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Résumé étendu

La topographie d’une surface se compose généralement de plusieurs échelles,
depuis l’échelle macroscopique (sa géométrie physique), jusqu’aux échelles mi-
croscopiques ou atomiques appelées rugosité. L’évolution spatiale et géométrique
de la rugosité de surface fournit une description plus complète de l’état de ses
microstructures, et une interprétation physique des certains problèmes importants
tels que le frottement et les mécanismes d’usure pendant le contact mécanique
entre deux surfaces. La topographie d’une surface rugueuse est de nature aléatoire.
Cela se traduit par des altitudes spatialement corrélées, appelées pics et vallées. La
relation entre leurs densités de probabilité, et leurs propriétés géométriques sont
les aspects fondamentaux qui ont été développés dans cette thèse, en utilisant la
théorie des champs aléatoires et la géométrie intégrale.

Un modèle aléatoire approprié pour représenter une surface rugueuse a été
mis en place et étudié au moyen des paramètres les plus significatifs, dont les
changements influencent la géométrie des ensembles de niveaux (excursion sets) de
cette surface, constitués des points avec des hauteurs supérieures à un seuil donné.
Les ensembles de niveaux ont été quantifiés par des fonctionnelles connues sous le
nom de fonctionnelles de Minkowski, ou d’une manière équivalente sous le nom de
volumes intrinsèques. Ces fonctionnelles ont en pratique plusieurs interprétations
physiques. Leurs formules analytiques permettent d’estimer les paramètres du
modèle de surface, et d’apporter une analyse statistique de ses ensembles de ni-
veaux et de la rugosité. Ces sujets ont été essentiellement considérés dans cette thèse.

Dans un premier temps, les volumes intrinsèques des ensembles de niveaux sont
calculés analytiquement sur une classe de modèles mixtes, qui sont définis par la
combinaison linéaire d’un champ aléatoire Gaussien et d’un champ de t−student
(t−field), et ceux d’une classe de champs aléatoires asymétriques appelés skew−t.
Ces volumes sont comparés et testés sur des surfaces produites par des simulations
numériques.

Dans un second temps, les modèles aléatoires proposés ont été appliqués sur des
surfaces réelles acquises à partir d’une cupule d’UHMWPE (Ultra-High-Molecular-
Weight Polyéthylène), utilisée pour une prothèse totale de hanche, avant et après
les processus d’usure. Les résultats ont montré que le champ aléatoire skew−t est
un modèle mieux approprié pour décrire la rugosité de surfaces usées, contrairement
aux modèles Gaussien et skew−Gaussien adoptés dans la littérature. Une analyse
statistique, basée sur le champ aléatoire skew−t, est ensuite proposée. Elle vise
à estimer hiérarchiquement les ensembles de niveaux comprenant les pics/vallées
affectés par l’usure. L’évolution de la moyenne des pics/vallées détectés à ces
niveaux a permis de décrire le comportement de la surface d’UHMWPE en fonction
du temps d’usure, et d’indiquer les mécanismes d’usure prédominants. Les résultats
obtenus sont prometteurs, et des développements ultérieurs théoriques et pratiques
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sont proposés.

Mot-clés : Champs Aléatoires ; Géométrie Intégrale ; Ensembles de Niveaux ;
Volumes Intrinsèques ; Rugosité ; Topographie ; Simulation ; Caractérisation ;
Analyse Statistique ; Usure Mécanique ; UHMWPE (Ultra-High-Molecular-Weight
Polyéthylène).

Organisation du manuscrit

Le manuscrit présente tout d’abord une introduction générale à la thèse. Celle-ci
expose la problématique au niveau médical et scientifique, pour introduire les
motivations et le but de ce travail de recherche.

Ensuite, il est composé de cinq parties.

Première partie : Caractérisation de la rugosité de la topographie
de surface

La première partie (Part I) présente une étude bibliographique sur la caractérisa-
tion de la rugosité de la topographie de surface. Les approches classiques et standards
provenant de la métrologie de surface sont d’abord introduites, pour exposer les pa-
ramètres de la rugosité de surface, et les fonctions caractéristiques comme la courbe
d’Abbott-Firestone et la fonction d’autocorrèlation. Les méthodes basées sur l’étude
géométrique des ensembles de niveaux de surface ont permis de définir des fonction-
nelles géométriques caractéristiques appelées volumes intrinsèques ou fonctionnelles
de Minkowski. Ces dernières sont liées à la courbe d’Abbott-Firestone ainsi qu’aux
paramètres de rugosité. Des méthodes basées sur la modélisation de la topographie
de surface sont également introduites pour décrire la rugosité. Les avantages et les
limitations sont présentés, afin de démontrer l’importance et la motivation de l’étude
théorique des champs aléatoires intégrée avec l’étude de la géométrie de leurs en-
sembles de niveaux, pour repondre au probléme pratique constitué par l’évolution
de la rugosité de surface.

Deuxième partie : Champs aléatoire et géométrie intégrale

La deuxième partie (Part II) de ce manuscrit est consacrée aux principes
théoriques et fondamentaux des champs aléatoires et de la géométrie intégrale de
leurs ensembles de niveaux (excursion sets).
Le chapitre 2 porte sur les champs aléatoires et leurs propriétés mathématiques,
stationnarité au sens faible, stationnarité au sens fort, isotropie, anisotropie, et
représentation spectrale. Le champ aléatoire gaussien a été essentiellement introduit
en tant que brique de base. Ce dernier est uniquement défini par les moments
d’ordre un et deux, la moyenne et la fonction de covariance, respectivement,
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afin d’introduire des modèles aléatoires à base de gaussien, appelés les gaussiens-
associés, comme les champs t−field, χ2, F−field, etc. Ces derniers ont des propriétés
intéressantes en pratique, et leur loi de probabilité marginale est asymptotiquement
simple et bien définie analytiquement. Celle-ci a permis d’étudier la géometrie des
ensembles de niveaux de ces modèles, et de fournir des formules asymptotiques de
certaines mesures de ces ensembles, comme les mesures de Minkowski.

Le chapitre 3 porte sur la géométrie intégrale des champs aléatoires. Ce chapitre
poursuit les rappels des ensembles de niveaux des champs aléatoires, et présente les
outils théoriques nécessaires pour estimer les mesures géométriques et topologiques
de ces ensembles aléatoires. Ces mesures sont les volumes intrinsèques (d’une ma-
nière équivalente les fonctionnelles de Minkowski) : l’aire, le périmètre et le nombre
d’Euler-Poincaré pour une ensemble bi-dimensionnel. Des formules explicites des
volumes intrinsèques peuvent être obtenues pour les champs aléatoires gaussiens et
les gaussiens-associés qui respectent certaines conditions de régularité, en utilisant
la formule de Hadwiger et la théorie de Morse. En pratique, les formules explicites
permettent d’estimer les paramètres caractéristiques d’une surface aléatoire, et de
fournir une description complète de l’état de la surface.

Cependant, les champs aléatoires introduits dans l’état de l’art de ce manuscrit
ne sont pas suffisants pour l’application proposée, ce qui justifie les développements
théoriques de cette thèse.

