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Abstract of the Dissertation

Mauricio Delbracio Bentancor

Two Problems of Digital Image Formation:

Recovering the Camera Point Spread Function

and

Boosting Stochastic Renderers by Auto-similarity Filtering

Under the direction of:

Jean-Michel Morel, Pablo Musé and Andrés Almansa

This dissertation contributes to two fundamental problems of digital image forma-

tion: the modeling and estimation of the blur introduced by an optical digital camera

and the fast generation of realistic synthetic images.

The accurate estimation of the camera’s intrinsic blur is a longstanding problem in

image processing. Recent technological advances have significantly impacted on im-

age quality. Thus improving the accuracy of calibration procedures is imperative to

further push this development.

The first part of this thesis presents a mathematical theory that models the physical

acquisition of digital cameras. Based on this modeling, two fully automatic algo-

rithms to estimate the intrinsic camera blur are introduced. For the first one, the

estimation is performed from a photograph of a specially designed calibration pat-

tern. One of the main contributions of this dissertation is the proof that a pattern

with white noise characteristics is near optimal for the estimation purpose. The sec-

ond algorithm circumvents the tedious process of using a calibration pattern. Indeed,

we prove that two photographs of a textured planar scene, taken at two different dis-

tances with the same camera configuration, are enough to produce an accurate esti-

mation.

In the second part of this thesis, we propose an algorithm to accelerate realistic im-

age synthesis. Several hours or even days may be necessary to produce high-quality

images. In a typical renderer, image pixels are formed by averaging the contribution

of stochastic rays cast from a virtual camera. The simple yet powerful acceleration

principle consists of detecting similar pixels by comparing their ray histograms and

letting them share their rays. Results show a significant acceleration while preserving

image quality.





Résumé de la Thèse

Mauricio Delbracio Bentancor

Deux problèmes dans la formation des images numériques :

l’estimation du noyau local de flou d’une caméra

et

l’accélération de rendus stochastiques par filtrage auto-similaire

Sous la direction de :

Jean-Michel Morel, Pablo Musé and Andrés Almansa

Cette thèse s’attaque à deux problèmes fondamentaux dans la formation des im-

ages numériques : la modélisation et l’estimation du flou introduit par une caméra

numérique optique, et la génération rapide des images de synthèse photoréalistes.

L’évaluation précise du flou intrinsèque d’une caméra est un problème récurrent en

traitement d’image. Des progrès technologiques récents ont eu un impact significatif

sur la qualité de l’image. Donc, une amélioration de la précision des procédures de

calibration est impérative pour pousser plus loin cette évolution.

La première partie de cette thèse présente une théorie mathématique de l’acquisition

physique de l’image par un appareil photo numérique. Sur la base de cette modélisa-

tion, deux algorithmes automatiques pour estimer le flou intrinsèque de la l’appareil

sont proposés. Pour le premier, l’estimation est effectuée à partir d’une photographie

d’une mire d’étallonnage spécialement conçue à cet effet. L’une des principales con-

tributions de cette thèse est la preuve qu’une mire portant l’image d’un bruit blanc est

proche de l’optimum pour estimer le noyau de flou. Le deuxième algorithme évite

l’utilisation d’une mire d’étallonnage, procédure qui peut devenir un peu encom-

brante. En effet, nous montrons que deux photos d’une scène plane texturée, prises

à deux distances différentes avec la même configuration de l’appareil photo, suffisent

pour produire une estimation précise.

Dans la deuxième partie de cette thèse, nous proposons un algorithme pour accélérer

la synthèse d’images réalistes. Plusieurs heures, et même plusieurs jours peuvent

être nécessaires pour produire des images de haute qualité. Dans un rendu typ-

ique, les pixels d’une image sont formés en établissant la moyenne de la contribu-

tion des rayons stochastiques lancés à partir d’une caméra virtuelle. Le principe

d’accélération, simple mais puissant, consiste à détecter les pixels similaires en com-

parant leurs histogrammes de rayons et à leur faire partager leurs rayons. Les résultats

montrent une accélération significative qui préserve la qualité de l’image.





Resumen de la Tesis

Mauricio Delbracio Bentancor

Dos problemas en la formación de imágenes digitales:

la estimación de la función de dispersión de punto de una cámara fotográfica

y

la aceleración de renderers estocásticos por filtrado auto-similar

Bajo la dirección de:

Jean-Michel Morel, Pablo Musé and Andrés Almansa

Esta tesis contribuye a resolver dos problemas fundamentales en la formación de

imágenes digitales: (i) el modelado matemático y la estimación de la falta de defi-

nición introducida por el sistema óptico/electrónico de una cámara digital y (ii) la

generación rápida de imágenes sintéticas fotorealistas.

La estimación precisa del núcleo de convolución (por falta de definición) intrı́nseco

a la cámara es un problema importante en procesamiento de imágenes. Los avances

tecnológicos recientes han impactado significativamente en la calidad de las imágenes,

por lo que una mejora en la exactitud de los procedimientos de calibración resulta

imprescindible para impulsar aún más este desarrollo.

La primera parte de esta tesis presenta una teorı́a matemática que modela la adquisi-

ción fı́sica de una imagen por una cámara digital. Sobre la base de este modelo, pre-

sentamos dos algoritmos totalmente automáticos para estimar la falta de definición

intrı́nseca de la cámara. En el primero, la estimación se realiza a partir de una fo-

tografı́a de un patrón de calibración que contiene un ruido blanco especialmente

diseñado. La prueba de casi-optimalidad de dicho patrón, en el sentido del condi-

cionamiento numérico del problema de estimación, constituye una de las principales

contribuciones de esta tesis. El segundo algoritmo simplifica el procedimiento ex-

perimental al no requerir el uso de un patrón de calibración predeterminado. De

hecho, se prueba que dos fotografı́as de una escena plana texturada, tomadas a dos

distancias diferentes con la misma configuración de la cámara, son suficientes para

producir una estimación precisa.

En la segunda parte de esta tesis, se propone un algoritmo para acelerar la sı́ntesis

de imágenes fotorealistas. Para producir imágenes de alta calidad pueden ser nece-

sarias varias horas o incluso dı́as. En un motor tı́pico de renderizado, los pı́xeles de

una imagen se forman haciendo un promedio de la contribución de rayos emitidos

aleatoriamente desde una cámara virtual. El principio de aceleración propuesto, sim-

ple pero poderoso, consiste en detectar pı́xeles similares mediante la comparación de

sus histogramas de rayos, y hacer que compartan sus rayos. Los resultados mues-

tran que es posible obtener una aceleración considerable preservando la calidad de

imagen.





A mis viejos Carlos y Olga.





Acknowledgments

First and foremost I would like to express my heartfelt gratitude to my advisors Andrés Almansa,
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Drettakis, who generously accepted being part of the evaluation committee and provided me with

encouraging and constructive feedback.

I am grateful to Rafael Grompone von Gioi who, from the time I stepped on french soil, was there

to help me with a lot of practical problems. Rafael, from whom I have learned a lot over the many

discussions we have had over these years.

I want to warmly thank Tony Buades. This work has benefited from his remarkable collaboration. I

would also like to thank Nicholas Phelps and Julien Chauvier from E-On Software who introduced

me in a passionate domain.

I am grateful to all the people that helped me during these years, in particular I would like to thank:
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1 Introduction

Motivation

Digital images are generated by using physical acquisition devices, such as digital cameras, but

also by simulating light propagation through environmental models. This thesis deals with two

fundamental problems of digital image generation: the modeling and estimation of the camera’s

intrinsic blur presented in all optical digital devices and the generation of fast and realistic synthetic

images.

Mostly due to advances in technology, pushed by a massive market penetration, digital image

quality has significantly improved in the past two decades. This has caused that certain character-

istic problems, caused by the nature of the acquisition devices, that were not critical until recently,

are now becoming the bottleneck to get further improvements. Blur produced by light diffraction,

geometrical distortions caused by the use of low-cost lenses and thermal noise due to electronic

circuits are examples of this kind of outcomes.

Image blur can be observed when the camera’s focus is not correctly adjusted by the user, when

the objects in the scene appear at different depths, or when the relative motion between the camera

and the scene is faster than the shutter speed (motion blur). In addition to these sources of blur,

even in ideal acquisition conditions, there is a permanent intrinsic physical camera blur due to

light diffraction, sensor resolution, lens aberration, and anti-aliasing filters. The first part of this

dissertation, addresses the problem of accurately estimating the Point Spread Function (psf), that

models the intrinsic camera blur. This function can be locally interpreted as the response of the

camera to a point light source.

At the other end, synthesizing high quality realistic images in a reasonable amount of time

remains a major challenge in computer graphics. The aim of realistic image synthesis is to gen-

erate new images from a complete three-dimensional description of a virtual scene. The scene

description should contain at least the geometry, location and properties of objects, the camera

viewpoint and a characterization of light sources. The generated picture should be as photoreal-

istic as possible: if the three-dimensional scene is constructed and a photograph is taken from the

same camera’s point of view, the difference should be negligible. Of course this requires a per-

fect knowledge of how the light interacts with the environment and extremely accurate material

models; oversimplifications must be avoided.

The seminal paper by Kajiya [] presented the rendering equation, an integral equation

modeling the steady-state light distribution in a scene. Except for very simple scenes, analytical

solutions are impossible to obtain, so most typical approaches are based on Monte Carlo numer-

ical integration techniques. Image pixels are formed by averaging the contribution of stochastic

rays cast from a virtual camera through the scene. The principal problem of Monte Carlo ren-





ders is that the variance of the estimator decreases linearly with the number of stochastic samples.

Thus the root mean square error to an ideal image decreases as the square root of the number of

samples. Several hours or even days may be necessary to produce noiseless realistic images. In-

deed, at present, the final image quality is indirectly topped by the available production time and

computational resources.

This makes this problem interesting not only from an academic point of view. Indeed, the

motivation for this problem came through a partnership with the French company e-on software,

specialist in modeling and rendering natural environments. The company’s ceo, Nicholas Phelps

proposed a concrete well defined problem:

Is there any way of generating realistic synthetic images, more quickly, with the same

amount of computational resources and without loosing quality?

The second part of this dissertation analyzes some ideas and proposes a new method to accelerate

Monte Carlo renderers, which are the most popular realistic renderers that are currently used.

Part I – Recovering the Camera Point Spread Function

The point spread function (psf) describes the distribution of light in the camera focal plane for a

point light source. This function is strictly related to the resolution and blur of an optical device.

Most medium to high quality digital cameras (dslrs) acquire images at a spatial rate which is

below the Nyquist rate. For this reason only aliased versions of the camera point-spread function

can be directly observed. In addition, since the acquisition system is only locally stationary, the psf

estimation must be local.

psf estimation methods can be classified as blind or non-blind, depending on whether they use

or not snapshots of a specially designed calibration pattern. Blind approaches try to estimate the

psf from photographs of an unknown scene. They do assume, however, that the scene involved

in the estimation follows some statistical model of sharp images, or includes a significant amount

of geometric cues such as sharp edges. Most of these psf estimation approaches attempt to detect

edges, which are modeled as pure step-edge functions convolved with the psf kernel [Chalmond

; Luxen and Förstner ; Capel ; Smith ]. In this setting, the estimation is very ill-

posed; to solve the inverse problem, the solution space has to be constrained by considering kernels

with a parametric model or with strong regularity assumptions. Therefore, such blind estimation

techniques do not normally lead to accurate psf estimates and are only used in image restoration

problems, where precision is not the main objective. For this reason, most accurate psf estimation

procedures rely on the use of specially designed calibration patterns. A local kernel estimation is

performed by comparing the ideal calibration pattern to its photographs.

In this thesis, two fully automatic algorithms for the psf estimation are introduced. The first

one performs an estimation from a photograph of a specially designed calibration pattern. As we

will show, this non-blind algorithm achieves high accuracy. The second one uses two photographs

of a planar scene, taken at two different distances with the same camera configuration. This al-

gorithm lays in an intermediate category: semi-blind. Although, it does not make use of a psf

estimation pattern, the photographed scene should be planar and textured to get accurate results.

http://www.e-onsoftware.com/
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Pursuit of the Optimal Calibration Pattern

Up to the present, even non-blind subpixel psf estimation methods reported in the literature led to

ill-posed inverse problems. The inversion required the imposition of simple psf parametric mod-

els, or other regularity or symmetry priors. In Chapter  we show that such a priori assumptions

on the psf are actually unnecessary and jeopardize the estimation accuracy.

A mathematical digital image formation model that takes into account blur due to intrinsic and

extrinsic phenomena, geometrical lens distortions, sampling and noise is presented in Section ..

One of the main problems for the psf estimation, is that digital cameras may capture images that

are undersampled according to Shannon theory. The mathematical model, built on Lemma ,

considers this issue specifically. In this discrete model, images are sampled in a virtual super-

resolved grid. This high-resolution lattice will be for example, 4 × 4 times the resolution of the

physical camera allowing a 4× psf estimation.

Assume we can unveil exactly the latent sharp pattern image that produced the blurry aliased

observation. Then, solving for the psf amounts to solve an inverse problem governed by the image

formation model. To achieve this several problems need to be addressed:

• how to choose a good psf calibration pattern;

• how to estimate the geometric deformation between the pattern and the acquired image;

• how to estimate the non-uniform illumination;

• how to numerically solve the inverse problem.

If the pattern and the captured image are perfectly registered and its non-uniform illumination

compensated, the accuracy of the psf estimation depends on how well we can invert an opera-

tor. This operator mainly depends on the calibration pattern. In Section . we present a quality

measure (that we call the γ value) of a given pattern view in terms of the well-posedness of the

psf estimation problem. Formalizing this well-posedness measure allows us to define an optimal

digital pattern for the subpixel psf estimation (Definition ).

Is it feasible to construct such an ideal calibration pattern? Several patterns have been

used for psf estimation, ranging from pin-hole, slanted-edge [ISO ; Reichenbach et al. ;

Zandhuis et al. ; Claxton and Staunton ], or arc-step-edge patterns [Joshi et al. ] to

random noise images [Daniels et al. ; Levy et al. ; Backman et al. , ; Brauers et al.

].

A theoretical bound on the optimality of a pattern is presented in Proposition . This mathe-

matical bound gives a limit of the performance that we can theoretically achieve. Several numerical

experiments conducted in Section . allow us to conclude that in realistic conditions, near-optimal

quality measure values are reached with a pattern created from a realization of a random field of

independent Bernoulli black or white pixels.. The mathematical modeling of the psf estimation

problem together with the near-optimality of the Bernoulli pattern is one of the main contribu-

tions of this dissertation.

Figure . shows the proposed Bernoulli noise pattern, compared to the pattern designed by

Joshi et al. [] consisting of 120◦ arc step edges. The proposed noise pattern consists of 256×
256 small black/white squares drawn independently from a Bernoulli equiprobable distribution.

This central region is surrounded by checkerboard-like marks and black/white squares for align-

ment and illumination estimation purposes.The fact that the pattern is black and white avoids to

calibrate the printer used for generating the pattern.





Slant-edge pattern by Joshi et al. [] Bernoulli pattern (proposed)

Figure 1.1: Different calibration patterns for local PSF estimation. On left the Joshi et al. pattern

consisting of 120◦ arc step edges. On the right the proposed noise pattern consists of 256 × 256
small black/white squares drawn independently from a Bernoulli equiprobable distribution. The lat­

eral checkerboard­like marks and black/white squares are introduced for alignment and illumination

estimation purposes.





9× 9 17× 17 25× 25 33× 33

Joshi et al. [] . . . .

Bernoulli pattern . . . .

Theoretical bound . . . .

Table 1.1: Pattern quality measure. The value shown in each entry (γ value) is a measure of the well­

posedness of the subpixel PSF estimation problem. The larger the γ value the more ill­posed the prob­

lem becomes. The Bernoulli pattern produces significantly smaller γ values than the slanted­edge Joshi

et al. [2008] pattern. Values are calculated for a 4× PSF estimation for PSF support sizes ranging from

9× 9 to 33× 33.

Figure 1.2: Example of an acquired image of the Bernoulli pattern. On the right, a crop of the central

part containing the pattern. As is shown on the left, the pattern should cover only a small region of the

image (roughly 100× 100 pixels). This allows for a local PSF estimation.

The well-posedness measure for the corresponding patterns and the theoretical optimal values

are shown in Table .. The Bernoulli noise pattern significantly outperforms the one from Joshi

et al. [].

The pattern is designed to cover a small region of 100× 100 pixels in the acquired image. This

permits an estimation which is both local and well-posed. An example of an acquired image is

shown in Figure .. This image shows one of the green channels of the Bayer raw camera output.

The proposed non-blind psf estimation algorithm is fully automatic. The captured image is

precisely aligned to the analytic pattern by means of the surrounding checkerboard markers. Non-

uniform illumination is corrected from the acquired image by using the auxiliary black and white

flat regions. Non-linear sensor response is also roughly estimated based on the fact that the central

noise part of the pattern should have a perfect average of black and white. Of course, since we work

with raw camera output, this response is almost linear.

Once these intermediate steps are performed, the local psf is directly computed by inverting a

linear system. Since the psf must be non-negative, as we justify in the image formation model, a

numerical constraint is imposed to enforce this non-negativity. Notwithstanding, the experimental

section shows that not enforcing the kernel to be non-negative essentially yields the same results.

In fact, this serves as a sanity check on the proposed method.

In order to validate the calibration procedure and the quality of the Bernoulli pattern we con-

ducted several synthetic and real camera experiments. A comparison to the commercial software
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Imatest [LLC ] and the state-of-the-art method of Joshi et al. is presented in Figure .. This

figure shows the horizontal profile of the modulus of the psf Fourier spectrum. The Imatest es-

timation is performed from a slanted-edge image and only gives an estimate of the point spread

function at the direction orthogonal to the slanted-edge. The Joshi et al. method is forced to use

a penalty term on the norm of the psf gradient, since the inverse problem using their slant-edge

pattern is ill-posed. In the low frequencies Joshi et al. and the proposed method yield very similar

results. However, for higher frequencies the result of Joshi et al. is strongly dependent on the reg-

ularization level. The Imatest estimate is quite noisy and does not resolve frequencies above twice

the sampling rate. The proposed algorithm based on the Bernoulli pattern generates much more

information than the typical slanted-edge psf calibration.
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Figure 1.3: Horizontal profile of the PSF Fourier spectrum modulus for different state­of­the­art meth­

ods: Joshi et al. [2008] , Imatest [LLC 2010] commercial software and the proposed Bernoulli pattern

algorithm. On the low frequencies all algorithms gave very similar estimations, while on the higher fre­

quencies the Joshi et al. estimation depends on the regularization level. The Imatest software produces

a quite noisy estimation.

Figure . shows the result of estimating a 4× psf for one of the green channels at different

image locations using the proposed Bernoulli pattern. Kernels closer to image borders are larger

and more asymmetrical than the kernel at the image center. This agrees with the expected result,

since lenses are designed to minimize aberrations near the optical center. Note that although no

regularization is imposed, the resulting psfs are smooth.

Avoiding the Use of a Calibration Pattern

Although very precise, the use of a calibration pattern can be sometimes tedious and impractical:

these approaches rely on a careful setup, and the calibration grid has to be properly assembled,

whereby a good quality print is essential. Therefore, we explored the feasibility of obtaining accu-

rate psf estimates, while avoiding the explicit use of a calibration pattern.

Chapter  proves that, instead of using a photograph of a known calibration pattern, two pho-

tographs of the same scene acquired at different distances with fixed camera configuration are
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Figure 1.4: The result of estimating a 4× PSF for one of the green channels at different image locations.

For each pixel at the sensor resolution we estimate 4× 4 samples of the PSF. The 1× resolution (camera

grid) is shown in green dotted lines. Kernels closer to image borders are larger and more asymmetrical

than the kernel at the image center. This is mainly due to lens aberration. Although no regularization is

imposed, the resulting kernels are smooth.

enough to recover a regularization-free subpixel psf. The mathematical relation between these

two fronto-parallel images allows us to introduce the concept of inter-image kernel between them.

This kernel can be interpreted as the blur that should be applied to the closest image (followed by

the necessary zoom-out) to produce the farthest image (Definition ). An interesting observation,

which is proved in Lemma , is that the inter-image kernel k, and the camera psf h are closely

related through the following equation

Hλh ∗ k = h,

where Hλ is a zoom of the necessary factor to put the two views in the same scale. The deriva-

tion of the camera psf from the previous equation is not straightforward. However, as proved in

Proposition ,

h = lim
n→∞

Hλn−1k ∗Hλn−2k ∗ · · · ∗Hλk ∗ k.

Thus, it is possible to recover the camera psf from the inter-image kernel k. One of the main con-

tributions of this dissertation is the mathematical development that proves that such an estimation

is possible.

In practice, we deal with discrete images, that may suffer from noise and aliasing, so the inter-

image kernel estimation may be biased. Based on a mathematical analysis, we give some ideas on

how to mitigate the impact of these problems and to increase the accuracy of the inter-image kernel

estimation. This is done by properly choosing the scene and the distance between the acquired

images. Indeed, the inter-image kernel is estimated by solving a least squares problem similar to

the one for the pattern based psf estimation. As shown in Chapter  the inverse problem is well-

posed as long as the photographed scene presents textured characteristics (similar to white noise).

In this setting, the closest image plays a similar role as the one played by the calibration pattern in

a traditional non-blind estimation.

We introduce an algorithm that is completely automatic. It gives a subpixel estimate of the

camera psf from two photographs of a textured planar object taken at different distances. An





closest image farthest image

4× Inter-image kernel 4× psf

Figure 1.5: An example of a pair of digital images that allow to estimate the PSF. Top: two distant, parallel

views of a wall. Bottom: the inter­image kernel between these two views. The inter­image kernel models

the necessary blur that should be applied to the closest image to produce the farthest image (with

the necessary zooming). The camera PSF is recovered from the inter­image kernel through an iterative

procedure. The estimated inter­image kernel and camera PSF are obtained at 4× the camera resolution

for the blue channel. Although no regularization is imposed, the kernels are smooth.

example of how the estimation takes place is shown in Figure . where a pair of photographs of a

wall taken at two different distances are used as input. The algorithm first registers the two input

images based on detecting sift points [Lowe ]. Then, a least-squares problem is solved to get

the inter-image kernel estimation. Finally, the camera psf is computed from the inter image-kernel

through an iterative procedure. Experimental evidence shows the well-posedness of the problem

and the convergence of the proposed algorithm to the camera in-focus psf. The mathematical

development is made under a technical assumption (e.g., re-focusing does not change the psf)

that may not strictly hold in practice. Nevertheless, as shown in Figure . the psf estimated with

the Bernoulli pattern and the estimation with the two scaled photographs are convincingly close.

The proposed acquisition procedure is simple and handy in comparison to a non-blind ap-

proach. The choice of the photographed scene is important but not critical. For a wide range

of everyday textured scenes, the acquired image pairs lead to well posed inversions and accurate

results. Figure . gives an idea of the sharpness of the method. In this experiment, the psf at

four times the camera resolution of the four color Bayer channels (typical color filter array in raw

camera output consists of two green channels, one blue and one red) are estimated. Notice that

the red channel psf is wider than the green and the blue one, as expected from the physics of

diffraction-limited optical systems, since the wavelengths associated to red light are larger than the

rest. The differences between the dominant orientations of the red/blue and green psf spectra can

be explained by the sensor shape and layout. In fact, each sensor active zone is usually L-shaped
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(see for example Yadid-Pecht []), and the red and blue sensors are rotated 90◦ w.r.t. the green

ones . These rotations are consistently observed in the psfs and Fourier spectra estimated with the

proposed two photographs method. This illustrates the precision of the proposed approach.
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Figure 1.6: Comparison of the PSF estimation from the two­scaled photographs and the non­blind esti­

mation using the Bernoulli pattern. The estimations are for the same camera and configuration at 4×
the resolution. Both estimations are significantly close and the difference is mostly due to noise present

in the two­scale estimation.
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Figure 1.7: Top row: the 4× PSF estimated for the four Bayer channels (two green channels, one red and

one blue). Bottom row: their corresponding Fourier spectrum modulus. The red PSF is larger than the

blue and the green ones. This is consistent with the diffraction phenomenon: the red wavelengths are

larger than the rest, thus its diffraction kernel is wider. Also note the differences between the shape of

the red/blue and green PSF spectra (bottom row). Red and blue MTFs are rotated 90◦ with respect to

the green ones. This symmetric behavior is consistent with the layout of L­shaped sensors Yadid­Pecht

[2000].

Part II – Accelerating Realistic Image Synthesis

In order to synthesize an image with global illumination, a radiance value must be assigned to

each pixel in the image. Path tracing (and more generally ray-tracing) is a popular technique for
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resolving the rendering equation ruling the steady state equilibrium of light in a scene. In a ray-

tracing scenario, this value is computed as a weighted average of radiance values incident on the

image plane, along light rays coming from the light sources, bouncing in the scene, passing trough

the pixel, and pointing to the virtual camera.

Unfortunately, only a finite number of rays can be cast, so the radiance value is computed

only approximately. To avoid artifacts, rays are cast randomly. Mathematically, this is equivalent to

solving the rendering equation through a Monte Carlo numerical integration procedure. The main

problem of Monte Carlo rendering is that the variance of the estimator converges only linearly with

the number of random samples. An example of an scene rendered with a varying number of rays

per pixel is shown in Figure ..

spp spp spp spp spp

Figure 1.8: Example of an image rendered with Monte Carlo path­tracing. In a pure MC scenario the

square error decreases linearly with the number of samples per pixel (spp), thus the convergence is

quite slow.

There are mainly two approaches to accelerate the convergence of Monte Carlo rendering to

obtain good quality images. One of these approaches is adaptive sampling. This class of algorithms

locally adapt the number of samples cast per pixel. The idea is to increase the number of rays in

complex parts of the scene while maintaining a reduced number in simple parts, such as flat re-

gions. Complex textures or defocused zones are typical elements that require large amounts of rays

to be properly rendered. Hachisuka et al. [] proposed to adaptively distribute a set of samples

in the full, multidimensional sampling domain where the rendering equation is computed. How-

ever, as more Monte Carlo effects are considered (e.g. depth-of-field, motion blur, area lighting)

the dimension of this space will be larger and thus will suffer from the curse of dimensionality. One

of the most significant adaptive sampling algorithms is certainly the Adaptive Wavelet Rendering

by Overbeck et al. []. This method adaptively distributes Monte Carlo samples in the screen

space to reduce the variance of a wavelet basis scale coefficients. Then, the image is reconstructed

from these non-uniformly distributed samples by using a suitable wavelet approximation.

The other approach is adaptive filtering. In this family of algorithms, the existing set of samples

are combined to produce a better estimator of the pixel color using ray information in a pixel and

in its neighbors. Adaptive filtering may take place at sample level (i.e., primarily filtering the ray

colors) or at pixel level (i.e., primarily filtering pixel color values). The simplest adaptive filters

act at pixel level, like any filter used in classical image processing [Jensen and Christensen ;

Choudhury and Tumblin ; Xu and Pattanaik ]. More complex filters make use of ray

information available from the renderer in order to filter also at pixel level [Rushmeier and Ward

; McCool ; Dammertz et al. ; Xu et al. ]. The most sophisticated filters, use the

additional ray information to adaptively filter the sample rays [Shirley et al. ; Sen and Darabi

; Rousselle et al. ; Lehtinen et al. ].

The majority of these methods can actually be written as generalized versions of the bilateral
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filter (or the sigma-filter [Lee ]) applying a weighted average of the samples (resp. of the pixels)

in a neighborhood. This general bilateral filter obeys the law of joint destiny (Gesetz des gemein-

samen Schicksals) introduced in Gestalt psychology by Wertheimer []. This law states that

similar pixels are grouped by our perception. Its obvious generalization in image processing is to

say that similar pixels must be denoised jointly, being different samples of the same model. The law

of common destiny is implicitly used by the sigma-filter and by the nl-means algorithm [Buades

et al. ]. The main disadvantage of traditional bilateral filters is that by comparing noisy pixel

values, they cannot easily distinguish noise from intrinsic pixel variability. Thus, the clustering of

similar pixels is potentially subject to errors and the filtering will result in a significantly biased

image.

As we will present in Chapter , in computer graphics, the statistics of ray samples permits to

identify much more rigorously than in classic image processing the pixels sharing the same model.

Indeed, all ray samples hitting a given pixel and its neighbors can be used for that purpose.

