3b23 + c†
4b24

−c†
1b13 − c†

2b23 + c†
4b34

−c†
1b14 − c†

2b24 − c†
3b34











, B3 =











b34c2 −b24c3 +b23c4

−b34c1 +b14c3 −b13c4

b24c1 −b14c2 +b12c4

−b23c1 +b13c2 −b12c3











, (5.43)

and the renormalized propagators

Φ
−1
1 = F−1

1 14 − t 2A1 , (5.44a)

Φ
−1
3 = F−1

3 14 − t 2A3 , (5.44b)

with

A1 =











c1

c2

c3

c4











·B014 ·
(

c†
1 c†

2 c†
3 c†

4

)

, A3 =











c†
1

c†
2

c†
3

c†
4











·B414 ·
(

c1 c2 c3 c4
)

. (5.45)

Also in this case, the integration of the remaining para-fermions collected in the vectors f
and F is Gaussian and leads to the following effective action

S′
2 =−Tr

[

b† ·B−1
2 ·b

]

+Tr
[

J2

(

b† ·S ·b
)

·
(

c† ·T ·c
)

+W2

(

b† · 16 ·b
)(

c†
14c

)]

+

+ t 4Tr
[

B†
1 ·D1 ·A1 ·D1 ·B1

]

+ t 4Tr
[

B†
3 ·D3 ·A3 ·D3 ·B3

]

, (5.46)

with

J2 =−2t 2 [D1(iν− iω1)+D3(iν+ iω2)] , W2 =− t 2

2
[D1(iν− iω1)−D3(iν+ iω2)] . (5.47)

Taking the analytical continuations iν→ 2εd +U+λ and iω1,2 → 0, these expressions recover
the Schrieffer-Wolff couplings Eqs. (2.78) and (2.79) for q = 2. The SU(4) representation of
the interaction

(

b† ·S ·b
)(

c† ·T ·c
)

deserves a specific discussion. The vector b has six com-
ponents and this implies that the matrices composing the invariant SU(4) vector S are not
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those of the fundamental representation Eq. (E.1) in Appendix E. The explicit expression of
the product in Eq. (5.46) reads

2
(

b† ·S ·b
)(

c† ·T ·c
)

=c†
1c2

(

b†
24b14 +b†

23b13

)

+ c†
1c3

(

b†
34b14 −b†

23b12

)

+

c†
1c4

(

−b†
34b13 −b†

24b12

)

+ c†
2c3

(

b†
34b24 +b†

13b12

)

+

c†
2c4

(

−b†
34b23 +b†

14b12

)

+ c†
3c4

(

b†
24b23 +b†

14b13

)

+h.c.

1

2
c†

1c1

(

b†
12b12 +b†

13b13 +b†
14b14 −b†

23b23 −b†
24b24 −b†

34b34

)

+
1

2
c†

2c2

(

b†
12b12 +b†

23b23 +b†
24b24 −b†

13b13 −b†
14b14 −b†

34b34

)

+
1

2
c†

3c3

(

b†
13b13 +b†

23b23 +b†
34b34 −b†

12b12 −b†
14b14 −b†

24b24

)

+
1

2
c†

4c4

(

b†
14b14 +b†

24b24 +b†
34b34 −b†

12b12 −b†
13b13 −b†

23b23

)

.

(5.48)

We stress that this expression is obtained by applying the constraint
∑

ν′>ν b†
νν′bνν′ = 1 and

not Eq. (5.17), because all the other fields have been integrated to obtain the effective action
Eq. (5.46). To obtain the mapping onto Eq. (5.19) one has to switch back to a fermionic basis.
The slave-bosons bττ′ are associated to a two-electron state, which can also be described
within a fermionic representation

b†
νν′ = g †

νg †
ν′ . (5.49)

The gν are para-fermions fields obeying the constraint
∑

ν

g †
νgν = 2. (5.50)

Substituting Eq. (5.49) in Eq. (5.48) and applying Eq. (5.50), one proves the mapping onto the
usual SU(4) symmetric form Eq. (5.19), more precisely we recover Eq. (E.2) for q = 2. For our
purposes, it is much simpler to calculate the vertex function for the slave-bosons, defined
similarly as in Eq. (3.28)

V Λ

µµ′;νν′,υυ′(k, iω1, iν1;k ′iω2, iν2) =−β
〈ckµ(iω1)bνν′(iν1)b†

υυ′(iν2)c†
k ′µ′(iω2)〉

∣

∣

∣

c

Gk (iω1)Gk ′(iω2)B2(iν1)B2(iν2)
. (5.51)

This takes the form Eq. (2.81), but the components of the vector S are the 6×6 matrices in
Eq. (5.46) leading to Eq. (5.48). The details of the calculation of this function and then of
the renormalized vertex are illustrated in Appendix H. The mean-field treatment of the last
two terms in Eq. (5.46) also maps onto Eq. (5.19) and gives a t 4 order contribution to the
vertex function. This is also illustrated in Appendix H. The complete calculation leads to a
renormalized vertex of the form Eq. (2.81). The spin-exchange coupling reads

V R
J2

= J2 +2ν0 J 2
2 g2

(εd

U

)

−2ν0 J 2
2 ln

Λ

e− 1
2
√

(−εd −U )(εd +2U )
, (5.52)
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where

g2(x) = (x +2)2

4x2

[

x + ln
x +1

2x +1

]

+ (x +1)2

4(x +3)2

[

−x −3+ ln
x +2

2x +5

]

, (5.53)

This allows to determine the function f2(x) in Eq. (2.85)

f2(x) = 4

√

(−1−x)(x +2)

e2
eg2(x) . (5.54)

The potential scattering term reads

V R
W2

=W2 +
1

ν0

(

Γ

πU

)2

h2

(εd

U

)

, (5.55)

with

h2(x) = 1

4

4x +1

x(x +1)2
− 1

4

4x +11

(x +3)(x +2)2
− 1

2

1

(x +1)(x +2)
ln

x +2

−x −1
+

1

2

1−x

(x +1)x2
ln

x +1

2x +2
+ 1

2

x +4

(x +2)(x +3)2
ln

x +2

2x +5
+

3−2x

(x +1)2(x +2)2
ln

x +2
p

(−x −1)(2x +5)
. (5.56)

Notice also that V R
W Eq. (5.55) vanishes at particle-hole symmetry xεd /U = −3/2, which co-

incides with the middle of the Coulomb valley, in contrast with the q = 1 case, see Eq. (5.36).
The corrections to the charge on the quantum dot are also found with the help of the Friedel
sum rule

〈n̂2〉 = 2−4ν0V
R

W2
. (5.57)

5.2.1.3 Sector of charge q = 3

This last section is dedicated to the discussion of how all the previous calculations can be
repeated for three charges blocked on the dot. Actually, the fact that the q = 3 sector is the
particle-hole symmetric to that defined by q = 1 allows us to readily derive all the desired
results by making the following set of substitutions in all the expressions derived in Section
5.2.1.1

q = 1 q = 3 (5.58a)

E0 −E1 =−εd → E4 −E3 = εd +2U , (5.58b)

E2 −E1 = εd +U → E2 −E3 =−εd −3U , (5.58c)

E3 −E1 = 2εd +3U → E1 −E3 =−2ε−3U . (5.58d)



114 CHAPTER 5. THE SU(4) ANDERSON MODEL

The only point deserving a specific discussion is the derivation of the effective SU(4) sym-
metric action Eq. (5.19) from the para-fermion representation of the quantum dot states
with the fields Fν. We recall that the constraint Eq. (5.17) must be adapted upon the integra-
tion of the high energy slave-fields. In this case

∑

ν

F †
νFν = 1. (5.59)

In this representation, the spin-exchange interaction reads

2S ·s =−
∑

νν′
c†

kνck ′ν′

(

F †
νFν′ −

1

4
δνν′

)

. (5.60)

This expression recovers the canonical one Eq. (E.2) with q = 3 if we use the substitution
F †
νFν′ =−g †

ν′gν, where these last fermionic fields are submitted to the constraint
∑

ν

g †
νgν = 3. (5.61)

5.3 Generalization to SU(N)

One may wonder whether it is possible to generalize Eq. (5.5) to the general SU(N) case.
The SU(N) generalization of Eq. (5.3) states that charge relaxation resistance universality to
h/2Ne2 holds if all channels are symmetric, namely

χν =
χc

N
, ∀ ν . (5.62)

χc = ∑

νχν is the usual total charge susceptibility and appears in the denominator of Eq.
(5.3). The transformation Eq. (5.4) is then extended in the following way













χc

χ′
1
...