Troisième partie : Développements théoriques

Cette troisième partie (Part III) est consacrée aux développements réalisés du-
rant cette thèse dans le domaine théorique des champs aléatoires et dans l’estima-
tion des volumes intrinsèques de leurs ensembles de niveaux en formules analytiques
explicites. Cette partie comporte deux chapitres. Le premier chapitre (chapitre 4)
introduit une classe de champs aléatoires mixtes créés par la combinaison linéaire
d’un champ gaussien et d’un champ appelé t−field. Le deuxième chapitre de cette
partie (chapitre 5) est consacré aux modèles aléatoires asymétriques, précisement
les champs aléatoires skew−t. Les volumes intrinsèques appelés également Lipschitz-
Killing curvatures (LKCs) ont été calculés explicitement, dans l’espace euclidien RN ,
pour les modèles de ces deux chapitres, en étendant les résultats publiés dans la lit-
térature pour les modèles gaussiens et gaussiens-associés. Les nombres moyens des
valeurs extrêmes (maxima/minima) ont été aussi estimés, et la relation entre ces
nombres moyens et la fonction d’Euler-Poincaré caractéristique a été également éta-
blie. Des résultats de simulations numériques dans ces deux chapitres sont présentés.

Quatrième partie : Application

La quatrième partie (Part IV) concerne une application de la prothèse totale de
hanche. L’étude théorique introduite dans la partie précédente a été initiée par un
problème pratique : l’analyse de l’évolution de rugosité, et la caractérisation de la
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topographie des surfaces représentées par des modèles stochastiques durant l’usure
mécanique. Ce problème pratique est associé à l’application médicale proposée pour
cette thèse : les cupules UHMWPE (Ultra-High-Molecular-Weight Polyethylene)
utilisées dans certaines prothèses totales de hanche. Le but de ce problème pratique
est de mettre en oeuvre des outils pour décrire le comportement de UHMWPE avec
l’usure, afin d’améliorer la durée des implants prothétiques de la hanche.

Le premier chapitre (chapitre 6) de cette partie pose précisément l’application
médicale : les principes de la prothèse totale de hanche, le choix des matériaux
utilisés pour ces prothèses, et les problèmes principaux rapportés avec les matériaux
utilisés, en particulier l’usure de la surface de UHMWPE. Le chapitre 7 établit les
développements expérimentaux : il explore les dispositifs expérimentaux aboutissant
à générer artificiellement (in-vitro) l’usure sur la surface UHMWPE, et les outils
techniques exploités pour observer les surfaces usées et pour fournir la carte de
rugosité.

Le chapitre 8 met en pratique les développements théoriques précédents sur les
surfaces réelles observées concrètement sur la cupule de UHMWPE avant et pendant
le processus d’usure. Ensuite, une analyse statistique, basée sur les volumes intrin-
sèques des ensembles de niveaux du champ aléatoire skew−t, a été proposée. Elle
permet d’estimer l’évolution des pics/vallées affectés par l’usure, en considérant que
ces dernières sont du même ordre de grandeur que l’erreur systématique (l’erreur de
mesures). Ainsi, un seuillage a été établi hiérarchiquement sur la surface en utili-
sant la fonction d’Euler-Poincaré caractéristique du model aléatoire skew−t. L’aire
moyenne de pics/vallées détectés et leurs niveaux d’altitudes sont ensuite calculés
et utilisés pour présenter l’évolution de paramètres de rugosités fonctionnelles qui
décrivent le comportement et la fonctionnalité de la surface avec l’usure.

Cette analyse a été appliquée à huit échantillons observés autour de différentes
régions de la surface hémisphérique de UHMWPE, telles que les régions aux latitudes
à 45◦ et 100◦. Les résultats ont démontré que les zones à 100◦ sont beaucoup moins
affectées par l’usure, contrairement aux zones à 45◦. Cela indique un comportement
non-homogène du mécanisme d’usure sur les zones observées aux différentes latitudes
de la cupule. Les résultats ont également montré que le comportement de la surface
de UHMWPE, pour les échantillons mesurés autour la zone la plus usée (c’est-à-dire
la zone à 45◦ de latitude) est homogène, et contrôlé, d’une manière alternative par
deux types d’usure appelés abrasion et adhésion.

Cinqième partie : Conclusion générale et perspectives

La dernière partie (Part V) de ce manuscrit conclut le travail de cette thèse.
Le chapitre 9 présente tout d’abord des perspectives, sur la modélisation spatio-
temporelle. Il introduit le modèle skew−t dans l’espace et temps, et présente les
formules explicites des volumes intrinsèques de ses ensembles de niveaux. L’ap-
proche spatio-temporelle portée sur les champs aléatoires fournit des outils très
intéressants et originaux sur la modélisation de la topographie de surface, l’ana-
lyse spatio-temporelle de sa rugosité pendant le temps d’usure, et la prédiction de
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la fonctionnalité de la surface au travers des paramètres de rugosité prévus. Ce-
pendant, ce travail nécessite de conduire des investigations théoriques et pratiques
supplémentaires.

Le chapitre 10 tire une conclusion générale qui récapitule la thèse et fournit les
suggestions et les idées utiles pour d’autres améliorations, et ouvre la discussion
vers des domaines différents d’application.

Finalement, les annexes sont composées de deux chapitres. La premier chapitre
expose les théorèmes et les lemmes utilisés pour calculer les volumes intrinsèques
des modèles proposés dans la deuxième partie du manuscrit. Le chapitre suivant
introduit les outils pratiques pour générer la topographie des surfaces à partir des
modèles aléatoires gaussiens isotropes et/ou anisotropes à partir de la représentation
spectrale (transformée de Fourier) ou de la décomposition orthogonale de la matrice
de covariance, suivis d’illustrations de simulation numérique.
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Introduction

Preface

The present thesis has been established with the mathematical imaging and
pattern analysis group in the LGF laboratory (Laboratoire Georges Friedel, UMR
CNRS 5307) at Ecole Nationale Supérieure des Mines de Saint-Etienne (ENSM-SE),
in collaboration with the center COT (Centre Chirurgie Orthopédique et Trauma-
tologie) of the Hôpital Nord de Saint-Etienne. The experimental tests have all been
realised in the ENSM-SE laboratories.

Medical Issue

Total hip arthroplasty is a reconstructive procedure which has improved the
management of those diseases of the hip joint, that have responded poorly to con-
ventional medical therapy, such as osteoarthritis. One of the most used total hip
implants involves insertion of a femoral prosthesis, composed of a stem and small-
diameter head, inside the femur, and an acetabular component, composed of ultra-
high-molecular-weight polyethylene articulating surface, is inserted into the acetab-
ulum cartilage. The hip prosthesis should insure high stability in the bone using
either cemented or uncemented designs. Nowadays, the hip arthroplasty is one of
the most widely performed surgeries in France (120000 hip prosthesis per year),
and in Europe (about 800000), due to its increased role in reducing the pain, and
in restoring the hip joint functions after sever degradation, and bony outgrowths
related with different reasons, such as accidents, bone diseases, and ageing. Nev-
ertheless, serious complications after hip replacement surgery might occur due to
reasons caused by the wear of the prosthetic components.

Scientific Issue

The success of the total joint arthroplasty, during the last 30 years, is largely
due to the use of the ultra-high-molecular-weight polyethylene (UHMWPE) as a
bearing surface, which has a good resistance to wear. However, wear does occur in
UHMWPE and sometimes can be excessive in younger and more active patients.
The factors that affect the wear might include without limitation, design, material,
surgical and patient factors. One of the most intrinsic wear factors are those related
with the surface properties of the used materials, especially the surface roughness.

Generating the wear on the surface topography, of the UHMWPE component,
has been achieved in-vitro using a joint simulator machine, in order to emulate the
in-vivo joint implant (i.e.; the joint implant inside the patients). The worn surfaces
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have been measured and observed using the three-dimensional white light inter-
ferometer. This technique enables three-dimensional topographical measurements
within a limited field of view, in a fast and contacltless way. The topography of the
observed surface can span many length scales, ranging from the physical form, to
the very small-scale structures (microstructural features) defined by the local hills
(summits) and valleys (or pits), and referred as roughness. The evolution of the
surface roughness during this simulation process contributes understanding the in-
vivo wear mechanisms, and the functional behaviour of the worn surface, to finally
improve the prosthesis quality and its life-duration.