Similar pixels can be detected by comparing their empirical ray color distributions using an

adequate histogram distance. Since the order in which the samples are calculated is irrelevant, the

sample color empirical distribution appears as a natural and complete descriptor of the compared

sets. Figure . shows a small region of a Monte Carlo rendered image where two pixels are singled

out. Although both pixels have different colors, their color distributions are strikingly similar and

can be fused. The difference in the pixel colors may be the consequence of the presence of a single

very bright ray sample in one of the distributions. By comparing the ray color distributions, it is

nevertheless possible to conclude that both pixels are from the same “nature”, while this conclusion

could not be reached by comparing the pixel values.

Figure 1.9: Monte Carlo rendered pixels can be grouped very efficiently by comparing their ray color

distribution. Left: a crop of a Monte Carlo rendered image where two pixels with different colors are

singled out. The difference in color is due to a poor estimate from a low number of rays cast at each

pixel. Right: the color sample distributions of each pixel. The color sample distribution is represented in

the RGB color box, where the color of each of the rays cast at a pixel is one point. The color distributions

are strikingly similar and can be fused, which is the principle of the proposed algorithm.

We propose a simple but powerful filtering algorithm that uses exclusively the colors and po-

sitions of the cast ray samples. It can be thus coupled with any Monte Carlo sampler keeping a

record of rays. The algorithm does not assume any noise model. It generalizes the nl-means de-

noiser, and shares with it an artifact-free record. The cornerstone of the proposed algorithm is to

find and average the most similar patches by comparing the ray color sample distributions of each

of its pixels. Inspired by this concept we name the algorithm ray histogram fusion. Figure . shows

a running example.

In a pure Monte Carlo rendering the estimation error presents white noise characteristics.
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This means that all frequencies are equally contaminated by noise. To this purpose, we introduce

a multi-scale implementation that sequentially decomposes the input noisy image at each scale,

filters each scale and reconstructs the multi-scale filtered image.

As shown in the experimental section of Chapter , the proposed filter is consistent. As the

number of samples increases, more evidence is required to average two pixels. In the limit two

pixels will be averaged only if their color distributions are the same. Therefore, in practice, as the

number of samples grows the method converges to the expected solution. The acceleration factor

depends on the degree of self similarity of the scene, which fortunately is usually high [Lebrun

et al. ]. The algorithm provides a psnr gain of  to  decibels, or equivalently accelerates the

rendering process by using  to  times fewer samples without observable bias. It is immediately

extendable to synthetic movies. Being based on the ray color values only, it can be combined with

all rendering effects.

Figure 1.10: A running example of the ray histogram fusion algorithm. The filter increased the PSNR of

this Monte Carlo rendered image by +11.6 decibels. To get an equal PSNR with pure Monte Carlo, 15×
more samples would have been needed.

Reproducible Research

Being able to reproduce experiments is a major problem in computer science. Quite often, the level

of detail given in an article does not allow its complete unambiguous implementation.

In this thesis, we did our best to give a fair enough level of reproducibility. The two algorithms

for the psf estimation were published in the ipol journal where they can be tested online. This

open access journal seeks to mitigate the reproducibility problem by publishing for each article a

precise algorithmic description, a reference source code and a demo facility where users can try the

algorithm online.
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Concerning the ray fusion histogram filter, we did our best to give enough detail so it can be

completely reproduced. Unfortunately, due to the complexity of the input data, it is impossible (at

least in the current scenario) to submit it to ipol. Notwithstanding, we plan to release a reference

source code with examples. This is on going work.

Summary of Contributions

Pattern based PSF estimation We present a theoretical analysis proving that the subpixel psf

estimation problem is well-posed for a single well chosen observation. Theoretical bounds show

that near-optimal accuracy can be achieved with a calibration pattern formed from a realization

of a random field where each pixel is an independent Bernoulli variable. We propose an algorithm

that accurately registers the pattern image, normalizes its non-uniform illumination and computes

the local subpixel psf by inverting a well conditioned linear system. To the best of our knowledge,

this is the first regularization-free and non-parametric local subpixel psf estimation method re-

ported in the literature or used in the industry.

Two-photographs PSF estimation We propose an algorithm for the subpixel estimation of

the point spread function of a digital camera from aliased photographs. The proposed algorithm

simply uses two fronto-parallel photographs of any planar textured scene at different distances. We

develop a mathematical theory proving that the camera psf can be derived from these two images,

under reasonable conditions. Mathematical proofs supported by experimental results show the

well-posedness of the problem and the convergence to the camera in-focus psf. Experimental

comparison with real camera data shows that the resulting psf estimates reaches the accuracy levels

of the best calibration pattern based state-of-the-art methods.

Boosting Monte Carlo renderers We propose a new multi-scale filter to be used as an ac-

celeration of Monte Carlo renderers. Each image pixel is represented by the colors of the rays that

reach its surface. A robust histogram distance compares the empirical color distribution associated

with each pixel at each scale and decides whether two pixels can share their rays. This simple and

easily reproducible algorithm provides a significant gain in psnr, or equivalently accelerates the

rendering process by using fewer samples without introducing observable bias. The algorithm is

universal in the sense that it can be combined with any rendering effect. It is consistent and does

not assume a particular noise model and is immediately extendable to synthetic movies.
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Part I

Recovering the Camera Point Spread

Function
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2 PSF Estimation from a Calibration Pat­

tern Image

Most medium to high quality digital cameras (DSLRs) acquire images at a spatial

rate which is several times below the ideal Nyquist rate. For this reason only aliased

versions of the cameral point-spread function (psf) can be directly observed. Yet, it

can be recovered, at a subpixel resolution, by a numerical method. Since the acqui-

sition system is only locally stationary, this psf estimation must be local. This chap-

ter presents a theoretical study proving that the subpixel psf estimation problem is

well-posed even with a single well chosen observation. Indeed, theoretical bounds

show that a near-optimal accuracy can be achieved with a calibration pattern mim-

icking a Bernoulli(.) random noise. The physical realization of this psf estimation

method is demonstrated in many comparative experiments. We use an algorithm to

accurately estimate the pattern position and its illumination conditions. Once this

accurate registration is obtained, the local psf can be directly computed by inverting

a well conditioned linear system. The psf estimates reach stringent accuracy levels

with a relative error in the order of % to %. To the best of our knowledge, such a

regularization-free and model-free subpixel psf estimation scheme is the first of its

kind.

. Introduction

Image blur can be observed when the camera focus was wrong, when there are different objects at

different depths, or when there is a motion blur. But there is a permanent intrinsic physical camera

blur due to light diffraction, sensor resolution, lens aberration, and anti-aliasing filters. Our goal

here is to accurately estimate the point spread function - psf, that models the intrinsic camera blur.

This function can be locally interpreted as the response of the camera to a point light.

There are several key applications of psf estimation, among them image superresolution, im-

age de-blurring and camera quality evaluation. Traditionally sharp psfs are considered to lead

to better images, but too sharp psfs (containing significant frequency components beyond the

Nyquist frequency) cause aliasing effects that may also affect the quality of digital images. An ac-

curate subpixel estimation of the psf is therefore crucial to evaluate the image quality in terms of a

trade-off between sharpness and aliasing effects.

Image superresolution is the longstanding problem of increasing the resolution of an aliased

imaging system by interpolating a single-frame, or by fusing several low-resolution images. For

this difficult superresolution process, an accurate psf is fundamental. Surprisingly, there are many
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more works on blind de-convolution associated to image restoration or on superresolution, than

on the accurate psf estimation.

Existing psf estimation methods can be classified as blind or non-blind, parametric or non-

parametric. Blind methods estimate the psf from a single image or from a set of acquired images,

without any knowledge of the scene. On the contrary, non-blind methods use a specially designed

calibration pattern. Blind methods endeavor to model features of the latent sharp image and to find

by optimization the most suitable kernel that predicts them from the blurry observation. Most

of them attempt to detect edges in the blurred image, modeling them as the result of blurring

pure step-edge functions [Chalmond ; Luxen and Förstner ; Capel ; Smith ].

However, in real images, a step-edge convolved with the psf kernel is generally not a good model

of the observed edges as noted by Ladjal [, chapter ]. Other blind approaches try to estimate

the psf based on statistical models of sharp images [Chalmond ; Rooms et al. ; Zhang

and Cham ; Šroubek et al. ]. Since the blind estimation is an ill-posed problem (blind

source separation), strong kernel smoothness assumptions or, equivalently, very simple parametric

models are necessary. These inaccurate approaches are necessary to characterize and to blindly

restore images affected by contingent motion or out of focus blur.

Non-blind methods instead address the problem of estimating accurately the inherent cam-

era blur. They rely on photographs of calibration patterns to estimate the psf. These patterns

range from pin-hole or slanted-edge patterns to random noise images. The subpixel psf estima-

tion problem is generally treated as ill-posed. Most non-blind methods therefore introduce a psf

model constraining the space of possible solutions. Parametric models, priors on the regularity of

the psf or on its symmetry are the most current assumptions. However, these a priori assumptions

can jeopardize the estimation accuracy.

The ideal calibration pattern that comes to mind would be a perfect pin-hole image simulating

a Dirac delta impulse, permitting to directly observe samples of the psf. However, in such an

observation the signal to noise ratio would be very low, the spot support being ideally infinitesimal.

Furthermore, for producing subpixel psf estimates several subpixel-shifted versions of the spot

image would be needed. Bar or sine patterns can also help sample the mtf, but only up to the

Nyquist frequency.

The iso  standard [ISO ] gives a normalized pattern and a procedure for measur-

ing the one-dimensional mtf, i.e., the modulus of the Fourier transform of the system’s impulse

response (psf) in a particular orientation. This standard is based on the slanted-edge method [Re-

ichenbach et al. ], which is an extension of the step-edge technique to achieve sub pixel reso-

lution on the estimation. By aligning the step-edge slightly off the orthogonal scan direction the

effective sampling rate is increased. Also, scan-line averaging successfully suppresses noise and in-

creases signal-to-noise ratio making the estimation more stable. Zandhuis et al. [] propose

a slanted-edge non-parametric subpixel psf estimation method that admits geometrical distor-

tions. A parametric and non-parametric edge spread function estimation procedure is proposed

by Claxton and Staunton []. Non-uniform illumination is also taken into account. However,

the differentiation step that gives back the psf requires regularization and therefore loses accuracy.

Since the previous methods are based on estimating several one-dimensional responses, several

images or symmetry assumptions are needed to reconstruct a full bi-dimensional psf.

Before this thesis, the recent method by Joshi et al. [] arguably represented the state-of-

the-art of slanted-edge methods. It proposes a flexible blind and non-blind non-parametric local

psf estimation algorithm. Its approach is based on the ability to detect edges with subpixel accu-

racy. In order to get a precise local psf a specially designed pattern formed by -degrees-arc-

step-edges is used. The method directly solves the de-convolution and superresolution problem
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for a bi-dimensional subpixel psf. To reach a subpixel accuracy a penalty term on the norm of the

psf gradient is introduced, the inverse problem being ill-posed. As we shall see in Section ., this

penalty causes inaccurate estimates in the high frequency components of the psf. If the observed

image is under-sampled, which is highly probable and the reason why a subpixel psf estimation

will be proposed here, interpolating it tramples high frequency information.

As we shall try to prove, there are two main possible improvements to the Joshi et al. method,

and they are linked: one is the use of a random noise pattern and the other is the removal of any

regularity term, thus transforming the psf estimation problem into a well-posed problem. The use

of random noise patterns with known power spectral density has been explored for mtf estimation

by Daniels et al. []; Levy et al. []; Backman et al. [, ]. In an ideal situation, the

power spectral density psd(f) of the observed digital image at frequency f is equal to the input

power spectral density psdi(f) times the squared mtf(f). The advantage of this procedure is that

the mtf can be directly calculated. It does not require knowledge of the particular noise realization,

relying only on statistical assumptions. A strong limitation of this approach is that the estimation

is done up to half the sampling frequency. Consequently it does not reach a subpixel accuracy, and

aliasing effects are not taken into account.

Brauers et al. [] also used a random noise pattern, but in a completely different approach.

The acquired image is registered to match the pattern. Then, by doing de-convolution with the al-

most flat spectrum noise pattern, this method succeeds in characterizing locally the psf. However,

the method assumes that the camera over-samples the signal, which is a correct hypothesis for the

particular multi-spectral-camera-lens system, but unrealistic for a classical optical camera. This

method contemplates the possibility of a non-linear light sensor response, but does not correct the

non-projective distortion. Again, the question is treated as an ill-posed problem and noise-free

kernels are produced by regularization.

Table . summarizes some of the existing algorithms for psf estimation. It first gives the ab-

breviations for the five criteria characterizing calibration methods. The above analysis suggests that

an ideal method must be non-blind (NB), with no regularization. The kernel estimation must be

2D, local (L), subpixel (sp). The main systematic perturbations in imaging (optical distortion (D),

non uniform illumination (I), non linear sensor response (G)) must be corrected when comparing

the ideal pattern to the photographed one. In short, an ideal method must be (NB,R,2D-L-sp,

DIG) with no (C,P,K). The closest to this ideal in the state-of-the-art was the Joshi et al. method,

but it includes a regularization which will be shown fatal to the high frequency kernel content.

The method proposed here has all “good” features. Indeed, it will be shown mathematically and

practically that an adequate noise pattern permits to avoid any regularization. The camera kernel

is directly recovered from the comparison of the ideal noise pattern to the observed one by the

inversion of a well-conditioned matrix. We will also verify that this is not possible with an edge

based pattern.

By correctly choosing the calibration pattern, a subpixel psf estimation is therefore feasible

without a priori kernel model, without regularization, and with a single aliased input image cap-

ture. Nevertheless, this requires the careful correction of the geometrical distortion, of the non-

uniform illumination, and of the non-linearity of the sensor response. In short, with a noise pat-

tern, and thanks to this careful elimination of all bias, the psf subpixel estimation becomes well-

posed. Theoretical bounds will also demonstrate the quasi-optimality of white noise calibration

patterns to that purpose. Given that the psf is space variant, due to lens aberrations or sensor non

uniformity, the estimation must be done as local as possible.

This chapter is organized as follows. Section . describes the general mathematical digital

camera model used for psf estimation method. Section . proposes a mathematical theory of
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Item Code Description

Blindness
B blind

NB non-blind

Model
E edge-based
R random pattern
N natural image model

Regularity
C circular symmetry
P parametric estimation
K other kernel regularization

Estimation

1 one-image estimation
k k-image estimation

1D, 2D uni/bi-dimensional estimation
L local estimation
sp subpixel estimation

Features
D geometrical distortion considered
I non-uniform illumination considered
G non-linear sensor response considered

Algorithm Blind Model Regul. Estim. Feat.

Luxen and Förstner [] B E P 1-2D -

Smith []
B E P 1-1D -

Capel []

Rooms et al. []
B N C-P 1-2D -Zhang and Cham []

Šroubek et al. []

Chalmond [] B E-N K 1-2D -

Zandhuis et al. [] NB E - k-2D-L-sp D

Claxton and Staunton [] NB E P-K k-2D-sp I

Reichenbach et al. [] NB E - 1-1D-sp -

Joshi et al. [] NB E K 1-2D-L-sp D

Daniels et al. []
NB R C 1-1D -Levy et al. []

Backman et al. [, ]

Brauers et al. [] NB R K 1-2D-L G

Proposed NB R - 1-2D-L-sp DIG

Table 2.1: PSF estimation algorithm summary.
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optimal patterns. It studies the optimality of the calibration pattern in terms of the well-posedness

of the psf estimation problem, and concludes with the proposition of a near optimal and physically

feasible random noise pattern. Section . describes all the steps of the proposed psf estimation

protocol. In Section . experimental results generated with both simulated and real camera data

are presented, cross-validated, and compared with the results of state of the art previous methods.

Section . is a final discussion.

. Image Formation Model

An accurate estimation of the psf requires a proper modeling of the digital image formation pro-

cess. The basic pin-hole camera model consists of a perspective projection of the three-dimensional

3d world scene into the focal plane. In real cameras, a system of lenses is needed to concentrate the

light rays toward the focal point, passing through a finite but non pin-hole aperture. Hence, the

perspective projection is followed by geometric distortions, which are always present in any cam-

era/lens system. This process can be faithfully modeled as a diffeomorphism from the focal plane

into itself. The blur of the resulting image in the focal plane is modeled by a kernel that captures

all psf like effects (diffraction due to finite aperture, lens aberration, optical anti-aliasing filters,

sensor light integration, etc). Finally the resulting analog image is sampled into a discrete image

by the sensor array.

If we consider that the observed scene is a planar scene u, the perspective projection is re-

duced to a planar homography that will be denoted by H . The whole image formation process can

therefore be summarized in a single equation

v = S1

(

g

(((
u ◦H) ∗ hex

)
◦ F
)

∗ h
))

+ n, (M
′

)

where F (·) is the geometric distortion operator, h is the convolution kernel due to all intrinsic psf-

like effects, hex is the convolution due to extrinsic blurring effects that occur outside the camera

(like motion blur and atmospheric turbulence), and g(·) is a monotone non-decreasing function

that describes the non-linear sensor response (camera response function - crf). The operator S1

is the bi-dimensional ideal sampling operator due to the sensor array, and n(u) models the sensor

noise.

Physical models of digital camera sensors, both for ccd and cmos sensors, suggest that the

readout noise n(u) is a mixture of luminance independent (Gaussian, thermal) noise, and lumi-

nance dependent (Poisson or photon counting) noise [Healey and Kondepudy ; Tian et al.

; Marion ]. In fact, the noise can be modeled as white Gaussian noise with luminance-

dependent variance. For the purposes of this study, however, precise statistics of noise are not

critical, and only the global snr is significant, so we shall stick to the more traditional and simpler

model of image independent white Gaussian noise.

Furthermore, as stated in the introduction, we will only deal here with intrinsic psf-like effects

at the camera focal plane. Therefore we assume and that the experimental setup is capable of

avoiding motion blur, atmospheric turbulence and out-of-focus blur as much as possible, thus

permitting to neglect the effect of hex. Strictly speaking out-of-focus blur should be included in the

intrinsic camera blur kernel h, but since it can become negligible under controlled experimental

setups, we chose to exclude this kind of psf-like effect from our study.
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As a result of the previous discussion we shall simplify model (M
′

) and use

v = S1

(

g
((

u ◦ F ◦H
)
∗ h
))

+ n, (M
′′

)

where h models the camera-intrinsic psf-like blurring effects, and n is an image-independent

Gaussian white noise.

The blur kernel h is space variant, but it varies smoothly. Thus, the symbol ∗ is understood as

a local convolution product, the kernel h varying smoothly with the position in the image domain.

The model can be further simplified by noticing that, in order to estimate h, the geometric

transformation implicit in the combined deformation operator F ◦H can be considered as a whole:

there is no need to estimate separately the projective and non-projective parts. We shall therefore

denote by D the whole geometric transformation, and the image formation model becomes

v = S1g (uD ∗ h) + n, (M
′′′

)

where uD is the geometrically transformed image, namely uD(x) = u(D(x)). This model can be

further simplified. Indeed the sampling and the contrast change g commute, so thatS1g (uD ∗ h) =
g (S1uD ∗ h) . As we shall see, the contrast change g can be recovered from the image samples.

Thus we shall first focus on the simplified formation model

v = S1(uD ∗ h) + n, (M)

and explain later on how g can be eliminated. The next section discusses the structure of the optical

kernel h.

.. Diffraction-Limited Optical Systems

Ideal optical systems present psfs only caused by the optical light diffraction. In the case where

there are no aberrations the diffraction kernel is determined by the shape and size of the aperture,

the focal length, and the wavelength of the considered monochromatic light. If the shape and

size of the aperture is known, the far field approximation (Fraunhofer diffraction) can be explicitly

computed as the square of the Fourier transform modulus of the aperture function [Goodman

]. As a trivial consequence the psf diffraction kernel is always non-negative.

In the reasonable, though inexact hypothesis that the aperture is circular, the diffraction kernel

writes

hdiff(x) =

(
A

λf

)2

·
[
2J1(r)

r

]2

,

with r = πD|x|
λf and A = π(D/2)2. The function J1(r) =

1
π

∫ π
0 cos(θ − r sin θ)dθ is the Bessel

function of the first kind and order one, f is the lens focal length, D the aperture diameter, and λ
the wavelength. In the case of a circular aperture, the cutoff frequency of a diffraction limited sys-

tem is ρc =
2πD
λf . This frequency depends only on the so called F-number = f

D and the wavelength

λ.

Optical aberrations degrade this ideal system where only diffraction is considered, producing

larger kernels [Williams and Becklund ]. In addition, optical anti-aliasing filters - olpf may be

introduced in the camera before sampling. They are typically made of several birefringent crystals

that separate a light spot into several divergent light spots, leading to an effect similar to having

a larger pixel pitch. An analysis of the filters commonly used in digital cameras can be found

in [Zhao et al. ].
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In most cameras, the digitization process is performed by a rectangular grid of photo-sensors

(ccd or cmos) located on the focal plane. Each photo-sensor integrates the light arriving at a

particular exposure time. This sensor light integration can be modeled by a convolution with a

kernel hsensor = 1C , the indicator function of the photo-sensor region C . Yadid-Pecht []

performs a theoretical analysis of the mtf for the active area shape and deduces explicit formulas

for the transfer function for cmos pixel arrays with square, rectangular and L shaped active areas,

which are regularly used. In conclusion, the unknown kernel h results from the convolution of

some three different kernels, all nonnegative. Most digital cameras have only one sensor array. In

order to acquire color information, each photo-sensor is filtered to capture only wavelengths of a

particular band for the red, green, or blue channels which is done by a color filter array (cfa). The

most popular cfa is the Bayer filter mosaic, which covers the sensor plane with 50% of green filters

and 25% of blue and red filters respectively (see Figure .). The image formed by the data as it

comes directly off the sensor array is called raw image.

Figure 2.1: Typical Bayer pattern. Image taken from Wikipedia [2012].

In a typical configuration of f/D = 5.6 the diffraction cutoff frequency for the green light

(λ = 530 nm) is ρc = 2π
530×10−9×5.6

. Hence, to avoid aliasing the inter pixel distance should be

at least δc = π
ρc

= 530×10−9×5.6
2 . Assume we have a digital camera with a Bayer sensor of size

22.2 mm× 14.8 mm with a resolution of 3888× 2592 pixels. This leads to an inter pixel distance

δs = 22.2×10−3

3888/2 . Thus, in order to avoid aliasing in this diffraction limited system we would need

to get samples at s = δs/δc ≈ 7.7× the camera resolution. In practice the psf cutoff frequency

will be much smaller due to the anti-aliasing filter and the light integration in the sensor.

. Optimality Criterion and Quality Measure for Calibra-

tion Patterns

Assume we can unveil exactly the latent sharp image that produced the blurry aliased observation.

Then, solving for the psf amounts to solve an inverse problem governed by the image formation

model (M). The first step toward solving this problem is to carefully model the re-sampling op-

erator that produced an aliased observation. The inverse problem to be solved can be stated in

terms of the re-sampling rate and of the observed pattern image uD, which is a function of the

calibration pattern. It follows, as will soon become clear, that the accuracy of the estimation of

h depends on how well we can invert an operator that depends on the re-sampling operator and

on the calibration pattern. In this section we show that a nearly optimal conditioning is obtained

when the calibration pattern is a realization of a white noise. While this may not be new (noise
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patterns have been used in non-blind psf estimation, see e.g. [Daniels et al. ; Levy et al. ;

Backman et al. , ; Brauers et al. ]), the novelty presented in this section is that the

use of white noise patterns allows one to solve for super-resolved psfs without the need for any

regularization, and without any prior model for h. In other words, the system is well posed as long

as a white noise image is chosen as the calibration pattern.

.. Inverse problem statement in terms of the re-sampling operator

and the calibration pattern

In the following, F denotes the Fourier transform and f̂ the Fourier transform of a function f .

The s-Shannon-Whittaker interpolator defined as Isu(x) =
∑

k u(k) sinc(s
−1x− k) is denoted

by Is, Ss is the s-over-sampling operator Ssu(k) = u(s−1k) and lpfw is the frequency cut-off

low pass filter that cuts the spectrum of a signal to [−wπ,wπ]2.

Suppose that h is band-limited within supp(ĥ) = [−δπ, δπ]2. If the psf is sampled at a rate

s, where s > δ, the Nyquist sampling theorem guarantees a perfect signal reconstruction. We will

consider the case where δ > 1, which corresponds to aliased images, as in practice most digital

cameras introduce aliasing.

Lemma  (Discrete Convolution). Let u and h be images in L2(R2) such that h is band-limited, i.e.,

supp(ĥ) = [−sπ, sπ]2. Then

u ∗ h = Is (ũ ∗ h) ,
where h = Ssh and

ũ = Sslpfsu.

Proof. Set ũ := lpfsu = F−1
(

û · 1[−sπ,sπ]2

)

, so that ũ = Ssũ and ˆ̃u = û · 1[−sπ,sπ]2 . This

implies that u ∗ h = ũ ∗ h. Indeed,

F−1
(

ûĥ
)

= F−1
(

û · ĥ · 1[−sπ,sπ]2

)

= F−1
(

ˆ̃uĥ
)

.

Now, since both ˆ̃u and ĥ are supported in [−sπ, sπ]2, it follows that

ũ ∗ h = IsSs(ũ) ∗ IsSs(h)

= Is(ũ) ∗ Is(h)
= Is(ũ ∗ h).

Remark . Note that u does not need to be band-limited, only h. Notwithstanding, if we can find the

spectral cut-off ũ of u, then this lemma implies that the continuous convolution u ∗h can be simulated

exactly with a discrete set of samples.

Let us denote by Ss the s-to--sub-sampling operator

Ss = S1Is.

It follows from Lemma  that the image formation model (M) can be rewritten in terms of discrete

sequences as

v = SsũD ∗ h+ n,
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where h and ũD are sampled at rate s such that s > δ for h to be well sampled. The value s is the

over-sampling rate to the high resolution lattice, where the psf estimation is going to take place,

from the 1× sensor grid.

Assuming that n is a zero-mean stationary white Gaussian noise, the kernel samples h can be

obtained by solving

argmin
h

‖SsũD ∗ h− v‖22 (.)

Here, ũD is the result of the Shannon-sampling on the s× grid of the distorted continuous pattern

signal ũD = Sslpfsu(D(x)), and v the blurred degraded digital observation on the camera 1×
sensor grid.

As inferred by the above discussion, to estimate the psf by a non-blind method raises the

following issues:

• to choose a good psf characterization pattern;

• to estimate the function g(·), the non-linear sensor response;

• to estimate the geometric deformation D(·);

• to generate ũD from the sharp latent pattern image u;

• to find numerical algorithms calculating the psf.

So far h is only assumed to be band-limited. The numerical method will recover only a finite

number of samples of h, which is well localized, and therefore in practice compactly supported.

Strictly speaking h being band-limited cannot be compactly supported. However, the error in-

troduced by a restriction on the support will prove negligible in comparison to the other sources

of error: image noise, quantization, slight estimation errors of g, D,... The found solution h is

experimentally independent from variations of its assumed support.

The problem in (.) can be rewritten in matrix form,

argmin
h

‖SsC[ũD]h− v‖22, (P)

where C[ũD] is the convolution matrix by ũD. (This matrix is applied to the sample vector h).

Assuming that the observed image v is of size m×n, the sizes of ũD and h are ms×ns and r× r,

respectively. The matrix Ss is the downsampling matrix of size M ×Ms2, where M = m× n. As

mentioned above, we need s > δ to recover h from its samples. Thus, s is an integer greater than

δ, which facilitates the construction of the subsampling matrix (Ssu)(m,n) = u(ms, ns). Then

SsC[ũD] is of size M ×N , with N = r × r.

The solution of Problem (P) is easily obtained using a least squares estimation procedure, and

is given by

he = (SsC[ũD])
+v,

where

(SsC[ũD])
+ =

(
(SsC[ũD])

t(SsC[ũD])
)−1

(SsC[ũD])
t

is the Moore-Penrose pseudo-inverse of (SsC[ũD]). Depending on the condition number of this

matrix, the inversion would be well-posed and the solution would be unique. Since

(SsC[ũD])h+ n = v,
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the estimation error is given by ne = (SsC[ũD])
+n. The noise has zero-mean, thus the estimator

he is unbiased and its variance is

E
{
‖ne‖22

}
= E

{∥
∥(SsC[ũD])

+n
∥
∥2

2

}

= E







M∑

j=1

(
N∑

i=1

(SsC[ũD])
+
ijni

)2






=

M∑

j=1

N∑

i=1

N∑

k=1

(SsC[ũD])
+
ij(SsC[ũD])

+
kjE {nink} .