χ′
N−1













=













1 1 . . . . . . 1
v1
...

vN−1

























χ1

χ2
...

χN













. (5.63)

The first row vector (1,1, . . . ,1) of the transformation matrix gives χc and all the remaining
vectors vi are orthogonal to it and normalized to N . The vi vectors define new susceptibili-
ties χ′

i whose physical meaning cannot be determined a priori, but case by case depending
on the physical problem in which SU(N) effective low energy symmetry appears. The result-
ing expression for the charge relaxation resistance reads

Rq = h

2Ne2

(

1+
∑N−1

i=1 χ′2
i

χ2
c

)

. (5.64)

The orthogonality of the vi vectors to (1,1, . . . ,1) ensures that every χ′
i = 0 if the condition Eq.

(5.62) applies, leading to the universal quantization of Rq .
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5.4 Conclusions

In this chapter we illustrated a further application of our Fermi liquid approach to study the
charge relaxation resistance in interacting systems displaying more exotic SU(4) symmetries.
The possible generalization to the SU(N) case is also provided. Moreover, we show that it is
possible to extend the slave-state representation of the quantum dot Hilbert space to carry
out the calculation of the Kondo temperature and the dot charge occupation in SU(4) Kondo
regimes. The results illustrate the generality of our approach, a tool for studying static and
dynamical quantities in a variety of strongly interacting systems that cannot be accessed by
perturbative calculations.





CONCLUSIONS AND PERSPECTIVES

In this Thesis, I addressed the electron dynamics of the quantum RC circuit considering the
presence of strong electron-electron interactions on the quantum dot. We showed that, for a
variety of situations, the low energy behavior of the quasi-particles of the system is governed
by a time-dependent Fermi liquid Hamiltonian. This has to be coherent with the Friedel
sum rule, establishing a connection between the phase acquired by electrons scattering on
the dot and its charge occupation. We gave a formal proof of the derivation of the low en-
ergy effective Hamiltonian by devising path integral representations of these systems with
the help of slave-states, allowing for diagrammatic calculations. This gave us a direct deriva-
tion of the low energy effective action by applying the analytical renormalization group. The
main result of this study is the proof of a generalized Korringa-Shiba relation [75] leading to
the many-channel formula Eq. (2.8) for the charge relaxation resistance in interacting sys-
tems. This formula provides a general explanation for the universal quantization of Rq . This
holds if either particle-hole or SU(2) symmetry are not broken. This formula is also pow-
erful as it allows for the investigation of Rq by calculating static quantities. It allowed us to
predict and describe analytically the appearance of a giant peak in the charge relaxation re-
sistance caused by the breaking of the Kondo singlet by a magnetic field. We characterized
this peak in the full region of parameters solving numerically the Bethe ansatz equations for
the ground state of the Anderson model. We extended then the renormalization group ap-
proach to the SU(4) Anderson model, predicting new behaviors of the giant charge relaxation
resistance caused by the breaking of the SU(4) Kondo singlet by a magnetic field. Moreover
our slave-state approach was also applied to access the analytical expression of the SU(4)
Kondo temperature and the charge occupation of the quantum dot.

A problem which remains essentially open and not addressed by our work is the study of
the effect of finite temperatures on the charge relaxation resistance in interacting quantum
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dot circuits. What is expected is that, in the high temperature limit, coherence is progres-
sively lost so that the universal quantization for the charge relaxation resistance is aban-
doned. This is verified in the non-interacting case in the framework of scattering theory [84].
How this situation is modified in the presence of interactions is a completely open issue.
One of the main problems is that, at finite temperature, the ω → 0 and the t → 0 limits do
not commute. This prevents to resort to naive perturbative methods in the tunnel constant
t to calculate χc (ω), since divergences ∝ 1/ω are then recovered in the subsequent ω → 0
limit for the dynamical charge susceptibility χc (ω) [155, 156]. This requires to adopt non-
perturbative methods for the calculation of the dynamical charge susceptibility. The spin-
less case, described by the Coulomb blockade model Eq. (iv), has been addressed in Refs.
[68, 136]. The authors considered the Bethe-Salpeter equations for the dynamical charge
susceptibility. The technical difficulties connected to their solution force them to use ap-
proximations killing quantum coherences. They thus obtained results which can be recov-
ered from a master equation approach [68]. The spinful problem has also been addressed
even in the case of fast quenches with real-time diagrammatic techniques [157, 158], high-
lighting the existence of different relaxation time-scales for the charge and the spin on the
dot plus a third time scale which is independent of the level position and Coulomb inter-
action [67, 159]. An alternative approach would be to obtain the corrections to the general
Korringa-Shiba relation Eq. (2.7) considering the finite temperatures corrections to the low
energy effective Fermi liquid Hamiltonian provided in Eq. (2.10). Our analysis, relying on the
generalized Korringa-Shiba relation Eq. (2.7), proves that the non-monotonous behaviors of
Rq are caused by transitions to different ground-states of the quantum dot. Statistical mix-
tures of these states at finite temperatures are then supposed to weaken the dependence of
Rq on the magnetic field. A quantitative analysis should consider the corrections to the Fermi
liquid fixed point Hamiltonian Eq. (2.10) provided by Nozières’ theory of the Kondo problem
[121, 144, 160]. These appear as inelastic irrelevant contributions controlled by couplings
∝ ε/TK , ε being the energy of the incoming electrons. It is of interest to consider these terms
in a perturbative approach and study how they would affect the universal quantization of
the charge relaxation resistance. Would the suppression of the Kondo singlet at finite tem-
perature be revealed by a giant peak in the charge relaxation resistance as in the case of the
breaking of the SU(2) symmetry by a magnetic field? This question is interesting because,
for static quantities, the temperature and the magnetic field play analog roles [61]. But Rq

is a dynamic quantity and its universality relies on the effective non-interacting Fermi liquid
theory valid for any magnetic field, but absolutely not for any temperature, which activates
non-elastic processes for electrons scattering on the quantum dot.