Aims and Scopes

The evolution of the surface roughness, and more precisely the hills (summits) 1

and valleys at certain height levels, is one of the basic factors that governs a
number of important phenomena during mechanical contact between surfaces,
such as the wear of materials. Due to the random nature of the topography of
rough surfaces, these hills and valleys can be robustly estimated and determined
by the random field theory. An appropriate random field model should be defined
by significant statistical parameters that describe the roughness evolution of the
worn surface, such as the second, third and fourth order moments, referred to as
variance, skewness and kurtosis, respectively.

Studying the geometry generated by random fields has been well established via
the integral geometry of their excursion sets, more precisely the intrinsic volumes
including the Euler-Poincaré characteristic of those sets. An excursion set of a
random field is defined by the set of points where their random variables exceed
some threshold. The geometric properties of these excursion sets have numerous
intrinsic benefits. For example, without limitation, they quantify the content of the
excursion sets, such as the volume, area, length of boundaries. Furthermore, the
Euler-Poincaré characteristic of the excursion set detected at high levels is a good
estimate of the number of connected components (number of hills/or valleys). These
intrinsic volumes have been expected for Gaussian random fields [Adl81, AH76]
and extended to χ2, t, F , and Hotelling’s T 2 random fields by [Wor94, CW99].
Although the interesting results are obtained from these random fields in many
applications, they are limited to give robust representation of the worn topography.
Thus, the aim of this thesis, firstly concerns on extending the theoretical results to
two types of random fields (one is defined by the linear mixture of Gaussian and t
random fields, and the second is the skew−t random field). Then, these random
fields have been applied to real surfaces observed from a UHMWPE component, in
order to represent, and to analyze the roughness topography of those surfaces, in

1. hills, summits and peaks are all synonyms to the local maxima of the surface. A hill might
be considered more general, since it could also refer to local maxima which are not extremely high
including significant amount of topographic prominence. So, it will be used inside the content of
this thesis to refer to the local maxima.
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both machined and worn states, respectively.

A Guide to this thesis

The thesis is organized into five parts as follows.
The first part (Part I) consists of chapter 1, which introduces a brief background
of the surface roughness metrology. This chapter is also focused on the methods,
reported in the literature, that have been used to characterize and to represent
the surface roughness such as geometrical, and model-based methods. Advantages
and limitations have been discussed to finally demonstrate the importance of the
random field theory in combination with the geometry of their excursion sets, for
topographical representation and analysis of rough surfaces.

The second part (Part II) reviews the basic framework of random fields
(chapter 2) and the integral geometry of their excursion sets (chapter 3). The
first chapter includes the mathematical definition and the basic properties of the
random fields, giving some interesting examples. The second chapter explores the
excursion sets and their geometric properties derived by the integral geometry such
as Crofton’s and Hadwiger’s formulas, and the differential topology (Morse theory).

The third part (Part III) extends the theoretical results about the geometry
of the excursion sets of some known random fields to the mixture model field
defined by the linear combination of Gaussian and t random fields (chapter 4)
and skew−t random field (chapter 5). In chapter 4, the mean intrinsic volumes
(Lipschitz-Killing curvatures (LKCs)), also known by Minksowski functionals with
some normalization and order’s change, have been expected for the two-dimensional
Gaussian−t random field. Furthermore, the behaviour of the expected Euler-
Poincaré characteristic at high threshold for this mixture model is also discussed.
Chapter 5, derives the expected formulae of the Lipschitz-Killing curvatures for
the N−dimensional skew−t random field. Furthermore, the mean number of the
local maxima and minima of the skew t random field at high threshold is also
derived analytically. The expected Euler-Poincaré characteristic is then expressed
in the special case for N = 2. Simulation results in both chapters are established
to compare the analytical results with the simulated ones.

The fourth part (Part IV) is concerned on applying these theoretical devel-
opments in the application defined by the total hip implant. Chapter 6 explores
the basic concepts about the artificial hip prosthesis, design, and the choice of
materials. Furthermore, the main problems related with some of these materials
that motivated studying the surface roughness topography have been discussed.
The wear on the materials of the artificial hip prosthesis components have been
generated in an experimental environment introduced in chapter 7. This chapter
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also presents the technical methods used to measure and export the topographic
map of surface roughness.
Chapter 8 provides the developments investigated on the real surfaces measured
from the UHMWPE component during wear simulation process. A statistical
analysis approach has been proposed based on the expected Euler-Poincaré char-
acteristic of the skew−t random field in order to estimate the hills and the valleys
of the worn surface, and hence to estimate the roughness evolution during wear time.

The last part (Part V) is structured into two chapters, chapter 9 introduces
a work in progress about the spatio-temporal skew−t random field and the LKCs
of its excursion sets, one of the interesting and original topics towards modelling
the surface topography during wear time, analysing the spatio-temporal roughness
variability for predicting the future behaviour of the worn surface. Then, chapter 10
draws a global conclusion that summarizes the thesis and provides suggestions and
ideas that can be realized in the future research areas for further ameliorations, or
even in other applications.
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Chapter 1

Characterization and modelling of
surface roughness topography
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1.1 Introduction

The spatial and geometrical evolution of the topographic roughness of engi-
neering surfaces avail understanding many important physical phenomena, such as
friction, lubrication (liquid flow behaviour), and wear mechanism during mechani-
cal contact between adjoined surfaces. Surface topography observed in microscopic
scales are in fact extremely rough and of random nature. They are composed of
alternating hills and valleys of various dimensions referred to as surface heights, or
asperities and valleys. On the other hand, the height maps observed by the op-
tical instruments can be digitized and stored as 2D images, and so they can be
characterized using numerous image processing methods, such as filtration tech-
niques [Bla06, JBS01b], spectral analysis [Wu00], texture analysis [SP08, SP01],
and feature extraction techniques [Sco09, Sco04, JZS+08]. However, understanding
the mechanical contact between adjoined surfaces requires definition of the geom-
etry of the adjoined hills, quantifying their number and their size, and estimating
their height levels [Adl81]. Furthermore, the surface lubrication properties can be
described by quantifying the size and the number of the valleys and pits. Such
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problems can not be resolved without a mathematical model that describes the mi-
crogeometry of these hills and valleys and predicts their real heights. The next
section will review the traditional and technical methods in the surface metrology
framework for the surface roughness characterization. A special interest in this chap-
ter will be given to the model-based methods and the geometry of the level sets,
precisely the intrinsic volumes, developed in the literature to answer the previous
problems.

1.2 Surface metrology

In surface metrology science, a set of roughness parameters, and characterizing
functions were defined to describe rough surfaces. They were categorized between
2-D and 3-D roughness parameters accordingly with the approaches being used to
describe the surface.

1.2.1 Two-dimensional approaches

The early characterization methods of surface roughness were established on the
two-dimensional surface profiles [JSWB07a, DS95, Whi94]. Statistical parameters
such as the amplitude and the spacing parameters are used to describe the roughness
and the joint distribution of the surface profiles. One of the widely used parameters
to describe the roughness are the amplitude parameters. They quantify either the
profile heights relatively to a reference line, such as the absolute mean height, Ra,
and the root mean square deviation, Rq, or the shape of the height’s distribution
by measuring its symmetry and peakedness, such as the skewness, Rsk, and the
kurtosis, Rku, respectively. Besides the amplitude parameters, other techniques aim
at measuring the spacing parameters between the profile heights. These spacing
parameters are computed from the autocorrelation function (ACF) of the profile.
Another numerous parameters are defined in the standards [ISO97, Cor04].
The problem associated with the two-dimensional methods is that they are not
descriptive. For example, one can find the same values of the amplitude parame-
ters for two different surface profiles [NBMI06, Cos00]. Furthermore, the surface
profiles do not contain any textural information of the surface topography such as
isotropy/anisotropy, periodicity, hills/valleys shape or size [DS95].

