
HAL Id: tel-00907486
https://theses.hal.science/tel-00907486

Submitted on 21 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An approach for online learning in the presence of
concept changes

Ghazal Jaber

To cite this version:
Ghazal Jaber. An approach for online learning in the presence of concept changes. Other [cs.OH].
Université Paris Sud - Paris XI, 2013. English. �NNT : 2013PA112242�. �tel-00907486�

https://theses.hal.science/tel-00907486
https://hal.archives-ouvertes.fr

Université Paris Sud 11

Doctoral Thesis

An approach for online learning in the
presence of concept change

Author:

Ghazal Jaber

Supervisor:

Prof. Antoine Cornuéjols

Prof. Philippe Tarroux

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Computer Science

in the

LIMSI-CNRS

October 2013

Doctoral Committee:

Antoine CORNUÉJOLS (Co-Advisor)

Philippe TARROUX (Advisor)

João GAMA (Reader)

Vincent LEMAIRE (Reader)

Michèle SÉBAG (Examiner)

Younès BENNANI (Examiner)

http://www.u-psud.fr
http://www.agroparistech.fr/mia/equipes:membres:page:ghazal
https://www.lri.fr/~antoine/
http://www.limsi.fr/Scientifique/ps/pagesmembres/Tarroux.Philippe.html
Research Group Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

UNIVERSITÉ PARIS SUD 11

Abstract

An approach for online learning in the presence of concept change

Learning from data streams is emerging as an important application area. When the

environment changes, as is increasingly the case when considering unending streams and

long-life learning, it is necessary to rely on on-line learning with the capability to adapt

to changing conditions a.k.a. concept drifts. Adapting to concept drifts entails forgetting

some or all of the old acquired knowledge when the concept changes while accumulating

as much knowledge as possible when the underlying concept is supposed stationary. This

tradeoff is called the stability-plasticity dilemma.

Ensemble methods have been among the most successful approaches. However, the

management of the ensemble which ultimately controls how past data is forgotten has

not been thoroughly investigated so far. Our work shows the importance of the forgetting

strategy by comparing several approaches. The results thus obtained lead us to propose

a new ensemble method with an enhanced forgetting strategy to adapt to concept drifts.

Experimental comparisons show that our method compares favorably with the well-

known state-of-the-art systems.

The majority of previous works focused only on means to detect changes and to adapt

to them. In our work, we go one step further by introducing a meta-learning mechanism

that is able to detect relevant states of the environment, to recognize recurring contexts

and to anticipate likely concepts changes.

Hence, the method we suggest, deals with both the challenge of optimizing the stability-

plasticity dilemma and with the anticipation and recognition of incoming concepts. This

is accomplished through an ensemble method that controls an ensemble of incremental

learners. The management of the ensemble of learners enables one to naturally adapt to

the dynamics of the concept changes with very few parameters to set, while a learning

mechanism managing the changes in the ensemble provides means for the anticipation

of, and the quick adaptation to, the underlying modification of the context.

University Web Site URL Here (include http://)

Acknowledgements

First and foremost, I wish to thank professor Antoine Cornuéjols, who was not only my

advisor but also my mentor. He has been supportive since my masters internship and

throughout the long road to the end of my thesis. He gave me the freedom I needed

in my research, gave me confidence in my work and was always present for guidance.

Thank you Antoine for giving me the opportunity to work with you. It is with sadness

that I leave your research team at AgroParisTech but I am hopeful that we will meet in

conferences, and maybe, contribute in new publications. I also want to thank professor

Philippe Tarroux, my advisor, for the many brainstorming discussions we had. It was a

great honor to work with you at the LIMSI laboratory.

Other people helped me through my thesis. Thank you Laurent Orseau for your advices

and guidance. As I already said: you will make a great doctoral advisor. I will miss our

theological discussions and also our daily chocolate gathering with Antoine Cornuéjols

and Christine Martin.

I want to thank my thesis readers, professor João Gama and Vincent Lemaire, who

kindly accepted to review my work and took the time in reading and providing me with

valuable comments despite their busy schedules. I also wish to thank the other members

of the jury who kindly accepted to evaluate my thesis.

I am grateful to Leandro L. Minku who provided me with the empirical results published

in his paper [70] on his online ensemble method DDD, and other state-of-the-art methods.

I also want to thank him for his artificial datasets who helped me evaluate my algorithm.

This thesis is also the result of many people that supported me emotionally:

Mom, you are the source of endless love and kindness. My life would be unbearable and

unmeaningful without you. Thank you for you unconditional love and support.

Dad, you never told me what to do in my academic life, but you raised me to challenge

myself and overcome my fears. Thank you for being a role model to me.

Nihad, your love helped me overcome difficult times. Thank you for being my best friend,

a supportive husband, and a caring lover.

Nour and Fouad, you are the best sister and brother anyone could ask for. I wish I were

with you during the last three years. I thank you for believing in me and I hope I made

you proud of your big sister.

Life can’t be fun without friends. Hana and Abir, thank you for the special moments we

shared together. You will always have a special place in my heart.

ii

iii

To my second family, my aunt, uncle and cousins. You were my rock during my masters

and thesis. You supported me emotionally, cheered me up when I felt low and fulfilled

my life in the absence of my parents. Thank you for your presence, warmth and love. A

special thanks to my cousin Aliaa Abbara who listened to all my presentations’ rehearsals

throughout my thesis and who can now present my work even better than myself.

Contents

Abstract i

Acknowledgements ii

List of Figures vii

List of Tables xiii

1 Introduction 11

2 The Problem 14

2.1 Classical Supervised Machine Learning . 14
2.1.1 Scenario . 14
2.1.2 Performance criterion . 15
2.1.3 Learning systems as optimization tools 16
2.1.4 The bias-variance tradeoff . 16
2.1.5 Overfitting . 18
2.1.6 Practical evaluation measures . 18

2.2 Data Streaming . 19
2.2.1 Practical challenges . 19
2.2.2 Theoretical challenges . 20
2.2.3 Concept change . 20
2.2.4 Types of concept change . 21
2.2.5 Properties of concept change . 22
2.2.6 The stability-plasticity dilemma . 26
2.2.7 Adaptation and anticipation . 27

2.3 Online Machine Learning . 28
2.3.1 Scenario . 29
2.3.2 Practical evaluation measures . 29
2.3.3 The theory of online learning . 31
2.3.4 Online learning in practice . 34
2.3.5 Online learning datasets . 37

2.4 Summary . 44

3 State of Art 45

3.1 Adapting to the Change . 46
3.1.1 Explicit detection . 46
3.1.2 Implicit adaptation . 48

iv

Contents v

3.2 Online Classifiers . 48
3.2.1 IB3 (1991) . 48
3.2.2 FLORA (1996) . 49
3.2.3 RePro (2005) . 49
3.2.4 PreDet (2008) . 50

3.3 Online Ensembles of Classifiers . 52
3.3.1 DWM (2003) . 54
3.3.2 CDC (2003) . 54
3.3.3 KBS-stream (2005) . 54
3.3.4 DIC (2008) . 55
3.3.5 Adwin Bagging (2009) . 55
3.3.6 ASHT-Bagging (2009) . 56
3.3.7 CCP (2010) . 57
3.3.8 Leveraging Bagging (2010) . 57
3.3.9 DDD (2012) . 58

3.4 Summary . 59

4 Adaptation to Concept Changes 60

4.1 Motivation . 60
4.2 Framework . 61

4.2.1 Experts . 62
4.2.2 Prediction . 62
4.2.3 Weighting functions . 64
4.2.4 Deletion strategies . 65

4.3 DACC . 76
4.3.1 The committee of predictors . 76
4.3.2 The committee evolution . 77
4.3.3 The weighting functions . 80
4.3.4 The final prediction . 81
4.3.5 Processing training examples . 83
4.3.6 Time & memory constraints . 83
4.3.7 Computational complexity . 87
4.3.8 Implicit diversity levels . 88
4.3.9 The stability-plasticity dilemma . 91
4.3.10 Effect of parameters . 94
4.3.11 Choice of parameters . 113

4.4 DACC: Comparison with Other Systems 115
4.4.1 DACC vs CDC . 116
4.4.2 DACC vs DDD, EDDM, DWM . 123
4.4.3 DACC vs others systems . 127

4.5 Contribution . 134

5 Anticipating Concept Changes 135

5.1 Concept Predictability . 136
5.1.1 DACCv1 . 140
5.1.2 DACCv2 . 145
5.1.3 DACCv3 . 154

Contents vi

5.2 Concept Reccurence . 162
5.2.1 DACCv4 . 163

5.3 ADACC . 165
5.3.1 Computational complexity . 166
5.3.2 Empirical results (1) . 168
5.3.3 Empirical results (2) . 175

5.4 Contribution . 181

6 Conclusion and Perspectives 182

6.1 DACC . 182
6.1.1 Methodology . 182
6.1.2 Properties . 183
6.1.3 Strengths, weaknesses and perspectives 185

6.2 ADACC . 186
6.2.1 Methodology . 186
6.2.2 Properties . 187
6.2.3 Strengths, weaknesses and perspectives 187

6.3 Links with the Theory of Online Learning 188
6.4 Links with Domain Adaptation and Transfer Learning 189

List of Figures

1 Le processus d’apprentissage en ligne. xt représente un vecteur d’entrée,
ỹt est la sortie prédite par le système d’apprentissage et yt la valeur réelle. 2

2 A gauche, un concept représenté par un cercle. Les exemples sont classi-
fiés en deux classes: l’intérieur et l’extérieur du cercle. Droite: le cercle
évoluant avec le temps, créant une dérive de concept. 8

2.1 The bias-variance tradeoff . 17
2.2 Example of a local drift. 23
2.3 Example of a gradual drift with drifting time of 100 time steps. The

functions vo(t) and vn(t) represent the probability that an example from
the old and new concepts, respectively, will be presented. 24

2.4 Left, a concept represented by a circle. The examples are classified into
one of two classes: inside, outside the circle. Right, the circle moving with
time, creating concept drifts. 25

2.5 Different properties of concept changes. The x -axis represents time while
the y-axis shows differents concepts (according to the concept color). . . . 26

2.6 The workflow of an online learning system 28

3.1 The poisson distribution using different λ values. 57

4.1 The mean classification error using different deletion sizes. The error is
averaged over several experiments on the Line, SineH and Circle datasets. 70

4.2 The online performance on the databases of the SineH problem using
different deletion sizes and using support vector machines as base learners,
with N=10 (top) and N=20 (bottom). The x-axis represents the training
examples (time step) and the y-axis represents the online classification
performance (the percentage of correctly classified instances so far). The
online performance is reset at time step 1, 000 when the concept changes. 73

4.3 The online performance on the databases of the Line problem using dif-
ferent deletion sizes and using decision trees as base learners, with N=10
(top) and N=20 (bottom). The x-axis represents the training examples
(time step) and the y-axis represents the online classification performance
(the percentage of correctly classified instances so far). The online perfor-
mance is reset at time step 1, 000 when the concept changes. 74

4.4 The online performance on the databases of the Circle problem using dif-
ferent deletion sizes and using neural networks as base learners, with N=10
(top) and N=20 (bottom). The x-axis represents the training examples
(time step) and the y-axis represents the online classification performance
(the percentage of correctly classified instances so far). The online perfor-
mance is reset at time step 1, 000 when the concept changes. 75

vii

List of Figures viii

4.5 DACC: We show in blue the maximum weight in the committee and in gray
the percentage of classifiers selected for the committee’s final prediction
when using the MAX function. Top: the 9 datasets of the Circle problem.
Bottom: the datasets of the SineH problem. 84

4.6 DACC: We show in blue the maximum weight in the committee and in gray
the percentage of classifiers selected for the committee’s final prediction
when using the MAX function. Top: the 9 datasets of the Line problem.
Bottom: the datasets of the Boolean problem. 85

4.7 DACC: The Kappa-Error diagrams for the SineH problem with a com-
mittee of size 20 and a support vector machine (SVM) in the pool of
predictors. The x-axis represents the kappa value of the pairs of classifiers
and the y-axis is the product of their classification error on a test set. . . 90

4.8 The drift scenario described in Section 4.3.9 91
4.9 DACC: The memory size on the Boolean problem with a committee of size

30 and a decision tree in the pool of predictors. The pair (Sp,S) denotes
the speed and severity levels of the concept drift, which ranges from Low,
to Medium and High. 92

4.10 DACC: The memory size on the SineH problem with a committee of size
30 and a support vector machine in the pool of predictors. The pair (Sp,S)
denotes the speed and severity levels of the concept drift, which ranges
from Low, to Medium and High. 92

4.11 DACC: The memory size on the Line problem with a committee of size
30 and a decision tree in the pool of predictors. The pair (Sp,S) denotes
the speed and severity levels of the concept drift, which ranges from Low,
to Medium and High. 93

4.12 DACC: The memory size on the Circle problem with a committee of size
30 and a decision tree in the pool of predictors. The pair (Sp,S) denotes
the speed and severity levels of the concept drift, which ranges from Low,
to Medium and High. 93

4.13 The drift scenario described in Section 4.3.10.1 95
4.14 DACC: The effect of maturity age on the 9 datasets of the Line problem

with a committee of size 20 using decision trees as base learners. From
top to bottom: the online error, the mean age of the committee members
and the classification mean error. 97

4.15 DACC: The effect of maturity age on the 9 datasets of the Line problem
with a committee of size 30 using perceptrons as base learners. From top
to bottom: the online error, the mean age of the committee members and
the classification mean error. 98

4.16 DACC: The mean classification error depending on the maturity age. The
mean is computed over three time periods: before, during and after the
drift. 99

4.17 DACC: The online performance on three of the databases of the Plane
problem using different pools of predictors. The online performance is
reset at time step 500, when the concept changes. The pair (Sp,S) denotes
the speed and severity levels of the concept drift, which ranges from Low,
to Medium and High. 101

4.18 DACC: The mean classification error depending on the committee size.
The mean is computed over three time periods: before, during and after
the drift. 102

List of Figures ix

4.19 DACC: The online performance on databases from the Boolean (left) and
Circle (right) problems using different committee sizes. The online per-
formance is reset when the concept changes. The pair (Sp,S) denotes the
speed and severity levels of the concept drift. The maturity age and the
evaluation size are set to τmat = τeval = 20 and the base learners are
decision trees. 103

4.20 DACC: The online performance on a database from the Circle problem
using different combinations of the maturity age and the committee size.
The online performance is reset when the concept changes. The pair (Sp,S)
denotes the speed and severity levels of the concept drift. The evaluation
size is set to τeval = 20 and the base learners are decision trees. 103

4.21 The mean classification error of DACC, TDS, the perfect forgetter and the
noDriftHandler, before, during and after the drift, as calculated on the
datasets of the artificial problems: SineH, Circle, Line, SineV , Boolean
and Plane. 106

4.22 DACC vs TDS: The online performance on the databases of the Boolean
problem. The experts are lossless decision trees and N = 30. The x-
axis represents the training examples (time step) and the y-axis represents
the online classification performance (the percentage of correctly classified
instances so far). The online performance is reset at time step 500 when
the concept starts changing. 110

4.23 DACC vs TDS: The online performance on the databases of the Circle
problem. The experts are lossy feedforward neural networks and N =
20. The x-axis represents the training examples (time step) and the y-
axis represents the online classification performance (the percentage of
correctly classified instances so far). The online performance is reset at
time step 1, 000 when the concept starts changing. 110

4.24 DACC vs TDS: The online performance on the databases of the SineH
problem. The experts are lossless decision trees and N = 20. The x-
axis represents the training examples (time step) and the y-axis represents
the online classification performance (the percentage of correctly classified
instances so far). The online performance is reset at time step 1, 000 when
the concept starts changing. 111

4.25 DACC vs CDC: a performance comparison on the STAGGER artificial
dataset. The x-axis represents the training examples (time step) and the
y-axis represents the percentage of classification accuracy on a test set
labeled according to the underlying target concept of the training example. 117

4.26 DACC vs CDC: a performance comparison on the FLORA artificial dataset,
with a medium speed of change. The x-axis represents the training exam-
ples (time step) and the y-axis represents the percentage of classification
accuracy on a test set labeled according to the underlying target concept
of the training example. 118

4.27 DACC vs CDC: a performance comparison on the FLORA artificial dataset,
with a slow speed of change. The x-axis represents the training examples
(time step) and the y-axis represents the percentage of classification ac-
curacy on a test set labeled according to the underlying target concept of
the training example. 118

List of Figures x

4.28 DACC vs CDC: a performance comparison on the STAGGER dataset (up-
per figure), and the FLORA datasets with medium (middle figure) and
slow (bottom figure) speed of change. The x-axis represents the training
examples (time step) and the y-axis represents the percentage of classifi-
cation accuracy on a test set labeled according to the underlying target
concept of the training example. We plot the mean predictive accuracy
along with the standard deviation, as DACC and CDC are evaluated over
10 instantiations of the artificial datasets. 119

4.29 DACC vs CDC: the online classification performance on the Saarbrücken
laboratory of the COLD database. The online performance is reset with
each visited place. 121

4.30 DACC vs CDC: the time step at which an expert is removed from the
committee, when testing DACC and CDC on the Saarbrücken laboratory
of the COLD database. The vertical dotted lines represent a new visited
place. 121

4.31 The online classification performance of DACC, DDD, EDDM, DWM and
a no drift handling approach on a selected number of datasets from the
Boolean, Plane and Circle artificial problems. 126

4.32 The mean classification accuracy (in percentage) of different online sys-
tems using Hoeffding trees as base learners. 131

4.33 The mean classification accuracy (in percentage) of different online sys-
tems using Naive Bayes learners. 132

5.1 The data of the 11 consecutive concepts of Stream1. The data are sepa-
rated into 2 classes depending on the parameters of the current concept. . 138

5.2 The parameters of the evolving concepts of Stream1. 138
5.3 The online classification performance of DACC on Stream1. The online

performance is reset each 500 timesteps, with each concept change. The
vertical bars represent the time steps at which concept changes occur. . . 139

5.4 The snapshots of the concepts as returned by DACCv1 on Stream1, using
different τdrift time steps, the period separating two consecutive snapshots.143

5.5 The online classification performance of DACCv1’s predicted snapshots
on Stream1, using different τdrift time steps, the period separating two
consecutive snapshots. 144

5.6 We show the training process of the Elman network in DACCv2 when us-
ing feed-forward neural networks as base learners in the adaptive ensemble.
Accordingly, a snapshot is a feed-forward neural network represented by
a vector containing its weight values. The pairs of consecutive snapshots
are presented as training examples to the Elman network. 149

5.7 We show the prediction of the next snapshot using the Elman network
in DACCv2 when using feed-forward neural networks as base learners in
the adaptive ensemble. Accordingly, a snapshot is a feed-forward neural
network represented by a vector containing its weight values. By running
the Elman network on Ck, the network returns its prediction of the next
concept (snapshot) C̃k+1. 149

5.8 The time steps at which snaphots of concepts are taken by DACCv2 on
Stream1. 150

5.9 The snapshots of the most stable concepts of Stream1, as returned by
DACCv2. 150

List of Figures xi

5.10 The online classification performance of DACC and DACCv2 on Stream1.
The online performance is reset each 500 timesteps, with each concept
change. The vertical bars represent the time steps at which concept
changes occur. 150

5.11 The data of the 13 consecutive concepts of Stream2. The data are sepa-
rated into 2 classes depending on the parameters of the current concept. . 152

5.12 The parameters of the evolving concepts of Stream2. 152
5.13 The online classification performance of DACC and DACCv2 on Stream2.

The online performance is reset each 500 timesteps, with each concept
change. The vertical bars represent the time steps at which concept
changes occur. 153

5.14 Left: the snapshots of the stable concepts as stored in the list MLT by
DACCv2. Middle: the predicted concepts by the Elman network. Right:
a juxtaposition of both the snapshots and the predicted concepts. 153

5.15 The evolution of the six parameters of the concept described in experiment
5.1.3.2. 158

5.16 The online classification performance of DACC and DACCv3 on Stream2.
A committee of Elman networks is used in DACCv3 to predict upcom-
ing concepts. The online performance is reset each 500 timesteps, with
each concept change. The vertical bars represent the time steps at which
concept changes occur. 162

5.17 Left: the snapshots of the stable concepts as stored in the list MLT by
DACCv3. Middle: the predicted concepts by the committee of Elman
networks. Right: a juxtaposition of both the snapshots and the predicted
concepts. 162

5.18 The data of the 8 consecutive concepts of Stream3. The data are separated
into 2 classes depending on the parameters of the current concept. 164

5.19 The time steps at which snaphots of concepts are taken by DACCv4 on
Stream3. 165

5.20 The online classification performance of DACC and DACCv4 on Stream3.
The online performance is reset each 500 timesteps, with each concept
change. The vertical bars represent the time steps at which concept
changes occur. 165

5.21 A typical evolution in the weight values of the hyperplane used in the
artificial datasets. 169

5.22 The evolution of the stability index for 10-dimensional artificial data streams
(top three figures) and the robot data stream (last figure). We show the
time steps where candidate snapshots are considered (small squares), and
when they are retained (red squares). A candidate snapshot must have a
stability index larger than θi, and in order to be retained, it must differ
from the last retained snapshot, according to a decision threshold θd. First
three plots: plot (top) corresponds to high severity concept change, plot
(middle) to medium severity, and plot (bottom) to low severity. 173

List of Figures xii

5.23 The online predictive performance for 10-dimensional artificial data streams
(top three figures) and the robot data stream (last figure), using the adap-
tive learning strategy (continuous, blue, line) and with the second order
learning taking place. The experiments are averaged over 10 repeated sim-
ulations. The beginning/end of concept changes are indicated as vertical
dotted lines. In case of gradual concept changes, the transition period be-
tween consecutive concepts is colored in gray. The online predictive perfor-
mance is reset once a transition is complete. First three plots: plot (top)
corresponds to high severity concept changes, plot (middle) to medium
severity, and plot (bottom) to low severity. 174

5.24 (Top) The classification accuracy of ADACC, DACC, LBAG and EDDM
on STAGGER, averaged over sliding windows of size 1,000. (Bottom) The
evolution of the stability index on STAGGER. 179

List of Tables

2.1 Minku’s artificial problems . 39
2.2 IRIS and CAR semi-artificial datasets. Rounded percentage of examples

of each class in the original database and concepts (Ci) used to create the
drifting datasets. For instance, the class Versicolour has its label changed
from 2 to 1 then back to 2. 41

2.3 Stream datasets . 44

3.1 Properties of online ensemble methods . 59

4.1 The parameter of DACC . 113
4.2 DACC vs CDC: The mean classification error computed over the experi-

ments of Section 4.4.1, along with the predefined parameter values, with
τmat = τeval. 122

4.3 The parameter description of the approaches discussed in Section 4.4.2. . . 124
4.4 The parameters choice of DDD, EDDM and DWM for the artificial datasets.

W = 1, λl = 1 and θ = 0.01 were fixed. 124
4.5 The parameters choice of DACC for the artificial datasets. 124
4.6 The type of decision trees used in the ensemble approaches discussed in

Section 4.4.2, along with the maximum ensemble size. 126
4.7 The parameter description of the approaches discussed in Section 4.4.3. . . 128
4.8 The parameter values for preliminary experiments. For simplicity, we set

τmat = τeval for DACC. 130
4.9 The parameter values chosen according to the preliminary experiments,

using Hoeffding trees as base learners. 130
4.10 The parameter values chosen according to the preliminary experiments,

using Naive Bayes learners. 130
4.11 The processing time (in CPU seconds) of the ensemble methods averaged

over the preliminary experiments on all datasets explained in Section 4.4.3. 132

xiii

List of Tables xiv

5.1 The prediction results with different predictor types and ensemble sizes,
using the ensemble of predictors. Exp is the index of the experience. 1
EL stands for one Elman neural network and 3 PR stands for three poly-
nomial regression models with degree 1,2 and 3 respectively. During the
experiments, we predict the parameters of 250 concepts. For each pre-
diction, we compute the prediction MSE: the mean square error between
the predicted values and the real values. The S_b_O MSE is the per-
centage of time our prediction MSE is smaller than the simple prediction
MSE. The S_b_O MSE ratio is the ratio between the simple prediction
MSE and our prediction MSE, when our prediction MSE is smaller than
the simple prediction MSE. The S_O MSE ratio is the ratio between the
simple prediction MSE and our prediction MSE. 159

5.2 The prediction results using predictors with a fixed size history. Exp is
the index of the experiment. Predictor is the type of predictor used in the
experiment; 1 EL stands for one Elman neural network. History Size is the
fixed history size of the predictor. The last three columns are explained
in Table 5.1. 160

5.3 Summary of the experiments and the measured gains in prediction errors
wrt. an adaptive only strategy. 171

5.4 The accuracy, precision, and recall (in %) along with the execution time
(in CPU seconds) of the different approaches on the ELIST dataset using
Naive Bayes classifiers as base learners. 178

5.5 The accuracy, precision, and recall (in %) along with the execution time
(in CPU seconds) of the different approaches on the SPAM dataset using
Naive Bayes classifiers as base learners. 178

5.6 The accuracy, precision, and recall (in %) along with the execution time
(in CPU seconds) of the different approaches on the STAGGER dataset
using Naive Bayes classifiers as base learners. 178

5.7 The effect of the conceptual equivalence threshold on ADACC with θI =
0.8. 180

5.8 The effect of the stability index threshold on ADACC with θd = 0.7. . . . 180

Resumé

Les années récentes ont connu l’émergence d’applications de flux de données où les don-

nées d’apprentissage sont reçues sous la forme d’un flux infini, et les prédictions sont faites

à la volée. Des exemples de telles applications comprennent entre autres les systèmes

de gestion de l’énergie électrique, l’analyse du panier de consommation, les systèmes de

filtrage du spam et les prévisions météorologiques.

Les méthodes d’apprentissage automatique classiques ont été utilisées avec succès pour

induire une fonction de classification (un concept) à partir des batchs statiques de don-

nées [14]. Cependant, les applications de flux de données ont introduit de nombreux défis

que les méthodes classiques n’ont pas été conçues pour traiter. En premier lieu, les flux de

données ne peuvent pas être stockés ou retraités, en raison de contraintes en terme de mé-

moire et de temps d’exécution. Deuxièmement, contrairement au cadre d’apprentissage

classique, l’utilisation de la fonction de classification ne peut pas attendre jusqu’à ce que

la phase d’apprentissage soit terminée, car le flux de données d’apprentissage pourrait

être sans fin. Par conséquent, la fonction de classification induite devrait pouvoir être

utilisée à tout instant, tout en étant mise à jour avec chaque nouvelle information reçue

du flux. Enfin, la théorie classique de l’apprentissage automatique, basée sur l’hypothèse

que les données d’apprentissage sont indépendantes et identiquement distribuées, n’est

généralement pas valide dans les cas des flux de données. Les données d’apprentissage

reçues peuvent dépendre du temps, et l’environnement sous-jacent peut évoluer, mo-

difiant ainsi la distribution sous-jacente des données d’apprentissage, créant une dérive

de concept [101]. Dans les systèmes de filtrage de spam, par exemple, le concept classe

les emails en catégories : spam ou non-spam en fonction de leur contenu. Le concept est

susceptible de devenir moins précis avec le temps vu que les spammeurs tentent constam-

ment de tromper ces systèmes en modifiant les propriétés statistiques de la catégorie des

spams.

1

Resumé 2

Environment
learning

model

xt

ỹt

yt

Figure 1: Le processus d’apprentissage en ligne. xt représente un vecteur d’entrée, ỹt
est la sortie prédite par le système d’apprentissage et yt la valeur réelle.

L’apprentissage à partir de flux de données est réalisé par des méthodes d’apprentissage

en ligne (voir Figure 1). Lors de l’apprentissage en présence de dérive de concept,

une préoccupation centrale est d’optimiser un compromis entre l’apprentissage à par-

tir d’autant de données possibles, afin d’obtenir le modèle de classification le plus précis;

et la reconnaissance des données obsolètes et potentiellement trompeuses, empêchant

l’adaptation aux nouvelles tendances. Ce compromis est connu sous le nom de dilemme

stabilité-plasticité [31, 64]. La stabilité requiert l’accumulation de connaissances sur le

concept sous-jacent supposé stationnaire, alors que la plasticité nécessite d’oublier la

totalité ou une partie des anciennes connaissances acquises afin d’apprendre le nouveau

concept à venir.

Les dérives de concept sont communes considérant des flux de données infinis et des tâches

d’apprentissage de longue durée. Les travaux récents se sont focalisé sur la détection

des changements de concept ainsi que les meilleures approches permettant d’adapter

le système d’apprentissage aux changements. Par conséquent, les approches courantes

attendent passivement que les changements de concept surviennent plutôt que de prédire

pro-activement ce qui est susceptible de se produire.

Nous soutenons que, dans ce contexte, l’adaptation passive aux changements peut ne

pas être la meilleure stratégie d’apprentissage. Il peut être possible de profiter de

l’information présente dans la séquence de données. Par exemple, les erreurs de clas-

sification coûteuses peuvent êtres évitées en reconnaissant une situation récurrente ou en

anticipant l’évolution probable à venir. L’adaptation passive et l’anticipation pro-active

sont des approches non contradictoires qui peuvent potentiellement fonctionner simul-

tanément. Néanmoins, elles exigent différentes stratégies d’apprentissage. Alors que

l’adaptation implique l’oubli d’informations périmées, l’anticipation nécessite de garder

des traces du passé afin de prédire l’avenir.

Resumé 3

Dans cette thèse, nous présentons DACC (Dynamic Adaptation to Concept Changes),

une méthode d’ensemble conçue pour l’apprentissage à partir de flux de données avec

adaptation aux changements de concepts. Notre méthode adaptative est ensuite couplée

avec un mécanisme d’anticipation des concepts futurs ; le système résultant est nommé

ADACC (Anticipative and Dynamic Adaptation to Concept Changes).

DACC

Avant de concevoir une nouvelle méthode d’adaptation, nous étudions dans un premier

temps les méthodes d’ensemble capables d’apprendre en présence de changements de con-

cepts. Elles présentent deux stratégies principales pour oublier les informations obsolètes

dans un environnement en évolution: (a) la suppression d’apprenants ayant une perfor-

mance prédictive médiocre selon un seuil prédéfini, et (b) la suppression périodique de

l’apprenant le moins performant de l’ensemble.

Dans les deux cas, les apprenants supprimés sont remplaçés par de nouveaux apprenants

n’ayant aucune mémoire du passé. Alors que les anciens apprenants sont fiables dans

un environnement stable, les plus jeunes sont plus efficaces confrontés aux périodes de

changement.

Notre analyse des deux stratégies montre qu’une connaissance préalable de la dynamique

de l’environnement est nécessaire afin de faire le choix du seuil de suppression pour la

méthode (a) ou la fréquence de suppression pour la méthode (b). Un choix inadapté des

valeurs des paramètres peut engendrer des résultats indésirables, affectant la stabilité de

l’ensemble ou sa plasticité vis a vis d’un changement de concept potentiel.

Ce travail de thèse a été motivé par la nécessité d’atténuer l’effet des connaissances a

priori. Nous nous sommes concentrés sur la stratégie (b) afin d’éviter de trouver une

valeur de seuil appropriée. Néanmoins, le choix de la fréquence de suppression fdel pour

la stratégie (b) ne va pas sans difficultés. Une valeur élevée de fdel prône la suppression

des apprenants jeunes si ces derniers n’ont pas eu le temps de capturer les régularités

dans l’environnement. Ceci entrave la capacité du système à s’adapter aux changements

de concept potentiels. La valeur de fdel ne peut pas être relativement faible, sinon le

système perd toute plasticité.

La question est alors de savoir s’il est possible de supprimer des apprenants de l’ensemble

de manière fréquente, en prévision d’un changement de concept, tout en gardant les jeu-

nes apprenants lors d’un changement de concept éventuel. Pour résoudre ce problème,

nous proposons une stratégie de suppression qui, au lieu de supprimer l’apprenant le

Resumé 4

moins performant de l’ensemble, supprime un apprenant au hasard parmi les ds ap-

prenants les moins performants, et ceci, dans le but d’augmenter l’espérance de survie

des jeunes apprenants lorsque la fréquence de suppression fdel est élevée. Choisir la

valeur de ds reste cependant un defi. De grandes valeurs de ds augmentent l’espérance

des jeunes apprenants à survivre mais risquent également de supprimer les “ bons ap-

prenants” de l’ensemble, affectant ainsi la stabilité du système. De faibles valeurs de ds

favorisent la suppression des jeunes apprenants, affectant par conséquent la plasticité du

système. D’après une étude expérimentale, une valeur de ds qui est égale à la moitié

de la taille de l’ensemble offre un bon compromis. La nouvelle stratégie de suppression

constitue la base d’une nouvelle méthode d’ensemble en ligne appelée DACC.

Propriétés

DACC s’adapte aux changements de concept en utilisant un comité dynamique et di-

versifié d’apprenants. Le comité est dynamique car il se met à jour en permanence en

supprimant les apprenants les moins performants et en ajoutant de nouveaux apprenants.

Le comité est aussidiversifié car constitué de différents types d’experts ou d’apprenants

(réseaux de neurones, modèles de régression polynomiale, machines à vecteurs de sup-

port, etc ..). En ajoutant et supprimant des membres de l’ensemble, les apprenants sont

entraînés sur des fenêtres de données d’apprentissage différentes. Ainsi, DACC gère indi-

rectement la mémoire du passé des apprenants, ce qui lui permet de traiter implicitement

le dilemme stabilité-plasticité. Cet avantage ne peut être obtenu avec un seul apprenant

entraîné sur une fenêtre d’apprentissage de taille fixe.

Contrairement aux méthodes d’ensemble traditionnelles où le comité est composé d’experts

faibles qui apprennent le même concept et coopèrent pour donner la prédiction finale [77],

DACC est un mélange d’une stratégie compétitive et coopérative entre experts qui pour-

raient être formés sur des données provenant de concepts différents. D’une part, les

experts sont en concurrence pour ne pas être supprimés de l’ensemble. D’autre part, les

meilleurs apprenants coopèrent en votant pour la prédiction finale de l’ensemble. Deux

fonctions de combinaison de votes sont utilisées: MAX et WVD. Dans les deux cas, les

apprenants sont évalués selon leur performance prédictive sur les données récentes et

des poids leur sont accordés. La fonction MAX applique un vote majoritaire entre les

apprenants ayant la meilleure valeur de poids alors que la fonction WVD applique un

vote pondéré entre les apprenants faisant partie de la meilleure moitié de l’ensemble.

Alors que MAX ne prend en compte que les prédictions des meilleurs, excluant le vote

des apprenants obsolètes en cas de dérive de concept, WVD conduit à une performance

prédictive plus stable dans un environnement bruité.

Resumé 5

Les résultats expérimentaux montrent que notre approche permet de surmonter beaucoup

de difficultés communes rencontrées dans les méthodes d’ensemble courantes conçues

pour s’adapter aux dérives de concept. Les principaux avantages de DACC comprennent:

Une connaissance a priori minimale de la dynamique de l’environnement

Contrairement à beaucoup d’approches, DACC ne s’appuie pas sur une valeur de seuil

pour décider si un apprenant est adapté au concept courant ou s’il est obsolète et doit

donc être supprimé. Ceci évite de choisir une valeur de seuil adaptée qui dépend évidem-

ment des propriétés du changement de concept telles la vitesse du changement ou sa

sévérité.

Nous montrons que DACC, étant moins sensible à ses paramètres prédéfinis, peut s’adapter

à une large variété de changements de concept, tout en fixant les mêmes valeurs de

paramètres.

Le transfert de connaissances

DACC ne supprime pas tous ses experts à la fois lorsqu’une dérive de concept se pro-

duit. Une période de 1/fdel sépare deux suppressions consécutives ce qui garantit que

l’ensemble ne peut être réinitalisé avant au moins N/fdel pas de temps, où N représente

le nombre d’apprenants dans l’ensemble. Ceci permet à l’ensemble de transférer ses

connaissances acquises de l’ancien concept au nouveau lorsqu’une dérive de concept se

produit, et si le changement de concept est lent et continu, DACC peut toujours faire

des prédictions sur les instances de l’ancien concept durant la dérive.

Adaptation rapide aux changements

DACC met à jour son ensemble de manière fréquente, supprimant constamment des

apprenants, indépendamment de l’état de l’environnement : stable ou en évolution. Dans

certains cas, cela conduit à une adaptation rapide au changement de concept comparée

aux autres approches classiques qui attendent que la performance d’un apprenant soit

assez faible, ou que le système de détection de changement “ressente” la dérive de concept,

avant de décider d’effectuer une mise à jour du système d’apprentissage.

Resumé 6

Des niveaux de diversité dynamiques

Les niveaux de diversité au sein du comité d’apprenants évoluent dynamiquement avec

le temps. Lorsque le concept est stable, les meilleurs apprenants, n’étant pas supprimés

de l’ensemble, affinent leur connaissance du concept cible sous-jacent, convergeant ainsi

vers une performance prédictive presque maximale. Ceci se traduit par un niveau de

diversité faible parmi les meilleurs apprenants, à l’opposé de la moitié la moins per-

formante de l’ensemble qui, subissant des opérations de suppression fréquentes en vue

d’un changement de concept, a un niveau de diversité élevé. Lorsque le concept évolue,

la diversité augmente chez tous les apprenants. Les anciens apprenants, jadis perfor-

mants, deviennent obsolètes et sont par conséquent remplacés par de nouveaux. Le

groupe d’apprenants se restabilise et les niveaux de diversité reprennent la forme ex-

pliquée précédente (le cas de stabilité).

Les niveaux implicites de diversité dans DACC permettent aux apprenants ayant un

niveau de diversité faible de faire des prédictions sur le concept stable courant, et aux

apprenants ayant un niveau de diversité important d’être prêts à tout changement de

concept. Le suivi de l’évolution des niveaux de diversité dans l’ensemble permettra au

système de méta-apprentissage anticipatif ADACC de détecter les états de stabilité de

l’environnement; nous l’expliquerons plus loin dans la section sur ADACC.

Forces, faiblesses et perspectives

Un grand nombre de méthodes en ligne s’appuie sur une valeur de seuil pour s’adapter aux

changements de concept. La valeur de seuil est généralement utilisée soit pour décider si

un apprenant est obsolète et devrait donc être supprimé, ou pour détecter un changement

de concept de manière explicite en surveillant, par exemple, la performance prédictive de

l’ensemble. Dans tous les cas, la valeur de seuil joue un rôle important dans la capacité du

système à s’adapter à la dynamique de l’environnement. En revanche, DACC supprime

des apprenants fréquemment de l’ensemble, sans analyser si le concept cible sous-jacent

est stable ou en évolution. Ainsi, contrairement aux autres méthodes d’ensemble, DACC

n’est pas confronté au problème de non-adaptation aux changements ; il existe toujours

des jeunes apprenants dans l’ensemble prêts à apprendre le nouveau concept.

Grâce à la suppression fréquente des apprenants, DACC s’adapte généralement plus

rapidement aux changements de concept comparé à ses concurrents. Néanmoins, la

réactivité de DACC n’est pas aussi rapide que celle des systèmes utilisant un mécanisme

explicite de détection de changements de concept, et ceci dans le cas particulier où le

changement est sévère et soudain ce qui est généralement plus facile à détecter. Une des

Resumé 7

orientations futures possibles est de combiner notre ensemble adaptatif avec un ensemble

utilisant un mécanisme de détection de changements, afin de tirer profit des avantages

des deux approches tout en atténuant leurs inconvénients.

Lors de d’apprentissage à partir de flux de données, DACC donne la même importance

aux exemples de chaque classe, faisant donc l’hypothèse que les classes sont équilibrées.

Selon les résultats empiriques, ceci conduit à des difficultés lors de l’apprentissage en

présence de classes déséquilibrées. Une solution possible consiste à échantillonner la(les)

classe(s) minoritaire(s) et/ou de sous-échantillonner la(les) classe(s) majoritaire(s) afin de

surmonter le déséquilibre. Ceci peut être réalisé, par exemple, en pondérant les exemples

d’apprentissage de manière inversement proportionnelle à la fréquence observée de leur

classe, donnant ainsi plus d’importance aux classes minoritaires.

Enfin, les résultats empiriques montrent que le temps d’exécution de DACC se compare

favorablement à d’autres méthodes d’ensemble. Cependant, vu que les apprenants dans

l’ensemble sont évalués et mis à jour indépendamment l’un de l’autre, il reste possible

de paralléliser DACC afin d’accélérer son exécution.

ADACC

Dans ADACC, nous allons plus loin en introduisant un mécanisme d’anticipation qui

garde en mémoire la trace des différents concepts stables rencontrés lors du streaming

continu des données. Notre objectif est de profiter des changements dans l’environnement

afin de prévoir le futur, nous permettant ainsi d’agir pro-activement face aux change-

ments, plutôt que de s’y adapter passivement comme le fait la majorité des méthodes

d’apprentissage en ligne. Nous nous sommes intéressés à deux cas particuliers:

• la récurrence: la réutilisation de concepts appris précédemment quand ils réappa-

raissent

• la prédictabilité: la prédiction de concepts futurs probables par l’analyse de l’évolution

du concept cible sous-jacent (voir Figure 2).

La récurrence et la prédictabilité nécessitent que l’histoire passée des concepts stables

soit capturée. L’utilisation d’un mécanisme de détection de changements est un moyen

possible d’identification des différents concepts. Toutefois, ces mécanismes sont connus

pour avoir des difficultés à détecter des changements de concept lents tout en étant

robustes aux fausses alarmes ; ils ont par conséquent été évités dans ce travail.

Resumé 8

x1

x2

C1

x1

x2

C1

C1

C1

Figure 2: A gauche, un concept représenté par un cercle. Les exemples sont classifiés
en deux classes: l’intérieur et l’extérieur du cercle. Droite: le cercle évoluant avec le

temps, créant une dérive de concept.

Afin d’identifier les concepts stables, nous définissons une mesure de stabilité relative

aux apprenants adaptatifs dans l’ensemble. Lorsque le concept a été stable pendant

une période relativement longue, la performance prédictive des meilleurs apprenants

adaptatifs converge vers une valeur presque maximale et leur diversité tend à diminuer.

Lorsque la stabilité est suffisante, un “ snapshot” du concept actuel est conservé en

mémoire. Il s’agit d’une copie de l’apprenant ayant le poids le plus important dans

l’ensemble, celui qui semble le mieux représenter le concept cible sous-jacent. Ainsi, la

mesure de stabilité que l’on définit prend en compte à la fois la diversité des apprenants

et leur performance prédictive.

La liste des snapshots stockée sert à deux fins. Tout d’abord, elle fournit une séquence de

modèles successifs de l’environnement qui peut être analysée afin de prédire le concept

suivant. Deuxièmement, elle garde en mémoire les anciens concepts dans le cas où l’un

d’entre eux réapparaîtrait.

Propriétés

La contribution principale de ADACC repose sur:

• l’utilisation d’une mesure de stabilité qui surveille l’ensemble adaptatif

• la mémoire des concepts significatifs appris par l’ensemble adaptatif

Le mécanisme anticipatif est complètement intégré dans le fonctionnement de la méthode

d’ensemble adaptative. Ainsi, les snapshots sont évalués tout comme les apprenants

Resumé 9

adaptatifs et leurs prédictions sont prises en compte suivant la fonction de combinaison

utilisée. En utilisant la fonction MAX, un snapshot est utilisé si son poids est le meilleur

parmi les autres apprenants adaptatifs et les autres snapshots.

Notre évaluation empirique explore diverses conditions d’évolution de concept dans des

flux de données. Nous montrons que plus les changements de concept sont importants,

plus les gains en performance prédictive sont grands en utilisant l’anticipation, comparée

à l’utilisation d’un système adaptatif seul. En outre, le système anticipatif ne peut ja-

mais détériorer les performances de prédiction. Dans le pire des cas, la performance

prédictive de ADACC est égale à celle de DACC. Des expériences sur des jeux de don-

nées benchmark, réels et artificiels, ainsi que des comparaisons avec différents systèmes

d’apprentissage en ligne montrent que ADACC améliore la performance prédictive de

DACC, surperformant ses concurrents étudiés.

Forces, faiblesses et perspectives

ADACC est un cadre général qui dote les méthodes d’ensemble adaptatives d’un méca-

nisme d’apprentissage de second ordre.

ADACC garde en mémoire la liste des snapshots des concepts stables rencontrés jusqu’à

présent. Les snapshots mémorisés dépendent principalement de deux paramètres prédéfi-

nis: un seuil de stabilité θi pour décider si l’environnement est “assez” stable, et un seuil

d’équivalence de concept θd permettant d’éviter de stocker deux représentations con-

sécutives redondantes du même concept cible. En choisissant une valeur élevée de θi,

le système risque de négliger un snapshot. Ainsi, au moment de choisir les valeurs des

paramètres, nous nous assurons que la valeur de θi n’est pas très élevée. Le risque restant

serait de stocker des snapshots redondants. Confrontés au cas de la récurrence de con-

cepts, la présence de snapshots redondants ne nuit pas à la performance prédictive de

ADACC. Toutefois, lorsqu’il s’agit de la notion de prédictabilité, les snapshots redondants

seront considérés comme du bruit lors de l’analyse de la séquence des soi-disant concepts

différents dans la liste. Cela signifie que les valeurs de seuils n’ont pas besoin d’être

finement réglées pour le cas de la récurrence en contraste avec le cas de la prédictabilité,

qui peut nécessiter une connaissance préalable de l’évolution de l’environnement afin

d’éviter le bruit. Cependant, comme mentionné précédemment, ADACC peut seulement

apporter un gain à la stratégie d’adaptation. Par conséquent, même lorsque les valeurs

des paramètres ne sont pas adaptées, le pire scénario pour ADACC est d’avoir la même

performance prédictive que l’ensemble adaptatif de DACC.

Toutes nos expériences concernant la prédictabilité des concepts futurs ont été appliquées

sur des jeux de données artificielles, afin de simuler des changements de concepts réguliers.

Resumé 10

Il serait d’autant plus intéressant d’étudier des scénarios de la vie réelle où le concept

cible sous-jacent évolue de façon régulière selon une fonction d’évolution particulière,

bénéficiant ainsi de l’approche de prédiction anticipative. Une amélioration importante

de ADACC serait de trouver des moyens de garder constante la taille de mémoire des

snapshots mémorisés. Une voie prometteuse est de stocker les prototypes des snapshots

à la place des snapshots originaux, en utilisant une technique de clustering hiérarchique.

Enfin, une étude théorique de la performance prédictive du système confronté à différents

types de dérives de concepts sont des extensions possibles de ce travail.

Chapter 1

Introduction

In recent years, the domain of machine learning witnessed the emergence of data stream

applications where the training data are received in an infinite stream and predictions are

made on the fly. Examples of such applications include electricity management, market

basket analysis, spam filtering systems, weather prediction and news filtering systems,

among others.

Classical machine learning methods were successfully used to induce a classification func-

tion (a concept) out of static batches of data [14]. However, faced with data streaming

applications, the classical methods were confronted with many challenges they were not

designed to handle. First, streaming data cannot not be stored or reprocessed, due to

memory and time constraints to allow real-time processing. Secondly, unlike classical

learning framework, the use of the classification function cannot wait until the learning

phase is over, as the stream of training data might be endless. Hence, the induced func-

tion should give answers in an any time fashion, while updating itself with each received

information from the stream. Finally, the theory of classical machine learning, based on

the assumption that the training data are independent and identically distributed, does

not generally hold in data streams. The streaming data can be time-dependent and the

underlying environment can evolve with time, changing the underlying distribution of

the training data.

Learning from streams [36] is usually treated using online machine learning techniques.

Aside from the challenges presented above, online learning methods are faced with the

problem of concept drift where the underlying target concept (represented by the distri-

bution of the streaming data) evolves time [101]. When learning under concept drift, one

central concern is to optimize a tradeoff between learning from as much data as possible,

in order to get the most precise classification model, while at the same time recognizing

when data points become obsolete and potentially misleading, impeding the adaptation

11

Chapter 1. Introduction 12

to new trends. This is known as the stability-plasticity dilemma [31, 64]. While stability

entails accumulating knowledge regarding the supposedly stationary underlying concept,

plasticity, however, requires forgetting some or all of the old acquired knowledge in order

to learn the new upcoming concept.

Concept drifts are common considering learning unending streams and long-life learning

tasks. Recent works focused on evolving concepts in case of non-stationary environments,

specially on how to detect concept changes and how to best adapt to them. Hence, they

passively wait for the changes to occur and then try to follow them as best as possible

rather than proactively predict what is likely to happen. In this context, passive adap-

tation to concept changes may not be the best learning strategy. Indeed, we may profit

from the information possibly conveyed by the very sequence of data. For instance, one

can gain precious time and avoid costly incorrect classifications by being able to recognize

a recurring situation or to anticipate the likely evolution to come along. Passive adap-

tation and pro-active anticipation are non-contradictory approaches that can potentially

operate simultaneously. Nevertheless, they require different learning strategies. While

adaptation entails forgetting outdated information, anticipation entails keeping traces of

the past in order to predict the future.

In this thesis, we first present an analysis of two main forgetting strategies used by online

ensemble methods to adapt to concept drifts: (a) deleting learners with poor predictive

performance, according to a preset threshold value, and (b) deleting periodically the

relatively worst learner in the ensemble. The analysis shows that strategy (a) requires

prior knowledge on the dynamics of the environment in order to choose an adapted

threshold value, while strategy (b) may result in rather unwanted behavior, affecting the

ability of the ensemble to adapt to new trends.