Apart the problem of finite temperatures, the methods developed in this Thesis would
find interesting applications to different situations. First of all it would be interesting to in-
vestigate in more detail situations in which non-Fermi liquid behaviors are possible as in the
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two-channel case, close to charge degeneracy [70, 71] and in cases in which the Friedel sum
rule does not hold. A low energy effective approach could still find fruitful application for
new experiments which will soon find their realization in quantum devices. A first possibil-
ity could be found by considering charge relaxation dynamics in the case that lead electrons
propagate in the edge states of a topological insulator. The case of the integer and fractional
Hall effect have been already investigated [73, 74], and recent studies have considered quan-
tum RC circuits in the quantum spin Hall regime [54]. The recent experimental realization
of this topological insulator [27] has motivated a large effort in the study of quantum dot
circuits predicting new exotic manifestations of Kondo physics [161] (which has been also
recently predicted in 3D topological insulators [162]). It would be extremely interesting to
investigate charge relaxation in the exotic low energies Kondo regimes discussed in the pres-
ence of interactions in the spin Hall edges [163]. In a completely different framework, recent
experiments showing the possibility to probe quantum dot circuits by a microwave coherent
signal [43, 44, 45, 46] give rise to new possibilities of research. The phase of the microwave
signal has been shown to be sensitive to the manifestation of the Kondo ridge in the middle
of the Coulomb diamond [43] and still requires a quantitative theory. This could be realized
connecting our Fermi liquid approach for the quantum dot circuit with an input/output the-
ory of the microwave signal [164]. Moreover, the transmitted classical signal in the resonator
has been recently shown to be sensitive to the RC time of the quantum RC circuit [165]. The
possibility to add artificial superconducting atoms with the resonators in these devices gives
the possibility to synthesize quantum states of light in the resonator [41]. It would be then
possible to study the driving of the quantum dot by a state in the gate which is not classical
anymore. Moreover, it is also interesting to abandon the linear regime going towards purely
out-of-equilibrium ones. The study of fast quenches on the gate voltage in the case of inter-
acting dots it is still at its early stage [67, 159, 166] and it would constitute a necessary com-
pendium of the studies dealing with non-interacting dots within Floquet’s scattering theory
[167]. This would be of interest to study the possibility of the emission of triggered fractional
charges [168], in the edges of two-dimensional gases in the fractional quantum Hall regime,
which has been for the moment predicted for Lorentzian voltage pulses in the edges [169].
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A Results of linear response theory

In this appendix we illustrate some further properties and results of linear response theory
inspired by Ref. [170]. In A.1 we show that the real and the imaginary parts of the dynamical
charge susceptibility Eq. (1.37) are respectively even and odd functions of the frequency,
leading to Eq. (1.38). In A.2 we demonstrate that the power dissipation of the quantum RC
circuit in the linear response regime is given by Eq. (2.2).

A.1 Parity of the dynamical charge susceptibility

The Lehman representation [98] of the dynamical charge susceptibility χc (ω), defined in Eq.
(1.37), readily access to its real and imaginary parts. This is obtained from the Fourier trans-
form of Eq. (1.37)

χc (ω) = i

ħ

∫∞

−∞
d(t − t ′)e i (ω+i 0+)(t−t ′)θ(t − t ′)〈

[

n̂(t ), n̂(t ′)
]

〉0 , (A.1)

where the factor i 0+ must be inserted to regularize retarded functions. Inserting the closure
relation with the eigenstates |n〉 of energy En of the time independent Hamiltonian H0, the
averages can be cast into the form

〈n̂(t )n̂(t ′)〉0 =
∑

n,m
pne iωnm (t−t ′)Nnm Nmn , (A.2)

where pn = e−βEn /Z is the Boltzmann weight, ħωnm = En −Em and Nnm = 〈n| n̂ |m〉 the ma-
trix elements of the dot occupation. In this representation, the Fourier transform in Eq. (A.1)
is readily carried out giving

χc (ω) =−1

ħ
∑

nm
pn Nnm Nmn

(

1

ω+ i 0++ωnm
− 1

ω+ i 0+−ωnm

)

. (A.3)

Applying the relation
1

x ± i 0+ = P

[

1

x

]

∓ iπδ(x) , (A.4)

with P[ f (x)] the principal value of the function f (x), the real and imaginary part of χc (ω) are
readily obtained

Re
[

χc (ω)
]

=−1

ħ
∑

nm
pn Nnm Nmn

{

P

[

1

ω+ωnm

]

−P

[

1

ω−ωnm

]}

, (A.5)

Im
[

χc (ω)
]

= iπ

ħ
∑

nm
pn Nnm Nmn

{

δ
(

ω+ωnm
)

−δ
(

ω−ωnm
)

}

, (A.6)

which are respectively even and odd functions of ω.
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A.2 Energy dissipation in the linear response regime

The time dependence of the Hamiltonian Eq. (1.31) is caused by the presence of an external
drive, more precisely the gate potential Vg (t ). In the situation of Chapter 2, the time depen-
dence of orbital energies in the dot is given by εd (t ) = ε0

d +εω cos(ωt ). In the time unit, the
systems dissipates the energy

δW = δ〈n̂〉εω cos
(

ωt
)

. (A.7)

In the permanent regime the average power P dissipated by the system during the time
period T is then

P = εω

T

∫T

0
d t

d 〈n̂(t )〉
d t

cos(ωt ) . (A.8)

Neglecting constant contributions, the average 〈n̂(t )〉 is given by the dynamical charge sus-
ceptibility Eq. (1.37)

〈n̂(t )〉 = εω

∫∞

−∞
d t ′χc (t − t ′)cos(ωt ) . (A.9)

Substituting this expression in Eq. (A.8), we obtain

P =−iω
ε2
ω

4

[

χc (ω)−χc (−ω)
]

+ iω
ε2
ω

T

∫T

0
d t

χc (−ω)e2iωt −χc (ω)e−2iωt

4
. (A.10)

Expressing χc (ω) = Re
[

χc (ω)
]

+ i Im
[

χc (ω)
]

as the sum of its real and imaginary part and
applying the parity properties demonstrated in A.1, the first term recovers Eq. (2.2) for the
dissipated power

P = 1

2
ε2
ωωIm

[

χc (ω)
]

, (A.11)

while the second term in Eq. (A.10) reduces to vanishing integrals of sin(2ωt ) and cos(2ωt )
over their period. In the case of Section 2.4, we have the same problem with 〈δn̂〉 in Eq.
(A.7) replaced by 〈Â〉, with the operator Â given in Eq. (2.53). Repeating the same steps of
this discussion we obtain the power dissipated by the low energy effective Fermi liquid Eq.
(2.51)



124 APPENDIX

B Multi resonant level model

In this section we carry out the calculation of the quantum dot density of states in the case of
a single channel and an infinity of levels in the quantum dot. The action of the system reads

S =
∑

iωn

{

−
∑

k

c†
kG−1

k (iωn)ck −
∑

l

d †
l D−1

l (iωn)dl + t
∑

kl

[

c†
k dl +d †

l ck

]

}

, (B.1)

with

G−1
k (iωn) = iωn −εk ,

D−1
l (iωn) = iωn −εl .