Since n is white and stationary, with zero mean, it follows that

E
{
‖ne‖22

}
=

M∑

j=1

N∑

i=1

(SsC[ũD])
+
ij
2
σ2
n = ‖(SsC[ũD])

+‖2Fσ2
n,

where σ2
n denotes the noise variance, and ‖ · ‖F is the Frobenius norm of a matrix.

If all singular values of SsC[ũD] are non zero, the singular values of (SsC[ũD])
+ are the

inverses of the singular values of (SsC[ũD]). If some singular value is zero, the system is ill posed

and the estimation problem cannot be solved, unless some kind of regularization on h is imposed.

Let {σ1, σ2, . . . , σN} be the singular values of SsC[ũD]. Then

‖(SsC[ũD])
+‖2F =

N∑

i=1

σ−2
i .

In order to minimize the variance of the estimator he (i.e., to minimize the noise amplification),

one has to minimize the function

γ(SsC[ũD]) :=

N∑

i=1

σ−2
i

It should be pointed out that γ depends on the rate s and on the samples ũD. The superres-

olution rate s is determined by the spectral support of the psf. The sequence ũD depends on the

adopted continuous pattern u, on the geometric transformation D (that includes the perspective

projection associated to the particular pattern’s view) and also to other possible distortions pre-

sented in the camera-lens system. Hence, for the s× subpixel psf estimation problem, γ measures

the quality of any given view of a calibration pattern.

In order to find the best ideal pattern independently of the view and distortion, we will consider

first the discrete problem of finding the best sequence ũD, minimizing the γ value. To simplify the

notation we write uij = (ũD)ij . This motivates the following definition.

Definition  (Optimal digital pattern). Given a kernel support N = r×r and a window observation

size M = m × n, the optimal pattern for the s× subpixel psf estimation is the digital calibration

pattern u∗ such that

u∗ = argmin
a≤uij≤b

γ(SsC[u]).

where the constraints on uij are linked to the physical realization of the pattern and to the sensibility

of the sensors. (The conclusions of the analysis will prove independent of the particular value of these

bounds.)
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.. Characterization of optimal digital calibration patterns

In this section, we derive a lower bound for γ(SsC[u]) that will be used to design calibration

patterns. Indeed, it will then be shown that for a realization of white stationary Bernoulli noise,

the γ value is so close to this bound, that in practice these patterns can be considered to be optimal.

Lemma . Let Φ be a M×N matrix, M > N , with all its entries in [a, b]. Let σ1 ≥ σ2 ≥ · · · ≥ σN
denote its singular values. Then

N∑

i=2

σ2
i ≤ (a+ b)

√
MNσ1 − σ2

1 − abMN.

Proof. Let ϕij be the (i, j) entry of Φ, and ϕj its j-th column. Let also ϕ̄j =
1
M

∑M
i=1 ϕij denote

each column’s mean, and ϕ̂j = ϕj − ϕ̄j1.

The Frobenius norm of Φ can be expressed as

‖Φ‖2F = trace(ΦtΦ) =
N∑

j=1

ϕt
jϕj .

Since ϕ̃ij :=
ϕij−a
b−a ∈ [0, 1], we have ϕ̃2

ij ≤ ϕ̃ij , and then

ϕt
jϕj =

M∑

i=1

ϕ2
ij ≤

M∑

i=1

(a+ b)ϕij − abM = M(a+ b)ϕ̄j − abM

Thus,

‖Φ‖2F ≤M(a+ b)

N∑

j=1

ϕ̄j − abMN. (.)

On the other hand, for all x such that ‖x‖ = 1, ‖Φ‖2 ≥ ‖Φx‖. Let us take x = 1√
N
1. Then

‖Φ‖22 ≥ ‖Φx‖22 =
1

N

∥
∥
∥

N∑

j=1

ϕj

∥
∥
∥

2

=
1

N

∥
∥
∥

N∑

j=1

ϕ̂j +

N∑

j=1

ϕ̄j1

∥
∥
∥

2

=
1

N





∥
∥
∥

N∑

j=1

ϕ̂j

∥
∥
∥

2
+
∥
∥
∥

N∑

j=1

ϕ̄j1

∥
∥
∥

2



+

1

N





N∑

j=1

ϕ̂j





t



N∑

j=1

ϕ̄j1





=
1

N





∥
∥
∥

N∑

j=1

ϕ̂j

∥
∥
∥

2
+
∥
∥
∥

N∑

j=1

ϕ̄j1

∥
∥
∥

2





≥ 1

N

∥
∥
∥

N∑

j=1

ϕ̄j1

∥
∥
∥

2
=

M

N





N∑

j=1

ϕ̄j





2

. (.)
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Thus, by (.) and (.), we have:

‖Φ‖2 ≥
‖Φ‖2F + abMN√

MN(a+ b)
.

Then, since ‖Φ‖2 = σ1,

σ1 ≥
‖Φ‖2F + abMN√

MN(a+ b)
=

∑N
i=1 σ

2
i + abMN√

MN(a+ b)

Finally,
N∑

i=2

σ2
i ≤ (a+ b)

√
MNσ1 − σ2

1 − abMN.

Lemma  (A bound on γ). Let Φ be a M × N matrix, M > N , with all its entries ϕij in [a, b].
Then

min
ϕij∈[a,b]

γ(Φ) ≥ 1

MN

(
1

b2
+

4(N − 1)2

(b− a)2

)

.

Proof. According to Lemma , for any matrix Φ with entries in [a, b], and in particular for the ones

that attain

γ∗ = min
σ1,...,σN

N∑

i=1

σ−2
i ,

the inequality
∑N

i=2 σ
2
i ≤ (a+ b)

√
MNσ1 − σ2

1 − abMN holds. Thus

min
ϕij∈[a,b]

γ(Φ) ≥ min
σ∈D

f(σ),

where σ = (σ1, . . . , σN ),

D := {σ | σi ≥ 0,
N∑

i=1

σ2
i − (a+ b)

√
MNσ1 + abMN ≤ 0},

and f(σ) :=
∑N

i=1 σ
−2
i . The function f being strictly convex on D, which is itself a convex and

compact domain, it follows that the minimum of f on D is attained at a unique point. D and

f being invariant by any permutation of σ2, . . . , σN , the minimum point being unique satisfies

σ2 = · · · = σN . Since this minimum belongs toD,

N∑

i=2

σ2
i = (N − 1)σ2

2 ≤ (a+ b)
√
MNσ1 − σ2

1 − abMN.

By noting that the maximum value of

σ1 7→ (a+ b)
√
MNσ1 − σ2

1 − abMN

is ( b−a
2 )2MN , it follows that

σ2
2 ≤

(
b− a

2

)2 MN

N − 1
.
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On the other hand for any point ofD we have

σ2
1 ≤ (a+ b)

√
MNσ1 − abMN.

Then, it follows that σ2
1 ≤ b2MN . Consequently,

min
σ∈D

f(σ) =
N∑

i=1

σ−2
i ≥ 1

MN

(
1

b2
+

4(N − 1)2

(b− a)2

)

.

Remark . It should be noted that in the proof of the previous lemma, the condition that the entries

of Φ belong to [a, b] was replaced by the weaker condition given by the inequality proved in Lemma .

This amounts to enlarge the space of matrices that was originally considered, thus the real optimum

that can be attained by matrices with entries in [a, b] will necessarily lead to higher values of γ.

Remark . Notice also that in Lemma  we did not solve the complete constrained optimization prob-

lem

min
σ1,...,σN

N∑

i=1

σ−2
i subject to

N∑

i=2

σ2
i ≤ (a+ b)

√
MNσ1 − σ2

1 − abMN.

While this problem can be solved via the Karush-Kuhn-Tucker conditions, according to the pre-

vious remark it would still lead to a lower bound on γ. The solution of this constrained minimiza-

tion problem leads to a closed form which is significantly less handy than the bound that was ob-

tained in Lemma , and is worthless since both bounds are extremely close, as shown in Figure . for

a = 0, b = 1.
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Figure 2.2: Comparison of the lower bound given by Lemma 3 and the one obtained by solving the KKT

conditions for the case a = 0, b = 1. Both bounds are shown in the plot on the left, as a function of M .

The plot at right shows their difference, also as a function of M .

Proposition  (Non-asymptotic bound for optimal patterns). Let u = {uij} be a ms× ns digital

image with all its values in [a, b]. Let SsC[u] be the operator associated to the convolution of the r× r
kernel with the image u, followed by the downsampling operator of rate s. Then

min
a≤uij≤b

γ(SsC[u]) ≥ 1

MN

(
1

b2
+

4(N − 1)2

(b− a)2

)

where M = m× n is the observation window size and N = r × r is the kernel size .
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Proof. The result follows directly from Lemma , since the operator SsC[u] associated to u is a

M ×N matrix with all its entries in [a, b].

We will propose as calibration pattern a realization of a white Bernoulli(.) stationary noise.

It will be shown that this calibration pattern is so close to the γ(SsC[u]) lower bound given by

Lemma  that for practical calibration purposes, it can considered to be optimal.

The motivation for choosing stationary white noise patterns is not new: white noise has been

widely used for system identification applications, since it optimizes the minimum variance of

unbiased estimators. Now, the choice of Bernoulli(.) distribution can be explained as follows.

Suppose u = {uij}, where uij ∈ [a, b] are mutually independent random variables, identically

distributed with mean mu and variance σ2
u. In this case, it can easily be shown that

E
{
(SsC[u])t(SsC[u])

}
= M

(
m2

ut + σ2
uI
)
.

This is a direct consequence of the non-correlated nature of u and that subsamples of white

noise remain white noise. Observe that M
(
m2

ut + σ2
uI
)

has only two different eigenvalues: σ1 =
M(Nm2

u + σ2
u) and σ2 = · · · = σN = Mσ2

u. Thus, its γ value is

γ =
1

M

(
1

Nm2
u + σ2

u

+
N − 1

σ2
u

)

.

On the one hand, in order to minimize γ, mu and σ2
u values should be as large as possible. On the

other hand there is a trade-off between both values and they cannot be simultaneously maximized.

Indeed, any random variable with support [a, b] satisfies

σ2
u ≤ (mu − a)(b−mu).

Nonetheless, the equality holds for the Bernoulli distribution. Hence, from now on we restrict

the analysis to the Bernoulli case which, from the previous reason, is optimal. Therefore we can

express γ as

γ =
1

M

(
1

Nm2
u + (mu − a)(b−mu)

+
N − 1

(mu − a)(b−mu)

)

.

It can be shown that the mu ∈ [a, b] value where γ attains its minimum is always very close to

mu = a+b
2 . This happens independently of M and N . However, the exact value depends on N .

It is therefore convenient, to avoid dependence on N , to fix mu = a+b
2 by using an equiprob-

able Bernoulli distribution. Finally, the γ value for the expected operator SsC[u] when using a

Bernoulli(.) pattern is

γ =
4

M

(
1

N(a+ b)2 + (b− a)2
+

N − 1

(b− a)2

)

.

This value is very close to the bound provided by Lemma . Indeed, for M ≥ N ≫ 1 we have

γ∗ − γ ≈ 4
M(b−a)2

. This small difference is illustrated in Figure . for the particular case a =

0, b = 1. Notice also that since

E
{
(SsC[u])t(SsC[u])

}
= lim

M→∞
(SsC[u])t(SsC[u]),

large M values may be required in order to reach the optimal γ. However, this is clearly not our

case of interest, our goal being to perform a local kernel estimation. Nevertheless, we may still be
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Figure 2.3: Comparison of the lower bound given by Lemma 3 and the gamma obtained from the ex­

pected SsC[u] operator when using a Bernoulli(0.5) random noise pattern. Both bounds are shown in

the plot on the left, as a function of M whereas the plot at right shows their difference, also as a function

of M .

interested in exploring the use of a realization of white stationary Bernoulli(.) noise as calibration

pattern, for finite and realistic values of M and N (the non-asymptotic case).

In order to show that the choice of such a calibration pattern can be considered to be op-

timal for practical psf estimation, we generated a white random binary image uij ∈ {0, 1},
Bernoulli(.), and evaluated γ(SsC[u]) for fixed down-sampling rate s = 4. Figure . shows

that the obtained γ is very close to the non-asymptotic lower bound (Lemma ), indicating that

this pattern is optimal in a practical sense.
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(b) r = 9, 17, 25, 33, m,n = 128

Figure 2.4: Reaching theoretical bounds. A random Bernoulli binary image is used to generate the

SsC[u]. We set s = 4 and estimate γ for different observed image sizes (m,n values) (a) and differ­

ent kernel sizes (r value) (b). The proximity between the obtained γ and the theoretical bound shows

the tightness of the derived γ lower bound.

Concluding Remark. The mathematical argument and experiments above show that near-optimal

γ values are reached with a Bernoulli random noise pattern for reasonable observation, kernel and

pattern sizes. Slightly better γ values could be achieved if we allowed the pattern to adapt to the

kernel size. This is nevertheless not practical. The payoff would be a negligible improvement of the

well-posedness, and the exact psf support size being anyway a priori unknown.
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.. From continuous patterns to digital patterns

Based on the previous section it comes into view that good psf estimation patterns are those that

produce very contrasted random ũD sequences. However, we cannot choose directly the values

inside the SsC[ũD] operator. Indeed, the γ value depends on ũD, obtained by sampling on the

s× grid the distorted continuous pattern image.

Consider the set of analogical patterns formed of constant uij gray value squares regions,

u(x) =
∑

i,j

uij1‖x−(i,j)‖≤ 1

2

.

Since signals in optical systems are non-negative in nature and bounded, we can assume w.l.o.g.

that 0 ≤ uij ≤ 1.

For the mathematical exploration of optimal patterns, we will restrict ourselves to the case

where the geometrical transformation D is a zoom-out with factor t−1, Zt−1 . This assumption is

almost perfectly satisfied if the views of the pattern are taken frontally. Notice that the s-sampling

operator can be written as Ss = S1Zs. Thus,

ũD = SslpfsuD

= S1lpf1ZsuD

= S1lpf1ZsZt−1u

= c ∗ u

where c is the digital filter

ci,j =

∫ 1

2

− 1

2

∫ 1

2

− 1

2

sinc

(
sζ

t
− i

)

sinc
(sη

t
− j
)

dζdη.

As mentioned earlier the goal is to produce values (ũD)ij as independent and contrasted as possi-

ble. This motivates the following simplification. Suppose that the setup realizes t = s.

An ideal unattainable situation would be that the re-sampling operator and the low-pass filter

do not produce inter-symbol interference (i.e., the discrete filter c does not change the input sig-

nal u). Then each of the square gray values would be equal to the sample after low-pass filtering

ũD ≈ uij . In this particular case we would have a perfect one-to-one correspondence between

the gray values of the pattern and the ũD digital signal which would be a Bernoulli pattern. Due

to the constraints on uij the best we can do is to choose iid random variables u ∈ {0, 1} with

Bernoulli(.) distribution. Yet, while this perfect geometric situation is unattainable, the experi-

ments show that γ stays close to its optimal value when s/t is between . and , as it is shown in

in Figure .. The resulting ũDij
for distances in a range from s/t = 1 produce γ values close to

the γ bound for entries in [0, 1].

.. Comparison of calibration patterns

The γ factor introduced above permits to compare the suitability of different patterns for the psf

estimation problem. Since the noise amplification is governed by the sum of the inverses of the

singular values, it is desirable to use patterns that produce singular values that are all as large as

possible. For this purpose, and justified by the previous theory, we shall use a binary random

pattern. The proposed noise pattern consists of a matrix of 256 × 256 black and white random
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Figure 2.5: Random Pattern Analysis. Sensitivity of the γ value to the kernel support size (a) and to the

t/s zoom factor (b) s = 4. The larger the support of the kernel, the noisier the estimation when the

gamma value increases with the kernel support size (a). The zoom factor s/t is closely related to the

focal distance and to the distance from the camera to the pattern. For example if the distance to the

pattern is too small (small s/t value) the pattern will look like a step­edge pattern because of the zoom­

in. The corresponding γ value will be higher than the optimal. On the other hand, if the distance to the

pattern is large, then the γ value will also be larger than the optimal one, because of the contrast loss

due to the zoom­out. In agreement with the theoretical study, the views with zoom factors close to one

(i.e., t ≈ s) produce the best γ values.

9× 9 17× 17 25× 25 33× 33

Joshi et al. [] . . . .

Bernoulli pattern . . . .

Theoretical bound . . . .

Table 2.2: A comparison of pattern realizations through the γ value. The Bernoulli pattern produces

significantly smaller γ values than the slanted­edge Joshi et al. [2008] pattern.

squares generated from an equiprobable Bernoulli distribution. The pattern was printed at a high

enough resolution so that artifacts introduced by the printer could be neglected. Several cross

marks and white/black flat regions were added, to easily align the acquired image with the pattern,

and to correct non-uniform illumination. Fig . shows the proposed random pattern, compared

to a pattern designed by Joshi et al. consisting of 120◦ arc step edges.

Suppose we want to do a s = 4× psf estimation. As shown in the previous section, the pattern

should be photographed at such a distance that the pattern covers more or less 256/4 × 256/4
pixels. In practice, this permits a very local psf estimation.

Fig. . shows the eigenvalues of the SsC[ũD] matrix for s = 4, an observed window with

size 80× 80, and varying kernel sizes, for Joshi et al.’s pattern and for the proposed Bernoulli pat-

tern. The random pattern produces secondary eigenvalues very similar in contrast to the fast decay

shown by the eigenvalues of the slanted-edge Joshi pattern. The γ values for the corresponding pat-

terns are shown in Table .. In all cases, the random pattern significantly outperforms the Joshi

et. al. pattern. The γ bound value was computed by taking into account the effective observed

window size, that is, leaving out the auxiliary region with the checkerboard and flat regions.
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(a) random pattern (proposed)

(b) pattern of Joshi et al. [] (c) local pattern of Joshi et al. []

Figure 2.6: Calibration patterns for local PSF estimation
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Figure 2.7: Pattern Comparison I. Proposed Random Pattern vs Joshi et al slanted­edge­circles pattern.

Observed Window of size 81 × 81, PSF support size 25 × 25, s = 4. Eigenvalues sorted from highest to

lowest. The random pattern produces very similar eigenvalues, and the decay its very slow in compari­

son to the ones from the Joshi et al. pattern.

. The Complete PSF Estimation Procedure

In this section we describe the steps that lead to a local subpixel psf estimates. The complete chain

is summarized in the block diagram of Fig. .. The next paragraphs present brief summaries for

each block. A detailed description is given in Appendix A.

Figure 2.8: Algorithm Description. The captured image is precisely aligned to the analytic pattern

through intentionally inserted checkerboard markers. Non­uniform illumination and non­linear cam­

era response function impact ­ CRF are corrected from the captured image to allow an artifact­free s×
PSF estimation.

Feature detection In order to deal with geometric distortions the ideal pattern and its obser-

vation have to be precisely locally aligned. To that purpose checkerboard corners were introduced

along the boundary of the noise calibration pattern. Assuming that the psf is (approximately)

symmetric, these x-corners will not suffer from shrinkage. Several methods to detect checker-

board corners have been reported in the Computer Vision literature (e.g. [Harris and Stephens

], [Cheng et al. ], [Lucchese and Mitra ]), ranging from differential operators such as

the Harris detector to more specific correlation methods. We used a Harris-Stephens based corner
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detector implemented by Bouguet [], that allows us to iteratively refine the detected corner

positions to reach subpixel accuracy.

Geometric transform estimation The estimation of the psf does not require a decomposi-

tion of the distortion into its homography and non-homography parts, as it is done in classical

geometric camera calibration [Zhang ], where a global radial lens distortion model is usually

adopted. In order to avoid that computation and to utilize a more flexible model that may capture

local lens distortion, the complete geometric distortion was approximated with thin-plate splines.

While thin-plate splines were originally conceived as an exact interpolation method [Bookstein

] they can be easily extended to the approximation problem [Sprengel et al. ]. The map-

ping from the non-distorted to the distorted space is estimated from the detected corners {p̃i}, and

their correspondences in the ideal pattern {Pi}, whose coordinates are perfectly known. Accurate

geometric transform estimation is essential for good performance. Although there are no “con-

trol points” inside the random pattern (only on borders as depicted in Fig. .(a)), as the pattern

is designed to cover about 100 × 100 pixels in an image, the local geometrical distortion inside

such a small region will be practically affine. Hence, by using thin-plate splines we can achieve the

necessary registration accuracy.

Illumination estimation and normalization In order to match the gray levels in the sharp

pattern to those in the observed image, black and white square flat regions were included along

the boundary of the noise pattern. These regions permit to estimate the mapping between black

and white colors and the corresponding observed gray level values. The presence of these con-

stant regions all around the pattern permit to estimate a black (white) image that models the black

(white) intensity level at each pixel. These light images have been modeled by second order poly-

nomials whose coefficients are estimated by least squares from the known pairs (value, position).

In continuation each pixel value in the observed image is linearly rescaled within the range [0, 1],
by considering the respective estimated black and white values.

CRF estimation g(·) Once the nonuniform illumination has been compensated, the camera

response function can finally be estimated and the non-linear response of the sensors corrected.

Since we are working with the raw data and out of the saturation region of the sensors, the sensor

response should be almost linear. Hence, for simplicity we model the camera response function

as a polynomial of order no larger than . The estimation and correction procedure is based on a

strong property of our pattern: the white noise pattern was generated assigning equal probabilities

to black and white values ( and  respectively, after normalization). Consequently, since the psf

has unit area, the mean gray value within the observed image should be .. The solution is defined

as a parabolic function u 7→ αu2 + (1 − α)u where α is chosen so that the mean of the pattern

after the correction is 1/2.

Pattern rasterization In order to generate the samples ũD from the ideal continuous pattern

image u, we need to sample this image at the desired s resolution after deforming it by the estimated

geometric transformation. For that purpose the distorted continuous pattern uD must be low pass

filtered to be band-limited in [sπ, sπ]. (Remember that the camera resolution is 1×. Thus the

digital pattern has an s× over-sampling). The procedure is:

. The continuous pattern u is sampled at a very high resolution. From the vectorial descrip-

tion of the pattern a digital image is generated (this procedure is called rasterization) by
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replacing each one of the flat squares by a 4 × 4 block of pixels with the same gray value.

The re-sampling starts from these samples u instead of the continuous pattern;

. Frequencies higher than sπ are cut off from the digital pattern u to get ũ;

. By help of the previously computed geometric distortion the filtered pattern ũ is bi-cubically

interpolated at the desired resolution s× ũD.

Numerical methods for PSF estimation We have seen that light diffraction, optical low pas

filtering, and sensor light integration all produce non-negative kernels. Thus the estimated psf

must be non-negative. We can therefore constrain the solution to be nonnegative, thus reducing

the space of solutions. Section ., Fig. . shows that not imposing this non-negativity assump-

tion yields essentially the same results, which in fact verifies the correctness of the proposed image

formation model. Hence, we can opt to solve a non-negative least squares, or to simply solve a least

squares problem and then threshold the solution to eliminate very little components.

Suppose that the local grid pattern observation v has size m× n and that we want to estimate

a psf at s× subpixel resolution. Also suppose that the estimated support of the psf is inside a r× r
image. The matrix SsC[ũD] corresponding to the s-down-sampling of the convolution with the

distorted calibration pattern, has size mn × r2. Thus, the problem to be solved can be formally

written as

argmin
h

‖SsC[ũD]h− v‖2 subject to hi ≥ 0, i = 1, . . . , r2. (P
′

)

Problem (P
′

) can be solved using standard convex optimization solvers such as cvx [Grant and

Boyd ]. A simpler Newton interior point algorithm proposed in [Portugal et al. ] was used

and always converged rapidly.

. Experimental Results

This section is dedicated to the evaluation of the proposed non-blind subpixel psf estimation

method, and to the comparison of its performance with two state of the art proposed approaches.

A complete algorithmic description, an online demo facility and a source code can be found in our

IPOL publication Delbracio et al. [b].

We selected a method recently reported in the literature by Joshi et al. [], and a mtf com-

mercial software, Imatest [LLC ]. Since we do not have real camera ground truth for the psf,

the performance evaluation was first carried out on simulated data. A real psf estimation on real

cameras was in continuation tried under varying acquisition conditions. Particular attention was

paid to the aliasing effect caused by sampling under the Nyquist frequency.

.. Simulations for objective evaluations

The simulation of the camera acquisition process was as follows. The grid pattern was rasterized at

a very high resolution (i.e., 8×), convolved with a psf like kernel (in this case a Gaussian isotropic

kernel), and down-sampled to get the observed digital image at the camera resolution (i.e., 1×).

The kernel was chosen so that the low resolution image presented aliasing artifacts. We also added

white Gaussian noise of standard deviation σ = 0.02. We compared the performance of the

proposed approach to that of Joshi et al. using their calibration pattern and our implementation of
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their approach, with different regularization levels. A 4× kernel was estimated for both algorithms

from the observed window of size 110× 110 pixels.

Figure . shows the results for 4× psf estimation from the simulated observation. Solu-

tions with the Joshi et al. method with three levels of regularization are presented, along with

the proposed approach (which is regularization-free). In this experiment the proposed method

significantly outperforms Joshi et al.’s algorithm, achieving a much less noisy estimation. Joshi’s

algorithm needs a strong regularization to stabilize the estimation and to avoid an amplification

of high frequency noise. Consequently, its estimation tends to penalize high frequency compo-

nents and to produce a biased kernel with amplified lower frequency components. See caption for

details.

.. Experiments with real camera images

In this section we present several local 4× psf estimation examples from real camera acquisitions.

In all cases a Canon EOS D camera provided with a Tamron AF -mm F/. XR Di-II lens

was used. The focal length was fixed at . mm. Based on these experiments the behavior of

the proposed method was analyzed with varying camera aperture. The impact of the crf esti-

mation/correction was evaluated, and the psf estimates obtained for the four color channels in

the Bayer pattern compared. Variations of the kernel estimates depending on their location in the

image were also explored. This was followed by an evaluation of the stability of the estimation

procedure, and of the influence of the kernel support size. Finally the results were again compared

with the Joshi et al. algorithm and with Imatest, applied to real cameras.

Different apertures The estimation was conducted using the proposed random pattern cap-

tured at five different apertures. For each acquisition, a 4× psf estimation for one of the green

channels (half of the green pixels of the Bayer matrix) was performed. Results are shown in Fig-

ure .. The estimations were performed at the image center from a window of size 90×90 pixels.

Notice that kernels at apertures f/ and f/ are significantly larger than the rest, as predicted by

diffraction theory (see caption for details). An example of the acquired blurry image is shown in

Figure ..

Fig. . shows the diffraction-limited mtf for a circular f/. aperture and green monochro-

matic light (See the end of Sec. ..). The estimated response for our camera-lens system at

aperture f/. and for the green channel is under the ideal diffraction-limited response. This can

be a consequence of the light integration in the sensor array but also of the optical low pass filter

specifically included to avoid aliasing.

Estimation of camera response function This experiment evaluates the impact of the non-

linearity of the camera sensors response. To conduct this experiment, the camera response curve

was computed using a specially designed pattern for crf estimation. In order to assess the impact

of the crf on the psf estimation, the observed image was corrected using the special purpose crf

estimate, to compare the results that yield the psf estimation algorithm.