1.2.2 Three-dimensional approaches

Following the development of the 3D measurement techniques, in the last
years, the three-dimensional approaches have been arisen for characterizing the
two-dimensional surface topography. All the roughness parameters derived by the
two-dimensional approaches have been extended by the three-dimensional methods
and computed from the surface topography. Additionally, other parameters are
defined to quantify the surface texture properties, surface bearing area, material
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and void volumes. These parameters are designated under the name "S parame-
ters" to be distinguished from the "R parameters" given by the two-dimensional
methods [DSS94, SSD+93].

1.2.2.1 Statistical methods based on height’s distribution

These methods describe some amplitude-related parameters based on the
height’s distribution, as seen in the two-dimensional case. The amplitude parame-
ters are used to describe the dispersion of the surface heights from a reference plane
such as the mean arithmetic deviation, Sa, and the root mean square arithmetic
deviation (RMS), Sq, given by their following digital formula for a surface Z defined
on a rectilinear lattice in R2, with (M ×N) points, [SSD+93]:

Sa =
1

MN

M∑
i=1

N∑
j=1

|Z(xi, yj)|

Sq =

√√√√ 1

MN

M∑
i=1

N∑
j=1

Z2(xi, yj)

(1.1)

where xi is the ith x−coordinate, and yj is the jth y−coordinate of the discrete lattice
in R2. These parameters are, in both one-dimensional and two-dimensional cases,
sensitive to the length (size) of the sampling interval (area), respectively [SSD+93].
A surface being digitized on the same measurement domain with two different sam-
pling intervals will have different values of Sa and Sq.
The shape of the joint distribution function of the surface heights is described by
two significant parameters, namely skewness Ssk and kurtosis Sku equivalently to the
one dimensional case. The skew parameter measures the symmetry of the height’s
distribution (Fig. 1.1). Its discrete form is defined as [SSD+93]:

Ssk =
1

MNS3
q

M∑
i=1

N∑
j=1

Z3(xi, yj) (1.2)

and the kurtosis parameter measures the peakedness (or flatness) of the height’s
distribution (Fig. 1.2), and it is given by [SSD+93]:

Sku =
1

MNS4
q

M∑
i=1

N∑
j=1

Z4(xi, yj) (1.3)

Note that the amplitude parameters of the surface topography do not have any
descriptive information about the surface texture.

1.2.2.2 Autocorrelation function and spectral methods

In order to describe the spatial relation between two height values, the tradi-
tional areal autocorrelation function (AACF) and the areal power spectral density
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Figure 1.1: Probability density function of skew random heights with different values
of skewness and different symmetry behaviors.

Figure 1.2: Probability density function of different symmetric, and unit variance
random models with different kurtosis values, (Gaussian; kurtosis = 3), (Laplace;
kurtosis >3), and (Wigner semicircle; kurtosis <3).
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(APSD) of the surface have been used. Spacing parameters can be quantified from
the AACF and the APSD that measure the isotropy/anisotropy of the surface,
the texture direction and the distances between correlated heights [Bra00]. These
spacing parameters are the fastest decay correlation length Sal which measures
the texture length-scale, and the texture aspect ratio 0 < Str ≤ 1, that measures
the degree of anisotropy of a surface [Bra00]. For example, isotropic surfaces
have similar correlation length decay along all directions and the Str value is
near 1. The direction of the texture, denoted Std, can be obtained directly for
stationary surfaces from the areal power spectral density function APSD using
the two-dimensional Fourier transform [Bra00]. It is defined by the angle where
the maximum value of the APSD occurs [SSD+93]. Additionally, the density of
surface summits, denoted Sds, is defined as a spatial parameter and derived from
the AACF. It is given by the number of the surface hills and valleys in the unit
sampling area [SSD+93]. Unfortunately, for a surface topography, they are defined
by many ways . In [JP68], a hill or valley is defined as the highest or deepest point
lying within a four or eight nearest neighbours, and in [Wal69], it is defined by a
contour-based summit detection method. So, the number of the surface summits
will vary according to the way the hills and valleys are defined 1.
Some of the spacing parameters, likely the amplitude parameters, are sensitive to
the sampling interval (spatial resolution), and they should be given and compared
based on that later [SSD+93].

Surface parameters are not limited to the previous discussed ones. Further
parameters are reported in [SSD+93, Bla06, DS95, Whi94] and in the different
versions of the standard ISO [ISO05, ISO06], like the hybrid parameters which
are based on both the amplitude and spacing parameters, and the functional pa-
rameters that describe the surface bearing area, material volume and void vol-
ume [SSD+93, JSWB07b]. The functional parameters, as they called, describe
the functional properties of the surface such as bearing, wear running-in and fluid
retention [SSD+93]. These parameters can be estimated using Abbott-Firestone
curve [AF33].

1.2.2.3 Abbott-Firestone curve

Abbott-Firestone curve [AF33], equivalently called by marginal ratio curve or
bearing area curve, was the early characterizing function for the surface roughness.
Firstly, it was computed from the surface profile, then, it was extended for the
two-dimensional surface heights [SSD+93]. Abbott-Firestone curve is one of the
important tools in surface characterization. The surface functional parameters such
as core roughness depth Sk, reduced peak height Spk, reduced valley depth Svk
bearing area parameters SMr1 , SMr2 have been defined from Abbott-Firestone
curve [SSD+93]. Abbott-Firestone curve measures the density of the surface hills

1. This is one of main reasons why a mathematical modelling arises and becomes the more
robust way to define the surface hills and valleys rather than experimental methods



12 Chapter 1. Characterization of surface topography

(valleys) above (below) a height value. It has been used for studying the stress, in
some contact deformation problems, and to predict the bearing behaviour and the
fluid retention properties of the surface.

In summary, there is 14 parameters for characterizing the surface topography and
they are classified between amplitude, spacing, hybrid and functional parameters.
Their significance depends on the surface property and the application needs.

1.3 Geometry of level sets for surface characterization
and analysis

A level set, can be simply defined here, as the result of hitting the surface by
a plane at certain height level, and keeping all the points above this level. Thus,
the level set can be seen as a result of threshold process of the surface heights in
R2. The geometric properties of a given level set are quantified by some measures,
which define the size and the boundaries of its content, and its connectivity, known
as Minkowski measures (more details can be seen in chapter 3).

Those characterizing measures have a very interesting physical interpreta-
tions [Sch06], and they are correlated with most of the surface roughness parameters
defined in surface meteorology, as will be seen in the next chapters of this thesis.
The area of the level sets, calculated at different height thresholds, gives the material
area ratio or equivalently the related Abbott-Firestone curve [AF33]. Complemen-
tary, computing the area of the level sets below those thresholds (where the plane
does not hit the part of material that is out of contact with it) defines the void area
(the area of valleys and cavities or holes) which is also could be associated with the
Abbott-Firestone curve discussed in subsection 1.2.2.3.