(B.2)

The integration of the lead electron modes is Gaussian leading to the effective action

S′ =
∑

iωn

{

−
∑

l

d †
l (iωn)D−1

l (iωn)dl (iωn)+ t 2
∑

k

Gk (iωn)
∑

l l ′
d †

l (iωn)dl ′(iωn)

}

. (B.3)

Applying Wick’s theorem the full propagator of the dot electrons is readily obtained

Dl l ′(iωn) = δl l ′Dl (iωn)+Dl (iωn)Dl ′(iωn)
γ(iωn)

1−γ(iωn)Θ(iωn)
, (B.4)

where we defined

γ(iωn) = t 2
∑

k

Gk (iωn) , Θ(iωn) =
∑

l

Dl (iωn) . (B.5)

In the wide band limit γ(iωn) =−iΓsgn(iωn). Our aim is to calculate the static susceptibility
χc of the charge on the dot. The charge on the dot is given by

〈Q̂〉 = e
∑

l

〈d †
l dl 〉 =

e

β

∑

l ,iωn

e iωn 0+Dl l (iωn) =

= e

2πi

∑

l

∫∞

−∞
dε f (ε)

[

Dl l (ε+ i 0+)−Dl l (ε− i 0+)
]

. (B.6)

We write the energy spectrum on the dot as εl =−eVg +l∆, with l ∈Z and ∆ the level spacing.
Eq. (B.4) is then a function of ε+eVg . Shifting all energies by eVg , the differential capacitance
C0 =−∂Q̂/∂Vg is readily obtained at zero temperature

C0 =
e2

2πi

∑

l

[

Dl l (eVg + i 0+)−Dl l (eVg − i 0+)
]

, (B.7)
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with

Dl l (eVg ± i 0+) = 1

eVg − l∆
∓ 1

(eVg − l∆)2

iΓ

1± iΓ
[

∑

p
1

eVg−p∆

]

= 1

∆

{

1

x + l
∓ iΓ/∆

(x + l )2

1

1± iπ Γ

∆
coth(πx)

}

,

(B.8)

where x = eVg /∆ and we exploited the following result

∑

l

1

x + l
=Ψ0(1−x)−Ψ0(x) =πcoth(πx) , (B.9)

with Ψ0(x) the digamma function. Substituting this expression in Eq. (B.7), the sum over
levels can be also carried out, leading to

C0 = e2 πΓ

2∆2

1

sin2
(

π
eVg

∆

)





1

1+ iπ Γ

∆
coth

(

π
eVg

∆

) + 1

1− iπ Γ

∆
coth

(

π
eVg

∆

)



 , (B.10)

where the following identity has been used

∑

l

1

(l +x)2
=Ψ1(1−x)−Ψ1(x) = π2

sin2(πx)
, (B.11)

with Ψn(x) the polygamma function. Some algebra leads to

C0 =
e2

∆

2
∆

πΓ +
πΓ
∆
− ( ∆

πΓ −
πΓ
∆

)cos
(

2πeVg

∆

) , (B.12)

that, identifying term by term with Eq. (1.25), leads to the mapping Eq. (1.59).
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C Scattering theory and phase-shift

The T-matrix encodes all the information about the effects of the quantum dot on the prop-
agation of lead electrons. It is an improper self-energy for the resolvent of the lead electrons
appearing in a slightly modified form of the Dyson equation

G(z) =G0(z)+G0(z)T (z)G0(z) , (C.1)

G(z) = 1

z −H
, (C.2)

where z is a complex number. G0 is the free resolvent describing electrons unperturbed by
potential scattering

G0
kk ′(z) = 〈k|G0(z)

∣

∣k ′〉 = δkk ′

z −εk
, (C.3)

the |k〉 states being the single particle eigenvectors of the unperturbed Hamiltonian. In the
absence of electron-electron interactions, the resolvent and the retarded Green’s function
coincide and the definition of Eq. (C.1) implies Eq. (2.17).

The definition of the phase-shift in Eqs. (2.17) and (2.18) can be generalized as

δ= arg
[

T (ω+ i 0+)
]

(C.4)

and it is clear within scattering theory [171, 172]. This describes the situation shown in Fig.
C, in which an electron wave packet enters in the scattering region at time t = 0. We can
approximate the time of emission and detection of this wave packet as the far past and future,
respectively t =−∞ and t =+∞. Close to detection and emission, it is reasonable to assume
that the wave packet does not feel the presence of the scatterer, whose interaction range is
delimited inside the dashed line in Fig. C. In these situations, the electron wave function is
an asymptotic superposition of free plane waves. If we define the IN and OUT states

∣

∣Ψ
±〉,

the eigenvectors of energy ε of the Hamiltonian of the whole system, including the scattering
region, as the states coinciding asymptotically with free plane waves in the past and in the
future respectively, the S matrix gives the overlap between the two

Skk ′(ε) = 〈Ψ−
k

∣

∣ Ψ
+
k ′〉 , (C.5)

where k and k ′ are the momenta of the OUT and IN states. The T matrix is related to the S
matrix through [171, 172]

Skk ′ = δkk ′ −2πiδ(εk −εk ′)Tkk ′ . (C.6)

The S matrix is unitary and in the single channel case it is given by a phase S(ε) = e2iδ(ε). δ

is then exactly the phase-shift caused by the scattering onto the impurity of the conduction
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bc bc

IN-State OUT-State

|Ψ+〉 |Ψ−〉
Scattering

region

Emitter Receptor

Figure C: Illustration of the physical situation described by the scattering formalism. Electron wave
packets are emitted in the IN-State

∣

∣Ψ
+〉 and then measured in the OUT-state |Ψ−〉 once they have

passed through the scattering region.

electrons. Switching then to the resolution in energy of the eigenstates of the system, Eq.
(C.6) becomes

S(ε) = 1−2πiν0T (ε). (C.7)

Applying this result for the resonant level model where the T-matrix is given by Eq. (2.17),
we show that the δ defined in Eq. (2.18) coincides with the phase-shift of the OUT state with
respect to the IN state

S(ω) = e2iδ = ω−εd − iΓ

ω−εd + iΓ
. (C.8)

In Appendix D, we also check that the same kind of arguments applies for the potential scat-
tering Hamiltonian Eq. (2.10). In general the condition S(ε) = e2iδ(ε) is always verified if we
take the definition of the phase-shift directly from the T-matrix

T =− 1

πν0
sinδe iδ . (C.9)
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D T -matrix in the potential scattering Hamiltonian

The potential scattering Hamiltonian Eq. (2.10) is non-interacting. In this case, the resol-
vent of the lead electrons coincides with their Green’s function which can be easily obtained
within the path integral formalism. Considering the action of the system

S =
∑

iωn ,k,σ

c†
kσ(iωn)(−iωn +εk )ckσ(iωn)+W (εd )

∑

k 6=k ′
c†

kσ(iωn)ck ′σ(iωn) , (D.1)

The Green’s function is obtained by expanding the exponential of the action in the coupling
W . One can notice that the series so obtained takes the form

Gkk ′ = δkk ′

z −ǫk
+ 1

z −ǫk

1

z −ǫk ′
W (1+Σ(z)+Σ

2(z)+Σ
3(z)+ . . .) , (D.2)

Σ(z) =
∑

k

W

z −ǫk
. (D.3)

The T-matrix reads then
T (z) = t

1−Σ(z)
. (D.4)

Taking the typical analytical continuation z → ω+ i 0+ and a constant wide band density of
states ν0 for lead electrons we obtain

T (ω+ i 0+) = W

1+ iπν0W
= W

√

1+ (πν0W )2
e iδ , (D.5)

with the phase-shift Eq. (2.21). Substituting Eq. (D.5) in Eq. (C.7), we find again S = e2iδ,
accordingly with Eq. (C.8).
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E Fundamental representation of the SU(N) group

The explicit form of the fundamental representation of the SU(4) group can be found in Ref.
[173]:

λ1 =











0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0











, λ2 =











0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0











, λ1 =











1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0











,

λ4 =











0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0











, λ5 =











0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0











, λ6 =











0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0











,

λ7 =











0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0











, λ8 =
1
p

3











1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0











, λ9 =











0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0











,

λ10 =











0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0











, λ11 =











0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0











, λ12 =











0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0











,

λ13 =











0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0











, λ14 =











0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0











, λ15 =
1
p

6











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3











.