The analysis provides a base for a new forgetting strategy which deletes periodically

one learner chosen randomly from the worst half of the ensemble. According to our

study, this strategy corrects unexpected behaviors of (b). Empirical comparisons with a

representative method based on (a), shows that the new forgetting strategy overcomes

the difficulty of finding the appropriate threshold, and this on a large variety of concept

drifts, with several levels of severity and speed.

We then go one step further by introducing an anticipative mechanism that keeps in

memory the trace of the different stable concepts encountered during the data streaming.

This is realized by monitoring a stability measure relative to the adaptive ensemble

learners. The idea is that when the concept has been stable for a relatively long time,

the classification performance of the best adaptive learners will converge towards the

near maximal value and their diversity will tend to decrease. When stable enough, a

“snapshot” (copy) of the current concept is kept in memory. The list of stored snapshots

Chapter 1. Introduction 13

serves two purposes. First, it provides a sequence of successive models of the environment

that can be analysed to predict the upcoming concept. Second, it stores a memory of

old concepts in case a recurring concept can be recognized.

The thesis is organised as follows.

Chapter 2 describes the learning problem. The classical machine learning paradigm

is presented and the new challenges introduced by the data streaming applications are

discussed. This serves to introduce the framework of online machine learning along with

the different benchmark datasets used to evaluate online learning systems.

Chapter 3 describes the state-of-the-art in the area of online machine learning in the

presence of concept drifts. We provide a categorization of the drift handling strategies

and present briefly a number of online systems that will be used in our experimental

studies.

Chapter 4 starts with the description of the particular framework of online ensemble

methods that adapt to concept drifts without explictly using a drift detection system.

We then present an analysis of the main forgetting strategies used in this domain to deal

with the stability-plasticity dilemma. The analysis provides a base for a new adaptive

approach called DACC (Dynamic Adaptation to Concept Changes) with an enhanced

forgetting strategy to handle concept drifts. Experimental results on benchmark datasets

and extensive comparisons with state-of-the-art systems show that DACC adapts to a

variety of concept drifts with different levels of drift severity and speed.

Chapter 5 introduces the anticipative meta-learning mechanism that builds upon the

adaptive ensemble. The anticipative and adaptive approach are combined in a new

approach called ADACC (Anticipative and Dynamic Adaptation to Concept Changes).

Empirical results show the advantage of the meta-learning mechanism compared to a

mere adaptive strategy. Moreover, second order learning can never be detrimental to the

overall classification performance as compared to the adaptive only policy.

Chapter 6 summarizes our main contributions in the area of machine learning and

presents possible directions for future work.

Chapter 2

The Problem

2.1 Classical Supervised Machine Learning

The aim of machine learning methods is to extract valuable information out of a (large)

set of observations [14]. In case of supervised machine learning, an observation is repre-

sented by a pair consisting of an input vector and an output (target) value. The induced

information has the form of a function that identifies the relationship between the inputs

and their outputs.

Take for instance the task of classifying individuals into men and women. In this case,

two possible output values exist: man and woman, while the input space describes the

observed individuals. The input space can contain both real values (height, weight) and

discrete or categorical values (eye color).

The importance of the induced function lies in its ability of generalization i.e. its capacity

of predicting the outputs of new inputs variables. In our classification example, the

induced function can be used to predict whether a new individual is a man or a woman.

2.1.1 Scenario

In classical supervised machine learning, it is supposed that a stationary environment E

generates inputs x ∈ X that are independently and identically distributed (i.i.d.) accord-

ing to a static probability distribution P (x). An input x is a vector in a d-dimensional

feature space X; it is assigned a target value y ∈ Y according to an unknown probability

distribution function P (y|x). The target value y, also called the corresponding output,

class or label, can be represented as a multidimensional vector, in a more general formu-

lation. In a classification problem, y is a discrete value whereas in a regression problem

14

Chapter 2. Problem 15

y is a real value. The pair consisting of the feature vector and its target value (x, y) is

called an observation, an example or an instance.

Learning systems aim at identifying the relationship between the inputs x and their

corresponding target values y, and this by inducing:

1. the joint probability function P (x, y), or

2. a functional relationship h : x→ y which maps each input to a target value.

The first category of learning systems are called generative models [50] because they can

generate new observations according to the induced probability distribution function.

The second class of learning systems, which is our concern in this thesis, represents

discriminative models [50, 72].

Discriminative models suppose the existence of an unknown function f generating the

observations. Their goal is to induce a function h out of the observations that is as

“close” as possible to the unknown function f . The induced function h is usually called

a hypothesis, while the unknown function f is referred to as the real target function or

the underlying target function. In case of a binary classification task where the target

takes one of two possible values (y ∈ {0, 1}), the hypothesis is also called a concept.

Please note that, in this thesis, we use the term concept to refer to any induced function,

regardless of whether it was learnt from a generative or a discriminative model.

Classical learning systems undergo two separate phases: the learning and the predictive

phase. In the learning phase, the system induces a hypothesis out of the observations.

The observations, stored in a batch, can be processed multiple times by the learning

system. Then, once the hypothesis is learnt, comes the predictive phase during which the

system is used to predict the target values of new input variables. The observations used

in the learning and predictive phase are called training and testing examples, respectively.

2.1.2 Performance criterion

A learning system learns a hypothesis h ∈ H which given an input xi returns a predicted

target value ỹi. The hope is to find a hypothesis that gives correct predictions, not

only for the training examples used in the inductive learning process but also for testing

examples. The question is how to quantify the quality of an induced function h.

A function h giving correct predictions should get a high quality score. This score should

penalize wrong predictions. Thus, if ỹi 6= yi, the system pays the price of giving a wrong

prediction. The cost is a positive value defined by a loss function which describes the

Chapter 2. Problem 16

loss encountered by predicting ỹi = h(xi) instead of yi = f(xi). The expectation of loss

on all the possible pairs (x, y) ∈ X × Y , also known as the real risk [94], is defined as:

RReal(h) =

∫

Z=X×Y

l
(

yi, h(xi)
)

dP (x, y) (2.1)

This value can be seen as the risk of choosing the induced hypothesis h over the real

(unknown) target function f . It can be used as a measure of distance between the

induced function h and the reality.

2.1.3 Learning systems as optimization tools

Inducing a hypothesis h can be turned into an optimization problem that minimizes the

real risk defined in Equation 2.1. However, the dependency P (x, y) between the entries

and their labels is unknown. The only available information regarding P comes from a

limited set of observations, the training examples S =
{

(xi, yi)
}m

i=1
. Thus, instead of

minimizing the loss on the whole space X × Y , the loss is minimized on the training

data. The empirical risk [93] computed on the training data S is defined as follows:

REmp(h) =
1

m

m
∑

i=1

l
(

yi, h(xi)
)

(2.2)

If the training data are representative enough to infer a general claim describing the

world, then minimizing the loss on the empirical observations would also minimize the

real loss, but this, under three conditions:

• the training data are i.i.d.

• the size of the training data tends to infinity

• the hypothesis space is constrained1.

A large number of learning models induce a hypothesis by minimizing the empirical risk.

Examples of such learning models are decision trees, neural networks and support vector

machines.

2.1.4 The bias-variance tradeoff

Discriminative induction learning aims at approaching an unknown target function f ∈ F

by means of induction from a training set. In this section, we present the different factors
1This condition will be explained in the next section.

Chapter 2. Problem 17

Hypothesis complexity

variance

bias

real loss

optimum

Figure 2.1: The bias-variance tradeoff

that play into the distance between the induced function h and the real target function

f , regarded from the real risk perspective.

Bias

Since the target function is unknown, the space of functions H that is considered by the

learner may be different from the target function space F . As a result, even if the learner

finds h∗, the optimal hypothesis in H (the closest to f using the real risk as a distance

measure), h∗ can be far from the real target function f . This error which results from

the difference between H and F is known as the inductive bias. For instance, suppose

the target function f is a quadratic polynomial while the learner space is the set of all

the linear polynomials. The learner induces the hypothesis h∗ ∈ H. Even if h∗ is the

closest function to f belonging to the space of linear polynomials, the choice of linear

polynomials instead of quadratic polynomials introduces a bias error between h∗ and f .

Variance

In the above discussion, we supposed that the learner is able to find the optimal hypoth-

esis h∗ ∈ H. This however is not always possible. The induced hypothesis h is related

to the training set used in the induction process. Therefore, different training sets can

produce different hypotheses. The distance between the optimal hypothesis h∗ ∈ H and

the selected function h ∈ H is known as the variance error. Generally, the richer the

space of hypothesis H, the higher the variance. High variance means that minor changes

in the training data can lead to major changes in the induced hypothesis.

It is clear that in order to reduce the bias error, the learner should choose a richer

hypothesis space. However, a richer space H leads to a higher variance. Thus, reducing

the bias increases the variance and vice-versa [34, 57].

Chapter 2. Problem 18

2.1.5 Overfitting

As we saw in the previous section, the total distance between the induced function h

and the real target function f is a function of two errors: the bias and the variance.

The bias-variance tradeoff implies finding a compromise: either decrease the bias and

increase the variance or the opposite. We present here the effect of each choice.

Overfitting results from a high variance and a small bias, when the hypothesis space H

is very rich, often having too many parameters to adjust compared to the size of the

training data. In such case, the learning system “learns by heart” the training data with

a very poor capacity of generalization. Thus, the empirical loss on the training data is

low while the real loss on unseen data is high. Since, in this case, the empirical loss

is not representative of the real loss, the learning algorithms try to avoid overfitting by

constraining their hypothesis space.

Constraining the hypothesis space increases the empirical loss. However, it insures that

the empirical loss observed on the training data is representative of the real loss on test

examples, leading to a better estimation capacity of the real loss.

We show in Figure 2.1 the effect of the complexity of the hypothesis space on the bias

and variance errors, and as a result on the distance between the induced hypothesis

h and the real target function f . While a richer hypothesis space decreases the bias,

it also increases the variance. The optimal complexity of the hypothesis space is the

compromise of having a space constrained enough to allow for a good generalization, but

also rich enough to have a good predictive accuracy [51, 60].

2.1.6 Practical evaluation measures

It is important to estimate how accurately a predictive function h, induced by a learning

model, will perform in practice, that is to have an estimation of the real risk (see Equation

2.1). Generally, this is done using an empirical estimation of the expected error on

available observations. Accordingly, the original set of observations S =
{

(xi, yi)
}m

i=1
is

divided into two sets:

• a training set D, used by the learning model to learn the function h

• a testing set T , used to validate the capacity of h to generalize on test exam-

ples. The average predictive errors on the test set can be used for instance as an

evaluation measure.

Chapter 2. Problem 19

This validation technique is the simplest one. Nevertheless, it still requires deciding of the

size of the training and testing sets. Minimizing the real loss (see Equation 2.1) requires

a large number of training data to learn the predictive hypothesis. However, a large

training set entails a small testing set, and thus a small number of observations that can

be used to estimate the real risk in practice. In order to solve this issue, cross-validation

is used as an alternative technique for learning and validation. Cross-validation repeats

the training and testing procedure multiple times, each time on a different partitioning

of the original set into training and testing sets. The estimated errors of each round are

then averaged to produce a single estimation, which is generally more representative of

the real risk than this of a single round validation procedure.

The most well-known cross-validation techniques is the k-fold cross-validation [56] which

divides the original dataset S is divided into k equal size subsamples. The validation

process repeats k times (folds). At each round i ≤ k of cross-validation, the subset i is

kept for validation while the remaining k − 1 sets are used for training. The advantage

of this method is that all the observations are used for both training and validating. The

leave one out cross-validation [53] is a special case of k-fold cross-validation with k = m,

the size of the original dataset S. Thus, training and validating repeats m times. This

is generally used when the number of observations is very small and thus a maximum

number of training data is required to induce a hypothesis. There exists other validation

techniques such as the 5 × 2 cross-validation test of Dietterich [27], bootstrapping [71],

etc...

2.2 Data Streaming

In many applications, the training examples are supplied continuously in time, in the

form of an infinite stream. Examples of such applications are electricity management,

market basket analysis, weather prediction and others. With the emergence of data

streaming applications, classical learning methods were confronted with many challenges

they weren’t designed to handle.

2.2.1 Practical challenges

Data streams can be endless, making it impossible to keep the data in the working

memory as with a classical learning system. Even with an endless memory, waiting for

the whole training data to be collected is not possible. Thus, unlike classical systems, a

data stream learning system should be able to learn incrementally with each new piece

Chapter 2. Problem 20

of information received, while at the same time, being ready to predict the target label

of an input at any moment, in an anytime fashion.

Data streams are also generally rapid, supplying data at a relatively high speed. With

time constraints, a training example can be processed at most once, and is then discarded

from the processing unit, making room to new examples.

2.2.2 Theoretical challenges

Classical machine learning systems not only suffer from time and memory constraints,

their theoretical foundation is also shaken. Most supervised learning systems rely on the

assumption that the training examples are independently and identically distributed.

This condition however cannot be ensured in real data streams, as there is no control

over the source generating the examples. In fact, in many streaming systems, subsequent

examples are expected to be related and their order of appearance is not arbitrary. For

instance, the images observed by a mobile agent during a navigation process are space

related. In case of a system predicting flight delays, it is expected that many (timely)

close flights will be delayed, for instance, due to bad weather.

Classical learning systems also consider that the world is stationary. Hence, once a

classical system learns a concept, the concept remains unchanged. Generally, if the

training examples are generated over a long period of time, as is the case in data streams,

the underlying concept is expected to evolve, creating what is known as a concept change.

For instance, user preferences evolve depending on fashion trends. Market demands

evolve depending on economy conditions, and so on. As a result, if the environment

changes, the predictions of the static concept will be wrong and as time goes by, more

and more mistakes will be made.

2.2.3 Concept change

In non-stationary environments, the underlying target concept is expected to evolve with

time, depending on some hidden context.

Kubat [61] gives the example of a system that learns to control the load redistribution

in computer clusters where the overloaded units send part of their load to underloaded

units. The rules describing the overload depend on many variables, as the CPU and

memory requirements, the frequency of disk operations, and others. However, the only

observed variables to the system are the lengths of the CPUs and disk queues. Thus,

the workload structure is the hidden context controlling the generation of the visible

Chapter 2. Problem 21

variables. The workload structure is expected to evolve with time and the same context

might also reappear with time.

Consider also the example of a marketing system that learns customers preferences by

observing their transactions on a website. Having a knowledge of the costumer’s prefer-

ences enables suggesting specific products and promotions. Customer’s buying profiles

might evolve with time, depending on fashion trends, economical conditions, and the like.

In a rising economy for instance, nouveaux-riches customers will buy goods or luxuries

they were unable to buy before. In this case, fashion trends, economy conditions and

other latent variables controlling the observed transactions are hidden to the learning

system. The system can only see the transactions, with no additional knowledge of the

hidden context behind the market evolution.

The changes in the hidden context induce more or less radical changes in the target

concept, creating what is known as a concept change. In the general case, the learning

system has no a priori knowledge about the time at which a concept changes or starts

changing, nor about the severity and speed of change. It is also possible for the same

context to reappear, either in a cyclic manner (seasonal variations) or in an irregular

manner (inflation, market mood). In case of recurrence, the learning system should take

advantage of previous experience in the learning of the current concept.

2.2.4 Types of concept change

If we consider that the concept is represented by the distribution of the training examples

p(x, y) = p(y|x) ∗ p(x), a concept change happens in three cases:

• The conditional distribution p(y|x) changes.

• The unconditional distribution p(x) changes.

• The change involves both distributions: p(y|x) and p(x).

The change in the conditional distribution p(y|x) is generally referred to as a concept

drift [22, 101]. An example of concept drift happens in spam filtering system where the

concept classifies emails into spam or non-spam depending on their content. The concept

is likely to become less accurate with time since spammers try constantly to mislead the

filtering systems by changing the statistical properties of the target value p(y|x).

The change can also come from the unconditional distribution p(x). Different terms

are used to refer to this type of change: a pseudo concept drift [81], a virtual concept

drift [88], a sample selection bias [32] or a covariate shift [8]. This type of change

Chapter 2. Problem 22

doesn’t necessarily reflect a non-stationary environment. The world can be stationary but

the change in the unconditional distribution happens because the order of the received

examples depends on the part of the world currently explored. In a navigation task

for instance, the distribution of the images perceived by a mobile agent depends on the

(timely) local part of the world currently visited. Thus, the agent encounters a change

in the unconditional distribution of the images during navigation, even though the world

is stable.

In most cases, the change involves both distributions: p(y|x) and p(x). According to

[101], the source of concept change is not important from a practical point of view. The

learning model capturing the target concept should be revisited anyway.

2.2.5 Properties of concept change

Concept changes have been described according to different criteria, mainly in terms of

severity and speed. We first give an insight of the various terms used in the litterature

to describe the differents types of concept change. We then report the heterogenous and

mutually exclusive categories proposed by Minku et al. [69] to describe concept changes.

Ambiguity in litterature

Concept changes have been categorized depending on the severity of the change. In case

of a concept drift and if the change in the conditional probability function p(y|x) affects

all the feature space, the change is said to be global [90]. If parts of the feature space

remain stable, the concept change is called local [25, 90] (see Figure 2.2). In a spam

filtering system for instance, new kinds of spams emerge with time. Thus, an email that

would be classified as non-spam by an outdated filtering system, might be considered

as a spam by an up-to-date system. This kind of change however is not global since in

most cases, emails marked as spam will still be marked as spam after the change. For

instance, emails containing the word “viagra”.

Concept changes have also been categorized depending on their speed, into gradual or

abrupt drifts. A sudden concept drift is called a concept shift [96, 99] in some studies,

while a gradual concept drift is sometimes called a drift. As we can see, the terms used

in the litterature are somehow ambiguous. While the term drift can be used to refer

to a change in the conditional distribution p(y|x), it is also used to refer to a gradual

change. The terms are also vague. Let’s take for example a concept represented by a

hyperplane. The hyperplane divides the feature space into two parts and the examples

in the feature space are labeled into one of two classes, according to the part they belong

Chapter 2. Problem 23

to. The hyperplane moves gradually from its initial position to a final destination in the

feature space, affecting the labels of the examples. It is unclear if such case represents a

single gradual concept change or a series of abrupt concept changes.

Minku’s categorization

Minku et al. [69] suggested heterogenous and mutually exclusive categories to describe

concept changes. The categories describe the properties of a single concept change in

isolation as well as the properties of a sequence of concept changes. The properties of

a concept change in isolation are: severity and speed ; and the properties regarding a

sequence of concept change are: predictability, recurrence and frequency.

Figure 2.2: Example of a local drift.

Severity

Severity can be regarded as the “amount” of change. In the litterature, no unified measure

exist to quantify this amount. In [69], in case of a concept drift (the concept change is

related to the conditional distribution p(y|x)), severity can be computed as the percent-

age of the feature space whose label is different after the drift. For example, in the drift

represented by Figure 2.2, 2/4 = 50% of the feature space has its target class changed.

In case of a virtual concept drift (the concept change is related to the unconditional

distribution p(x)), severity is the amount of change in the distribution of the feature

attributes. Generally, the amount of change is estimated by the drop in the predictive

performance of a learning system just after the change. If we suppose that a learning sys-

tem L learnt the old concept with a perfect generalization (100% classification accuracy

on any test example), the amount of change can be seen as the drop in the predictive

performance of L when tested on examples of the new concept.

The severity has been referred to as the “extent of drift” by Widmer and Kubat [96].

The extent, as they defined it, is the dissimilarity between two concepts A and B. It is

quantified as the relative error between the two concepts i.e. the probability that B will

misclassify a randomly drawn example that is labeled according to A (and vice-versa).

This can be viewed as the probability of drawing an example from A ⊕ B of the two

concepts, where ⊕ represents the symmetric difference of the sets A and B.

Chapter 2. Problem 24

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

t

p
ro

b
a

b
ili

ty

v
o
(t)

v
n
(t)

t
start

∆
drift

Figure 2.3: Example of a gradual drift with drifting time of 100 time steps. The
functions vo(t) and vn(t) represent the probability that an example from the old and

new concepts, respectively, will be presented.

For instance, let’s consider an artificial domain defined by 6 boolean attributes {a1, a2, . . . , a6}

and the following concepts: A⇔ a1 ∧ ā2, B1 ⇔ ā1 ∧ a2 and B2 ⇔ [a1 ∧ ā2 ∧ (a3 ∨ a4)] ∨

[ā1 ∧ a2 ∧ a3 ∧ a4]. Assuming a uniform probability distribution over the feature space,

the extents are: ext(A,B1) = 32/64 = 0.5, ext(A,B2) = 8/64 = 0.125.

Speed

Speed is the inverse of the time required for the new concept to completly replace the old

one [55]. Let’s consider a data stream where at each time step, a new example is received.

One concept change event occurs at time step tstart and lasts for a period of ∆drift time

steps. Thus, from time step 1 to tstart, the examples are labeled according to the old

concept, and starting from time step tstart +∆drift, the examples are labeled according

to the new concept. The speed of change from time step tstart+1 and tstart+∆drift can

be modeled by the following linear degree of dominance functions:

vn(t) =
t− tstart
∆drift

, tstart < t ≤ tstart +∆drift

and

vo(t) = 1− vn(t), tstart < t ≤ tstart +∆drift

(2.3)

where vn(t) and vo(t) represent the probability that an example of the old or the new

concept will be presented to the system, respectively and t is the current time step. Dur-

ing the change, the examples are labeled according to vo(t) and vn(t) (see Figure 2.3).

When ∆drift = 1, the change is said to be sudden otherwise it is continuous or gradual.

The speed of change can be modelled by functions other than the linear function. Nev-

ertheless, it is always assumed that during the transition between consecutive concepts,

the probability that an example is labeled according to the new concept will increase,

until the new concept takes completely over the old one.

Chapter 2. Problem 25

x1

x2

C1

x1

x2

C1

C1

C1

Figure 2.4: Left, a concept represented by a circle. The examples are classified into
one of two classes: inside, outside the circle. Right, the circle moving with time, creating

concept drifts.

Predictability

The first property regarding a sequence of concept changes is predictability. Predictabil-

ity refers to the ability to predict how a concept evolves with time [69]. Consider for

instance a concept represented by a circle in a 2-dimensional space (see Figure 2.4). The

examples are labeled into two classes: inside and outside the circle. The radius is fixed

but the circle center moves, creating a concept drift. If the magnitude and direction of

change are always the same, then the sequence of concept changes is predictable. There

is no formal definition of predictability in case of concept changes. We consider that

“predictable” refers to an underlying prediction system, that is a learning system that,

taking as input information about the past history of the concept evolution, can predict

its (near) future. According to Minku et al. [69], a sequence of concept changes is either

predictable or random.

Recurrence

Another property is concept recurrence [3, 37, 41, 69, 99]. Recurrence means that the

same concepts might reappear with time, either in a cyclic manner (seasonal variations) or

in an irregular manner (inflation, market mood). Recognizing a recurring situation allows

a learning system to act pro-actively, gaining precious time and avoiding costly incorrect

predictions. Therefore, it is important that the learning system takes advantage of its

previous experience in its predictions of target values when an old concept reappears.

Chapter 2. Problem 26

time

Properties of Concept Changes

sudden change

gradual change

recurrence

predictability

Figure 2.5: Different properties of concept changes. The x -axis represents time while
the y-axis shows differents concepts (according to the concept color).

Frequency

The third and last property regarding sequence of changes is frequency [62, 69]. Fre-

quency can be measured as the inverse of the number of time steps between two consecu-

tive concept changes. According to this criterion, concept changes can either be periodic

or non-periodic. It is important to note that frequency and recurrence are not the same.

Concepts can change every t time steps but without repeating.

Different properties of concept changes are illustrated in Figure 2.5.

2.2.6 The stability-plasticity dilemma

It is not possible from a practical point of view to store all the examples received in

a data stream. Only a summary of examples can be kept. And under the assumption

of possible concept changes, it is important to ensure that the summary reflects the

underlying target concept. In other words, the summary shouldn’t include examples

belonging to an old concept, as obsolete examples can be misleading and even harmful

to the learning system. A simple solution is to trust the recently received examples.

Chapter 2. Problem 27

Thus, at each time step, a window containing the n most recent examples can be used

to learn the current concept. However, the size of the window, n, remains to be defined.

In fact, if the concept is stable, a large window of training examples allows the system

to learn more precisely the current target concept. However, if the concept is changing,

the window should be small, excluding outdated data. This is known as the stability-

plasticity dilemma [31, 64]. While a plastic learning system with a small window size

adapts rapidly to changes, a stable learner with a large window size is more reliable in

periods of stability.

2.2.7 Adaptation and anticipation

Predicting in an environment with possible evolving states can be handled with two non-

contradictory and potentially simultaneous approaches: adaptation and anticipation.

Adaptation follows new trends, with no insight to the future. An adaptative approach

would incorporate new training examples into the learning memory when the concept is

stable, and would reset the learning memory when the concept changes.

Anticipation’s concern, on the other side, is to understand and characterize the evolution

of the environment in order to predict upcoming trends. While adaptative approaches

adapt passively to changes, anticipation acts pro-actively, trying to be aware of what

might happen in the near future, preparing prediction strategies in advance. Studying

changes in the environment requires keeping memory of the past. From a practical point

of view, it is not possible to retain all the received training examples in the memory.

Hence, a compact representation should be considered. For instance, in the work we will

present, we suggest an anticipative approach that keeps the history of all encountered

concepts during the data streaming. Given the sequence of encountered concepts Cseq =
(

C1, C2, . . . , Ck

)

, a pure anticipative approch may operate as follows:

• The upcoming concept C̃k+1 is predicted by analyzing the sequence of previously

encountered concepts. The predicted concept C̃k+1 is then used to predict the

labels of data stream examples when Ck changes.

• The upcoming concept C̃k+1 is assumed to be a recurring concept i.e. C̃k+1 ⊂

Cseq. Thus, when Ck changes, Cseq is scanned and the concept that fits the recent

examples most is used for prediction.

Adaptation and Anticipation can either operate independently, or simultaneously. A

disadvantage of pure adaptative approaches is their unability to take advantage of their

Chapter 2. Problem 28

Environment
learning

model

xt

ỹt

yt

Figure 2.6: The workflow of an online learning system

previous learning experience. If for instance, the same concept reappears, a pure adap-

tative approach would learn the concept from scratch. By contrast, a pure anticipative

approach would fail to predict correctly the target values of data stream examples if the

predicted concept turns out to be different from the real underlying target concept.

Generally, anticipation doesn’t come without adaptation. Anticipation can be seen as a

second-order learning that makes use of adaptative learning systems to get the list of the

encountered concepts. In other words, it is by means of adaptation that the anticipation

mechanism has knowledge of the different concepts. When combining both approaches,

anticipation is used first to predict the upcoming concept. If the anticipation fails in its

prediction, the adaptative approach takes over, adapting to the new concept.

2.3 Online Machine Learning

Online learning systems have been suggested to deal with the challenges introduced

by data stream applications [36]. Unlike classical learning models, an online learning

model is trained incrementally with each available new piece of information. Not only

is the induced hypothesis constantly updated, it is also constantly used to predict the

target values of the stream examples. In stock markets for instance, forecasters predict

the answer to each new incoming incentive, possibly in order to regulate the stocks,

even before the outcome is known. Managers of electrical grids also try to predict the

continuous power demand in order to optimize the functioning of electrical plants. Stream

learning applications include ATM transactions analysis, the prediction of web search

patterns, weather prediction, fraud detection, and others.

Chapter 2. Problem 29

2.3.1 Scenario

Online learning proceeds in a sequence of trials or time steps [11–13, 85] (see Figure 2.6).

At each time step t, the online learning system repeats the following steps:

1. The learning system receives an input xt.

2. The learning system predicts the target value ỹt of xt.

3. The environment reveals the real target value yt to the learning system.

4. The learning system updates its hypothesis based on the training example (xt, yt).

2.3.2 Practical evaluation measures

Classical machine learning methods divide the available data into two sets: the training

and the test set. The training set is used to learn the concept while the testing set

is used to evaluate the accuracy of the learning system. In online learning scenarios,

there are no such distinctions as data are continuously generated. We present here three

main evaluation measures used to assess the predictive performance of online learning

methods: the online performance, the time sliding windows and the fading factors.

Online performance

Most online approaches use the online predictive performance [38] as an evaluation mea-

sure for a learning system. The online performance is a continuous function representing

the accuracy of the online learning method at each time step.

More formally, the learning system predicts at each time step t the label ỹt of the training

example xt before the example is learnt. The prediction error is between the prediction

ỹt and the real value yt is calculated and the average prediction error from time step 1

to t is updated. The average prediction error, also known as the online predictive error

is computed iteratively as follows:

oe(t) = oe(t− 1) +
err(xt)− oe(t− 1)

t
(2.4)

where

err(xt) =

{

0 if ỹt = yt

1 if ỹt 6= yt
(2.5)

The online predictive performance or accuracy (acc) and the online error (oe) are related

by the following equation: acc(t) = 1− oe(t).

Chapter 2. Problem 30

The online performance is also called the progressive evaluation [90], the prequential

accuracy [10, 40] or the interleaved-test-then-train [13] method.

Time windows

In the presence of concept drift, it is also possible to evaluate the predictive accuracy of

the online learning method on time sliding windows over the data stream. Accordingly,

the error we(t) at time step t over a sliding window of size w is computed as follows [40]:

we(t) =

∑w−1
i=0 err(xt−i)

w
(2.6)

The accuracy (acc) of the predictive system and the computed error (we) are related by

the following equation: acc(t) = 1− we(t).

This method reflects the recent performance of the predictive system. This is advanta-

geous in case of an evolving environment since it allows to observe the reactivity of the

system towards a concept change. Nevertheless, time sliding windows require to keep in

memory the errors over the recent examples.

Fading factors

Another technique that exhibits the recent predictive performance weights previous errors

using a decay factor [40]. Accordingly, the error fe(t) at time step t using fading factors

can be computed as:

fe(t) =
S(t)

N
(2.7)

where S represents a cumulative loss function that can be computed recursively as follows:

S(1) = l(1) and S(t) = l(t) + α× S(t− 1), with α < 1 and l(t) representing the loss at

time step t. The error value fe(t) converges to 0 when N tends to ∞. Gama et al. [40]

suggested a correction factor that turns Equation 2.7 into:

fe(t) =
S(t)

B(t)
=

l(t) + α× St−1

n(t) + α×Bt−1

where nt is the number of examples used to compute l(t). For instance, when the loss

function l is the the zero-one loss (see Equation 2.5), the loss is computed for every single

example and n(t) = 1.

Chapter 2. Problem 31

Like time sliding windows, this evaluation technique gives more importance to the recent

predictive performance of the online learning method. In addition, it is memoryless as

it doesn’t need to keep old traces of the system’s errors.

2.3.3 The theory of online learning

In online learning, the order of the examples is generally not random as consecutive

training examples can be related. For instance, the spatio-temporal correlations of video

data, the time-dependent electricity consumption, the time-correlated rate of subway

rides (peak, off-peak), and others. Thus, training data are not assumed to be inde-

pendent. And since the environment generating the streaming data may change over

time, allowing for concept changes, the training data are also not identically distributed.

Hence, the i.i.d. property does not hold. As a result, online learning methods cannot

use the real loss measure (see Equation 2.1) as a performance criterion. Since the world

is not stationary, there are no stable target function f that the learning system tries to

approach. Using the empirical loss (see Equation 2.2) as an optimization criterion is also

not possible since the training data are not indenpendently and identically distributed.

Since there exist no stable target function f , the quality of an induced hypothesis h

cannot be measured by its distance from f as in Equation 2.1. Thus, instead of comparing

the induced hypothesis h with a target function f , the hypothesis is compared with

any other candidate hypothesis. The notion of loss used in classical learning theory is

replaced by the notion of regret which in this context denotes the regret of choosing

a function h instead of any other possible function h′ when predicting a target value.

Hence, the theoretical framework assumes the existence of an ensemble of hypotheses,

and a forecaster which, after getting the individual predictions of the hypotheses, gives

its final prediction. The goal is to minimize the cumulative regret of the forecaster with

respect to each hypothesis in the ensemble. The theoretical framework is presented more

formally in the next section.

The theoretical framework

Cesa-Bianchi [20] studied the theory of online machine learning, using the model of

prediction with expert advice. This model provides the foundation to the theory of

prediction of individual sequences.

It is supposed that a forecaster predicts an unknown sequence of bits i.e. ỹt ∈ {0, 1}.

To compute ỹt, the forecaster listens to the advice of N experts. Experts are seen as

reference forecasters, black boxes of unknown computational power, possibly different

Chapter 2. Problem 32

learning models (neural networks, decision trees, and others). No a priori assumptions

are made regarding the experts. They can be anything, from induced hypotheses learnt

by means of learning models, to random forecasters providing random predictions. Take

for instance an advisory committee on Immunization Practices. The committee is formed

of experts that vote on proposed influenza vaccine recommendations. The forecaster in

such case combines the votes of the different experts to make a final recommendation

regarding the vaccine. While the experts in our example are specialized members, most

likely Professors of Medicine, the forecaster however is not required to hold a scientific

position, as its function here is to simply count the votes.

In the theoretical framework, the forecaster computes his predictions in an online fashion

and his predictive performance is compared to that of experts. The forecaster’s goal is

to keep as small as possible the cumulative regret with respect to each expert2. This

quantity is defined for expert E, by the sum:

RE,n =
n
∑

t=1

(

l(ỹt − yt)− l(fE,t − yt)
)

= Ln − LE,n

where n is the length of the sequence of predictions, ỹt and fE,t are the predictions of

the forecaster and the expert E at time step t, respectively. The l function represents

a loss function which computes the “score” of a particular prediction. For instance,

the zero-one loss function returns one if the prediction is wrong and zero, otherwise.

In the above equation, Ln =
∑n

t=1 l(ỹt − yt) is the forecaster’s cumulative loss while

LE,n =
∑n

t=1 l(fE,t − yt) is the expert’s cumulative loss. Hence, RE,n is the difference

between the forecaster’s total loss and that of the expert E after n prediction rounds.

The interest of the theoretical research is to bound the cumulative regret of a forecaster

with respect to the expert with the lower number of mistakes. To give an insight to the

theoretical study, we report two basic examples introduced by Cesa-Bianchi [20].

A simple case

Cesa-Bianchi [20] starts with a simple case, where the forecaster knows in advance that

there is some expert i that makes no mistakes. The index i of this expert however is

unknown. The forecaster assigns a weight to each expert, a value reflecting the possibility

of this expert to be the best expert i, yet unknown to the forecaster. At the beginning, all

of the experts are potential candidates and are all assigned a weight value of 1. When an

expert makes a mistake, its weight is lowered to zero. At every time step t, the forecaster

2or to a combination of the experts’ predictions.

Chapter 2. Problem 33

predicts ỹt using a weighted vote. Thus, ỹt = 1 if and only if the number of experts j

with a weight value of one and with fj,t = 1 is bigger than those with a weight value of

one and with fj,t = 0. The weighted vote has the effect of eliminating the experts that

made at least one mistake from the forecaster’s final prediction ỹt. Only experts with a

100% predictive accuracy so far participate in the prediction process. In the presented

scenario, the number of mistakes made by the forecaster is at most ⌊log2N⌋. To prove

this upper bound, let Wm be the sum of the weights of the experts when the forecaster

made his m-th mistake. Initially, m = 0 and W0 = N , the number of experts. When the

forecaster makes a mistake, this means that at least half of the experts with a weight

value of one were mistaken, and as a result, their weights have been lowered to zero.

Thus Wm ≤ Wm−1/2. By recursive calculation, we get Wm ≤ W0/2
m. Since expert i

makes no mistake, this implies that Wm ≥ 1 at all times. Solving the equation 1 ≤ N/2m

for m gives the bound m ≤ ⌊log2N⌋

A more general case

The same spirit of analysis can be transfered to a more general case where we don’t

suppose the presence of an expert with perfect predictions. The goal here is to bound

the number of mistakes made by the forecaster compared to this of the expert with

the minimum number of errors a posteriori. The forecaster is the same as the previous

one with one difference. Since all the experts might make mistakes, a mistaken expert

shouldn’t be eliminated. Thus, if an expert makes a mistake, its weight is not set to zero.

In a multiplicative update framework, the expert’s weight is decreased by multiplying

its value by a constant β, where 0 < β < 1. When the forecaster makes its m-th

mistake, at least half of the total weight is multiplied by β and the other half remain

as is. Thus, Wm ≤ Wm−1/2 + βWm−1/2. Since this relation holds for all m ≥ 1, we

get Wm ≤ W0(1 + β)m/2m. Let Ek be the expert with the fewest mistakes when the

forecaster made its m-th mistake. The weight of Ek is wk = βm∗
where m∗ is Ek’s

number of mistakes. Thus we have:

βm∗

≤Wm

≤W0(1 + β)m/2m
(2.8)

We then get the final bound,

m ≤

⌊

log2N +m∗log2(1/β)

log2
2

1+β

⌋

This bound shows a dependency between the number of mistakes made by the forecaster

compared to this made by the best expert, after a number of predictions.

Chapter 2. Problem 34

Critical point of view

Other bounds were shown in the work of Cesa-Bianchi [20], and this on various types of

forecasters with different combinations of the experts predictions (polynomially weighted

average forecaster, exponentially weighted average forecaster, etc...). The advantage of

the extracted bounds is that they apply on any sequence of predictions and regardless

of the type of experts (learning models). However, by considering experts as black-box

components, the theory fails to provide proofs on how intelligent the prediction system

is, relative to its ability of capturing regularities in the environment. The experts on

which the forecaster has to rely, may be dumb, for instance, always predicting the last

observed class regardless of the input xt, that is, ỹt = yt−1. In case of a time-correlated

environment where subsequent examples are likely to have the same class labels, the

former experts will have a high predictive accuracy. A question is then whether it is

possible to minimize the forecaster’s predictive error relative to the best expert but

without omitting the intelligence aspects of the prediction system. Another limitation of

this work is that, since the research has been conducted on very general cases, theoretical

proofs cannot be used to evaluate and compare the performance of different algorithms

in specific situations, for instance, in case of severe drifts, gradual evolutions of the

environment, recurring contexts, and the like. According to [86], the extracted bounds

are rather loose and uninteresting in practice.

The task of learning drifting concepts has been studied from a theoretical point of view.

Generally, some restrictions are imposed on the type of admissible concept change, such

as the rate of change [63] or the severity of change [46]. The main disadvantage is that

the special cases studied don’t usually occur. The theoretical bounds can also include

large sizes of training data that would be impractical to employ [91].

2.3.4 Online learning in practice

Finding theoretical garanties of an online learning algorithm is always an advantage.

However, without practical applicability, an online learning system is useless. We discuss

the practical requirements that should be taken into consideration when evaluating online

learning systems. We then present the main categories of existing systems.

2.3.4.1 Practical requirements

Time and memory constraints Online learning systems should take into consider-

ation time and memory constraints. Thus, both prediction and training time should be

bounded, allowing for a real-time processing.

Chapter 2. Problem 35

Adapting to changes Online learning systems should also handle drifting concepts

by adapting to new trends. One central concern here is to optimize a tradeoff between

learning from as much data as possible, in order to get the most precise prediction model,

while at the same time recognizing when data points become obsolete and potentially

misleading, impeding the adaptation to new trends (the stability-plasticity dilemma).

Note that the detection of concept changes should be fast. Thus, the learning system

should be highly sensitive to possible changes in the environment while at the same time

being robust to noise and false alarms.

Knowledge transfer The variety of concept speed and severity adds more challenges,

specially the need for knowledge transfer i.e. the ability to classify examples belonging

to the old concept when the concept evolves. Knowledge transfer is useful in two cases.

First, during the drifting time in case of a gradual drift since examples are generated

for both the old and the new concept. Secondly, in case of a non severe concept change

where knowledge acquired from the learning of the old concept can help classify examples

from the new one.

Anticipating changes Being able to recognize changes in the environment and to

anticipate them requires some kind of second-order or meta learning. The learning system

needs to be able to analyze and reflect upon its past experiences and responses and to

decide what is the best course of action or decision given the past. Very few learning

systems are anticipative. Most approaches are purely adaptative, adapting passively to

changes with no insight of the future.

2.3.4.2 Existing approaches

Online machine learning in the presence of concept drifts is rather a recent research

area. Nevertheless, a large number of online learning systems have been proposed to

deal with evolving environments. The first systems capable of handling concept drifts

are STAGGER (1986) [83], IB3 (1991) [1] and FLORA (1996) [96]. To the best of our

knowledge, the existing systems have all empirical evidence, and few have theoretical

foundation. Depending on their way of handling drifting concepts, existing systems

can be divided into three main categories: instance selection, instance weighting and

ensembles of classifiers.

Instance selection The earliest techniques used instance selection to deal with the

stability-plasticity dilemma. Instance selection methods aim at selecting the examples

that are relevant to the current concept.

Chapter 2. Problem 36

The most common instance selection techniques are windowing techniques which use time

sliding windows over the data stream. At each time step, the concept is learnt based

on the last n observed training examples, where the window size n can either be fixed

or adjusted with time using heuristics [96]. When the window size is fixed, selecting

a “good” window size requires an apriori knowledge about the change. An algorithm

that fixes the window size also assumes that the environment behaves the same way

all the time, a condition that is not met in the real world. Adaptative window sizes

were a solution to this problem. The idea behind dynamic window sizes, is to decide

to when a concept is changing. Once the change is detected, the algorithm can then

change the size of the window to more accurately represent the current concept. The

FLORA methods by Widmer and Kubat [96] are probably the most known amongst

the time sliding techniques. The FLORA methods with adaptative windows enlarge the

window size as long as the concept is stable. When a change is detected, the window size

is shrinked accordingly. The FLORA systems are limited to handle symbolic concepts

represented using an attribute-value logic language. For instance, a concept with the

following description: (color = white and temperature = low).

Instance-based learning has also been suggested to deal with concept drifts. Instance-

based learning predicts the label of an incoming example based on its similarity to one

(or more) stored training example(s). Similar examples are assumed to have similar

labels or target values. IB3 [1] is the first instance-based learning technique capable of

handling concept drifts. IB3 describes a concept by a set of instances. For each instance,

IB3 calculates the percentage of its correct classification attempts and compares it with

its class’s frequency to determine which training examples to keep and which examples

are outdated and should be discarded [91].

Instance weighting Example weighting make use of a weighting scheme over past

examples, taking advantage of the ability of some learning algorithms such as Support

Vector Machines (SVMs) [81] to process weighted examples. Examples can be weighted

depending on their age or relevance regarding the current concept. Generally, weighting

functions give less weight to past examples as it is supposed that recent data are more

representative of the current concept than old examples. Windowing and weighting tech-

niques imply the choice of thresholds, decay factors and so on [54]. The adaptation to

changes in the former two approaches requires an explicit change detection mechanism

which should be highly sensitive to changes while at the same time being able to dis-

tinguish between real concept changes and noise. Sensitivity and robustness generally

require opposite strategies. While robustness entail analyzing large amount of data to

detect outliers, sensitivity to change requires a fast response to any unusual event.

Chapter 2. Problem 37

Ensemble of classifiers Several online ensembles methods have been proposed for

tackling changing concepts [12, 13, 59, 70, 84, 85, 90]. Ensemble methods have the

advantage of holding diverse learners (i.e. concept descriptions) in the ensemble. The

predictions of the learners are generally combined using simple voting, weighted voting

or the most relevant concept description is selected for prediction. For instance, the first

concept drift handling system STAGGER [83] maintains a set of concept descriptions,

and more complicated concept descriptions are then produced iteratively, the best of

which are selected according to their relevance to the current data.

Keeping a diverse ensemble of learners has advantages over the use of one single learner.

According to [69], the diversity helps reduce the initial drop in accuracy that happens

just after the change. When the concept is stable, however, low diversity in the ensemble

gives more accurate results. In many ensemble approaches, learners are removed from

the ensemble when their performance drops under a threshold and are then replaced by

new learners with a small window size. Expulsing an learner from the ensemble can be

the result of a concept change which makes its training window unadapted to the current

situation. Thus, ensembles of classifiers are not necessarly embedded with an explicit

concept change detection system. Adapting to concept changes can happen implicitly

by removing and adding new members to the ensemble. Another advantage of ensemble

methods is that the adaptation process may result in smoother changes in the ensemble

(addition and/or removal of some members) compared to the rigid changes of approaches

that use one single learner.

2.3.5 Online learning datasets

In order to evaluate online learning systems in the presence of drifting concepts, re-

searchers usually generate artificial datasets with controlled concept drifts or make use

of private business data. The advantage of artificial datasets is the ability of simulating

various types of concept changes, with different speeds and severities. This allows one

to study the behavior of online learning algorithms in different circumstances. The real

datasets, by contrast, represent real-life scenarios. The main problem is that, with real

datasets, it is often not possible to know for sure whether a drift occured or not. As a

result, explaining the behavior of a learning algorithm during the data streaming is not

as easy as with controlled datasets. Nevertheless, it is expected that, if the examples are

collected over a long period of time, concept drifts occur, due to seasonal changes, eco-

nomic conditions, market evolution and others. Virtual concept drifts can also happen

as the result of a sampling bias.

Chapter 2. Problem 38

In this section, we cover the majority of the datasets that were used to evaluate the

predictive accuracy of online learning systems. Three types of datasets are presented:

artificial, real, and semi-artificial. Semi-artificial datasets are real datasets that were

modified to simulate concept drifts. Hence, the examples come from real-world applica-

tions but the labels were modified to simulate drifting concepts.

It is important to note that some of the real data streams presented here are not ex-

pected to be undergoing concept drifts. They were nevertheless used in our experimental

evaluations to assess the predictive ability of drift handling methods under stationary

conditions.

2.3.5.1 Artificial datasets

STAGGER Originally introduced by Schlimmer and Granger in 1986, the STAGGER

problem [83] represents the sequence of the following three concepts: A⇔ size = small∧

color = red, B ⇔ color = green ∧ shape = circular and C ⇔ size = medium ∨ large.

The dataset contains 120 training examples chosen uniformly from the feature space.

The first 40 are labeled according to concept A, the second 40 according to concept B,

and the last 40 according to concept C.

FLORA Widmer and Kubat [96] introduced in 1996 two datasets, with moderate

and slow speeds of change, in order to evaluate the different versions of their online

learning system FLORA. Two concepts are defined over 6 boolean attributes {a1, ..., a6}:

A⇔ a1 ∧ a2 and B ⇔ (a3 ∧ a4)∨ (a5 ∧ a6). Concept A gradually drifts towards concept

B at time step 100 with a drifting period of 100 and 200 time steps for the moderate

and slow speeds, respectively. Each dataset has a total of 500 training examples.

SEA The SEA dataset was proposed by Street and Kim in 2001 [87]. It represents

a sequence of four different concepts, with 15,000 examples each, for a total of 60,000

examples. Each example has three attributes. Attributes are numeric between 0 and 10,

and only the first two are relevant. The classification is done using x1 + x2 ≤ θ, where

x1 and x2 are the first two attributes and θ is a threshold value between the two classes.

The value of θ is set to 8, 9, 7 and 9.5 for the four blocks of examples. In each block,

10% class noise was inserted (10% of the examples had their real class value inverted).

Chapter 2. Problem 39

Table 2.1: Minku’s artificial problems

Problem Fixed Values Before→After Drift Severity 2N
Circle a = b = 0.5 r = 0.2→ 0.3 ≈ 16% 2000

≤ r = 0.2→ 0.4 ≈ 38%
r = 0.2→ 0.5 ≈ 66%

SineV a = b = 1 d = −2→ 1 15% 2000
c = 0 d = −5→ 4 45%
≤ d = −8→ 7 75%

SineH a = d = 5 c = 0→ −π/4 ≈ 36% 2000
b = 1 c = 0→ −π/2 ≈ 57%
≤ c = 0→ −π ≈ 80%

Line a1 = 0.1 a0 = −0.4→ 0.55 15% 2000
≤ a0 = −0.25→ −0.7 45%

a0 = −0.1→ −0.8 70%

Plane a1 = a2 = 0.1 a0 = −2→ −2.7 14% 1000
≤ a0 = −1→ −3.2 44%

a0 = −0.7→ −4.4 74%

Bool c = S ∨M ∨ L a = R,∧1 ≈ 11% 1000
b = R→ R ∨ T

∧2 a = R, b = R, ≈ 44%
∨1 → ∧1

=1=2=3 a = R→ R ∨G, ≈ 67%
b = R→ R ∨ T,
∨1 → ∧1

Minku’s artificial problems A total of 54 datasets were generated by Minku et al.

in 2010, simulating different types of concept changes on the following problems [69]:

• Circle: (x− a)2 + (y − b)2 ≤ r2

• Sine wave: y ≤ a sin(bx+ c) + d.

• Moving plane: y ≤ −a0 + a1x1 + a2x2

• Moving line: y ≤ −a0 + a1x1

• Boolean: y =
(

color eq1 a op1 shape eq2 b
)

op2 size eq3 c

The parameters, a, b, c, d, r, a0, a1, a2, eq and op can assume different values to define

different concepts; eq represents = or 6= and op represents the logical connective ∨ or ∧.

A concept change event is simulated by changing one or more of the problems’ param-

eters, creating a change in the conditional probability function p(y|x) (see Table 2.1).

The Sine wave problem is divided into two subproblems: SineH and SineV depend-

ing on whether the sine wave moves horizontally or vertically after the concept change,

respectively.