Figure .(a) compares the crf estimated using the special purpose pattern with the crf esti-

mate embedded in the proposed psf estimation algorithm. Notice that both estimates are hardly

non-linear and extremely close to each other, so the psf estimation algorithm seems to be capable

of giving a reasonable crf estimation. Figure .(b) shows the mtfs obtained under four different

situations:

• estimation with embedded crf correction from the raw observed values (psf-crf).
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Figure 2.9: Synthetic example I. Performance comparison for simulated data. A 4× kernel is estimated

using the Joshi et al. algorithm, with varying regularization level, and the proposed approach. The

observed window has 110 × 110 pixels. The top row shows the kernel estimation and the middle row

the difference image between the estimation and ground truth for one of the realizations. The proposed

method significantly outperforms the Joshi et al. algorithm, achieving a much less noisier estimation as

shown by the difference images and by the peak signal to noise ratios. The bottom row shows central

horizontal profiles for all the estimated MTFs (0.5 is the Nyquist frequency). Notice that in the Joshi et

al. method the estimation is unstable. The estimates show extremely noisy components for frequencies

higher than the sampling frequency, when the amount of kernel regularization is too small. On the other

hand, if a strong regularization is imposed, the penalization of the kernel gradient adopted by Joshi et

al. tends to produce kernels with under­estimated high frequency components. The method proposed

here does not rely on a regularization and produces nonetheless noiseless and unbiased results.
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Figure 2.10: Different apertures. Taken at different apertures, green channel g1, 100 ISO, 50mm. All

estimated 4× kernels are quite smooth. Fig. (a): The top and bottom rows show respectively the esti­

mated PSFs and a few level lines of the corresponding MTFs that prove that the kernels are not exactly

axis­symmetric. The kernels at apertures f/32 and f/16 are considerably larger than the rest in agreement

with diffraction theory. This phenomenon also stands out in the modulus of the estimated PSF spectra,

which also shows that the PSFs/MTFs are not axis symmetric. Figure (b): Vertical cuts of the spectrum

modulus. The camera seems to have the sharpest response from apertures f/3.2 to f/12.9. At apertures

f/32 and f/16 the camera cuts high frequencies significantly more than the rest, as predicted by diffrac­

tion theory. Notice that in all cases, except at aperture f/32, the MTF at the Nyquist frequency (f = 0.5)

is significantly greater than zero. Hence, the camera introduces aliasing.
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Figure 2.11: Real camera example. Taken at aperture f/5.6. An example image, to show how local the

PSF estimation is (left), and a zoom of the observed window of size 110× 110 pixels (right).
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Figure 2.12: Diffraction­limited System. Theoretical diffraction MTF for monochromatic green light with

circular f/5.6 aperture and the estimation for the green channel at the same aperture. The estimated

response for our camera­lens system is under the ideal diffraction­limited response. This can be con­

sequence of the light integration in the sensor array, but also of the optical low pass filter specifically

included to avoid aliasing.
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Figure 2.13: OTF phase. Estimation done for the green channel g1, f/5.6 at the center of the sensor array.

The Figure on the top shows the modulus of a horizontal profile of the optical transfer function ­ OTF and

its real component. Both curves coincide, implying that the OTF is real and thus the PSF is symmetric.

This is also seen in the bottom figure that shows that the OTF phase is 0 or π.
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• estimation without any crf correction from the raw observed values (psf-nocrf).

• estimation without embedded crf correction from the adjusted values after correction via

the special purpose crf estimate (psf-nocrf-eq).

In all cases, the estimation yielded very similar results.
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Figure 2.14: Dependence on the CRF correction, for a 4×PSF estimation of the green channel, at aper­

ture f/5.6. Figure (a): CRF estimates obtained with the estimation embedded in the proposed PSF esti­

mation algorithm (crf-psf estimation), and with the one generated independently from a special

purpose CRF calibration pattern (crf-pattern). Both estimates are very similar and hardly non­linear.

Figure (b): vertical profile of MTFs. The estimates from the raw gray values with and without CRF esti­

mation/compensation (psf-crf and psf-nocrf, resp.) gave very similar results. After compensation of

the gray values using an external special purpose estimation of the CRF, the PSF estimation procedure

(psf-nocrf-eq) also led to very similar results.

Color estimation The goal of this experiment is to compare the psf estimates for all four chan-

nels from the Bayer raw camera output (two greens, red and blue). The estimation was performed

using the random pattern captured at apertures f/.. The results for the 4× psf estimation located

in the image center are shown in Fig. .. It is easily seen that the red psf is larger than the green

and the blue one (i.e., produces blurry images). This is reasonable, since the wavelengths associ-

ated to red are smaller than the rest. Hence the red diffraction kernel will be larger than the green

and blue kernels for the same camera configuration. The differences between the shapes of the

red/blue and green psf spectra can be explained by the sensor shape. If we accept that the sensor

active zone is L-shaped, then by the red/blue sensors in the Bayer pattern will have the same sensor

term mtf and will be rotated 45◦ with respect to the green channels.

Location Figure . displays the 4× psf estimates for one of the green channels, at different

image locations, for f/.. Kernels closer to image borders are larger and more asymmetrical than

the kernel at the image center. This seems to be a consequence of lens aberrations that deteriorate

the system performance.

Stability of the estimation procedure A set of thirteen images of the noise calibration pat-

tern were acquired with exactly the same camera configuration (f/.), from similar viewpoints.
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Figure 2.15: Different color channels. 4× PSF estimation for the four Bayer pattern channels (two greens,

red and blue) from a camera RAW output. Top row: PSF estimation. Middle row: the corresponding

Fourier spectrum moduli. Bottom row: MTF horizontal and vertical profiles. The estimation was per­

formed using the random pattern captured at aperture f/5.6. The red PSF is larger than the green and

blue ones. Since the wavelengths associated to red are smaller than the rest, the diffraction components

for the red channel will be larger than those for green and blue for the same camera configuration. Also

note the differences between the shape of the red/blue and green PSF spectra (bottom row). Red and

blue MTF seem to be 45◦ rotated with respect to the green ones. This symmetrical behavior is plausible

for an L­shaped active zone sensor array.
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left center right

Figure 2.16: Different locations. Taken at f/5.6 for one of the green channels. The PSFs estimated far from

image center are larger and more asymmetrical than the one estimated at the center. This is certainly

due to lens aberrations, which are more significant near the image borders.
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For each acquisition, the 4× psf of one of the green channels at the image center was estimated.

Figure . shows the average mtf vertical profile, and its standard deviation band. It is clear from

the small value of the standard deviation that the estimation method is highly stable, in agreement

with the fact that the corresponding linear system to be inverted is very well-posed. More details

are given in Fig. . caption.
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Figure 2.17: Stability of the estimation. Average and standard deviation statistics were generated

from 13 estimations computed at f/5.6 (for one of the green channels). The small standard devia­

tion in the vertical profile of the Fourier spectrum modulus is shown in (a). The relative MTF sen­

sitivity vs region threshold is shown in (b). We define the relative MTF sensitivity in a region Ω as:

s(Ω) = mean(std(mtf ))/mean(mtf ) where the mean values are computed inside the region Ω. In this

case we construct Ω(threshold) = {x : mtf(x) ≥ threshold}. The relative sensitivity in the whole spec­

trum does not exceed 0.08 and what is more if the MTF values smaller than 5% are not considered, then

the relative sensitivity is less than 3%. The small standard deviation and sensitivity demonstrate the

method stability.

Support We can consider that the proposed approach has only one main parameter: the kernel

support size. The choice of this size implies a trade-off between the model validity and the feasibil-

ity of the estimation. On the one hand, if the support is too large the kernel estimation will be very

noisy, since the γ factor increases with the support size. On the other hand, if the kernel support is

too small the considered image formation model will not be accurate.

Fig. . shows the 4× psf estimation for various kernel support sizes. All estimations for the

supports 17 × 17, 25 × 25 and 33 × 33 turn out to be very close to each other. Nevertheless,

the 9 × 9 kernel support does not seem to be large enough to correctly model the psf. Hence, as

soon as the support size exceeds such a lower bound, the proposed algorithm does not appear to

be sensitive to this parameter.

Comparison of several methods This section ends up with a comparison between the Joshi

et al. method, Imatest, and the proposed approach to non-blind subpixel psf estimation [LLC

]. Imatest is a commercial mtf estimation software. The Imatest estimation is performed

from a slanted-edge image and only gives an estimate of the mtf at the direction orthogonal to

the slanted-edge. The estimation was conducted with images taken at aperture f/. with patterns

located at the center of the image.
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Figure 2.18: Non­negative Constraint. This experiment analyzes how the PSF estimation changes by

not assuming the non­negative hypothesis. On the left we show both estimations: the no­constrained

and the non­negative 4× PSF for the green channel, f/5.6 at the center of the image. Since there is

no structure in the image produced by subtracting both estimations and since the relation between the

energy of the image difference and the energy of the non­negative estimation is 0.001, we can conclude

that both estimations are extremely close. This is confirmed by observing in the left figure a horizontal

profile of the MTF for both estimations.

Figure . shows the horizontal mtf profiles obtained with the Joshi et al. method using

various regularization levels, with Imatest, and with the proposed approach for one of the green

channels. In the low frequencies Joshi and the proposed approach yield very similar results. How-

ever, for higher frequencies the Joshi et al. results vary strongly with the regularization level. The

Imatest estimate is quite noisy and does not resolve frequencies above twice the sampling rate. The

proposed random pattern algorithm generates much more information than the typical slanted-

edge mtf calibration.

. Discussion

The work presented in this chapter is an attempt to define an optimal non-blind subpixel psf

estimation method from a single aliased image. The method is successful, but its setup is tight.

The pattern must be large enough (some cm in our experiments), printed with good quality

ink. The random squares must be large enough to avoid any ink soaking bias, and a good quality

print is recommended. The mathematical analysis demonstrated that a Bernoulli pattern is nearly

optimal in terms of well-conditioning of the matrix to inverse. The pattern was therefore placed in

an approximately frontal position. The photographs were taken at the right distance to ensure that

the camera sampling grid and the pattern grid had similar meshes. These position requirements

are not strict, though, the experiments showing only a slow degradation of the results when the

distance varies around the optimal position. The method is also very strict in the precautions to

compensate for the variations in illumination and to estimate the exact deformation between the

ideal pattern and the observed one.

Nevertheless, the pay off of this careful procedure is high. The method delivers a very accurate
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Figure 2.19: Changing support size. This experiment analyzes how the PSF estimation changes with the

desired PSF support size. Several PSF estimations for various kernels support sizes (left). Only the central

9×9 regions are shown. All the estimates are very close, specially 17×17, 25×25 and 33×33. However,

the 9 × 9 kernel support seems to be hardly sufficient for correctly modeling the PSF, as indicated by

the MTF vertical profiles on the right. The proposed algorithm does not appear to be sensitive to this

parameter as soon as the kernel support exceeds this minimal size .
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Figure 2.20: Comparison of PSF/MTF estimation methods applied to a real camera. Our implementation

of Joshi et al. [2008] PSF estimation algorithm, the Imatest commercial software and the proposed ran­

dom patter algorithm. All estimations are done at the center of the image with a camera at aperture f/5.6

for one of the green channels. On the low frequencies all algorithms gave very similar estimations, while

on the higher frequencies the Joshi et al. estimation depends on the regularization level. Although we

did our best to get a noise free MTF estimation from the Imatest software, the final estimation is quite

noisy. The Imatest estimation is done from a slanted­edge image and only gives an estimation for the

MTF at the slanted­edge orthogonal direction.
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estimate of the psf, as amply shown in the various comparative experiments, with quite stringent

accuracy levels (relative error in the order of % to %). It remains to wonder why the former

methods added regularizing terms or a priori models if these were not needed. Yet, the numerical

experiments have confirmed that the inverse estimation problem is indeed ill-posed with slanted

edge patterns, which accounts for the necessity of regularization terms for such patterns. Although

random noise patterns have been widely used in the past, up to our knowledge no regularization-

free subpixel psf estimation scheme had been previously proposed. For these previous methods

with noise patterns, the lack of a careful correction for all perturbations may explain the need for

a regularization or an a priori model. The experiments here have confirmed that for typical DSLR

cameras, each color channel is under-sampled with respect to the ideal Nyquist rate given by the

psf, by a factor of  or even . This fact was confirmed, even with DSLR models including an

optical anti-aliasing filter on the sensor. This more than justifies a posteriori the need of a subpixel

estimation procedure. As usual, a locality-accuracy trade-off had to be resolved. The locality of the

order of a few hundred pixels can be achieved under common noise conditions.

Of course a wholesome local camera calibration remains a heavy procedure. According to the

above setting, some  snapshots of the pattern are needed to cover the whole image domain

to get an accurate enough psf estimate everywhere. Indeed, the experiments show that this kernel

varies significantly, particularly near the image boundaries. A possible solution to avoid these many

photographs would be to print a very large random pattern covering a whole wall, that would cover

the whole visual field of the camera. While this is not easy to implement, it is indeed doable in lab

conditions.
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3 PSF Estimation from Two Photographs

at Different Distances

In most digital cameras, and even in high-end digital single lens reflex cameras, the

acquired images are sampled at rates below the Nyquist critical rate, causing aliasing

effects. This chapter introduces an algorithm for the subpixel estimation of the point

spread function of a digital camera from aliased photographs. The numerical proce-

dure simply uses two fronto-parallel photographs of any planar textured scene at dif-

ferent distances. The mathematical theory developed herein proves that the camera

psf can be derived from these two images, under reasonable conditions. Mathemat-

ical proofs supplemented by experimental evidence shows the well-posedness of the

problem and the convergence of the proposed algorithm to the camera in-focus psf.

An experimental comparison of the resulting psf estimates shows that the proposed

algorithm reaches the accuracy levels of the best non-blind state-of-the-art methods.

. Introduction

Light diffraction, lens aberrations, sensor averaging and anti-aliasing filters are some of the inher-

ent camera factors that unavoidably introduce blur in photographs. The blur that results from the

combination of all these factors can be modeled locally as a convolution kernel known as point

spread function (psf), which corresponds to the space variant impulse response of the whole cam-

era, including the sensor, before the final sampling.

The area enclosed by the first zero crossing of the psf, usually called Airy pattern, is arguably

the most reasonable characterization of the optical system resolution. Top camera/lens manufac-

turers use charts based on the psf Fourier spectrum modulus (the modulated transfer function,

mtf) to describe their products. But accurate knowledge of the psf is not limited to quality assess-

ment of optical devices, and it proves to be extremely useful or even necessary for several image

processing tasks such as deblurring [Ng et al. ], superresolution [Park et al. ; Robinson

and Milanfar ] or shape from defocus [Chaudhuri and Rajagopalan ].

In most typical digital cameras, both compact and high-end dslrs, images are sampled at

frequencies below the Nyquist critical rate. Consequently, only aliased versions of the camera psf

can be directly observed. Yet, to fully characterize the psf, it is necessary to recover it at a subpixel

resolution.

psf estimation methods can be classified as blind or non-blind, depending on whether they

use or not snapshots of a specially designed calibration pattern. Blind approaches try to estimate

the psf from photographs of an unknown scene. They do assume, however, that the scene involved
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in the estimation follows some statistical model of sharp images or include a significant amount of

geometric cues such as sharp edges. Most of these psf approaches attempt to detect edges, which

are modeled as pure step-edge functions convolved with the psf kernel [Chalmond ; Luxen and

Förstner ; Capel ; Smith ]. In this setting, the estimation is very ill-posed; to solve the

inverse problem, the solution space has to be constrained by considering kernels with a parametric

model or with strong regularity assumptions. Therefore, such blind estimation techniques do not

lead to accurate psf estimates and are consequently constrained to image restoration problems,

where precision is not the main objective. For this reason, accurate psf estimation procedures rely

on the use of specially designed calibration patterns. A local kernel estimation is performed by

comparing the ideal calibration pattern to its photographs.

As we have presented in the previous chapter, several patterns have been used for psf esti-

mation, ranging from pin-hole, slanted-edge [ISO ; Reichenbach et al. ; Zandhuis et al.

; Claxton and Staunton ], or arc-step-edge patterns Joshi et al. [] to random noise

images [Daniels et al. ; Levy et al. ; Backman et al. , ; Brauers et al. ]. Even

non-blind subpixel psf estimation methods reported in the literature led to ill-posed inverse prob-

lems. The inversion required the imposition of simple psf parametric models or other regularity

or symmetry priors. In Chapter  we have shown that such a priori assumptions on the psf are

actually unnecessary and jeopardize the estimation accuracy. More precisely, by carefully modeling

the image acquisition system, a calibration pattern made of a white Bernoulli noise realization is

nearly optimal in terms of well-conditioning of the problem. This procedure leads to very accurate

regularization-free subpixel psf estimation.

The purpose of the present work is to explore the feasibility of obtaining accurate psf estimates,

while avoiding the explicit use of a calibration pattern. The motivation comes from the fact that,

although very precise, the use of a calibration pattern can be sometimes tedious and impractical:

these approaches rely on a careful setup, and the calibration grid has to be properly assembled,

whereby a good quality print is essential.

We show that, instead of using a photograph of a known calibration pattern, two photographs

of the same scene acquired at different distances with fixed camera configuration are enough to re-

cover a regularization-free subpixel psf. The proposed acquisition procedure is simple and handy

in comparison to a non-blind approach. Experimental evidence will show that the resulting esti-

mates do not exhibit any significant accuracy loss compared to their best non-blind competitors.

The choice of the photographed scene is important but not critical. For a wide range of everyday

textured scenes, the acquired image pairs lead to well posed inversions and highly accurate results.

The proposed method can be used with the previously introduced Bernoulli pattern as well, the

difference being that in that case the quality requirement for the printed pattern are no longer

stringent.

This chapter is written with a dual public in mind: mathematicians and/or image processing

specialists. We have tried to define accurately all mathematical objects necessary to deal rigorously

with image formation. An accurate formalism is needed to justify the somewhat intricate inter-

lacement of sampling and convolution operations. This forces one to check on the compatibility of

all function or distribution spaces to which the objects belong and to verify that the formulas are

mathematically consistent. Nevertheless, the application-oriented reader can skip the proofs and

the functional space details at a first reading, and simply focus on the standard image processing

formalism and algorithms. Most proofs are placed at the end of the chapter. A glossary is appended

to display all notation in a single place.

The chapter is organized as follows: Section . presents a mathematical model of the digital

image acquisition system. This model is used in Section ., where it is shown that the camera psf
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can be recovered from a pair of unknown scaled images. We define the notion of blur between

such a pair of images, and we propose a method to perform its estimation. Then we prove that the

camera psf can be recovered from this inter-image blur. Section . presents an algorithm that im-

plements the complete psf estimation procedure described in Section .. In Section . we discuss

a series of experiments on real and simulated images. Finally, Section . closes with a brief reca-

pitulation and conclusions. The details of the adopted notation and the complete mathematical

proofs are presented in Appendices .A and .B respectively.

. Image Formation Model

.. Generalized digital pin-hole camera

An accurate estimation of the psf requires a proper modeling of the digital image formation pro-

cess. The geometric component of this process is most often modeled in computer vision by a

pin-hole camera. An ideal pin-hole camera with focal length f , shooting at a planar scene u from

a distance d and at fronto-parallel pose, will produce an image w(x) = u(λx) which is just an

homothecy of scale factor λ = d
f of the original planar scene u.

If the pose is not perfectly fronto-parallel or the pin-hole camera presents non-canonical in-

ternal calibration parameters, w and u are related by a planar homography D, i.e., w = u ◦D. In

a more accurate camera model the distortion D takes the form of a more general (but regular) dif-

feomorphism. This is required when the scene is a regular close-to-planar surface (as it is assumed

here) or when the geometric distortion due to the optical system is taken into account as suggested

in Chapter .

For the purpose of psf estimation this simple model needs to be augmented with an accurate

radiometric component, comprising at least the following elements.

Blurring

The psf kernel h models blur due to intrinsic camera characteristics, such as diffraction when

light goes through a finite aperture, light averaging within the sensor and lens aberration. Other

blur sources such as motion, atmospheric turbulence or defocus blur, that may change from one

snapshot to another, will be minimized by the experimental procedure, and it is not the goal of the

present work to estimate them. Another implicit assumption that is usually made is that as long

as the camera is in focus, the psf is independent of the focus position, i.e., the relative distance

between the sensor array and the lens system. Therefore in focus images captured with the same

camera configuration are affected by the same psf.

The diffraction kernel is determined by the shape and size of the aperture, the focal length, and

the wavelength of the considered monochromatic light. Under the Fraunhofer far-field approxi-

mation, for incoherent light this kernel is the squared Fourier transform modulus of the camera’s

aperture indicator function [Goodman ]. It follows that the psf diffraction kernel is always

non-negative and band-limited.

Besides the kernel due to diffraction, other sources of blur inherent to the optical system are

present in real cameras. These are mainly optical aberrations, and anti-aliasing filters (which re-

duce aliasing but do not completely cancel it) introduced in the system prior to sampling [Williams

and Becklund ; Zhao et al. ]. The sampling process also introduces blur. Indeed, each

photo-sensor in the rectangular sampling grid integrates the light arriving at a particular exposure

time. This corresponds to a convolution with the indicator function of the photo-sensor active
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area. To sum up, the unknown psf results basically from the convolution of three non-negative

kernels (diffraction, aberrations and anti-aliasing filters, and sensor averaging), one of them being

band-limited. No parametrical model on the psf will be adopted here. Nonetheless the physical

modeling justifies our assumption that the psf is band-limited and non-negative.

Sampling

We model the continuous to digital conversion at the image plane by the introduction of an ideal

sampling operator S1 and additive noise n due to measurement uncertainties. Physical models

of digital camera sensors, both for ccd and cmos sensors, suggest that the readout noise n is a

mixture of luminance independent (Gaussian, thermal) noise, and luminance dependent (Poisson

or photon counting) noise [Healey and Kondepudy ; Tian et al. ; Marion ]. A usual

simplification of this model, which we follow here, assumes the noise is image independent, white

and Gaussian, with constant variance.

The whole image formation process can then be summarized in a single equation:

ṽ = g (S1 ((u ◦D) ∗ h)) + n,

where g(·) is a monotone non-decreasing function that describes the non-linear sensor response.

If the camera is working outside the saturation zone, in raw images this response can be reasonably

assumed to be linear (see Figure . in the Experimental section of Chapter ). This boils down

to a rescaling of the dynamics of u and therefore disappears with out loss of generality from the

model. Hence, in what follows, the image formation model will be

ṽ = S1 ((u ◦D) ∗ h) + n. (M)

.. Inverse problem statement in terms of digital sequences

Since in practice our data consist exclusively of discrete sequences (or digital images), the image

formation model will be rewritten in terms of discrete sequences. This requires the introduction of

additional notation, summarized in Table . (a more precise definition of each term is presented in

Appendix .A). It would be cumbersome to verify systematically all regularity requirements on all

functions and distributions needed in the proofs. Thus, all necessary results are given in a precise

form in the appendices. They will be invoked in the proofs, and the reader is invited to check that

their use was licit.

Suppose that the psf h is s-band-limited, that is, supp(ĥ) = [−sπ, sπ]2. Then, if sampled

at a rate s, the Nyquist sampling theorem guarantees perfect reconstruction of h from its samples

h = S1H 1

s
h. We are actually interested in the case s > 1, usual for digital cameras. This means

that the images obtained from (M) may be subject to aliasing.

Proposition  (discrete camera model). Let u ∈ BL20 and h ∈ L1 ∩ BL20, band-limited in

[−sπ, sπ]2. Then

S1(u ∗ h) = Ss(ū ∗ h), (.)

where we have called ū = S1W1H 1

s
u and h = S1H 1

s
h.
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u, v Images defined on continuous domain x ∈ R
2

u, v Digital images are sampled on a discrete grid k ∈ Z
2

F Fourier transform

f̂ Fourier transform of a function f
I1 Shannon-Whittaker interpolator: I1u(x) =

∑

k
u(k)sinc(x− k)

S1 1-sampling operator: u(k) = (S1u)(k) = u(k)

Ww Ideal low-pass filter cuts the spectrum of continuous signals to [−wπ,wπ]2
Ss The s-to--resampling operator Ss = S1HsI1
Hλ Continuous homothecy: Hλu(x, y) = λ2u(λx, λy). (λ < 1 dilation)
Hα Digital Nyquist homothecy operator of parameter α: Hαu := S1W1HαI1u

C[u] Linear map associated to the convolution with a digital image u
L∗ Adjoint of a linear operator L
L+ Pseudo-inverse L+ := (L∗L)−1L∗ of a linear operator L

L1 Integrable functions on R
2 (L1(R2))

L2 Square integrable functions (L2(R2))
BL2 L2 functions, band-limited in [−π, π]2
BL2

0 L2 functions with compactly supported Fourier transform

Table 3.1: Summary of the notation used in this chapter. A more precise definition of each term is

presented in Appendix 3.A

Proof. We first derive the expression and then justify the application of each result. The set of used

properties are detailed in the Appendices .A and .B.

S1(u ∗ h) = S1HsH 1

s
(u ∗ h) (.)

= S1HsH 1

s
(Wsu ∗ h)

(.)
= S1Hs(H 1

s
Wsu ∗H 1

s
h)

(.)
= S1Hs(W1H 1

s
u ∗H 1

s
h)

(.)
= S1HsI1S1(W1H 1

s
u ∗H 1

s
h)

(.)
= S1HsI1(S1W1H 1

s
u ∗ S1H 1

s
h)

def
= S1HsI1(ū ∗ h) def

= Ss(ū ∗ h).

First note that as u ∈ BL20 and h ∈ L1 are band-limited in [−sπ, sπ]2, we can apply (.)

and (.) directly. As W1u is in BL2 we can apply (.). The Nyquist theorem (.) is valid since

u ∈ L2 and h ∈ L1, then W1H 1

s
u ∗H 1

s
h belongs to BL2.

Both W1H 1

s
u and H 1

s
h are band-limited finite energy functions so we are free to apply (.).

Since the sequence (ū ∗ h) is the sampling of the band-limited L2 function W1H 1

s
u ∗ H 1

s
h, it

belongs to ℓ2 (Lemma ). Finally, the interpolation I1(ū ∗ h) is well defined.

The previous proposition shows that the image formation model (M) can be written in terms

of discrete sequences.

ṽ = Ss(ūD ∗ h) + n

= SsC[ūD]h+ n. (.)

The digital image ūD = S1W1H 1

s
uD is a well-sampled version of the distorted image uD = u◦D.

The value s is the resampling rate from the high resolution lattice s×, where the psf estimation

will take place, to the 1× sensor grid.
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The numerical method will recover only a finite number of samples h of h. Strictly speaking

h, being band-limited, cannot be compactly supported. Nonetheless, the error introduced by as-

suming that the support of h is bounded will prove negligible in comparison to the other sources

of error: image noise, quantization, slight estimation errors of D, etc. Indeed, the retrieved solu-

tion h will prove to be experimentally independent from variations of its assumed support as long

as it is large enough for errors to be negligible, and small enough for the operator to still be well

conditioned.

When n is a zero-mean white discrete Gaussian noise, it follows from the previous formula

that he = (SsC[ūD])
+ṽ is an unbiased estimator of h, as long as the linear operator SsC[ūD] is

injective. It can be shown that the estimator variance is proportional to the Hilbert-Schmidt norm

of (SsC[ūD]) (for matrices, the Frobenius norm), and that it is nearly minimal when ūD is a white

noise realization (see Section .).

. PSF Estimation from an Unknown Pair of Scaled Im-

ages

Assume that we have perfect knowledge of the latent sharp image u that produced the blurry aliased

observation ṽ. Under this non-blind assumption, solving for the psf amounts to solving an inverse

problem governed by the image formation model (M). Of course, this would require the use of

a specially designed calibration pattern. We are now interested in investigating to what extent the

use of such pattern could be circumvented. We will propose a method that allows us to accurately

estimate the psf from a pair of snapshots of the same scene, captured from different distances. In

this method, the closest image will play a role similar to that of a calibration pattern in a classical

non-blind approach.

In Chapter  we have shown that the highest accuracy in the psf estimation is obtained by us-

ing a realization of a Bernoulli white noise as calibration pattern. However, many highly textured

scenes do exist in nature which, while not being optimal, may still lead to a well-posed inverse prob-

lem. In what follows, we prove that from two far apart snapshots of this kind of scene, complete

recovery of the camera psf is theoretically possible based on the estimation of the blur between

this pair.

.. Relative blur between two images: the inter-image kernel

Consider two digital images ṽ1, ṽ2 of the same planar scene u, captured from different distances

in a fronto-parallel position with negligible rotation around the optical axis. Let λ1 and λ2 denote

the corresponding scale factors between the scene and each of the images. Then,

ṽi = S1Hλi
u ∗ h+ ni for i = 1, 2 (.)