(E.1)

It is straightforward to check that

2
∑

µµ′νν′
Sνν′ ·Tµµ′c†

µcµ′d †
νdν′ =

∑

µµ′
c†
νcν′

(

d †
ν′dν−

q

N
δνν′

)

, (E.2)

if one sets
∑

ν d †
νdν = q . The d and c operators are fermions. It is also useful to mention that

the fundamental representation of the SU(N) group satisfies the following relation

TaTb = 1

2N
δab1+

1

2

(

i fabc +dabc
)

Tc , (E.3)

where

dacd dbcd = N 2 −4

N
δab , (E.4)

facd fbcd = Nδab , (E.5)
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with the following consequences

Si S j Ti T j =− 1

N
S ·T+ N 2 −1

4N
1 ,

Si S j T j Ti =
N 2 −2

2N
S ·T+ N 2 −1

4N
1 .

(E.6)
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F Contributions to V R in the Coulomb blockade model

All the contributions corresponding to the diagrams of Figs. 3.7 and 3.10 are listed below
(with C = Nν3

0t 4)

V1 = −C

∫

dε1dε2
ε1

(ε2 +E1)2(ε1 +ε2)
,

V2 = C

∫

dε1dε2
ε1

(ε1 +E1)2(ε1 +ε2)
,

V3 = C

∫

dε1dε2
ε1

(ε2 +E−1)2(ε1 +ε2)
,

V4 = −C

∫

dε1dε2
ε1

(ε1 +E−1)2(ε1 +ε2)
,

V5 = −2C

∫

dε1dε2
ε1

(ε1 +ε2)(ε2 +E1)(ε1 +E−1)
,

V6 = 2C

∫

dε1dε2
ε1

(ε1 +ε2)(ε1 +E1)(ε2 +E−1)
,

V7 = −C

∫

dε1dε2
ε1

(ε2 +E1)2(ε1 +ε2 +E2)
,

V8 = −C

∫

dε1dε2
ε1

(ε1 +E1)2(ε1 +ε2 +E2)
,

V9 = −2C

∫

dε1dε2
ε1

(ε2 +E1)(ε1 +ε2 +E2)(ε1 +E1)
,

V10 = C

∫

dε1dε2
ε1

(ε2 +E−1)2(ε1 +ε2 +E−2)
,

V11 = C

∫

dε1dε2
ε1

(ε1 +E−1)2(ε1 +ε2 +E−2)
,

V12 = 2C

∫

dε1dε2
ε1

(ε1 +E−1)(ε1 +ε2 +E−2)(ε2 +E−1)
,

(F.1)

where integrals run over the ε1,2 > 0 domain, to which the contributions of Eq. (3.50) and
Eq. (3.51) must be added. Whereas each term in Eqs. (3.50) and (3.51) suffers from an UV
divergence, the summation over all contributions is finite and does not depend on the cutoff
procedure. We shall adopt a sharp cutoff at energy D0 in the following. Moreover, the calcu-
lation exhibits a particle-hole symmetry: for example, V3 can be viewed as the symmetric of
V1, they have opposite sign and En exchanged with E−n . The result will then be necessarily of
the form A[εd ]− A[−εd ], which implies that any constant independent of εd will be ignored
during calculations. The dilogarithm function appears

Li2(z) =
∫0

z
d t

ln(1− t )

t
, (F.2)
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and the following equalities will be exploited

Li2(x)+Li2(1−x) = π2

6
− ln x ln(1−x), (F.3a)

Li2(x)+Li2

(

1

x

)

= π2

3
− 1

2
ln2 x − iπ ln x, (x ≥ 1). (F.3b)

As an intermediate step, we find (we omit the C = Nν3
0t 4 factor)

V1 +V2 =−D0

E1
−2lnE1 lnD0 + ln2 D0

−2lnD0 + ln2 E1 +2lnE1,

V7 +V8 =−D0

E1
+ E2

E1
lnD0+

1

E1(E2 −E1)
(E1E2 lnE1 −E 2

2 lnE2),

V5 +V6 +V ′′ =−εd

Ec
π2 − εd

Ec
ln2 E1

E−1
+2ln

E1

E−1
,

V9 = 2lnE1 lnD0 − ln2 D0 +
E1

Ec
ln2 E1

− E1

Ec

π2

2
+ E2

Ec

π2

6
+ E2

Ec
Li2

(

E2 −E1

E2

)

+ E2

2Ec
ln2 E2 −

E2

Ec
lnE1 lnE2,

with the contribution of Eq. (3.50)

V ′ = ν0t 2 ln
E1

E−1
+Nν3

0t 4 (

V ′
a +V ′

b

)

, (F.4)

V ′
a =

∫

dε1dε2
1

(ε2 +E1)

(

ε1

(ε1 +E1)
+ ε1

(ε1 +E−1)

)

= 2D0

E1
− lnD0 −

E−1

E1
lnD0 + lnE1 +

E−1

E1
lnE−1,

(F.5)

where V ′
b is obtained from V ′

a by particle-hole symmetry. It can be checked explicitly that the
terms depending on the cutoff D0 in the above expressions cancel out when the summation
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over all contributions is carried out. One is left with

V1 +V2 = ln2 E1 +2lnE1,

V7 +V8 =
1

E1(E2 −E1)
(E1E2 lnE1 −E 2

2 lnE2),

V ′
a = lnE1 +

E−1

E1
lnE−1,

V5 +V6 +V ′′ =−εd

Ec
π2 − εd

Ec
ln2 E1

E−1
+2ln

E1

E−1
,

V9 =
E1

Ec
ln2 E1 −

E1

Ec

π2

2
+ E2

Ec

π2

6
+ E2

2Ec
ln2 E2

+ E2

Ec
Li2

(

E2 −E1

E2

)

− E2

Ec
lnE1 lnE2.

Adding the particle-hole symmetric terms (V3,4,10,11,12 and V ′
b ), one finally arrives at Eq. (3.2).
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G Bethe ansatz equations for the Anderson model

The system reads (we follow the notations of Ref. [139])

ρ(k)+ g ′(k)
∫B

−∞
d pρ(p)R[g (k)− g (p)]+ g ′(k)

∫Q

−∞
dλσ(λ)s[g (k)−λ] =S ρ(k), (G.1)

σ(λ)−
∫Q

−∞
dλ′σ(λ′)R(λ−λ′)+

∫B

−∞
dkρ(k)s[λ− g (k)] =S σ(λ), (G.2)

with the source terms given by

S ρ(k) = 1

2π

{

1+ g ′(k)
∫∞

−∞
d pR[g (k)− g (p)]

}

+ 1

L

{

∆(k)+ g ′(k)
∫∞

−∞
d p∆(p)R[g (k)− g (p)]

}

,

(G.3)

S σ(λ) =
∫∞

−∞
dks(λ− g (k))

[

1

2π
+ ∆(k)

L

]

. (G.4)

We have introduced the functions

R(x) = 1

2π

∫∞

−∞
dω

e−iωx

1+e |ω| , s(x) = 1

2cosh(πx)
, (G.5)

g (k) = k −εd −U /2

2UΓ
, ∆(k) = Γ

π

1

(k −εd )2 +Γ2
. (G.6)

L is the size of the system and the spinon and holon densities can be split in a conduction
and impurity (dot) part

ρ(k) = ρc (k)+ ρi (k)

L
, σ(λ) =σc (λ)+ σi (λ)

L
. (G.7)