The contour length of the level sets enables measuring some spatial features
of those sets [Sch06], and it describes how much the level is smooth. For rough
surfaces, a level set might include much small-scale structures, and structures of
irregular boundaries. In this case, the contour length will be much higher than the
one estimated from level sets of smooth surfaces. Besides the material/void area
ratio, and the contour length, one can estimate the number of holes, cavities, and
peaks, which could be counted by the so-called Euler-Poincaré characteristic (see
chapter 3). The Euler-Poincaré characteristic has an important interpretation of the
surface percolation context [Mec00, Mec98]. A negative value of the Euler-Poincaré
characteristic indicates that the material is governed by holes, where the fluid will
be trapped inside. Thus, the number and the size of those holes could be the most
significant features in the level set, in this case. Likewise; a positive value implies
that the level set mainly consists of isolated blobs (or regions) of the material, so
the fluid in such case can flow freely on the surface (see Fig. 1.3).
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(a) (b) (c)

Figure 1.3: Example of three level sets composed of objects (materials and voids)
with different Euler-Poincaré characteristics (χ). (a) χ = 388. (b). χ = 39 (c)
χ = −462. The materials and voids are represented as by: materials and voids.

1.4 Model-based methods for surface roughness repre-
sentation and analysis

Model-based methods state that the measured roughness component of the sur-
face topography is perceived according to an appropriate model, which is identified
by some parameters that represent the most important textural information of the
surface topography, and also have a direct physical interpretation. These methods
are used for analysis, and for simulation of rough surfaces.

1.4.1 Wavelet models

A multi-scale representation of rough surface is suggested by wavelet mod-
els [WM97, LXLZ05, JBL02, LZCM98, JBS01a, JSW08]. A sequence of spatial
filters of different kernel models are defined over a range of scales to represent the
multi-scale surfaces. The appropriate wavelet model depends on the surface struc-
ture and the manufacturing process. The range of the significant scales can be
determined by the wavelet decomposition of the surface and hence from the wavelet
coefficients that significantly describes the surface. In wear analysis applications,
the multi-scale descriptors are statistically dependent over some scales, and the
dependence between the wavelet coefficients is often unknown. Furthermore, the
descriptors that might be significant in one scale at one wear time might not have
any significance at another scale and time.

1.4.2 Fractal models

The topography of rough surfaces have been characterized and represented by
the geometry of fractal [ZVL98, ST78, Rus94, TRA99, PS00, Whi02, PS99, Cos00,
PG07, WPS10, PS05], which states that the geometric features (lines, curves, area
and etc.) of rough surfaces exhibit the self-similarity property, i.e. they have the
same magnifications at all scales and in all directions (scale-invariant or isotropic
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Figure 1.4: Simulation example of a Brownian sheet on [0, 1]2

fractal), or they exhibit the self-affinity property which states that some rough
surfaces are composed of structures of unequal scaling magnifications in different
directions and thus define anisotropic fractal surfaces [ZVL98, Cos00]. In both
cases, there is two intrinsic parameters being used to describe the geometry of the
isotropic/anisotropic fractal surfaces, namely fractal dimensionsD and the exponent
of roughness H [ZVL98]. One of the basic assumptions in the geometry of fractal
is that the surface does not follow the regular law of Euclidean geometry. The
surface can be described and represented with a non-integer parameter D ∈ [1, 2]

for two-dimensional profiles, and D ∈ [2, 3] for the three-dimensional profiles (or
surfaces). Numerous methods have been proposed to represent the topography
of rough surfaces, mainly one is the Fractional Brownian motion [MN68] (see a
simulation example in Fig. 1.4, which states that a surface of a fractional Brownian
motion will satisfy that the greatest differences between any two points located at
a distance d in the parameter space will follow an exponent law dH with H = 1/2.
Nevertheless, many engineered surfaces have not the self-similarity property, and
the surface microstructures geometry, such as the contour, area or volume of hills
and valleys, are not scale-invariant, except over a range of scales. One can see the
arguments in [JSWB07b, Whi02] on the log-log plot of the volume-scale or area-scale.
Furthermore, Fractal dimension lacks straightforward physical meanings and has not
been directly linked with the functional behaviour of engineering surfaces [SSD+93].

1.4.3 Numerical models

Numerical models by image processing techniques [MRS10, AWC02, Wu00,
HT92] are commonly used to represent the topography of rough surfaces, which
enable analyzing the mechanical contact properties from the represented roughness
maps. A rough surface with identified statistical amplitude parameters Sa, Sq,
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Ssk, Sku and autocorrelation function can be represented and simulated numerically
using the Johnson translator method [Joh49]. These models do not require any as-
sumption of surface isotropy/anisotropy, hills/valleys shape, or the distribution type
of the surface heights. In fact, the geometry of the hills and valleys, and the surface
texture properties have significant physical interpretation on engineered surfaces.

1.4.4 Random field models

Random field models are well established to model the microgeometry of the
hills and valleys of a surface, in many applications related to mechanical contact
of rough surfaces, using either the Gaussian or non-Gaussian random fields [Nay73,
GW66, Rei11, AF81, Sch06, AA09]. Gaussian surfaces have been referred to as the
dependent random heights having a joint Gaussian distribution function which is
uniquely characterized by its autocorrelation function. The model of the covariance
function, or the autocorrelation function, defines the spatial features of the Gaussian
hills and valleys and the texture properties of the surface (see Appendix B for
examples). In some applications associated with wear processes, some statistical
parameters derived from the third and fourth order moments, Ssk and Sku, of the
height’s joint distribution become significant characteristics. Thus, the Gaussian
model can not approximate such worn surfaces. One of the interesting examples
proposed in the literature [AA09] for modelling worn surfaces is the skew-Gaussian
random field. The skew-Gaussian random field generalises the Gaussian one by
including the skewness concept to the normal distribution function (see Fig.1.5 as
example), so that the marginal probability density function, p(h), at each height h
on the surface can be defined as:

p(h) = 2φ(h)Φ(δh/
√

1− δ2), (h ∈ R) (1.4)

(a) (b)

Figure 1.5: (a) Simulation example of a negatively skewed, isotropic, Gaussian
random surface on [0.1]2. (b) The probability density function of the surface heights
with skewness index δ = −0.5.
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where φ(.),Φ(.), are the Gaussian density and the Gaussian cumulative distribution
functions, respectively, and δ ∈ (−1, 1) is a parameter that indicates the skewness
of the distribution function such that:

Ssk =
4− π

2

(δ
√

2/π)3

(1− 2δ2/π)3/2
(1.5)

Nevertheless, the influence of the kurtosis is negligible in the skew-Gaussian
random fields, which requires looking beyond the Gaussian surfaces and use the
non-Gaussian random fields such as the ones introduced and defined, in this thesis,
in chapters 4 and 5.
Similarly to fractal surfaces 2, the random field, being defined as a model of a rough
surface, and the geometric properties of its excursions above some levels are related
with the mechanical contact model. For example, in plastic contact problems
between a rough surface and a hard, smooth, and flat one [GW66, Nay73], it was
shown that the joint distribution function model of the finite contact hills, and
their mean area could describe and determine the normal pressure/hardness ratio.

1.5 Conclusion

Following the arguments discussed about the model-based methods for charac-
terizing the surface roughness topography, the random field models arise to be one
of the powerful approaches in this application field, more precisely, the combination
of random fields and the geometry of the level sets. The models seen in this bibli-
ographic chapter can all be considered as stochastic models that deal with random
and rough surfaces, and the research developments are not limited to only these ap-
proaches, but also to combinations between them. A combination between fractal
and wavelet approaches enabled define a multi-scale fractal surfaces [PS02, PS03],
whereas a combination between wavelet and random fields enables define a scale-
space random fields [ATW11, SJLG03]. In all cases, choosing one approach over
another strongly depends on the area of application to be addressed.

The next chapters in this thesis will focus on the basic theoretical topics of the
random fields and their geometry, in order to export the main results required for
the application.