= S1vi + ni

= vi + ni,

where vi := Hλi
u ∗ h and vi := S1vi. We will realistically assume that h ∈ L1 ∩ BL20 is non-

negative with ‖h‖L1 = 1, and u ∈ BL20 (details on the appropriateness of these assumptions

are given in Appendix .A). Also, it will be assumed that the acquisition distances are such that

sλ1 < λ2; the importance of this assumption will soon become clear.
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Definition . Let v1, v2 ∈ BL20 be two fronto-parallel continuous views of the same scene, acquired

from different distances λ1 and λ2 respectively. We define an inter-image kernel between v1 and v2
as any kernel k ∈ BL20 satisfying

v2 = Hλ2/λ1
v1 ∗ k.

The following lemma provides a characterization of the inter-image kernel.

Lemma . Let h ∈ L1 ∩ BL20 be non-negative, band-limited with supp(ĥ) ⊂ [−sπ, sπ]2 and

ĥ(0) = 1. Let ρ be the largest positive number such that |ĥ(ζ)| > 0 for every ‖ζ‖∞ < ρπ and

assume that λ2ρ > sλ1. Then there is an inter-image kernel k ∈ BL20 with support in [−sπ, sπ]2
between (fronto-parallel views) v1 and v2 that satisfies

Hλh ∗ k = h, where λ =
λ2

λ1
. (.)

If û does not vanish inside [−s π
λ2
, s π

λ2
]2, then the inter image-kernel is unique and depends only on h

and λ.

Proof. If k is an inter-image kernel between v1 and v2, according to Definition  it must satisfy

F(Hλv1)(ζ)k̂(ζ) = v̂2(ζ).

Since vi := Hλi
u ∗ h, the right-hand side of the previous equation is given by

v̂2 (ζ) = û (ζ/λ2) ĥ (ζ) .

In the same way, for the left-hand side,

Hλv1 = Hλ(Hλ1
u ∗ h) (.)

= Hλ2
u ∗Hλh,

i.e., F(Hλv1)(ζ)k̂(ζ) = û (ζ/λ2) ĥ (ζ/λ). Hence,

û (ζ/λ2) ĥ (ζ/λ) k̂(ζ) = û (ζ/λ2) ĥ (ζ) . (.)

It follows that a sufficient condition for k to be an inter-image kernel is ĥ (ζ/λ) k̂(ζ) = ĥ (ζ) . Since

h ∈ L1, ĥ is continuous. It follows that ρ is necessarily positive, since ĥ(0) = 1 > 0. In addition,

as λ > s
ρ by hypothesis, F(Hλh)(ζ) = ĥ(ζ/λ) does not vanish inside [−sπ, sπ]2 and

k̂(ζ) =
ĥ(ζ)

ĥ(ζ/λ)
(.)

is well defined all over its support, supp(k̂) ⊂ [−sπ, sπ]2. Finally, if û (ζ/λ2) does not vanish

within the support of ĥ, from Eq. (.) k is unique.

Remark . In Lemma  it is assumed that the psf h is the same for the two images. This has at least

two practical implications. First, we assume that both images are taken in perfect focus through proper

refocusing. The only camera parameter allowed to change is the focus (aperture and focal distance

remain unchanged). Second, the common area between v1 and v2 covers an important part of v1,

and consequently its psf may exhibit some space variance that may degrade the estimation. Indeed,

if v1 is acquired through another psf h′ such that ĥ′(ζ) = ĥ(ζ) in [−sπλ , sπλ ]2, then Equation (.)

will still be valid. Thus, the real requirement is that the low frequencies of the psf (i.e., frequencies in

[−sπλ , sπλ ]2) do not change.
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.. Estimation of the inter-image kernel

The next goal is to estimate the inter-image kernel k. Since k is an s-band-limited function, we

will work with its s× samples k = S1H 1

s
k. We will show that under reasonable conditions, k can

be recovered from the noisy aliased observations ṽ1 and ṽ2. Let us first build up some intuition on

how to derive the proposed estimator. In what follows, v̊1 = S1W1Hλ
s

v1 denotes a well sampled

homothecy of parameter λ/s of v1.

Proposition . Under the assumptions of Lemma ,

v2 = (SsC[̊v1])k. (.)

Proof. Being k an inter-image kernel between v1 and v2, it satisfies Eq. (.). Then,

v2 = S1(v2)

= S1(Hλv1 ∗ k).

Since k is s-band-limited, it follows that

v2
(.)
= S1(WsHλv1 ∗Wsk). (.)

Using the Nyquist-Shannon theorem for a band-limited signal and a set of properties detailed in

Appendices .A and .B, yields

v2
s>0
= S1HsH 1

s
(WsHλv1 ∗Wsk)

(.)
= S1Hs(H 1

s
WsHλv1 ∗H 1

s
Wsk)

(.)
= S1Hs(W1Hλ

s

v1 ∗W1H 1

s
k)

(.)
= S1HsI1S1(W1Hλ

s

v1 ∗W1H 1

s
k)

(.)
= S1HsI1(S1W1Hλ

s

v1 ∗ S1W1H 1

s
k)

def
= S1HsI1(̊v1 ∗ k)

def
= Ss(̊v1 ∗ k) def

= SsC[̊v1]k.

Of course, in practice we do not have access to v̊1 or to v2, but only to their noisy, aliased

versions ṽ1 and ṽ2. Thus k cannot be directly estimated from Eq. (.). However, a relationship

between v̊1 and ṽ1 can be established as follows:

Hλ
s

ṽ1 = Hλ
s

(v1 + n1) + v̊1 − v̊1

= v̊1 + S1W1Hλ
s

(I1v1 − v1)
︸ ︷︷ ︸

r

+Hλ
s

n1, (.)

where the last equality results from the definition of the discrete homothecy operator. The term r

is a consequence of aliasing when sampling v1 and introduces an unknown bias in the estimation

of k. While this bias cannot be fully controlled, its impact can be mitigated. Indeed, since

r = S1W1Hλ
s

(I1v1 − v1)

(.)
= S1Hλ

s

W s
λ
(I1v1 − v1),
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the aliasing term r will be non-zero only if there are aliasing components in the frequency interval
[
− s

λπ,
s
λπ
]2

. This allows us to choose v1 = Hλ1
u such that supp(v̂1) ⊂

[
−2π + s

λπ, 2π − s
λπ
]2

(see Figure .). Thus, to minimize the impact of the aliasing term the images should be acquired

from a pair of fronto-parallel locations as far as possible one from the other, since that amounts to

increasing the value of λ.

aliasing

terms

Figure 3.1: Neglecting the aliasing. The estimation will be affected by aliasing only if there are aliasing

components in the interval
[
− s

λ
π, s

λ
π
]2

. Hence, to avoid aliasing one can choose v1 = Hλ1
u such that

supp(v̂1) ⊂
[
−2π + s

λ
π, 2π − s

λ
π
]2

.

From now on, we assume that the snapshots are acquired following the previous considera-

tions. Therefore, we can ignore the aliasing term in (.), which leads to

v2 = (SsC[̊v1])k = (SsC[Hλ
s

v1 −Hλ
s

n1])k,

that is

(SsC[Hλ
s

ṽ1 −Hλ
s

n1])k = ṽ2 − n2.

One could be tempted to solve for k in the previous equation using a total least squares based

approach:

argmin
k,δ,ǫ

‖δ‖+ κ‖ǫ‖ subject to SsC[Hλ
s

ṽ1 + δ]k = ṽ2 + ǫ. (TLS)

However, the particular structure of the operator SsC[Hλ
s

ṽ1 + δ] makes this problem a difficult

one. Instead we prefer to follow a simpler approach, which results from neglecting the noise term

Hλ
s

n1. This yields to the least squares estimation problem

argmin
k,ǫ

‖ǫ‖ subject to SsC[Hλ
s

ṽ1]k = ṽ2 + ǫ, (LS)

whose solution is given by

ke =
(

SsC[Hλ
s

ṽ1]
)+

ṽ2. (.)
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If the noise n1 is small compared to v1, this solution would be very close to the one that would

be obtained from Problem (TLS). If, in addition, n2 is small compared to v2, both solutions

would be close to the actual inter-image kernel k = (SsC[̊v1])
+
v2. This follows directly from the

continuity and injectivity assumptions on SsC[̊v1], as a consequence of Lemma . This being said,

we will consider the estimator of the inter-image kernel in Eq. (.).

Remark . If λ < s, the convolution betweenk andHλ
s

ṽ1 is not invertible so the operatorSsC[Hλ
s

ṽ1]

will not be injective. This constraint on λ is necessary but not sufficient to make SsC[Hλ
s

ṽ1] invert-

ible. In addition, it is required that the spectrum of the image Hλ
s

ṽ1 exhibits slow decay. Indeed, as

shown in Section ., the flatter the spectrum of the image scene is, the better conditioned is the inverse

problem. For that reason, in order to obtain accurate estimates of k, it is desirable that the chosen scene

u exhibits white noise characteristics.

.. From relative to absolute blur

Now that we have a method for estimating the inter-image kernel k, we will concentrate on how to

recover the camera psf. Notice that h is related to k by Hλh ∗ k = h, and therefore its derivation

is not straightforward. However, it holds that

h = lim
n→∞

Hλn−1k ∗Hλn−2k ∗ · · · ∗Hλk ∗ k, (.)

as proved in the following proposition.

Proposition . Let h ∈ L1 ∩ BL20 and k ∈ BL20 such that k̂(ζ) = h(ζ)

h( ζ

λ
)
. Assume λ large enough to

ensure that ĥ(ζ/λ) does not vanish in the support of k̂. Then if λ > 1, we have

lim
n→∞

Hλn−1k ∗Hλn−2k ∗ · · · ∗Hλk ∗ k = h,

where the limit is in L2 ∩ C0.

Proof. Let us call un = Hλn−1k ∗ · · · ∗Hλk ∗ k. Then in the Fourier domain we have

lim
n→∞

ûn(ζ) = lim
n→∞

n−1∏

i=0

k̂

(
ζ

λi

)

= lim
n→∞

ĥ(ζ)

ĥ(ζ/λn)
.

Since h ∈ L1, then ĥ ∈ C0 and we have

lim
n→∞

ĥ(ζ/λn) = ĥ(0) = 1

The convergence is uniform on a fixed compact set because ĥ is continuous and compactly sup-

ported. This implies that the convergence holds in L1 and L2. Therefore

Hλn−1k ∗Hλn−2k ∗ · · · ∗Hλk ∗ k L2∩C0

−→ h.
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This limit shows that it is possible to recover the camera psf h from the inter-image kernel k.

Recall that in practice we have access only to discrete sequences; therefore it is convenient to derive

a discrete equivalent of the previous limit. Since k is s-band-limited,

S1H 1

s
(Hλk ∗ k) (.)

= S1H 1

s
(WsHλk ∗ k) (.)

= S1(H 1

s
WsHλk ∗H 1

s
k)

(.)
= S1(W1Hλ

s

k ∗H 1

s
k)

(.)
= S1W1Hλ

s

k ∗ S1H 1

s
k

def
= Hλk ∗ k.

Iteratively applying this result to Eq (.) yields

h = lim
n→∞

Hλn−1k ∗Hλn−2k ∗ · · · ∗Hλk ∗ k. (.)

. The Complete PSF Estimation Procedure

This section describes the algorithmic steps that lead to local subpixel psf estimates. The com-

plete chain is summarized in the block diagram of Figure .. The next paragraphs present brief

summaries for each block. A complete algorithmic description is given in Appendix A..

Figure 3.2: Algorithm description. Both captured images are aligned via SIFT feature matching followed

by the estimation of a homography. The relative geometric transformation and gray­level corrections

are applied to a low­pass (unaliased) version of the finest scale image ṽ1. Then the interpolated image

Hλ

s

ṽ1 and image ṽ2 are compared to obtain the inter­image kernel k, which is later iteratively updated

to obtain the absolute camera PSF h.

Image alignment In order to estimate the geometric transformation between both images, they

need to be precisely aligned. This alignment can be obtained by matching sift descriptors [Lowe

], which have the advantage of being scale invariant.

Geometric transform estimation The complete geometric transformation from one image

to the other was approximated with a homography from the matched sift pairs. This permits the

correction for deviations from the fronto-parallel assumption in the acquisition. Of course, if the





distortion is significant the assumed inter-image kernel Eq. (.) will not be accurate. The relative

scale λ = (λx, λy) is taken directly from the estimated homography. The IPOL implementation

by Moisan et al. [] was chosen because of the efficiency of the optimized random sampling

algorithm (orsa) rejection of false matches.

Gray level adjustment Both snapshots should be acquired with exactly the same camera con-

figuration and constant scene illumination. This ensures that there is no contrast change between

them.

Resampling and distortion correction of ṽ1 The generation of the rescaled samples Hλ
s

ṽ1

requires the interpolation of ṽ1 at the desired scale λ/s. This is done by using the estimated geo-

metric transformation with bicubic interpolation. Notice that since ṽ1 is not very aliased, one can

correctly interpolate it without introducing artifacts.

Numerical methods for inter-image kernel estimation Suppose that the image ṽ2 has size

m×n. The goal is to estimate k at s× the resolution of ṽ2 (camera sensor resolution). Also suppose

that the estimated support of the inter-image kernel k is contained in an r × r patch. Then the

matrix SsC[Hλ
s

ṽ1] is of size mn × r2. A simple least squares procedure yields the inter-image

kernel estimator:

ke = argmin
k

∥
∥
∥SsC[Hλ

s

ṽ1]k− ṽ2

∥
∥
∥

2
.

Transforming the kernel: from k to h Recovering the samples of the camera psf h amounts

to evaluate the limit in Eq (.). Directly working with the digital sequences requires some care in

how the successive convolutions are computed. Since λ > 1, the application of Hλ would require

a low-pass filter to avoid aliasing artifacts. To bypass this inconvenience one can restate the limit

convolution as follows:

h = lim
n→∞

Hλn(k ∗H 1

λ
k ∗ · · · ∗H 1

λn−1

k ∗H 1

λn
k).

If implemented in this way, the successive discrete convolutions can be computed without any

special care. To apply the discrete homothecy operator to k, we need to resample k using the

Shannon-Whittaker interpolator. Because of its slow decay, in order to reduce ringing and other

windowing effects, we opted to use bicubic interpolation. We get h by an iterative procedure that

converges after a few iterations since λn grows very fast. See Appendix A. for the algorithmic

details.

In theory, as we already stated, the estimated psf should be non-negative. In practice, small

negative values may be observed, due to deviations from model assumptions and numerical arti-

facts. To correct for these deviations, we simply set all negative values to zero.

. Experimental Results

Since there is no psf ground truth available, the validation of the proposed method was carried

out by simulations and by comparing the results with state-of-the-art methods Joshi et al. [];

LLC [] and with the proposed non-blind psf estimation algorithm presented in Chapter .

Comparison was made only to non-blind, pattern based methods, as the accuracy of blind methods
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is significantly lower. A complete algorithmic description, an online demo facility, and a reference

source code can be found at the IPOL workshop by Delbracio et al. [a].

.. Simulations as a sanity check

A synthetic random image u was generated and re-interpolated 4× in order to get the “continuous”

sharp homothecy of the image u. Next both images were convolved with a psf-like kernel (in this

case a Gaussian isotropic kernel), and down-sampled to get the respective observed digital images

at the camera resolution (i.e., 1×). The kernel was chosen so that the low resolution image presents

aliasing artifacts. By generating the views of u in this way, there are no aliasing artifacts in the

closest image. This experiment was done as a sanity check of the proposed method. A 4× kernel

was estimated from the observed image pair. The results are shown in Figures . and ..

The procedure was tested for both automatic sift-based registration and the ideal (known)

alignment. Although both estimates are significantly accurate, the automatic registration intro-

duces a small misalignment, as shown in the difference images. See the caption of Figures . and

. for details.

.. Real camera examples

The behavior of the proposed approach was tested for several different image pairs and for super-

resolution estimations ranging from 1× to 4×. The experiments were performed using a a Canon

EOS D camera equipped with a Tamron AF -mm F/. XR Di-II lens. The focal length was

fixed to . mm.

Two-scale versus non-blind pattern based method In Chapter  we presented a non-blind

method that uses a realization of white noise as calibration pattern. It was proved that, until to

now, this method is the one tat estimates the psf with highest accuracy. Therefore, the psf resulting

from this method will be used here as ground truth. Figure . shows the 4× psf estimated by the

proposed two-scale method from a pair of views of a wall shown in Figure .. The estimation

was conducted for one of the green channels (half of the green pixels of the Bayer matrix), with

the camera aperture set to f/.. The estimated psf is quite close to the one obtained by using our

Bernoulli pattern based approach. In particular their sizes are similar, and their corresponding

mtfs present zeros at the same locations.

Color filter array estimations Two pictures of another textured wall shown in Figure . were

used to estimate the psf of the four color Bayer channels (raw camera output). This wall texture

presents characteristics similar to those of white noise. The results for the 4× psf estimated at

the image center are shown in Figure .. Notice that the red channel psf is wider than the green

and the blue one, as expected from the physics of diffraction-limited optical systems, since the

wavelengths associated to red light are larger than the rest. The differences between the dominant

orientations of the red, green and blue psfs spectra can be explained by the sensor shape and

layout. In fact, each sensor active zone is usually L-shaped, and the red and blue sensors are rotated

90◦ w.r.t. the green ones (see, for example, Yadid-Pecht []). These rotations are consistently

observed in the psfs and mtfs estimated with our two-scale method. This clearly illustrates the

accuracy of the proposed approach.
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Figure 3.3: Synthetic example: 4× PSF estimation for simulated data. Top row: the closest and farthest

images. Middle row: the simulated PSF (ground truth) and the respective PSF estimations using the

automatic SIFT points / homography alignment and the ideal alignment. Both estimations are accurate.

However, as shown in the difference images the automatic registration introduces a small misalignment.

This can also be seen in the phase and modulus of the PSF Fourier transform vertical profile, shown in

the bottom row. Bottom row (right): comparison of the inter­image and PSF kernels. Since both input

images are simulated at distances in a ratio of λ = 4×, h is very close to k.
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Figure 3.4: Synthetic example: 4× PSF estimation for simulated data, residual image. From left to right:

farthest image and residual images Ss(Hλ

s

ṽ1 ∗ k) − ṽ2 with the estimated kernel from ideal and au­

tomatic alignment. The residual in the automatic alignment case is significantly larger than in the ideal

alignment case. However, the difference in the PSFs seems to be negligible up to a subpixel translation

as shown in Figure 3.3.

Different kinds of scenes The wall images in the previous experiments are well adapted for

our two-scale psf estimation method, since their spectra show slow decay. A priori one would

think that images from pure white noise would yield better estimates, since this is what happens in

our previous pattern based approach. But for our two-scale approach, this would be true if both

snapshots could be precisely aligned, which is not the case in practice. Indeed, sift descriptors

are not stable in the presence of aliasing. Hence, there is a trade-off between having accurate sift

matches and textures with high frequency information. The texture shown in Figure . is an

example of an appropriate trade-off.

Figure . shows two snapshots of a photograph in a magazine, with the corresponding 1× to

4× psf estimations for the first green channel. The estimation was performed at the image center

for the camera working at f/. aperture. All the subpixel estimations are consistent: their mtfs

exhibit good overlap in common regions. While these newspaper images produce accurate sift

points, their spectra decay faster than those of the wall images. Consequently, the high frequen-

cies in the psf estimate are noisier. This can be readily seen by comparing both estimates at 4×
resolution.

What kind of textures should be used? It follows from the previous analysis that, in order

to simultaneously produce good sift points and a sufficiently slow frequency decay, textures com-

posed of elements with different sizes are to be preferred. Three-dimensional (3d) textures like

those shown in Figure . can be problematic for this approach. Even though they respect the

two previous conditions, their 3d nature produces disparities, and occlusions which change the

image beyond a simple zoom. Likewise, non-Lambertian surfaces and dynamical scenes are not

appropriated either.

Comparison to other methods In this experiment we compare the performance of the two-

scale method proposed here with three state-of-the-art non-blind methods: that of Joshi et al.

[], Imatest commercial software LLC [], and our previous Bernoulli pattern method. All

the estimates were computed at the image center, with aperture f/.. For the two-scale approach,

we used the wall image pair shown in Figure .. Joshi and coauthors and Imatest use two different

kinds of slanted-edge calibration patterns. The algorithm by Joshi requires to set a regularization

parameter; we show the results obtained for three different levels of regularization.
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Figure 3.5: Wall image: two­scale versus Bernoulli white noise pattern based estimation. Estimation at

4× PSF resolution for one of the green channels from the camera RAW output. Top row: two distant,

parallel views of a textured wall. Middle row: the PSF estimated with the proposed algorithm and the

one estimated using the Bernoulli pattern method. Bottom row: vertical profile of the MTF. Both estima­

tions are close. In particular the associated airy disks have similar sizes, and the MTFs vanish in the same

locations.
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Figure 3.6: Wall image: two­scale versus white noise pattern based estimation. Two distant, parallel

views of a textured wall.
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Figure 3.7: Different color channels. PSF estimation at 4× resolution for the four Bayer channels (two

greens, red and blue). Top row: two distant, parallel views of a concrete wall (close ups, the full im­

ages are shown in Figure 1.5). Middle row: the 4× PSF estimated for the four channels. Bottom row:

their corresponding Fourier spectrum modulus. The estimation was performed with images captured

at aperture f/5.6. The red PSF is larger than the green and blue ones. This is consistent with the diffrac­

tion phenomenon: the red wavelengths are larger than the rest, thus the diffraction kernel is wider. Also

note the differences between the shape of the red, blue and green PSF spectra (bottom row). Red and

blue MTFs are rotated 90◦ with respect to the green ones. This symmetric behavior is consistent with the

layout of L­shaped sensors Yadid­Pecht [2000].
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Figure 3.8: Magazine image: 1×, 2×, 3× and 4× estimations for the first green channel from a pair

of photographs of a newspaper image. The estimation was done at the image center for the camera

working at an f/5.6 aperture. All the estimations are consistent: their MTFs show good overlap. The

4× PSF estimation is noisier than the one produced from the wall images. The main reason is that the

spectrum of the magazine image decays faster.
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Figure 3.9: Examples of textures which are not adapted to the two­scale approach. Their 3D nature pro­

duces disparities and little changes in the angle­of­view would result in accuracy loss. Non­Lambertian

surfaces and dynamical scenes are not appropriated either.

Figure . shows the mtf profiles of the obtained psf estimates. The proposed two-scale

method performs at least as well as the non-blind methods under comparison. The method of

Joshi and colleagues shows similar performance for a carefully, manually chosen regularization

parameter. See caption for details.

. Conclusion

In this chapter we presented an algorithm for the subpixel estimation of the point spread function

(psf) of a digital camera from aliased photographs. The procedure is based on taking two fronto-

parallel photographs of the same flat textured scene, from different distances leading to different

geometric scales, and then estimating the kernel blur between them.

The estimation method is regularization-free. In that sense, the technique is closely related

to the non-blind estimation method presented in Chapter , which uses a random noise pattern.

The main difference is that non-blind methods can directly estimate the psf using the perfect

knowledge of the pattern. In the proposed two-scale method the question is far more intricate

because only the blur between the acquisitions can be estimated. Thus a mathematical analysis

and new algorithms have been introduced proving how the psf can be recovered from the inter-

image kernel.

To reach high accuracy, images of textured scenes with sufficient flat spectra are preferred. It

was experimentally verified that many textures found in nature are well adapted to these require-

ments. A comparison of the resulting psf estimates with other subpixel psf estimation methods

shows that the proposed algorithm reaches accuracy levels similar to those of state-of-the-art meth-

ods, with the advantage of not requiring any special acquisition setup or calibration pattern and

thus being much more practical.

.A Mathematical Framework and Physical Modeling

Functional spaces and other notation

• R
2 is the set of pairs of real numbers x = (x1, x2), and Z

2 the set of pairs of integers

k = (k1, k2). L
1(R2) is the set of integrable functions on R

2, L2(R2) is the set of square
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Figure 3.10: Comparison of PSF/MTF estimation methods. Our implementation of the PSF estimation

algorithm by Joshi et al. [2008], Imatest commercial software LLC [2010], our previous Bernoulli pattern

method, and the two­scale method proposed in this work (applied to the images of the wall shown in

Fig. 3.7). On the low frequencies all algorithms produced very similar estimates, while on the higher

frequencies the Joshi et al. estimation depends strongly on the regularization level. Although much

effort was made to get a noise­free MTF estimation from the Imatest software, the final estimation is

quite noisy. The Imatest estimation is done from a slanted­edge image and only gives an estimation

for the MTF at the slanted­edge orthogonal direction. The proposed two­scale algorithm is the one

presenting an estimation closest to the non­blind estimation presented in Chapter 2, considered as

ground truth by virtue of its high accuracy.
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integrable functions, C0
b (R

2) is the set of continuous bounded functions, C∞(R2) is the

set of infinitely differentiable functions, S(R2) is the Schwartz class of C∞ functions whose

derivatives of all orders have fast decay, S ′(R2) is its dual, the space of tempered distri-

butions, E ′ the subset of S ′(R2) of compactly supported distributions. We shall use the

properties of the convolution L1 ∗ L2 ⊂ L2, L1 ∗ L1 ⊂ L1, L2 ∗ L2 ⊂ C0, E ′ ∗ S ′ ⊂ S ′.

• We denote by BL2(R2) (or BL2 for short) the set of L2 functions that are band-limited

inside [−π, π]2. More generally, BL20 denotes the space of L2 functions with compactly

supported Fourier transform.

The following conventions and notations will be used in what follows:

• F is the Fourier transform operator defined on S ′; F(f)(ζ) = f̂(ζ) =
∫
e−ix·ζf(x)dx

defines it for a function f ∈ L1(R2) in a point ζ = (ζ1, ζ2). This formula is still valid for

functions belonging to Lp(R2) with 1 < p ≤ 2 (see, e.g., the reference books by Stein and

Weiss []; Bony []).

• Continuous images are defined for x ∈ R
2, whereas digital images are sampled on a discrete

grid k ∈ Z
2. realistic assumption is to consider them non-negative.

• S1 : C0
b → ℓ∞(Z2) is the 1-sampling operator such that u(k) = (S1u)(k). From the

distribution viewpointS1 is the product by a Dirac combΠs :=
∑

k δsk with s = 1, namely

S1u = Π1.u where u must be a continuous function. Both representations of the sampling

operator will be identified, and it will be clear from the context which representation is

intended.

• A digital image u will be represented either as a sequence (u(k))k in ℓ∞(Z2) or as the

corresponding Dirac comb u :=
∑

k∈Z2 u(k)δk.

• The operator I1 : ℓ2(Z2) → BL2(R2) denotes the Shannon-Whittaker interpolator, de-

fined by I1u(x) =
∑

k∈Z2 u(k)sinc(x − k), where sinc(x) = sin(πx)
πx

sin(πy)
πy . We therefore

have I1u = F−1(
∑

k u(k)e
−ik·ξ1[−π,π]2). When u ∈ ℓ2, F(I1u) belongs to L2 and is

compactly supported. Thus I1u ∈ BL2, and we have S1I1 = Id.

• The filter Wwu = F−1(û · 1[−wπ,wπ]2) is an ideal low-pass filter that cuts the spectrum of

u to [−wπ,wπ]2. It is defined if û is a function. Note that if u ∈ L1 ∪ L2, then W1u is in

BL2.

• Hλu(x) = λ2u(λx) is the continuous homothecy (i.e., λ > 1 is a contraction); the ra-

tionale for its normalization is to preserve the image mean (its zero-frequency coefficient).

In the Fourier domain F(Hλ
u

)(ζ) = û( ζλ), so if u is α-band-limited, then H 1

α
u is band-

limited.

• Ss : ℓ2(Z2) → ℓ2(Z2) denotes the s-to--resampling operator Ss = S1HsI1 (i.e., s > 1 is

a subsampling by s).
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• C[u] : ℓ2(Z2)→ ℓ2(Z2) denotes the linear map associated to the convolution with a digital

image u. The convolved sequence belongs to ℓ2(Z2) which in general is satisfied if u ∈
ℓ1(Z2).

• The digital Nyquist homothecy operator Hα : ℓ2(Z2) → ℓ2(Z2) is defined by Hαu :=
S1W1HαI1u. It is a digital contraction if α > 1.

• Let L be a bounded linear operator over a Hilbert space. L∗ is its adjoint and L+ (if it exists)

is its pseudo-inverse, i.e., the minimum-norm solution of (L∗L)L+ := L∗.