The linearity of Eqs. (G.1) and (G.2) implies that the conduction and impurity terms decou-
ple. The former sets the macroscopic properties of the system, i.e. the global Zeeman energy
H and the position of the valence level εd ,

H

2π
=

∫B

−∞
dkρc (k),

1

π

(

εd + U

2

)

=
∫Q

−∞
dλσc (λ), (G.8)

while the latter gives the occupancy 〈n̂〉 and the magnetization 〈m̂〉 of the dot, namely

〈m̂〉 = 1

2

∫B

−∞
dkρi (k), 〈n̂〉 = 1−

∫Q

−∞
dλσi (λ). (G.9)

These equations hold exclusively for εd ≥ −U /2 and H ≥ 0, while the results for εd < −U /2
are obtained by particle-hole symmetry. The zero magnetic field case H = 0 and the particle-
hole symmetric point εd = −U /2 are obtained by setting B and Q respectively to −∞. In
these cases, the Bethe ansatz equations for ρ and σ decouple and an analytical solution can
be constructed on the basis of the Wiener-Hopf method [78]. This decoupling results in a
complete separation of spin and charge degrees of freedom of the dot, see Eqs. (G.9), a strik-
ing feature of one dimensional quantum systems [174].
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H Calculations for the SU(4) renormalized vertex

In this Appendix we give the details about the calculations carried out in Chapter 5 in the
different charge sectors defined by the number q of charges blocked on the quantum dot.

H.1 Sector with q = 1

H.1.1 Mean-field analysis

Here we carry out the mean-field analysis of the last term in Eq. (5.30), quartic in the lead
electron fields, leading to Eq. (5.33). The last term in Eq. (5.30) can be written explicitly in
the frequency representation

t 4Tr
[

w† ·B2 ·A2 ·B2 ·w
]

=

t 4

β2

∑

B2(iω1 + iω2 − iω3 + iΩ1 − iΩ2)D3(iω1 + iω2 + iΩ1)B2(iω1 + iΩ1)×

c†
kα(iωD )c†

k ′β(iω3)ck ′′γ(iω2)ck ′′′δ(iω1) f †
ν (iΩ2) fν′(iΩ1) . (H.1)

The sum runs over all frequencies and momenta and iωD = iω1 + iω2 − iω3 + iΩ1 − iΩ2 to
ensure energy conservation. The sum over orbital labels is set by the specific algebraic form
of A2 and w in Eqs. (5.24) and (5.26) respectively. The mean-field analysis simply requires
to contract two of the lead electron operators in Eq. (H.1) and replace them by their unper-
turbed propagator, for instance

c†
kα(iωD )c†

k ′β(iω3)ck ′′γ(iω2)ck ′′′δ(iω1) f †
τ (iΩ2) fτ′(iΩ1) =

−Gk (iω2)c†
k ′β(iω1 + iΩ1 − iΩ2)ck ′′′δ(iω1) f †

ν (iΩ2) fν′(iΩ1) (H.2)

the minus coming from the commutation relations of Grassmann variables. Recalling the
discussion in Section 3.3.3, we can expand the frequency dependence of the propagators
appearing in Eq. (H.1) close to the fixed point frequencies iω for lead electrons and iωΛ

for dot para-fermions. To leading order, all frequency dependence is irrelevant and can be
neglected. The result has always the form

V = An × t 4

β

∑

c†
kµ(iω1 + iΩ1 − iΩ2)ck ′µ′(iω1) f †

ν (iΩ2) fν′(iΩ1) , (H.3)
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with An depending on which lead electrons in Eq. (H.1) have been contracted

β−γ → A0 =
B 2

2 (iω+ iωΛ)

β

∑

p,iωn

Gp (iωn)D3(iωn + iωΛ+ iω)

= ν0

(εd +U )2
ln

2εd +3U

D0
, (H.4)

α−γ or β−δ → A1 =−B2(iω+ iωΛ)

β

∑

p,iωn

Gp (iωn)D3(iωn + iωΛ+ iω)B2(iωn + iωΛ)

= ν0

(εd +U )(εd +2U )

[

ln
2εd +3U

D0
− ln

εd +U

D0

]

, (H.5)

α−δ → A2 =
1

β

∑

p,iωn

Gp (iωn)D3(iωn + iωΛ+ iω)B 2
2 (iωn + iωΛ)

=− ν0

(εd +U )(εd +2U )
+ ν0

(εd +2U )2

[

ln
2εd +3U

D0
− ln

εd +U

D0

]

. (H.6)

The Matsubara sums were carried out first and the analytical continuations iω → 0 and
iωΛ → εd +λ are done later. The cutoff D0 must be introduced to prevent UV divergences
and can be sent to infinity at the end of calculations. Notice that no infra-red divergence ap-
pears at this stage of calculations. Performing explicitly the spin summation one can show
that the effective interaction can be cast into the form

t 2

β
(4A1 −2A0 −2A2)

[

∑

µ6=µ′,ν6=ν′
−

∑

µ6=ν
δνν′δµµ′

]

c†
µcµ′ f †

ν fν′ . (H.7)

Applying the projection property
∑

ν f †
ν fν = 1 and Eq. (E.2) this recovers Eq. (5.33), realizing

the mapping onto the form Eq. (5.19).

H.1.2 Calculation of the renormalized vertex

The steps required for the calculation of the renormalized vertex V R are those summarized
in the paragraph before Eq. (5.34): the calculation of the full renormalized para-fermion
propagator, with the corrections to the pole and its quasi-particle weight, and the calculation
of all diagrams up to fourth order in t contributing to the vertex function Eq. (5.32). The
calculation of the full propagator D1(iωn) = −〈 fν(iωn) f †

ν (iωn)〉 is completely analog to the
one carried out for the para-fermions in the SU(2) Anderson model in Section 4.3. The Dyson
equation allows us to write the propagator in the form

D1(iωn) = 1

D−1
1 (iωn)−Σ1(iωn)

, (H.8)
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with, to leading order in Γ, the self-energy Σ1(iωn) given by the same diagram of the SU(2)
case, pictured in Fig. 4.9

Σ1(iω) = 4

β

∑

p,iωn

Gp (iωn)W1(iωn , iωn , iω− iωn)

= ν0t 2
[

ln
λ− iω

D0
+3ln

2εd +U +λ− iω

D0

]

,

(H.9)

where, the anti-symmetric properties of the SU(N) matrices S and T, imply that only W1 in
Eq. (5.31), and not J1, contributes to the self energy. The full propagator can then be written
in the form

D1(iωn) = Z1

iωn − ε̃d1
, (H.10)

providing the corrected pole ε̃d and the quasi-particle weight Z1

Z1(ε̃d1) = 1

1−Σ
′
1(ε̃d1)

= 1+ν0t 2
[

1

εd
− 3

εd +U

]

, (H.11)

ε̃d1 = εd +λ+Σ1(ε̃d1) ∼ εd +λ+ν0t 2
(

ln
−εd

D0
+3ln

εd +U

D0

)

. (H.12)

The same diagrams as in Fig. 4.8 have to be calculated using the SSU(4) interaction appearing
in Eq. (5.30). The first contribution to the renormalized vertex V R is given by the first diagram
of the series in Fig. 4.8 multiplied by the quasi-particle weight Z1 Eq. (H.11) and performing
the analytical extension iωΛ → ε̃d1 to the renormalized pole in Eq. (H.12). This contribution
reads

V1 = Z1
[

J1(iω, iω, iωR − iω)S ·T+W1(iω, iω, iωR − iω)1
]∣

∣

iω→0, iωΛ→ε̃d1

= S ·T

[

J1Z1 +2ν0t 4
(

ln
−εd

D0
+3ln

εd +U

D0

)

(

1

ε2
d

+ 1

(εd +U )2

)]

+ 1

[

W1Z1 +
ν0t 4

4

(

ln
−εd

D0
+3ln

εd +U

D0

)

(

1

ε2
d

− 3

(εd +U )2

)]

,

(H.13)

with J1 and W1 the couplings obtained by the Schrieffer-Wolff transformation in Eqs. (2.78)
and (2.79) respectively.