Chapter 2. Problem 40

For each problem, different datasets were generated. A dataset contains one concept

change event and different types of changes are simulated by varying the amount of

change severity and speed. The severity here represents the percentage of the feature

space which has its target class change after the concept change. Speed is the inverse

of the time required for the new concept to completly replace the old one. The speed

is modeled by the linear degree of dominance functions described in Equation 2.3. A

concept change starts at time step N where 2N is the total number of training examples

and the concept change lasts for ∆drift time steps. The drifting time varies among 1,

0.25N , and 0.50N time steps and the degree of severity in the datasets vary from low to

medium to high.

With three levels of severity and three speeds, nine datasets are created for each problem

(for more details, refer to [69]). For Plane and Boolean, N = 500 and the examples are

normally distributed through the whole feature space. For the other problems, N = 1000

and the number of examples belonging to class 1 and 0 is always the same, having the

effect of changing the unconditional probability distribution function p(x) when the drift

occurs. Eight irrelevant attributes and 10% class noise were introduced in the Plane

datasets.

2.3.5.2 Semi-artificial datasets

CAR Minku et al. [69] created a partially artificial dataset based on the real-world

database CAR, from the UCI Machine Learning Repository [5], by introducing simulated

drifts inspired by Scholz and Klinkenberg [84]. The CAR database was randomized and

divided into three partitions in order to simulate two drifts. Each partition has size

576, but only 75% of the examples were retained for training, giving a total of 1,296

examples. The drifting time was 1 and 288 for the first and second drift, respectively and

the speed of change was modeled by linear degree of dominance functions (see Equation

2.3). The different concepts were created by changing the labels of the target classes of

the examples according to Table 2.2. As it can be observed from the table, all of the

class labels are different after the first drift. The second drift presents a partial return

to the first concept, with the first two classes getting their original labels back.

IRIS Minku et al. [69] also simulated artificial drifts using the real-world database

IRIS from the UCI Machine Learning Repository [5]. The IRIS database was replicated

3 times in order to create three partitions and each partition was randomized. Each

partition has size 150, but only 75% of the examples were retained as training data,

the remaining examples being kept for testing purposes. Accordingly, the data stream

has a total of 339 examples. The drifting time was 1 and 75 for the first and second

Chapter 2. Problem 41

Probl. Original class C1 C2 C3

IRIS Setosa 33.33 % 1 4 4
Versicolour 33.33 % 2 1 2
Virginica 33.33 % 3 3 3

0 % 4 2 1
CAR Unacc 70.02% 0 1 0

Acc 22.22% 1 0 1
Good 3.99% 1 0 0

Very good 3.76% 1 0 0

Table 2.2: IRIS and CAR semi-artificial datasets. Rounded percentage of examples
of each class in the original database and concepts (Ci) used to create the drifting
datasets. For instance, the class Versicolour has its label changed from 2 to 1 then

back to 2.

drift, respectively and the speed of change was modeled by linear degree of dominance

functions (see Equation 2.3). The different concepts were created by changing the labels

of the target classes of the examples according to Table 2.2.

USENET This dataset simulates a news filtering system with the presence of concept

drifts relative to the change of interest of a user over time [74]. The dataset contains 5,931

examples representing documents collected from the 20 Newsgroups [5]. A document is

represented as a bag of 658 words. Attributes are binary values indicating the absence

or the presence of the respective word, while the document’s label indicates whether

the document interests a virtual user or not. Virtual concept drifts are simulated by

changing the interest of the virtual user as follows. Six different topics exist, each with a

corresponding mailing list. The simulated user is subscribed to four mailing lists. Over

time the virtual user decides to unsubscribe from two mailing lists and subscribes to two

new ones, and so on.

ELIST The emailing list dataset [52] simulates a stream of email messages from differ-

ent topics that are sequentially presented to a user who then labels them as interesting

or junk according to his/her personal interests. The email stream are collected messages

from usenet posts that exist in the 20 Newsgroup collection [5]. The stream contains

1,500 examples with 913 attributes (boolean bag-of-words representation), and repre-

sents two distincts contexts. In the first context, the user is only interested in messages

related to medicine. In the second one, the user’s interest switches to space and baseball.

The stream is the sequence C1, C2, C1, C2, C1 where C1 and C2 are sequences of 300 email

messages, labeled according to the first and second context respectively.

Chapter 2. Problem 42

2.3.5.3 Real datasets

Forest-Covertype This dataset contains the forest covertype for 30*30 meter cells ob-

tained from US Forest Service (USFS) Region 2 Resource Information System (RIS) data.

The dataset contains 581,012 examples described by 54 attributes. The task consists of

predicting cartographic observations into one of 7 possible cover type designations. The

Forest-Covertype has been used in several papers on data stream classification [39, 76].

PAKDD The PAKDD 2009 dataset comprises data for a credit assessment application

[24]. The dataset comes from a private label credit card operation of a major Brazilian

retail chain, along stable inflation condition. The training data, which contains 50,000

examples, corresponds to a 1 year period. Each example corresponds to a client and

contains 27 input attributes, such as sex, age, marital status, profession, income, etc. The

target class identifies if the client is fraudulent or good, assigning a class label of 1 (positive

class) and 0 (negative class), respectively. The class fraudulent is a minority class,

composing 19.7% of the data. This dataset is supposed to contain no drift. However,

since fraudulent is a minority class, this raises the challenge of obtaining a low false

negative rate (a low number of times a fraudulent client is considered as a good client)

in order to avoid fraud.

KDD The KDD’99 cup dataset is a network intrusion detection dataset [89]. The task

consists of learning a network intrusion detector capable of distinguishing between bad

connections or attacks and good or normal connections. The training data consists of

494,021 examples. Each example represents a connection described by a vector of 41

features which contain both categorical (ex: the type of protocol, the network service)

and continuous values (ex: the length of the connection, its duration). The class label is

either 0 or 1 for normal and bad connection, respectively.

Electricity The electricity dataset was collected from the Australian New South Wales

Electricity Market [44]. In this market, the prices are not fixed and may be affected by

demand and supply. The dataset contains 45,312 examples, dated from May 1996 to

December 1998, which record electricity prices at 30 minutes interval. Each example

contains 8 input attributes (the date, time stamp, day of the week and 2 electricity

demand values, 2 electricity supply values, and scheduled electricity transfer between

states.) and the target class identifies the change of the price (UP or DOWN) relative

to a moving average of the last 24 hours.

Chapter 2. Problem 43

Airlines The Airlines task [23] is to predict whether a given flight will be delayed,

given the information of the scheduled departure. The dataset contains 539,383 exam-

ples. Each example is represented by 7 feature values describing the flight (airline, flight

number, source, destination, day of week, time of departure and length of flight) and a

target value which is either 1 or 0, depending on whether the flight is delayed or not.

This dataset is an example of time-correlated stream of data. It is expected that when

a flight is delayed (due to weather condition for instance), other timely close flights will

be delayed as well.

Ozone The Ozone dataset [5] is used to learn an ozone alert forecasting system, a

necessary application that would issue warnings to the public before the ozone reaches

a dangerous level. The dataset was collected for the Houston, Galveston, and Brazoria

area. It consists of 2,536 examples with a feature space of 72 dimensions. The feature

space contains different measures of air pollutant and meteorological information, while

the target value classifies a day into an “ozone day” or a “normal day”. The examples are

collected over a period of 7 years and thus the data is subject to concept changes. The

physical laws describing the conditional probability p(y|x) is not expected to change.

However, due to the limited number of training examples, the unconditional distribution

p(x) might evolve with time creating virtual concept drifts. The data exhibit temporal

dependence. If ozone levels rise, they don’t decrease immediatly.

SPAM The SPAM dataset [52] consists of 9,324 examples and was built from the email

messages of the Spam Assassin Collection using the boolean bag-of-words representation

with 500 attributes. As mentionned in [52], the characteristics of spam messages in this

dataset gradually change as time passes (gradual concept drift).

We show in Table 2.3 the properties of the different data streams, including the size of

the stream, the size of the feature space and the number of classes. We also show the

frequency of each class (%). If more than 3 classes exist, only the frequency of the most

three frequent classes are reported. The class frequencies of STAGGER, SEA, and the

FLORAs datasets are calculated over one instantiation of the artificial datasets. For

Plane and Boolean problems, the input attributes are normally distributed through the

whole input space. Thus, the class frequencies will depend on the concept drift properties

in each of the 9 datasets of each problem.

Chapter 2. Problem 44

Table 2.3: Stream datasets

Data stream size #features #classes class frequency % artificial real semi
STAGGER 120 3 2 44.77, 55.23 ✔

FLORA-M 500 6 2 57.6 42.40 ✔

FLORA-S 500 6 2 63.80, 36.2 ✔

SEA 600,000 3 2 62.69, 37.31 ✔

Boolean 1,000 3 2 - ✔

Plane 1,000 11 2 - ✔

Circle, Line 2,000 2 2 50, 50 ✔

SineV, SineH 2,000 2 2 50, 50 ✔

CAR 1,296 6 2 57.87, 42.13 ✔

IRIS 339 4 4 32.74, 25.96, 23.6 ✔

USENET 5,931 658 2 50.4, 49.6 ✔

ELIST 1,500 913 2 53.33, 46.67 ✔

Forest 581,012 54 7 36.5, 48.8, 6.2 ✔

PAKDD 50,000 27 2 80.3, 19.7 ✔

KDD 494,020 41 2 19.7, 80.3 ✔

Electricity 45,312 8 2 42.5, 57.5 ✔

Airlines 539,383 7 2 55.5, 44.5 ✔

Ozone 2,536 72 2 97.1, 2.9 ✔

SPAM 9,324 500 2 25.6, 74.39 ✔

2.4 Summary

Learning from streams is usually treated using online machine learning techniques which

differ from classical batch learning methods in three major points. First, streaming data

are not stored or reprocessed, due to memory constraints. Secondly, the prediction model

should give answers in an any time fashion, while updating itself with each received

information from the stream. Finally, online learning does not presuppose that the

training data be independent and identically distributed. It is ready to adapt to changing

conditions. When the environment changes, a central concern is to optimize the stability-

plasticity dilemma. That is, to learn from as much data as possible when the concept is

stable while also recognizing when data points become obsolete when the concept evolves.

Dealing with the challenges of online learning presented above is the focus of this work.

Our goal is twofold. First, to present a learning method able to adapt to concept changes

and secondly, to analyze how learning models (capturing the underlying target concept)

evolve with time in order to anticipate future scenarios and act pro-actively. In the next

chapter, we give an overview of the state-of-the-art methods designed to learn in non-

stationary environments. We give special attention to online ensemble methods which

are the base of the learning method we suggest.

Chapter 3

State of Art

In this section, we provide an overview of existing online learning systems designed to

operate under evolving environments. We go through a number of systems that either

use a single learning model or an ensemble of learning models. The list of presented

systems is non-exhaustive. However, it gives an insight of the different methodologies

used to handle real life learning scenarios, where the training data is received in an online

fashion and the underlying environment can evolve with time, creating concept changes.

When evaluating online learning systems, several criteria are taken into account. A

“perfect” online learning system meets the following requirements:

1. Fast detection of concept changes (sensitivity to changes)

2. Robustness to false detections

3. Ability to adapt to new concepts

4. Ability of knowledge transfer between consecutive concepts

5. Few parameters to set

6. Low sensitivity to preset parameters

7. Respect of time and memory constraints

These requirements can be contradictory. For instance, sensitivity and robustness are

often antinomic (requirement 1 and 2). Methods designed to react quickly to the first

signs of concept drift may be misled into overreacting to noise. Some approaches can

also have few parameters to be set but the preset values may have a great impact on

the type of concept drifts that can be detected (requirement 5 and 6). For instance, a

45

Chapter 3. State of Art 46

learning system that detect concept changes using a threshold value on the predictive

accuracy may behave differently depending on the threshold value. A low prediction

threshold value will detect highly severe concept changes while a high threshold value

will detect low severity concept changes, and will react also to noise. In the design of

online learning systems, compromises are generally made. As a result, the weakness of

some approaches are the strengths of others, and vice-versa.

We first explain in Section 3.1 how online methods generally adapt to concept changes.

We then present a number of online learning systems that either use a single learning

model (Section 3.2) or an ensemble of learning models (Section 3.3) in order to learn

from the data stream and adapt to evolving environments. The different systems are

presented chronologically.

3.1 Adapting to the Change

The online methods can be divided into two categories [70] depending on whether or

not they use an explicit concept drift detector in the process of adaptation to evolving

environments. We show here the differences between the two methodologies and present

three well-known state-of-the-art drift detection systems.

3.1.1 Explicit detection

The first category includes the methods that explicitly detect a concept change by mon-

itoring either variations in the distribution of the incoming data or the variations in the

classification performance of the ensemble [38].

In these approaches, the learning system is generally reset when a change is detected and

the new system starts learning from scratch, with no knowledge of the past. This makes

these approaches highly responsive to concept changes. However, their performance

relies mostly on the detection mechanism. A false negative detection makes the learning

system unable to adapt to the concept change, while a false positive detection resets the

learning system when the concept is still stable. By resetting the learning system, these

methods cannot transfer acquired knowledge from the old concept to the new one after

a concept change. Examples of drift detection mechanisms include: DDM [38], EDDM

[6] and ADWIN [9] drift detectors.

Chapter 3. State of Art 47

DDM

The basic idea in DDM is that, when the environment is stable, the learning algorithm

is expected to make less errors with time. If however, the online error increases, the

underlying target concept is assumed to be changing and the learning algorithm should

be reset. DDM defines two error levels:

1. the warning level: beyond this level, the examples are stored in anticipation for

change.

2. the drift level: beyond this level, a concept drift is assumed to be happening. The

learning algorithm is reset and is trained on the examples stored since the warning

level.

EDDM

The Early Drift Detection Method (EDDM) [6] is an enhancement of the DDM algorithm

[38] which detects a concept change by monitoring the online predictive error of the

learning algorithm.

Instead of taking in consideration the number of errors only, EDDM considers the distance

between two classification errors. The basic idea in EDDM is that, when the environment

is stable, the distance between two consecutive errors increases with time. A decrease in

the distance is therefore the evidence of a concept drift. Thus, the distance is monitored

and, if the distance falls below a predefined threshold α, the warning level is triggered,

indicating that a concept drift might have happened. From this moment, all the training

examples presented to the system are used for learning and then stored. If the distance

goes below another predefined threshold value β, where β < α, the concept drift is

confirmed and the system is reset. It was shown that EDDM performs better than DDM

on very slow drifts.

ADWIN

ADWIN detects a concept change using an adaptive sliding window model. ADWIN looks

at all possible subwindows partitions in the window of training data. Whenever two large

enough subwindows have distinct enough averages, a concept change is detected and the

older partition of the window is dropped. ADWIN’s only parameter is a confidence

bound γ, indicating how confident we want to be in the algorithm’s output.

Chapter 3. State of Art 48

3.1.2 Implicit adaptation

In the second category of online methods, the learning system adapts implicitly to a

concept change by holding an ensemble of experts1. Each expert is given a weight that

reflects its classification record; if the weight value drops under a predefined threshold,

the expert is removed and replaced by a new one. The new experts starts learning from

scratch with no knowledge of the past, allowing them to adapt to a potential concept

change. Advantages of implicit methods include their capacity of achieving knowledge

transfer between consecutive concepts, and this by keeping old experts in the ensemble

after the concept change. These methods do not rely on a concept change detection

system, and thus, unlike their rivals, are not sensitive to false detection alarms. Their

main drawbacks include slow reactivity to a concept change if it takes long to delete

experts from the ensemble.

In both categories, the adaptation ability of the learning system depends mainly on the

value of the predefined parameters as the threshold value used to remove an expert from

the ensemble or the parameters used to explicitly detect a concept drift. Choosing the

parameters values requires generally an a priori knowledge of the concept drift properties.

As a result, even if a set of parameters is adapted to a specific concept change, it might

not work for others.

3.2 Online Classifiers

We present here online systems that use a single learning model (a classifier). The

presented systems comprise two pioneer drift handling systems: IB3 and FLORA, and

two more recent systems: RePro and PreDet.

3.2.1 IB3 (1991)

IB3 [1] extends the nearest neighbor algorithm, which saves and uses selected instances

from the training data to generate classification predictions. IB3 describes a concept by a

set of instances, having each a classification record i.e. a number of correct and incorrect

classification attempts. A classification record summarizes an instance’s classification

performance on past successive training instances and suggests how it will perform in

the future.
1We use the same terminology used by Cesa-Bianchi in its book on online learning [20].

Chapter 3. State of Art 49

IB3 employs a significance test to determine which instances are good classifiers and

which ones are believed to be noisy. The former are used to classify subsequently pre-

sented instances. The latter are discarded from the concept description. If an instance

gets wrongly classified, the instance is added to the concept description. IB3 was criti-

cized for being able to adapt to gradual concept drifts only, and its adaptation is relatively

slow [96].

3.2.2 FLORA (1996)

In FLORA [96], a concept is described using a simple representation language based

on attribute-value logic without negation. For instance, (color=white and tempera-

ture=low). A conjunction of attribute-value pairs is called a description item and a

concept is represented by a set of description items. FLORA keeps description items

that are consistent with a sliding window of examples.

Four versions of FLORA exist. The first version, FLORA1, uses a fixed size sliding

window. Selecting a window size remains a difficult problem. A narrow window will

not accommodate a sufficient number of examples for a stable concept description. A

wide window; on the other hand, will slow down the learner’s reaction to a concept

drift. The second version, FLORA2, uses a dynamic window size. The idea is to shrink

the window when a concept drift seems to occur, and keep the window size fixed when

the concept seems stable. Otherwise, the window should gradually grow until a stable

concept description can be formed. In order to adjust the window size, FLORA2 relies

on an explicit concept change detection system. Changes are detected by monitoring two

indicators: the predictive accuracy on the recently classified instances and the properties

of the evolving concept. The basic assumption is that a significant drop in the predictive

accuracy or an explosion of the number of description items is a sign of a possible

concept change. The third version, FLORA3 extends FLORA2 by dealing with recurring

contexts. It stores concepts in stable situations and recall them in similar contexts. The

last version, FLORA4, handles noisy environments, on the expense of a slower reaction

to concept changes.

3.2.3 RePro (2005)

The RePro method [99] combines proactive and reactive predictions. In a proactive

mode, RePro anticipates the future concept when a concept change occurs and prepares

prediction strategies in advance. If the anticipation turns right, the predicted concept

is used to classify the upcoming examples. Otherwise, the reactive mode takes over,

adapting a new learning model to the new data.

Chapter 3. State of Art 50

The proactive mode creates a history of the different concepts encountered during the

data streaming, in the form of a Markov chain [75]. The Markov chain is built incremen-

tally where the states represent the stable concepts and the arcs the transitions between

consecutive concepts.

Before adding a new concept to the history, two measures should be defined:

• a stability measure which is used to decide whether the learning model has learnt

enough training examples and thus can be trusted to represent the underlying

target concept. In RePro, the learning model should be trained on m examples at

least to be considered as stable. The value of m needs to be predefined.

• a concept equivalence measure which evaluates the resemblance between two con-

cepts. This measure ensures that the same concept is not considered twice in a

row in the Markov chain in construction. The equivalence between two concepts

C1 and C2 is computed in RePro as the mean number of examples on which both

C1 and C2 agree on the predicted label.

A concept change is detected using a fixed size sliding window on the training data.

Whenever the classification error exceeds a predefined threshold, a drift is detected and

the system checks the most likely concept to come according to the Markov chain. If

no potential candidates exist, the whole list of possible concepts is examined and the

concept with the lowest classification error on the sliding window is selected to classify

upcoming instances. The error of the selected concept should nevertheless be smaller

than a predefined threshold. Otherwise, the reactive mode takes over the proactive one,

resetting the learning algorithm which learns from scratch starting with the examples in

the sliding window.

In total, the system’s parameters include: an error threshold θ1 and a window size w1

for the drift detection system; the parameter m for the stability measure; a threshold

θ2 for the concept equivalence measure; a probability threshold θ3 for the Markov chain

and a classification accuracy threshold θ4 to decide whether the reactive mode should

take over the proactive mode.

3.2.4 PreDet (2008)

The PreDet [15] algorithm analyzes the change to anticipate future scenarios. PreDet

uses decision trees as classifiers and anticipates future trees by predicting for each decision

node the evaluation measure of each attribute, this value being used to determine which

Chapter 3. State of Art 51

attribute will split the node. In case of a leaf node, PreDet predicts its class label

distribution.

The anticipation mechanism operates as follows. The data stream is split into m con-

secutive batches of examples where each batch is used as a time reference to estimate

the current evaluation measures along with the class label distributions. The future

evaluation measures are predicted using a linear regression model trained on the last r

estimations of the predicted parameters.

The classification process operates as follows. The sequence consisting of r consecutive

batches (Si, ..., Si+r−1) is used to predict the decision tree for the batch Si+r that chrono-

logically follows the sequence using the anticipation mechanism. The predicted tree is

then used to classify samples in Si+r. This process is repeated for each value of i where

i = 0, . . . ,m− r.

Summary

Single learning models are among the first systems suggested to adapt to concept changes.

An important challenge is to decide when past data become obsolete and should there-

fore be discarded from the learner’s memory. Several directions have been proposed to

dynamically adapt the memory of the past data. One is to select instances relevant to

the current concept. For instance, in FLORA [96], time sliding windows on the past

data are used, either with a fixed or a varying window size. This technique necessitates

either a priori knowledge about the dynamics of the environment, or a good heuristic

that guesses when to shrink or expand the sliding window. In IB3 [1], the most rele-

vant instances do not necessarly represent the most recent data as with sliding windows.

Instances from the stream can be stored in memory (or removed) according to their

classification record, which is deemed to reflect how relevant they are to the current

context. Another approach relies on weighting past data with respect to their relevance

to the current situation [54]. Again, this is all dependent on the design of an appropriate

weighting mechanism.

More recent techniques take advantage of the change in order to anticipate the near-future

characteristics. RePro [99] and PreDet [15] are examples of such systems, where the

sequence of concept changes is analyzed in order to predict the most probable upcoming

concept. The main difficulty is to identify the different concepts encountered during

learning. This is either realized using a drift detection system [99] or by making a priori

assumption on when concepts are expected to change [15]. While the former strategy

requires choosing adapted parameter values for the detection system, the latter needs a

priori knowledge about the dynamics of the environment.

Chapter 3. State of Art 52

3.3 Online Ensembles of Classifiers

By contrast with the single learning models approaches that explicitly control the mem-

ory of past data, ensemble methods rely instead on the control of past hypotheses.

Ensemble-based approaches maintain an ensemble of online learners that each maintain

their own memory of the past. By managing the population of these base learners, one

is implicitly controlling the use of past data.

A large variety of ensembles learning methods have been proposed for tackling changing

concepts [12, 13, 59, 70, 84, 85, 90]. In addition to the implicit control of past memory,

ensemble methods have the advantage of holding diverse online learners (experts), and

therefore multiple concept descriptions. They generally adapt to a variety of changing

conditions in the environment and do not require fine tuning of their parameters.

The ensemble methods can be grouped depending on many criteria such as:

Data receipt The data is either received and processed one instance at a time or in

sequential batches. A main problem when learning on sequential batches is that a drift

might occur inside a batch. An expert trained on this batch will learn misleading and

sometimes contradicting information. Choosing the batch size might also be a problem

when we have no a priori knowledge of the training data. If, for instance, we know that

what we learn depends on the season of the year then we may set the batch size such

that it covers each season separately.

Data pre-processing The data are either used as is or can be pre-processed by chang-

ing the data distribution using sampling and/or weighting methods. The latter strategies

use the idea of offline bagging and boosting methods [77] where the static batch of train-

ing data is learnt by each expert after being resampled with replacement. As a result,

each expert is trained on a different data distribution which increases the diversity of the

experts in the ensemble.

Experts’ learning extent In most cases, when the data is received in batches, an

expert learns on a block of data and its learning stops at this point. In other scenarios,

however, experts don’t stop learning: they constantly update their knowledge with new

observed training data.

Experts deletion Some approaches delete an expert from the ensemble when its per-

formance drops under a predefined threshold. Some other approaches always remove

Chapter 3. State of Art 53

the worst expert each τ time steps. In the latter case, and if the data is processed one

instance at a time, promising experts might be removed if τ examples are not enough for

the expert to learn a stable concept and get a relatively good predictive performance.

In order to avoid random and unmeaningful deletion operations, approaches may set a

maturity age, a minimum number of training examples that an expert should observe

before being evaluated for deletion. The deletion problem is not encountered when the

data is processed one block at a time since the block size is generally large enough to

learn a stable concept description.

Ensemble’s final prediction The ensemble classifies a test instance using the experts’

predictions and weights. In case of unweighted ensembles, each expert’s prediction carries

equal weight and the final prediction is the result of a majority vote. In case of weighted

ensembles, experts are not considered equal in the voting process. Each expert is assigned

a weight that reflects the importance of the expert’s prediction. The higher the weight,

the more the impact of its vote on the final prediction.

Different methods have been proposed for weights computing. Most methods evaluate an

expert based on its classification performance on recently observed data. Other meth-

ods use local accuracy to weight an expert: the expert’s classification performance is

evaluated on the neighborhood of the test instance and the weight is set accordingly.

The experts predictions are then integrated to give the ensemble’s final prediction. Clas-

sical integration methods include: majority voting, weighted majority voting, selecting

the prediction of the expert with the highest weight, using a roulette-wheel selection on

the experts weights, and others [28, 47, 66, 78].

Concept change handling Ensemble learning methods can be divided into two cat-

egories depending on whether they adapt implicitly or explicitly to concept changes (see

Section 3.1).

In explicit scenarios, a drift detection mechanism is used to adapt to concept changes.

After a change is detected the ensemble is generally reset. These approaches are highly

responsive to concept changes. Their main drawbacks include sensitivity to false alarms

and unability to achieve knowledge transfer between consecutive concepts.

In implicit scenarios, adapting to concept changes is achieved by the perpetual renewal

of the population of experts using removal and addition operations. These approaches

can achieving knowledge transfer between consecutive concepts by keeping old experts

in the ensemble after the concept change. Their main drawbacks include slow reactivity

to a concept change if it takes long to delete experts from the ensemble.

Chapter 3. State of Art 54

In the following, we present several online ensemble approaches that have been designed

to learn under evolving environments. The methods are categorized according to the

different criteria presented above (data receipt, data pre-processing, learning extent,

etc...) in Table 3.1.

3.3.1 DWM (2003)

The Dynamic Weighted Majority algorithm [59] does not use a drift detection method.

It handles drifting concept using an ensemble of classifiers that are weighted according to

their accumulated predictive performance observed during their lifetime. Each classifier

in the ensemble is initially assigned a weight of one. The weight is decreased by a

multiplier constant ρ when the classifier misclassifies an instance, when the current time

step is a multiple of p. This ensemble method copes with concept drift by dynamically

adding and/or removing classifiers every p time steps. A new classifier is added if the

ensemble misclassifies a test sample and a classifier is removed if its weight is lower than

a predefined threshold θ. This strategy makes the ensemble size variable. As for the

ensemble final prediction, it corresponds to the class label with the highest accumulated

weight (weighted majority vote).

3.3.2 CDC (2003)

CDC uses a weighted committee of decision trees to deal with concept changes [85].

When an example is received, each committee member predicts its class value. The

predictions are then combined by a weighted vote. The weight of each member reflects

its classification performance on the recently received data. Thus, committee members

that have been doing well recently have more to say. When a member’s performance

drops too low, it is replaced by a completely new member. It is expected that when a

concept changes, many members retire from the committee, allowing new members to

learn the new concept. While old members are reliable in stable environments, youngest

members tend to be valuable during changing times.

3.3.3 KBS-stream (2005)

The KBS-stream algorithm [84] is a boosting-like method [33, 82] that trains a classifier

ensemble from data streams. In KBS, the data are received in a sequence of batches.

With each received batch, either a new classifier is added or the latest added classifier is

updated. Before learning, the data distribution in the recent batch is changed using sam-

ple weighting and sampling strategy: the data are passed through the existing classifiers

Chapter 3. State of Art 55

and the distribution is modified such that the last classifier learns something different

than the remaining ones in the ensemble. The data are assumed to be independent and

identically distributed in each batch and a drift is allowed to occur between two consec-

utive batches but never inside a batch. These conditions are not met in many real-world

online problems.

3.3.4 DIC (2008)

The Dynamic Integration of Classifiers [90] uses an ensemble integration technique to

handle concept drift. In this approach, the data is received as a sequence of fixed-size

batches. The data is then divided into overlapping or non-overlapping blocks. With each

data block, a new expert is trained and added to the ensemble. When the ensemble size

reaches its maximum size, the replace the loser pruning strategy is used: the expert with

the worst classification record on the last data block is removed and replaced by a new

one, trained on the most recent data block. In dynamic integration of classifiers, each

classifier is given a weight proportionnal to its local accuracy with regard to the instance

tested. The best classifier is selected to predict on the behalf of the ensemble or the

classifiers are integrated using weighted voting. It was shown that dynamic integration

gives better accuracy than the most commonly used integration techniques, specially in

the case of local drifts [90].

3.3.5 Adwin Bagging (2009)

Bagging has been used in classical offline machine learning as a combining technique to

improve the accuracy of weak classifiers. Offline bagging methods [16] create M base

learners (classifiers) trained on M training sets of size N , each generated by drawing

random samples with replacement from the original training set. As a result, each

base learner is trained on K copies of a training example (x, y) where K follows a

binomial distribution. For large values of N , the binomial distribution tends to a Poisson

distribution [2] with λ = 1, where

Poisson(λ; k) = Pr(K = k) =
λk exp−λ

k!

and Pr is the probability mass function of K.

The predicted class value ỹ of an instance x is the result of a majority vote among the

base learners.

Chapter 3. State of Art 56

Bagging methods have also been suggested for streaming data [77]. In online mode, the

whole training set is not available. Hence, instead of resampling, instances are weighted

according to a Poisson distribution with λ = 1.

ADWIN Bagging [13] is the online bagging method with the addition of the ADWIN

algorithm as a change detector [9]. When a concept change is detected, ADWIN Bagging

removes the worst classifier of the ensemble and replaces it with a new classifier.

3.3.6 ASHT-Bagging (2009)

The ASHT-bagging algorithm [13] is a variant of online bagging designed to tackle with

non-stationary concepts. The approach builds an ensemble of Hoeffding trees [30] with

different tree sizes: small trees to adapt more quickly to changes and large trees which

are better for stationary concepts. In this approach, the data is received one instance at

a time. A tree in the ensemble is updated with each new observed training data. When

a tree reaches its maximum size, it is pruned, even for stationary concepts.

There are two different pruning options:

• delete the oldest node, the root, and all of its children except the one where the

split has been made. The root of the child not deleted becomes the new root.

• delete all the nodes of the tree, restart from a new root.

The maximum allowed size for the n-th ASHT tree is twice the maximum allowed size

for the (n− 1)-th tree. The size of the first tree is predefined by the user.

The diversity of the ensemble improves bagging and allows the adaptation to concept

drifts. The predictions of the trees in the ensemble are combined either by a weighted or

a simple vote, depending on the user’s predefined choice. In case of a weighted ensemble,

each tree has a weight proportional to the inverse of the square of its error. The error is

monitored with an exponential weighted moving average (EWMA) which is defined as

follows:

Xt = αzt + (1− α)Xt−1 = Xt−1 + α(zt −Xt−1)

where Xt is the moving average, zt is the latest measurement, and α is the weight given

to the latest measurement (between 0 and 1). The α value is set to 0.01 in the ASHT-

Bagging algorithm.

Chapter 3. State of Art 57

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

k

P
r(

K
=

k
)

λ=1

λ=6

λ=10

Figure 3.1: The poisson distribution using different λ values.

3.3.7 CCP (2010)

The Conceptual Clustering and Prediction method [52] is an ensemble method that uses

clustering to build its list of classifiers and is able to handle recurring concepts. Each

batch of m instances is mapped into a conceptual vector (descriptor). The vector is

either assigned to an existing cluster according to a distance threshold θ or a new cluster

is created. In the latter case, a classifier trained on the batch is assigned to the cluster.

In the former case, the classifier of the corresponding cluster is updated with the batch

instances. The classifier of the new or existing cluster is then used to classify the next

m instances. The number of clusters cannot be larger than cmax otherwise the new item

is incorporated into the nearest cluster.

3.3.8 Leveraging Bagging (2010)

The Leveraging Bagging method [12] is an online bagging method designed to handle

drifting concepts. Leverage bagging is different from online bagging in three points.

First, the instances are weighted according to a Poisson distribution with a λ value

greater than one in order to achieve more diversity in the generated weight values, as

shown in Figure 3.1. Secondly, in order to add more diversity to the classifiers, error-

correcting output codes can also be used [29]. With correcting codes, each classifier h

maps a class value c to a binary value µh(c) in a uniform, random way. This forces

the classifiers to learn different functions. Finally, Leverage Bagging handles drifting

concepts using the ADWIN method to detect concept changes [9]. If ADWIN detects a

change in the error of one of the classifiers, the classifier with the highest error is replaced

with a new one.

Chapter 3. State of Art 58

3.3.9 DDD (2012)

There also exist algorithms that use multiple ensembles to handle concept changes. For

instance, DDD algorithm by Minku [70] uses four ensembles with different diversity levels

to cope with evolving environments. According to Minku, diversity in the ensemble helps

reduce the initial drop in the classification accuracy that happens just after the change.

When the concept is stable, however, low diversity in the ensemble gives more accurate

results. The diversity of an ensemble is achieved by online bagging. Whenever a training

example is available, it is presented K times for each learner, where K is drawn from

a Poisson(λ) distribution. Different levels of diversity are realised using different K

values. The higher the K value, the lower the diversity level.

In DDD, any drift detection system can be used to detect possible concept changes. In

the experimental setup, the same system as EDDM was used. Before a drift is detected,

the learning system is composed of two ensembles: an ensemble with low diversity and

an ensemble with high diversity. The low and high diversity levels are controlled by the

parameters: λl and λh, respectively, where λl > λh. Both ensembles are trained with

incoming examples but only the low diversity ensemble is used for system predictions.

After a drift is detected, new low diversity and high diversity ensembles are created.

The ensembles corresponding to the low and high diversity ensembles before the drift

detection are kept and denominated old low and old high diversity ensembles. The old

high diversity ensemble starts to learn with low diversity (with a small λ value) in order

to improve its convergence to the new concept.

The system’s predictions are determined by the weighted majority vote of the output of

the old high diversity, the new low diversity and the old low diversity ensembles. The

new high diversity ensemble is not considered because it is likely to have low accuracy on

the new concept. The weight of an ensemble is proportional to its online classification

accuracy since the last drift detection. The weight of the old low diversity ensemble is

multiplied by a constant W which allows controlling the trade-off between robustness

to false alarms and accuracy in the presence of concept drifts, and all the weights are

normalized. It is important to note that while the predictions of the ensembles are

weighted, the predictions of the classifiers inside an ensemble are combined using a simple

majority vote.

Chapter 3. State of Art 59

Table 3.1: Properties of online ensemble methods

Algorithm
Prepro- Data Receipt Learn Extent Deletion vote drift handling
cessing batch inst. limited cont. thr. no thr. simple wgt expl. impl.

AdwinBag ✔ ✔ ✔ ✔ ✔ ✔

LBag ✔ ✔ ✔ ✔ ✔ ✔

CDC ✔ ✔ ✔ ✔ ✔

DDD ✔ ✔ ✔ ✔ ✔ ✔ ✔

DWM ✔ ✔ ✔ ✔ ✔

ASHT ✔ ✔ ✔ ✔ ✔ ✔ ✔

DIC ✔ ✔ ✔ ✔ ✔

KBS ✔ ✔ ✔ ✔ ✔ ✔

CCP ✔ ✔ ✔ ✔

3.4 Summary

In the recent years, a large number of online learning systems have been suggested to learn

from data streams, dealing with the challenges of learning under changing conditions

while also meeting memory and time constraints.

While some systems were designed to adapt passively to concept changes, other systems

took advantage of past learning experiences to act proactively and anticipate future sce-

narios. Most proactive systems worked on recurrence, keeping traces of old and outdated

concepts in case they become useful in the future. In 2008, anticipation went beyond the

case of recurring contexts. The notion of concept change mining was introduced with

the PreDet system [15] where the learning models were analyzed in order to predict the

near-future characteristics of the evolving domain.

In the rest of this thesis, we suggest a novel online learning method that combines passive

adaptation to concept changes with a proactive anticipative mechanism that predicts (if

possible) the upcoming concept, treating the cases of recurrence and concept change

mining. We present the adaptive strategy in Chapter 4 followed by its combination with

the anticipative mechanism in Chapter 5. We finally conclude our main contributions

and suggest future research directions in Chapter 6.

Chapter 4

Adaptation to Concept Changes

4.1 Motivation

In this Chapter, we present an online learning algorithm that relies on an ensemble of

experts in order to adapt to drifting concepts. The method we propose adapts implicitly

to concept changes without the use of an explicit change detection mechanism. Our choice

was motivated by the advantages of implicit methods over explicit ones, as detailed in

Chapter 3.

Our main goal in the design of the online ensemble algorithm is to make its behavior

minimally sensitive to its parameter values. Explicit adapting systems rely on preset

parameters in their detection of changing concepts. Abrupt changes are easier to detect

by explicit detection methods, but difficulties arise with the slow gradual changes. The

parameters should be tuned such that the detection system gets highly sensitive to any

change while at the same time, being robust to noise. These two requirements gener-

ally require opposite strategies. In addition, when a concept change is detected, explicit

methods take harsh decisions, generally resetting the ensemble of experts in the pool of

learners. In case of a false alarm, this has the effect of losing all acquired knowledge

and learning from scratch, despite the fact that no real change in the underlying tar-

get concept occured. The sensitivity of explicitly adaptative systems to the detection

mechanism led us to consider implicit adaptation methods.

Implicit methods adapt implicitly to changes by adding and removing experts from the

ensemble. Experts are generally removed if their predictive performance falls under a

predefined threshold, suggesting that the expert is outdated and does not represent the

current underlying concept anymore. Even when the concept is stable, a wrong deletion

of one or more experts doesn’t have a major impact as with explicit systems which react

60

Chapter 4. Adaptation to Concept Changes 61

severely in case of suspicion of change, resetting all the experts in the committee. Implicit

adaptation also rely on predefined parameters in the adaptation to change. For instance,

if the system uses a threshold parameter to decide if an expert should be deleted, then

depending on the threshold value, an expert might be deleted even though the concept

is stable, or might not be deleted, even though the concept is changing. Thus, challenges

are always present, in a form or another.

In Section 4.2, we present the framework of ensemble methods adapting implicitly to

concept drifts. We analyse its main components and the main factors that contribute to

the sensitivity of an implicit system to its preset parameters. We then present in Section

4.3 our ensemble algorithm which adapts implicitly to concept changes. The ensemble

learning algorithm was designed with the goal of overcoming the sensitivity of its rivals

to the values of the preset parameters. In other words, the presented ensemble method

adapts to a large variety of concept changes, with different speeds and severities, and

this, without the need of fine tuning its parameters.

4.2 Framework

Ensemble methods with implicit adaptation to changes maintain an ensemble of experts

{hit}1≤i≤N , each of them adapting to the new input data. They administer this ensemble

or committtee thanks to a deleting strategy and an insertion one. The main principles

of these methods are the following issues:

• Prediction: for each new incoming instance xt, the prediction ỹt = H(xt) results

from a combination of the prediction of the individual experts

• Learning: each expert in the ensemble continuously learns from the received train-

ing data (xt, yt) until it is removed from the ensemble.

• Deletion: every τ time steps, the experts are evaluated on a window of size τeval.

Based on the results of this evaluation, the deletion procedure chooses one or more

expert(s) to be removed.

• Insertion: every τ time steps, a new expert can be created and inserted in the

ensemble. A new expert starts learning from scratch with no knowledge of the

past. It is protected from possible deletion for a duration τmat.

Chapter 4. Adaptation to Concept Changes 62

The remainder of this section addresses the following:

• The type of experts used in the ensemble.

• The prediction process, on how the individual predictions can be combined to form

the ensemble’s final prediction.

• The weighting functions used to evaluate experts in the ensemble.

• The sensitivity of the implicit framework to the deletion strategies.

4.2.1 Experts

Ensemble methods rely on a set of experts i.e. forecasters that predict the target value ỹt

of an instance xt. Generally, an expert is a base learner. For instance, a support vector

machine [45], a decision tree [80], a neural network [43], a naive bayes classifier [100],

among others. The base learner constantly updates a predictive hypothesis h induced

via the training instances observed during its lifetime.

In our work, we aim at extending the type of experts in the ensemble. Instead of using

learning models only, we would also have experts that don’t “learn” from the training

data, providing predictions of a target value ỹ regardless of the corresponding input

xt. For instance, a predictor that would always predicts the class A or a predictor that

predicts the same class value as the last received example i.e. ỹt = yt−1.

Some ensemble algorithms have been designed to deal with concept drifts using a specific

type of learning models. For instance, the ASHT-bagging algorithm by Bifet et al. [13]

which uses Hoeffding decision trees only [30]. One of our goals in the design of the adap-

tative ensemble is the ability to use any type of learning model. We even wish to push

this idea further by mixing different types of base learners in the ensemble at a time.

For instance, different decision trees, support vector machines and neural networks, al-

together in one ensemble. The diversity in the types of learners allows one to capture

various types of regularities in the underlying target concept. Generally, ensemble al-

gorithms avoid mixing different base learners since one would also have to implement

control policies to determine which base learner to add by the insertion strategy [59].

4.2.2 Prediction

In classical ensemble learning methods, such as Adaboost, it was shown that combining

experts improves in many cases their predictive performance [33]. Classical ensemble

Chapter 4. Adaptation to Concept Changes 63

learning methods allow the cooperation of a set of experts by combining their predictions,

usually by a majority vote or a weighted vote.

In the presence of changing concepts, an online ensemble method adapting implicitly to

concept changes may contain two categories of experts at the same time: experts trained

on the current new concept, and expert trained on the previous and old concepts. In

such case, the cooperation with the old and outdated experts is not the best strategy.

Ideally, we would allow the cooperation between the “good” experts, that are trained on

instances from the new concept, and exempt the “bad” outdated experts from voting.

Assessing the quality of an expert is generally done by computing a weight, reflecting

the expert’s quality in terms of its expected predictive accuracy on future instances. In

weighted ensembles, the experts with the highest weights, seen as the most promising

ones, contribute more than others to the ensemble’s final prediction. The least promising

candidates, with the smallest weights, can be the subject of expulsion from the ensemble

by the deletion strategy.

Seen from this perspective, the weighted experts are rather in competition than cooper-

ation. Weighted experts compete for they life in the ensemble, and also compete to be

heard in the voting process. If more than one promising experts exist in the ensemble,

they cooperate in the voting process. Thus, experts are in a competition from a pre-

dictive accuracy perspective, and good experts cooperate when forming the ensemble’s

final prediction. The predictions of the experts are generally combined using one of the

following combination functions:

• V: a simple vote. The simple vote doesn’t take into account the goodness/badness

of the predictor when combining predictions.

• WV: weighted vote. The main issue in WV is that in case of a concept drift, if the

ensemble contains a relatively large number of outdated experts trained on an old

concept, their weights will sum up and will be high enough to win the vote. This

delays the adaptation to the new concept.

• WVD: weighted vote after suppressing the predictions of the worst experts i.e.

the experts with the performances that fall into the lower half of the performance

interval. This overcomes the problem of the weighted vote, explained above.

• MAX: the prediction of the best expert is selected i.e. the expert with the largest

weight is selected for the final prediction.

Chapter 4. Adaptation to Concept Changes 64

4.2.3 Weighting functions

In weighted ensembles, each expert is assigned a weight that reflects its predictive record.

The weight value translates how well the expert is expected to perform on future in-

stances. We give here an insight into the main methods proposed for weights computing.

In DWM [59] each classifier in the ensemble is initially assigned a weight of one. The

weight is decreased by a multiplier constant ρ when the classifier misclassifies an in-

stance. The main issue in this scenario is that the prediction records are computed over

the experts’ lifetime, and not over their recent predictions. Therefore, if a concept drift

recently occured, an expert with a high predictive performance on the old concept will

still have a relatively high weight after the drift even though its knowledge of the under-

lying target concept became outdated. This misleads the ensemble into considering that

outdated experts are adapted to the current context when in fact, they are not. This

type of weight assignement is also used in other systems such as the systems described

in [20] and [58].

Other methods use local accuracy to weight an expert: the expert’s classification per-

formance is evaluated on the neighborhood of the test instance and the weight is set

accordingly. It was shown that this weighting function leads to better accuracy, specially

in the case of local drifts [90]. Generally, this method is only beneficial when training

data are processed as a sequence of batches in order to ensure that enough data are

available to assess the neighborhood of test instances. In case of a pure online learning

scenario where instances are processed one at a time, two values should be defined: (a)

the size of the past data w from which neighborhood instances are considered and (b)

the neighborhood size k. The value of w should be small enough to avoid the presence

of outdated data and since k should be smaller than w, this can lead to relatively small

neighborhood sizes and consequently unstable weight values.

Finally, weighting methods can evaluate an expert based on its classification perfor-

mance on recently observed data [85]. It is common practise to use only the most recent

data available because their characteristics are very likely to be best reflecting those of

(unknown) near future data [15]. Therefore, it is expected that experts with a good

predictive performance on the recent data will also perform well in the near future. For

instance, in CDC [85], the weight of an expert is simply its predictive accuracy (the mean

number of correct predictions) on its last τeval predictions. Using the predictive accuracy

for weight computing makes weight values more readable and interpretable.

Chapter 4. Adaptation to Concept Changes 65

4.2.4 Deletion strategies

Ensemble methods adapt implicitly to concept drifts by deleting experts with bad pre-

dictive performance. A deleted expert is considered unadequate to the underlying target

concept and is replaced by a new expert that starts learning from scratch.

The deletion strategy plays the key role in the adaptation process since it allows experts

to forget the acquired memory of outdated training data. Generally, an expert is removed

according to the replace the loser pruning strategy which deletes the worst expert [12,

13, 59, 85, 90] in the ensemble. In some approaches, the “loser” is removed only if its

evaluation record is below a predefined threshold.

We study here the sensitivity of the adaptation process to the parameters of the deletion

strategy, which triggers the deletion of experts and generally, also the addition of new

experts. We address the following questions:

Q1 Does the use of a threshold enhance the “replace the loser” strategy? And how can

we find the optimal threshold value?

Q2 Is the “replace the loser” strategy the best heuristic?

Q3 How can the deletion strategy achieve both plasticity and stability, without being

biased towards one or the other?

4.2.4.1 Deletion strategies using a threshold value

A deletion strategy based on a threshold replaces experts in the ensemble when their

prediction record, evaluated on the window size τeval, is below a predefined threshold θd.

When the performance is computed as the percentage of correctly classified instances on

the evaluation window, only the experts with a classification accuracy of at least θd%

thus remain in the ensemble.

This strategy leads to different behaviors depending on the characteristics of the en-

vironment. For the sake of the analysis, let us suppose that a concept drift occurs

corresponding to a change in the label of sev% of the input space. This is called the

severity of the concept drift [69]. Let’s suppose further that all experts in the ensemble

have a perfect classification accuracy of 100% before the drift. We are then faced with a

difficult conundrum.

If sev << 1 − θd, that is if the severity of the concept change is below the detection

capability induced by the threshold, we may very well end up with an unchanged ensemble

Chapter 4. Adaptation to Concept Changes 66

of experts. Charged with their memory of outdated data they will be slow, if ever, to

adapt to the new concept. For instance, if sev = 15% and θd = 75%, then after the

change, the performance record of the experts will drop to 85% and thus won’t be

removed from the ensemble according to the relatively small threshold value.

However, the choice of a higher threshold is loaded with two potential pitfalls. First, in

case of a noisy environment, the classification accuracy of many experts may drop under

the θd value resulting in a severely impoverished committee even though no real concept

drift did happen. Second, new experts may not be able to reach the exacting threshold

before they reach the maturity age (τmat) and are therefore no longer protected from

deletion.

Overall, it is difficult to set a value for a threshold without well-informed prior knowledge

on the dynamics of the environment. Too low a threshold threatens the plasticity of the

system, while a high one may cause havoc in the ensemble and prevent stability and

good prediction performance. For these reasons, ensemble methods that do not rely on

explicit threshold have been promoted.

4.2.4.2 Deletion strategies that delete the worst expert

Rather than having to set a threshold for deciding which expert to eliminate, one can

encourage the diversity in the ensemble while preserving the best current expert by

periodically removing the worst ones. One such strategy removes the worst expert in

the ensemble every τ time steps. This seems a sensible strategy since it should discard

experts that no longer correspond to the current state of the environment and introduce

at the same time new experts. However, a potentially vicious interaction involving the

parameters τ and τmat may ruin this hope.

Let us first suppose that the period of time during which a new base learner is protected

from deletion: τmat is less than τ . At each new deletion time, the newest expert is prone

to be deleted and will be if it did not have time to learn enough of the regularities in the

environment. But τ cannot be too large lest the system looses any plasticity.

Suppose then that τ ≤ τmat. Again the risk exists that deletion will affect only the

newest experts in the ensemble effectively dividing the ensemble into a protected subset

of the best and oldest experts and a subset of the newest ones that are never able

to catch up with the other ones except when the overall performance of the system

has so declined that even a low prediction performance may allow an expert to avoid

elimination. A question is then whether it is possible to break this poor behavior which

impedes plasticity by never allowing new experts to enter the top subset.