Physical and mathematical modeling of continuous images

Continuous images will be assumed to be functions in BL20(R2). This choice is consistent, since

these functions are continuous (actually C∞) and the sampling is well defined. Moreover, as sug-

gested by Morel and Ladjal [] and later by Almansa et al. [, Appendix A] this choice is

sufficiently general to model the continuous landscape observed by a camera just before sampling

takes place at the sensors.

In fact, even if the raw physical image before blur and sampling is, realistically, a positive Radon

measure O (due to the photon-counting nature of sensitive digital systems) with compact support

(imposed by the finite number of photons), it will still be blurred by the camera psf h which will

be regular enough for h ∗O to be in BL20.

How regular can it realistically be assumed to be? The kernel h originates in several physical

phenomena from diffraction, anti-aliasing filtering and sensor integration. Each one of these phe-

nomena, and their combination as well, lead to model h as a nonnegative function with finite mass
∫
h = 1 (normalized to ). In addition the diffraction part ensures that ĥ is compactly supported.

From this one deduces that h ∈ BL20 ∩ L1.

We now turn to the problem of simplifying O to a more manageable function u, which is

indistinguishable from O after convolution with the psf h. Let B = supp(ĥ) be the (compact)

spectral support of the psf h. Hence h can be idempotently written as h = h ∗ h0, where h0 ∈ S ′
has a compactly supported spectrum satisfying ĥ0(η) = 1 for η ∈ B. The function ĥ0 can easily

constructed by an explicit formula as a C∞ and compactly supported function satisfying ĥ0(η) =
1 on B. Then its inverse Fourier transform has all required properties.

So we have

v = h ∗O = h ∗ u, where u = h0 ∗O.

Consequently, the observed landscape can be assumed without loss of generality to be u = h0 ∗O
instead of O. Being the convolution of a compactly supported positive Radon measure O ∈ E ′ with

h0 ∈ BL20 ∩ L1, u also belongs to BL20, and its convolution with h ∈ BL20 ∩ L1 is the observed

image v ∈ BL20.

Standard results from Fourier analysis

The following two main results from standard Fourier analysis and distribution theory are stated

without proof. The reader is referred to [Stein and Weiss ; Hörmander ] for the proofs in

the particular setting chosen here.

Proposition  (convolution through Fourier transform). The relation

F(f ∗ g) = F(f) · F(g) (.)
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is valid in either of these cases

. g ∈ L1(R2) and f ∈ Lp(R2) for 1 ≤ p ≤ 2. Then f ∗ g belongs to Lp(R2) (see [Stein and

Weiss , Theorem .]).

. g ∈ E ′ and f ∈ S ′. Then f ∗ g belongs to S ′ (see [Hörmander , Theorem ..]).

Applying the Fourier transform on both sides of (.) and recalling that the squared Fourier

transform operator F2(u) = (2π)2[x 7→ u(−x)] is almost the identity (except for flipping and a

constant factor), we obtain the following:

Corollary  (product through Fourier transform). The relation

F(f · g) = 1

(2π)2
F(f) ∗ F(g)

F−1(f · g) = F−1(f) ∗ F−1(g)

(.)

holds when ĝ ∈ E ′ and f ∈ S ′. Then f · g belongs to S ′.
Proposition  (Poisson formula in R

2 for tempered distributions [Hörmander ]).

Π̂1 = (2π)2Π2π. (.)

Lemma . If û ∈ E ′, then

F(Π1 · u) = Π2π ∗ û. (.)

Proof. We can apply the first form of Corollary  where f = Π1 ∈ S ′ and ĝ = û ∈ E ′ to obtain

F(Π1 · u) = (2π)−2Π̂1 ∗ û = Π2π ∗ û

where the last equality is deduced from the Poisson formula (.).

The Shannon-Whittaker sampling theorem is then a direct consequence of the two previous results.

Proposition  (Nyquist-Shannon theorem). If u ∈ BL2(R2), then

u = I1S1u. (.)

Proof. We can apply Lemma . Multiplying both sides of Equation (.) by F(sinc) = ✶[B] we

obtain

F(sinc) · F[S1u] = F(sinc) · [Π2π ∗ û]
=
∑

k∈Z2

û(·+ 2πk)✶[B]

= û,

where in the right-hand side the only non-null term is for k = 0 because u is band-limited in

B = [−π, π]2 and F(sinc) = ✶[B]. Finally, using the second form of Corollary , we obtain

sinc ∗(S1u) = u,

and the left term is by definition I1S1u.

Corollary . If u ∈ L2 is s-band-limited, then

u = HsI1S1H 1

s
u. (.)





.B Proof of Auxiliary Results

Common hypotheses According to the discussion in Appendix .A, and in order to justify all

the lemmas and propositions we will require that

- h ∈ BL20 ∩ L1(R2), non-negative ĥ(0) = 1;

- u ∈ BL20.

This ensures that the convolution u ∗ h = v is well defined with u ∈ BL20. For the uniqueness of

the inter-image kernel we shall additionally assume that û does not vanish inside [− s
λ2
π, s

λ2
π]2.

We now prove several properties that are used throughout this chapter.

Lemma . If u ∈ BL20, then S1u ∈ ℓ2(Z2).

Proof. As u is in BL20 there exists s > 0 such that û ⊂ [−sπ, sπ]2. Furthermore, since û ∈ E ′
applying (.) we have F(S1u) = (2π)2Π2π ∗ û. Since u belongs to L2, then û is again in L2.

Thus, Π2π ∗ û is the 2π-periodic version of a L2 function in [−sπ, sπ]2. Consequently the inverse

Fourier transform of Π2π ∗ û is a Dirac comb whose coefficients are the Fourier series coefficients

of û. Thus the coefficients of S1u form an ℓ2 sequence.

Proposition . Let h ∈ L1(R2) and u, v ∈ L1 ∪ L2(R2). The following equalities hold:

W1(h ∗ v) = W1h ∗ v = h ∗W1v, (.)

W1Hλv = HλW 1

λ
v, (.)

Hα(u ∗ v) = Hαu ∗Hαv. (.)

Proof. This is the proof of (.). In the Fourier domain,

F(W1(h ∗ v)) def
= F(h ∗ v) · 1[−π,π]2

(.)
= F(h) · F(v) · 1[−π,π]2 .

Thus,

F(h) · F(v) · 1[−π,π]2 = F(h) · 1[−π,π]2 · F(v) · 1[−π,π]2 ,

and all results are deduced from this last statement.

Proof. This is the proof of (.). Since

F(Hλv) = λ2F(v(λ·)) = λ2 1

λ2
v̂(

.

λ
) = λ2H 1

λ
v̂,

we have

F(W1Hλv)
(.)
= F(Hλv) · 1[−π,π]2 = λ2H 1

λ
v̂ · 1[−π,π]2 .

On the other hand,

F(HλW 1

λ
u) = λ2H 1

λ
F(W 1

λ
v)

(.)
= λ2H 1

λ
(û · 1[−π

λ
,π
λ
])

= λ2(H 1

λ
v̂) · 1[−π,π]2 .
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Proof. This is the proof of (.). The proof is a mere change of variables:

Hα(u ∗ v)(x) = α2

∫

u(s)v(αx− s)ds

= α4

∫

u(αs)v(αx− αs)ds

= (Hαu ∗Hαv)(x).

Lemma . Let u, v ∈ BL20(R2). If either u or v is band-limited, then

S1(u ∗ v) = S1ū ∗ S1v̄, (.)

where we have called ū = W1u and v̄ = W1v .

Proof. We will prove this statement in the tempered distribution sense. We will consider S1u =
Π1 · u =

∑

k δk · u as a Dirac comb. The application of S1 to ū, v̄ and u ∗ v is well defined as all

functions are in BL2(R2) and by consequence they are in C∞. Recall that if u ∈ D′ and f is C∞

then f · u ∈ D′ thus in this framework we need a function to be in C∞ to be sampled.

From Lemma  we know that the sequence of coefficients from S1ū and S1v̄ are in ℓ2(Z2).
Thus (S1ū) ∗ (S1v̄) is a bounded sequence and therefore every term is well defined.

Finally F(S1(u ∗ v)) = Π2π ∗ (û.v̂) = (Π2π ∗ û) · (Π2π ∗ v̂) is true because all considered

functions happen to be 2π-periodizations of compactly supported functions in (−π, π)2, namely

û, v̂, and their product.

Lemma  (stability of the inter image kernel estimation). Let A be an injective bounded linear

operator (iblo) defined on a Banach space X and ∆A a perturbation of A such that A + ∆A is

also iblo and ‖A‖‖∆A‖ < 1. Let b ∈ X and ∆b be a perturbation of b. Then, the solution of

x = A+b and x∗ = (A+∆A)+(b+ δb) satisfy:

‖x∗ − x‖
‖x‖ ≤ cond(A)

1− ‖A+∆A‖

(‖δb‖
‖b‖ +

‖∆A‖
‖A‖

)

, (.)

where cond(A) = ‖A‖‖A+‖.

Proof. First note that asA is full rank the pseudo-inverse is the left inverse ofA, namelyA+A = I.

Since ‖A‖‖∆A‖ < 1 we have that (A+∆A)+ = (I+A+∆A)−1A+ and we also have

‖(I+A+∆A)−1‖ =
∥
∥
∥

∑

(A+∆A)k
∥
∥
∥ ≤

∑

‖(A+∆A)‖k =
1

1− ‖A+∆A‖ .

Hence,

x∗ − x = (A+∆A)+(b+ δb)−A+b

= (I+A+∆A)−1A+(b+ δb)−A+b;

therefore

(I+A+∆A)(x∗ − x) = A+(b+ δb)−A+b−A+∆AA+b

= A+(δb−∆Ax);
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and then

‖x∗ − x‖
‖x‖ ≤ ‖A+‖

1− ‖A+∆A‖
‖δb‖+ ‖∆Ax‖

‖x‖

=
cond(A)

1− ‖A+∆A‖
‖δb‖+ ‖∆Ax‖
‖A‖‖x‖

≤ cond(A)

1− ‖A+∆A‖

( ‖δb‖
‖Ax‖ +

‖∆A‖‖x‖
‖A‖‖x‖

)

≤ cond(A)

1− ‖A+∆A‖

(‖δb‖
‖b‖ +

‖∆A‖
‖A‖

)

.









Part II

Accelerating realistic image synthesis
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4 Boosting Monte Carlo Renderers

This chapter describes a new multi-scale filter for accelerating Monte Carlo renderers.

Each pixel in the image is characterized by the colors of the rays that reach its surface.

The proposed filter uses a statistical distance to compare the ray color distribution

associated with each pixel at each scale. Based on this distance, it decides whether two

pixels can share their rays. This simple and easily reproducible algorithm provides

a psnr gain of  to  decibels, or equivalently accelerates the rendering process

by using  to  times fewer samples without observable bias. The algorithm is

consistent, does not assume a particular noise model, and is immediately extendable

to synthetic movies. Being based on the ray color values only, it can be combined

with all rendering effects.

. Introduction

In computer graphics, producing high quality realistic images in a reasonable amount of time is still

a major challenge. The goal of a global illumination algorithm is to estimate the light distribution

in a scene. The color of each pixel in the image results from the superposition of light rays trans-

ported by an infinite number of paths that lead to it, either directly from light sources, or indirectly

after bouncing in the scene. The light distribution in a scene can be obtained as a solution of the

rendering equation, an integral equation that models the radiance equilibrium as a light transport

in a scene [Kajiya ]. Solving this equation for real scenes is an intractable problem. Approxi-

mate solutions are usually obtained by Monte Carlo numerical integration techniques where image

pixels are formed by averaging the contribution of stochastic rays cast from the camera through the

scene. The main limitation of Monte Carlo rendering is that the variance of the estimator decreases

linearly with the number of stochastic samples. Thus the root mean squared error of the estimated

image decreases as the square root of the number of primary rays cast from the camera (which we

call samples from now on). While variance reduction techniques such as importance sampling,

Russian roulette, or Markov Chain Monte Carlo methods can be used to accelerate convergence,

still several hours or even days may be necessary to produce noiseless photorealistic images.

To reduce the time required by Monte Carlo rendering to produce good quality images, two

main strategies have been proposed, that may be called adaptive rendering and rendering post-

processing. In the first strategy, the idea is to act during the rendering process by locally adapting

the number of rays cast per pixel, depending on the complexity of certain zones. Post-processing is

applied once rendering has been completed, and mainly consists of filtering or interpolating either

samples or pixels. Both strategies can be combined.

It is worth noting that the target quality of the images may vary depending on the application.





The quality required for pre-visualization, where important time constraints have to be met, is

clearly not as high as for applications where photo-realistically rendered scenes are an objective by

themselves. In pre-visualization scenarios, computational time reduction is obtained by using the

renderer to produce only a very small number of samples (say,  to  samples per pixel). In order

to produce images of high enough quality from such a sparse and noisy data, it is necessary to

filter or re-synthesize samples using as much information as possible. Indeed, for each sample the

rendering system keeps track of relevant information associated to the ray path: geometric, color

and texture features, object and material properties, Monte Carlo random parameters, etc. Using

these fat samples, state of the art methods such as the ones proposed by Sen and Darabi [] or by

Lehtinen et al. [] produce spectacular results. However, the quality of the results obtained by

this approach remains scene dependent, being potentially affected by the strong under-sampling

of high dimensional data. The larger the number of effects that are simultaneously present, the

higher the risks of this under-sampling. Proper up-sampling or interpolation of the sample space

is therefore only possible under strong regularity conditions on the fat samples distribution. This

explains why the best performances are observed for highly diffusive scenes (where impressive

results are obtained from only one sample per pixel). As pointed out by Lehtinen et al. [],

poor performance is instead expected when the scene contains high frequency illumination effects,

incompatible with a low sampling rate.

In short, the generation of high quality images, specially when simulating complex effects such

as anti-aliasing, indirect illumination, depth-of-field, motion, requires a large number of rendered

paths to correctly sample the path space. The required number of fat samples is certainly too large,

not only because of the computational time that would be required to process them but, most

fundamentally, because its memory storage would exceed any reasonable capacity limit (more than

100 bytes per fat sample [Sen and Darabi ; Lehtinen et al. ]). The natural alternative is to

give up using fat samples, and to store only part of their information. In the limit, the information

can be reduced to color samples, that is the final color transported by each ray when hitting the

screen. In this case, we say that the method works on the screen space, as opposed to the previous

methods which work in the space of paths. Working on the screen space allows one to avoid

memory saturation, while keeping a number of samples which may be large enough to capture the

sample space variability. The works by Rousselle et al. [], Dammertz et al. [] and Overbeck

et al. [] are among the most representative ones of this kind of approach.

In the present work we propose and study a new, intermediate, filtering approach that works

on the screen space but keeps and uses the color samples at each pixel. Thus, it can be coupled with

any Monte Carlo renderer keeping a record of the samples color. The cornerstone of the proposed

method is to measure the similarity between any two pixels as the statistical distance between the

histograms of rays color that hit them. If the comparison is positive, the ray color histograms of

the similar pixels can be fused. The final color of a pixel is then obtained as the average of a all rays

color of all similar pixels. This fusion is made still more reliable by comparing patches instead of

pixels, and by allowing long range interaction by a multiscale procedure. The ray color histogram

characterizes better the physical and geometric properties of a pixel than just its color or the color

of its neighbors. The proposed approach is related to bilateral filters, which were first applied to

denoise Monte Carlo rendered scenes by Xu and Pattanaik []. The idea of comparing patches

instead of individual pixels goes back to Buades et al.’s Non-Local Means . Our approach still

presents a fundamental difference with Non-Local Means or any classic variation of bilateral filters

proposed in image processing or computer graphics: instead of defining similarity by computing

distances between pixels color, we compute distances between color distributions and fuse them

when the distance is small enough. For this reason, we will call this method ray histogram fusion
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rhf. Distances based on distributions are of course much more informative than comparing just

their averages, as bilateral filters do.

rhf is simple, easy to implement, and therefore fully reproducible. It is independent of the

sample generation process. It can be easily coupled with any renderer and even with any other

acceleration method. Most importantly, the method does not make any particular assumption on

the scene. As will be demonstrated by our experiments, it therefore copes with a wide range of

scenes and multiple simultaneous effects. Finally, its time and memory complexities grow linearly

with the image size and are independent of the number of input samples.

The limitations of rhf are also clear. Its performance depends on the degree of self similarity

of the scene, which fortunately is usually high [Lebrun et al. ], and the price to pay for its

generality is the requirement of a relatively large number of input samples.

The plan of the chapter is as follows. In Section . we review relevant previous work. Section

. defines a pixel similarity measure based on the corresponding cast rays color, and discusses its

statistical interpretation. Section . describes the rhf algorithm, and shows how it successfully

makes use of the whole ray color histogram information. Section . reports quantitative and

qualitative results on the algorithm performance. We close with Section ., discussing limitations

of our approach and outlining future work and conclude in Section ..

. Previous Work

A thorough analysis of Monte Carlo rendering is far beyond the scope of the present work. The

interested reader may consult the introductory book by Dutré et al. [] and the one by Pharr

and Humphreys []. However, for what follows it is enough to note that there are mainly two

approaches to reduce the time required by Monte Carlo rendering to obtain good quality images.

One of these approaches is adaptive sampling. This class of algorithms locally adapt the num-

ber of rays cast per pixel. The idea is to increase the number of samples in complex parts of the

scene while maintaining a reduced number in simple parts, such as flat regions. Complex textures

or defocused zones are typical elements that require large amounts of rays to be properly rendered.

Hachisuka et al. [] (mdas) proposed to adaptively distribute a set of samples in the full, mul-

tidimensional sampling domain where the rendering equation is computed. However, as more

Monte Carlo effects are considered (e.g. depth of field, motion blur, area lighting, etc.) the dimen-

sion of this space will be larger and thus will suffer from the curse of dimensionality. One of the

most significant adaptive sampling algorithms is certainly the Adaptive Wavelet Rendering (awr)

by Overbeck et al. []. This method adaptively distributes Monte Carlo samples in the screen

space to reduce the variance of a wavelet basis scale coefficients. Then, the image is reconstructed

from these non-uniformly distributed samples by using a suitable wavelet approximation.

Soler et al. [] proposed to analyze the depth of field effect in the Fourier domain. By

properly predicting the local bandwidth their algorithm adaptively samples the multidimensional

domain. In a similar fashion, Egan et al. ; b; a addressed motion blur, soft shadows and

directional occlusions respectively, by adaptively sampling the multidimensional domain followed

by a sheared reconstruction. This allowed reusing samples between pixels in specific effects.

The reconstruction scheme proposed by Rousselle et al. [] attempts to minimize the mean

squared error. The idea is that given the current distribution of samples in the screen space, the

algorithm chooses the best reconstruction filter (among a set of predefined filters - e.g. Gaussian

filters) at each pixel to minimize some error criterion. Next, given the current filter selection, new

samples are distributed to minimize the error. Thus, this algorithm is both an adaptive sampling
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and reconstruction filtering. This state of the art algorithm will be used in the experimental section

for comparison.

The other approach is denoising or adaptive filtering. In this family of algorithms, the existing

set of samples are combined to produce a better estimator of the pixel color using sample informa-

tion in a pixel. Adaptive filtering may take place at sample level (i.e., primarily filtering samples)

or at pixel level (i.e., primarily filtering pixel values). The majority of these methods can actually

be written as generalizations of the bilateral filter [Paris et al. ] applying a weighted average of

the samples (resp. of the pixels) in a neighborhood. The complexity of the method depends on

whether it is applied at a pixel or sample level and how deep the method digs into the rendering

information (e.g., information about each sample history: color, normal, object of the last impact;

information about the random parameters used to calculate the sample) in order to compute the

weights of the samples. In order to show how the conception of the proposed filter appears as the

natural evolution of the previous work, we briefly present significant contributions, from a histor-

ical perspective. We will see that the general trend in this evolution is to rely more strongly in the

auxiliary information available from the rendering system.

The simplest adaptive filters act at pixel level, like any filter used in classical image processing. Lee

and Redner [] presented a seminal work defining an alpha trimmed filter (a generalization of

the median/mean). Jensen and Christensen [] proposed to apply Gaussian or median filters

with 3 × 3 pixels support to light having been reflected diffusely at least twice. The trilateral filter

of Choudhury and Tumblin [] involves an adaptive neighborhood function and the image

gradient. Again a classic image bilateral filter was proposed by Xu and Pattanaik []. Notice

that unlike the work by Lee and Redner [], classical bilateral filters cannot remove outliers. To

overcome this limitation, the weights of the bilateral filter by Xu and Pattanaik are computed based

on a denoised version of the original image.

More complex filters make use of sample information available from the renderer in order to filter

still at a pixel level. Rushmeier and Ward [] proposed to spread out noisy pixels (e.g. pix-

els whose variance is larger than a threshold after a fixed number of iterations) into a region of

influence. A noisy pixel will contribute to several denoised output pixels, and since the filter is

normalized no energy will be leaked. McCool [] proposed another classical filter that uses

pixels geometric information. It is an anisotropic diffusion (of the Perona-Malik type) removing

noise from Monte Carlo rendering. The conductance function that models the strength of the dif-

fusion scheme in a pixel is estimated from a coherence map using depth and normal information

gathered during rendering (contained in the G-buffer) along with a color coherence map. More

recently Dammertz et al. [] presented a fast wavelet filtering scheme designed for ray traced

Monte Carlo global illumination images. For that purpose the filter uses rt-buffer information

about direct or indirect illumination, and the buffer information on normals and position. The

bilateral filter is also invoked by Xu et al. [] to denoise images created with complex light paths

in smoke or fog. In this work, additional bilateral weights based on the path gradient direction are

used to better guide the denoising scheme.

The last class of filters uses the additional sample information to adaptively filter the sample values.

Shirley et al. [] addressed the question of noise in defocused or motion blurred regions. The

image filter is adapted to the a priori knowledge of the kind of blur in a given image region. This is

a very natural and successful ad hoc strategy for these regions. Probably the most impressive results

are those recently reported by Sen and Darabi []. This method uses the whole information of

the rendering process and the whole information on each numerical photon to denoise by bilateral

filtering. The bilateral filter takes simultaneously into account in its weights the sample position

and spatial neighborhood in the image, the random synthesis parameters, the scene features (nor-
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mal, world space position, texture values) and finally the sample color. It computes as a mutual

information the statistical dependence on the random generation parameters of the pixels sharing

the same features and colors. Although the results are outstanding at very low samples per pixel,

the complexity of the method makes it not scalable to generate high quality images from a large

number of input samples.

Lehtinen et al. [] described a reconstruction technique that allows rendering a combina-

tion of motion blur, depth of field and soft shadows by exploiting the anisotropy in the temporal

light field. The effective sampling rate is increased by a large factor by efficiently reusing samples

between pixels. Recently Lehtinen et al. [] generalized these ideas to deal with indirect illumi-

nation. By contemplating the properties of diffuse surfaces, their algorithm permits to interpolate

the light field to produce results similar to those that would have been obtained by rendering a

much larger number of samples. For instance, from an input image of  samples per pixel, they

synthesize images of  samples per pixel, whose quality is similar to  samples per pixel gen-

erated by standard path tracing. While the quality increase is impressive, the noise level in these

images is still too strong for applications requiring high quality images. Our algorithm is somehow

complementary to this approach. Indeed, it can be used to boost the performance of a pure Monte

Carlo renderer or any other set of samples like the ones generated by Lehtinen et al. [], and can

perfectly deal with a number of samples in this order of magnitude.

The above bibliographical analysis has shown that most Monte Carlo denoising methods are

generalizations of the bilateral filter (or sigma-filter [Lee ]). The general principle behind the

bilateral filter is that similar pixels must be denoised jointly, being different samples of the same

model. This is also implicitly used by the sigma-filter and by the nl-means algorithm [Buades

et al. ]. In computer graphics, ray information permits to identify still more rigorously than in

classic image processing the pixels sharing the same model. Indeed, all ray samples hitting a given

pixel and its neighbors can be used for that purpose.

. Proposed Approach

.. Rationale

In contrast to classical photography where only the energy arriving at the sensor plane can be

measured, in a rendering scenario much more information about pixel formation is available. In

particular, the light contribution and the screen position of each path can be stored, as well as the

associated geometrical and scene information about the objects encountered along the ray path.

As pointed out by Veach [], the light transport problem can be stated in the space of paths,

and global illumination can be estimated by computing a transport measure over each individual

path. Under this path integral formulation, each pixel color u(x) = (uR(x), uG(x), uB(x)) is

given by the integral over all possible light paths

u(x) =

∫

Ωx

f(p)dµ(p),

where Ωx is the space of paths originated at pixel x, p is a path of any length, and dµ(p) is a

measure in the path-space. The function f(p) describes the energy contribution through a path p

and is the product of several scene factors due to the interaction of light within the path plus initial

self-emitted radiance and importance distributions. Thanks to this formulation, the image color at

pixel x can be estimated from nx random paths p1x, . . . , p
nx

x , generated by an appropriate Monte
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Carlo sampling procedure. If cjx denotes the color transported by random path pjx (for instance, in

path tracing cjx = f(pjx)), the Monte Carlo approximation of u(x) is computed as

ũ(x) =
1

nx

nx∑

j=1

cjx. (.)

Consider now the Monte Carlo approximation error n(x), given by

n(x) = ũ(x)− u(x). (.)

The Monte Carlo approximation is asymptotically unbiased, but the mean squared error E[n2(x)]
decays linearly with the number of samples nx. Consequently, unless the rendering system spends

several hours or even days producing samples, the resulting images will be contaminated by white

noise. This is a consequence of the fact that the Monte Carlo samples are independent and therefore

the random process {n(x),x image pixels} is white.

One possibility to reduce the approximation error while keeping the rendering time reasonable

is to render fewer samples, and to filter the pixel values afterwards. Filtering will always result in

a significant variance reduction, however, it may also severely increase the approximation bias.

The only filtering processes that do not introduce bias are those that combine pixels of the same

“nature”, that is pixels x having the same ideal value u(x). While identifying two similar pixels x

and y based on the unknown pixel values u(x) and u(y) is of course impossible, it is reasonable to

expect that their samples color {c1x, . . . , cnx

x } and {c1y, . . . , c
ny

y } will follow similar distributions.

Moreover, if N pixels share the same sample color distribution, the union of the samples can be

seen as an N times larger super-set following the underlying distribution. By simply averaging

them the variance reduction is increased by a factor of N .

The cornerstone of the proposed approach is to find the most similar pixels to each given pixel

by comparing their underlying sample color distributions. This is the object of the next section.

.. Distribution-driven pixel similarity

Consider the empirical distribution of the samples color at a given pixel. Figure . depicts this

distribution for five different pixels on two different scenes, for samples generated by a Monte

Carlo path-tracing algorithm. In the first example (top row) the three pixels were selected because

their colors are extremely close. A quick visual inspection shows immediately that the samples

of the two edge pixels follow roughly the same color distribution, and that this distribution is

considerably different from the one of the third pixel. This example illustrates to what extent the

information provided by the sample color distribution can help discriminate pixels of different

nature, even when their pixels color are similar.

In the following, we denote by Cx = {c1x, . . . , cnx

x } the set of the color of samples cast from

pixel x, and by h(x) the corresponding empirical color distribution. To measure pixel similarity we

propose to use the binned empirical distributions as pixel descriptors. Since in general we deal with

tri-stimulus color images, we can choose to build this descriptor either as a single histogram in the

three-dimensional color space, or as three one-dimensional histograms (one per color channel).

Given the samples color Cx and Cy at pixels x and y, and their corresponding nb-binned distri-

butions h(x) = (h1(x), . . . , hnb
(x)) and h(y) = (h1(y), . . . , hnb

(y)), the Chi-Square distance

is given by

dχ2(Cx, Cy) =
nb∑

k=1

(√
ny

nx
hk(x)−

√
nx

ny
hk(y)

)2

hk(x) + hk(y)
, (.)
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Figure 4.1: The top row singles out three pixels in Cornell Box scene and their sample color distributions.

(The samples with color values falling out of the [0, 1]3−box are by convention colored in red.) The

first pixel, situated on the brown wall, has a unimodal sample color distribution. The other two pixels

belong to an occlusion boundary showing a bimodal green­brown distribution. This feature is shared

by many pixels on the same boundary, which can therefore share their samples. The bottom row shows

two pixels of the toasters scene with different colors. Their sample color distributions are nevertheless

very similar and will therefore be merged as well.

where nx =
∑

k hk(x) and ny =
∑

k hk(y) are the total number of samples in each set.