The calculation of the diagrams of order t 4 in Fig. 4.8 contributing to the vertex function is
also completely similar to those carried for the SU(2) Anderson model, the main difference
is in the commutation relations between the SU(N) matrices given by the relations Eq. (E.6).
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The results are analog Eqs. (4.35) and (4.41) and they read

V a =− 1

β

∑

piωnαβ

Gp (iω+ iωΛ− iωn)D1(iωn)

[(

−1

4
J 2

a +2JaWa

)

S ·T+
(

15

64
J 2

a +W 2
a

)

1

]

, (H.14)

V b =− 1

β

∑

piωnαβ

Gp (iω+ iωn − iωΛ)D1(iωn)

[(

7

4
J 2

b +2JbWb

)

S ·T+
(

15

64
J 2

b +W 2
b

)

1

]

. (H.15)

In the contribution a, the frequency dependencies of the couplings Ja and Wa read

Ja =−2t 2 [B0(iωn − iω)+B2(iω+ iωΛ)] , (H.16)

Wa =− t 4

4
[B0(iωn − iω)−3B2(iω+ iωΛ)] , (H.17)

while in V b

Jb =−2t 2 [B0(iωΛ− iω)+B2(iω+ iωn)] , (H.18)

Wb =− t 2

4
[B0(iωΛ− iω)−3B2(iω+ iωn)] . (H.19)

The same kind of integrals as in the SU(2) Anderson model have to be calculated

I00 =
1

β

∑

p,iωn

Gp (iω+ iωΛ− iωn)D1(iωn)B 2
0 (iωn − iω) = ν0

ε2
d

[

ln
−εd

Λ
−1

]

,

I02 =
1

β

∑

p,iωn

Gp (iω+ iωΛ− iωn)D1(iωn)B0(iωn − iω)B2(iω+ iωΛ) = ν0

εd (εd +U )
ln

Λ

−εd
,

I22 =
1

β

∑

p,iωn

Gp (iω+ iωΛ− iωn)D1(iωn)B 2
2 (iω+ iωΛ) =− ν0

(εd +U )2
ln

Λ

D0
,

L00 =
1

β

∑

p,iωn

Gp (iω+ iωn − iωΛ)D1(iωn)B 2
0 (iωΛ− iω) = ν0

ε2
d

ln
Λ

D0
,

L02 =
1

β

∑

p,iωn

Gp (iω+ iωn − iωΛ)D1(iωn)B0(iωΛ− iω)B2(iω+ iωn) = ν0

εd (εd +U )
ln

εd +U

Λ
,

L22 =
1

β

∑

p,iωn

Gp (iω+ iωn − iωΛ)D1(iωn)B 2
2 (iω+ iωn) = ν0

(εd +U )2

[

1− ln
εd +U

Λ

]

.

(H.20)

Notice that we directly applied Solyom’s prescription [124], illustrated in Eq. (4.39), equiva-
lent to introduce the infra-red cutoff Λ for sums over momenta. Only the integrals I22 and
L00 depend on the high energy cut-off D0, which must disappear as we will show later on.
The contributions to the vertex function read

V a = t 4 (4I02 +4I22)S ·T− t 4
(

I00 +
3

2
I22 +

3

2
I02

)

1 , (H.21)

V b =−t 4 (8L00 +12L02 +4L22)S ·T− t 4
(

L00 +
3

2
L22 +

3

2
L02

)

1 . (H.22)
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These contributions, in contrast with the SU(2) case, even if summed with the leading con-
tribution Eq. (H.13), do not allow to carry out the limit D0 → ∞. The contributions to the
vertex function from the t 4 order interaction Eq. (5.33), derived in Section H.1.1, have to be
taken into account to remove the D0 dependence. Their summation leads to the final results
Eq. (5.34) and (5.36).

H.2 Sector with q = 2

The steps of the previous calculation in the q = 1 case are repeated. To second order in t , the
self-energy of the boson propagator B2(iν) =−〈b(iν)b†(iν)〉 reads

Σ2(iν) = 4

β

∑

p,iωn

W2 (iν, iωn , iωn)Gp (iωn)

= 2Γ

π

[

ln
−iν+3εd +3U +λ

D0
+ ln

εd +λ− iν

D0

]

,

(H.23)

with W2 in Eq. (5.47). The self-energy leads to the renormalized pole iνΛ and quasi-particle
weight Z2

iνΛ → ε̃d2 = 2εd +U +λ+2
Γ

π

[

ln
εd +2U

D0
+ ln

−εd −U

D0

]

, (H.24)

Z2 = 1−ν0 J2 , (H.25)

with J2 given by the Schrieffer-Wolff transformation Eq. (2.78). Notice that the slave-states
used to describe the quantum dot are now bosons, implying that their propagator B2 de-
pends on bosonic Matsubara frequencies iνn .

We calculate now all the contributions to the renormalized vertex V R
2 =Z2V , involving the

four-point vertex function V defined in Eq. (5.51). The contributions corresponding to the
first diagram of the series in Fig. 4.8 are readily obtained

V1−2 = S ·T

[

J2 −ν0 J 2
2 +2ν0

(

J 2
2

4
+4W 2

2

)

ln
(−εd −U )(εd +2U )

D2
0

]

+

+ 1

[

W2 −ν0 J2W2 +ν0 J2W2 ln
(−εd −U )(εd +2U )

D2
0

]

. (H.26)

These include the corrections to the pole Eq. (H.24) and the quasi-particle weight Eq. (H.25).

Then we have the contributions which are the analog of the contributions V a and V b in
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the previous section

V a
2 =− 1

β

∑

p,iνn

Gp (iω+ iνΛ− iνn)B2(iνn)

[

(

−J 2
a +2JaWa

)

S ·T+
(

5

16
J 2

a +W 2
a

)

1

]

, (H.27)

V b
2 =− 1

β

∑

p,iνn

Gp (iω+ iνn − iνΛ)B2(iνn)

[

(

J 2
b +2JbWb

)

S ·T+
(

5

16
J 2

b +W 2
b

)

1

]

. (H.28)

In the contribution a, the frequency dependencies of the couplings Ja and Wa read

Ja =−2t 2 [F1(iνn − iω)+F3(iω+ iνΛ)] , (H.29)

Wa =− t 4

2
[F1(iνn − iω)−F3(iω+ iνΛ)] , (H.30)

while in V b

Jb =−2t 2 [F1(iνΛ− iω)+F3(iω+ iνn)] , (H.31)

Wb =− t 2

2
[F1(iνΛ− iω)−F3(iω+ iνn)] . (H.32)

Notice that the relations (E.6) do not to hold anymore. The reason is that the bosonic repre-
sentation of the SU(4) symmetric product Eq. (5.48), is not given by matrices composing a
fundamental representation of SU(4). These matrices obey different relations

Si S j Ti T j =−S ·T+ 5

16
1 ,

Si S j T j Ti =+S ·T+ 5

16
1 .