Chapter 4. Adaptation to Concept Changes 67

More formally, let’s assume that the experts are indexed from 1 to N , where N is the

size of the ensemble. Every τ time steps, the experts are evaluated for deletion. At the

time of the first deletion, the worst expert hk1 is replaced by a new expert, with the same

index. The new expert hk1 is now protected from deletion for τmat time steps.

if τmat < τ , then at the time of the second deletion, hk1 is not protected from deletion

anymore. It is possible that τmat time steps were not enough for the young expert to

exceed the performance of the others experts in the ensemble. As a result, hk1 is still

the worst in the ensemble. It is replaced by a new expert and so on.

if τ ≤ τmat, then at the time of the second deletion, hk1 is still protected from deletion.

The next worst expert is hk2 , where k2 6= k1. Once hk1 becomes unprotected from

deletion, it is removed from the ensemble. Then hk2 is removed again and so on. The

deletion cycle contains d = τmat/τ experts with different indexes.

Depending on the values of τmat, τ and the size N of the ensemble, we get the following

special cases for the size d of the deletion cycle (the number of continuously deleted

experts):

• If τmat = N and τ = 1 =⇒ d = N . All the experts are removed, the ensemble is

reset all the time.

• If 1 ≤ τmat < N and τ = 1 =⇒ 1 ≤ d < N . A subset of the ensemble is removed.

By always resetting the whole ensemble (case (a) above), the experts generally don’t

get the chance to learn a stable representation of the underlying target concept. By

removing new experts (case (b) above), the old outdated experts are not removed after

a concept change while young experts don’t have the chance to learn the new concept,

impeding plasticity.

4.2.4.3 A new deletion strategy based on a stochastic mechanism

One can soften the “eliminate the worst learner” strategy while still favoring the removal

of the worst and potentially obsolete base learners. It suffices to pick randomly an expert

from the subset of the ds (ds < N) worst experts. In this way, the newest experts have

a chance to learn enough of the regularities of the current environment to enter the pool

of the top experts, and, at the same time, preserving the best performers. This promotes

the plasticity of the system while not deteriorating its stability. The size ds of the subset

where experts can be picked up to be eliminated controls the plasticity-stability trade-off.

Chapter 4. Adaptation to Concept Changes 68

We studied the effect of five deletion sizes (by setting the value of ds) on the forgetting

strategy: N , 0.75 ∗ N , 0.5 ∗ N , 0.25 ∗ N and 1. The deletion size of 1 corresponds to

the replace the loser strategy (i.e. replace the worst expert), while a deletion size of N

means that an expert is selected randomly for deletion from the ensemble of experts.

Experimental setup

We evaluated the different deletion sizes on the Line, SineH and Circle artificial problems

suggested by Minku et al. [69] which include 27 datasets with various types of concept

changes (different severity and speed levels). One concept change event occurs at time

step tdrift = 1, 000 and the total number of examples is equal to 2, 000 (see Section

2.3.5.1).

In the experimental setup, the ensemble comprised either N = 10, N = 20 or N = 30

base learners. Unlike ensemble methods that combine weak learners (classifiers with a

prediction accuracy slightly better than random guessing) to form a strong learner [33],

we do not necessarly require relatively large ensembles to adapt to concept changes. The

learners in the experiments were not designed to be weak à la boosting [33] and size

values between 10 and 30 are common in such context [70, 85].

In order to be compared, base learners were evaluated on the most recent τeval = 20

data points (time steps). The duration for maturity τmat and the deletion period τ

were equally set to 20 time steps. As for the global prediction, it merely uses the

prediction from the current best base learner. This simple configuration means that every

20 time steps, all base learners are mature and are evaluated on their last 20 predictions.

According to the evaluation record and the deletion strategy, a learner is selected for

deletion and is replaced by a new base learner with no memory of the past.The parameter

values were fixed throughout all our experiments on Minku’s artificial problems Line,

SineH and Circle. We didn’t optimize the parameter values because we wanted to see

the capacity of the deletion strategies to adapt to the different types of concept changes

starting with the same initial settings.

As with the majority of ensemble methods adapting to concept changes [13, 59, 70, 85],

we used one type of learning models in the same ensemble. Note that, in such case,

the diversity in the ensemble comes from the deletion strategy which, by introducing

new learners with no knowledge of the past, allows the presence of learners trained on

different window sizes of data. We first used decision trees as base learners for SineH,

Line and Circle. To make sure that the results were not biased by a particular type of

Chapter 4. Adaptation to Concept Changes 69

base learners (decision trees here), we repeated the experiments using different types of

learning models1, more specifically:

• perceptrons for the Line problem.

• two-layer feed-forward neural networks with non-linear 3 hidden neurons for the

Circle problem.

• incremental support vector machines [26] with a radial basis function for the SineH

problem.

The configuration of the different learning models (the structure of the neural network,

the kernel function of the support vector machines) were chosen according to prelimi-

nary experiments. For each problem, we evaluated the online predictive accuracy of the

learning model (a single learner) when trained on the first examples from the stream,

that is, before a drift occurs. We then retained the best settings for each problem. The

predictive accuracy using the chosen learning models was around 0.83% in average in

the preliminary experiments.

We show in Figure 4.1 the mean classification error using the different deletion sizes.

Each of the artificial problems consists of 9 datasets (3 severity levels and 3 speed lev-

els). The mean classification error is thus averaged over 3 problems ∗ 9 datasets ∗

3 committee sizes ∗2 types of experts per problem = 162 experiments for each deletion

size. All the experiments start with the same random seed so that, for each problem, we

have the same experts at the beginning of the experiments. The average error is split

into three consecutive periods Ii:

1. before the drift: I1 = [1, tdrift], where tdrift is the number of time steps before the

concept change starts to occur. In the above problems, tdrift = 1, 000.

2. during the drift: I2 = [tdrift + 1, tdrift + δdrift]. The drifting time δdrift, as men-

tionned previously, equals to 1, 0.25 ∗ tdrift and 0.5 ∗ tdrift for speed levels High,

Medium and Low, respectively. For the high speed level, the drifting period is

equal to 1. Since one time step is not enough in the average computation, we

compute the average on 0.1 ∗ tdrift time steps, instead of δdrift = 1.

3. after the drift: I3 = [tdrift+ δdrift+1, 2∗ tdrift], where 2∗ tdrift is the total number

of instances in the stream.

We show in Figures 4.2, 4.3 and 4.4 the online predictive peformance of the ensemble on

the SineH, Line and Circle problems, respectively, when N = 10 or 20.

1Other learning models could do as well

Chapter 4. Adaptation to Concept Changes 70

Before Drift During Drift After Drift
0

0.05

0.1

0.15

0.2

0.25

m
e
a
n
 c

la
s
s
if
ic

a
ti
o
n
 e

rr
o
r

N

0.75×N

0.5×N

0.25×N

1

Figure 4.1: The mean classification error using different deletion sizes. The error is
averaged over several experiments on the Line, SineH and Circle datasets.

In order to better visualize the reactivity of the ensemble to the concept change, the

online performance is reset to 0.5 (the chance prediction rate) at time step 1, 000, that

is, when the concept change occurs in case of a sudden change or when it starts happening

if the change is continuous. The pair (Sp,S) on the top of each plot denotes the speed

and severity levels of the concept drift, which ranges from Low, to Medium and High.

The i-value in ds(i) refers to the deletion size.

Empirical results

From Figure 4.1, we notice the following:

Case of a stationary environment

The deletion size ds = 1 gives the best predictive accuracy when learning in a stationary

environment before any drift happens. The experts trained on the smallest windows of

training examples are generally the ones that tend to be removed from the ensemble

since they perform poorly compared to experts that have benefited from a large training

set. Meanwhile, the remaining experts tune up their knowledge of the current concept,

improving their classification record.

By increasing ds, the probability of removing a relatively good expert is also increased

which hurts the classification accuracy of the ensemble. We might expect a catastrophic

predictive accuracy in the extreme case, when ds = N . However, the accuracy is only hurt

to some extent. In fact, since in our settings, the expert with the highest evaluation record

predicts the target value of an incoming instance, only one “good” expert is required in

the ensemble to give correct predictions. Removing all the experts in the pool requires

Chapter 4. Adaptation to Concept Changes 71

at least N ∗ τ time steps. By this time, the first deleted expert is replaced by a new

expert trained on N ∗ τ training data, a size that is enough for the expert to have a

relatively good predictive accuracy on these artificial problems. In case of a weighted

vote, we expect the predictive accuracy to be hurt more, since the presence of a relatively

large number of “bad” experts, make them win the vote over the few “good” experts.

Case of a concept drift

While ds = 1 gives the best predictive accuracy when the concept is stable, it is not

the case after the concept drift. In fact when the drift severity is relatively small, the

predictive performance of old experts won’t decrease significantly after the drift, making

it difficult for new promising experts to reach a higher predictive performance at the

time of a deletion operation. Hence, new experts will likely be deleted, impeding the

adaptation to the new concept. This problem is not encountered with high severity and

high speed drifts since all experts will have a relatively bad predictive record after the

drift and thus there won’t be a preference over which expert to keep or to remove.

A relatively large deletion set increases the probability of a newly added expert to survive

a deletion. It also allows one to remove all the experts from the ensemble after a concept

change. Thus, for maximum plasticity, the best deletion size is ds = N . A maximum

plasticity is beneficial only when the change is sudden and severe because in such case,

all the old experts should be removed. In other cases, we would rather keep some of the

old experts for knowledge transfer.

The experiments suggest that ds should be small enough for stability and large enough

for plasticity. With a minimum deletion size (ds = 1), the ensemble has the lowest

classification error before the drift because stability is favored over plasticity. With a

maximum deletion size however (ds = N) the ensemble favors plasticity over stability

which hurts the classification performance when learning stationary concepts.

Choosing a deletion size that is half the size of the ensemble (ds = 0.5 ∗ N) seems

to correspond to a satisfactory trade-off between plasticity and stability. This choice

gives the lowest classification error in average, before and after the concept drift in our

experiments.

Chapter 4. Adaptation to Concept Changes 72

Further analysis

To see the details of the different deletion strategies, we analyze the results in Figures

4.2, 4.3 and 4.4. We notice that when the speed of change is slow, deleting randomly

from all the committee or deleting among the ds worst experts is nearly the same during

the drifting period. In fact, this period is characterized by the need to classify examples

belonging to the old and new concepts. Examples from the new concept will be generally

misclassified by experts trained on the old concept, resulting in perturbated weights

values, moving up and down depending on how many examples the experts misclassified

in the last τeval time steps. Hence, there won’t be a clear boundary between the “good”

and the “bad” experts and the experts in the deletion set will change with each deletion

operation. As a result, ds = 1 and ds = N will have the same impact on the classification

performance for some time until the new concept starts to take over the old one and the

weight values become more expressive.

We also notice that the results on SineH and Line are quite similar, with only ds = 1

causing difficulties in the adaptation to the concept change. This suggests that for SineH

and Line, the maturity age τmat is small and unadapted to the learning problem. In

fact, the youngest expert is always removed as 20 time steps (training samples) are not

enough to outperform its rivals. However, once the deletion size gets larger (ds = 2),

the young experts have a higher chance of surviving deletion, overcoming the unadapted

parameter values. We would expect that relatively large deletion sizes would hurt the

adaptation ability of the ensemble. However, it seems that even when any expert can

be subject of removal, the ensemble is still able to provide a relatively good predictive

accuracy. Resetting the whole ensemble needs at least δreset = N ∗ τmat time steps.

Hence, a possible explanation is that capturing the underlying target concept requires

less than δreset time steps. Thus, even if the ensemble is always reset, there will always

be an expert trained on enough examples to provide good prediction results.

With Circle, the behavior of the predictive performance is different than SineH and

Line depending on the deletion size. Even with ds = 2 (see Figure 4.4 top) the ensemble

has difficulties adapting to the change, suggesting that Circle is a more complex learning

problem, requiring an even larger maturity age for young experts to learn the new concept

and outperform their rivals. With ds = 5, the ensemble gives the best results. However,

once the deletion size gets larger, the predictive performance is hurt. Unlike SineH and

Line, removing a good expert is rather costly to the algorithm since an expert requires

more training data to capture the underlying target concept.

Chapter 4. Adaptation to Concept Changes 73

ds(1) ds(2) ds(5) ds(7) ds(10)
(H,L)

0 500 1000 1500 2000
0.7

0.8

0.9

1
(H,M)

0 500 1000 1500 2000
0.6

0.7

0.8

0.9

1
(H,H)

0 500 1000 1500 2000
0.6

0.7

0.8

0.9

1

(M,L)

0 500 1000 1500 2000
0.75

0.8

0.85

0.9

0.95

1
(M,M)

0 500 1000 1500 2000
0.7

0.8

0.9

1
(M,H)

0 500 1000 1500 2000

0.7

0.8

0.9

1

(L,L)

0 500 1000 1500 2000
0.8

0.85

0.9

0.95

1
(L,M)

0 500 1000 1500 2000
0.75

0.8

0.85

0.9

0.95

1
(L,H)

0 500 1000 1500 2000
0.7

0.8

0.9

1

ds(1) ds(5) ds(10) ds(15) ds(20)

(H,L)

0 500 1000 1500 2000
0.7

0.8

0.9

1
(H,M)

0 500 1000 1500 2000
0.6

0.7

0.8

0.9

1
(H,H)

0 500 1000 1500 2000
0.6

0.7

0.8

0.9

1

(M,L)

0 500 1000 1500 2000
0.75

0.8

0.85

0.9

0.95

1
(M,M)

0 500 1000 1500 2000
0.7

0.8

0.9

1
(M,H)

0 500 1000 1500 2000

0.7

0.8

0.9

1

(L,L)

0 500 1000 1500 2000
0.8

0.85

0.9

0.95

1
(L,M)

0 500 1000 1500 2000
0.75

0.8

0.85

0.9

0.95

1
(L,H)

0 500 1000 1500 2000
0.7

0.8

0.9

1

Figure 4.2: The online performance on the databases of the SineH problem using
different deletion sizes and using support vector machines as base learners, with N=10
(top) and N=20 (bottom). The x-axis represents the training examples (time step) and
the y-axis represents the online classification performance (the percentage of correctly
classified instances so far). The online performance is reset at time step 1, 000 when

the concept changes.

Chapter 4. Adaptation to Concept Changes 74

ds(1) ds(2) ds(5) ds(7) ds(10)
(H,L)

0 500 1000 1500 2000
0.85

0.9

0.95

1
(H,M)

0 500 1000 1500 2000
0.85

0.9

0.95

1
(H,H)

0 500 1000 1500 2000
0.85

0.9

0.95

1

(M,L)

0 500 1000 1500 2000
0.85

0.9

0.95

1
(M,M)

0 500 1000 1500 2000
0.8

0.85

0.9

0.95

1
(M,H)

0 500 1000 1500 2000
0.8

0.85

0.9

0.95

1

(L,L)

0 500 1000 1500 2000
0.85

0.9

0.95

1
(L,M)

0 500 1000 1500 2000
0.8

0.85

0.9

0.95

1
(L,H)

0 500 1000 1500 2000
0.75

0.8

0.85

0.9

0.95

1

ds(1) ds(5) ds(10) ds(15) ds(20)

(H,L)

0 500 1000 1500 2000
0.85

0.9

0.95

1
(H,M)

0 500 1000 1500 2000
0.85

0.9

0.95

1
(H,H)

0 500 1000 1500 2000
0.85

0.9

0.95

1

(M,L)

0 500 1000 1500 2000
0.85

0.9

0.95

1
(M,M)

0 500 1000 1500 2000
0.8

0.85

0.9

0.95

1
(M,H)

0 500 1000 1500 2000
0.8

0.85

0.9

0.95

1

(L,L)

0 500 1000 1500 2000
0.85

0.9

0.95

1
(L,M)

0 500 1000 1500 2000
0.8

0.85

0.9

0.95

1
(L,H)

0 500 1000 1500 2000
0.75

0.8

0.85

0.9

0.95

1

Figure 4.3: The online performance on the databases of the Line problem using
different deletion sizes and using decision trees as base learners, with N=10 (top) and
N=20 (bottom). The x-axis represents the training examples (time step) and the y-axis
represents the online classification performance (the percentage of correctly classified
instances so far). The online performance is reset at time step 1, 000 when the concept

changes.

Chapter 4. Adaptation to Concept Changes 75

ds(1) ds(2) ds(5) ds(7) ds(10)
(H,L)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1
(H,M)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1
(H,H)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

(M,L)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1
(M,M)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1
(M,H)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

(L,L)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1
(L,M)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1
(L,H)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

ds(1) ds(5) ds(10) ds(15) ds(20)

(H,L)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1
(H,M)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1
(H,H)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

(M,L)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1
(M,M)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1
(M,H)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

(L,L)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1
(L,M)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1
(L,H)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

Figure 4.4: The online performance on the databases of the Circle problem using
different deletion sizes and using neural networks as base learners, with N=10 (top)
and N=20 (bottom). The x-axis represents the training examples (time step) and
the y-axis represents the online classification performance (the percentage of correctly
classified instances so far). The online performance is reset at time step 1, 000 when

the concept changes.

Chapter 4. Adaptation to Concept Changes 76

4.3 DACC

Based on the previous analysis, we suggest an ensemble algorithm that adapts implicitly

to concept changes using an ensemble of experts. DACC’s algorithm, which is a main

contribution in this work, stands for Dynamic Adaptation to Concept Changes.

We present its main components:

1. The committee of predictors

2. The committee’s evolution

3. The weighting functions

4. The committee’s final prediction

5. Processing training examples

6. Time & memory constraints

7. Computational complexity

We then study different aspects of DACC, namely:

7. The diversity levels in the committee

8. The stability-plasticity dilemma

9. The effect of the preset parameters on the predictive performance

10. Recommendations on the choice the preset parameters

Finally, we evaluate DACC against a number of online algorithms on the artificial, semi-

artificial and real datasets presented in Chapter 3. DACC’s pseudo-code is shown in

Algorithm 1.

4.3.1 The committee of predictors

Instead of adding one expert at a time, DACC can add differents types of experts or what

we call a pool of types of experts, in order to create more diversity in the committee. The

experts are asked to predict the label of an example in a classification task.

Chapter 4. Adaptation to Concept Changes 77

Experts can be:

• Different learning models. For instance, decision trees, neural networks, support

vector machines, among others.

• Learning models with different structures. For instance, neural networks with

different number of neurons, layers, etc...

• Learning models with different training functions.

• Prediction rules. For instance, a rule that always predicts the last observed class,

or the majority class.

We define the maximum number of pools as Npool and the maximum number of predictors

in the committee as N . Hence,

N = Npool × size(pool) (4.1)

4.3.2 The committee evolution

The committee is initially empty. At each time step, a new training data e = (x, y) is

received and a new pool of types of experts, trained on e is added to the committee. The

predictors that are already in the committee are also trained incrementally on the new

training data. This operation is repeated until the committee reaches its maximum size

N . After reaching its maximum size, the committee is updated by the deletion strategy

which deletes and adds new experts.

Instead of removing the worst expert(s) of the ensemble, as with the replace the loser

strategy, DACC’s deletion strategy selects randomly m members from the worst half of

the committee and forces them to retire. To keep the committee size fixed, m is equal to

the size of the pool of types of experts (i.e. m = size(pool)).

Deleting experts occur as follows. With each deletion operation, each predictor is evalu-

ated and a weight is assigned accordindly. The higher the weight, the better the predictor.

The predictors are then split into two sets:

• Hbest represents the best half of the predictors, with the highest weights. The

predictors in Hbest are protected from deletion.

• Hworst represents the remaining predictors. DACC selects randomly size(pool)

predictors from Hworst for deletion.

Chapter 4. Adaptation to Concept Changes 78

In case of a concept change, this deletion strategy increases the expectation of a young

expert hnew with still a relatively bad performance record to survive in the committee,

allowing it to further improve its predictive performance regarding the new concept,

before being evaluated for the next deletion.

In order to control the rate of deletion, we impose all the experts to be mature before

expelling an expert from the committee. An expert is mature if it has observed at least

τmat training instances. Thus, when a predictor is deleted, the committee waits until the

newly added predictor becomes mature before the next deletion operation. This condition

ensures that a period of τ = τmat time steps separates two consecutive deletions.

An expert hbad belonging to the worst half of the committee survives a deletion operation

with probability

p =
N/2− size(pool)

N/2
(4.2)

Each time hbad escapes deletion, it is given another τmat time steps of training data before

the next deletion operation. The expectation of s, the number of times hbad survives a

deletion operation, is:

E[s] =
∞
∑

m=1

mpm(1− p) = p(1− p)
∞
∑

m=1

mpm−1

= p(1− p)
d

dp

(∞
∑

m=1

pm
)

= p(1− p)
d

dp

(

p

1− p

)

E[s] =
p

(1− p)

By replacing p with its value from equation 4.2, we get:

E[s] =
N/2− size(pool)

size(pool)

=
size(pool)×Npool/2− size(pool)

size(pool)

E[s] =
Npool

2
− 1

(4.3)

Increasing the life expectancy of the relatively bad experts makes DACC less exposed

to cases where young experts are expelled from the ensemble because they didn’t get

enough time to improve their predictive performance. In other words, the suggested

deletion strategy is less sensitive to a high deletion rate than the “replace the loser”

strategy. A higher deletion rate entails a faster reactivity to a potential concept drift.

Chapter 4. Adaptation to Concept Changes 79

It is important to note that resets will happen all the time, even for stationary datasets,

but this behaviour should not have a negative impact on the committee’s predictive

performance. We show here an example, clarifying how the deletion strategy allows the

committee to adapt to a variety of concept changes while being able to learn a stable

concept.

Example

Let’s consider one concept drift event that occurs at time step tdrift. The training data

from time step t1 to tdrift are generated for concept Cold. Then, a sudden concept change

with a class severity of 20% occurs in one time step, replacing the old concept Cold with

Cnew. As a result, 20% of the input space have modified labels in Cold according to the

new concept Cnew.

Stability When learning Cold, the two sets Hworst and Hbest become rapidly stable.

The predictors in Hbest, being protected from deletion, will have their classification per-

formance improved with time as new training data are received and learnt. The improved

performance will be translated into larger weights which will further keep them in Hbest.

When a predictor h ∈ Hworst is removed, it is replaced by a new predictor h̃. As pointed

previously, a deletion operation requires all the predictors to be mature. Thus, the

next deletion operation occurs τmat time steps later. The preset value of τmat might

not be enough for h̃ to outperform the classification performance of any of the predic-

tors in Hbest. As a result, the new predictor h̃ remains in Hworst with a probability of

size(pool)/size(Hworst) to be removed with each deletion operation. The predictors in

Hworst that escaped deletion for a relatively long time will have a good classification

performance but will still remain in Hworst since Hbest cannot contain more than half of

the committee.

The predictors in Hbest accumulate knowledge about Cold with each newly processed

training data. They assure the learning of a stable concept. The predictors in Hworst

change a lot due to deletion operations; they are replaced by new predictors ready to react

to a concept change. The predictors in Hworst assure the plasticity of the committee.

Plasticity After the concept drift, the classification performance of the predictors in

Hbest starts declining. Even if, after time step t = tdrift, they will learn training data from

Cnew, it is not easy to forget the acquired knowledge from concept Cold. The decrease

in their performance depends on the severity of the change: the larger the change, the

higher the damage.

Chapter 4. Adaptation to Concept Changes 80

The classification performance of the predictors in Hworst, on the other hand, starts

improving since they yet haven’t learnt any stable concept. After enough training exam-

ples, some of the predictors in Hworst will outperform other predictors in Hbest. When

the classification performance of a predictor hw ∈ Hworst becomes higher than the one

of the worst predictor hb ∈ Hbest, hw and hb switch places which makes hw immune

against removal. This will protect hw from deletion and will allow it to learn further-

more the concept Cnew. With at least one predictor that learns the new concept Cnew,

the committee is able to adapt to the concept change when using the MAX combination

function, as we will see shortly in Section 4.3.4.

4.3.3 The weighting functions

At each time step, the experts are evaluated on their recent predictive performance and

a weight is assigned accordingly.

In DACC, the weight wh of an expert h represents its mean predictive performance over

the last τeval predictions. We chose this weight measure for the advantages presented

in Section 4.2.3. Accordingly, the weight of an expert h at time step t is computed as

follows:

wh(t) =















τeval
∑

j=1

acch(xt−j)/τeval if h is mature

0 otherwise

(4.4)

where

acch(xt−j) =

{

1 if ỹt−j,h = yt−j

0 if ỹt−j,h 6= yt−j

(4.5)

The evaluation window
[

(xt−τeval , yt−τeval), (xt−τeval+1, yt−τeval+1), . . . , (xt−1, yt−1)
]

con-

tains the τeval most recent training examples. In the above equations, the pair (xt−j, yt−j)

denotes the j-th most recent training example; ỹt−j,h is xt−j’s label as predicted by the

expert h at time step t− j, just before h was trained on the pair (xt−j, yt−j). In DACC,

only mature experts are allowed to contribute to the final prediction. Hence, the weight

of an expert is set to zero if unmature.

Chapter 4. Adaptation to Concept Changes 81

4.3.4 The final prediction

The committee predicts the label ỹ of an incoming example x. The label of x is first

unknown to the committee. It is just after the committee predicts its label ỹ that the

real label y is revealed.

In order to construct the committee’s final prediction ỹ, we first compute the weight of

each expert in the committee. Then, according to the weight values, the predictions of

the experts on the current received instance x are combined using the cmb function. An

empirical comparison between the different combination functions (V, WV, WVD and

MAX) presented in Section 4.2.2 showed that simple voting (V) gives the highest online

error since it doesn’t take into account the goodness/badness of the predictor, while WV

leads to a fall in the predictive accuracy of the ensemble shortly after the drift [48]. This

was explained by the fact that when a committee contains a relatively large number of

bad experts, their weights will sum up and will be high enough to win the vote.

In DACC, we avoid using a simple vote (V) or a weighted vote (WV) as a combination

function. Instead, we rely on the two combination function: MAX and WVD.

4.3.4.1 MAX

With MAX, the member with the highest weight is selected for prediction. In case of

ties, the members sharing the same highest weight vote for the final prediction. When

using MAX, it is not necessary to remove a large number of experts in order to adapt to

a concept change. Once a fresh expert learns enough training data from the new concept

and its weight becomes higher than the others, it is selected to predict on the behalf

of the committee. Therefore, this combination function entails a faster reactivity to a

concept change than this of a simple weighted vote.

To show more how this function combines the predictions of the committee members, we

tested DACC on the artificial problems by Minku (see Section 2.3.5.1): Line, Boolean,

SineH and Circle, using MAX as a combination function. We used the same configura-

tion as before, that is, τmat = τeval = 20. For simplicity, only one type of base learners is

used in the same ensemble. Hence, size(pool) = 1 and N = Npool according to Equation

4.1. The ensemble comprised a total of N = 10 base learners.

In order to show that our ensemble method is general, in the sense that one could use any

online learning algorithm as a base learner, we used different types of learning models

for the different problems. Again, we used one type of learning models in the same

ensemble. Hence, the diversity in the ensemble (resulting from the presence of learners

Chapter 4. Adaptation to Concept Changes 82

with different memories of the past) is due to the frequent addition of new learners. Note

that higher levels of diversity could be realized by mixing different types of learners in

the same ensemble, leading possibly to a higher predictive performance. However, our

goal here is to explain the behavior of the MAX function and not to maximize DACC’s

predictive accuracy. Hence, for sake of simplicity, one type of learning models were used

in the same ensemble, more specifically:

• decision trees for the Boolean and Circle problems.

• support vector machines with a radial basis function for the SineH problem.

• perceptrons for the Line problem

The learning models were chosen according to preliminary experiments2 where for each

problem, we evaluated the online predictive accuracy of the learning model (a single

learner) when trained on the first examples from the stream (before a drift occurs). We

then retained the best settings for each problem.

We plot in Figures 4.5 and 4.6, the maximum weight in the committee at each time step

along with the percentage of predictors selected for the committee’s final prediction.

With an evaluation window of size τeval = 20, we get 21 different values for the weight,

ranging from 0 when all of the 20 predictions are wrong, to 1 in the ideal case with no

errors. In the plots, the 21 values levels of the weights are mapped into the interval [0

100]. We notice the following:

Using our MAX combination function doesn’t mean that most of the time, one single

expert will be selected for prediction. Actually, all the predictors that have the same

number of correctly classified instances over the last τeval time steps will have the same

weight. Thus, sharing the highest weight is not a rare case.

When the change is sudden (see first rows in Figures 4.5 and 4.6), we notice that, just after

the drift, the number of classifiers (experts) selected for the final prediction decreases,

before re-increasing. In fact, the first deleted classifier after the drift improves with time

as training data from the new concept is learnt. Once its weight becomes higher than the

others, it is selected for the final prediction. As time goes by, more outdated classifiers

will be replaced. The predictive performance of new classifiers will improve with time,

increasing their weight. New classifiers that reach the highest weight cooperate by voting

for the final prediction.

When the change is continuous (see second and third rows in Figures 4.5 and 4.6), we see

that the weights go up and down during the transition between the consecutive concepts.

2Other learning models could do as well

Chapter 4. Adaptation to Concept Changes 83

Since classifiers are asked to predict labels for both the old and the new concept during

the transition, there won’t be a specific classifier whose performance is clearly better

than the rest. There will most likely be a vote between “medium” performing classifiers,

that is, old experts trained on instances from the old concept and new experts that

start learning instances from the new concept. The hope is that combining votes from

both parties (old and new experts) during the transition period will give more accurate

predictions than using predictions of the old (or new) experts only.

4.3.4.2 WVD

With WVD, a weighted vote is performed, but after suppressing the predictions of the

members whose weights fall into the lower half of the weights interval. While WVD

can lead to a slightly slower reactivity compared to MAX, it is more robust in case of

noise [48]. In both MAX and WVD, an unmature expert does not contribute to the final

prediction. It is assigned a weight of zero.

4.3.5 Processing training examples

When an example (xt, yt) is received, it is passed to each expert in the ensemble. The ex-

ample is processed by an expert h using the process function, usually a training function

that updates the expert’s hypothesis, incrementally with (xt, yt).

Nevertheless, it is also possible to decide another type of processing that updates experts

differently. That is, when choosing the pool of types of experts, we can also choose the

type of processing related to each defined expert. For instance, we may decide that the

process function of a particular type of experts does not revise the expert’s hypothesis.

This allows the presence of experts in the ensemble that give random predictions.

4.3.6 Time & memory constraints

In order to meet the computational requirements and the memory constraints of online

learning, the train function updates the hypothesis of a learning model or more generally,

an expert, incrementally, based on the last received example (xt, yt). After updating all

the experts, (xt, yt) is no longer needed and is therefore discarded from the memory. A

large ensemble size impacts the memory utilization as well as the time required to update

the experts. Limiting the ensemble size is a straightforward solution. Nevertheless, since

experts are evaluated and updated independently of each other, we might also consider

parallelizing DACC’s algorithm.

Chapter 4. Adaptation to Concept Changes 84

selected classifiers(%) selection weight

(H,L)

500 1000 1500 2000
0

20

40

60

80

100

(H,M)

500 1000 1500 2000
0

20

40

60

80

100

(H,H)

500 1000 1500 2000
0

20

40

60

80

100

(M,L)

500 1000 1500 2000
0

20

40

60

80

100

(M,M)

500 1000 1500 2000
0

20

40

60

80

100

(M,H)

500 1000 1500 2000
0

20

40

60

80

100

(L,L)

500 1000 1500 2000
0

20

40

60

80

100

(L,M)

500 1000 1500 2000
0

20

40

60

80

100

(L,H)

500 1000 1500 2000
0

20

40

60

80

100

selected classifiers(%) selection weight

(H,L)

500 1000 1500 2000
0

20

40

60

80

100

(H,M)

500 1000 1500 2000
0

20

40

60

80

100

(H,H)

500 1000 1500 2000
0

20

40

60

80

100

(M,L)

500 1000 1500 2000
0

20

40

60

80

100

(M,M)

500 1000 1500 2000
0

20

40

60

80

100

(M,H)

500 1000 1500 2000
0

20

40

60

80

100

(L,L)

500 1000 1500 2000
0

20

40

60

80

100

(L,M)

500 1000 1500 2000
0

20

40

60

80

100

(L,H)

500 1000 1500 2000
0

20

40

60

80

100

Figure 4.5: DACC: We show in blue the maximum weight in the committee and
in gray the percentage of classifiers selected for the committee’s final prediction when
using the MAX function. Top: the 9 datasets of the Circle problem. Bottom: the

datasets of the SineH problem.

Chapter 4. Adaptation to Concept Changes 85

selected classifiers(%) selection weight

(H,L)

500 1000 1500 2000
0

20

40

60

80

100

(H,M)

500 1000 1500 2000
0

20

40

60

80

100

(H,H)

500 1000 1500 2000
0

20

40

60

80

100

(M,L)

500 1000 1500 2000
0

20

40

60

80

100

(M,M)

500 1000 1500 2000
0

20

40

60

80

100

(M,H)

500 1000 1500 2000
0

20

40

60

80

100

(L,L)

500 1000 1500 2000
0

20

40

60

80

100

(L,M)

500 1000 1500 2000
0

20

40

60

80

100

(L,H)

500 1000 1500 2000
0

20

40

60

80

100

selected classifiers(%) selection weight

(H,L)

200 400 600 800 1000
0

20

40

60

80

100

(H,M)

200 400 600 800 1000
0

20

40

60

80

100

(H,H)

200 400 600 800 1000
0

20

40

60

80

100

(M,L)

200 400 600 800 1000
0

20

40

60

80

100

(M,M)

200 400 600 800 1000
0

20

40

60

80

100

(M,H)

200 400 600 800 1000
0

20

40

60

80

100

(L,L)

200 400 600 800 1000
0

20

40

60

80

100

(L,M)

200 400 600 800 1000
0

20

40

60

80

100

(L,H)

200 400 600 800 1000
0

20

40

60

80

100

Figure 4.6: DACC: We show in blue the maximum weight in the committee and in
gray the percentage of classifiers selected for the committee’s final prediction when using
the MAX function. Top: the 9 datasets of the Line problem. Bottom: the datasets of

the Boolean problem.

Chapter 4. Adaptation to Concept Changes 86

Algorithm 1: DACC algorithm
Input: Pool the pool of types of experts, Npool the number of pools, τmat the maturity

age, and τeval the number of instances on which the members are evaluated.
1 begin
2 C ← ∅; /* Ensemble of experts */

3 for t = 1 to ∞ do
4 it = (xt, yt);

/* ––– */

/* Predict target value */

/* ––– */

5 for all h ∈ C do
6 wh ← eval(h, τeval) ; ⊲The weighting functions

7 ỹh ← h(xt) ; ⊲The final prediction

8 Ỹ ← Ỹ ∪ ỹh;
9 W ←W ∪ wh;

10 end

11 ỹt ← cmb(W, Ỹ) ; ⊲The final prediction

/* ––– */

/* Train experts */

/* ––– */

12 reveal real value yt;
13 for all h ∈ C do
14 wh ← eval(h, τeval) ; ⊲The weighting functions

15 h← process(h, it) ; ⊲Processing training examples

16 age(h)← age(h) + 1;
17 end

/* ––– */

/* Delete experts */

/* ––– */

18 if ∀h ∈ C, age(h) ≥ τmat then
19 Cw are the size(C)/2 experts with the lowest weights;
20 for k = 1 : size(Pool) do
21 hmin ∈ Cw is randomly selected ; ⊲The committee evolution

22 C ← C − {hmin};
23 end

24 end
/* ––– */

/* Add experts */

/* ––– */

25 if size(C) < size(Pool) ∗Npool then
26 for all hnew ∈ Pool do
27 h← process(hnew, it) ; ⊲Processing training examples

28 age(h)← 1;
29 C ← C ∪ h;
30 end

31 end

32 end

33 end

Chapter 4. Adaptation to Concept Changes 87

4.3.7 Computational complexity

We discuss here the computational complexity of DACC, assuming the sequential imple-

mentation presented in Algorithm 1. DACC’s main operations include:

1. Predicting the target value of an input xt (lines 5-10)

2. Combining the individual predictions (line 11)

3. Training the experts on the training example (xt, yt) (lines 12-17)

4. Deleting experts from ensemble (lines 18-24)

5. Adding new experts to ensemble (lines 25-31)

It is easy to see that the complexity of steps (1) and (2) is O(N), where N is the size of

the ensemble, because the prediction and training operations apply to each expert in the

ensemble. Computing the weight value of each expert (lines 6 and 14) does not increase

the complexity of steps (1) and (2), since the weight of an expert represents its predictive

performance on the last τeval time steps and thus can be updated incrementally with each

new prediction.

The complexity of step (3) depends on the type of combination function used. In case

of MAX, finding the highest weight values takes O(N) computations. It is important

to note that finding a maximum value can take less than O(N), for instance O(log2N)

using a binary search algorithm [65]. However, in our MAX function, all experts sharing

the maximum weight value should be retrieved, and thus a full scan of the weight values

is required. In case of WVD, the weight values should be sorted first. This can be done

using classical sorting algorithms, for instance, binary tree sort [4] and the likes, with a

complexity average of O(N logN) for these algorithms.

In step (4), weight values are updated and the experts are removed randomly from the

worst half of the ensemble. This entails sorting the weight values which, again, has

a complexity of O(N logN). Then, size(Pool) experts are removed from the ensemble,

adding a complexity of O(size(Pool)).

Finally, step (5) adds size(Pool) experts to the ensemble and trains them on the last

received example (xt, yt), leading to an additional complexity of order O(size(Pool)).

This step happens either when the ensemble hasn’t yet reached its maximal size or as

a result of step (4), that is when experts are removed from the ensemble and should be

replaced with new experts. The former case occurs Npool times at the very beginning

of the streaming process while the latter case repeats every τmat time steps (the rate of

deletion) during the streaming process.

Chapter 4. Adaptation to Concept Changes 88

Overall, when a deletion operation is executed, the computational complexity of DACC

is O(3N +N × logN +2× size(Pool)) = O(N × logN) when using MAX and O(2N +

2N × logN +2× size(Pool)) = O(N × logN) when using WVD. When experts are not

removed from the ensemble, the computational complexity becomes O(3N) = O(N)

when using MAX and O(2N +N × logN) = O(N × logN) when using WVD.

4.3.8 Implicit diversity levels

According to [69], high diversity in the ensemble helps reduce the initial drop in accuracy

that happens just after the concept change. When the concept is stable, however, low

diversity gives more accurate results. In this section, we aim to see if DACC’s dele-

tion strategy simulates such behavior, creating different levels of diversity depending on

whether the concept is stable or changing.

4.3.8.1 Experimental setup

As a measure of diversity, we compute the kappa statistics [19]. This measure evaluates

the degree of agreement between the predictions on a set of items by two base predictors

or classifiers 3. Let’s consider classifiers h1 and h2, each classifying m items into one of

L classes, and a contingency table where cell Cij represents the number of instances x

that h1 classifies as class i and h2 as class j. We define θ1 as the observed agreement

among the two classifiers:

θ1 =
L
∑

i=1

Cii

m

We also define θ2, the hypothetical probability of chance agreement, as follows:

θ2 =
L
∑

i=1

(L
∑

j=1

Cij

m

L
∑

j=1

Cji

m

)

The kappa statistics is then defined as:

κ =
θ1 − θ2
1− θ2

(4.6)

In case of complete agreement, κ = 1. If there is no agreement other than what would

be expected by chance, κ = 0.

3Other agreement statistics should do as well.

Chapter 4. Adaptation to Concept Changes 89

We consider a stream of instances that are received from time step t1 until tend and one

concept drift event occurs at time step tdrift. The transition between the old and new

concepts lasts for δdrift time steps.

In order to see how the levels of diversity evolve, we plot the Kappa-Error diagram, a

scatterplot where each point corresponds to a pair of experts [12, 67]. The x-value is

their kappa value and the y-value is the product of the classification error of each expert

on a test set. The Kappa-Error diagram is plotted at the following time steps:

• just before the drift starts, t1 = tdrift − 10

• just after the drift starts, t2 = tdrift + 10

• halfway after the drift has started, t3 = tdrift + (tend − tdrift)/2

• at the end of the experiment, t4 = tend

For t1, the test set contains all the data before the drift i.e. the training data generated

for the first stable concept. For t2, t3 and t4, the test set is the remaining data.

As previously seen, DACC divides the ensemble into two sets with each deletion op-

eration: the worst and best half of the committee, referred to as Hworst and Hbest,

respectively. Without loss of generality, we assume that the pool of type of predictors

contains one type of predictors only. Thus, size(pool) = 1, Npool = N and one predictor

is removed with each deletion operation from Hworst.

4.3.8.2 Empirical results

We show in Figure 4.7 the Kappa-Error diagrams of DACC’s experts on the SineH

artificial problem (see Section 2.3.5.1). The parameters of the ensemble are: N = τeval =

τmat = 20, cmb =MAX and the experts are support vector machines with a radial basis

function. We notice the following:

Before the drift, there are two distinct clouds of points: the first one has relatively high

kappa values and low classification errors 4. This cloud represents the experts in Hbest

which have a low diversity and have learnt enough training data from the first concept.

The other points have kappa values, they represent the experts in Hworst who are removed

frequently from the committee and thus have a high level of diversity.

Just after the drift, the classification error goes up for all the points since the experts

have not yet forgotten the old concept and have not observed enough training data from

the new one.
4In the subfigures of the first row, this cloud is hidden behind the red circles.

Chapter 4. Adaptation to Concept Changes 90

t1 t2 t3 t4

0 0.5 1

0

0.02

0.04

0.06

0.08

(H,L)

0 0.5 1

0

0.05

0.1

0.15

0.2

(H,M)

0 0.5 1
0

0.1

0.2

0.3

0.4

(H,H)

0 0.5 1

0

0.02

0.04

0.06

(M,L)

0 0.5 1

0

0.05

0.1

0.15

(M,M)

0 0.5 1
0

0.1

0.2

0.3

(M,H)

0 0.5 1

0

0.02

0.04

0.06

(L,L)

0 0.5 1

0

0.05

0.1

(L,M)

0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

(L,H)

Figure 4.7: DACC: The Kappa-Error diagrams for the SineH problem with a com-
mittee of size 20 and a support vector machine (SVM) in the pool of predictors. The
x-axis represents the kappa value of the pairs of classifiers and the y-axis is the product

of their classification error on a test set.

Halfway after the drift, the diversity has increased in the ensemble. This is due to

the deletion of experts, previously in Hbest, that had learnt the old concept but were

then deleted according to their classification performance on the new concept. The

classification error decreases comparing to time step t2 as the experts learn more training

data from the new concept.

At the end of the experiment, the classification error has reached the same level as at

time step t1. The diversity has also decreased in the ensemble.

The different levels of diversity in the ensemble evolve implicitly with time via the deletion

operations. The experts are deleted according to their classification performance, a value

that is sensitive to a concept change. While a low diversity and a small classification

error in the ensemble is an evidence of a stable concept learnt by some experts, a high

Chapter 4. Adaptation to Concept Changes 91

diversity level among other experts allow them to react to a potential change in the

current stable concept.

4.3.9 The stability-plasticity dilemma

According to the stability-plasticity dilemma, the memory size of the classifier is expected

to grow with time when the concept is stable and to shrink when the concept changes.

In this section, we analyze the memory size of the expert(s) selected by DACC when

classifying instances in a stream.

4.3.9.1 Experimental setup

We consider a stream of instances that are received from time step t1 until tend and one

concept drift event occurs at time step tdrift. The transition between the old and new

concepts lasts for δdrift time steps (see Figure 4.8).

time

period before the drift period after the drift

tdriftt1 tend

δdrift

Figure 4.8: The drift scenario described in Section 4.3.9

In order to see how the committee deals with the stability-plasticity dilemma, we plot

the memory size of the classifier selected for the committee’s final prediction. If more

than one classifier is selected for the final prediction, we plot the mean memory size of

these classifiers. We also show for each memory size:

• The number of training data that belong to the old concept. We refer to these data

as coming from the period before the drift: [t1, tdrift].

• The number of training data coming from the period after the drift: [tdrift+1, tend].

When the concept change is continuous (δdrift > 1), the training data from the period

after the drift contains instances for both the old and the new concept from time step

tdrift to tdrift + δdrift i.e. until the transition to the new concept is complete. When

the concept change happens in one time step, the training data from the period after the

drift belong to the new concept only.

Chapter 4. Adaptation to Concept Changes 92

old concept new concept

200 400 600 800 1000
0

500
(H,L)

200 400 600 800 1000
0

200

400
(H,M)

200 400 600 800 1000
0

200

400
(H,H)

200 400 600 800 1000
0

500

1000
(M,L)

200 400 600 800 1000
0

500
(M,M)

200 400 600 800 1000
0

500
(M,H)

200 400 600 800 1000
0

500

1000
(L,L)

200 400 600 800 1000
0

500

1000
(L,M)

200 400 600 800 1000
0

500
(L,H)

Figure 4.9: DACC: The memory size on the Boolean problem with a committee of
size 30 and a decision tree in the pool of predictors. The pair (Sp,S) denotes the speed
and severity levels of the concept drift, which ranges from Low, to Medium and High.

old concept new concept

500 1000 1500 2000
0

1000

2000
(H,L)

500 1000 1500 2000
0

500

1000
(H,M)

500 1000 1500 2000
0

1000

2000
(H,H)

500 1000 1500 2000
0

1000

2000
(M,L)

500 1000 1500 2000
0

1000

2000
(M,M)

500 1000 1500 2000
0

1000

2000
(M,H)

500 1000 1500 2000
0

1000

2000
(L,L)

500 1000 1500 2000
0

1000

2000
(L,M)

500 1000 1500 2000
0

1000

2000
(L,H)

Figure 4.10: DACC: The memory size on the SineH problem with a committee of
size 30 and a support vector machine in the pool of predictors. The pair (Sp,S) denotes
the speed and severity levels of the concept drift, which ranges from Low, to Medium

and High.

Chapter 4. Adaptation to Concept Changes 93

old concept new concept

0 500 1000 1500 2000
0

1000

2000
(H,L)

0 500 1000 1500 2000
0

500

1000
(H,M)

0 500 1000 1500 2000
0

500

1000
(H,H)

0 500 1000 1500 2000
0

1000

2000
(M,L)

0 500 1000 1500 2000
0

1000

2000
(M,M)

0 500 1000 1500 2000
0

500

1000
(M,H)

0 500 1000 1500 2000
0

1000

2000
(L,L)

0 500 1000 1500 2000
0

1000

2000
(L,M)

0 500 1000 1500 2000
0

1000

2000
(L,H)

Figure 4.11: DACC: The memory size on the Line problem with a committee of size
30 and a decision tree in the pool of predictors. The pair (Sp,S) denotes the speed and

severity levels of the concept drift, which ranges from Low, to Medium and High.

old concept new concept

0 500 1000 1500 2000
0

1000

2000
(H,L)

0 500 1000 1500 2000
0

500

1000
(H,M)

0 500 1000 1500 2000
0

1000

2000
(H,H)

0 500 1000 1500 2000
0

1000

2000
(M,L)

0 500 1000 1500 2000
0

1000

2000
(M,M)

0 500 1000 1500 2000
0

1000

2000
(M,H)

0 500 1000 1500 2000
0

1000

2000
(L,L)

0 500 1000 1500 2000
0

1000

2000
(L,M)

0 500 1000 1500 2000
0

1000

2000
(L,H)

Figure 4.12: DACC: The memory size on the Circle problem with a committee of
size 30 and a decision tree in the pool of predictors. The pair (Sp,S) denotes the speed
and severity levels of the concept drift, which ranges from Low, to Medium and High.

Chapter 4. Adaptation to Concept Changes 94

4.3.9.2 Empirical results

We show in Figures 4.9, 4.10, 4.11 and 4.12, the memory size on the artificial problems:

Boolean, SineH, Line and Circle (see Section 2.3.5.1), respectively. In the former

datasets, the drift happens halfway through the stream, with t1 = 1 and tend = 2 ∗

tdrift. Since the datasets simulate non-noisy environments, we use the MAX combination

function which selects the classifier with the highest weight to predict an instance’s class.

If more than one classifier share the same best weight, they vote for the final prediction.

We notice that, when learning the first concept, all the data come from the period

before the drift since the drift hasn’t occurred yet. The memory size increases with

time because, during this period of stability, the larger the window size the better the

prediction. Increasing the memory size allows DACC to learn the stable concept Cold.

After the drift, the memory size is small, allowing DACC to adapt to the concept change.

The memory size also increases with time in order to regain stability and learn the new

concept Cnew. We can see that, the slower the speed of the concept change, the more

the data we see from the old concept just after the drift. This comes from the fact that

during the transition to the new concept Cnew, the committee still needs to classifiy

instances from Cold and thus knowledge from the old concept is required. As a result,

the time at which the yellow color takes completely over the green color shifts towards

the right of the time axis as the speed of change get slower.

In Figure 4.9, when the severity level of the concept change is low, we notice several

peaks in the memory size after the drift, with both green and yellow colors. Hence, even

after the drift, the memory may contain training data from period before the drift. This

comes from the fact that the less the severity of the change, the more the resemblance

between Cold and Cnew and thus, we can take advantage of the acquired knowledge from

Cold to predict on Cnew. As the severity increases, this knowledge share disappears.