2. Fractal surface is also a random process. We distinguish between fractal models and random
fields since we need to study the geometry of the excursion sets and to estimate the number of hill
and valleys. The first ones are non-differentiable erratic models, so that the number of hills/valleys
inside an excursion set will tend to infinite [Adl81]
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Random Fields Theory
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2.1 Random fields

This chapter reviews some basics of the random fields given in the litera-
ture, [AT03, Abr97, Yag87a, Yag87b, Van83, Adl81]. We are interested in stationary
Gaussian and non-Gaussian random fields which are basically related to the Gaus-
sian one and defined on the N−dimensional Euclidean space.

2.1.1 Definition

Let (Ω,F ,P) be a probability space, and a topological space S ⊂ RN . Then, an
N−dimensional random field is defined as a measurable mapping Y : Ω → (RS)d,
d ≥ 1, and denoted by Y (x, ω), x ∈ S, ω ∈ Ω. When d = 1, then f is called a
real-valued N−dimensional random field, and if d > 1, the measurable mappings
from Ω to (RS)d are called Rd−valued N−dimensional random fields.
The notation is usually restrained in the literature so:

Yx ≡ Y (x) ≡ Y (x, ω)

In general, a random field Y (x), x ∈ S is uniquely determined by its finite-
dimensional (fi − di) distributions. Given an arbitrary collection of random vari-
ables Y (x1), ...., Y (xn) for any x1, ...,xn ∈ S and any n ≥ 1, then, the (fi − di)
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distributions of such collection is defined by:

Fx1,...,xn(y1, ..., yn) = P {Y (x1) ≤ y1, ..., Y (xn) ≤ yn} (2.1)

Thus, a random field Y (x), x ∈ S can also be defined as a collection of random vari-
ables, together with a collection of their (fi− di) distributions, or joint distribution
functions, of the form Fx1,...,xn .

2.2 Stationarity, Isotropy, and Anisotropy

To understand the structure of the random fields, some important properties
such as the stationarity, isotropy and anisotropy should be introduced. On the
other hand, when dealing with stationary random fields a general and simple way
to generate these random fields arises using the spectral representation, and hence,
the spectral moments of random fields become the interesting result of the spectral
representation theory.

2.2.1 Stationarity

Let consider S the parameter space in RN , such that x, s ∈ S implies that
x+ s ∈ S.

Definition 2.2.1 (Stationarity in strict sense). A random field Y (x), x ∈ S is said
stationary in strict sense over S, if all its fi− di distributions are invariant under
arbitrary translations. That is, for any n ≥ 1 and any set of points s,x1, ...,xn ∈ S

Fx1+s,...,xn+s(y1, ..., yn) = Fx1,...,xn(y1, ..., yn) (2.2)

An immediate definition follows the strict stationarity is the weak stationarity
or stationarity in wide sense. Let E[Y (x)] = µ(x) and C(x, s) = Cov(Y (x), Y (s))

be the mean and covariance functions of a random field Y (x), respectively, such
that E[‖Y (x)‖2] <∞ for all x ∈ S.

Definition 2.2.2 (Stationarity in wide sense). A random field Y (x), x ∈ S is said
stationary in wide sense, or "weakly" stationary over S if

µ(x) = µ and C(x, s) = C(x− s) (2.3)

This means that the mean function is constant and that the covariance function
only depends on the difference vector x− s. The corresponding covariance function
is called a stationary covariance function. Notice that, the strictly stationary
implies the stationarity in wide sense, but the opposite is not always true, except
for the Gaussian random fields, where strict stationarity and weak stationarity are
both equivalent. Stationary random fields are also called homogeneous random
fields, [Yag87a, Van83, Adl81].
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2.2.2 Isotropy

A special class of stationary or homogeneous random fields on RN are the
isotropic random fields. These random fields are translation and rotation invari-
ant. Let consider S is a metric space equipped by the Euclidean distance (or the
Euclidean norm) such that:

dist(x, s) = ‖x− s‖ =

(
N∑
i=1

(xi − si)2

) 1
2

(2.4)

Definition 2.2.3. A stationary random field is said isotropic if the covariance func-
tion depends only on the Euclidean norm of the difference vector x− s such that:

C(x, s) = C(‖x− s‖) (2.5)

A covariance or correlation function implies the last definition is called an
isotropic function. As can be seen, the covariance function depends only on the
distance between x and s.

2.2.3 Anisotropy

The anisotropic covariance functions are defined by replacing the Euclidean norm
of the metric space S by the general norm 1 of the form:

dist(x, s) = ‖x− s‖D =
√

(x− s)tD(x− s) (2.6)

where t stands for the transpose, and the N ×N matrix D is non-negative definite
(i.e. xtDx ≥ 0 for all x ∈ RN ).

Definition 2.2.4. A stationary covariance, or correlation, function on RN is said
anisotropic function if it depends on the general non-Euclidean norm such that:

C(x, s) = C(‖x− s‖D) (2.7)

The covariance functions defined by the general norm are called ellipsoidal co-
variance functions. A stationary random field with anisotropic covariance function
is said anisotropic random field "in the wide sense".

2.2.4 Spectral representation on RN

The basic result that arises in the theory of stationary random fields is the
spectral representation theorem [Boc33], which states that a continuous real function
C : RN → C is non-negative definite, and so called a covariance function, if and only
if it can be represented in the form:

C(x) =

∫
RN

ei<x,λ>dNF (λ) (2.8)

1. The general non-Euclidean norm is equivalent to the Mahalanobis norm
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where F (λ) : RN → [0, σ2] is a N−dimensional distribution function, also called
spectral distribution function of C, and σ2 = C(0) =

∫
RN d

NF (λ).
If F is continuous, then the spectral density function is defined as:

f(λ) =
∂NF (λ)

∂λ1...∂λN
(2.9)

Based on the spectral representation theorem, [Adl81] proved that a complex-
valued 2 "weakly" stationary, or homogeneous, random field, Y (x), can be repre-
sented such that:

Y (x) =

∫
RN

ei<x,λ>dNZ(λ) (2.10)

and it has the covariance function C(x − s) = E[Y (x)Y (s)], which is represented
as:

C(x, s) =

∫
RN

ei<(x−s),λ>dNF (λ) (2.11)

where Z(λ) is the N−dimensional complex spectral distribution function of the
complex noise field Z. Note that if Z is a Gaussian noise, then Y is a Gaussian
random field.
When Y is a real-valued random field, then the covariance function is a symmetric
function about its origin and it can be written as:

C(x, s) =

∫
R×RN−1

cos(〈(x− s),λ〉)dNF (λ) (2.12)

and the spectral representation of the real-valued random field Y is then:

Y (x) =

∫
R×RN−1

cos(〈x,λ〉)dNZ1(λ)

+

∫
R×RN−1

sin(〈x,λ〉)dNZ2(λ)

(2.13)

where Z1 and Z2 are real-valued and independent spectral noises.

2.3 Gaussian random fields

2.3.1 Definition

This section introduces brief details about the Gaussian random fields as an im-
portant class of random fields, and they are the main blocks of this thesis. Gaussian
random fields on RN are defined by their (fi − di) distributions, Fx1,...,xn , which
form a multivariate normal distribution for any arbitrary choice of n and any col-
lection (x1, ...,xn).

2. A complex-valued random field, Y , is of the form Y (x) = YR(x) + iYI(x), where YR and YI
are real-valued random fields on RN
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Let Y = (Y1, ..., Yn)t be a Rn−valued random vector with Gaussian random vari-
able components for any choice n. Then, the multivariate normal probability density
function, or the joint normal probability density function, denoted pY , is defined as:

pY (y) =
1

(2π)
n
2 |Σ|

1
2

e−
1
2

(y−µ)tΣ−1(y−µ) (2.14)

where yt = (y1, ..., yn), µ = E(Y ) is the n vector mean, and Σ is a n × n

non-negative (or semi-positive) definite covariance matrix with elements
Σij = E[(Y (xi)− µi)(Y (xj)− µj)], and determinant |Σ| = det(Σ).