In order to take into account spatial coherence, the previous pixel-wise distance can be ex-

tended to patches of half-size w centered at x and y as follows,

dχ2(Px, Py) =
∑

|t|≤w

dχ2(Cx+t, Cy+t). (.)

Since the order in which the samples are calculated is irrelevant, the sample color distribution

appears as a natural and complete descriptor of the compared sets. There are different ways of mea-

suring the similarity between two distributions depending on the data type. In the case of contin-

uous data, the Cramer-von Mises [Anderson ; Anderson and Darling ], the Kolmogorov-

Smirnov [Stephens ; Press et al. ] or the Kantorovich-Mallows-Monge-Wasserstein dis-

tances (also known as the Earth Mover’s Distance [Rubner et al. ]) are all accepted ways to

compare distributions. These three similarity measures are computed as Lp distances between the

two cumulative distributions (L∞, L2 and L1 respectively). For categorical data, the most popular

measure to compare distributions is the χ2 distance previously defined in (.).

By discretizing the data in a fixed number of histogram bins, the computational complexity

of measuring the similarity between two data sets can be kept bounded and independent of the
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number of samples. This is important since this similarity measure is evaluated a large number

of times. Thus, the color space will be divided into fixed bins, and the χ2 distance fits well to this

form for the data. However, if an image is rendered with very few samples, one of the other two

metrics would be preferable.

Since we are only interested in similar distributions, we set a threshold κ on the Chi-Square

distance divided by the number of non-empty bins k,

κ = dmin/k.

The normalization by the number of non-empty bins is necessary since only the bins carrying

information should be considered in the comparison.

Remark: comparing pixel values versus comparing distributions State of the art image

denoising algorithms measure pixel similarity by comparing pixel colors. Indeed, the bilateral filter

and NL- Means replace each noisy pixel by a weighted average of the most similar ones. In the case

of nl-means, the pixel comparison is performed with patches centered around each pixel. For a

very recent review on patch based denoising methods, we refer to [Lebrun et al. ] and for a fast

implementation to [Adams et al. ].

Nevertheless, image denoising algorithms must know or measure the noise variance to evaluate

properly the similarity of noisy samples. Fortunately, Monte Carlo rendering is an almost ideal

situation where mean and variance values of the rays cast from each pixel can be estimated.

The main disadvantage of this formulation is that it cannot distinguish noise from intrinsic

pixel variability. As a first example, suppose that a pixel is situated on an edge. In that case the

sample color distribution will be at least bi-modal. Thus, it will probably have a large variance.

This variance will result in a large tolerance to differences in the means, and consequently different

pixel types may be wrongly mixed up. A case of this type is shown in Figure . (top row).

On the other hand, by directly comparing distributions, pixels lit from several sources can be

better clustered. In the case of the histogram comparison, we will need no implicit nor explicit

noise model assumption.

The bottom row of Figure . shows two pixels with very different pixel values. This is the

consequence of the presence of a single very bright ray sample in one of the distributions. By

comparing the ray color distributions, it is nevertheless possible to conclude that both pixels are

from the same “nature”, while this conclusion could not be reached by comparing the averages.
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.. Distribution-driven average

For each pixel x, we define Nǫ(x) as the set of pixels y whose centered patches Py are such that

dχ2(Px, Py) ≤ ǫ. Then, if ǫ is such that these pixels are of the same nature as x, the maximum

likelihood estimator of the noiseless pixel color is simply their arithmetic mean

ū(x) =
1

|N ǫ(x)|
∑

y∈Nǫ(x)

ũ(y).

Unlike the previous estimator, where only the center of the patch is averaged, we can proceed

to denoise the whole patch, and to denoise the image patchwise. Let us denote by Vx the color

values of a denoised patch centered at pixel x. Similarly, this denoised patch can be computed by

averaging the patches which are at a Chi-square distance smaller than ǫ:

Vx =
1

|N ǫ(x)|
∑

y∈Nǫ(x)

ũ(Py),

where we use the convention that ũ(Py) is the evaluation of u on each pixel in patch Py.

In this way, by applying this aggregation procedure for all patches in the image, we shall dispose

of (2w+1)2 possible estimates for each pixel. These estimates can be finally averaged at each pixel

location in order to build the final denoised image.

ũ(x) =
1

(2w + 1)2

∑

|y−x|≤w

Vy(y − x).

This patchwise implementation is the one considered in this work.

.. Removing low-frequency noise

As already mentioned, in a pure Monte Carlo scenario the approximation error is characterized

by a white random noise. This means that all frequencies are equally contaminated by noise. The

proposed filtering procedure described so far filters noise at patch scale. Long wavelength noise

cannot be eliminated by this procedure, because long wavelength structures cannot be captured

by small patches. Removing noise at lower frequencies requires a (straightforward) multi-scale

extension of the method. Let us define two useful operators, the s× Gaussian downsampling

Dsu(x) := (G2sσ ∗ u)(2sx) and Us the s× bicubic interpolator.

Now, for each scale s, the corresponding histograms hs(x) have to be computed. Since each

pixel at scale s results from the fusion of a set of neighboring pixels in the original finer scale, the

new histograms are obtained by fusing the color histograms of all pixels in the same neighbor-

hood. To obtain hs(x), the same down-sampling operator Ds can be applied to the original color

distribution h(x). Then, at each scale, the resulting histograms are re-normalized so that the sum

of their areas is preserved across scales (thus preserving the original total number of samples in the

finer scale).

Given a noisy image input ũ and its respective pixel color distribution h(x) the multi-scale

histogram fusion proceeds as follows:

. Generate the Gaussian multi-scale sequence: ũ0 = ũ, ũs = Dsũ, s = 1, . . . , N , and their

respective sample color distributions.

. Apply the denoising algorithm separately to each scale to recover ū0, ū1, . . . , ūN .
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. Compute the final image ū = û0 by the recursion

ûi = ūi − U1D1ūi + U1ûi+1

initialized with ûN = ūN for i = N .

Figure . shows the importance of dealing with noise at multiple scales. When filtering

only at a single fine scale, conspicuous low frequency noise remains. This noise is almost

completely eliminated by the multi-scale procedure with three scales.

noisy input

single-scale denoised

three-scale denoised

150 200 250 300
−0.1

−0.05

0

0.05

0.1

 

 

noisy input
three−scales
single−scale

Figure 4.2: The multi­scale approach eliminates low­frequency noise, as can be seen in the second and

third row, and in the profile for a particular line shown in the bottom row.
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. Implementation Details

As previously stated, our approach builds on two basic blocks: the estimation of the sample color

distribution at each pixel, and a non-local multi-scale filtering based on averaging pixels sharing

similar sample color distributions. This requires two kinds of data from the rendering system: the

noisy Monte Carlo image ũ(x) and the associated sample color histograms h(x).

A fundamental aspect of our method is that sample color histograms can be computed on the

fly, in parallel with the Monte Carlo rendering process. This is extremely important, since it makes

the memory requirements independent from the number of rendered samples. The memory com-

plexity bounds are fixed by the number of pixels, and therefore, as pointed out in the introduction,

the input Monte Carlo images may consist of a large enough number of samples to produce high

quality images.

This section gives the implementation details to estimate the sample color distribution and to

perform the non-local multi-scale filtering.

.. Computing the color distribution of samples

To approximate a distribution using a histogram, one has to divide the range of possible values

into discrete bins and count the number of samples within each bin. Smoother estimates can be

obtained using kernel density estimation, by interpolating the contribution of each sample using

a kernel. In this work, we used a triangular kernel to linearly interpolate the contribution of each

sample color value to its adjacent bins.

We recall that pixel values are obtained by averaging sample color values. Hence, despite the

saturation value for pixels (perfect white) is one, the range spanned by the sample values is much

larger. In order to take into account the fact that high-energy (bright) samples are less frequent

than low-energy ones, the bins are designed so that their sizes increase with the sample value,

following an exponential law of exponent 2.2. The range covered by the histograms is set to [0, 7.5],
and all samples exceeding this range are counted assigned to the last bin. It is worth mentioning

that although histogram comparison is not particularly sensitive to these parameters, they must be

chosen to cover the dynamic range adequately.

In general, sample values have a tri-stimulus color representation. Therefore we can either

compute one three-dimensional distribution (3d) where bins are boxes in the full 3d color space,

or compute three one dimensional distributions, one for each color. Although distributions in the

3d color space can capture inter-color correlations, a much larger number of bins are required to

keep the same quantization step, and consequently a larger number of samples. In Section . we

present a comparison of both strategies. This comparison shows that there is no advantage in using

the full 3d color space.

The estimation of the color distribution can be done on the fly while samples are being com-

puted. This keeps the memory bounded and independent of the number of samples per pixel

produced by the rendering system.

.. Filtering

The implementation of the rhf filter is straightforward. In addition to the parameters needed to

compute the histogram, four parameters are involved in the algorithm: the number of scales ns,

half the patch size w, half the search block size b, and the χ2 distance threshold.
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The search of similar patches is restricted to a block of size (2b+1)×(2b+1). This is reasonable

since the probability that two patches are similar will be smaller if one is distant from the other.

The threshold is directly set on the Chi-square distance as a product of κ (the user parameter) by

the number of bins k where both histograms are non-empty. A pseudo-code of both the filtering

at each scale and the multi-scale generalization are presented in Algorithms  and , respectively.

In algorithm , the denoised version of patch Pi is obtained by averaging all patches Qj such that

d2χ(Pi, Qj) < k · κ.

Note that the only user parameter is κ. This parameter controls the amount of noise that is

removed, or in other words the trade-off between image smoothness and noise. Its optimal choice

depends mostly on the samples generation process (the considered renderer). The dependence on

the rendered scene is actually very weak, as will be demonstrated by experiments in Section .. A

simple intuitive explanation for the dependence of the optimal κ on the rendering method comes

from the observation that the value of κ is related to the confidence associated to the color samples.

If the samples values are computed with low confidence, the distance threshold should be less

restrictive. For instance, in pure Monte Carlo path tracing, each sample carries the energy of a

single light path, while in volumetric ray tracing each sample value is computed as the average of

several light paths. Therefore, the samples generated with pure path tracing have lower confidence,

and this explains why the threshold should be less restrictive.

The practical implications of this fact is that, once a rendering method has been chosen, the

value of κ can be safely fixed once for all. Moreover this tuning is not time consuming: indeed,

since the distance between patches (the heaviest computational task) is independent of the param-

eter, its computation can be first performed and then several values of the parameter can be tested

with practically no additional cost.

The multi-scale implementation in Algorithm , as detailed in Section .., sequentially de-

composes the input noisy image at each scale, filters each scale using Algorithm  and reconstructs

the multi-scaled filtered image.

.. Time complexity

The complexity of the filtering at each scale is O(Nwbnb) where N is the number of pixels. Note

that the computational cost is independent of the number of samples.

In the case that two scales are used the computational cost increases by about %, the low-

frequency noise filtering being done on a four times smaller image. If ns scales are used the com-

putational cost is bounded from above by % of the filtering time at the finest resolution.

. Experimental Set-up and Results

Different types of scenes containing complex geometries, indirect illumination, depth-of-field and

other effects were rendered using the software pbrt-v2 [Pharr and Humphreys ]. The color

distribution estimation stage was implemented on top of pbrt, so the color histograms were pro-

duced online as the samples were computed. The filtering-reconstruction stage was implemented

in a stand-alone application which makes use of a multichannel image that to each pixel associates

its corresponding sample color histogram, and the noisy Monte Carlo image generated with a box

filter.

We compared the proposed algorithm to three different methods, both regarding image quality

and execution time. The first one is a pure Monte Carlo rendering (mc): this is the basic approach
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Algorithm : Single-Scale Ray Histogram Fusion

Input: mc image ũ, corresponding histograms h, patch size w, search block size b , distance

threshold κ
Output: Filtered image ū

: ū← 0
: n← 0 //auxiliary counter at each pixel in the image

: for every pixel i do

: Pi ← patch centered at pixel i
: Wi ← search block for pixel i
: c← 0 and V ← 0
: for every j ∈Wi do

: Qj ← patch centered at pixel j
: d← ChiSquareDistance(h(Pi), h(Qj))

: k ← Number of non-empty bins in h(Pi) + h(Qj)
: if d < κ · k then

: V ← V + ũ(Qj)
: c← c+ 1
: end if

: end for

: V ← V/c
: n(Pi)← n(Pi) + 1 // +1 for each pixel in Pi

: ū(Pi)← ū(Pi) +
(
V − ū(Pi)

)
./n(Pi)

: end for

Notation convention: ũ(Pi) is the evaluation of ũ on each pixel in patch Pi (the same applies for

ū, n, h). The operator ./ (line ) represents element-wise division.

Algorithm : Ray Histogram Fusion

Input: mc image ũ, corresponding histograms h, patch size w, search block size b , distance

threshold κ, number of scales ns.

Output: Filtered image ū = ū0
: s← ns − 1
: nT ←

∑

x,k hk(x) // total number of samples

: while s ≥ 0 do

: us ← Ds(ũ)
: hs ← Ds(h), ns

T ←
∑

x,k h
s
k(x), hs ← nT

ns
T
hs

: ūs ← rhf (us, hs, w, b, κ)

: if s < ns − 1 then

: ūs ← ūs − U1D1ūs + U1ūold

: end if

: ūold ← ūs
: s← s− 1
: end while
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to generate photorealistic images. This technique is asymptotically unbiased but the variance shows

slow (linear) decay with the number of samples.

The second algorithm chosen for comparison is an adaptation of the classic nl-means [Buades

et al. ]. In image processing, nl-means performs denoising by averaging similar patches. In

the rendering scenario, this method is obviously valid and can be improved by considering the

noise level at each pixel, estimated from the variance of the samples that are cast from it. The main

difference is in the way similar patches are identified. The performance comparison with nl-means

will show that the knowledge of the sample color distribution adds a very significant amount of

information, not yet contained in the patch colors.

Finally, we also consider comparison with the Adaptive Sampling and Reconstruction tech-

nique asr by Rousselle et al. []. As already discussed in Section ., this Monte Carlo based

method can estimate the reconstruction error and control the number of samples cast from each

pixel to reduce it. This methods is similar to ours in the sense that it does not rely on fat samples,

and uses only the final color of each rendered sample. As such, the method scales well with the

number of samples and can be used to produce high quality renderings of complex scenes. asr is

a state of the art algorithm in this class of methods. Comparison is made using the code provided

by the authors, and manually setting the parameters to produce the highest possible image quality,

while matching the execution time of our algorithm (including both the samples rendering time

and the filtering stage).

The success criterion is to get an image that is very close to the ground truth in a much shorter

time. Image quality is assessed by comparing results to reference images, generated by pure Monte

Carlo rendering with a very large number of samples per pixel. The performance measure is the

standard peak-signal-to-noise ratio (psnr) calculated as psnr = 10 log 1
MSE where mse is the mean

square error to the reference image. The psnr is a reliable criterion to characterize the quality of the

reconstruction. It will nonetheless be complemented by some close-ups of difficult image details.

All experiments were performed on a × Intel Xeon cpu X @ .GHz ( cores) with GB of

RAM.

All the algorithms were run on several scenes from the pbrt software, simulating various effects

with varying complexity levels.

In all cases three independent histograms were calculated, one for each channel (R, G, B) with

nbins=. The search for similar patches was limited to a 13×13 window centered on the filtered

pixel. The κ threshold (the user parameter) was manually set to produce a good balance between

smoothness and remaining noise. As previously explained, the optimal value for this trade-off

depends mostly on the rendering method. The values of κ that were chosen in the experiments

are shown in Table .. Note that for all the renderings performed with a pure path tracing, we set

κ = 1, while for the scene rendered using volumetric ray tracing (plants-dusk), κ = 0.37. This

is consistent with the fact that the color samples generated with volumetric ray tracing result from

an average of several light paths, and therefore are more precise than in pure path tracing.

A summary indicating all the considered effects, rendering method and image size is shown in

Table ..

D versus 3× D Histograms. Table . illustrates the performance of the method as a func-

tion of the number of bins of the rays color histogram. The experiments do not support the use of

three-dimensional color space bins. Thus, independent histograms were generated for the R, G, B

channels. The number of bins must be large enough to capture the histogram structure, but not

too large to grant a robust histogram comparison.
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Table 4.1: Summary of the tested scenes.

Scene Effects Size Generation κ-rhf

cornell-box AI 256× 256 path tracing .

toasters AILD 512× 512 path tracing .

plants-dusk ALPD 800× 400 ray tracing .

sibenik AILD 1024× 1024 path tracing .

yeahright AI 800× 800 path tracing .

dragons AILDP 512× 512
photon mapping

.+ final gathering

Considered effects: anti-aliasing (A); indirect illumination (I); area lights (L); depth-
of-field (D); participating media (P). The scenes cornell-box, plants-dusk and
sibenik are from [Pharr and Humphreys ] while the scenes dragons and
toasters were taken from [Rousselle et al. ].

Table 4.2: Performance comparison: estimating the histogram.

3d 3× 1D

33 43 53 3×5 3×10 3×15 3×20 3×25

cornell-box . . . . . . . .

toasters . . . . . . . .

plants-dusk . . . . . . . .

yeahright . . . . . . . .

sibenik . . . . . . . .

Average of the k = 15 closest neighbors, the performance metric is the psnr with
respect to a ground truth image. Two different ways of estimating the ray color his-
togram: bins in the 3d color space or three one-dimensional histograms one for each
color. In most cases, taking more bins increases the performance, but also the compu-
tational cost of the algorithm. Estimating three independent histograms one for each
color gives better results than estimating the histogram in the original 3d color space.

Robustness: Comparing Means versus Comparing Distributions. Suppose that an ex-

ternal Oracle tells us the exact number of closest patches that should be averaged in each pixel to

minimize the mse. By comparing the resulting psnr, we can compare the maximum theoretical

performance of the method. A comparison for different patch sizes is given in Table .. The re-

sults show that using histogram information to compare patches permits to significantly reduce

the patch size. This is an advantage since it permits the algorithm to be more local, hence better

preserving small details. As for the psnr, the experiment shows that using the color distribution

information leads to much better results than using just the pixels colors, as nl-means does.

Comparisons for several scenes. rhf systematically outperforms asr, as shown in Figures

.–.. Even if in some scenes both algorithms reach very similar psnrs, the proposed algorithm

does not introduce artifacts while asr often fails to capture the geometry and causes spots. The

psnr gain by rhf filtering is spectacularly larger than the one that would be obtained by generating

more Monte Carlo samples using the same time span. Indeed, a db psnr gain by a pure mc
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Table 4.3: Oracle performance comparison.

nl-means rhf

1×1 3×3 5×5 1×1 3×3 5×5
cornell-box . . . . . .

toasters . . . . . .

plants-dusk . . . . . .

yeahright . . . . . .

sibenik . . . . . .

For each pixel the ideal number of closest patches to minimize the error with respect to
the ground truth image has been computed and fixed. The table compares nl-means
and rhf for different patch sizes. It shows that rhf permits to reduce significantly the
patch size.

algorithm requires to double the number of samples. Instead, the filtering increases the psnr by 

to  decibels. This amounts to decreasing the overall sampling time by a factor ranging from  to

.

In the case of the yeahright image in Figures ., . and . the asr algorithm produces a

slightly better psnr. This scene is best suited for this algorithm, because several regions are flat and

asr can distribute most of the samples in the problematic parts. Nevertheless, in the shadows rhf

produces a more natural smooth result. As previously commented, the nl-means based approach

cannot distinguish between a large histogram variance due to pixel complexity, from a variance

due to mc noise. This fact is well illustrated in the metal edge of Figure ., which is completely

removed by nl-means, while it is well preserved by rhf.

The plants-dusk scene with participating media, in Figures ., . and . is a very chal-

lenging one. Here, the principal problem is the complex geometry of the vegetation. The proposed

algorithm tends to blur and to slightly flatten some texture details. Nevertheless, contrarily to asr,

no artifacts are introduced.

To illustrate the fact that the proposed denoising method is independent from the rendering

system, in Figures . and . we present a filtering experiment that runs on a image generated

by photon-mapping and final gathering. This scene comes from [Rousselle et al. ]. The noise

has been properly removed, and no artifacts are observed.

Extension to animated sequences. The ideas behind this approach can be immediately ex-

tended to video sequences where pixels on every frame will be candidates in the search. The sup-

plementary video shows the result of denoising an animated sequence, by implementing this sim-

ple generalization. Similar patches are searched within a temporal window of size  (namely in

the previous, actual and next frame). Although no explicit temporal correlation is enforced, the

filtered sequence does not show significant flicker. This is a consequence of the stability of the

proposed multi-scale filter.
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Figure 4.3: Results in sibenik scene. The result of RHF is shown on the left while the noisy input is shown

on the right. For close­ups on difficult parts see Figures 4.4 and 4.5.





Monte Carlo spp .db .s

Reference MC

asr spp .db .s

nl-means .db s (s)

rhf .db s (s)

Figure 4.4: Results in sibenik scene (close­ups). In all cases, the PSNR values are given for the whole

image. In general ASR tends to create artifacts near edges. RHF produces the best PSNR, with no visible

artifacts. For NL­means and RHF the indicated time follows the format total time (filtering time).
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Monte Carlo spp .db .s

Reference MC

asr spp .db .s

nl-means .db s (s)

rhf .db s (s)

Figure 4.5: Results in sibenik scene (close­ups). In all cases, the PSNR values are given for the whole

image. In general ASR tends to create artifacts near edges. RHF produces the best PSNR, with no visible

artifacts. For NL­means and RHF the indicated time follows the format total time (filtering time).
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Figure 4.6: Results in cornell-box scene. The result of RHF is shown on the left while the noisy input is

shown on the right. For close­ups on difficult parts see Figures 4.7 and 4.8.
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Monte Carlo spp .db .s

Reference MC

asr spp .db .s

nl-means .db .s (.s)

rhf .db .s (.s)

Figure 4.7: Results in cornell-box scene (close­ups). In all cases, the PSNR values are given for the whole

image. In general ASR tends to create artifacts near edges. RHF produces the best PSNR, with no visible

artifacts. For NL­means and RHF the indicated time follows the format total time (filtering time).
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Monte Carlo spp .db .s

Reference MC

asr spp .db .s

nl-means .db .s (.s)

rhf .db .s (.s)

Figure 4.8: Results in cornell-box scene (close­ups). In all cases, the PSNR values are given for the whole

image. RHF produces the best PSNR, with no visible artifacts. NL­means destroys complex edges such as

the one on the bottom left box of the Cornell scene. For NL­means and RHF the indicated time follows

the format total time (filtering time).
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Figure 4.9: Results in toasters scene. The result of RHF is shown on the left while the noisy input is

shown on the right. For close­ups on difficult parts see Figures 4.10 and 4.11.
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Monte Carlo spp .db .s

Reference MC

asr spp .db .s

nl-means .db .s (.s)

rhf .db .s (.s)

Figure 4.10: Results in toasters scene (close­ups). In all cases, the PSNR values are given for the whole

image. In general ASR tends to create artifacts near edges. RHF produces the best PSNR, with no visible

artifacts. For NL­means and RHF the indicated time follows the format total time (filtering time).
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Monte Carlo spp .db .s

Reference MC

asr spp .db .s

nl-means .db .s (.s)

rhf .db .s (.s)

Figure 4.11: Results in toasters scene (close­ups). In all cases, the PSNR values are given for the whole

image. In general ASR tends to create artifacts near edges. RHF produces the best PSNR, with no visible

artifacts. For NL­means and RHF the indicated time follows the format total time (filtering time).
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Figure 4.12: Results in yeahright scene. Fine geometry details, glossy surfaces and indirect illumination

presented in the yeahright scene are rendered with the PBRT­V2 path­tracing algorithm. The result of

RHF on the left hand part of the image is shown on the left while the noisy input of the right part is

shown on the right. For close­ups on difficult parts see Figures 4.13 and 4.14.
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Monte Carlo spp .db .s

Reference MC

asr spp .db .s

nl-means .db .s (.s)

rhf .db . (.s)

Figure 4.13: Results in yeahright scene (close­ups). In all cases, the PSNR values are given for the whole

image. The comparison is done in such a way that the ASR computational time matches the Monte Carlo

samples generation + RHF filtering time. NL­means looses fine structures such as the thin metallic edge.

For NL­means and RHF the indicated time follows the format total time (filtering time).
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Monte Carlo spp .db .s

Reference MC

asr spp .db .s

nl-means .db .s (.s)

rhf .db . (.s)

Figure 4.14: Results in yeahright scene (close­ups). In all cases, the PSNR values are given for the whole

image. The comparison is done in such a way that the ASR computational time matches the Monte Carlo

samples generation + RHF filtering time. In this particular scene, ASR performs well, but creates artifacts

in the shadow. RHF produces a similar PSNR with no artifacts. For NL­means and RHF the indicated time

follows the format total time (filtering time).
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Figure 4.15: Results in plants-dusk scene. The result of RHF is shown on the left while the noisy input

is shown on the right. For close­ups on difficult parts see Figures 4.16 and 4.17.
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Monte Carlo spp .db .s

Reference MC

asr spp .db .s

nl-means .db .s (.s)

rhf .db . (.s)

Figure 4.16: Results in plants-dusk scene (close­ups). In all cases, the PSNR values are given for the

whole image. The comparison is done in such a way that the ASR computational time matches the Monte

Carlo samples generation + RHF filtering time. This image presents a very complex fine geometry which

is very difficult to capture with few samples. Nonetheless, the proposed algorithm produce acceptable

quality and PSNR. For NL­means and RHF the indicated time follows the format total time (filtering time).
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Monte Carlo spp .db .s

Reference MC

asr spp .db .s

nl-means .db .s (.s)

rhf .db . (.s)

Figure 4.17: Results in plants-dusk scene (close­ups). In all cases, the PSNR values are given for the

whole image. The comparison is done in such a way that the ASR computational time matches the Monte

Carlo samples generation + RHF filtering time. This image presents a very complex fine geometry which

is very difficult to capture with few samples. Nonetheless, the proposed algorithm produce acceptable

quality and PSNR. For NL­means and RHF the indicated time follows the format total time (filtering time).
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Figure 4.18: Light interaction with participating media rendered through a photon mapping algorithm

shows the generality of the proposed filtering. The comparison is done in such a way that the ASR

computational time matches the Monte Carlo samples generation + RHF filtering time. For close­ups on

difficult part see Figure 4.19.
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pm+fg s

asr s

rhf s

Figure 4.19: Results in dragon-fog scene (close­ups). The comparison is done in such a way that the

ASR computational time matches the Monte Carlo samples generation + RHF filtering time. Since Photon

Mapping is a biased rendering algorithm no reference image (and therefore no PSNR) was computed.
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. Discussion, Limitations and Future Work

The maximum distance authorized between two patches plays an important role in the bias-

variance tradeoff of the method. If the threshold is set in a conservative way, then very few pixels

will be averaged. Thus, the filtering stage will not introduce bias, but the variance reduction will be

low. On the other hand, if set too large many pixels of different nature would be considered similar,

and averaged by error. Then the resulting image would be smooth but also biased (see Figure .).

If we accept that the selection of the most similar pixels for each noisy input pixel is indepen-

dent of the number of samples, then the gain in psnr when casting more samples is only due to

the averaging of less noisy pixels. By the randomness of the MC rendering, the noise of the input

pixels is reduced by +db/octave, thus the ideal (best) slope should be +db/octave. This is the

ideal, because it assumes that there is no error in the selection of similar pixels. Therefore, we can

consider the difference in slope to the ideal +db/octave as a measure of experimental bias (intro-

duced error). While the proposed algorithm rhf has an experimental bias of .db, the nl-means

bias is three times larger. More important, the relative bias to the mc gain is 0.2/3 ≈ 0.07, which

demonstrates that the proposed algorithm makes very few wrong ray color attributions.

Moreover, the proposed algorithm is consistent up to the discretization of the color distribu-

tion. As the number of samples increases, more evidence is required to average two pixels. In the

limit two pixels will be averaged only if their color histograms are the same. Therefore, in practice,

as the number of samples grows the method converges to the expected solution, as illustrated by

the experiment in Figure ..