4.3.10 Effect of parameters

In this section, we study the impact of DACC’s parameters and/or components on its

predictive performance. We analyze the effect of:

1. The maturity age

2. The pool of types of experts

3. The committee size

4. The deletion strategy

Chapter 4. Adaptation to Concept Changes 95

4.3.10.1 Maturity age

The maturity age τmat represents the number of training data a predictor should learn

before being able to give its prediction. The prediction of an unmature perdictor is not

taken into account in the committee’s final prediction. The sole exception is when all

the predictors in the committee are not mature. In this case, the unmature predictors

share a weight of zero and the final prediction is the result of a majority vote. The

maturity age plays another role: it controls the deletion frequency in the committee.

Since all the predictors should be mature before a deletion operation, τmat training data

(or equivalently τmat time steps) separate two consecutive deletion operations. Thus, a

high maturity age implies a small deletion frequency and vice versa.

Experimental setup

We consider a stream of instances that are received from time step t1 until tend and one

concept drift event occurs at time step tdrift. The transition between the old and new

concepts lasts for δdrift time steps (see Figure 4.13).

time

period before the drift period after the drift

tdriftt1 tend

δdrift

Figure 4.13: The drift scenario described in Section 4.3.10.1

In order to see the effect of the maturity age on our ensemble method, we evaluated

DACC on the datasets of the Line artificial problem (see Section 2.3.5.1), with different

maturity ages. In the Line datasets, the drift happens halfway through the stream, with

t1 = 1 and tend = 2 ∗ tdrift.

For each dataset and maturity age, we computed the following measures:

• The online performance

• The mean classification error

• The mean age of the committee members

We conducted two sets of experiments with the following configurations:

1. The experts in the ensemble are also of the same type, this time, decision trees,

with N = Npool = 20, τeval = 20 and cmb = MAX.

Chapter 4. Adaptation to Concept Changes 96

2. The experts in the ensemble are all of the same type, that is, perceptrons, with

N = Npool = 30, τeval = 20 and cmb = MAX.

The results of the two sets experiments are shown in Figures 4.14 and 4.15, respectively.

Empirical results

The first deletion operation occurs at time step t = Npool + τmat, after the committee

has reached it maximum size and all the members are mature. Before t, the mean age

increases linearly with time as new training data is observed. Starting at t, deletion

operations will change the evolution of the mean age value depending on the age of the

deleted members. In Figures 4.15 and 4.14, we can see a drop in the mean age every

τmat steps which corresponds to a deletion operation. We also notice the following:

A higher maturity age implies a smaller deletion frequency and as a result, a slower

adaptation to concept change. See, for instance, the concept changes with a high speed

level (first row in Figures 4.15 and 4.14).

When the concept change is slow or continuous, a high deletion frequency may affect the

classification performance during the beginning of the transition from concept Cold to

Cnew. See, for instance, the concept changes with a slow speed level (third row in Figure

4.15).

In fact, when the concept starts to change, the classifiers are asked to predict labels for

instances of both Cold and Cnew. Their classification performance will go up and down

which will make them subject to a higher chance of deletion. A smaller deletion rate,

however, implies less deletion operations and thus more stability in the committee during

the transition.

In Figure 4.15, we see a slight difference in the online performance when learning the old

concept depending on the maturity age. This difference comes from the majority vote

of unmature predictors. As we previously mentionned, unmature committee members

vote for the final prediction and once a predictor becomes mature, the majority vote of

the unmature committee becomes a vote between the best mature predictors. Thus, the

higher the maturity age, the longer the time the majority vote of the unmature predictors

takes over the vote of the best predictors.

In Figure 4.16, we compute for each maturity age the mean classification error, averaged

over different committee sizes (10, 20 and 30), different pools of predictors (a single

decision tree or a single perceptron) and the 9 datasets of the Line problem. The average

error is split into the three consecutive periods: before, during and after the drift, as

explained in Section 4.2.4.

Chapter 4. Adaptation to Concept Changes 97

0 1000 2000
0.85

0.9

0.95

(H,L)

0 1000 2000
0.7

0.8

0.9

(H,M)

0 1000 2000
0.7

0.8

0.9

(H,H)

0 1000 2000
0.85

0.9

0.95

(M,L)

0 1000 2000
0.8

0.9

1
(M,M)

0 1000 2000

0.8

0.9

1
(M,H)

0 1000 2000
0.85

0.9

0.95

(L,L)

0 1000 2000
0.8

0.9

1
(L,M)

0 1000 2000

0.8

0.9

1
(L,H)

20

40

60

80

100

150

200

250

300

350

0 1000 2000
0

1000

2000
(H,L)

0 1000 2000
0

1000

2000
(H,M)

0 1000 2000
0

1000

2000
(H,H)

0 1000 2000
0

1000

2000
(M,L)

0 1000 2000
0

1000

2000
(M,M)

0 1000 2000
0

1000

2000
(M,H)

0 1000 2000
0

1000

2000
(L,L)

0 1000 2000
0

1000

2000
(L,M)

0 1000 2000
0

1000

2000
(L,H)

20

40

60

80

100

150

200

250

300

350

0 0.05 0.1

(H,L)

(H,M)

(H,H)

mean classification error

0 0.05 0.1

(M,L)

(M,M)

(M,H)

mean classification error

0 0.05 0.1

(L,L)

(L,M)

(L,H)

mean classification error

20

40

60

80

100

150

200

250

300

350

Figure 4.14: DACC: The effect of maturity age on the 9 datasets of the Line problem
with a committee of size 20 using decision trees as base learners. From top to bottom:
the online error, the mean age of the committee members and the classification mean

error.

Chapter 4. Adaptation to Concept Changes 98

0 1000 2000
0.85

0.9

0.95

(H,L)

0 1000 2000
0.7

0.8

0.9

(H,M)

0 1000 2000
0.7

0.8

0.9

(H,H)

0 1000 2000
0.85

0.9

0.95

(M,L)

0 1000 2000
0.8

0.9

1
(M,M)

0 1000 2000

0.8

0.9

1
(M,H)

0 1000 2000
0.85

0.9

0.95

(L,L)

0 1000 2000
0.8

0.9

1
(L,M)

0 1000 2000

0.8

0.9

1
(L,H)

20

40

60

80

100

150

200

250

300

350

0 1000 2000
0

1000

2000
(H,L)

0 1000 2000
0

1000

2000
(H,M)

0 1000 2000
0

1000

2000
(H,H)

0 1000 2000
0

1000

2000
(M,L)

0 1000 2000
0

1000

2000
(M,M)

0 1000 2000
0

1000

2000
(M,H)

0 1000 2000
0

1000

2000
(L,L)

0 1000 2000
0

1000

2000
(L,M)

0 1000 2000
0

1000

2000
(L,H)

20

40

60

80

100

150

200

250

300

350

0 0.02 0.04 0.06

(H,L)

(H,M)

(H,H)

mean classification error

0 0.05 0.1

(M,L)

(M,M)

(M,H)

mean classification error

0 0.05 0.1

(L,L)

(L,M)

(L,H)

mean classification error

20

40

60

80

100

150

200

250

300

350

Figure 4.15: DACC: The effect of maturity age on the 9 datasets of the Line problem
with a committee of size 30 using perceptrons as base learners. From top to bottom:
the online error, the mean age of the committee members and the classification mean

error.

Chapter 4. Adaptation to Concept Changes 99

Before Drift During Drift After Drift
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

m
e

a
n

 c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r

 20

40

60

80

100

150

200

250

300

350

Figure 4.16: DACC: The mean classification error depending on the maturity age.
The mean is computed over three time periods: before, during and after the drift.

As we can see, the maturity age has its largest impact on the predictive performance

during and after the drift. As we pointed out before, a higher maturity age slows down

the reactivity to a concept change and as a result, delays the learning of the new concept.

4.3.10.2 Pool of types of experts

With each insertion of new members in the committee, DACC adds a pool of types of

predictors, that is, different types of experts. Experts can be different learning models,

learning models with different structures and/or training functions. It is also possible to

add static prediction rules that don’t change with time. For instance, a rule that always

predicts the same class value.

Experimental setup

We study here the advantage of mixing different types of experts in the same ensemble.

In order to do so, we conducted experiments on three of the datasets of the Plane

artificial problem (see Section 2.3.5.1), using the following pools of types of experts:

1. Dt : the ensemble contains a single type of experts, that is, decision trees trained

on every example received.

2. Pois-dt : the ensemble contains a single type of experts, decision trees trained each

on K copies of each training examples, where K follows a Poisson(γ = 1) distri-

bution.

Chapter 4. Adaptation to Concept Changes 100

3. Pois-dt-p: the ensemble contains a single type of experts, decision trees trained

each on K copies of each training examples, where K follows a Poisson(γ = 1)

distribution. Unlike the trees in Pois-dt, these trees are virtually pruned after each

training. Virtual pruning is done according to the minimum description length

principle. This is generally useful when the instances are known to be noisy, which

is the case in the Plane datasets.

4. All : the ensemble contains the three different types of decision trees presented

above.

After preliminary experiments, we set the remaining settings to the following values:

τeval = 10, τmat = 5, cmb=WVD, and Npool = 25. We show in Figure 4.17, the online

performance of DACC using the four pools of types of predictors. The online performance

is reset when the concept changes, at time step 500, and is averaged over 5 runs.

Empirical results

The comparison of the first three pools shows the following:

With the first pool of predictors containing a simple decision tree, the online performance

is clearly lower than this of the other pools, after learning the first and second stable

concepts at time steps 500 and 1, 000, respectively. However, when the speed and severity

of the change are high (figure top-right), this pool of predictors reacts faster to the change,

raising the online performance sooner than with other pools of predictors.

The second and third pools of predictors have a close performance on the first two

databases (top-right and top-left), with the third pool being clearly better than the

second one on the third database (bottom). They both have a higher online predictive

accuracy than this of the first one. However, as previously mentionned, we notice a

slower reaction to the concept change when the change is high an severe (top-right).

When mixing the three types of decision trees, we notice that the ensemble takes ad-

vantage of each type of predictor and gives better prediction results. This suggests that

we don’t need to have a priori knowledge of the more suitable type of predictors for the

adaptative learning task. DACC will do the work by automatically removing the worst

predictors in the ensemble. However, a larger pool entails a larger ensemble size. With

four experts in the pool, the ensemble size is N = Npool ∗4 = 100, versus only 25 experts

for the other three pools.

Chapter 4. Adaptation to Concept Changes 101

0 200 400 600 800 1000
0.6

0.7

0.8

0.9

1
PLANE: Low Sev, High Sp

Dt

Pois−dt

Pois−dt−p

All

0 200 400 600 800 1000
0.6

0.7

0.8

0.9

1
PLANE: High Sev, High Sp

Dt

Pois−dt

Pois−dt−p

All

0 200 400 600 800 1000
0.6

0.7

0.8

0.9

1
PLANE: High Sev, Low Sp

Dt

Pois−dt

Pois−dt−p

All

Figure 4.17: DACC: The online performance on three of the databases of the Plane

problem using different pools of predictors. The online performance is reset at time
step 500, when the concept changes. The pair (Sp,S) denotes the speed and severity

levels of the concept drift, which ranges from Low, to Medium and High.

4.3.10.3 Committee size

In order to study the impact of the committee size on DACC’s predictive performance, we

conducted several experiments with different values for Npool: 10, 20, 30, 40, 50 and 100,

and this, on the datasets of the Plane, Boolean, SineV and SineH artificial problems

(see Section 2.3.5.1).

We used a single decision tree in the pool of predictors i.e. N = Npool. The maturity

age τmat and the evaluation size τeval were set to 20. The combination function selected

the predictor(s) with the highest weights i.e. cmb =MAX.

We show in Figure 4.18, the mean classification error averaged over the three consecutive

periods: before, during and after the drift, as explained in Section 4.2.4. We see no

significant difference in the classification performance depending on the committee size:

what we can get from a large committee of size 100, we can also get from a small

committee of size 10.

The results seem somehow unrealistic as there should be a size value Nmin that is small

enough to make the ensemble fail in its adaptation to concept changes. To investigate the

matter, we reconducted the same experiments after reducing the size of the committee

Chapter 4. Adaptation to Concept Changes 102

Before Drift During Drift After Drift
0

0.05

0.1

0.15

0.2

0.25

m
e

a
n

 c
la

s
s
if
ic

a
ti
o

n
 e

rr
o

r

10

20

30

40

50

100

Figure 4.18: DACC: The mean classification error depending on the committee size.
The mean is computed over three time periods: before, during and after the drift.

to N = 5 and N = 2. We show in Figure 4.19 the online predictive performance on

the datasets of the Boolean and Circle problems in case of a sudden and severe drift,

that is, in the presence of concept changes with high levels of speed and severity. All

the experiments start with the same random seed so that, for each problem, we have the

same experts at the beginning of the experiments.

We notice that with Boolean, even with only two learners, the ensemble is able to

recover from the concept change, regaining its predictive performance at the end of the

experiment. In fact, the first learner h1 was kept in the committee when learning the first

concept while the second learner was constantly removed. When the concept changed

(time step t = 1, 000), h1, who was outdated, got removed from the ensemble and was

replaced by a new learner h̃1 with no memory of the past. At the time of the next deletion

(t = 1, 020), the predictive performance of h̃1, trained on instances from the new concept,

was sufficiently higher than the one of the second learner who at the time, was trained

on instances belonging to both the old and new concepts. As a result, h̃1 was kept in

the committee while the second learner was constantly removed. While the first learner

was used for stability (the learning of the first and second stable concepts), the second

learner was used for plasticity as it allowed the removal of its outdated fellow and took

over it in the classification process during the brief transition between the consecutive

concepts.

With Circle, the situation is different: the ensemble is not able to adapt to the concept

change with only two learners. In fact, after the change, the deletion strategy couldn’t

make a clear distinction between the two learners as both of them had a bad predictive

accuracy regarding the new concept. Hence, both learners were deleted repeatedly, and

the ensemble failed to follow the new trends. This suggests that the frequency of deletion

was too high (i.e. the maturity age was too small). Hence, the youngest learner, expected

Chapter 4. Adaptation to Concept Changes 103

BOOL: High Sev, High Sp

0 200 400 600 800 1000
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

N=20

N=10

N=5

N=2

CIRCLE: High Sev, High Sp

0 500 1000 1500 2000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N=20

N=10

N=5

N=2

Figure 4.19: DACC: The online performance on databases from the Boolean (left)
and Circle (right) problems using different committee sizes. The online performance is
reset when the concept changes. The pair (Sp,S) denotes the speed and severity levels of
the concept drift. The maturity age and the evaluation size are set to τmat = τeval = 20

and the base learners are decision trees.

CIRCLE: High Sev, High Sp

0 500 1000 1500 2000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ
mat

=40, N=2

τ
mat

=50, N=2

τ
mat

=20, N=5

τ
mat

=20, N=2

Figure 4.20: DACC: The online performance on a database from the Circle problem
using different combinations of the maturity age and the committee size. The online
performance is reset when the concept changes. The pair (Sp,S) denotes the speed and
severity levels of the concept drift. The evaluation size is set to τeval = 20 and the base

learners are decision trees.

to adapt to the changing conditions, was not able to learn enough training data before

being evaluated for deletion. It was not given enough time to improve its predictive

performance and was constantly deleted.

We claimed earlier in this chapter that DACC’s deletion strategy overcomes an unadapted

maturity value by increasing the deletion size, that is, the number of learners from

Chapter 4. Adaptation to Concept Changes 104

which a “bad” learner is deleted. The deletion size is proportional to the ensemble size

(ds = N/2). In this case, it is equal to 1. By increasing the ensemble size to N = 5

learners, the expectation of young experts to survive deletion also increases (see Section

4.3.2), and the ensemble regains its adaptation capability as shown in Figure 4.19.

If the adaptation problem of the ensemble of two learners lies in the small maturity age

as we supposed, then increasing the former value should solve the issue. We show in

Figure 4.20 the effect of higher maturity ages. We can clearly see that by increasing the

maturity age, the ensemble is able to adapt to the change even with a small committee

size. In fact, with τmat = 50 and N = 2, we get nearly the same results as with τmat = 20

and N = 5 at the end of the experiment.

To sum up, we conclude that the maturity age τmat and the committee size N are

interdependent. When choosing an adapted value for τmat, the predictive performance

of DACC does not rely on the value N . This was shown in the left plot of Figure 4.19

and also in Figure 4.18 where the increase of N from 10 to 100 didn’t have a significant

impact on the classification accuracy. In addition, a value of N that is large enough can

compensate a small value for τmat. While a small maturity age leads to a high plasticity,

a large committee size overcomes the problem of deleting only young experts when the

environment evolves.

4.3.10.4 Deletion strategy

In this set of experiments, we aim at evaluating DACC’s deletion strategy, the main

component allowing to adapt to potential concept changes. In order to do so, we evaluate

DACC’s performance against this of another ensemble which operates exactly like DACC,

except for its deletion strategy. While DACC deletes experts in a regular manner by

selecting experts randomly from the worst half of experts, the other approach uses the

replace the loser strategy and deletes the loser according to a threshold value on its

recent classification performance θd.

Thus, an expert is removed from the ensemble if:

• the expert is mature,

• the expert recent classification accuracy is below θd, and

• the expert is the worst expert in the ensemble.

DACC with the modified deletion strategy will be referred to as TDS (for Threshold

Deletion Strategy).

Chapter 4. Adaptation to Concept Changes 105

The evaluation of the deletion strategy is concerned with the following aspects:

• the reactivity to concept changes and the ability to recover from a drift.

• the ability of knowledge transfer between two consecutive concepts i.e. the ability

to classify instances belonging to the old concept after a concept change.

• the advantage of using the deletion strategy over the use of an online learning

system with no adaptation mechanism

Knowledge transfer is useful in two cases. First, during the drifting time in case of a non-

instantaneous drift since instances are generated for both the old and the new concept.

Secondly, in case of a non severe concept change where knowledge acquired from the

learning of the old concept can help classify instances from the new concept.

In order to evaluate the ability of knowledge transfer, we evaluate TDS and DACC

against a learning system consisting of a single classifier that learns incrementally with

each new received training example. When the concept changes, we reset the classifier’s

memory, allowing it to learn from scratch, with no knowledge of the past. This classifier,

which we will refer to as the perfect forgetter, is used to assess the ability of knowledge

transfer just after the drift. If a learning approach is able to transfer knowledge between

consecutive concepts, it is expected to have a performance higher than this of the perfect

forgetter when a new concept appears.

We also compare DACC and TDS with a learning system consisting of a single classifier

that does not adapt to concept changes. In other words, the classifier learns the current

concept without erasing its memory i.e. it keeps learning as new training data becomes

available. The former classifier, referred to as the NoDriftHandler allows to see the

advantage of the adaptation strategy.

Experiment (1) This set of experiments compares the following learning systems:

• DACC: our ensemble of classifiers described in Section 4.3

• TDS: the modified version of DACC which uses the replace the loser strategy with

a deletion threshold to remove experts from the ensemble. TDS is evaluated with

three threshold values: 0.6, 0.7, 0.8.

• The perfect forgetter : a single classifier that learns the current concept. We erase

its memory when the concept starts changing.

• The noDriftHandler : a single classifier that does not adapt to concept changes.

Chapter 4. Adaptation to Concept Changes 106

Before Drift During Drift After Drift

0

0.1

0.2

0.3

0.4

0.5
m

e
a
n
 c

la
s
s
if
ic

a
ti
o
n
 e

rr
o
r

 DACC

TDS 0.6

TDS 0.7

TDS 0.8

PerfectForgetter

NoDriftHandler

Figure 4.21: The mean classification error of DACC, TDS, the perfect forgetter and
the noDriftHandler, before, during and after the drift, as calculated on the datasets of

the artificial problems: SineH, Circle, Line, SineV , Boolean and Plane.

We evaluated the different approaches on the 54 databases of the six artificial problems

suggested by Minku: SineH, Circle, Line, Boolean, SineV and Plane (see Section

2.3.5.1). Each dataset is a stream of instances with one concept drift event that occurs

at time step tdrift, halfway through the stream. The drift lasts for δdrift time steps.

The experiments were conducted using the following settings. The pool of types of

experts consists of a single decision tree. The ensemble size is set to N = Npool = 20 and

the combination function is MAX. The maturity age is set to τmat = 20, and the weight

of an expert reflects its classification accuracy on the last τeval = 20 time steps. The

experiments on the databases of the Line, SineH and Circle problems were reconducted,

replacing the decision tree in the pool with other types of experts:

• a perceptron for the Line problem.

• a 2 layers non linear neural networks with 3 hidden neurons for the Circle problem.

• a support vector machine with a radial basis function for the SineH problem.

Therefore, the total number of experiments was equal to: 6 problems* 9 databases (using

decision trees) + 3 problems * 9 databases (using different experts) = 81 experiments.

We show in Figure 4.21 the classification error of DACC, TDS, the noDriftHandler and

the perfect forgetter, averaged on the 81 experiments detailed above. The average error

is split into the three consecutive periods: before, during and after the drift, as explained

in Section 4.2.4. The perfect forgetter is reset at time step tdrift. We notice the following:

Chapter 4. Adaptation to Concept Changes 107

Before the drift

The noDriftHandler and the perfect forgetter both have the same classification error

before the drift since they act the same way. The only difference between these ap-

proaches comes after the drift since the perfect forgetter resets its classifier, while the

noDriftHandler keeps learning without any explicit change in its classifier. TDS 0.8

has the largest classification error before the drift due to its relatively high performance

threshold which causes many deletions in the committee even though the concept is sta-

ble. DACC, on the other side, is able to learn the stable concept before the drift even

though classifiers are deleted all the time. Thus, the deletion strategy doesn’t have a

negative impact on the ensemble’s predictive performance in the stationary case.

During the drift

As we can notice, the larger the threshold value, the larger the classification error of TDS

during the drift. In fact, when the performance threshold is high, there are more chances

for TDS to remove experts from the ensemble when the concept changes, preventing

knowledge transfer via old committee members. DACC on the other hand keeps its

experts for a longer time due to the frequency of deletion, keeping old experts even when

their performance drops significantly. The classification error of DACC, being lower

than this of the perfect forgetter, shows that DACC is able to achieve knowledge transfer

during the drift.

After the drift

TDS 0.8 has a large classification error after the drift because, as pointed out before, its

threshold value causes many consecutive deletion operations which prevents the adapta-

tion to the concept change.

The noDriftHandler, as expected, has the worst classification accuracy. As mentionned

previously, the noDriftHandler is a single classifier that learns continuously as new train-

ing data is received. The memory of previously training data is not reset as in the other

approaches. If the classifier’s learning algorithm is lossless, which is the case with the de-

cision trees, the memory of old training examples is kept even after the drift which makes

the noDriftHandler unable to adapt to the new concept. Lossless online algorithms are

available for decision trees, Naive Bayes models and others [92, 100]. Nevertheless, many

online learning models like the online backpropagation in neural networks [43] have the

property of being lossy i.e. they tend to forget the old acquired knowledge from the old

concept when enough training data from the new concept have been learnt.

Chapter 4. Adaptation to Concept Changes 108

The forgetting strategy can thus be implicitly embedded in the classifier learning algo-

rithm which makes it able to forget the old concept and adapt to the new one. However,

the implicit forgetting strategy is usually slower than the explicit one, designed for the

learning system to adapt to evolving concepts.

The perfect forgetter is expected to adapt the best to concept changes since it simulates

an approach with a perfect drift detection system. Even though it seems to be the best

case scenario, we notice that DACC outperforms the perfect forgetter not only during

the drift but also after the drift. In fact, in case of a continuous drift (i.e. δdrift > 1), the

reinitialized classifier at time step tdrift will classify and learn data from both concepts

until time step tdrift + δdrift. This has two consequences. First, learning training data

from both concepts will hurt the learning of the new concept. Secondly, resetting the

classifier once the drift is detected makes it difficult for the perfect forgetter to classify

instances from the old concept during the concept transition since the old acquired

knowledge is erased.

After the drift is completed at time step tdrift + δdrift, the performance of the perfect

forgetter on the new concept will depend on:

• the drifting time: for how long training data for both concepts were learnt?

• the severity of the drift: how many training examples learnt from the old concept

during the transition period δdrift are wrongly classified according to the new con-

cept? These examples can be seen as noisy instances with incorrect target values,

according to the new concept.

• the classification model used: is it lossy or lossless? Will the classifier forget the

outdated training examples from the old concept after observing enough examples

from the new one?

It is important to note that we provide the drift starting time δdrift to the perfect forgetter.

A practical approach simulating the perfect forgetter should be embedded with an explicit

concept drift detection mechanism that should be sensitive enough to detect concept

drifts, and robust enough to avoid false alarms. Add to that the fact that our perfect

forgetter resets its classifier at the beginning of the drift. In a practical approach, and

when the drift is continuous, we should also decide when to reset the classifier(s): at the

beginning of the drift, at the middle of the transition, or at the end? The answer to

these questions requires a priori knowledge of the drift properties such as the drift speed

and severity, among others.

Chapter 4. Adaptation to Concept Changes 109

Summary

The experimental results give an insight of DACC’s performance in the presence of

drifting concepts. The results suggest the following:

• DACC can achieve knowledge transfer

• DACC’s deletion strategy does not affect the predictive performance when the

concept is stable

• DACC’s deletion strategy makes possible the adaptation to various types of concept

drifts with different levels of speed and severity, on different problems, and this

using the same preset parameters values.

Experiment (2) For a more detailed analysis of DACC’s deletion strategy, we show in

Figures 4.22, 4.23 and 4.24 the online performance of DACC and TDS on the Boolean,

Circle and SineH databases, respectively, with the same settings as in Experiment 1.

In the following, we analyze both TDS and DACC’s deletion strategy.

TDS deletion strategy

TDS uses the “replace the loser” strategy to delete experts from the ensemble, and

this, only if the performance record of at least one of the mature experts falls below a

predefined threshold θd. Some of the problems related to such deletion strategy (discussed

in Section 4.2.4) can be observed:

Selecting a small threshold value: In the Boolean problem (see Figure 4.22), when

the change is the least severe (see databases (M,L) and (L,L)), TDS with threshold

values 0.8, 0.7 and 0.6 doesn’t adapt to the concept drift due to relatively small thresh-

old values. The classification accuracy of the classifiers doesn’t go below any of the

preset thresholds and thus the committee doesn’t remove any of its members after the

drift. Since the classifiers are lossless decision trees, the knowledge acquired from the

old concept is kept after the drift which makes it harder to predict correctly on the new

concept.

Selecting a high threshold value: In the Circle problem (see Figure 4.23), TDS 0.8

is not able to learn any of the concepts. In fact, the threshold value is relatively high and

the committee removes a predictor at each time step. While TDS’s threshold value 0.8

gives the best predictive performance for the database (H,L) of the Boolean problem

(see Figure 4.22), it does not allow the ensemble to adapt to any of the concept changes

of the Circle problem.

Chapter 4. Adaptation to Concept Changes 110

TDS 0.8 TDS 0.7 TDS 0.6 DACC

(H,L)

0 500 1000
0.85

0.9

0.95

1

(H,M)

0 500 1000
0.8

0.85

0.9

0.95

1

(H,H)

0 500 1000
0.8

0.85

0.9

0.95

1

(M,L)

0 500 1000
0.9

0.92

0.94

0.96

0.98

1

(M,M)

0 500 1000
0.8

0.85

0.9

0.95

1

(M,H)

0 500 1000
0.7

0.8

0.9

1

(L,L)

0 500 1000
0.9

0.92

0.94

0.96

0.98

1

(L,M)

0 500 1000
0.8

0.85

0.9

0.95

1

(L,H)

0 500 1000
0.7

0.8

0.9

1

Figure 4.22: DACC vs TDS: The online performance on the databases of the Boolean

problem. The experts are lossless decision trees and N = 30. The x-axis represents the
training examples (time step) and the y-axis represents the online classification perfor-
mance (the percentage of correctly classified instances so far). The online performance

is reset at time step 500 when the concept starts changing.

TDS 0.8 TDS 0.7 TDS 0.6 DACC

0 500 1000 1500 2000
0.4

0.6

0.8

1

(H,L)

0 500 1000 1500 2000
0.4

0.6

0.8

1

(H,M)

0 500 1000 1500 2000
0.4

0.6

0.8

1

(H,H)

0 500 1000 1500 2000
0.4

0.6

0.8

1

(M,L)

0 500 1000 1500 2000
0.4

0.6

0.8

1

(M,M)

0 500 1000 1500 2000
0.4

0.6

0.8

1

(M,H)

(L,L)

0 500 1000 1500 2000
0.4

0.6

0.8

1

(L,M)

0 500 1000 1500 2000
0.4

0.6

0.8

1

(L,H)

0 500 1000 1500 2000
0.4

0.6

0.8

1

Figure 4.23: DACC vs TDS: The online performance on the databases of the Circle

problem. The experts are lossy feedforward neural networks and N = 20. The x-
axis represents the training examples (time step) and the y-axis represents the online
classification performance (the percentage of correctly classified instances so far). The

online performance is reset at time step 1, 000 when the concept starts changing.

Chapter 4. Adaptation to Concept Changes 111

TDS 0.8 TDS 0.7 TDS 0.6 DACC

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

(H,L)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

(H,M)

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

(H,H)

0 500 1000 1500 2000
0.4

0.6

0.8

1

(M,L)

0 500 1000 1500 2000
0.4

0.6

0.8

1

(M,M)

0 500 1000 1500 2000
0.4

0.6

0.8

1

(M,H)

(L,L)

0 500 1000 1500 2000
0.4

0.6

0.8

1

(L,M)

0 500 1000 1500 2000
0.4

0.6

0.8

1

(L,H)

0 500 1000 1500 2000
0.4

0.6

0.8

1

Figure 4.24: DACC vs TDS: The online performance on the databases of the SineH

problem. The experts are lossless decision trees and N = 20. The x-axis represents the
training examples (time step) and the y-axis represents the online classification perfor-
mance (the percentage of correctly classified instances so far). The online performance

is reset at time step 1, 000 when the concept starts changing.

Repeated cycles of deletion: In the SineH problem (see Figure 4.24), TDS 0.7 adapts

slowly to the concept change (H,L) with high speed and low severity levels. In fact, the

committee is reset multiple times from the beginning of the drift until time step 1600, the

time when the online performance starts going up. Another example of repeated deletions

is observed in the Circle problem (see Figure 4.23) where TDS 0.7 does not adapt to the

concept change (H,L) either. In the former case, the committee removes continuously

the same subset of classifiers from the beginning and until the end of experiment. By

removing the same classifiers, the outdated classifiers trained on the old concept are kept

after the drift and the newly added classifiers are constantly removed without getting

the chance to learn the new concept.

Knowledge transfer: Generally, the less the severity of the change, the more the

resemblance between the consecutive concepts and thus, the more the advantage of the

knowledge transfer. In the Boolean problem, the severity levels low, medium and high

have class severity of 11%, 44% and 67%, respectively. Hence, even with the high severity

level, 33% of the input space keeps the same class labels after the drift. In Figure 4.22,

when using TDS 0.7 on the Boolean problem and when the speed level is high (see the

databases (H, sev) in the first row), we don’t see the effect of knowledge transfer after the

Chapter 4. Adaptation to Concept Changes 112

drift, in severity levels medium and high. We would expect a higher online performance

after the drift as the severity of the change decreases. However, TDS 0.7 removes its N

classifiers in N time steps just after the drift. As a result, all the experts are removed

and no knowledge is transferred.

DACC’s deletion strategy

According to DACC’s deletion strategy, the committee members are not removed at once

when a drift happens. DACC keeps its members for a longer time due to its frequency

of deletion which forces the existence of old members for at least Npool ∗ τmat time steps

after the beginning of the drift.This allows the committee to transfer knowledge from

the old concept to the new one and if the concept change is continuous, DACC can still

predict on the old concept instances during the drift. In Figure 4.22, we can see the

effect of knowledge transfer on the Boolean problem when the concept changes suddenly

(see the databases (H, sev) in the first row). After the drift, old classifiers trained on

the old concept transfer their knowledge by predicting on the new concept. Knowledge

transfer lasts until a recently added classifier learns the new concept and then takes

the lead in predicting. We can see how the effect of knowledge transfer diminishes as

the severity of the drift increases. Another advantage of DACC is that it doesn’t use

threshold values to remove experts from the committee. This frees the algorithm from

additionnal parameters, and makes it less sensitive to preset values. Unlike TDS, DACC

is able to adapt to a variety of concept changes starting with the same parameter values.

Finally, DACC removes a committee member every τmat steps in anticipation of change.

A relatively small maturity age allows DACC to delete members frequently from the

ensemble and thus react rapidly to a concept drift. Since DACC always removes a

classifier, it is sometimes faster in reacting to concept drifts than other approaches that

wait until the predictive error exceeds a certain threshold or that a weight goes below a

threshold.

Summary

Evaluating DACC’s deletion strategy with this of TDS shows the sensitivity of the thresh-

old deletion strategy to its preset parameters. While a threshold value may be adapted

to a particular problem, it may not be on other problems. Thus, TDS requires a priori

knowledge of the drift properties such as the severity and speed of change. DACC by

contrast is less sensitive to the preset parameters. In fact, with the same parameter

values, DACC was able to adapt to the concept changes of all the datasets of the six ar-

tificial problems suggested by Minku, with a classification error that is smaller in average

than this of a perfect forgetter that learns new concepts from scratch.

Chapter 4. Adaptation to Concept Changes 113

Table 4.1: The parameter of DACC

Parameter Description
Pool The pool of type of experts used in the ensemble.
cmb The combination function used which is either MAX or WVD.
τeval The size of the evaluation window used to compute the weights of the experts
τmat The maturity age of an expert.
Npool The maximum number of pools of type of experts allowed in the ensemble

4.3.11 Choice of parameters

We show in Table 4.1 the parameters that should be predefined for DACC’s ensemble

method. Based on intuition and empirical studies on DACC, we give suggestions regard-

ing the choice of the parameter values. It is important to note that these suggestions are

aimed at helping the user in his choices but are not optimal. In the comparisons with

state of the art methods in Section 4.4, we will see that when DACC’s parameter values

are finely tuned, the parameters can be set differently than our recommendations below.

The experts

The ensemble can consist of different types of experts, that is, different learning models

or learning models with different structures. For instance, neural networks with different

layers or number of neurons. The choice of the type of learners is not specific to DACC

as all learning algorithms require to predefine the type of learning model used. The

advantage of DACC is that different types of learners can be present all together at the

same time in the same ensemble. By evaluating all the learners before predicting the label

value yt, DACC implicitly evaluates the most adapted type(s) of learners at time step

t. Hence, even if some predictors in the pool were badly selected (ex: unadapted model

or structure to the current learning problem), the algorithm will manage to remove the

worst predictors and keep the better ones. And even when “bad” predictors still remain

in the ensemble, they won’t be selected for the ensemble’s final prediction according to

the combination functions MAX and WVD.

The combination function

When combining the predictions of the learners in the ensemble, we consider two func-

tions: MAX and WVD. While WVD can lead to a slightly slower reactivity to a concept

change compared to MAX, it is more robust in case of noise. The choice of the com-

bination function is also related to the relationship we expect from the learners in the

ensemble. When the learners are all trained incrementally on every instance they observe

in their lifetime, we might consider that they are in competition with each other, relative

Chapter 4. Adaptation to Concept Changes 114

to their memory of training data. Hence, for each label yt, if we want to choose the

prediction of the learner with the most adapted memory size, MAX would be a natural

choice. If the learners in the ensemble are not trained on all the training data they

observe, as with online bagging and boosting methods for instance [77], members of the

ensemble can be seen as weak learners and their predictions are generally combined using

a weighted vote to get a good predictive accuracy. Hence, WVD would be rather used

in a cooperative scenario.

The evaluation window

The parameter τeval represents the size of the window used to evaluate the predictive

accurary of the members of the ensemble. While too small windows would lead to

unstable weights, too large windows would incorporate outdated data points when the

concept evolves, resulting in misleading weight values. In the majority of our experiments

conducted on the artificial problems of Minku, an evaluation window of size 20 offered a

good compromise.

With a priori knowledge of the dynamics of the environment, our choice of τeval could

be tuned. If the concept changes are expected to be slow, a large value for τeval will

be preferred over a small one since it will provide more data points for the evaluation

process and a small number of outdated points during a potential concept change. In

case of severe and rapid concept changes, large window sizes should be avoided since

they will eventually include outdated testing points when a change occurs.

The maturity age

The maturity age τmat represents the number of training data a predictor should learn

before being able to give its prediction. The maturity age plays another role: it controls

the deletion frequency in the ensemble. Since all the predictors should be mature before

a deletion operation, τmat training data separate two consecutive deletion operations. By

setting τmat >= τeval, we ensure that all predictors are evaluated on the same window

of data at the time of deletion. For a high plasticity, the maturity age should be small

enough to allow the introduction of new members in the ensemble at a high deletion

frequency (in anticipation of a concept change). Hence, we can decrease the maturity

age such that τmat = τeval.

Chapter 4. Adaptation to Concept Changes 115

The size of the ensemble

By defining the pool of type of experts (Pool) and by setting the value Npool, we get the

maximum capacity of the ensemble N by the equation: N = Npool × size(Pool). The

size of the ensemble N plays two roles. First, it impacts the diversity of experts in terms

of different memory sizes: the larger the ensemble, the more the memory sizes to choose

upon when predicting the label yt of an instance xt. The diversity of window sizes allows

the ensemble to deal implicitly with the stability-plasticity dilemma. While old learners

trained on large window sizes are reliable in periods of stability, young learners are more

ready to adapt to concept changes.

The size of the ensemble plays another key role: it controls the deletion size ds, that is, the

number of experts from which one or more experts will be selected for removal (ds = N
2).

As we previously explained in Section 4.2.4.3, enlarging the deletion size overcomes the

problem of deleting young and promising experts when the deletion frequency is high,

equivalently, when τmat is small. Hence, when the predefined value of τmat is unadapted

to the learning task (small enough for a high plasticity but not large enough to protect

promising experts from deletion), a large ensemble size N will increase the expectation of

a young expert with still a relatively bad performance record to survive in the ensemble

according to Equation 4.3, allowing it to further improve its predictive performance

before the next evaluation. Note that a large ensemble implies more computations and

hence comes at the price of a larger execution time.

4.4 DACC: Comparison with Other Systems

We evaluated DACC against other online learning systems that operate in evolving en-

vironments. In Section 4.4.1, DACC is compared with CDC, an ensemble method that

deletes experts according to the a threshold on the recent classification performance.

DACC is also compared with two pioneer drift handling systems: IB3 and the FLORA.

In Section 4.4.2, DACC is compared with other systems, more specifically: (a) DWM,

a well-cited approach that adapts implicitly to concept changes, (b) a modified online

bagging method that detects concept drifts explicitly using EDDM drift detector, and

(c) DDD, a weighted combination of four ensembles of experts. Finally, in Section 4.4.3,

DACC is compared with a number of methods provided with the open source MOA

software [11] which includes a collection of online learning methods, able to learn under

stationary and/or evolving environments. The former evaluation process is concerned

with both the predictive accuracy of the methods and their processing time.

Chapter 4. Adaptation to Concept Changes 116

4.4.1 DACC vs CDC

In this set of experiments, we compare DACC with CDC, the ensemble learning algorithm

designed by Stanley to cope with evolving concepts. The comparison with CDC was

driven by the fact that CDC’s performance dominates two pioneer drift handling systems:

IB3 and FLORA, as it was shown by Stanley in [85].

CDC differs from DACC in three major points. First, its deletion strategy removes the

worst expert in the ensemble according to a threshold value on its recent classification

performance θd. Secondly, the ensemble’s predictions are combined using a weighted

vote. The weight of an expert reflects its classification performance on the last τeval time

steps. Finally, the experts in CDC are decision trees. While the algorithm design is

not restricted to this specific type of learning models, it cannot mix different types of

learning models in the same ensemble.

4.4.1.1 STAGGER and FLORA datasets

For fair comparison with CDC, we strictly duplicated the experiments of Stanley which

were performed on STAGGER and FLORA artificial problems. The STAGGER problem

simulate sudden concept changes while the FLORA problem consists of two datasets with

slow and moderate concept changes, respectively.

In CDC, the maximum committee size was 10, the age of maturity for a committee

member was 10, and the performance record for a particular hypothesis was taken over

the last 10 instances it processed. The classifiers were decision trees trained incrementally

on each observed example. The minimum performance level to avoid retirement was 80%.

The same settings were used for DACC, except for the 80% threshold value which is not

used in DACC. Hence, to be comparable with CDC, we set τeval = τmat = N = 10.

Besides, we chose the MAX function to combine the predictions of individual experts.

As previously mentionned in Section 4.3.10.2, using different types of experts in the pool

of predictors allows us to take advantage of the assets of each type of predictor while

minimizing their drawbacks on the committee’s classification performance, improving

the overall predictive performance. However we didn’t mix different types of experts in

order to have a fair comparison with CDC which doesn’t support more than one type of

classifier in the same ensemble. Decision trees were used as in the experiments conducted

by Stanley on CDC [85].

For evaluation purpose, with each training instance, the committee is asked to classify an

independent test set labeled according to the underlying concept of the training instance,

Chapter 4. Adaptation to Concept Changes 117

Instantaneous Change

DACC

CDC

Figure 4.25: DACC vs CDC: a performance comparison on the STAGGER artificial
dataset. The x-axis represents the training examples (time step) and the y-axis rep-
resents the percentage of classification accuracy on a test set labeled according to the

underlying target concept of the training example.

and the percentage of correct classifications is recorded. In the FLORA datasets, during

the drift between the two concepts, the testing instances are labeled according to the

degrees of dominance vo and vn of the old and new concepts, according to Equation 2.3.

The size of the testing set for each training instance is 100 for STAGGER and 200 for

the FLORA datasets.

Stanley compared the classification performance of CDC with this of the different FLORA

systems, explained in Section 3.2. We show in Figures 4.25, 4.26 and 4.27 the perfor-

mance recorded for the different approaches on the STAGGER and FLORA problems,

averaged over 10 instantiations of the artificial datasets. The results of the FLORA

systems were taken from Stanley’s paper. Only experiments on CDC and DACC were

reconducted so they can be compared on the same testing sets.

The STAGGER dataset simulates instantaneous concept changes, allowing to assess how

quickly algorithms can react to a sudden change. In sudden changes, any old acquired

information should be forgotten quick enough if it becomes non genuine regarding the

new concept. As shown in Figure 4.25, DACC and CDC have comparable results on the

STAGGER dataset. After the drift, CDC resets its committee, allowing new members

to learn the new concept. In DACC, members are also removed from the committee, but

every τmat = 10 time steps. Thus, the committee is not reset as quickly as in CDC after

the drift. However, since the member(s) with the highest weight classifies the current

instances in DACC, the committee doesn’t need to be reset to give correct answers. Once

Chapter 4. Adaptation to Concept Changes 118

Moderate Speed Change

DACC

CDC

Figure 4.26: DACC vs CDC: a performance comparison on the FLORA artificial
dataset, with a medium speed of change. The x-axis represents the training examples
(time step) and the y-axis represents the percentage of classification accuracy on a test

set labeled according to the underlying target concept of the training example.

Slow Speed Change

DACC

CDC

Figure 4.27: DACC vs CDC: a performance comparison on the FLORA artificial
dataset, with a slow speed of change. The x-axis represents the training examples
(time step) and the y-axis represents the percentage of classification accuracy on a test

set labeled according to the underlying target concept of the training example.

the weight of a newly added member becomes higher than the others, the young member

takes the lead in predicting the instances’ class values.

Chapter 4. Adaptation to Concept Changes 119

0 20 40 60 80 100 120
0

50

100

Instantaneous Change

DACC

CDC

0 100 200 300 400 500
0

50

100

Moderate Speed Change

0 100 200 300 400 500
0

50

100

Slow Speed Change

Figure 4.28: DACC vs CDC: a performance comparison on the STAGGER dataset
(upper figure), and the FLORA datasets with medium (middle figure) and slow (bottom
figure) speed of change. The x-axis represents the training examples (time step) and the
y-axis represents the percentage of classification accuracy on a test set labeled according
to the underlying target concept of the training example. We plot the mean predictive
accuracy along with the standard deviation, as DACC and CDC are evaluated over 10

instantiations of the artificial datasets.

Chapter 4. Adaptation to Concept Changes 120

The FLORA datasets simulate continuous concept changes, allowing to evaluate the

knowledge transfer ability of both approaches. From Figures 4.26 and 4.27, we notice that

DACC outperforms CDC on the FLORA datasets, achieving better knowledge transfer

than CDC during the drifting time. In fact, depending on the threshold value and the

classification problem, the deletion strategy of CDC might reset the committee just after

the drift which prevents knowledge transfer via old committee members. DACC however

keeps its members for a longer time due to its frequency of deletion which, as pointed

out before, forces the existence of old members for at least Npool ∗ τmat time steps after

the beginning of the drift. We also notice that DACC recovers faster from the drift than

CDC. In fact, after the end of the drift, members of the committee are trained on some

examples from the old concept. This hurts their classification performance regarding

the new concept but not enough to be removed from the committee by CDC. Since the

classes are predicted by a weighted vote, the classification performance of CDC is affected

by the presence of these members.

We show in Figure 4.28 the mean performance of DACC and CDC on the three problems,

along with the standard deviations on the 10 instantiations of the artificial datasets.

4.4.1.2 COLD dataset

DACC and CDC were also confronted with a real scenario where the task is to recog-

nize the place of a robot exploring the Saarbrücken laboratory of the COLD database

explained in Section 2.3.5.3. The robot visits 4 rooms in the following order: corridor,

bathroom, corridor, one-person office, corridor, printer and corridor. The images from

the dataset weren’t used in their pixelated form. They were transformed into a feature

space of dimension 128 using the method described by Guillaume et al in [42]. The image

was first encoded using global descriptors. The encoded image was then projected into

a Self-Organizing Map (SOM) that has been previously trained in an unsupervised way

on 1/3 of the images of the COLD database. This offline training allows to learn a visual

dictionary that describes the environment and should not be confused with the online

supervised learning of the place classification task.

We show in Figure 4.29, the online performance of DACC and CDC on the robot dataset,

averaged over 10 runs, with the following settings: τmat = τeval = 10, N = 30 and cmb =

MAX. CDC was tested with three different deletion thresholds: 0.6, 0.7 and 0.8. We

reset the online performance with each visited place, indexed from P1 to P7.

We also show in Figure 4.30, for each approach, the time steps at which a member retires

from the committee. We notice that, when visiting places P2, P6 and P7, CDC reacts

slower than DACC to the change. This is due to two reasons. First, since CDC uses

Chapter 4. Adaptation to Concept Changes 121

0 100 200 300 400 500 600 700
0.6

0.7

0.8

0.9

1

DACC

CDC 0.8

CDC 0.7

CDC 0.6

Figure 4.29: DACC vs CDC: the online classification performance on the Saarbrücken
laboratory of the COLD database. The online performance is reset with each visited

place.

0 100 200 300 400 500 600 700

DACC

CDC 0.8

CDC 0.7

CDC 0.6

P
1

P
2

P
3

P
4

P
5

P
6

P
7

Figure 4.30: DACC vs CDC: the time step at which an expert is removed from the
committee, when testing DACC and CDC on the Saarbrücken laboratory of the COLD

database. The vertical dotted lines represent a new visited place.

a weighted vote, it needs to get rid of more than half the weight of its old members in

order for young members -trained on the description of the new room- to win the vote.

Secondly, DACC removes a member every τmat steps in anticipation of change. This

allows DACC to react faster than CDC to a potential change. After entering P4, CDC

have a slightly better performance than DACC. As we see in Figure 4.30, it happened

that CDC deleted some old members just before entering P4 which made it ready for the

upcoming change.

In this experiment, the robot visits the same place (corridor) many times, that is P1, P3,

P5 and P7. We believe that in such case it would be useful for the robot to memorize

the description of the visited rooms, instead of adapting passively to it. We discuss this

further in Chapter 5.

Chapter 4. Adaptation to Concept Changes 122

Table 4.2: DACC vs CDC: The mean classification error computed over the experi-
ments of Section 4.4.1, along with the predefined parameter values, with τmat = τeval.

Dataset
DACC CDC 0.8 CDC 0.7 CDC 0.6 NoDriftH. Configuration

mean std mean std mean std mean std mean std (τeval, N, cmb)
CAR 14.66 0.24 23.47 0 15.14 0 13.98 0 40.77 0 20,20,MAX
IRIS 15.33 1.0 15.38 0 18.34 0 20.71 0 34.62 0 20,20,MAX
Circle 6.92 1.43 35.66 1.12 8.09 3.5 8.73 0.78 12.56 3.45 20,20,MAX
Line 3.72 1.34 8.12 1.68 4.64 1.25 7.01 2.89 10.52 4.19 20,20,MAX
Boolean 2.75 1.75 3.85 1.38 4.17 1.29 4.47 1.21 17.63 10.26 20,20,MAX
SineH 13.0 1.25 47.81 0.91 20.66 3.76 13.26 1.27 21.25 5.38 20,20,MAX
SineV 4.32 1.12 7.98 1.65 5.15 1.18 5.85 1.69 11.08 4.52 20,20,MAX
Plane 18.37 1.51 20.55 1.4 18.01 1.76 19.95 1.67 27.23 5.07 20,20,WVD
STAGGER 14.33 3.11 16.08 1.88 17.75 2.15 20.25 3.31 32.52 5.09 10,10,MAX
FLORA-M 5.34 0.99 10.19 3.43 6.32 1.28 6.02 1.12 16 1.18 10,10,MAX
FLORA-S 7.7 1.36 12.46 2.71 9.21 1.34 9 1.25 18.9 0.92 10,10,MAX
COLD 6.04 0.12 7.83 0 8.23 0 9.16 0 35.46 0 10,30,MAX

4.4.1.3 Other datasets

We show in Table 4.2 the mean classification error of DACC, CDC and a learning system

that does not handle drifting concepts, on some of the artificial, semi-artificial and real

problems described in Section 2.3.5.