The Gaussian random fields are completely specified by their mean vector and
covariance matrix, (see Appendix B for some simulation examples).

2.3.2 Spectral moments of Gaussian random fields

Given the spectral representation theorem, one of the very useful and important
topics, that can be derived from the spectral density and the covariance function
of the R-valued Gaussian random field Y , is what’s called the spectral moments,
denoted by λi1,...,iN

3. They are defined [Adl81]as:

λi1,...,iN =

∫
RN

λi11 ...λ
iN
N dNF (λ) (2.15)

for all i1, ..., iN with ik ≥ 0, and λ ∈ RN .
Considering that the Gaussian random field is stationary, then its covariance
function and its spectral distribution are symmetric, (i.e., C(x) = C(−x) and
F (λ) = F (−λ)), consequently, the odd-order spectral moments will be zero. A
special interest about stationary Gaussian random fields concerns the second-order
spectral moment, denoted λij with (i, j = 1, ..., N), which depends on the second-
order derivatives of the covariance function C(x) near its origin 4 and it can be
written as:

λij =
∂2C(x, s)

∂xi∂sj

∣∣∣∣
x=s

= −Cij(0) (2.16)

for i, j = 1, ..., N . The N × N matrix of these second-order moments is denoted
by Λ. On the other hand, the first-order derivatives of the R-valued Gaussian
random field Y are dependent, and they have the partial derivative ∂2C(x)/∂xtx

as covariance function [Adl81, AT03]. Thus, the matrix Λ, is also defined as the
variance−covariance matrix of the partial derivatives of Y , and it is written as:

Λ = E
(
∂Y (x)

∂x

∂Y (s)

∂s

)
(2.17)

3. The third and fourth order spectral moments have specific names called, skewness and kur-
tosis, respectively.

4. Generally, for stationary Gaussian random fields the 2kth-order spectral moments are derived
from the 2kth partial derivatives of the covariance function at the origin [Adl81].
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Under the isotropy condition of random fields, the second-order spectral moment
matrix Λ = λIN , where IN is the N × N identity matrix, and λ is the second
spectral moment 5, where λ is independent of the indices i = 1, ..., N in this case.

2.4 Non-Gaussian random fields

Beyond the Gaussian random fields, some non-Gaussian random fields arise,
widely, for modelling and analysing many natural phenomena. This section will
focus on introducing a class of Non-Gaussian random fields which are mainly based
on the Gaussian one, and also namely Gaussian-related random fields. One example
of these random fields is called the t random field and it will be within the focus of
this thesis.
Let consider Z be a centered Rk−valued Gaussian random field defined on some
parameter space S, such that Z : S → Rk, and all its k components Z0, ..., Zk−1 are
independent, and identically distributed (i.i.d.), with constant variance 6. Then, a
transformation function denoted F , where F : Rk → R can define a Non-Gaussian,
or Gaussian-related, random field, Y (x), at any fixed x ∈ RN such that:

Y (x) = F (Z(x)) = F (Z0(x), ..., Zk−1(x)) (2.18)

The parameter k is called the degree of freedom of the Non-Gaussian random field.

Example 2.4.1. A t random field, with k degrees of freedom 7, is defined taken F
such that

F (Z) =
Z0

√
k

(
∑k

i=1 Z
2
i )

1
2

(2.19)

which has a marginal density function, for y ∈ R, given as:

t(y) =
Γ((k + 1)/2)

Γ(k/2)(πk)1/2

(
1 +

y2

k

)−(k+1)/2

(2.20)

where Γ(.) is the Gamma function.

One can find other interesting examples in [Adl81, Wor94, Cao97, CW99].

5. In the literature, the second spectral moment of isotropic random fields is denoted by λ2 to
refer to their order. In this thesis, we will use the notation λ to refer to these moments in the case
of isotropic random fields.

6. The assumption that a random field, Y , has a constant variance yields that Y and its first-
order derivative, if differentiable, are uncorrelated.

7. In the next chapters of this thesis, we will denote the degree of freedom of the t field by ν.
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2.5 Conclusion

This chapter has reviewed some basics about the random fields and their
properties required for further developments in this thesis. Starting from the
definition of the random fields, and the covariance function. We focused on
stationary random fields, that can be generated immediately using the spectral
representation theorem, and showed that the structural properties of "weakly"
stationary random fields can be determined from the covariance function, such as
isotropy and anisotropy. More attention has been focused on the Gaussian and a
class of Non-Gaussian random fields called Gaussian-related random fields. The
former, if centred, is completely determined by its covariance function, and the
latter is defined using a transformation function of a centred vector valued Gaussian
random field of independent and identically distributed components.

In the next chapter we introduce the geometric properties of the excursion sets
of random fields, derived from the integral geometry.
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3.1 Excursion sets

Let Y (x), x ∈ RN , be a stationary real-valued random field. An excursion set
(see Example 3.1.1), denoted by Eh(Y, S), of Y inside a compact subset S ⊂ RN
above a level h, is defined as:

Eh(Y, S) = {x ∈ S : Y (x ≥ h)} (3.1)

Example 3.1.1. In this example, figure 3.1 illustrates a two-dimensional excursion
set obtained from a homogeneous Gaussian random field above the levels h = −1,
and h = 2.5:

(a) (b) (c)

Figure 3.1: (a). A simulation example of a two-dimensional Gaussian random field
on a unit rectangle. (b). and (c). The excursion sets above the levels h = −1, and
2.5, respectively.
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Another notation can be found in the literature for the excursion sets which is
expressed as Y −1([h,∞)), [Adl81].
The geometric properties of the excursion sets of random fields were pioneered
by [Adl81, Wor94] and recently investigated in [Cao97, AT07, Tay08], for Gaus-
sian and Gaussian-related random fields. For N−dimensional excursion set there is
N + 1 numerical quantifiers, known under several names such as Minkowski func-
tionals (MFs), intrinsic volumes, and Lipschitz-Killing curvatures (LKCs), which de-
scribe the geometry and the topology of these sets. As example, in two-dimensions,
they measure the area, the boundary length, and the Euler-Poincaré characteristic
which counts the number of connected components minus the number of holes. In
three dimensions, they measure the volume, the surface area, the mean curvature
length, and the Euler-Poincaré characteristic which counts this time the number
of connected components minus the number of handles plus the number of holes.
The basic approaches to develop the geometry of these sets could be derived from
integral geometry [San76] and differential topology [MC69].
These geometric quantifiers are of special interest since they provide a com-
plete description of the geometric structure of the excursion sets. Furthermore,
[Adl81, Has78] showed that when the excursion set is obtained at a very high level,
the expected Euler-Poincaré characteristic converges with probability one to the
number of the local maxima of the random field, since the excursion sets will consist
of only connected component with no more holes, (see Fig. 3.1(c)).

In order to tackle this subject, there is certain regularity conditions that a ran-
dom field, and the subset S should satisfy, as will be seen in the next section.