(H.33)

The calculation of the Matsubara sums and of the integrals over momenta leads to the fol-
lowing result

V a
2 = 2t 4 (I11 +3I33 +4I13)S ·T− t 4

2
(3I11 +3I33 +4I13)1,

V b
2 =−2t 4 (3L11 +L33 +4L13)S ·T− t 4

2
(3L11 +3L33 +4L13)1,

(H.34)
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with

I11 =
1

β

∑

p,iνn

B2(iνn)Gp (iω+ iνΛ− iνn)F 2
1 (iνn − iω) =− ν0

(εd +U )2

[

1+ ln
Λ

−εd −U

]

,

I13 =
1

β

∑

p,iνn

B2(iνn)Gp (iω+ iνΛ− iνn)F1(iνn − iω)F3(iω+ iνΛ)

= ν0

(εd +U )(εd +2U )
ln

Λ

−εd −U
,

I33 =
1

β

∑

p,iνn

B2(iνn)Gp (iω+ iνΛ− iνn)F 2
3 (iω+ iνΛ) =− ν0

(εd +2U )2
ln

Λ

D0
,

L11 =
1

β

∑

p,iνn

B2(iνn)Gp (iω+ iνn − iνΛ)F 2
1 (iνΛ− iω) = ν0

(εd +U )2
ln

Λ

D0
,

L13 =
1

β

∑

p,iνn

B2(iνn)Gp (iω+ iνn − iνΛ)F1(iνΛ− iω)F3(iω+ iνn)

=− ν0

(εd +U )(εd +2U )
ln

Λ

εd +2U
,

L33 =
1

β

∑

p,iνn

B2(iνn)Gp (iω+ iνn − iνΛ)F 2
3 (iω+ iνn) = ν0

(εd +2U )2

[

1+ ln
Λ

εd +2U

]

.

(H.35)

Again, the summation of all these contributions with V1−2 in Eq. (H.26) does not allow for
taking the D0 → ∞, which still requires to consider the contribution to the vertex function
of the two interactions term of order t 4 in Eq. (5.46). A mean-field analysis, analog to that
carried out in Section H.1.1, leads to the following expression of their contribution to the
action

St 4 =
[

2(V0 −V4)S ·T+ V0 +V4

2
1

]

Tr
[

c†cb†b
]

. (H.36)

V0 and V4 are the contributions to the vertex coming from the 0 and 4 charge sector respec-
tively. They read

V0 = A0 + A2 −2A1 ,

V4 =C0 +C2 −2C1 ,
(H.37)
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with

A0 =
1

β

∑

p,iωn

Gp (−iωn)F 2
1 (iν− iω)B0(iν− iω+ iωn) =− ν0

(εd +U )2
ln

−2εd −U

D0
,

A2 =
1

β

∑

p,iωn

Gp (−iωn)F 2
1 (iν+ iωn)B0(iν− iω+ iωn) = ν0

εd (εd +U )
+ ν0

ε2
d

ln
εd +U

2εd +U
,

A1 =− 1

β

∑

p,iωn

Gp (−iωn)F1(iν+ iωn)B0(iν− iω+ iωn)F1(iν− iω)

= ν0

εd (εd +U )
ln

εd +U

2εd +U
,

C0 =
1

β

∑

p,iωn

Gp (iωn)F 2
3 (iν+ iω)B0(iν+ iω+ iωn) = ν0

(εd +2U )2
ln

2εd +5U

D0
,

C2 =
1

β

∑

p,iωn

Gp (iωn)F 2
3 (iν+ iωn)B0(iν+ iω+ iωn)

=− ν0

(εd +3U )(εd +2U )
+ ν0

(εd +3U )2
ln

2εd +5U

εd +2U
,

C1 =− 1

β

∑

p,iωn

Gp (iωn)F1(iν+ iωn)B0(iν+ iω+ iωn)F1(iν+ iω)

= ν0

(εd +3U )(εd +2U )
ln

2εd +5U

εd +2U
.

(H.38)

The summation of all these contributions to the previous ones allows us to carry out safely
the limit D0 →∞ and obtain Eqs. (5.52) and (5.55) for the renormalized vertex in the sector
q = 2.
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Résumé

Cette thèse développe une théorie effective de liquide de Fermi pour décrire la dynamique
électronique dans un circuit RC quantique dans des régimes de forte interaction. Ce dis-
positif est composé d’une boîte quantique connectée à un réservoir d’électrons par un point
de contact quantique. La boîte quantique est aussi couplée capacitivement à une grille mé-
tallique. Ce dispositif n’admet pas de courant continu, mais seulement un courant alter-
natif. Son comportement est analogue à celui d’un circuit RC classique et ne respecte pas
les lois de Kirchhoff si le transport est cohérent. La résistance de relaxation de charge est
universellement fixée à Rq = h/2e2, sans dépendre de l’ouverture du point de contact quan-
tique, différement de ce qui est observé en transport direct. Nous étudions des régimes de
blocage de Coulomb, provoqués par les fortes interactions électroniques. Nous démontrons
que la dynamique électronique est sans interactions de façon effective à basse énergie. Nous
prouvons la validité d’une formule de Korringa-Shiba généralisée, prédisant l’universalité de
Rq même en présence de fortes interactions. Nous étudions aussi les comportements non
universels de Rq causés par la présence d’un champ magnétique. Une attention particulière
est dédiée à la physique Kondo. Nous démontrons l’existence d’un pic géant pour Rq , cor-
respondant à la destruction du singulet Kondo. Notre approche est étendue à des dispositifs
de symétrie SU(4), respectée par des boîtes quantiques avec dégénérescence orbitale. En
appliquant les méthodes analytiques ici dévéloppées, nous dérivons l’expression exacte de
la température Kondo dans le cas avec symétrie SU(4).

Mots clés : physique mésoscopique, dynamique électronique cohérente, circuit RC quan-
tique, effet Kondo, blocage de Coulomb, liquide de Fermi.



Abstract

In this Thesis, we develop an effective low energy Fermi liquid formalism to describe the
electron dynamics in the strongly interacting quantum RC circuit. This device is composed
of a quantum dot connected to an electron reservoir by a quantum point contact. The dot is
coupled capacitively to a top metallic gate. Direct current is forbidden and electron transport
can be observed if the quantum dot is driven by a time dependent gate potential. Theoretical
and experimental studies confirmed the analogy to a classical RC circuit and showed a viola-
tion of Kirchhoff’s laws for phase-coherent transport: the charge relaxation resistance of the
quantum RC circuit is universally quantized to Rq = h/2e2, regardless of the quantum point
contact transmission, in striking contrast to direct transport measurements. We consider
Coulomb blockade regimes caused by strong electronic interactions on the dot. For both
spinless and spinful electrons, we show electron dynamics to be effectively non-interacting
at low temperature. We derive a generalized Korringa-Shiba relation, predicting universal
quantization for the charge relaxation resistance even in the presence of strong interactions
on the dot. We also study non-universal behaviors of Rq for spinful electrons in the presence
of a magnetic field. We focus on the Kondo regime and show the emergence of a giant peak
for Rq caused by the destruction of the Kondo singlet. We extend our approach to the SU(4)
symmetric case, relevant in the case of further orbital degeneracy on the dot. The analyti-
cal methods developed in this work are applied to obtain the exact expression of the SU(4)
Kondo temperature.

Keywords : mesoscopic physics, coherent electron dynamics, quantum RC circuit, Kondo
effect, Coulomb blockade, Fermi liquid.
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