The experiments used artificial, semi-artificial and real datasets. The base learners (ex-

perts) are decision trees. The system that does not handle drifting concepts is a single

decision tree trained on every training example received. CDC is evaluated with three

thresholds: 0.6, 0.7 and 0.8. For Minku’s artificial problems: Circle, Line, Boolean,

SineH, SineV and Plane, the error was averaged over the 9 different datasets of the

corresponding problem. For STAGGER and FLORA problems, the error was averaged

over 10 instantiations of the datasets. For IRIS, CAR and the COLD datasets, the error

was averaged over 10 runs on the same dataset. Nevertheless, repeating the experiment

multiple times with CDC and the noDriftHandler gave the same results since there are

no randomness in the CDC algorithm nor in the decision trees learning models.

From Table 4.2, we notice that DACC has the smallest classification error in all cases,

except for the CAR and Plane datasets. The results on the CAR dataset suggest that

a deletion threshold of 0.6 is adapted to the CAR learning problem. Hence, removing

experts with a classification accuracy smaller than 60% allows the ensemble to adapt

to the simulated concept changes. For the Plane dataset, the slight difference between

DACC and CDC 0.7 is likely due to the noise in the Plane dataset. Despite that

WVD was used with DACC as a combination function to mitigate the effect of noise

on the predictive performance, CDC 0.7 had still a lower classification error. In fact, in

a noisy environment, even when an expert predicts correctly the label of an example,

its predictions is considered wrong if the example’s class was altered by noise. As a

Chapter 4. Adaptation to Concept Changes 123

result, the expert will be mistaken for a bad expert, affecting its weight. With CDC, an

expert is not removed from the ensemble as long as its weight value doesn’t go below

the predefined threshold value. With DACC, however, a relatively small weight exposes

the expert into the possibility of being removed from the ensemble. Nevertheless, this

does not affect DACC’s predictive performance tremendously. DACC’s performance is

the second best, ahead of CDC 0.6 and 0.8, and with a classification error larger than

this of CDC 0.7 by a margin of 0.36% only.

In most cases, DACC gives better results than CDC. DACC overcomes the difficulty of

finding the appropriate performance threshold according to which experts are considerate

unadapted to the current concept. Fixing a threshold value not only requires a priori

knowledge of the drift properties, it also assumes that the same threshold value is adapted

to all upcoming concept drifts. This assumption does not hold generally.

4.4.2 DACC vs DDD, EDDM, DWM

The previous experiments showed the improvement brought by DACC over CDC. In

this section, we compare DACC with most recent drift handling systems: (a) DDD (b)

DWM and (c) a modified online bagging method using EDDM drift detector to adapt

to evolving concepts. For simplicity, the latter method will be referred to as EDDM.

Diversity for Dealing with Drifts (DDD) is the online ensemble learning algorithm de-

signed by Minku et al. to cope with evolving environments. DDD was previously eval-

uated on the six artificial problems Line, Circle, SineH, SineV , Boolean and Plane,

against DWM, EDDM and online bagging. In online bagging, whenever a training ex-

ample is available, it is presented K times for each expert, where K is drawn from a

Poisson(1) distribution. The classification is done by unweighted majority vote, as in of-

fline bagging. In the remainder of this section, the online bagging system will be referred

to as the noDriftHandler since it is not designed to handle drifting concepts.

Dynamic Weighted Majority (DWM) uses a weighted ensemble of experts, with the

weights reflecting the experts classification performance during their lifetime. DWM does

not use a drift detection method. It adapts implicitly to concept changes by adding and

removing experts. The removal is controlled by a predefined threshold on the experts

weights. In this way, new experts can be created to learn new concepts and poorly

performing experts, which possibly learnt old concepts, can be removed. The Early Drift

Detection Method (EDDM), on the other hand, detects concept drifts explicitly and the

learning system is reset when a concept drift is confirmed by the detection system. The

algorithms are described in Chapter 3 and the parameters of each approach are detailed

in Table 4.3.

Chapter 4. Adaptation to Concept Changes 124

Table 4.3: The parameter description of the approaches discussed in Section 4.4.2.

Approach Parameter Description

EDDM
α Threshold that determines whether the warning level is triggered.
β, β < α Threshold that determines whether a drift is considered to be

detected.

DWM

ρ, ρ < 1 Multiplier constant for expert’s weight decrease.
p Interval of time steps in which the system can decrease weights,

add or remove experts.
θ Threshold for removing experts based on their weights.

DDD

λl Parameter for encouraging low diversity in the underlying ensemble
learning algorithm.

λh Parameter for encouraging high diversity in the underlying ensemble
learning algorithm.

W Multiplier constant for the weight of the old low diversity ensemble.
γ Parameter for the drift detection method to be used with the

approach.
Modified Online λ Parameter used by Poisson to encourage more or less diversity.
Bagging

DACC

τeval The size of the evaluation window used to compute the weights of
the experts.

τmat Parameter defining the maturity age of an expert.
Npool The maximum number of pools of type of experts allowed in the

ensemble.
cmb The combination function used which is either MAX or WVD.

Table 4.4: The parameters choice of DDD, EDDM and DWM for the artificial
datasets. W = 1, λl = 1 and θ = 0.01 were fixed.

Dataset
Values for Preliminary Experiments

Chosen Valuesλh γ, β α ρ p
(DDD) (DDD, EDDM) (EDDM) (DWM) (DWM)

Circle
{0.0005 {0.75, {0.96, {0.001, {1, λh = 0.05, γ = β = 0.95,
0.001, 0.85, 0.97, 0.01, 10, α = 0.99, ρ = 0.5, p = 1

Plane
0.005, 0.95} 0.98, 0.1, 20} λh = 0.05, γ = β = 0.95,
0.01, 0.99, 0.3, α = 0.99, ρ = 0.5, p = 5

Boolean
0.05, 1.1, 0.5, λh = 0.1, γ = β = 0.95,

0.1, 0.5} 1.2, 1.3} 0.7, 0.9} α = 0.99, ρ = 0.5, p = 10

Table 4.5: The parameters choice of DACC for the artificial datasets.

Dataset
Values for Preliminary Experiments

Chosen Valuesτmat, τeval Npool cmb
(DACC) (DACC) (DACC)

Circle
{5, 10, 20} {20, {MAX, τeval = τmat = Npool = 20, cmb = WVD

25, WVD}

Plane
30} τeval = 10, τmat = 5, Npool = 25, cmb = WVD

Boolean
τeval = τmat = 5, Npool = 25, cmb = WVD

Chapter 4. Adaptation to Concept Changes 125

For each approach and problem, Minku et al. [70] chose the parameter values that

experimentally gave the best classification performance on an average of 5 preliminary

runs. We did the same with DACC on the Boolean, Circle and Plane problems. For

each problem, we chose the parameters τmat, τeval ∈ {5, 10, 20}, Npool ∈ {20, 25, 30} and

cmb ∈ {MAX,WVD} that gave the lowest mean classification error on 5 runs. The best

parameter values for DDD, DWM and EDDM are shown in Table 4.4, while the best

parameters values for DACC are shown in Table 4.5.

In the experimental setup, the experts were lossless ITI online decision trees [92]. In

DWM, the decision trees are trained with every received training example. In DDD,

EDDM and the noDriftHandler, the example is learnt K times by a decision tree, where

K follows a Poisson(λ) distribution. In EDDM and the noDriftHandler, λ is set to

1, which is the value used for the original online bagging. In DDD, different λ values

create ensembles with different levels of diversity, with smaller λ values entailing larger

diversity levels. In DACC, the type of decision trees remained to be chosen. In all of

our preliminary experiments, the experts were decision trees trained on each observed

example, as with DWM. However, in case of the noisy Plane datasets, we noticed that

training a decision tree on all the data it observed during its lifetime hurt its classification

performance. Thus, for the Plane problem, we used three decisions trees in DACC’s pool

of types of experts:

• tr1, a tree trained on each observed example (x, y);

• tr2, a tree trained on K copies of (x, y) where K follows a Poisson(λ) distribution;

• tr3 which is the same as tr2 but is pruned to reduce overfitting.

The effects of mixing the different types of decision trees on DACC’s performance on the

Plane dataset were previously discussed in Section 4.3.10.2. The value of λ is set to 1

for tr2, as with EDDM and the noDriftHandler.

In the experimental setup, the maximum ensemble size was set to 25 for EDDM, the

noDriftHandler and DDD, while in DWM, the ensemble size is adjusted automatically.

It is important to note that since DDD uses a maximum of 4 ensembles of size 25 each,

the maximum number of decision trees was 100. As for DACC, the ensemble size is the

product of two values: the size of the pool of types of experts, and the maximum number

of pools allowed in the ensemble Npool. The value of Npool was chosen according to the

preliminary experiments. The size of the pool was equal to 1 for all datasets except for

the Plane datasets where the pool contains the three types of decision trees.

We summarize in Table 4.6, the types of decision trees used for each approach and

problem, along with the maximum number of decision trees.

Chapter 4. Adaptation to Concept Changes 126

Table 4.6: The type of decision trees used in the ensemble approaches discussed in
Section 4.4.2, along with the maximum ensemble size.

Dataset
Maximum number of experts/Types of experts in the ensemble

DACC DDD EDDM DWM NoDriftH.
Circle 20 tr1 25*4 tr2 25 tr2 auto tr1 25 tr2
Plane 25*3 tr1, tr2, tr3 25*4 tr2 25 tr2 auto tr1 25 tr2
Boolean 25 tr1 25*4 tr2 25 tr2 auto tr1 25 tr2

0 200 400 600 800 1000
0.9

0.95

1
BOOLEAN: Medium Sev, Low Sp

0 200 400 600 800 1000
0.85

0.9

0.95

1
BOOLEAN: High Sev, Low Sp

0 200 400 600 800 1000
0.8

0.85

0.9

0.95

1
BOOLEAN: Medium Sev, Medium Sp

0 500 1000 1500 2000
0.85

0.9

0.95

1
CIRCLE: Low Sev, Low Sp

DACC

DDD

EDDM

DWM

nodrifthandling

0 500 1000 1500 2000
0.7

0.8

0.9

1
CIRCLE: Low Sev, High Sp

0 200 400 600 800 1000
0.6

0.7

0.8

0.9

1
PLANE: High Sev, Low Sp

0 200 400 600 800 1000
0.6

0.7

0.8

0.9

1
PLANE: High Sev, High Sp

0 200 400 600 800 1000
0.6

0.7

0.8

0.9

1
PLANE: Low Sev, High Sp

Figure 4.31: The online classification performance of DACC, DDD, EDDM, DWM
and a no drift handling approach on a selected number of datasets from the Boolean,

Plane and Circle artificial problems.

We show in Figure 4.31, the online performance of the different approaches on some

of the datasets of the Plane, Circle and Boolean problems, averaged over 30 runs.

While the power of DDD comes from using multiple ensembles, DACC’s performance

can be boosted by using different types of classifiers, as seen in the results on the Plane

datasets. We notice however that DACC reacts slower than DDD and EDDM in case

of high severity and speed. In fact, just after the change, members in DACC trained on

Chapter 4. Adaptation to Concept Changes 127

the old concept predict the classes of the new concept. Since the change is severe, the

predictions are mostly wrong. In DDD and EDDM, however, the severe change is easily

detected by the detection mechanism and a new ensemble is directly used to predict the

upcoming labels.

In the Boolean problem, the approaches fail to adapt to the drift with low severity,

which takes place without being detected. DACC however removes committee members

periodically, regardless of whether the concept is stable or changing, allowing its member

to adapt to any potential change. In the remaining results, DACC performs at least as

well as the other approaches.

4.4.3 DACC vs others systems

Massive Online Analysis (MOA) is a software environment for implementing algorithms

and running experiments for online learning from data streams [11]. MOA includes

a collection of online learning (classification) methods, able to learn under stationary

and/or evolving environments. In particular, MOA implements online boosting, bagging,

Hoeffding trees, and Naive Bayes classifiers. MOA provides tools for evaluation, allowing

to assess the classification performance as well as the execution time of a classification

method.

We implemented DACC in the Java programming language, extending the MOA soft-

ware. Our central goal in this section is to compare DACC with a selection of online

learning methods available in MOA that can learn under evolving environments, adapting

to drifting concepts. The online learning methods include:

• EDDM: a single learner using the early drift detection method described in Section

3.1.1. The learner is reset when a concept drift is detected.

• ABAG: the Adwin-bagging algorithm described in Section 3.3.5.

• ASHT: the ASHT-bagging algorithm described in Section 3.3.6.

• LBAG: the Leveraging-bagging algorithm described in Section 3.3.8.

We also evaluated the performance of two simple systems that don’t learn from the data

stream:

• Majority: this system predicts the label of the majority class observed so far.

• NoChange: this system predicts the label of the last observed class.

Chapter 4. Adaptation to Concept Changes 128

Table 4.7: The parameter description of the approaches discussed in Section 4.4.3.

Approach Parameter Description

ASHT

NASHT The ensemble size.
f1 A flag indicating whether the ensemble is weighted or unweighted.
f2 A flag indicating whether a tree is reset after exceeding the

maximum size value.
s The maximum size value of the smallest tree in the ensemble.

LBAG

NLBAG The ensemble size.
λ Parameter used by Poisson to encourage more or less diversity.
γ Parameter for the ADWIN drift detection method.
f3 A flag indicating whether error-correcting output codes are used.

DACC
τeval The size of the evaluation window used to compute the weights of

the experts.
NDACC The maximum ensemble size.
cmb The combination function used which is either MAX or WVD.

Adwin-BAG NABAG The ensemble size.
MAJORITY - No parameters.
NoChange - No parameters.
EDDM - No parameters.

4.4.3.1 Experimental setup

We evaluated the different systems on the real datasets explained in Section 2.3.5.3,

the SEA artificial dataset explained in Section 2.3.5.1, and the USENET semi-artificial

dataset explained in Section 2.3.5.2. Before evaluating the different online systems, we

should set their parameter values. Choosing random parameter values for each system is

meaningless, entailing an unfair comparison. In our experimental framework, we decided

to fine-tune the parameters of each method in order to compare the different online

systems at their best. For each online system and data stream, we conducted preliminary

experiments with different combinations of parameter values. The combination giving

the highest classification performance was then selected to evaluate the corresponding

system.

The parameters of each approach are shown in Table 4.7. The parameter values for

the preliminary experiments are shown in Table 4.8. Note that EDDM has threshold

parameters that trigger the drift detection alarms. These values are set automatically

by the MOA software. Therefore, no parameters were fine tuned in EDDM.

The preliminary experiments were conducted as follows: for each data stream and online

system, a preliminary experiment was run for each combination of the parameter values.

According to Table 4.8, there are 72 combinations for LBAG, 48 for ASHT, 24 for DACC

and 4 for ABAG. The preliminary experiments started with the same random seed in

order to have the same learners at the beginning of all the experiments.

Chapter 4. Adaptation to Concept Changes 129

In our experiments, we evaluated the different systems using two types of base learners:

an incremental Naive Bayes learner and a Hoeffding decision tree. The parameters of

the Hoeffding decision trees were set to their default values in MOA.

We show in Tables 4.9 and 4.10 the best combinations of parameter values according

to the preliminary experiments, using Hoeffding trees and Naive Bayes as base learners,

respectively. Note that, when testing the LBAG ensemble method on the Forest dataset

using Hoeffding trees, we excluded the combinations with f3 = 1 because this option

made the execution time very long (> 1 day). Note also that the parameters of ASHT

were not tuned when using Naive Bayes learners since ASHT is designed to work only

with Hoeffding trees.

After the parameters were chosen, we compared the different systems on the basis of two

criteria: the mean classification error and the processing time (in CPU seconds).

4.4.3.2 Empirical results

We show in Figures 4.32 and 4.33 the mean classification accuracy (in percentage) of

the different online systems using either Hoeffding trees as base learners or incremental

Naive Bayes learners, respectively. We also show in Table 4.11, the mean processing

time in CPU seconds of the online ensemble methods, that is, DACC, ASHT, LBAG

and ABAG. For each ensemble method, the processing time is averaged over all the

preliminary experiments on all datasets.

In PAKDD, the task is to detect fraudulent customers which represent a minority class.

Learning systems may have difficulties to learn the concept related to the minority class.

Hence, to assess the performance of a learning system, it is better to compute the number

of examples from the minority class that are correctly identified by the system. For

instance, we can see from Figure 4.33 that the Majority system has the highest predictive

accuracy. However, this indicator masks the fact that the Majority system does not

detect any of the fraudulent clients. We computed the false negative rate (the number

of fraudulent clients classified as good clients) for the Majority, LBAG and DACC which

are the top three systems according to the predictive accuracy results. The false negative

rate (fn) for Majority is 19.748% which represents the rate of the minority class. The fn

value for LBAG and DACC when using Hoeffding trees are close to this of the Majority

system, suggesting that neither LBAG nor DACC learn the fraudulent clients. When

using Naive Bayes learners, the fn value improves, with an average value of 0.15% for

DACC and 0.14% for LBAG. These results unveil the difficulty of learning in the presence

of imbalanced classes. When learning from examples of the data stream, DACC gives

the same importance to examples of each class, therefore making the assumption that

Chapter 4. Adaptation to Concept Changes 130

Table 4.8: The parameter values for preliminary experiments. For simplicity, we set
τmat = τeval for DACC.

Values for Preliminary Experiments
NLBAG, NASHT , λ γ s f1, f2, f3 cmb τeval
NABAG, NDACC (LBAG) (LBAG) (ASHT) (ASHT, LBAG) (DACC) (DACC)
{10, 20, {6, 10, {0.01, 0.1, {1, 2, {0, 1} {MAX, {10, 20,
30, 50} 20} 0.002} 3} WVD} 50, 100}

Table 4.9: The parameter values chosen according to the preliminary experiments,
using Hoeffding trees as base learners.

Dataset Chosen Values

PAKDD
NABAG = 20, NDACC = 10, τeval = τmat = 100, cmb = WVD
NLBAG = 20, λ = 10, γ = 0.01, f3 = 1, NASHT = 20, s = 1, f1 = 0
f2 = 1

KDD
NABAG = 20, NDACC = 50, τeval = τmat = 20, cmb = MAX
NLBAG = 10, λ = 6, γ = 0.01, f3 = 0, NASHT = 50, s = 2, f1 = 0
f2 = 1

Electricity
NABAG = 30, NDACC = 50, τeval = τmat = 10, cmb = MAX
NLBAG = 20, λ = 6, γ = 0.1, f3 = 0, NASHT = 10, s = 1, f1 = 1
f2 = 1

Airlines
NABAG = 50, NDACC = 50, τeval = τmat = 100, cmb = WVD
NLBAG = 50, λ = 20, γ = 0.1, f3 = 1, NASHT = 50, s = 1, f1 = 1
f2 = 1

Forest
NABAG = 20, NDACC = 50, τeval = τmat = 10, cmb = MAX
NLBAG = 50, λ = 6, γ = 0.002, f3 = 0, NASHT = 30, s = 2, f1 = 1
f2 = 1

Ozone
NABAG = 10, NDACC = 10, τeval = τmat = 100, cmb = WVD
NLBAG = 30, λ = 6, γ = 0.002, f3 = 1, NASHT = 10, s = 1, f1 = 1
f2 = 1

Usenet
NABAG = 10, NDACC = 30, τeval = τmat = 50, cmb = MAX
NLBAG = 20, λ = 6, γ = 0.1, f3 = 0, NASHT = 20, s = 1, f1 = 0
f2 = 1

SEA
NABAG = 10, NDACC = 10, τeval = τmat = 100, cmb = MAX
NLBAG = 10, λ = 10, γ = 0.1, f3 = 0, NASHT = 50, s = 1, f1 = 1
f2 = 1

Table 4.10: The parameter values chosen according to the preliminary experiments,
using Naive Bayes learners.

Dataset Chosen Values

PAKDD
NABAG = 10, NDACC = 50, τeval = τmat = 10, cmb = MAX
NLBAG = 10, λ = 10, γ = 0.1, f3 = 1

KDD
NABAG = 10, NDACC = 10, τeval = τmat = 10, cmb = MAX
NLBAG = 10, λ = 6, γ = 0.01, f3 = 1

Electricity
NABAG = 10, NDACC = 50, τeval = τmat = 10, cmb = MAX
NLBAG = 10, λ = 10, γ = 0.1, f3 = 0

Airlines
NABAG = 30, NDACC = 50, τeval = τmat = 100, cmb = WVD
NLBAG = 50, λ = 6, γ = 0.002, f3 = 1

Forest
NABAG = 10, NDACC = 50, τeval = τmat = 10, cmb = MAX
NLBAG = 10, λ = 6, γ = 0.1, f3 = 0

Ozone
NABAG = 10, NDACC = 10, τeval = τmat = 20, cmb = MAX
NLBAG = 10, λ = 20, γ = 0.1, f3 = 0

Usenet
NABAG = 10, NDACC = 30, τeval = τmat = 100, cmb = MAX
NLBAG = 10, λ = 20, γ = 0.1, f3 = 0

SEA
NABAG = 10, NDACC = 50, τeval = τmat = 100, cmb = MAX
NLBAG = 10, λ = 6, γ = 0.01, f3 = 0

Chapter 4. Adaptation to Concept Changes 131

PAKDD
60

70

80

90

100

Tree NoChange Majority EDDM ABAG ASHT LBAG DACC

KDD

80

85

90

95

100

Tree NoChange Majority EDDM ABAG ASHT LBAG DACC

ELEC
50

60

70

80

90

100

Tree NoChange Majority EDDM ABAG ASHT LBAG DACC

Airlines
50

60

70

80

90

100

Tree NoChange Majority EDDM ABAG ASHT LBAG DACC

Forest
40

60

80

100

Ozone
90

92

94

96

98

100

102

Usenet
40

60

80

100

SEA
50

60

70

80

90

100

Figure 4.32: The mean classification accuracy (in percentage) of different online
systems using Hoeffding trees as base learners.

Chapter 4. Adaptation to Concept Changes 132

PAKDD
50

60

70

80

90

100

NaiveBayes NoChange Majority EDDM ABAG LBAG DACC

KDD

80

85

90

95

100

NaiveBayes NoChange Majority EDDM ABAG LBAG DACC

ELEC
50

60

70

80

90

100

NaiveBayes NoChange Majority EDDM ABAG LBAG DACC

Airlines
50

60

70

80

90

100

NaiveBayes NoChange Majority EDDM ABAG LBAG DACC

Forest
40

60

80

100

Ozone

70

80

90

100

Usenet
40

60

80

100

SEA
50

60

70

80

90

100

Figure 4.33: The mean classification accuracy (in percentage) of different online
systems using Naive Bayes learners.

Table 4.11: The processing time (in CPU seconds) of the ensemble methods averaged
over the preliminary experiments on all datasets explained in Section 4.4.3.

Algorithm base learner mean std-dev

DACC Hoeffding decision tree 105.32 163.02
LBAG Hoeffding decision tree 236.83 468.51
ABAG Hoeffding decision tree 99.23 170.72
ASHT Hoeffding decision tree 62.164 107.08
DACC Naive Bayes 37.04 61.01
LBAG Naive Bayes 53.29 81.73
ABAG Naive Bayes 50.09 80.89

Chapter 4. Adaptation to Concept Changes 133

classes are balanced. A possible solution is to assign weights to training examples that

are inversely proportionnal to the observed frequency of the examples’ class, giving more

importance to minority classes.

In the SEA and Usenet datasets, artificial concept changes are simulated. We notice

that DACC has the best classification accuracy when using Naive Bayes as base learners.

As with Hoeffding trees, LBAG is slightly better than DACC by a margin of 0.4% for

Usenet and 0.55% for SEA.

In the Electricity dataset (ELEC), concept changes are expected since power demands

and supply might evolve with time. This assumption is confirmed by the classification

accuracy of the single incremental learners which is outperformed by adaptive learning

systems. DACC outperforms the other systems when learning from ELEC.

In the Forest dataset, concept changes also occur, as in ELEC. In addition, the examples

are time-correlated according to the NoChange system. While DACC outperforms other

adaptive systems, its performance is not as high as this of the simple NoChange system.

In both Ozone and Airlines, the concept evolves according to the accuracy of the in-

cremental learners compared to this of adaptive systems. The data examples are also

time-correlated according to the NoChange system. When using Naive Bayes learners,

DACC outperforms other systems. With Hoeffding decision trees, the ASHT system,

designed to work specifically with Hoeffding trees, gives the best results.

As for the KDD dataset, its examples are highly time-correlated with the NoChange

system having an accuracy of 99.9%. None of the adaptive systems gives better results,

except DACC which has a classification accuracy of 99.95% and 99.91% using Hoeffding

trees and Naive Bayes learners, respectively.

According to the experimental results, DACC does not give the best results on all eval-

uated datasets. Nevertheless, it is always among the best performing approaches, sug-

gesting that it can generally adapt to a large variety of problems. When DACC is not

the best, its classification performance is in average 0.5% less than the best adaptive

approach. The other adaptive systems, LBAG, ABAG, EDDM and ASHT have a classi-

fication performance that is in average 3.6, 4.5, 3.6, and 3.7% less than the best adaptive

approach, respectively.

The LBAG system seems to be the first rival of DACC. However, its performance bounces.

For instance, in the ELEC dataset, the classification accuracy of LBAG goes from 89.06%

using Hoeffding trees to 78.61% using Naive Bayes learners. A main disadvantage of

LBAG is its high execution time which is nearly 2.25 times the execution time of DACC

when using Hoeffding trees, 1.4 times when using Naive Bayes learners (see Table 4.11).

Chapter 4. Adaptation to Concept Changes 134

4.5 Contribution

In this chapter, we presented DACC, an ensemble method for online learning in the

presence of concept changes. The suggested method controls a diverse committee of

experts whose memory of past information evolves dynamically with time via experts

deletion and addition operations.

Unlike other ensemble methods that remove the worst expert in the committee [12, 13,

59, 85, 90], our method periodically removes experts chosen randomly from the worst

half of the ensemble. We showed that this deletion strategy makes the adaptive ensemble

less sensitive to its preset parameters.

Managing past information is also ruled by the way the experts’ votes are combined in the

committee’s final decision. We suggested two combination functions: MAX and WVD

depending on whether the leaning environment is noisy or noise-free. Both methods

allow only the best experts to vote. The deletion strategy along with the combination

function create a competitive and cooperative environment where experts compete for

their life in the committee and the best ones cooperate for the final decision.

A main feature of DACC is its ability of managing different types of learning models in

the same committee. This improves the overall classification accuracy as compared to

the use of a single type of base learner, which is the general case for online ensemble

methods [12, 13, 52, 59, 84, 85, 90].

Finally, our method deletes experts frequently without explicitly analyzing whether the

underlying target concept is evolving. This has two advantages. First it overcomes

the difficulties of relying on explicit drift detection systems inherent in having to detect

gradual concept changes while still being robust to false alarms. Secondly, it makes the

committee always ready to any upcoming concept change and thus allows it to react

faster to changes than implicit approaches that generally wait until the expert’s weight

goes below a threshold before it is deleted [59, 85].

In the next chapter, we go beyond the passive adaptation to concept changes. We present

a meta-learning mechanism that anticipates near-future concepts by analyzing how the

learning models evolve in the adaptive ensemble. The anticipative and the adaptive

approaches are combined in a new ensemble method called ADACC.

Chapter 5

Anticipating Concept Changes

Adapting to concept changes is important when considering unending data streams and

long-life learning. When the environment changes, as is increasingly the case, it is neces-

sary to rely on on-line learning with the capability to adapt to changing conditions a.k.a.

concept drifts. Our ensemble method, DACC, presented in Chapter 4, adapts passively

to concept changes without an insight to the future. This is also the case of the majority

of the algorithms designed to handle changing environments. They only focus on how to

detect changes and how to adapt to them.

Passive adaptation to concept changes may not be the best learning strategy. Indeed, a

learner may profit from the information possibly conveyed by the very sequence of data

and anticipate the upcoming changes, predicting how a concept may look like in the near

future. In an evolving environment, two aspects should be considered when anticipating

future concept changes: recurrence and predictability.

Recurrence means that the same concepts (or close approximations) might reappear

with time, either in a cyclic manner (e.g. seasonal variations) or in an irregular manner

(e.g. inflation rate, market mood). Predictability means that the concept evolves in

a predictable manner, but without necessarily repeating over time. Here, “predictable”

refers to an underlying prediction system, that is a learning system that, taking as input

information about the past history of the concept evolution, is able to predict its (near)

future. One can gain precious time and avoid costly incorrect predictions by being able

to recognize a recurring situation or to anticipate the likely evolution to come along.

Anticipating concepts changes is the subject of this chapter. We introduce a second-order

learning mechanism that is able to detect relevant states of the environment, to recognize

recurring contexts and to predict likely concepts changes. We couple DACC with this

meta-learning mechanism, allowing DACC to “guess” how the concept will look like in

135

Chapter 5. Anticipating Concept Changes 136

the near future. This type of second-order learning provides means for the anticipation

of, and the quick adaptation to, the underlying modification of the context. When

the upcoming concept is anticipated, DACC can act proactively, preparing classification

strategies in advance, enhancing its predictive performance. It is important to ensure

that the anticipation mechanism does not hurt the performance of DACC’s adaptative

ensemble. In other words, if the anticipation mechanism fails to predict the next concept,

the performance of DACC should be the same as using the mere adaptive strategy.

This chapter is organised as follows. Section 5.1 deals with the aspect of predictability. We

present DACCv1 (Section 5.1.1), a basic approach able to anticipate predictable concept

changes. The following sections then describe two extensions of the basic method: the

algorithm DACCv2 (Section 5.1.2) possesses the ability to detect relevant states of the

environment and predicts simple concept evolutions while DACCv3 (Section 5.1.3) can

predict more complex evolutions. Then, Section 5.2 deals with the aspect of recurrence.

A more elaborated method, DACCv4 (Section 5.2.1), stores concepts for later use in

case previously observed concepts reappear. We call ADACC (Anticipative Dynamic

Adaptation to Concept Changes) the new ensemble method that combines the adaptive

ensemble of DACC with the meta-learning mechanism, dealing with both predictability

and recurrence. The detailed algorithm and its realization in experimental systems are

presented in Section 5.3.

5.1 Concept Predictability

As an illustration of concept predictability, consider a concept corresponding to a circle

in a 2-dimensional input space. The instances are labeled into two classes depending

on whether they lie inside or outside the circle (see Figure 2.4). Suppose now that the

radius is fixed while the circle’s center moves with a constant speed, creating a concept

drift. It might be the case that a learning system be able to learn from such a sequence

of concept changes and predicts the likely future concepts. Note however that in such a

case, the same circle doesn’t repeat over time and there is no recurrence of past concept

thus precluding the use of Markov chains or of any method using frequency measures.

In addition to being illustrative of a simple scenario, this example shows also why an

approach commonly thought about in sequence learning, that of Markov chains, is here

helpless. Learning a Markov chain requires indeed that the concepts be encountered

repeatedly in order to reliably estimate transition matrices. When concepts do not

recur, this is impossible.

Chapter 5. Anticipating Concept Changes 137

Predicting how the concept evolves with time demands handling two main issues. First,

we should be able to capture and represent the past history of the stable concepts and

secondly, depending on the observed changes between the consecutive concepts, we should

be able to predict the next concept. Representing the past history of the stable concepts

raises many questions:

• How can we recognize the stable concepts during the learning process?

• How can we represent the underlying stable concept? Can we take a “snapshot” of

the current concept via the adaptative ensemble?

• The adaptative ensemble comprises diverse experts, representing rather different

concepts. How will the ensemble return one snapshot of the current concept?

• How can we verify that the snapshot returned by the ensemble represents a stable

concept? The ensemble might not have learnt enough training examples from the

underlying target concept or it might be adapting to a new concept when the

snapshot is taken.

• In the history of stable concepts, two consecutive concepts should be different. How

can we ensure that there is a concept change between two consecutive concepts?

Basic prediction scenario We start our experiments by designing a predictable con-

cept change scenario. We simulate 10 concept changes by generating a series of 11

consecutive concepts. The concept is a linear decision boundary (a line) that separates

the samples in a 2-dimensional feature space into two classes 0 and 1 (see Figure 5.1).

For each concept, a sequence of 500 training examples are generated as follows: 500 pairs

x = (x1, x2) are generated randomly in the feature space where x1, x2 ∈ [−1, 1], and the

corresponding class y is assigned as:

y = sign(a0 +

2
∑

i=1

aixi)

where

sign(n) =

{

0 if n < 0

1 otherwise

and a0, a1 and a2 are the parameters related to current concept.

We show the evolution of the concept parameters in Figure 5.2. The parameters a0 and a2

are fixed during the whole process. It is only the parameter a1 that switches from −1

Chapter 5. Anticipating Concept Changes 138

−1 0 1
−1

0

1
Concept 1

−1 0 1
−1

0

1
Concept 2

−1 0 1
−1

0

1
Concept 3

−1 0 1
−1

0

1
Concept 4

−1 0 1
−1

0

1
Concept 5

−1 0 1
−1

0

1
Concept 6

−1 0 1
−1

0

1
Concept 7

−1 0 1
−1

0

1
Concept 8

−1 0 1
−1

0

1
Concept 9

−1 0 1
−1

0

1
Concept 10

−1 0 1
−1

0

1
Concept 11

Figure 5.1: The data of the 11 consecutive concepts of Stream1. The data are
separated into 2 classes depending on the parameters of the current concept.

1 2 3 4 5 6 7 8 9 10 11
−1

−0.5

0

0.5

1

Concept index

P
a
ra

m
e
te

r
V

a
lu

e

a
0

a
1

a
2

Figure 5.2: The parameters of the evolving concepts of Stream1.

to 1 (and vice versa) creating concept changes. The stream of data that results from

concatenating the training sequences of the 11 consecutive concepts will be referred to

as Stream1. It has a total of 5500 training examples.

We ran DACC on Stream1 using perceptrons [97] as learning models. The perceptron

has an input layer of size 2 (the dimension of the feature space), and an output layer

with one neuron that gives the class of the sample. The perceptron output is given as:

f(x) = f(x1, x2) = sign(w1×x1+w2×x2+ b), where b and w1, w2 are the perceptron’s

parameters, with b called the bias and w1, w2 the input weights. We chose perceptrons

Chapter 5. Anticipating Concept Changes 139

time step

o
n

lin
e

 p
e

rf
o

rm
a

n
c
e

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0.5

0.6

0.7

0.8

0.9

1

Figure 5.3: The online classification performance of DACC on Stream1. The online
performance is reset each 500 timesteps, with each concept change. The vertical bars

represent the time steps at which concept changes occur.

in order to capture the simulated evolution in the concept parameters. In fact, it is

expected that after learning enough training data, the parameters [b, w1, w2] of the per-

ceptron mirror the values of the concept’s parameters [a0, a1, a2].

The remaining parameters of DACC are the following:

• The committee holds a maximum of 10 experts i.e. N = 10.

• The experts are evaluated on their last 20 classifications i.e. τeval = 20.

• At each time step, the expert with the best classification record is selected to

predict the class of the incoming example i.e. cmb = MAX.

• The deletion strategy removes an expert every 20 time steps i.e. τmat = 20.

All the experiments in this chapter were designed and executed on MATLAB unless

otherwise indicated.

We show in Figure 5.3 the online classification performance of DACC on Stream1. The

online performance is reset each 500 timesteps, with each concept change. We can see that

DACC is able to learn each of the consecutive concepts after observing enough training

data, improving its predictive accuracy with time when new concepts appear. However,

as most of the other adaptation algorithms, DACC adapts blindly to the concept changes

without an insight to the future.

In the following section, we present a basic method that aims to predict how concepts

evolve with time.

Chapter 5. Anticipating Concept Changes 140

5.1.1 DACCv1

We present DACCv1, a basic anticipation method that extends DACC’s algorithm by

predicting future concepts. DACCv1 builds the list of stable concepts encountered dur-

ing the data streaming. This list provides means to analyze the changes between the

consecutive concepts and anticipate the near future.

In the following, we first describe how the list of concepts is built. Then, we explain how

concepts are predicted and used to classify instances from the data stream. Experimental

results on Stream1 allow us to assess the main drawbacks of our basic approach.

5.1.1.1 Building the history of concepts

DACCv1 makes the simple assumption that a concept change happens periodically every

τdrift time steps. In order to build the history of stable concepts, DACCv1 asks the

adaptive ensemble to provide it with a representation of the current concept every τdrift

time steps. The concept returned by the ensemble is a snapshot (a copy) of the base

learner with the highest weight in the ensemble, the one that seems to best represent the

underlying target concept.

To simplify the discussion, the snapshot of a concept C is represented as a vector of

parameters of dimension n.

C = [c1, c2, ..., cn]

The type of parameters depends on the learning model used to learn the target concept.

For instance, if the current target concept is learnt by a learning model that is a neural

network [43], the concept snapshot could be represented as the vector of the network’s

weight values. A pair consisting of two consecutive snapshots δi = (Ci, Ci+1) is called a

concept change sample.

At time step k×τdrift, k concept snapshots are provided and are stored in the listMLT :

MLT : {C1, C2, C3, . . . , Ck}

5.1.1.2 The second order learning

The list of past snapshotsMLT = {C1, C2, . . . , Ck}, ordered according to the snapshots’

time appearance, is the basis of the second order learning mechanism. It provides a

sequence of successive models of the environment that can be used by a learning algorithm

in order to predict the most likely future snapshot in the series.

Chapter 5. Anticipating Concept Changes 141

In our experiments, we used Elman’s neural network [21] to predict Ck+1. Elman net-

works are special types of recurrent neural networks that exhibit dynamic temporal

behavior. Our use of Elman’s networks as predictors was motivated by their generality

and the good performances reported for learning tasks similar to our’s [98].

An Elman network is trained on the pairs of consecutive snapshots in MLT in order to

predict the next likely snapshot. Hence, the network is trained on the pairs of change

samples {δ1, δ2, . . . , δk−1}, learning the relationship between subsequent concepts. By

running the network on Ck, the network returns its prediction of the next concept C̃k+1.

The predicted concept C̃k+1 is used to classify the instances of the data stream, and this,

until a new concept is predicted. Therefore, C̃k+1 is used for classification from time step

k × τdrift + 1 to (k + 1)× τdrift.

For instance, when τdrift = 200, there are two snapshots at time step 400: C1 and C2,

forming the first change sample and training example δ1 = (C1, C2). The Elman network

is trained on {δ1} and is simulated on C2 to make its first prediction, the concept C̃3.

The concept C̃3 is used to classify the instances of time steps [401, 600]. At time step

600, the snapshot C3 adds a new training example δ2 = (C2, C3) and the Elman network

is retrained on {δ1, δ2} before predicting the next concept C̃4, and so on.

Note that, in this context, only one type of learning models is considered to be present

in the adaptive ensemble, in order for the snapshots to have the same dimensions when

presented to the Elman network, and also to make concept change samples meaningful,

capturing the evolution between the same set of parameters.

5.1.1.3 Empirical results

We tested DACCv1 on Stream1 with values of τdrift that are multiples of 100, ranging

from 100 to 1000. The snapshot of a concept C is represented by the bias and weight

values of the perceptron. Hence, C = [w1, w2, b]. DACC’s adaptive ensemble has the

same settings as in Section 5.1

We show, in Figure 5.4, for each τdrift, the snapshots returned by DACCv1. We also

show in Figure 5.5 for each τdrift, the online classification performance of DACCv1. The

online performance is reset each τdrift time steps.

The best case is when τdrift = 500 because the snapshots coincide with the concept

changes in Stream1. As previously seen in Section 5.1, DACC is able to learn each of the

subsequent stable concepts of Stream1. In other words, DACC captures the relationship

between the input features x and the classes y after observing enough training data from

the underlying target concept. Hence, at the time of the concept change, the parameters

Chapter 5. Anticipating Concept Changes 142

[w1, w2, b] of the best expert in the ensemble are the same as the parameters [a0, a1, a2]

of the corresponding decision boundary in Stream1. This explains why the parameters

of the concept snapshots in Figure 5.4 evolve exactly as the parameters of the decision

boundary in Figure 5.2.

We notice in Figure 5.5 the poor classification performance of the first predicted concept

C̃3 when τdrift = 500. However, starting C̃4, the performance is clearly improved with

nearly 100% of correct classifications. This means that with a minimum of three snap-

shots, the Elman network learns how the parameters [w1, w2, b] evolve with time and

predicts perfectly the upcoming concepts.

When τdrift = 1000, the snapshots are taken each 1000 time steps. Since a concept

change occurs each 500 time steps, we miss a concept change between two snapshots.

This explains why DACCv1 misses the concepts with negative w2 values in Figure 5.4.

According to the snapshots, the concept remains the same. Therefore, the Elman network

will always predict the same concept. Since the underlying target concept is different than

the predicted one during the first half of the prediction period τdrift, the classification

performance decreases. The performance improves during the second half when the

target concept gets back to its previous parameters.

When τdrift = 300, the second snapshot is taken at time step 600. At that time, the

ensemble is adapting to the second concept. Thus, the second snapshot does not represent

a stable concept but rather a transition between two concepts. Consequently, the list of

snapshots MLT is disturbed by outliers and the Elman network is not able to predict

properly the upcoming concept snapshots. This is also the case for the other τdrift values.

5.1.1.4 Drawbacks

The main problems of DACCv1 can be summarized as follows:

• Depending on the preset parameter τdrift, we get different evolutions in the concept

parameters. This gives place to unpredictable behaviors.

• Once the Elman network predicts a concept C̃, the predicted concept is used to

classify the incoming instances and this, regardless of the classification performance

of C̃, and regardless of whether DACC’s committee could perform better than C̃.

• Fixing the parameter τdrift assumes that the change happens periodically, a con-

dition that is not necessarly satisfied in a real world scenario.

In the next section, we suggest a more sophisticated method to handle the mentionned

problems.

Chapter 5. Anticipating Concept Changes 143

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

τ
drift

 = 100

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

τ
drift

 = 200

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

τ
drift

 = 300

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

τ
drift

 = 400

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

τ
drift

 = 500

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

τ
drift

 = 600

0 1000 2000 3000 4000 5000
−1

−0.5

0

0.5

1

τ
drift

 = 700

0 1000 2000 3000 4000 5000
−1

−0.5

0

0.5

1

τ
drift

 = 800

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

τ
drift

 = 900

1000 2000 3000 4000 5000
−1

−0.5

0

0.5

1

τ
drift

 = 1000

Figure 5.4: The snapshots of the concepts as returned by DACCv1 on Stream1, using
different τdrift time steps, the period separating two consecutive snapshots.

Chapter 5. Anticipating Concept Changes 144

0 1000 2000 3000 4000 5000
0

0.5

1

τ
drift

 = 100

0 1000 2000 3000 4000 5000
0

0.5

1

τ
drift

 = 200

0 1000 2000 3000 4000 5000
0

0.5

1

τ
drift

 = 300

0 1000 2000 3000 4000 5000
0

0.5

1

τ
drift

 = 400

0 1000 2000 3000 4000 5000
0

0.5

1

τ
drift

 = 500

0 1000 2000 3000 4000 5000
0

0.5

1

o
n
lin

e
 p

e
rf

.

τ
drift

 = 600

0 1000 2000 3000 4000 5000
0

0.5

1

τ
drift

 = 700

0 1000 2000 3000 4000 5000
0

0.5

1

τ
drift

 = 800

0 1000 2000 3000 4000 5000
0

0.5

1

τ
drift

 = 900

0 1000 2000 3000 4000 5000
0

0.5

1

τ
drift

 = 1000

Figure 5.5: The online classification performance of DACCv1’s predicted snapshots
on Stream1, using different τdrift time steps, the period separating two consecutive

snapshots.

Chapter 5. Anticipating Concept Changes 145

5.1.2 DACCv2

Analyzing how the underlying target concept evolves with time implies that the past

history of stable concepts be captured. Rather than making prior assumptions about

the time at which a concept changes as in DACCv1, we aim at finding an implicit way

to identify periods of stability via the adaptive ensemble. When a period of stability

is identified, we would take a snapshot (a copy) of the underlying stable target concept

via the base learners in the ensemble. The snapshots are used to build the history of

the stable concepts, providing means to analyze their evolution, and therefore predict

the more likely future concept. Recognizing the stable concepts raises the following

questions:

• How can we recognize whether the adaptive ensemble has “learnt” the current stable

concept or not yet? Equivalently, how can we ensure that a snapshot returned by

the adaptive ensemble reflects the underlying stable concept?

• DACC doesn’t explicitly detect a concept change. How can we ensure that a

concept change occured between two consecutive snapshots? Equivalently, how

can we avoid storing snapshots of the same concept, twice in a row?

In the following, we first describe a mechanism for the recognition of the relevant states

of the world before presenting DACCv2, an enhanced version of DACC that couples

the adaptive ensemble with a the second-order learning mechanism that works on the

identified states of the world in order to predict future concepts.

5.1.2.1 Recognition of significant models of the world

In this step, we aim at recognizing the significant concepts encountered during the data

streaming. Our goal is to take a snapshot of any recognized stable concept via the base

learners in the adaptive ensemble. Note that we suppose therefore that the concept drift

operates via a sequence of stable concepts, either in a gradual or in an abrupt manner

(see Figure 2.5).

A main challenge here is to decide when to take a snapshot. Given our reliance on an en-

semble method, this is equivalent to decide when the ensemble reflects the existence of an

underlying relevant concept. Unlike other systems [3, 99], our method does not recognize

new concepts using a drift detection system and thus it avoids the dfficulties inherent

in having to detect gradual concept changes while still being robust to false alarms.

Rather than making prior assumptions about the dynamics of the world, DACCv2 finds

an implicit way to identify periods of stability using the adaptive ensemble as a detector.

Chapter 5. Anticipating Concept Changes 146

In the adaptive ensemble, the base learners are constantly evaluated on their recent

classification performance and each τmat time steps, base learners are deleted amongst

the worst half of the ensemble. Deleting base learners allows the system to forget what

it has learnt and therefore, makes it able to adapt to potential concept changes. As

explained in Section 4.3.8, the deletion strategy causes the following behavior:

When the environment has been in a stable state for a sufficient time, the top learners

(belonging to the best half of the ensemble), being exempt from deletion, are inputted

with more training examples from the current concept. After observing enough training

examples, they tend to give the same predictions on the instances labels. This translates

into low levels of diversity among the best half of the ensemble.

When the concept changes, the former best learners see their performance deteriorate

and are therefore replaced with new base learners, which increases the diversity level in

the ensemble. It then takes some time until new best learners learn the new concept and

their diversity decreases again.

Hence, in periods of stability, the best learners in the ensemble should converge toward

the same, and near optimal, predictive error. Therefore, their diversity should be low,

while their error rate should decrease toward the best achievable performance or close

to it. This suggests to take into account both the diversity of the best learners in the

ensemble and their error rate as an index of the stability of the environment. In our study,

we use the kappa statistics κ in order to compute the diversity. As previously explained

in Section 4.3.8, this statistics measure evaluates the degree of agreement between the

classification of a set of items by two classifiers. In case of complete agreement, κ = 1.

If there is no agreement other than what would be expected by chance, κ = 0.

At time step t, given an ensemble of N base learners (or hypotheses)
{

hit
}

1≤i≤N
, the

stability index is computed over the last τs received examples as follows:

Istability = agreement− error

where agreement and error are computed over the best half of the current learners in

the ensemble, and are defined as:

agreement =

∑N/2
i=1

∑N/2
j=1

i 6=j

K
hi
t,h

j
t

N
2 ∗ (

N
2 − 1)

(5.1)

Chapter 5. Anticipating Concept Changes 147

and:

error =

∑τs−1
j=0

∑N/2
i=1 err

(

hit(xt−j), yt−j

)

τs ∗
N
2

(5.2)

where (xt, yt) is the received example at time step t; K
hi
t,h

j
t

is the kappa for hypotheses

hit and hjt ; h
i
t(x) is the prediction of hit regarding the class label of x and err is an error

function which returns 1 if the prediction is wrong and 0 otherwise. Hence,

err
(

a, b
)

=

{

0 if a = b

1 if a 6= b
(5.3)

Each point in the stability index curve, over some predefined threshold θI , is suggestive

of a stable environment and is therefore a privileged moment to take a snapshot (a copy)

of the current best hypothesis in the ensemble of base learners, the one that seems to

best represent the current state of the world.

One must however be careful not to store consecutive hypotheses that correspond to the

same underlying state of the environment. Here again, the agreement statistics, in our

case the kappa statistics, can be used to measure the agreement between a candidate

snapshot h∗t and the preceding one h∗tk . For this purpose, the predictions of h∗t are then

compared with the predictions of the last stored snapshot h∗tk on the last τs received ex-

amples. If the estimated agreement is less than some predefined threshold θd, the current

candidate snapshot h∗t is considered different enough from h∗tk and is therefore added to

the list MLT of snapshots representing past stationary states of the environment.

5.1.2.2 The second order learning

As with DACCv1, the ordered list of past snapshots MLT = {C1, C2, . . . , Ck}, is the

basis of the second order learning mechanism. In our experiments, we also used Elman’s

recurrent neural networks to predict future concepts. After recognizing k stable concepts,

the k − 1 change samples
{

δ1, ..., δk−1

}

form the set of training examples learnt by the

Elman network in order to predict the next likely snapshot C̃k+1 (see Section 5.1.1.2).