The acceleration factor depends on the degree of self-similarity of the scene, which fortunately

is usually high [Lebrun et al. ]. Besides, in order to capture details, pixels need a large enough

number of color samples to be well characterized. This is actually a design decision: we wanted

our method to produce unbiased high quality images for any kind of scenes and complex effects,

and this naturally requires a proper sampling of the light field. If this requirement is not met, the

algorithm may not properly cluster similar pixels and details may be removed due to over-blur,

as it happens with some details in the plants image. In the case of very low sample numbers, if

the path-space is regular enough to be well described by sparse sampling, methods based on strong

scene hypothesis that use fat samples [Sen and Darabi ; Lehtinen et al. ] are certainly much

more adapted.

. Conclusion

In this work we have introduced rhf, an adaptive filtering scheme that accelerates Monte Carlo

renderers. In the proposed approach, each pixel in the image is characterized by the collection of

rays that reach its surface. The proposed filter uses a distance based on the sample color distribu-

tion of each pixel, to decide whether two pixels can share their samples. This permits to boost the

performance of a Monte-Carlo render by reusing samples without introducing significant bias.

We have presented several experiments showing that rhf achieves artifact-free high quality

noise reduction on a variety of scenes, and is able to cope with multiple simultaneous effects. The

method is not only capable of removing high frequency noise: thanks to its natural multi-scale

design, it can also successfully remove low-frequency noise. The proposed method can be easily

extended to process animated sequences.

The method is independent of the rendering system and can be applied to samples generated

by different methods, such as pure Monte Carlo path-tracing or photon-mapping with final gath-

ering. It could also be potentially applied to post-process other methods that re-synthesize samples
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mc spp, .db κ = 0.50, .db κ = 0.70, .db

κ = 0.90, .db κ = 1.30, . db Reference mc spp
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Figure 4.20: Changing the distance threshold κ: it fixes the maximum distance that two color distribu­

tions can differ. (a): a small detail in the toasters image filtered with the RHF algorithm with growing

κ values. The MSE presents a minimum for κ = 0.7 − 1.0 (b): If κ is too small the test on the similarity

is excessively conservative, and the noise is not reduced (high variance). If κ is large, too many pixels

are averaged and the image is blurred (high bias). The results were calculated on the toasters scene

generated with 256 spp.
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using information from the scene, like the one recently proposed by Lehtinen et al. []. An ad-

vantage of the proposed filter is that its time and memory complexities do not depend on the

number of input samples, and scale linearly with the image size.

Finally, since a direct output of our method is the number of similar pixels for each given

pixel, a decision on where to distribute new samples can be adopted. This may lead to an adaptive

rendering version of the proposed filtering approach.
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+15.5 dB

 RHF: 2.8 dB/octave

 NL−means: 2.4 dB/octave

 MC: 3.0 dB/octave

spp spp spp spp spp

Figure 4.21: Top: A comparison of the PSNR for RHF, NL­means, and the pure MC pathtracing algorithm

on the toasters scene. As the number of samples per pixel increases the PSNR increases. In a pure MC

scenario the square error decreases linearly with the number of samples (which is a trivial consequence

of averaging independent samples). Thus, duplicating the number of samples produces a 3db gain.

Although for the proposed algorithm the slope gain is a little smaller (2.8db/octave), RHF reduces the

error significantly in comparison to MC. +15.5dB is a huge difference; it permits to reach the same image

quality with 35× fewer samples. On the bottom we show a close up, generated with a varying number

of samples through pure MC (top) and filtered with RHF (bottom).
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Conclusions and Perspectives

This dissertation concerns the digital image formation process and the quest for

(i) mathematical models to better describe the kind of images that are obtained by this process,

and

(ii) algorithms to improve image quality based on such models and to estimate the parameters

of those models.

More precisely, we focus on the problems of denoising and blur estimation and address them for

images that have been generated via two fundamentally different formation processes. In part I we

deal with optically generated images, that have been produced by real photons after conversion to

digital information by the sensors in a real camera. In contrast, part II is concerned with images

that have been synthetically generated by computer simulations of virtual light hitting a digital 3d

model and captured by a virtual camera.

We have introduced a mathematical model of an optical digital camera that provides a frame-

work to evaluate the quality of psf estimation patterns. The key idea is to find the pattern that

makes the psf estimation inverse problem as well-posed as possible. Or in other words, which is

the pattern that carries the most information for the psf estimation problem. Indeed, the theoret-

ical analysis concludes that a random pattern made from Bernoulli noise is nearly optimal.

An algorithm for estimating the psf from a photograph of this pattern is proposed. The

method is very strict in the precautions to compensate for variations in illumination and possi-

ble geometrical distortions between the ideal pattern and the observed image. The procedure is

successful, but its setup is somehow tedious since a calibration pattern must be printed and prop-

erly assembled. Very accurate estimates of the psf are achieved, as it is amply shown in the various

comparative experiments (the relative error is of the order of 2% to 5%). As usual, a locality-

accuracy trade-off had to be resolved. Locality of an order of a few hundred pixels can be achieved

under common noise conditions.

Within the same mathematical framework, we confirmed that traditional state-of-the-art slant-

edge based methods lead to inverse problems that are ill-posed and require some kind of regular-

ization. This is a major inconvenient, since introducing regularization considerably biases the

estimation.

To avoid the use of a pattern, we introduced a semi-blind algorithm for the subpixel estimation

of the camera psf that uses aliased photographs. The procedure is based on taking two fronto-

parallel photographs of the same flat textured scene, from different distances leading to different

geometric scales, and then estimating the blur between them.

The psf estimation method is regularization-free, being closely related to the Bernoulli pattern

algorithm. Nevertheless, the question is far more intricate since only the relative blur between the
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acquisitions can be estimated. The algorithm is based on a mathematical analysis that proves that

the psf can be recovered from the relative blur.

Images of planar textured scenes with a flat enough spectrum are necessary to reach high accu-

racy. Fortunately, as was experimentally shown, many textures found in nature are well adapted to

these requirements. This semi-blind algorithm reaches similar accuracy levels to the one with the

near-optimal Bernoulli pattern, with the advantage of not requiring any special acquisition setup

or calibration pattern, thus being much more practical.

The experiments here suggest that for typical dslr cameras, each color channel is under-

sampled with respect to the ideal Nyquist rate given by the psf, by a factor of 2 or even 4. This

fact was confirmed, even with dslr models including an optical anti-aliasing filter on the sensor.

This more than justifies a posteriori the need of a subpixel estimation procedure.

Accurate psf estimates are important for several classical image processing applications, such

as image superresolution, image de-blurring, and camera quality evaluation. In what follows we

present some insights of possible future research directions regarding these and other applications.

In the current conditions, the camera psf acts as a strong low-pass filter attenuating signifi-

cantly all frequencies beyond two times the camera’s channel sampling frequency. From the point

of view of the Shannon-Nyquist theory, this sets an upper limit in the gain of multi-image super-

resolution that is not too attractive.

In a modern dslr camera with no significant lens aberration, working at a wide aperture (e.g.,

f-number ≤ 5.6), the psf is mainly due to the optical anti-aliasing filter and the light integration

in the sensor array. Hence, it becomes fundamental to remove this optical filter, that has been

introduced to mitigate the aliasing artifacts, to unveil the latent superresolution potential that a

digital camera may have. Some companies in the market, such as max-max, offer to remove the

camera optical anti-aliasing filter and to replace it by an ordinary glass with the same refractive

index. Recently, Nikon has introduced a new model (d800e) of its d800, which is essentially the

same but does not apply the optical anti-aliasing filtering. Although not a majority, some camera

manufacturers are already considering the possibility of doing in-camera superresolution. Hassel-

blad developed a camera (h4d-200ms) capable of producing images of 4× the sensor resolution by

fusing several snapshots with the sensor subpixically shifted.

The problem of image superresolution and deconvolution with a spatially variable psf are

intertwined. Traonmilin et al. [] analyzed the problem of superresolution, and showed as an

example how to make independent color channel demosaicking under the simplistic hypothesis

that the deconvolution and superresolution are decoupled. However, as the authors claim, this is

only accurate if the psf is space invariant and the the snapshots are purely translational motions.

Having a tool to estimate locally and accurately the psf can unlock this problem and allow a multi-

image camera to be used as a true measuring instrument without aliasing.

Plenoptic cameras, which sample the 4d light field, have proved to be useful for single image

digital refocusing or depth estimation (e.g., the Lytro camera). However, this richer sampling

comes at a significant associated cost in spatial resolution. Some researchers [Bishop et al. ;

Bouman et al. ; Bishop and Favaro ]) have recently explored to extend the resolution of

these cameras combining all the information captured from the light field. A mathematical mod-

eling of the acquisition process, along with a local estimate of the psf is essential to achieve this

goal.

Another related problem is the design of fast autofocus algorithms. It then becomes essential

to make a very fast blur measure, especially in the case of autofocus in video, and to decide in which

www.maxmax.com
www.lytro.com
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direction and how far the focal point should be moved to capture an in-focus image. In addition,

a precise calibration of the out-of-focus psf could be very useful for the problem of estimating the

depth from defocus. Currently, the in-focus kernels are oversimplistically modeled as Gaussian

or circular kernels. However, it is well known by experimented photographers that these kernels,

which give rise to the popularly known bokeh effect, have much more complex shapes. Coded-

aperture and coded-exposure imaging (see e.g., [Raskar et al. ; Levin et al. ]) allow the

point spread function to be engineered for better conditionate specific applications such as mo-

tion deblurring or depth-from-defocus. Maximizing the quality of the restored image requires an

accurate estimation of the resulting psf. We would like to explore and quantify the impact of the

psf estimation in these problems.

Another useful application and a possible future research direction of having accurate estimate

of the psf is to know the types of aberrations that an optical camera introduces. The proposed

accurate non-parametric psf estimate can be matched to parametrical simulations of different

types of aberrations to conclude which type of aberrations the camera presents (such as, comma,

astigmatism, chromatic blur). This information can be helpful to quantitatively assess the quality

of a device, but also to better design the optical system.

Detecting the parts of an image that were poorly sampled (leading to aliasing) and restore them

is an important problem in image processing. The work of Coulange and Moisan [] proposed

to detect, by analyzing the Fourier spectrum, those harmonics that are likely to be aliased. One

possible avenue of research is trying to use the this technique along with the work of Almansa

et al. [] for image restoration with samples in non-rectangular lattices to make single-image

antialiasing for traditional and non-traditional light sensors.

Last, but not least, online psf estimation is of significant importance in the calibration of

modern astronomical telescopes. Most of these telescopes have a large mirror (of several meters

of diameter) which is exposed to variable stress due to unpredicted weather conditions. The only

way to build and maintain in service such a large system is to work in an active optics principle:

the mirror has actuators that modify its shape (and thus the wave front and the psf) proactively

to prevent deformations. Image analysis and continuous psf re-estimation becomes necessary to

adapt the optical shape and obtain a psf as sharp as possible.

The second part of this thesis addresses a denoising problem in image synthesis. Although

there have been several breakthroughs very recently, synthesizing high quality realistic images in

a reasonable amount of time remains a major challenge in computer graphics. In this disserta-

tion, we introduced an adaptive filtering algorithm for accelerating Monte Carlo renderers. In the

proposed approach, each image pixel is characterized by the set of rays that reach its surface. The

algorithm, that we named ray histogram fusion (rhf), uses a similarity measure on the empirical

ray color distribution of each pixel, to decide whether two pixels can be fused.

This simple procedure permits to boost the performance of any stochastic renderer by reusing

samples without introducing significant bias. The proposed method achieves artifact-free high

quality noise reduction on a variety of scenes, and is able to cope with multiple simultaneous ren-

dering effects. The method is renderer independent and can be applied to samples generated by

different methods, such as pure Monte Carlo path-tracing or photon-mapping with final gather-

ing.

Thanks to its natural multi-scale design, it can successfully remove noise at all scales. Moreover,

the algorithm is easily extended to process videos from animated sequences. One major advantage

of the ray histogram fusion filter is that its time and memory complexities are independent of the

number of input samples, and it scales linearly with the image size.
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As a future work, we would like to investigate how rhf can be applied to post-process other

methods that re-synthesize samples using information from the scene, like the one recently pro-

posed by Lehtinen et al. []. Also, since a direct output of the method is the number of similar

pixels that each pixel has, a decision on where to distribute new samples can be adopted. This may

be the basis of an adaptive rendering version of the proposed filtering.

The proposed rhf filter assumes that the pixels grouped as similar have exactly the same ex-

pected value. In practice, this does not strictly hold and can therefore lead to the introduction of a

small bias. We would like to explore whether the use of more general models (e.g., affine or more

complex statistical models) can improve the performance and keep bias controlled.

Besides, it would also be interesting to explore different ways of reducing the computational

cost of the rhf filter. Recently, Gastal and Oliveira [] have introduced a technique for accel-

erating filters based on the auto-similarity principle. Their algorithm, which reaches outstanding

results, learns a set of manifolds that well capture the image structure, and then filters each of them

separately. Hence, this is a natural research direction to reduce the computational cost of the rhf

filter.
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A Detailed Description of the PSF Esti­

mation Algorithms

This section presents a complete detailed algorithmic description of the proposed

non-blind and two-scale photographs psf estimation procedures. A demo facility

and a reference source code can be found in the respective IPOL publications [Del-

bracio et al. a,b].

A. PSF Estimation from a Calibration Pattern Image

The captured image is precisely aligned to the analytic pattern by means of the surrounding checker-

board markers. Non-uniform illumination and non-linear camera response function impact - crf

are corrected from the captured image to allow an artifact-free superresolved psf estimation.

In the next paragraphs we present a brief summary for each block.

Pattern detection

In order to detect the pattern in the image we use the line segment detector (lsd) algorithm by

Grompone von Gioi et al. []. The idea is to detect the segments that are present in the pattern

structure as can be seen in Figure A..

By using the detected line segments (in Figure A. are shown in red, green and blue for illustra-

tion purposes) we can approximate the checkerboard corners. These initial corners locations are

re-adjusted by a subsequent subpixel stage. The pattern detection procedure can be summarized

into the following steps:

. Detect all lines segments in the image. Each segment is represented by its two extreme

points.

. For each detected segment si do:

(a) Take another detected segment sj , j 6= i.

(b) Calculate sij , the coordinates of segment sj in a new coordinate system relative to

segment si. This new coordinate system maps the first extreme point of segment si to

(0, 0) and the second one to (0, 1). The idea is to detect all the red and blue segments

in relative position to the green one.

(c) Check if sij is one of the searched segments:
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Figure A.1: The Bernoulli pattern and the line segments used for the detection of the pattern in an input

image (shown in red, green and blue).

i. Compute the distance between sij and the ideal relative position of every searched

segments (red and blue segments).

ii. If it is up to a tolerance and the distance is less than in the previous detection of

the same segment, update the segment and the distance to the optimal position

. If there is one and only one segment that has all associated segments we consider that the

pattern has been detected.

Once the pattern with the aforementioned segments has been detected, an initial estimate of

the positions of O, P, Q, R is computed as the middle points of segments ,, and .

Pattern subpixel alignment

In order to deal with geometric distortions the ideal pattern and its observation have to be precisely

aligned locally. For that reason we have introduced checkerboard corners. Several methods to

detect checkerboard corners have been reported in the Computer Vision literature ranging from

differential operators such as Harris detector to more specific correlation methods. In this work

we used a Harris-Stephens based corner detector in which we iteratively refine the detected corner

positions to reach subpixel accuracy. The present algorithm is included in the OpenCV library

[Bradski ]. The subpixel corner detector is based on the fact that the image gradient at a point

close to the center is orthogonal to every vector from the center to that point.
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C

This can be mathematically expressed as

∇ItP · CP = 0

for every P in a neighborhood of C. As in practice the acquired image will be contaminated with

noise, this expression will not be strictly zero. This last expression can be written as (∇IP · ∇ItP ) ·
(P − C) = 0 and since this expression holds for P in a neighborhood of C ,

∑

P∈N (C)

(∇IP · ∇ItP ) · P =
∑

P∈N (C)

(∇IP · ∇ItP ) · C

In order to give more importance to points closer to the center C , a weighting function WP =
f(‖P − C‖) is included. Then, C is found by least squares

C =




∑

P∈N (C)

(WP∇IP · ∇ItP )





−1


∑

P∈N (C)

(WP∇IP · ∇ItP ) · P



 . (A.)

Based on this idea, the checkerboard detector algorithm iteratively runs as follows:

. Given C (with possible subpixel precision), computeN (C) as a square of size 2R+1×2R+
1 centered in C . The non-integer pixel values are calculated using bilinear interpolation.

. The gradient∇IP is calculated by finite differences in every point P ofN (C).

. ∇IP · ∇ItPWP is computed where WP = f(‖P − C‖) is an isotropic Gaussian function

centered in C . The variance of the Gaussian function is σ2
WP

= (2R+1)2

2 .

. Set Cold = C and compute the new C by solving (A.).

. If ‖C − Cold‖ < tol or ++iter > max iter exit, else go to .

For all our experiments we set tol = 10−5, max iter = 200, R = 3.

Geometric transformation estimation

For our purpose of psf estimation we do not need to decompose the distortion into its homogra-

phy and non-homography parts, as it is done in classical geometric camera calibration. Instead we

use thin-plate splines [Sprengel et al. ] to model the whole deformation. Since we have pre-

viously detected the {p̃i} checkerboard corners centers from the observed pattern image and we

know exactly their ideal corresponding locations {Pi}, we can use these correspondences to find a

smooth mapping from the non-distorted to the distorted space.
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The thin-plates are found by minimizing the functional:

E =
∑

i

‖f(Pi)− p̃i‖2 + λ

∫∫
(
f2
xx + 2f2

xy + f2
yy

)
dxdy,

where λ controls the amount of regularization. As we will show if λ is zero the thin-plates interpo-

late the example points and if it goes to infinity the mapping becomes a pure affine transformation.

The solution of this functional is of the form

fi(x, y) = di0 + di1x+ di2y +

n∑

j=1

cijΦ(‖Pj − (x, y)‖) i = 1, 2,

whereΦ(x) = ‖x‖2 log ‖x‖, n is the number of points (in our casen is the number of checkerboard

corners i.e., ). A nice property of the thin-plates is that it can always be decomposed into an affine

and a non-affine component. The  coefficients (dij) form the affine part and the n×2 coefficients

(cij) form the non-affine part. We now show how both set of coefficients can be obtained. In the

following we represent points in homogeneous coordinates (x, y, 1). Let us call Y and X the n×3
concatenated versions of the point coordinates Pi and p̃i respectively. We denote by Φ the n × n
matrix formed from Φ(‖Pi − p̃j‖), i, j = 1..n, representing the thin-plate kernel.

It can be shown (see the work by Sprengel et al. []) that the solution is given by

ĉ = Q2(Q
T
2 ΦQ2 + λI(n−3))

−1QT
2 Y

d̂ = R−1QT
1 (Y − Φĉ),

where Q1 and Q2 are obtained from the qr decomposition of matrix X ,

X =
[
Q1 Q2

]
[
R
0

]

.

In this application as we always have a fixed number of points – 12 – and the support of the pattern

in the image is very small (about 100 × 100 pixels), the geometrical distortion is expected to be

minimal and thus very well approximated by an affinity. In practice, setting λ = 10 proved to be

an appropriate trade-off.

Illumination estimation and normalization

In order to recover the psf, the gray levels in the sharp image pattern and those in the observed

image have to be matched. For that purpose, the proposed pattern has black and white square

regions to estimate the mapping between black and white colors and the respective observed gray

values. As there are several of these constant regions located at different places, we can estimate a

black (white) image that models the black (white) intensity level at each pixel. We model this black

(white) image by a second order polynomial:

Iblack(x, y) = ax2 + by2 + cx+ dx+ e.

The estimation of the coefficients is done by least squares from the known pairs (value, position).

Then, assume v(x, y) is the observed image, it can be corrected to get vc according to:

vc(x, y) =
(

v(x, y)− Iblack(x, y)
)

/
(

Iwhite(x, y)− Iblack(x, y)
)
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CRF estimation g(·)
Once the non-uniform illumination has been compensated, the camera response function can

finally be estimated and then the non-linear response of the sensors corrected. The estimation and

correction procedure is based on a strong property of the proposed pattern: the noise pattern’s

region was generated assigning equal probabilities to black and white values ( and  respectively,

after normalization). Consequently, since the psf has unit area, the mean gray value within the

observed image should be ..

The solution crf is defined as a parabolic function u→ αu2 + (1−α)u where α is chosen so

that the mean of the pattern after the correction is .. Hence, α can be calculated as:

α =
0.5−∑u
∑

(u2 − u)
,

where α is well defined as long as u is not a binary image which will never happen in our case.

Pattern rasterization

Rasterization is the procedure of converting a vector image into a raster pixel image. As we have

a vector description of the pattern image we can rasterize it at any desired resolution. For that,

it must be interpolated at the desired resolution by taking into account the estimated geometrical

transformation. Then, we also need to cut the spectrum of the rasterized image to be band-limited

at twice the desired frequency at which the psf is estimated. We do this by the following procedure:

. The continuous pattern u is sampled at a very high resolution, e.g. each of the flat black or

white squares is sampled with a 4 × 4 block of pixels. We are going to work directly with

these samples u (digital image), instead of the continuous pattern.

. Frequencies higher than sπ are cut off from the digital pattern u to get ũ. The dct of u is

computed and the dct coefficients larger than (m × s, n × s) are set to zero (m and n are

the number of rows and columns of the noise part in the captured image). Then we recover

the filtered version ũ by applying the Inverse dct. Note that π represents the camera sensor

sampling frequency that is why the factors m and n are included.

. Using the previously computed geometric distortion, the filtered pattern ũ is scaled to the

desired resolution s by bicubic interpolation. The resultant image ũD is of size (s × (m −
1) + 1, s× (n− 1) + 1).

Building the linear system

In order to find the psf, we generate the following linear system:

argmin
h

‖SsC[ũD]h− v‖22. (P)

The matrix SsC[ũD] is composed by:

. The matrix C[ũD] associated to the D convolution operator with the image ũD. The con-

volution is done with a kernel of size p× q.

. The s-down-sampling matrix Ss takes one sample per each block of s× s pixels.
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. Finally a mask is applied that puts to zero all values that are outside the region of interest.

The region of interest consists of a trapezoid mask that restricts the convolution to the noise

part of the pattern. Also this mask is eroded by a factor (max(p, q) − 1)/2s to avoid boundary

problems due to the convolution of finite support sequences.

We rewrite the observed image v in vector form to be consistent with the matrix formulation

of the system. The mask restricting to the region of interest is also applied to the observation v.

Numerical methods for PSF estimation

Finally, we need to solve for a non-negative psf,

argmin
hi

‖SsC[ũD]h− v‖22 subject to hi ≥ 0, i = 1, . . . , r2. (P)

To directly solve the non-negative least squares problem (P) we used the Newton interior point

algorithm proposed by Portugal et al. [] and if we release the non-negative hypothesis the

solution is simply found by a least squares algorithm. Another option is to threshold the least

squares solution to be non-negative. The reference source code can operate in any of these three

options.

A. PSF estimation from Two Photographs at Different Dis-

tances

The input of the algorithm are the two digital images: ṽ1, ṽ2, the superresolution factor s and the

kernels (inter-image kernel and psf) support size: p× p at the s× superresolved grid. The output

of the algorithm are a s× sampling of the inter-image kernel k and a s× sampling of the camera

psf h. Both images are of size p× p.

Image subpixel alignment and geometric transformation estimation

In order to align both images and to estimate the geometric transformation from one to the other

we use sift points and the orsa-Homography subroutine by Moisan et al. []. These subrou-

tines may be replaced by any other accurate subpixel registration method. The important output

of this stage is that given the two images we have a function D that maps one to the other.

Suppose that the common parts of ṽ1 and ṽ2 are respectively of size m′ × n′ and m× n. Then

D : [0,m′ − 1]× [0, n′ − 1]→ [0,m− 1]× [0, n− 1].

In the case of a homography, D can be expressed in homogeneous coordinates as linear transform

represented by the 3× 3 matrix:

D =





h0,0 h0,1 h0,2
h1,0 h1,1 h1,2
h2,0 h2,1 1



 .
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Image interpolation: Hλ/sṽ1

In order to generate the rescaled samples Hλ/sṽ1 from the digital image ṽ1 we need to interpolate

it at the desired scale λ/s . This is done by using the estimated geometric transformation D.

From now on we will consider that 1× is the camera sampling frequency and the equivalent

frequency band [−π, π]2 .

The spectrum of the resampled image should be cut to be band-limited at [−sπ, sπ]2 before

resampling it. This is necessary to avoid aliasing artifacts. We do this by the following procedure:

. Frequencies higher than sπ are cut-off from the zoom-in image ṽ1. The dct of ṽ1 is com-

puted and the dct coefficients larger than (m × s, n × s) are set to zero (m and n are the

number of rows and columns of the common region part in the captured zoom-out image).

Then we recover the filtered version by applying the inverse dct. Note that 2π represents

the camera sensor sampling frequency that is why the factors m and n are included.

. Using the previously computed geometric transformation D, the filtered zoom-in image is

bicubically interpolated at the desired resolution λ/s. We do this by estimating the image

values at a regular s× grid: [0,m′ − 1] × [0, n′ − 1] (i.e., the step size is /s). The resultant

image Hλ/sṽ1 is of size (s× (m− 1) + 1, s× (n− 1) + 1) .

Solving for the inter-image kernel

First, the following linear system is built:

argmin
k

‖MSsC[Hλ/sṽ1]k−Mṽ2‖22, (Pi)

where the matrix MSsC[Hλ/sṽ1] is composed by:

. The matrix C[Hλ/sṽ1] associated to the D convolution operator with the interpolated im-

age Hλ/sṽ1. The convolution is done with a kernel of size p× p.

. The s-down-sampling matrix Ss takes one sample per each block of s× s pixels.

. Finally a mask M is applied that puts to zero all values that are outside the region of interest.

The region of interest consists of a trapezoidal mask that restricts the convolution to the com-

mon part in the two images. Also this mask is eroded by a factor p−1
2s to avoid boundary problems

due to the convolution of finite support sequences.

We rewrite the zoom-out observed image as a vector to be consistent with the matrix formula-

tion of the system. The mask M restricting the image to the region of interest is also applied to the

observation ṽ2. Next, we need to solve Problem (Pi) which is simply a least squares algorithm.

From the inter-image kernel to the the PSF

In order to recover the camera psf h we need to compute (see Section .)

h = lim
n→∞

Hλn(k ∗H 1

λ
k ∗ · · · ∗H 1

λn
k).

The value λ = (λx, λy) is estimated from the geometric transformation D. In the case D is

estimated as a homography, the scale values are taken to λ = (h0,0, h1,1). This corresponds to the
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situation where D is a pure zoom, and is a good approximation to the fronto-parallel acquisition

with negligible rotation.

We proceed as follows:

. Initialize u0 = k, n = 1.

. Compute H1/λnk by using λ = (λx, λy) (bicubic interpolation).

. Calculate un = H1/λnk ∗ un−1.

. If min{λn
x, λ

n
y} > λmax go to . Else update n := n+ 1 and repeat from .

. Calculate h = Hλnun (bicubic interpolation).

The algorithm converges after a few iterations since λn grows very fast. We set λmax = 50 ,

since the convolution with the inter-image kernel zoomed-out 50× or greater produces a negligible

change in the final result.

Since negative light does not exist the estimated psf should be positive. We can therefore

constrain the solution to be non-negative by projecting the result of step  to the non-negative

half-space.

General tips for the set-up

. The scene should be as planar and as textured as possible.

. The photographs should be taken between  and  relative distance. The possible superres-

olution factor is always less than the relative distance, so for 4× estimation relative distance

should be higher than .

. To produce accurate estimations it is highly recommended to use a tripod to avoid handheld

shake.

. Both photographs should be taken with the same camera parameters. The only exception is

camera focus, that should be re-set to have both images in focus.

. The images should be taken with the same illumination conditions.

. Both images should be recorded in raw format (no compression, no post-processing: no

demosaicking, no denoising, no enhancing, etc). raw conversion is camera-dependent and

not provided by our demo. In our examples a suitable conversion of the raw format to a

pgm image containing the Bayer pattern could be achieved by the command “dcraw - -D

input.raw output.pgm”. A single color channel should then be extracted and use as the

input to our algorithm.

dcraw is the Dave Coffin’s utility for decoding raw digital photos in Linux.
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Bony, J. Cours d’analyse. Théorie des distributions et analyse de Fourier. Les Éditions de l’École
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