5.1.2.3 The ensemble’s final prediction

When predicting the label of an instance from the data stream, the predicted snapshot

is treated on an equal footing with the base learners in the ensemble of the adaptive

ensemble method. The snapshot is therefore evaluated according to the evaluation strat-

egy used by the adaptive ensemble to evaluate the base learners. For instance, if the

Chapter 5. Anticipating Concept Changes 148

combination function used by the adaptive ensemble is the MAX function, a snapshot

is used for prediction if its evaluation record (weight) is the best among all candidate

hypotheses from the ensemble of base learners. Unlike the base learners in the ensemble,

the predicted snapshot is not modified or deleted. Its role is only to participates more or

less in the ensemble’s final prediction depending on its recent classification performance.

The steps of the second-order learning can be summarized as follows. Every p time steps,

the current stability index is computed. Then,

1. if the stability index is larger than θI , a candidate snapshot Ccand is taken.

2. if the difference between a candidate snapshot Ccand and the last snapshot Ck−1

in MLT is larger than θd, the new snapshot Ck = Ccand is added to MLT .

3. if a new snapshot Ck has been added toMLT , an Elman network is trained on the

change samples {δ1 = (C1, C2), δ2 = (C2, C3), . . . , δk−1 = (Ck−1, Ck)}.

4. by running the Elman network on Ck, the network returns its prediction of the

next concept C̃k+1. The last predicted concept replaces any previously predicted

concept.

DACCv2’s method builds incrementally the list of stable concepts encountered during

the data streaming. Each time a new stable concept is identified, the next concept

is predicted (see Figure 5.7). The predicted concept is then constantly evaluated for

classification purposes. As soon as it is assessed to be useful, the predicted concept

participates in the data stream classification process.

5.1.2.4 Empirical results

Stream1 We evaluated DACCv2 on Stream1. The anticipative meta-learning system

involves three parameters that all pertain to the detection of relevant snapshots. They

are the stability threshold θI , the decision threshold θd and the duration for the evaluation

of candidate snapshots τs. They were set respectively to θI = 0.9, θd = 0.8 and τs = 100.

According to θI , candidate snapshots are taken into account when the stability index is at

least 0.9. We didn’t choose a higher value fearing that higher stability indexes might not

be reached. According to θd, a candidate snapshot is considered different than the last

snapshot stored in memory if their agreement measure is less than 0.8. Both the stability

index and the concept equivalence measures are assessed on the last τs = 100 predictions.

The parameter p (controlling the rate at which the anticipation mechanism is called) is

used to reduce the additional computational cost incurred by the meta-learning system.

It is set to p = τs in all our experiments.

Chapter 5. Anticipating Concept Changes 149

x1

xd

y

x

C1 = [U1V1]

.

.

.

x2

U1

V1 .

.

.
.

.

.

C2 = [U2V2]

U2

V2

Uk

Vk

x1

x2

xd

x1

x2

xd

.

Elman

Network

x x

.

.

.

.

.

.
.

.

..

Ck = [UkVk]

output

input

Ck−1 = [Uk−1Vk−1]

C2 = [U2V2] C3 = [U3V3]

x1
x1 x1

x2 x2 x2

xdxd xd

U2 U3

V3V2

Uk−1

Vk−1

x x x

Figure 5.6: We show the training process of the Elman network in DACCv2 when
using feed-forward neural networks as base learners in the adaptive ensemble. Accord-
ingly, a snapshot is a feed-forward neural network represented by a vector containing its
weight values. The pairs of consecutive snapshots are presented as training examples

to the Elman network.

x1

xd

y

x

C1 = [U1V1]

.

.

.

x2

U1

V1 .

.

.
.

.

.

C2 = [U2V2]

U2

V2

Ũk+1

Ṽk+1

x1

x2

xd

x1

x2

xd

.

Elman

Network

x x

.

.

.

C̃k+1 = [Ũk+1Ṽk+1]

output

input

Ck = [UkVk]

x1

x2

xd

Uk

Vk

x

Figure 5.7: We show the prediction of the next snapshot using the Elman network
in DACCv2 when using feed-forward neural networks as base learners in the adaptive
ensemble. Accordingly, a snapshot is a feed-forward neural network represented by a
vector containing its weight values. By running the Elman network on Ck, the network

returns its prediction of the next concept (snapshot) C̃k+1.

Chapter 5. Anticipating Concept Changes 150

time step

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0.4

0.5

0.6

0.7

0.8

0.9

1

Stability Index Stable Concepts Concept Snapshots Drift

Figure 5.8: The time steps at which snaphots of concepts are taken by DACCv2 on
Stream1.

1 2 3 4 5 6 7 8 9 10 11
−1

−0.5

0

0.5

1

Snapshot index

S
n

a
p

s
h

o
t

P
a

ra
m

e
te

r
V

a
lu

e
s

w
1

w
2 b

Figure 5.9: The snapshots of the most stable concepts of Stream1, as returned by
DACCv2.

time step

o
n

lin
e

 p
e

rf
o

rm
a

n
c
e

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0.5

0.6

0.7

0.8

0.9

1
Adaptation Adaptation & Anticipation Drift

Figure 5.10: The online classification performance of DACC and DACCv2 on
Stream1. The online performance is reset each 500 timesteps, with each concept change.

The vertical bars represent the time steps at which concept changes occur.

Finally, we represent a concept snapshot by the vector of the bias and weight values

C = [w1, w2, b] of the current best base learner in the adaptive ensemble (the perceptron

with the highest weight). The adaptive ensemble has the same settings as in Section 5.1.

We show in Figure 5.8 how the stability index evolves with time. Blue squares repre-

sent time steps at which candidate snapshots are taken into consideration. Candidate

snapshots with red asterisks are kept as concept snapshots. Hence, two consecutive red

Chapter 5. Anticipating Concept Changes 151

asterisks represent snapshots that, according to θd, are different enough to represent dif-

ferent concepts. The concept snapshots are the components of the list MLT at the end

of the experiment. They are shown in Figure 5.9.

We can see how the concept snapshots in Figure 5.9 mirror the evolution of the concept’s

parameters in Stream1, as shown in Figure 5.2. Ideally, there would be one snapshot

exactly for each encountered state during the data stream, which is the case in this

experiment. By imposing the stability index to be relatively large according to θI , we

omit taking snapshots when the ensemble is still adapting to a concept change, being in

a transition state between consecutive concepts, for instance at time step 600.

We show in Figure 5.10 the online classification performance of DACC and DACCv2

on the instances of Stream1. The online performance is reset each 500 time steps with

each concept change. We notice that by anticipating concept changes, the classification

performance is either improved or in the worst case, it is the same as the performance of

the adaptive ensemble in DACC.

From Figure 5.8, we see that at time step 900, two concept snapshots are retained, and

the list MLT contains its first pair of snapshots MLT = {C1, C2}. At that point, the

Elman network is trained on the first example {δ1 = (C1, C2)} and predicts the concept

C̃3. According to Figure 5.10, the presence of C̃3 doesn’t bring a significant improvement

when the third concept appears from time step 1000 to 1500. This is probably because

the first predicted concept C̃3 is different from the real target concept. As a result, the

classification record (weight) of the predicted concept will not be high enough to allow it

to be used for classification. The classification performance during this period is mostly

this of the adaptive ensemble.

At time step 1400, the third snapshot C3 is retained and the second change sample

δ2 = (C2, C3) is added to the training examples of the Elman network. The fourth

concept is now predicted.

We notice that, from time step 1500 and on, the online performance is clearly improved

by the presence of the predicted concepts. In fact, when concept changes occur, the

classification performance of the adaptive ensemble starts decreasing while this of the

predicted concept starts increasing. Thus, after a concept change, the weight of the

predicted concept will be significantly higher than this of the adaptive learners, allowing

it to classify the incoming instances from the stream on the behalf of the ensemble. The

predicted concept will take the lead in the classification process until the base learners

in the adaptive ensemble adapt to the new concept and their weight increase over again.

Chapter 5. Anticipating Concept Changes 152

−1 0 1
−1

0

1
Concept 1

−1 0 1
−1

0

1
Concept 2

−1 0 1
−1

0

1
Concept 3

−1 0 1
−1

0

1
Concept 4

−1 0 1
−1

0

1
Concept 5

−1 0 1
−1

0

1
Concept 6

−1 0 1
−1

0

1
Concept 7

−1 0 1
−1

0

1
Concept 8

−1 0 1
−1

0

1
Concept 9

−1 0 1
−1

0

1
Concept 10

−1 0 1
−1

0

1
Concept 11

−1 0 1
−1

0

1
Concept 12

−1 0 1
−1

0

1
Concept 13

Figure 5.11: The data of the 13 consecutive concepts of Stream2. The data are
separated into 2 classes depending on the parameters of the current concept.

2 4 6 8 10 12

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Concept index

P
a
ra

m
e
te

r
V

a
lu

e

a
0

a
1

a
2

Figure 5.12: The parameters of the evolving concepts of Stream2.

Stream2 We evaluated DACCv2 and DACC on another sequence of concept changes,

using the same settings as with Stream1. The target concept is a linear decision boundary

as in Stream1 but with a different evolution of the concept parameters. We generated a

sequence of 13 concepts with 500 training examples each, as shown in Figure 5.11.

Chapter 5. Anticipating Concept Changes 153

time step

o
n
lin

e
 p

e
rf

o
rm

a
n
c
e

0 1000 2000 3000 4000 5000 6000
0.5

0.6

0.7

0.8

0.9

1
Adaptation Adaptation & Anticipation Drift

Figure 5.13: The online classification performance of DACC and DACCv2 on
Stream2. The online performance is reset each 500 timesteps, with each concept change.

The vertical bars represent the time steps at which concept changes occur.

2 4 6 8 10 12 14
−1

−0.5

0

0.5

1

1.5

R
e

a
l
V

a
lu

e

w

1
w

2 b

2 4 6 8 10 12 14
−1

−0.5

0

0.5

1

1.5

P
re

d
ic

te
d

 V
a

lu
e

2 4 6 8 10 12 14
−1

−0.5

0

0.5

1

1.5

R
e

a
l
v
s
 P

re
d

ic
te

d

Figure 5.14: Left: the snapshots of the stable concepts as stored in the list MLT by
DACCv2. Middle: the predicted concepts by the Elman network. Right: a juxtaposi-

tion of both the snapshots and the predicted concepts.

The parameters of the concept evolve as shown in Figure 5.12. The new stream of

data will be referred to as Stream2. The online classification performance of DACC and

DACCv2 on Stream2 is shown in Figure 5.13.

We notice that anticipating future concepts improves the online performance from time

steps 2000 to 3500 but the improvement disappears afterwards. To analyze the cause,

we show in Figure 5.14 the snapshots of the stable concepts MLT = {C1, C2, . . . , C13}

returned by DACCv2 and the predicted concepts based onMLT , that is {C̃3, C̃4, ..., C̃13}.

According to Figure 5.14, the list of snapshots reflects correctly how the concept evolves

with time. The main issue however is that the Elman network is not able to predict the

value w2 (the second parameter) of the concept snapshot when w2 starts decreasing. In

fact, during the first half of the experiment, the Elman network, having observed the

constant increase in the value of w2, learns the simple evolution rule. After observing

a change in the evolution of w2, that is an increase followed by a decrease, the Elman

network fails to predict the behavior of w2.

Chapter 5. Anticipating Concept Changes 154

5.1.2.5 Drawbacks

We believe that anticipation can be improved by using a prediction model more sophis-

ticated than the Elman network. If the Elman network hadn’t previously observed the

increase of w2, he would probably have predicted the decrease in w2 without difficul-

ties. A question is then whether it is possible for the prediction system to forget the old

evolution trend (the increase) and take only into consideration the new evolution trend,

that is, the decrease in the parameter values.

The adaptive strategy in DACC was designed with the ability to forget previous knowl-

edge and to adapt to concept drifts. By analogy, can we use DACC’s algorithm to adapt

to concept change drifts? In the following, we explain how a slighty modified version of

DACC’s adaptive strategy can be used to adapt to local variations in the evolution of the

concept parameters.

5.1.3 DACCv3

We present DACCv3, an enhanced version of DACCv2. Rather than using one predictor

(e.g. Elman network) to predict the parameters of the evolving concept, DACCv3 uses

an ensemble of predictors, managed by DACC’s adaptive strategy. This allows outdated

predictors to be replaced with new ones, more adapted to track the current evolution of

the concept parameters. It is important to note that DACCv3 comprises two different

ensembles:

• The adaptive ensemble used to adapt to concept changes. This ensemble is trained

on the examples received from the data stream.

• The adaptive ensemble used to predict upcoming concepts. This ensemble is trained

on the concept change samples provided by the second order meta-learning. This

ensemble is the subject of the following discussion.

5.1.3.1 Ensemble of Predictors

The aim of the new ensemble here is to predict, based on the k snapshots stored in

MLT : {C1, C2, . . . , Ck}, the next concept snapshot Ck+1.

A snapshot Ci is represented by a vector of n parameters:

Ci = [c(i,1), c(i,2), . . . , c(i,n)]

Chapter 5. Anticipating Concept Changes 155

A predicted snapshot C̃i is represented by the following vector of parameters:

C̃i = [c̃(i,1), c̃(i,2), . . . , c̃(i,n)]

Ideally, the predicted snapshot C̃i would mirror the still unacquired snapshot Ci.

As with DACCv2, the training examples provided to the ensemble of predictors are

concept change samples, pairs of consecutive snapshots from MLT . When the k-th

snapshot is acquired, the total history of concept changes is the sequence:

(

δ1 = (C1, C2), δ2 = (C2, C3), . . . , δk−1 = (Ck−1, Ck)
)

Building the ensemble The well known stability-plasticity trade-off arises in this

prediction scenario. If the concept evolution is stable, analyzing a long history of concept

changes gives a better prediction accuracy. However, if the evolution trend changes

suddenly, outdated history samples might be misleading, impeding the adaptation to

the new evolution trend. This dilemma is handled implicitly by using the ensemble of

predictors, each of which trained on a different history size.

The adaptive ensemble starts as in the classical version of DACC, by defining the pool

of types of predictors, a set of predictors with different structures. The predictors can be

neural networks with different numbers of hidden neurons and activation functions [43].

We can also have different learning models such as neural networks [43], decision trees

[17], linear regression models [73], Bayes rules [95], support vector machines (SVMs) [45]

and others.

The ensemble P is initially empty. When the first concept change sample δ1 is observed,

a pool of types of predictors pl1 trained on δ1 is added to the ensemble. When the

second change sample δ2 is observed, each predictor in pl1 adds δ2 to its history and is

retrained. In addition, a new pool of types of predictors pl2 trained on δ2 only is added

to the ensemble. This process continues until we reach the maximum number of pools

of predictors Npool. At this point, the pools of predictors
{

pl1, pl2, . . . , plNpool

}

have a

history of size:
{

Npool, Npool − 1, . . . , 1
}

, respectively.

Now that the ensemble P is formed, it is updated every τmat time steps according to

DACC’s deletion strategy, where a time step here corresponds to a new concept change

sample. The deletion strategy selects randomly m predictors from the worst half of the

ensemble and replaces them with a new pool of predictors. To keep the ensemble size

fixed, m is equal to the size of the pool of predictors.

Chapter 5. Anticipating Concept Changes 156

The predictors are evaluated for deletion on their recent predictive performance and

weights are assigned accordingly. Just as in DACC, the weight of a predictor is inversely

proportional to its prediction error on the last τeval predictions. Therefore, the higher

the weight, the better the predictor. Unlike in classification tasks, predictions here are

continuous values. Therefore the quality of a prediction is not assessed depending on

whether its value is correct or uncorrect. The prediction error is measured here as the

mean square error between the predicted snapshots and the real snapshots in MLT .

Ensemble’s prediction Each predictor p gives its prediction of the next concept snap-

shot C̃p
k+1:

C̃p
k+1 = [c̃p(k+1,1), ..., c̃

p
(k+1,n)] (5.4)

where c̃p(k+1,i) is the i-th parameter of the concept Ck+1 as predicted by the p-th predictor.

Unlike with classical DACC, the final prediction is formed by selecting the best prediction

for each concept parameter c(k+1,i) independently. This is motivated by the fact that

selecting the whole predictions C̃p
k+1 = [c̃p(k+1,1), ..., c̃

p
(k+1,n)] of a predictor p assumes that

all the parameters c(k+1,i) change their evolution trend at the same time. However, if

a predictor p is trained on a long history size then its prediction might be suitable for

a parameter c(k+1,g) that evolves according to a stable evolution function but not for

another parameter c(k+1,f) that just changed its evolution trend. Thus, we decide to

select a predictor for each parameter of the concept. Accordingly, the final prediction of

the ensemble is represented as follows:

C̃k+1 = [c̃(k+1,1), ..., c̃(k+1,n)] (5.5)

where ∀i ∈ {1, .., n}

c̃(k+1,i) = argmin
p∈P

‖ c(k+1,i) − c̃p(k+1,i) ‖ (5.6)

Selecting the best predictions would be trivial if c(k+1,i) was known ∀i ∈ {1, .., n} (see

equation 5.6), but this would also make the prediction task unnecessary. We choose

the best predictions by defining an evaluation function that assigns a weight wp
i to each

predictor in the ensemble, and for each snapshot parameter i. The weight reflects the

performance of a predictor p in predicting the parameter i of the concept snapshot, and

this based on its last τeval predictions. The equation 5.6 becomes:

c̃(k+1,i) = c̃p
∗

(k+1,i)

Chapter 5. Anticipating Concept Changes 157

where

p∗ = argmax
p∈P

(

wp
i

)

Weights reflect the quality of predictions. They are inversely proportional to the predic-

tive error. Accordingly, the weight wp
i at the time the concept k + 1 is to be predicted,

is computed as follows:

wp
i (k + 1) =

{

τeval/
∑τeval−1

j=0

(

c(k−j,i) − c̃p(k−j,i)

)2
if age(p) ≥ τmat

0 otherwise
(5.7)

5.1.3.2 Empirical results

In a first set of experiments, we simulated different types of evolutions in the concept

parameters. We then evaluated the predictive accuracy of the ensemble using differ-

ent types of predictors, more specifically, Elman neural networks [98] and polynomial

regression models [35]. We showed that by mixing different types of predictors in the

ensemble, we take advantage of each type of predictor and get better prediction results.

We also showed that our predictors, whose history size change dynamically with time,

outperform predictors trained on a fixed size window of concept change samples.

In a last experiment, we tested DACCv3 on Stream2 in order to evaluate whether

DACCv3 overcomes the unability of DACCv2 to follow the evolution trend of the concept

parameters.

Experiment (1)

In this set of experiments, we focused on the ability of the adaptive ensemble to adapt

to different evolutions in the concept parameters. Therefore, the evaluation process did

not involve DACCv3 algorithm in its wholeness. We generated the list MLT ourselves,

simulating a series of concepts changes.

We simulated an evolving concept with 5 parameters, moving continuously as shown in

Figure 5.15. The first 4 parameters were initially set to random values. The parameter

values evolved with time according to simple evolution rules that may change suddenly

its evolution tendency. As for the last parameter, its value was set to the sum of the

remaining parameters, multiplied by 0.5. This kind of evolution mirrors the evolution of

a concept represented by a perceptron, with the first 5 parameters being the perceptron’s

input weights and the last parameter the bias. The bias value is set such that nearly

Chapter 5. Anticipating Concept Changes 158

0 100 200
0

100

200

300

0 100 200
0

100

200

300

0 100 200
0

100

200

300

0 100 200
0

100

200

300

0 100 200
0

100

200

300

0 100 200
0

100

200

300

Figure 5.15: The evolution of the six parameters of the concept described in experi-
ment 5.1.3.2.

half of the examples are assigned to class ’0’ and the other half to class ’1’. A total of

250 different concepts were simulated as shown in Figure 5.15.

Neural Networks vs Polynomial Regression

We tested the predictive ensemble using different types of predictors. We were specially

interested in comparing Elman neural networks [98] and polynomial regression models

[35] as predictors.

We started by testing neural network predictors. We chose a pool of type of predictors

that consists of an Elman neural network. The Elman network had an input layer of size

6 (the number of parameters to be inputted to the network), a linear hidden layer with

one neuron and a linear output layer with 6 neurons (the number of parameters to be

predicted by the network).

We conducted three experiments where we varied the maximum number of predictors in

the ensemble. In each experiment, we compared ourselves to a simple prediction scenario

which considers the next concept snapshot the same as the current one. The prediction

results are reported in exp. 1, 2 and 3 of Table 5.1.

We notice that, using Elman neural networks, the predictive ensemble beats the simple

prediction approach in nearly 71.21% of the time. For instance in exp. 2, our prediction

error is 3.28 times smaller than the error of the simple prediction scenario in 74.29% of

Chapter 5. Anticipating Concept Changes 159

Table 5.1: The prediction results with different predictor types and ensemble sizes,
using the ensemble of predictors. Exp is the index of the experience. 1 EL stands for
one Elman neural network and 3 PR stands for three polynomial regression models with
degree 1,2 and 3 respectively. During the experiments, we predict the parameters of 250
concepts. For each prediction, we compute the prediction MSE: the mean square error
between the predicted values and the real values. The S_b_O MSE is the percentage
of time our prediction MSE is smaller than the simple prediction MSE. The S_b_O

MSE ratio is the ratio between the simple prediction MSE and our prediction MSE,
when our prediction MSE is smaller than the simple prediction MSE. The S_O MSE

ratio is the ratio between the simple prediction MSE and our prediction MSE.

Exp. Pool of type of predictors NPool S_b_O MSE Per. S_b_O MSE S_O MSE
(%) ratio ratio

1 1 EL 8 65.06 3.19 0.6

2 1 EL 13 74.29 3.28 0.85

3 1 EL 20 74.29 3.26 0.79

4 3 PR 8 90.76 2.11, 1.97 1.77

5 3 PR 13 91.96 2.17, 2.04 1.83

6 3 PR 20 91.96 2.1, 1.98 1.8

7 1 EL, 3 PR 8 84.34 3.45 1.03

8 1 EL, 3 PR 13 82.73 3.66 1.08

9 1 EL, 3 PR 20 81.53 3.71 1.12

the time1. However, the S_O MSE ratio is below 1 in exp. 1, 2 and 3, meaning that our

prediction error is larger than the simple prediction error, in average.

Summing up: when using Elman neural networks as predictors, our predictive ensemble

gives better results than the simple prediction scenario most of the time. However, our

prediction error is bigger than simple prediction error, in average.

In the second set of experiments, we tested the predictive ensemble using polynomial

regression models instead of Elman networks as predictors. We repeated the previous

tests using a pool of type of predictors that consists of 3 polynomial predictors with

degree 1, 2 and 3 respectively. The results are reported in exp. 4, 5 and 6 of Table 5.1.

We notice that when we use polynomial regression, the S_b_O MSE Per. and the S_O

MSE ratio improve. However, the S_b_O MSE ratio decreases. We can see for example

that the S_b_O MSE ratio goes from 3.26 with neural networks in exp. 3 to 2.1 with

polynomial regression in exp. 6.

We sum up our remarks with the following: on the one hand, Elman neural networks

beat polynomial regression models by having a smaller prediction error when they are

better than the simple prediction scenario. On the other hand, polynomial regression

models beat the neural networks by having a smaller prediction error on average. So, the

question is: how would be the prediction results when we mix both types of predictors?

1We refer to the S_b_O MSE ratio.

Chapter 5. Anticipating Concept Changes 160

Table 5.2: The prediction results using predictors with a fixed size history. Exp is
the index of the experiment. Predictor is the type of predictor used in the experiment;
1 EL stands for one Elman neural network. History Size is the fixed history size of the

predictor. The last three columns are explained in Table 5.1.

Exp Predictor History Size S_b_O Per. (%) S_b_O MSE ratio S_O MSE ratio

1 1 EL 3 82.32% 4.4 0.21

2 1 EL 5 87.95% 3.9 1.7

3 1 EL 9 70.28% 2.44 1.07

4 1 EL 15 17.67% 1.4 0.29

5 1 EL growing 4.47% 1.2 0.0108

In the third set of experiments, we mixed both type of predictors: the pool of type of

predictors contains an Elman neural network and 3 polynomial regression models with

degree 1, 2 and 3 respectively. The prediction results are reported in exp. 7, 8 and 9 of

Table 5.1. We notice that, by mixing neural networks with polynomial regression models,

we take advantage of both types of predictors: the S_O MSE ratio and the S_b_O MSE

Per. increase compared to when we only used neural networks while the S_b_O MSE

ratio increases compared to when we only used polynomial regression models.

These experiments show that the predictive ensemble allows us to take advantage of

different types of prediction models. Thus, we don’t need to have a priori knowledge of

the more suitable type of predictors for the anticipation task: the predictive approach

will do the work for us by automatically removing the worst predictors and replace them

by a new pool of types of predictors.

Dynamic History Size vs Fixed History Size

We repeated the former experiments using predictors trained on a fixed history size of

concept change samples. We conducted five experiments using Elman networks as pre-

dictors. In the first four experiments, the history size is set to 2, 4, 8 and 15 respectively.

In the fifth experiment, the history size of the predictor grows with time. The results

are reported in Table 5.2.

We notice that the prediction results depend on the history size we choose. When the

history size is set to 5, the prediction error brings an improvement factor of 3.9 over

the simple prediction scenario in 87.95% of the time, and an improvement factor of 1.7

over the simple prediction scenario, in average. Choosing a smaller window with size

3 decreases the S_b_O Per. and deteriorates the S_O MSE ratio. Choosing a larger

window size (9, 15) also deteriorates the prediction results. The last predictor with

a growing window size gives the worst results. Therefore, collecting all the observed

samples is not good for prediction: this assumes that the change is a static function, a

condition that is rarely met in the real world.

Chapter 5. Anticipating Concept Changes 161

The results suggest that using fixed window size predictors requires an a priori knowledge

of the suitable window size for the prediction task; choosing the wrong window size might

give catastrophic results. It also requires to choose a specific type of predictor (neural

network, polynomial regression, SVM etc...) which cannot allow one to take advantage

of multiple types of predictors as in our method.

Finally, when comparing the results of the fixed size history predictors with the results

of our prediction approach in exp. 7, 8 and 9 of Table 5.1, we notice that whatever the

size of the committee, the prediction results are close to the best prediction result we

can get in the fixed size prediction scenario.

Experiment (2)

It was shown in Section 5.1.2.4 that DACCv2 fails to anticipate the evolution of the

concept parameters when evaluated on Stream2. To test our claims that DACCv3 over-

comes the limitations of DACCv2, we evaluated DACCv3 on Stream2 using an ensemble

of Elman networks to predict the parameters of the evolving concept. The ensemble has

the following settings:

• The ensemble holds a maximum of 10 Elman networks i.e. N = Npool = 10.

• The Elman networks are evaluated on their last 3 predictions of the parameter

values [w1, w2, b] i.e. τeval = 3.

• The deletion strategy removes an Elman network from the ensemble every 3 time

steps i.e. τmat = 3.

The remaining anticipation settings are the same used by DACCv2 on Stream2. There-

fore, p = τs = 100, θd = 0.8 and θI = 0.9

We show in Figure 5.16 the online classification performances of both DACC and DACCv3.

The snapshots of the stable concepts and the predicted concepts are shown in Figure 5.17.

From Figure 5.17, we notice that, using the committee of Elman networks, we can adapt

to the sudden change in the evolution of the concept’s parameters which occurs at snap-

shot 8. This translates into accurate predictions of the concept’s parameters for snapshots

11, 12 and 13. As a result, the classification performance is improved from time step

5000 and till the end of the experiment (see Figure 5.16).

Chapter 5. Anticipating Concept Changes 162

time step

o
n

lin
e

 p
e

rf
o

rm
a

n
c
e

0 1000 2000 3000 4000 5000 6000
0.5

0.6

0.7

0.8

0.9

1
Adaptation Adaptation & Anticipation Drift

Figure 5.16: The online classification performance of DACC and DACCv3 on
Stream2. A committee of Elman networks is used in DACCv3 to predict upcoming con-
cepts. The online performance is reset each 500 timesteps, with each concept change.

The vertical bars represent the time steps at which concept changes occur.

2 4 6 8 10 12 14
−1

−0.5

0

0.5

1

1.5

R
e

a
l
V

a
lu

e

w

1
w

2 b

2 4 6 8 10 12 14
−1

−0.5

0

0.5

1

1.5

P
re

d
ic

te
d

 V
a

lu
e

2 4 6 8 10 12 14
−1

−0.5

0

0.5

1

1.5

R
e

a
l
v
s
 P

re
d

ic
te

d

Figure 5.17: Left: the snapshots of the stable concepts as stored in the list MLT by
DACCv3. Middle: the predicted concepts by the committee of Elman networks. Right:

a juxtaposition of both the snapshots and the predicted concepts.

5.2 Concept Reccurence

In Section 5.1, we worked on predictability, the ability to predict future concepts when a

transformation rule can be identified. In this section, we work on recurrence, the ability

to recognize recurring concepts.

In many real world scenarios, a concept might reappear over time. This problem in-

troduces a new challenge in that apparently obsolete data or learned concepts may well

reveal themselves as relevant again in the future. It would thus be profitable to be able

to exploit this past knowledge as soon as it is appropriate rather than learn anew from

the incoming data stream. In recent years, several proposals have been put forward to

meet this challenge, particularly within the ensemble-based approach (see for instance

[3, 37, 41, 52, 99]). They either work at the level of the examples themselves, by chunking

them in some way, possibly organizing a hierarchy of chunks, or they work at the level

of the learned concepts themselves, trying to learn significant concepts in the stream of

examples while avoiding redundancy.

Chapter 5. Anticipating Concept Changes 163

In the following, we show how DACCv3 can be improved to handle recurring concepts.

The new version of our method, DACCv4, handles both concept predictability and concept

reccurence.

5.2.1 DACCv4

The main idea of DACCv4 is to use the list of concept snapshotsMLT as a reference, so

that if an old concept Cold ∈ MLT reappears, Cold can be used directly to classify the

incoming instances. Thus, MLT serves two purposes. First, it provides a sequence of

successive models of the environment that can be used by a learning algorithm in order

to predict the most likely future state in the series. Second, it stores a memory of past

successful models of the world, models that should be repeatedly tested against current

data in case a recurring concept can be recognized.

5.2.1.1 The second order learning

After recognizing k stable concepts, the k − 1 change samples
(

δ1, ..., δk−1

)

form the set

of training examples inputted to the concept prediction system (for instance, a single

Elman network as in DACCv2 or an ensemble of Elman networks as in DACCv3) in

order to predict the next snapshot C̃k+1. The predicted snapshot is then temporally

added to the list of snapshots MLT . It is replaced by the next snapshot Ck+1 when

this one is acquired. Therefore, the list MLT contains snapshots that represent past

stationary states of the environment (useful for the recognition of recurring concepts),

plus a predicted future state (useful for anticipation).

Each snapshot in the list is then treated on an equal footing with the base learners in

the adaptive ensemble. The snapshots are therefore constantly evaluated according to

the evaluation strategy used by DACC to evaluate the base learners in the adaptive

ensemble. Hence, a snapshot in MLT is used for prediction depending on its evaluation

record (weight) and the combination function used by the adaptive ensemble. However,

unlike the base learners in the adaptive ensemble, the snapshots inMLT are not modified

or deleted.

While the adaptive ensemble of base learners is of a finite constant size, the list MLT

of snapshots may a priori increase forever if new hypotheses are continually retained as

worthy of storage. Fortunately, it is possible to keep this size under control by recognizing

that the two roles ofMLT : predictability and memory for recurring concepts, ask for two

different memory management systems. Indeed, since Elman’s networks are incremental

learners, they do not need to keep the past history of snapshots at all. Regarding the

Chapter 5. Anticipating Concept Changes 164

−1 0 1
−1

−0.5

0

0.5

1
Concept 1

−1 0 1
−1

−0.5

0

0.5

1
Concept 2

−1 0 1
−1

−0.5

0

0.5

1
Concept 3

−1 0 1
−1

−0.5

0

0.5

1
Concept 4

−1 0 1
−1

−0.5

0

0.5

1
Concept 5

−1 0 1
−1

−0.5

0

0.5

1
Concept 6

−1 0 1
−1

−0.5

0

0.5

1
Concept 7

−1 0 1
−1

−0.5

0

0.5

1
Concept 8

Figure 5.18: The data of the 8 consecutive concepts of Stream3. The data are
separated into 2 classes depending on the parameters of the current concept.

memory for recurring concepts, it can be kept constant using various heuristics. One

is to delete the oldest or the least reccuring snapshots from the memory. Another one,

more sophisticated, would be to store prototype snapshots instead of the original ones,

using a hierarchical clustering technique. In our experiments, we did not rely on such

memory management schemes since there was no need for them.

5.2.1.2 Empirical results

Stream3 In order to evaluate DACCv4, we generated an artificial stream of data sim-

ulating reappearing concepts. We created a sequence of 8 concepts with 500 training

examples each. The concept is a linear decision boundary that separates the examples

into 2 different classes, as shown in Figure 5.18. The first 3 concepts are different from

each others. They are then repeated from concept 4 until 8. This new stream of data

will be referred to as Stream3.

We evaluated DACCv4 on Stream3, with the same settings used by DACCv3 on Stream2

(see Experiment 3 in Section 5.1.3.2). The time steps at which snapshots are taken by

DACCv4 are shown in Figure 5.19.

According to Figure 5.19, at time step 1500, snapshots of the first 3 concepts have

already been added to the listMLT . Since the concepts reappear afterwards, we expect

the classification performance to increase for the remainder of the streaming process. We

show in Figure 5.20 the online classification performance of both DACC and DACCv4

on Stream3.

Chapter 5. Anticipating Concept Changes 165

time step

0 500 1000 1500 2000 2500 3000 3500 4000
0.4

0.5

0.6

0.7

0.8

0.9

1

Stability Index Stable Concepts Concept Snapshots Drift

Figure 5.19: The time steps at which snaphots of concepts are taken by DACCv4 on
Stream3.

time step

o
n

lin
e

 p
e

rf
o

rm
a

n
c
e

0 500 1000 1500 2000 2500 3000 3500 4000
0.5

0.6

0.7

0.8

0.9

1
Adaptation Adaptation & Anticipation Drift

Figure 5.20: The online classification performance of DACC and DACCv4 on
Stream3. The online performance is reset each 500 timesteps, with each concept change.

The vertical bars represent the time steps at which concept changes occur.

We notice that, starting time step 1500, the classification performance is indeed improved

by the presence of the snapshots of the previous concepts. In fact, when instances start

being classified based on the 4th concept, the performance record of DACC’s base learners

starts decreasing while the performance of the corresponding snapshot starts increasing.

In DACC’s settings, the member with the highest predictive record on the recent τeval

time steps is selected to predict the class of the incoming example. Therefore, when a

concept reappears, we don’t need to wait until DACC’s base learners adapt to the concept

to give correct predictions. The snapshot of the current concept, already present inMLT

and with a relatively high predictive record, takes the lead in classifying the incoming

instances.

5.3 ADACC

DACCv4, the latest version of the meta-learning mechanism, couples DACC with an

anticipation system that deals with both predictability and recurrence. We call this new

ensemble algorithm ADACC for Anticipative Dynamic Adaptation to Concept Changes.

ADACC deals with both the challenge of optimizing the stability-plasticity dilemma,

Chapter 5. Anticipating Concept Changes 166

adapting to concept changes, and with the anticipation and recognition of incoming

concepts. The steps and methods of ADACC are formalized in Algorithm 2 and an

analysis of ADACC’s computational complexity is presented in Section 5.3.1.

The experiments in Sections 5.1.3 and 5.2.1 were conducted to explain and evaluate the

methodology used by ADACC to deal with predictable concept changes and reappearing

contexts, respectively. The former experiments were rather simple, involving periodic

and sudden concept changes only. In Sections 5.3.2 and 5.3.3, we aim at evaluating

the behavior of ADACC on different types of concept drifts, with various speeds and

severities, and regardless of whether drifts happen in a periodic or non-periodic way.

5.3.1 Computational complexity

The meta-learning mechanism introduced in ADACC increases the complexity of DACC’s

adaptive ensemble. According to Algorithm 2, the main operations of the meta-learning

mechanism include:

1. Identifying H, the best half of experts in the adaptive ensemble (line 9)

2. Computing the average kappa value of the pairs of experts belonging to H. This

value is computed over the last τs received examples (line 10)

3. Computing the average classification error of the former experts on the last τs

received examples (line 11)

4. Computing the kappa value KCk,h
∗
t

of a candidate snapshot h∗t and the last stored

snapshot Ck in the list MLT on the last τs received examples (line 19)

Step (1) has order of O(N × logN) complexity, as explained in Section 4.3.7. As for

step (2), the kappa value Ki,j of classifiers i and j is the same as the kappa value Kj,i of

classifiers j and i. In addition, the kappa values Ki,i of pairs of identical classifiers are

not computed since the agreement measure should be evaluated on different classifiers.

Hence, a total of 0.5× (N/2)× (N/2−1) kappa values are computed. Since kappa values

are computed over the last τs classifications, the complexity of step (2) is O(0.5×(N/2)×

(N/2 − 1) × τs). Step (3) entails computing the classification error of the N/2 experts

over the last τs classifications and hence has order of O(N/2 × τs) complexity. Finally,

step (4) is executed only when a stable environment is identified. It adds a complexity

of order O(τs).

Overall, the complexity of the meta-learning mechanism is O(N × logN +0.5× (N/2)×

(N/2− 1)× τs +N/2× τs + τs)=O(N2τs).

Chapter 5. Anticipating Concept Changes 167

Algorithm 2: Selection of snapshots by ADACC.
input : the stability threshold θI

the concept equivalence threshold θd
the evaluation window τs
the period p between two consecutive calls of the meta-learning system

1 begin

2 E0 ← ∅; /* Ensemble of experts */

3 MLT ← ∅; /* List of snapshots */

4 k ← 1;
5 for t = 1 to ∞ do

/* ––––––––––––––––––––––––––––––––– */

/* Adaptation */

/* ––––––––––––––––––––––––––––––––– */

6 (xt, yt) is the current training instance;
7 [Et, ỹt]← AdaptationEnsemble(Et−1,xt, yt);

/* ––––––––––––––––––––––––––––––––– */

/* Anticipation */

/* ––––––––––––––––––––––––––––––––– */

8 if t mod p = 0 then

9 H =
{

hi
t

}N/2

i=1
is the best half of experts in Et;

10 agr =
1

N
2
∗ (N

2
− 1)

N/2
∑

i=1

N/2
∑

j=1

i 6=j

Khi
t,h

j
t
;

11 error =
1

τs ∗
N
2

τs−1
∑

j=0

N/2
∑

i=1

err
(

hi
t(xt−j), yt−j

)

;

12 Istability = agr − error;
/* Detect Stable Concept */

13 if Istability ≥ θI then

14 h∗

t = snapshot(Et);
/* Detect New Concept */

15 if isEmpty(MLT) then

16 Ck = h∗

t ;
17 MLT = add(MLT , Ck);

18 end

19 else if KCk,h∗
t
≤ θd then

20 k = k + 1;
21 Ck = h∗

t ;

22 MLT = replace(MLT , C̃k, Ck);

23 C̃k+1 = predictNextConcept(MLT);

24 MLT = add(MLT , C̃k+1);

25 end

26 end

27 end

28 end

29 end

Chapter 5. Anticipating Concept Changes 168

5.3.2 Empirical results (1)

The aim of the experiments was threefold. First, to test the performance of the snapshot

mechanism and specially its ability to detect both abrupt and gradual concept changes

and store the relevant target concepts with no, or limited, redundancy. Secondly, to

examine the gain, if any, brought by the anticipation scheme compared to the mere

adaptation mechanism. Obviously, this depends on the ability to anticipate the next state

of the environment, and therefore on the underlying structure (if any) of the sequence of

changes [7]. Thirdly, to test the mechanism for the recognition of recurring concepts and

the gain it can bring.

In the worst case, where it is not possible to anticipate the next concept and when no

recurring concept arises, the prediction performance of the system should fall back to

the performance of its adaptation mechanism. In these cases, no snapshot in MLT does

outperform the best base learners and the resulting behavior is the one of the adaptive

system alone.

5.3.2.1 Experiments and datasets

We conducted experiments on artificial and real datasets. The artificial sets were used

to simulate recurrent and predictable concept changes while controlling the timing of the

change, its speed (abrupt, or more or less gradual) and its severity (amount of change)

[69]. The real dataset comes from video sequences taken with a mobile robot wandering

in and out of rooms in a laboratory, creating recurring contexts.

In the artificial datasets, the input space X is d-dimensional and the target concept is a

linear decision boundary (a hyperplane) described by the relation y(x) = sign(
∑d

i=1wixi+

w0). The experiments were carried out on streams with 7,150 time steps and hence data

points.

In each stream, 12 concept changes were simulated by changing the weights {wi}
d
i=0 of the

hyperplane. The first 7 concepts evolved through the successive addition or substraction

of constant values (differing according to the experiments) to the weights. The idea

was to look at the capacity of the anticipative mechanism to identify this regularity and

therefore to predict likely future concepts. The last 6 concepts were recurring concepts,

that is concepts already encountered in the past data stream (see Figure 5.21).

Three artificial data streams were generated, each involved a different level of severity in

its concept changes: low or medium or high respectively involving changes in 1, 5 and 9

parameters out of the 11 that define the target concept, with respectively approximately

Chapter 5. Anticipating Concept Changes 169

2 4 6 8 10 12

−1.5

−1

−0.5

0

0.5

1

concept index

w
e
ig

h
t
v
a
lu

e

Figure 5.21: A typical evolution in the weight values of the hyperplane used in the
artificial datasets.

3%, 60% and 84% of the input space changing class between successive concepts. In each

stream, the changes happened either suddenly or gradually, in a linear manner, between

successive target concepts.

The transition between consecutive concepts took from 0 to 200 time steps and changes

would start happening every 400 to 700 time steps. We did not observe any effect of

the dimension up to more than one hundred and therefore we only report results for

the 10-dimensional case. The base learners in the adaptation ensemble were perceptrons

with 10 input units and one output unit, involving 11 weights (10 + 1 for the bias).

One Elman network was used to predict future snapshots (as in DACCv2). The Elman’s

networks took as input the 11 weights of a snapshot and gave as output the 11 weights

of the next predicted snapshot.

The real dataset was issued from the COLD database of the Saarbrücken laboratory

[79], a benchmark for vision-based localization systems. It contains sequences of images

recorded by a mobile robot under different variations of illumination and weather: sunny,

cloudy and night. We worked on the dataset captured in sunny conditions. The images

were labeled into one of four classes: corridor, one-person office, printer area and class-

room, and the total length of the data sequence was 753. The robot visited the rooms

Chapter 5. Anticipating Concept Changes 170

in the following order: corridor, bathroom, corridor, one-person office, corridor, printer

and corridor. It stayed in the same room between 45 and 284 time steps. Images were

first pre-processed into a 128-dimensional space using the Self-Organizing Map described

in [42]. In the experiments, we used decision trees (as implemented in Matlab) as base

learners in the adaptation ensemble.

One important goal of the experiments was to compare the performances achieved with

the combined anticipative and adaptive mechanism, with the ones of a purely adaptive

mechanism.

The anticipative meta-learning system itself involves three parameters that all pertain

to the detection of relevant snapshots. They are the stability threshold θI , the decision

threshold θd and the duration for the evaluation of candidate snapshots τs. They were

set respectively to θI = 0.9 and θd = 0.8 while τs = 100 was chosen for artificial

data streams and τs = 25 for robotics in order to cope with a faster dynamics. In the

base version with no sophisticated management of the snapshot list MLT , there are no

additional parameters. The parameter p (controlling the rate at which the anticipation

mechanism is called) is used to reduce the additional computational cost incurred by the

meta-learning system. It is set to p = τs in all datasets.

The remaining parameters concern the adaptive mechanism, and we tried to optimize

these in order not to unfairly attribute gains to the anticipative process. The parameters

for the ensemble method for adaptive online learning include the size of the ensemble N ,

the maturity age τmat and the evaluation size τeval. After extensive experiments, they

were set as follows.

The ensemble comprised N = 10 base learners for the artificial datasets (N = 15 for

the robotics data). In order to be compared, base learners were evaluated on the most

recent τeval = 20 data points (time steps) (τeval = 15 for the robot). The duration for

maturity τmat was equally set to 20 time steps (τmat = 10 for the robot).

5.3.2.2 Evaluation measures and methodology

In the experiments, we evaluated the snapshots stored by the system with respect to the

known target concepts. Ideally, there would be one snapshot exactly for each encountered

state during the data stream. For instance, in Figure 5.22, candidate snapshots are

indicated with small squares and the retained ones appear as red squares.

We also evaluated the gain in prediction errors resulting from the use of the anticipation

mechanism over the use of the adaptation scheme alone. Likewise, we measured the gain

(if any) due to the recognition of a recurring concept. The gain is simply the number of

Chapter 5. Anticipating Concept Changes 171

Table 5.3: Summary of the experiments and the measured gains in prediction errors
wrt. an adaptive only strategy.

Dues to Dues to
Stream Adaptation Anticipation Total gain predictability recurrence

name size base learner mean error std-dev predictor mean std-dev mean std-dev mean std-dev

10-D Low 7,150 perceptron 107.2 7.7 Elman net 1.9 1.7 0.0 0.0 1.9 1.7
10-D Med. 7,150 perceptron 784.4 32.2 Elman net 317.7 25.4 70.8 9.7 246.9 21.2
10-D High 7,150 perceptron 937.4 54.4 Elman net 393.9 46.5 120 18.1 273.9 34.3
Robot 753 decision tree 43.0 2.6 - 9.0 1.9 - - 9.0 1.9

errors of prediction that were avoided with respect to the use of the adaptive strategy

only (see Table 5.3 below).

Finally, the graphs in Figure 5.23 report at each time step the current online predictive

performance. One can then observe, for instance, that the gains due to the anticipation

mechanism start to show after the fourth concept change for the stream with medium

severity level (see Figure 5.23, the second picture down from the top).

5.3.2.3 Empirical results

Table 5.3 sums up the experimental results, averaged over 10 experiments. The table

shows the mean predictive error of the adaptive learning strategy, and the gain of using

the anticipation mechanism, in both predictability and recurrence. The gain is measured

as the difference between the number of prediction errors made by the adaptive ensemble

and the number of prediction errors made by the anticipation mechanism. In the artificial

data streams, we highlight the gain brought by the predictability of the first 7 concept

changes, and the gain brought by the last 6 recurring concepts.

Figure 5.23 illustrates the mechanism for the selection of snapshots on one data stream

and it shows the evolutions of the prediction performance over 10 repeated experiments

according to the severity of the concept changes.

Detection of concept changes and selection of snapshots

As can be seen in Figure 5.23, the value of the stability index closely mirrors the concept

changes. As soon as the appearance of a new concept is detected by the system and the

corresponding candidate snapshot sufficiently differs from the previously stored ones, it

is stored away in MLT . That policy enables the fast detection of novel target concept.

In our experiments, 100 % of all new concepts (260 altogether) that were introduced in

the data streams with high and medium severity levels triggered the storage of a new

snapshot. However, in the data stream with low severity level, since the consecutive

concepts are quite similar, few snapshots were retained (see Figure 5.22). There was

Chapter 5. Anticipating Concept Changes 172

no redundancy (no more than one snapshot per concept) in the artificial data streams.

Some snapshot redundancy appeared for the robotic data (see Figure 5.22) because of

the variation within each concept (e.g. in the bathroom the robot’s camera points to

different parts of the room which may induce several snapshots).

Second order learning

For concept changes of low severity (Figure 5.23, third picture down from the top), the

adaptive strategy is able to follow the variation of the environment as soon as enough

candidate hypotheses are good enough, which happens at the end of the first concept

(circa 400 time steps). Therefore, the anticipation strategy does not bring an advantage

there. The situation is significantly altered, however, when the concept changes are of

medium or high severity.

In our experiments, even though the concept changes occur at varying dates and with

varying speed, the anticipation mechanism is able to predict relevant foreseeable target

concepts that, in turn, are quickly recognized as the best for labeling the incoming

examples. This brings significant gains in the online performance starting already after

the 3rd change of concept for the data stream with high severity level, and the 4th change

of concept for the data stream with medium severity level. The gain increases thereafter

with each new concept change.

Table 5.3 shows that the gain in the number or labeling errors attains 317.7/784.4 =

40.5% for concept changes of medium severity, and 42% in the case of high severity.

These gains are impressive in face of a difficult learning task. It is unlikely that they

could be obtained without a second order learning mechanism working over the adaptive

one.

Table 5.3 distinguishes furthermore between the gain due to the predictability and the

gain due to the fast recognition of a recurring concept. Predictability brings significant

gain in the medium and high severity settings for the artificial datasets. In the case of

the robotics data, the gain is totally due to the fast recognition of recurring concepts

which outperforms the adaptation mechanism.

As expected, there is never a negative gain. As noted earlier, because the ensemble

methods is based on a continual competition between base learners from the adaptive

mechanism and base learners from the anticipative one, second order learning can never

be detrimental to the overall prediction performance as compared to the adaptive only

policy.

Chapter 5. Anticipating Concept Changes 173

time step

0 1000 2000 3000 4000 5000 6000 7000
0.4

0.5

0.6

0.7

0.8

0.9

1

Stability Index Stable Concepts Concept Snapshots Drift Drift Period

time step

0 1000 2000 3000 4000 5000 6000 7000
0.4

0.5

0.6

0.7

0.8

0.9

1

Stability Index Stable Concepts Concept Snapshots Drift Drift Period

time step

0 1000 2000 3000 4000 5000 6000 7000
0.4

0.5

0.6

0.7

0.8

0.9

1

Stability Index Stable Concepts Concept Snapshots Drift Drift Period

time step

0 100 200 300 400 500 600 700
0.4

0.5

0.6

0.7

0.8

0.9

1

Stability Index Stable Concepts Concept Snapshots Drift

Figure 5.22: The evolution of the stability index for 10-dimensional artificial data
streams (top three figures) and the robot data stream (last figure). We show the time
steps where candidate snapshots are considered (small squares), and when they are
retained (red squares). A candidate snapshot must have a stability index larger than
θi, and in order to be retained, it must differ from the last retained snapshot, according
to a decision threshold θd. First three plots: plot (top) corresponds to high severity
concept change, plot (middle) to medium severity, and plot (bottom) to low severity.

Chapter 5. Anticipating Concept Changes 174

time step

o
n

lin
e

 p
e

rf
o

rm
a

n
c
e

0 1000 2000 3000 4000 5000 6000 7000
0.5

0.6

0.7

0.8

0.9

1
Adaptation Adaptation & Anticipation Drift Drift Period

time step

o
n

lin
e

 p
e

rf
o

rm
a

n
c
e

0 1000 2000 3000 4000 5000 6000 7000
0.5

0.6

0.7

0.8

0.9

1
Adaptation Adaptation & Anticipation Drift Drift Period

time step

o
n

lin
e

 p
e

rf
o

rm
a

n
c
e

0 1000 2000 3000 4000 5000 6000 7000
0.5

0.6

0.7

0.8

0.9

1
Adaptation Adaptation & Anticipation Drift Drift Period

time step

o
n

lin
e

 p
e

rf
o

rm
a

n
c
e

0 100 200 300 400 500 600 700
0.5

0.6

0.7

0.8

0.9

1
Adaptation Adaptation & Anticipation Drift

Figure 5.23: The online predictive performance for 10-dimensional artificial data
streams (top three figures) and the robot data stream (last figure), using the adaptive
learning strategy (continuous, blue, line) and with the second order learning taking
place. The experiments are averaged over 10 repeated simulations. The beginning/end
of concept changes are indicated as vertical dotted lines. In case of gradual concept
changes, the transition period between consecutive concepts is colored in gray. The on-
line predictive performance is reset once a transition is complete. First three plots: plot
(top) corresponds to high severity concept changes, plot (middle) to medium severity,

and plot (bottom) to low severity.

Chapter 5. Anticipating Concept Changes 175

5.3.3 Empirical results (2)

The aim of this second set of experiments was to compare ADACC with state-of-the-art

systems. Different categories of predictive systems were evaluated: single classifier meth-

ods, an ensemble method that adapt implicitly to concept drifts, an ensemble method

that adapt to drifts by explicitly detecting changes in the environment and an ensemble

method that handles recurring concepts. The methods were confronted with artificial

and real benchmark datasets. To the best of our knowledge, there exist no benchmark

dataset simulating predictable concept drifts. Therefore, only the case of recurrence is

evaluated.

5.3.3.1 Experiments and datasets

We evaluated ADACC against the following methods:

• Simple incremental classifier (SIC): a single incremental classifier.

• Moving window (MW): a single classifier that learns incrementally learns over

the last w instances.

• Weighted examples (WE): a single classifier that gives larger weights to recent

examples in order to gradually forget the outdated information.

• Dynamic Weighted Majority (DWM) [59]: an ensemble method that adapts

implicitly to concept drift (i.e. without using a drift detection system)

• Leveraging Bagging (LBAG) [12]: a version of online bagging that uses the

ADWIN method [9] to detect concept drifts.

• Early Drift Detection Method (EDDM) [6]: a classifier with a drift detection

system.

• Conceptual Clustering and Prediction (CCP) [52] : an ensemble method

able to handle recurring concepts.

• DACC the mere adaptive side of the ADACC approach.

DWM, LBAG, EDDM and CCP are explained in Chapter 3 and DACC in Chapter 4.

We carried out experiments on two artificial datasets (STAGGER and ELIST) and one

real dataset (SPAM). These datasets are well-known benchmarks (see for instance [13, 52,

59, 96]). The datasets are presented in see Section 2.3.5. For STAGGER, we generated

10,000 training instances for each concept chosen uniformly from the instance space. To

Chapter 5. Anticipating Concept Changes 176

simulate recurring contexts, we concatenated the original sequence with a copy of it,

creating a stream of size 60,000.

Incremental Naive Bayes classifiers were used as base learners, because they naturally

learn incrementally and are often used in studies of on-line learning.

LBAG and EDDM algorithms are available in the MOA (Massive Online Analysis) API2.

We implemented all remaining algorithms on top of MOA, except for CCP and DWM

whose results reported below are taken from the work of Katakis et al. in [52]. The

parameters of DWM were set to ρ = 0.5, θ = 0.01, p = 1 and those of CCP were set to

b = 50, cmax = 10 and θ = 4 for ELIST and θ = 2.5 for SPAM. Both DWM and CCP

were not evaluated on STAGGER in [52] and thus no results are reported on this dataset.

We evaluated MW with three different window sizes: 50, 100 and 200 (retaining the best

one: 100). WE was tested with the weighting formula w(n) = w(n−1)+n2 where w(n) is

the weight of the n-th example. The threshold values of EDDM are automatically set by

MOA. In LBAG, we tuned the parameters λ and γ according to preliminary experiments

with λ ∈ {6, 10, 20} and γ ∈ {0.002, 0.01, 0.1}. We converged on λ = 20, γ = 0.002 for

ELIST and STAGGER and on λ = 20, γ = 0.01 for SPAM. Error correcting codes can

be used for LBAG to add more diversity in the ensemble, but this does not improve the

accuracy and is thus not used.

The parameters of ADACC, our anticipative meta-learning approach, were set to θI =

0.8, θd = 0.7 and τs = 100 in all experiments. The anticipation mechanism is called

every p = 100 time steps. Finally, the parameters of the adaptive learning mechanism,

DACC, were optimized after preliminary experiments with τeval, τmat ∈ {10, 20, 50, 100}.

They were set and τeval = τmat = 20 were used for all datasets. The ensemble size was

fixed to 20 for DACC and LBAG.

5.3.3.2 Evaluation measures and methodology

In the experiments, we evaluated the accuracy (predictive performance), precision, recall

and run time of each approach.

In a document retrieval task, precision is the fraction of retrieved documents that are

relevant [49], while recall (or sensitivity) is the fraction of relevant documents that are

retrieved [18]. Relevant documents are generally labeled to class “1” while the non-

relevant documents are labeled to class “-1” or “0”. In a more general formulation, the

precision can be seen as the number of instances correctly labeled to class “1” by the

predictive system out of all the examples belonging to class “1”, while the precision is

2http://sourceforge.net/projects/moa-datastream/

Chapter 5. Anticipating Concept Changes 177

the number of instances correctly labeled to class “1” by the predictive system out of

all the examples labeled to class “1” by the predictive system. These two measures are

calculated as follows:

precision =
tp

tp+ fn

recall =
tp

tp+ fp

where tp are the true positive instances i.e. the instances labeled correctly to class “1” by

the predictive system, tn are the true negative instances i.e. instances labeled correctly

to class “0”, fp (fn) are the false positive (negative) instances i.e. labeled uncorrectly to

the positive (negative) class.

We also studied the impact of the two threshold values: the threshold that decides of the

stability of the environment θI and the threshold that determines the concept equivalence

θd. Their impact on both the memory of snapshots and the predictive performance of

ADACC is reported.

5.3.3.3 Empirical results

Table 5.4, 5.5 and 5.6 report the results on the ELIST, SPAM and STAGGER datasets

averaged over 10 runs showing the accuracy, precision, recall and the run time in CPU

seconds. All experiments were executed on an Intel Core i5 CPU at 2.4 GHz with 4.0

GB of RAM. The execution time of DWM and CCP are not given since they were tested

in [52] on a different machine.

In all cases, ADACC yields the best accuracy. Figure 5.24 (top) shows a moving average

of the accuracy of DACC, ADACC, LBAG and EDDM over sliding windows of 1,000

instances. DACC adapts faster to concept drifts than EDDM and LBAG, probably

because of the frequent removal and addition of classifiers (every 20 time steps) which

makes it ready to any upcoming change. However, despite the very good performance

of DACC, ADACC still tops it by recognizing recurring concepts starting at time step

30,000. This comes at the expense of the execution time which is multiplied by a factor

of 1.5 to 3. However, the amount of computation can be reduced by increasing the value

of p, the period separating two calls of the meta-learning mechanism. In STAGGER, the

run time of ADACC is reduced to 2.8 CPU seconds when p = 1, 000 time steps (instead

of 100). Note that the classification performance is not hurt as long as p is small enough

to take snapshots of all encountered concepts (i.e. p < 10, 000 for STAGGER).

Chapter 5. Anticipating Concept Changes 178

Table 5.4: The accuracy, precision, and recall (in %) along with the execution time
(in CPU seconds) of the different approaches on the ELIST dataset using Naive Bayes

classifiers as base learners.

ELIST
Algorithm Acc. Precis. Recall Time
SIC 54.2 50.7 69.3 0.53
MW 74.7 70.6 78.4 0.48
WE 66.9 64.9 63.9 0.53
DWM 43.8 47 42.5 -
CCP 77.5 79.7 77.6 -
EDDM 75.6 72.9 75.9 1.15
LBAG 58.5 54.4 68.3 15.0
DACC 76.2 73.8 75.9 9.52
ADACC 77.5 75.2 77.2 13.6

Table 5.5: The accuracy, precision, and recall (in %) along with the execution time
(in CPU seconds) of the different approaches on the SPAM dataset using Naive Bayes

classifiers as base learners.

SPAM
Algorithm Acc. Precis. Recall Time
SIC 90.7 94.2 93.2 1.27
MW 90.7 90.6 97.5 1.28
WE 92.8 95.2 95.0 1.28
DWM 91.8 84.8 83.1 -
CCP 92.3 85.7 83.9 -
EDDM 90.8 92.0 95.9 1.68
LBAG 91.8 95.6 93.3 14.60
DACC 94.7 95.1 97.8 11.9
ADACC 94.9 95.6 97.6 18.92

Table 5.6: The accuracy, precision, and recall (in %) along with the execution time
(in CPU seconds) of the different approaches on the STAGGER dataset using Naive

Bayes classifiers as base learners.

STAGGER
Algorithm Acc. Precis. Recall Time
SIC 64.5 62.4 89.5 0.35
MW 98.8 98.4 99.3 0.39
WE 78.5 77.6 85.9 0.4
EDDM 99.7 99.7 99.8 0.6
LBAG 89.9 85.7 98.1 1.51
DACC 99.9 99.9 99.9 1.06
ADACC 99.9 99.9 99.9 3.22

Chapter 5. Anticipating Concept Changes 179

Figure 5.24: (Top) The classification accuracy of ADACC, DACC, LBAG and EDDM
on STAGGER, averaged over sliding windows of size 1,000. (Bottom) The evolution of

the stability index on STAGGER.

Figure 5.24 shows the stability index on the STAGGER dataset and highlights when

snapshots are stored. All data points above θI = 0.8 are candidate snapshots (a total

of 575) but only 5 are kept as relevant in the list MLT . The unstable behavior of

the stability index from time step 1 to 10,000 reflects the difficulty of learning the first

concept. Three different snapshots of the first concept are stored during this period,

capturing different subspaces. Only one additional snapshot is stored for the first concept

when it reappears (time steps 30,000 to 40,000) confirming that redundant snapshots are

avoided by ADACC. The second concept is learnt more easily and only two distinct

snapshots are taken. Learning the third concept corresponds to the highest stability

index, suggesting a rather easy learning task. Only one representative snapshot of the

third concept is stored at the end of the experiment. Regarding the other streams, a

total of 8 snapshots were stored for SPAM and 4 for ELIST.

Chapter 5. Anticipating Concept Changes 180

Table 5.7: The effect of the conceptual equivalence threshold on ADACC with θI =
0.8.

θd # candidates # stored Accuracy
0.5 575 4 99.918
0.6 575 5 99.915
0.7 575 7 99.916
0.8 575 9 99.918
0.9 575 12 99.918

Table 5.8: The effect of the stability index threshold on ADACC with θd = 0.7.

θI # candidates # stored Accuracy
0.5 596 9 99.908
0.6 594 9 99.908
0.7 587 9 99.91
0.8 575 7 99.916
0.9 540 4 99.916

In our experiments, the threshold values for stability and conceptual equivalence were

fixed. We varied their values on the STAGGER dataset to study their effect on the

number of candidate snapshots, the number of stored snapshots and the classification

performance of ADACC. The results are shown in Tables 5.7 and 5.8. Smaller stability

thresholds increase the number of candidate snapshots and thus of the stored ones but

very much less significantly. Only 5 additional snapshots are stored when the threshold

switches from 0.9 to 0.5. When varying the concept equivalence threshold, the number

of candidates doesn’t change since it is only related to the stability threshold value. The

stored snapshots however evolve. Larger threshold values entice larger numbers of stored

snapshots. Remarkably, changing both threshold values may impact the accuracy of the

anticipative mechanism (ADACC) but never to the extent of being worse than the mere

adaptive scheme (DACC).

The comparisons with state-of-art methods were the last experiments we conducted

for this thesis. We wished to go further with our evaluation of the ADACC system,

comparing its performance with other systems dealing with recurrence [3, 37, 41, 99].

However, for the sake of computational speed, the sole recurrence handling system we

evaluated ADACC against was CCP since it was already tested in [52] on benchmark

datasets available for the MOA API. We keep the comparisons with ADACC’s other

concurrents as a future perspective for this work.

Chapter 5. Anticipating Concept Changes 181

5.4 Contribution

In this chapter, we presented ADACC, a combination of a meta-learning mechanism and

an adaptive ensemble of learners. The meta-learning mechanism (a) detects regularities

(concepts) that are significant and new, (b) recognizes when to use past knowledge when

old concepts reappear and (c) analyses how concepts evolve with time in the aim of

detecting regularities in the evolution function to predict near-future likely concepts.

Unlike RePro (see Chapter 3) and other systems handling concept recurrence [3, 99],

our method does not recognize new concepts using a drift detection system and thus it

overcomes the difficulties inherent in having to detect gradual concept changes while still

being robust to false alarms.

A main advantage of our meta-learning system is its ability to detect new concepts using

a stability index measure, without relying on a priori knowledge on when the concept is

expected to be stable. In PreDet and CCP systems for instance (see Chapter 3), each

batch of m time steps represents a new stable concept. This scenario entails two main

difficulties. First, the batch size m should be predefined. It should be high enough in

order to be able to learn a stable representation and small enough to ensure that no drift

occured inside the batch. Secondly, fixing the value of m assumes that concepts evolve

periodically, which is not a general rule in data streams.

Another advantage of ADACC lies in the combination of adaptation and anticipation

on the instance level. Thus, each new example from the data stream can be labeled by

the adaptive ensemble, the anticipated concept of the meta-learning mechanism or by

both, according to the combination function. Other systems combine adaptation and

anticipation on a batch level [52, 99] where the anticipated concept is used to classify

the next m instances. The main disadvantage is that, if the anticipated concept is not

accurate, the next m examples of the stream get labelled by unadapted models. Thus a

wrong decision affects the classification accuracy on a batch of examples, in comparison

with only one example in ADACC.

Finally, the meta-learning mechanism involves few parameters to set. As shown in the

experimental results, the parameter values may slightly affect the classification accuracy

of ADACC but never to the extent of being worse than the mere adaptive ensemble.

Chapter 6

Conclusion and Perspectives

In this concluding chapter, we summarize the major contributions of this thesis. We

present the basic ideas behind the research methodology we employed, along with the

main properties of the adaptive approach (DACC) and the meta-learning mechanism in

(ADACC). We then discuss the areas of improvements and suggest possible perspectives.

We end our discussion by making a link between this work and two fields of machine

learning: (a) the theory of online learning and (b) domain adaptation also known as

transfer learning.

6.1 DACC

In Chapter 4, we presented DACC, an online ensemble method designed to learn from

data streams with the ability to adapt to concept changes.

6.1.1 Methodology

In a first step, we studied online ensemble methods that can learn under concept changes.

We analyzed two main strategies used by these methods to forget outdated knowledge in

an evolving environment: (a) deleting learners with poor predictive performance, accord-

ing to a preset threshold value, and (b) deleting periodically the relatively worst learner

in the ensemble. In both cases, deleted learners are replaced with new ones, trained

on the most recent examples. While old learners are reliable in stable environments,

youngest learners tend to be valuable during changing times.

The analysis showed that both strategies require prior knowledge of the dynamics of the

environment in order to choose a threshold value for the strategy (a) or the deletion

182

Chapter 6. Conclusion 183

frequency for the strategy (b). Failing to choose adapted values can lead to unwanted

results, either affecting the stability of the ensemble, or its plasticity towards potential

concept changes.

This work was motivated by the need to mitigate the effect of prior knowledge. We

focused on strategy (b) to avoid finding an appropriate threshold. Nevertheless, choosing

the deletion frequency fdel for strategy (b) does not come without difficulties. A high

value for fdel prones the newest learners in the ensemble to be deleted (if they did not

have time to learn enough of the regularities in the environment) which impedes the

ability of the system to adapt to concept changes. At the same time, fdel cannot be too

small otherwise the system looses any plasticity.

The question was then whether it was possible to remove learners frequently from the

ensemble, in anticipation for change, but without removing the youngest experts when

a concept change actually happens. To solve this problem, we decided to enlarge the

candidates for deletion. Hence, instead of removing the worst learner in the ensemble,

a learner is randomly selected from the ds worst learners and is then forced to retire.

This increases the expectation of young learners to survive deletion when fdel is high.

Finally, the last step was to choose the value for ds. While larger values increase the

expectation of young learners to survive, they also remove “good” learners from the

ensemble, affecting the stability of the system. According to experimental results, a

deletion size that is equal to half the size of the ensemble offers a good trade-off.

The enhanced deletion strategy was the base for a new online ensemble method, called

DACC.

6.1.2 Properties

DACC adapts to concept changes using a dynamic and diverse committee of experts

(learners). The committee is dynamic since it constantly updates itself by removing the

lowest performing experts and adding new experts. The committee is also diverse in the

sense that it can be comprised of different types of experts (neural networks, polynomial

regression models, SVMs etc...) and the experts also observe different windows of training

data. The diversity in the window sizes allows our method to deal implicitly with the

stability-plasticity dilemma. This advantage cannot be obtained with a single expert

with a fixed history size.

Unlike traditional ensemble methods where the committee consists of weak experts that

learn from the same concept and cooperate to give the final prediction [77], DACC is a

mix of a competitive and a cooperative strategy between experts that might have been

Chapter 6. Conclusion 184

trained on data coming from different concepts. The experts compete for their life in

the ensemble and also to be heard in the voting process. The best learners cooperate by

voting for the ensemble’s final prediction.

The experimental results show that our approach overcomes many of the common dif-

ficulties encountered in the current ensemble methods that are designed to adapt to

concept drifts. The main advantages of DACC include:

6.1.2.1 Minimal a priori knowledge of the dynamics of the environment

Unlike many approaches, DACC doesn’t rely on a threshold value to decide whether an

expert is adapted to the current concept or whether it is outdated and should therefore

be discarded. This redeems the algorithm from the burden of choosing the adapted

threshold value, which obviously depends on the drift properties such as the speed or the

severity.

In most classical methods, the deletion strategy removes the worst expert in the ensemble.

Generally, the newest expert is prone to be deleted if it did not have time (according

to a parameter τmat) to learn enough of the regularities in the environment. DACC,

however, removes expert(s) randomly from the worst half of the ensemble, which gives

the opportunity for new promising experts to improve even when the parameter τmat is

not finely tuned.

DACC, being less sensitive to its preset parameters, can adapt to a variety of concept

changes and problems using the same fixed parameters values.

6.1.2.2 Knowledge transfer

DACC doesn’t remove its experts at once when a drift happens. A period of τmat time

steps separate two consecutive deletion operations which ensures that the committee

needs at least N ∗ τmat time steps to be reset. This allows the committee to transfer

knowledge from the old concept to the new one afer the drift, and if the concept change

is continuous, DACC can still predict on the old concept instances during the drift.

6.1.2.3 Fast adaptation

DACC removes experts constantly from the ensemble, regardless of whether the concept

is stable or changing. In some cases, this leads to a faster adaptation to a concept change

compared to approaches that wait until the weight of an expert goes below a threshold

or that the explicit drift detection systems “feels” the change.

Chapter 6. Conclusion 185

6.1.2.4 Dynamic levels of diversity

The levels of diversity in the committee evolve dynamically with time. Generally, when

the concept is stable, the diversity of the best experts decreases as they converge towards

the near maximal classification accuracy. The diversity of the worst half of experts how-

ever is generally high since they are constantly removed in anticipation for change. When

the concept evolves, the diversity increases among all experts as old well-performing ex-

perts become outdated and are replaced with new ones. The diversity then gets back to

the former case (concept stability).

The implicit levels of diversity in DACC allows low diverse experts to predict well on the

current stable concept, and makes highly diverse experts ready to any upcoming change.

Monitoring the evolution of the concept diversity provides means to detect states of

stability by the anticipative meta-learning system (ADACC).

6.1.3 Strengths, weaknesses and perspectives

A large number of online methods rely on a threshold value to adapt to concept changes.

The threshold value is generally used to decide whether an expert is outdated and hence

should be deleted from the ensemble, or to detect concept changes explicitly by moni-

toring, for instance, the ensemble’s classification performance. In all cases, the threshold

value plays a key role in the ability of the system to detect and adapt to upcoming

changes. In DACC, experts are removed frequently from the ensemble, without ana-

lyzing whether the underlying target concept is stable or changing. Thus, in contrast

to other ensemble methods, DACC is not faced with the problem of not adapting to a

concept change as there always exist young experts in the ensemble that are ready to

learn the new concept.

Thanks to the frequent experts’ deletions, DACC reacts faster to concept drifts than

other ensemble methods adapting implicitly to changes. Nevertheless, DACC’s reactivity

is not as fast as this of systems using explicit drift mechanisms when the concept drift is

sudden and severe, which is generally the easiest case for a drift detection system. One

possible future direction is to find ways to combine an implicit adaptive ensemble with

an ensemble using a drift detection system, in order to profit from the advantages of

both approach while mitigating their drawbacks.

When learning from examples of the data stream, DACC gives the same importance

to examples of each class, therefore making the assumption that classes are balanced.

According to the empirical results, this leads to difficulties when learning in the presence

of imbalanced classes. A possible solution is to oversample the minority class(es) and/or

Chapter 6. Conclusion 186

subsampling the majority class(es) in order to overcome the class imbalance. This can

be achieved, for instance, by assigning weights to training examples that are inversely

proportionnal to the observed frequency of the examples’ class, giving more importance

to minority classes.

Finally, it was shown in the empirical results that DACC’s execution time compares

favorably to other ensemble methods. However, since the experts in the ensemble are

updated and evaluated independently from each other, DACC can be parallelized in

order to speed up its run time.

6.2 ADACC

In Chapter 5, we presented ADACC, a meta-learning mechanism that anticipates concept

changes, relying on the adaptive ensemble of DACC.

6.2.1 Methodology

Our goal was to take advantage of the changes in the environment as means to anticipate

near future characteristics, allowing us to act pro-actively to changes instead of adapting

passively as with the majority of online learning methods.

We worked on what seemed to be two advantageous cases:

• recurrence: re-using previously learnt concepts when they reappear

• predictability: analyzing the evolution of the underlying target concept in order to

predict the likely future concepts.

Both recurrence and predictability imply that the past history of stable concepts be

captured. Relying on a drift detection mechanism was a possible way to identify the

different concepts. However, the former systems are known to have difficulties to detect

gradual concept changes while still being robust to false alarms, and thus were avoided.

During our experimental study on DACC, we noticed that the diversity levels of the

adaptive ensemble evolve with time depending on whether the environment is stable or

changing. Periods of stability are characterized with small levels of diversity and also

small error rates in contrast with periods of change where outdated experts are generally

removed, increasing the diversity in the ensemble.

Chapter 6. Conclusion 187

Accordingly, we defined a stability index that allows us to identify periods of stability

and memorize “snapshots” of the stable concepts learnt by the adaptive ensemble. These

snapshots are used as training samples to a second order learning system that predicts

future concepts. The snapshots also represent the memory of the past and thus can turn

to be useful when old concepts reappear.

6.2.2 Properties

The main contribution of ADACC lies in:

• the use of a stability measure that monitors the ensemble of adaptive learners

• the long-term memory of past useful concepts.

Snapshots of the relevant states of the world are stored and re-used when old contexts

reappear. The evolution of the stored snapshots is also analyzed to predict likely future

states of the environments (i.e. future concepts). The meta-learning mechanism is com-

pletely embedded in the natural functioning of the adaptive ensemble method with few

parameters to set.

The empirical evaluation explored various conditions for evolving data streams. It showed

that as soon as the concept changes are significant (medium or high severity), second

order learning yields substantial gains in prediction performance over a mere adaptation

policy. Furthermore, second order learning can only improve and never deteriorate the

prediction performance. Experiments on real and artificial benchmark datasets and

comparisons with various online learning systems show that ADACC brings improvement

in the classification performance of DACC, outperforming all compared systems.

6.2.3 Strengths, weaknesses and perspectives

ADACC is a general framework to endow adaptive online learning systems based on an

ensemble approach with second order learning capacity.

The second order learning keeps in memory a list of the stable concepts encountered so

far, or what we call “snapshots” of the stable concepts. The memorized snapshots depend

mainly on two preset parameters: a stability threshold θI and a concept equivalence

threshold θd. By setting a high value for θI , we might miss a snapshot in the list. Hence,

when choosing the parameter values, we make sure that θI is not very high. Then, the

impact of the preset values will be on the size of the list as redundant snapshots might be

stored. When dealing with concept recurrence, the presence of redundant snapshots does

Chapter 6. Conclusion 188

not harm the predictive performance of ADACC. However, when dealing with concept

predictability, redundant snapshots will be considered as noisy samples when analyzing

the sequence of supposedly different concepts in the list. This means that the threshold

values do not need to be finely tuned for concept recurrence in contrast with concept

predictability that may require prior knowledge of the evolving environment to avoid

noise. However, as previously mentionned, ADACC can only bring gain to the adaptive

strategy. Hence, even when the parameters are not adapted to the learning problem,

the worst scenario for ADACC is to have the same predictive accuracy as the adaptive

ensemble.

All of our experiments regarding concept predictability were applied on artificial datasets

to simulate regular concept changes. As future work, it would be interesting to look for

real-life scenarios where the underlying target concept evolves in a regular way, according

to a particular evolution function, and thus can benefit from the concept prediction

approach. It would also be interesting to predict not only the near future concept changes

but also the changes on the long-term.

An important improvement of ADACC is to find ways to keep constant the size of the

long term memory of the memorized snapshots. As previously mentionned in Chapter 5,

a promising avenue is to store prototypes of snapshots instead of the original ones, using

a hierarchical clustering technique.

Finally, a theoretical study of the system’s accuracy under different types of concept

drifts are possible extensions of this work.

6.3 Links with the Theory of Online Learning

The classical theory of supervised machine learning assumes constrained learning scenar-

ios where the training data are assumed to be independent and identically distributed

(i.i.d.) and the learning environment is static, that is, the distribution of the training

data P (x, y) is supposedly stable [94]. Constraining the learning conditions allows one

to assess the performance of specific learning algorithms relative to a loss function (see

Equation 2.1). However, the restrictions imposed are not always present when learning

from data streams which makes the classical theoretical framework unadapted to the

context of online learning.

The theory of online learning as studied by Cesa-Bianchi [20] makes no assumptions

about the learning environment. In contrast to the theory of classical machine learning,

the training examples are not assumed to be i.i.d.. They can be time-dependent and

their distribution P (x, y) can evolve with time creating concept changes. Nevertheless,

Chapter 6. Conclusion 189

enlarging the scope of the learning problem limits the use of a real risk or loss measure

as in classical machine learning, and thus does not make it possible to give theoretical

bounds on the performance of specific learning algorithms.

In this work, we made benign assumptions about the dynamics of the environment such as

it evolves gradually or it evolves with sudden changes but interspersed with stationary

states. Hence, we assumed a sequence of predictions that are not random as in the

theory of online learning but also not as constrained as in classical machine learning.

Developing a middle ground theory in between the very general online theory and the

very restricted classical theory remains an important research area. It is important

to note that some theoretical studies were conducted in this domain. Generally, some

restrictions are imposed on the type of admissible concept change, such as the rate of

change [63] or the severity of change [46]. The main disadvantage is that these very

special cases don’t usually occur.

6.4 Links with Domain Adaptation and Transfer Learning

In classical supervised machine learning, it is assumed that the training examples (used to

learn a predictive model) and the testing examples (used to evaluate the learnt model) are

issued from the same static distribution [94]. However, models are generally built from

some fixed source domain but are then tested on different target domains. For instance,

in face detection systems, the images used as training examples can be captured in a

particular position, orientation and lighting conditions. When tested on video sequences,

face detection systems will probably be confronted with a different distribution of images,

with arbitrary poses and lighting conditions.

Domain adaptation or transfer learning aims to build predictive models or classifiers that

are robust to mismatched distributions, relying on the presence of some examples from

the target domain [68]. The examples can either be labeled, leading to a semi-supervised

learning problem, or unlabeled, leading to a unsupervised learning problem.

In online machine learning, the distribution of the examples in the feature space P (x)

can also evolve with time, creating what is called a virtual concept drift [88] or a covariate

shift [8]. However, covariate shift in online learning differs from the problem of domain

adaptation or transfer learning in two major points.

First, in domain adaptation, we know when the change in the distribution will happen,

which is when the predictive model is used on testing examples. In online learning, we

have no a priori knowledge of the time of change: a covariate shift may happen at any

time or may not happen at all. In addition, the changes in distributions may happen

Bibliography 190

gradually, in contrast with domain adaptation where the change is abrupt, happening at

the time of testing. Secondly, domain adaptation relies on the presence of examples from

the target (testing) distribution. In online learning, as there is no a priori information

on when the covariate shift might happen, we can’t have samples of examples belonging

to the target distribution before a covariate shift is detected.

Our work can be seen as an adaptive transfer learning, that is, domain adaptation without

prior knowledge of the examples from the target domain. New domains are detected

implicitly by evaluating the experts in the adaptive ensemble relative to their predictive

performance on recent streaming data. Then, adaptation is realized by suppressing

relatively bad experts, considered as unadapted to the new domain, and by replacing

them with new experts, trained only on examples from the new domain.

Bibliography

[1] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms.

Machine learning, 6(1):37–66, 1991.

[2] J. H. Ahrens and U. Dieter. Computer methods for sampling from gamma, beta,

poisson and bionomial distributions. Computing, 12(3):223–246, 1974.

[3] C. Alippi, G. Boracchi, and M. Roveri. Just-in-time classifiers for recurrent con-

cepts. IEEE transactions on neural networks and learning systems, 24(4):620–634,

2013.

[4] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms. In Al-

gorithms and Data Structures, Lecture Notes in Computer Science, volume 955,

pages 334–345, 1995.

[5] Arthur Asuncion and David J Newman. Uci machine learning repository, 2007.

[6] M. Baena-García, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldà, and

R. Morales-Bueno. Early drift detection method. Fourth International Workshop

on Knowledge Discovery from Data Streams, 2006.

[7] P.L. Bartlett, S. Ben-David, and S.R. Kulkarni. Learning changing concepts by

exploiting the structure of change. Machine Learning, 41(2):153–174, 2000.

[8] S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning under covariate

shift. The Journal of Machine Learning Research, 10:2137–2155, 2009.

[9] A. Bifet. Adaptive learning and mining for data streams and frequent patterns.

ACM SIGKDD Explorations Newsletter, 11(1):55–56, 2009.

[10] A. Bifet and E. Frank. Sentiment knowledge discovery in twitter streaming data.

In Discovery Science, pages 1–15. Springer, 2010.

[11] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Moa: Massive online analysis.

The Journal of Machine Learning Research, 99:1601–1604, 2010.

191

Bibliography 192

[12] A. Bifet, G. Holmes, and B. Pfahringer. Leveraging bagging for evolving data

streams. In Machine Learning and Knowledge Discovery in Databases, pages 135–

150. Springer, 2010.

[13] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà. New ensemble

methods for evolving data streams. In Proceedings of the 15th ACM SIGKDD

International Conference on Knowledge Discovery and Data mining, pages 139–

148, 2009.

[14] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning,

volume 1. Springer New York, 2006.

[15] M. Bottcher, M. Spott, and R. Kruse. Predicting future decision trees from evolving

data. In ICDM’08. Eighth IEEE International Conference on Data Mining, pages

33–42, 2008.

[16] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[17] L. Breiman, J. H. Friedman, R. Olshen, C. J. Stone, L. Breiman, W. Hoeffding,

R. J. Serfling, J. H. Friedman, O. Hall, P. Buhlmann, et al. Classification and

regression trees. Machine Learning, 19:293–325, 1984.

[18] M. K. Buckland and F. C. Gey. The relationship between recall and precision.

JASIS, 45(1):12–19, 1994.

[19] J. Carletta. Assessing agreement on classification tasks: the kappa statistic. Com-

putational linguistics, 22(2):249–254, 1996.

[20] N. Cesa-Bianchi. Prediction, learning, and games. Cambridge University Press,

2006.

[21] Y. Cheng, W. Qi, and W. Cai. Dynamic properties of elman and modified elman

neural network. In Machine Learning and Cybernetics, 2002. Proceedings. 2002

International Conference on, volume 2, pages 637–640. IEEE, 2002.

[22] A. Cornuéjols. On-line learning: where are we so far? In Ubiquitous knowledge

discovery, pages 129–147. Springer, 2010.

[23] Airlines dataset. http://moa.cms.waikato.ac.nz/datasets/.

[24] PAKDD 2009 dataset. http://sede.neurotech.com.br/PAKDD2009/.

[25] S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle. A case-based technique for

tracking concept drift in spam filtering. Knowledge-Based Systems, 18(4):187–195,

2005.

http://moa.cms.waikato.ac.nz/datasets/
http://sede.neurotech.com.br/PAKDD2009/

Bibliography 193

[26] C. P. Diehl and G. Cauwenberghs. Svm incremental learning, adaptation and opti-

mization. In Proceedings of the International Joint Conference on Neural Networks,

volume 4, pages 2685–2690. IEEE, 2003.

[27] T. G. Dietterich. Approximate statistical tests for comparing supervised classifi-

cation learning algorithms. Neural computation, 10(7):1895–1923, 1998.

[28] T. G. Dietterich. Ensemble methods in machine learning. In Multiple classifier

systems, pages 1–15. Springer, 2000.

[29] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-

correcting output codes. The Journal of Artificial Intellige Research, 2:263–286,

1995.

[30] P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the

sixth ACM SIGKDD International Conference on Knowledge discovery and data

mining, pages 71–80, 2000.

[31] R. Elwell and R. Polikar. Incremental learning of concept drift in nonstationary

environments. Neural Networks, IEEE Transactions on, 22(10):1517–1531, 2011.

[32] W. Fan, I. Davidson, B. Zadrozny, and P. S. Yu. An improved categorization

of classifier’s sensitivity on sample selection bias. In Data Mining, Fifth IEEE

International Conference on, pages 4–pp. IEEE, 2005.

[33] Y. Freund, R. Schapire, and N. Abe. A short introduction to boosting. Journal-

Japanese Society For Artificial Intelligence, 14(771–780):1612, 1999.

[34] J. H. Friedman. On bias, variance, 0/1—loss, and the curse-of-dimensionality. Data

mining and knowledge discovery, 1(1):55–77, 1997.

[35] A. R. Gallant and W. A. Fuller. Fitting segmented polynomial regression mod-

els whose join points have to be estimated. Journal of the American Statistical

Association, 68(341):144–147, 1973.

[36] J. Gama. Knowledge discovery from data streams. CRC Press, 2010.

[37] J. Gama and P. Kosina. Tracking recurring concepts with meta-learners. In

Progress in Artificial Intelligence, pages 423–434. Springer, 2009.

[38] J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with drift detection.

In Advances in Artificial Intelligence–SBIA 2004, pages 286–295. Springer, 2004.

[39] J. Gama, R. Rocha, and P. Medas. Accurate decision trees for mining high-speed

data streams. In Proceedings of the ninth ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 523–528. ACM, 2003.

Bibliography 194

[40] J. Gama, R. Sebastião, and P. P. Rodrigues. Issues in evaluation of stream learning

algorithms. In Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 329–338. ACM, 2009.

[41] J. B. Gomes, P. A. Sousa, and E. Menasalvas. Tracking recurrent concepts using

context. Intelligent Data Analysis, 16(5):803–825, 2012.

[42] H. Guillaume, M. Dubois, P. Tarroux, and E. Frenoux. Temporal bag-of-words:

A generative model for visual place recognition using temporal integration. In

Proceedings of the International Conference on Computer Vision Theory and Ap-

plications, 2011.

[43] M. T. Hagan, H. B. Demuth, M. H. Beale, et al. Neural network design. Pws Pub.

Boston, 1996.

[44] M. Harries and N. S. Wales. Splice-2 comparative evaluation: Electricity pricing.

Technical report, Technical report, The University of South Wales, 1999.

[45] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf. Support vector

machines. Intelligent Systems and their Applications, IEEE, 13(4):18–28, 1998.

[46] David P Helmbold and Philip M Long. Tracking drifting concepts by minimizing

disagreements. Machine Learning, 14(1):27–45, 1994.

[47] G. Jaber, A. Cornuéjols, and P. Tarroux. Predicting concept changes using a com-

mittee of experts. In ICONIP’11 International Conference on Neural Information

Processing, pages 580–588, Shanghai, China, 2011.

[48] G. Jaber, A. Cornuéjols, and P. Tarroux. Reacting to concept changes using a

committee of experts. In Proc. of Atelier CIDN (Classifications incrémentales et

méthodes de détection de nouveauté) at EGC-2012, pages 31–47, 2012.

[49] T. Joachims. Text categorization with support vector machines: Learning with many

relevant features. Springer, 1998.

[50] A. Jordan. On discriminative vs. generative classifiers: A comparison of logistic

regression and naive bayes. Advances in neural information processing systems,

14:841, 2002.

[51] G. N. Karystinos and D. A. Pados. On overfitting, generalization, and randomly

expanded training sets. Neural Networks, IEEE Transactions on, 11(5):1050–1057,

2000.

[52] I. Katakis, G. Tsoumakas, and I. Vlahavas. Tracking recurring contexts using

ensemble classifiers: an application to email filtering. Knowledge and Information

Systems, 22(3):371–391, 2010.

Bibliography 195

[53] M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for leave-

one-out cross-validation. Neural Computation, 11(6):1427–1453, 1999.

[54] R. Klinkenberg. Learning drifting concepts: Example selection vs. example weight-

ing. Intelligent Data Analysis, 8(3):281–300, 2004.

[55] R. Klinkenberg and T. Joachims. Detecting concept drift with support vector

machines. In ICML, pages 487–494, 2000.

[56] R. Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation

and model selection. In IJCAI, volume 14, pages 1137–1145, 1995.

[57] R. Kohavi, D. H. Wolpert, et al. Bias plus variance decomposition for zero-one loss

functions. In ICML, pages 275–283, 1996.

[58] J. Z. Kolter and M. A. Maloof. Using additive expert ensembles to cope with

concept drift. In Proceedings of the 22nd international conference on Machine

learning, pages 449–456. ACM, 2005.

[59] J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: An ensemble method

for drifting concepts. The Journal of Machine Learning Research, 8:2755–2790,

2007.

[60] P. S. A. Krogh. Learning with ensembles: How over-fitting can be useful. In

Proceedings of the 1995 Conference, volume 8, page 190. The MIT Press, 1996.

[61] M. Kubat. Flexible concept learning in real-time systems. Journal of Intelligent

and Robotic Systems, 8(2):155–171, 1993.

[62] A. Kuh, T. Petsche, and R. L. Rivest. Learning time-varying concepts. In Proceed-

ings of the 1990 conference on Advances in neural information processing systems

3, pages 183–189. Morgan Kaufmann Publishers Inc., 1990.

[63] Anthony Kuh, Thomas Petsche, and Ronald L Rivest. Learning time-varying con-

cepts. In Proceedings of the 1990 conference on Advances in neural information

processing systems 3, pages 183–189. Morgan Kaufmann Publishers Inc., 1990.

[64] L. I. Kuncheva. Classifier ensembles for changing environments. In Multiple clas-

sifier systems, pages 1–15. Springer, 2004.

[65] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen. Introduction to algo-

rithms. The MIT press, 2001.

[66] Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation

learning. Evolutionary Computation, IEEE Transactions on, 4(4):380–387, 2000.

Bibliography 196

[67] D. D. Margineantu and T. G. Dietterich. Pruning adaptive boosting. In ICML,

volume 97, pages 211–218. Citeseer, 1997.

[68] A. Margolis. A literature review of domain adaptation with unlabeled data. Uni-

versity of Washington, http://ssli. ee. washington. edu/˜ amargoli/review_Mar23.

pdf, 2011.

[69] L. Minku, A. P. White, and X. Yao. The impact of diversity on online ensemble

learning in the presence of concept drift. IEEE Transactions on Knowledge and

Data Engineering, 22(5):730–742, 2010.

[70] L. Minku and X. Yao. DDD: A new ensemble approach for dealing with concept

drift. IEEE transaction on knowledge and data engineering, pages 619–633, 2012.

[71] C. Z. Mooney, R. D. Duval, and R. Duvall. Bootstrapping: A nonparametric

approach to statistical inference. Number 94-95. Sage, 1993.

[72] R. Nallapati. Discriminative models for information retrieval. In Proceedings of the

27th annual international ACM SIGIR conference on Research and development in

information retrieval, pages 64–71. ACM, 2004.

[73] J. Neter, W. Wasserman, M. H. Kutner, et al. Applied linear statistical models,

volume 4. Irwin Chicago, 1996.

[74] Usenet news filtering dataset. http://www.liaad.up.pt/kdus/products/

datasets-for-concept-drift.

[75] J. R. Norris. Markov chains. Number 2008. Cambridge university press, 1998.

[76] N. C. Oza and S. Russell. Experimental comparisons of online and batch versions of

bagging and boosting. In Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 359–364. ACM, 2001.

[77] N. C. Oza and S. Russell. Online bagging and boosting. In Artificial Intelligence

and Statistics 2001, 2001.

[78] R. Polikar. Ensemble based systems in decision making. Circuits and Systems

Magazine, IEEE, 6(3):21–45, 2006.

[79] A. Pronobis and B. Caputo. Cold: Cosy localization database. In The International

Journal of Robotics Research, 28(5), 2009.

[80] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[81] S. Ruping. Incremental learning with support vector machines. In Proceedings of

the 2001 IEEE International Conference on Data Mining, pages 641–642, San Jose,

CA , USA, 2001.

http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift
http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift

Bibliography 197

[82] R. E. Schapire. The boosting approach to machine learning: An overview. Lecture

Notes in Statistics, pages 149–172, 2003.

[83] J. C. Schlimmer and R. H. Granger. Beyond incremental processing: Tracking

concept drift. In AAAI, pages 502–507, 1986.

[84] M. Scholz and R. Klinkenberg. An ensemble classifier for drifting concepts. In

Proceedings of the Second International Workshop on Knowledge Discovery in Data

Streams, pages 53–64. Porto, Portugal, 2005.

[85] K. O. Stanley. Learning concept drift with a committee of decision trees. UT-

AI-TR-03-302, Department of Computer Sciences, University of Texas at Austin,

USA, 2003.

[86] G. Stoltz. Agrégation séquentielle de prédicteurs: méthodologie générale et appli-

cations à la prévision de la qualité de l’air et à celle de la consommation électrique.

Journal de la Société Française de Statistique, 151(2):66–106, 2010.

[87] W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-scale

classification. In Proceedings of the seventh ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 377–382. ACM, 2001.

[88] N. A. Syed, H. Liu, and K. K. Sung. Handling concept drifts in incremental

learning with support vector machines. In Proceedings of the fifth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 317–321.

ACM, 1999.

[89] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analy-

sis of the kdd cup 99 data set. In Proceedings of the Second IEEE Sympo-

sium on Computational Intelligence for Security and Defence Applications, 2009.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[90] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen. Dynamic inte-

gration of classifiers for handling concept drift. Information Fusion, 9(1):56–68,

2008.

[91] Alexey Tsymbal. The problem of concept drift: definitions and related work.

Computer Science Department, Trinity College Dublin, 2004.

[92] P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision tree induction based on

efficient tree restructuring. Machine Learning, 29(1):5–44, 1997.

[93] V. N. Vapnik. An overview of statistical learning theory. Neural Networks, IEEE

Transactions on, 10(5):988–999, 1999.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Bibliography 198

[94] V. N. Vapnik. The nature of statistical learning theory. Springer, 2000.

[95] B. Vidakovic. Nonlinear wavelet shrinkage with bayes rules and bayes factors.

Journal of the American Statistical Association, 93(441):173–179, 1998.

[96] G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden

contexts. Machine learning, 23(1):69–101, 1996.

[97] B. Widrow and M. A. Lehr. 30 years of adaptive neural networks: perceptron,

madaline, and backpropagation. volume 78, pages 1415–1442. IEEE, 1990.

[98] W. H. Wilson. A comparison of alternatives for recurrent networks. In Proceedings

of the sixth Australian Conference on Neurals Networks ACNN, volume 93, pages

189–192, 1993.

[99] Y. Yang, X. Wu, and X. Zhu. Mining in anticipation for concept change:

Proactive-reactive prediction in data streams. Data mining and knowledge dis-

covery, 13(3):261–289, 2006.

[100] H. Zhang. The optimality of naive bayes. pages 562–567. The AAAI Press, 2004.

[101] I. Zliobaite. Learning under concept drift: an overview. Technical report, Vilnius

University, Faculty of Mathematics and Informatics, 2009.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 The Problem
	2.1 Classical Supervised Machine Learning
	2.1.1 Scenario
	2.1.2 Performance criterion
	2.1.3 Learning systems as optimization tools
	2.1.4 The bias-variance tradeoff
	2.1.5 Overfitting
	2.1.6 Practical evaluation measures

	2.2 Data Streaming
	2.2.1 Practical challenges
	2.2.2 Theoretical challenges
	2.2.3 Concept change
	2.2.4 Types of concept change
	2.2.5 Properties of concept change
	2.2.6 The stability-plasticity dilemma
	2.2.7 Adaptation and anticipation

	2.3 Online Machine Learning
	2.3.1 Scenario
	2.3.2 Practical evaluation measures
	2.3.3 The theory of online learning
	2.3.4 Online learning in practice
	2.3.5 Online learning datasets

	2.4 Summary

	3 State of Art
	3.1 Adapting to the Change
	3.1.1 Explicit detection
	3.1.2 Implicit adaptation

	3.2 Online Classifiers
	3.2.1 IB3 (1991)
	3.2.2 FLORA (1996)
	3.2.3 RePro (2005)
	3.2.4 PreDet (2008)

	3.3 Online Ensembles of Classifiers
	3.3.1 DWM (2003)
	3.3.2 CDC (2003)
	3.3.3 KBS-stream (2005)
	3.3.4 DIC (2008)
	3.3.5 Adwin Bagging (2009)
	3.3.6 ASHT-Bagging (2009)
	3.3.7 CCP (2010)
	3.3.8 Leveraging Bagging (2010)
	3.3.9 DDD (2012)

	3.4 Summary

	4 Adaptation to Concept Changes
	4.1 Motivation
	4.2 Framework
	4.2.1 Experts
	4.2.2 Prediction
	4.2.3 Weighting functions
	4.2.4 Deletion strategies

	4.3 DACC
	4.3.1 The committee of predictors
	4.3.2 The committee evolution
	4.3.3 The weighting functions
	4.3.4 The final prediction
	4.3.5 Processing training examples
	4.3.6 Time & memory constraints
	4.3.7 Computational complexity
	4.3.8 Implicit diversity levels
	4.3.9 The stability-plasticity dilemma
	4.3.10 Effect of parameters
	4.3.11 Choice of parameters

	4.4 DACC: Comparison with Other Systems
	4.4.1 DACC vs CDC
	4.4.2 DACC vs DDD, EDDM, DWM
	4.4.3 DACC vs others systems

	4.5 Contribution

	5 Anticipating Concept Changes
	5.1 Concept Predictability
	5.1.1 DACCv1
	5.1.2 DACCv2
	5.1.3 DACCv3

	5.2 Concept Reccurence
	5.2.1 DACCv4

	5.3 ADACC
	5.3.1 Computational complexity
	5.3.2 Empirical results (1)
	5.3.3 Empirical results (2)

	5.4 Contribution

	6 Conclusion and Perspectives
	6.1 DACC
	6.1.1 Methodology
	6.1.2 Properties
	6.1.3 Strengths, weaknesses and perspectives

	6.2 ADACC
	6.2.1 Methodology
	6.2.2 Properties
	6.2.3 Strengths, weaknesses and perspectives

	6.3 Links with the Theory of Online Learning
	6.4 Links with Domain Adaptation and Transfer Learning