3.2 Regularity conditions

The excursion sets, in this thesis, are restricted to be defined on a bounded
rectangle in RN of the form S =

∏N
i=1[0, Li], 0 < Li <∞, with (N−1)−dimensional

boundary, ∂S.
Let Y = Y (x) be as considered in the previous section 3.1, and let
Ẏj(x) = ∂Y (x)/∂xj and Ÿkj(x) = ∂2Y (x)/∂xk∂xk, for j, k = 1, ..., N . Then, the
regularity conditions that Y (x) should hold are:

(i) for any ε > 0:

P (max {ωj(τ), ωjk(τ)} > ε) = o(τN ) as τ ↓ 0 (3.2)

where ωj and ωjk are the moduli of continuity of Ẏj and Ÿkj , respectively,
inside S and they are defined, for all x, s ∈ S, j, k = 1, ..., N , as:

ωj(τ) = sup
‖x−s‖<τ

|Ẏj(x)− Ẏj(s)|, ωjk(τ) = sup
‖x−s‖<τ

|Ÿjk(x)− Ÿjk(s)| (3.3)

(ii) Ÿ has finite variances conditional on (Y, Ẏ ), where Ÿ is the N ×N Hessian
matrix of Y , and Ẏ is the N−vector gradient of Y .
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(iii) the density of (Y, Ẏ ) is bounded above, uniformly for all x ∈ S.
(iv) the marginal densities of Ẏ are continuous at 0, uniformly for all x ∈ S.

Once a stationary random field, Y , satisfies the previous regularity conditions, the
following results, due to [Adl81, Wor95] and reported in [Cao97, AT07], about the
expected Euler-Poincaré characteristic and the expected number of the local maxima
of Y can be represented.

3.3 The expected Euler-Poincaré characteristic and the
expected number of local maxima of random fields

LetM+
h (Y, S) be the number of the local maxima above a level h of a stationary

random field Y (x) on S. Then, under the first three regularity conditions reported
in section 3.2, the expectation of M+

h (Y, S), [Adl81], is:

E(M+
h (Y, S)) = vol(S)

∫ ∞
h

E[−det(Ÿ −)|Y = y,Y = 0]pN (y,0)dy (3.4)

where vol(S) is the Lebesgue measure, or the N−dimensional volume, of S, and
pN (y,0) is the joint density of (Y, Ẏ ) at (y,0), where Ẏ ∈ RN , at any fixed x ∈ S.
Under the regularity conditions given in section 3.2, then based on Morse’s theo-
rem [MC69], (one of the important results of differential topology), [Wor95] proved
that the expected Euler-Poincaré characteristic for stationary random fields is rep-
resented as:

E[χ(Eh(Y, S))] =vol(S)E[(Y ≥ h)det(−Ÿ )|Ẏ = 0]pẎ (0)

+

∫
∂S

E[(Y ≥ h)(Ẏ⊥ < 0)det(−Ÿ > − Ẏ⊥c)|Ẏ > = 0]pẎ >(0)

(3.5)

where pẎ , pẎ > are the probability density functions of Ẏ and Ẏ >, respectively.
At any point x ∈ ∂S, Ẏ⊥ is the gradient of Y in the direction of the inside normal
to ∂S, Ẏ > is the gradient (N − 1)−vector in the tangent plane to ∂S, Ÿ > is
the (N − 1) × (N − 1) Hessian matrix in the tangent plane to ∂S, and c is the
(N − 1)× (N − 1) inside curvature matrix of ∂S.
The first term of (3.5) can be written as vol(S)ρN (h), where ρN (h) is the density
of Euler-Poincaré characteristic of the excursion set Eh, per unit volume:

ρN (h) = E[(Y ≥ h)det(−Ÿ )|Ẏ = 0]pẎ (0) (3.6)

3.3.1 Case of isotropy

In the case Y is an isotropic random field, Worsley [Wor95] gave a simplification
of the expectations for both ρj(h) and E[χ(Eh(Y, S))].
Let Ẏ |j be the vector gradient of the first j components of Ẏ , and Ÿ j is the j × j
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matrix of the first j rows and columns of Ÿ , then the j−dimensional EC density 1

is defined, for j > 0, as:

ρj(h) = E[ ˙Y +
j det(−Ÿ |j−1)|Ẏ |j−1 = 0, Y = h]p|j−1(0, h) (3.7)

where Ẏ +
j = max(0, Ẏj), and p|j−1(0, h) is the joint probability density function of

Ẏ |j−1 and Y . For j = 0, ρ0(h) = P[Y ≥ h].
Thus, under isotropy, and the regularity conditions given in section 3.2, the expected
Euler-Poincaré characteristic is:

E[χ(Eh(Y, S))] = vol(S)ρN (h) +

N−1∑
j=0

(
1

ωN−j

∫
∂S

detrN−1−j(c)dx

)
ρj(h) (3.8)

where c is the (N − 1)× (N − 1) inside curvature matrix of ∂S at a point x ∈ ∂S,
detrj(c), (j = 0, .., N − 1), is the sum of the determinants of all j × j principal
minors of c, and ωj = 2πj/2/Γ(j/2) is the surface area of unit (j− 1)−sphere in Rj .
The term 1

ωN−j

∫
∂S detrN−1−j(c)dx is the j−dimensional curvature measure of S.

Together with Lebesgue measure of S, vol(S), they are the (N+1) intrinsic volumes,
or equivalently Minkowski functionals of S, denoted byMj(S), (j = 0, .., N).
Consequently, E[χ(Eh(Y, S))], for isotropic random fields, can finally be expressed
in terms of j−dimensional Minkowski functionals of S as:

E[χ(Eh(Y, S))] =

N∑
j=0

Mj(S)ρj(h) (3.9)

3.3.2 Non-isotropic random fields on smooth manifolds

The last expectation in equation (3.9), has been extended [TA03, Tay08] to
deal with non-isotropic random fields on smooth manifolds with piece-wise smooth
boundaries. It was shown that if a random field is defined as a function of i.i.d.
non-isotropic Gaussian random fields, then it is only necessary to replace Minkowski
functionalsMj(S) by Lipschitz-Killing curvatures (LKCs) of S, denoted by Lj(S),
such that:

E[χ(Eh(Y, S))] =
N∑
j=0

Lj(S)ρj(h) (3.10)

Thus, the non-isotropy property is transferred from the EC densities to LKC, and
one can find the EC densities using the formulae in equation (3.9).
The LKCs of S measure the intrinsic volume of S in the Riemannian metric defined
by the variogram 2. For N−dimensional and (N − 1)−dimensional LKC, they have

1. ρj(h) is the density of Euler-Poincaré characteristic in any j−dimensional Euclidean subspace
of RN , [Wor95]

2. The variogram of a real-valued function Z between any two points x, s ∈ RN is defined as:

V ar(Z(x)− Z(s)) (3.11)
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a very simple expression. Suppose Y is a random field defined from a transforma-
tion function of i.i.d. non-isotropic Gaussian random fields, Zk, (k = 1, ..., ν), with
constant variance σ2. Then:

LN (S) = σ−N
∫
S

[det(Λ(x))]1/2 dx (3.12)

and

LN−1(S) =
1

2σ(N−1)

∫
∂S

[det(Λ∂S(x))]1/2HN−1(dx) (3.13)

where Λ(x) = V ar(Żk(x)) is the N ×N matrix of second order spectral moments,
or the variance-covariance matrix, of the gradient N−vector Żk(x), and similarly
Λ∂S(x) = V ar(Żk>(x)) is the (N − 1)× (N − 1) variance-covariance matrix of the
gradient (N − 1)−vector of Żk(x) tangential to the boundary ∂S, and HN−1 is the
(N − 1)−dimensional Hausdorff measure [HS02] on ∂S, for any selected k.
The lower dimensional LKCs have not simple formulae, except for L0 = χ(S). One
can find the explicit expressions of the LKCs in [TA03]. Note that in the isotropic
case the equations (3.9) and (3.10) are equivalent, and if the random field, Y , is
stationary then they are:

Lj(S) =Mj(Λ
1/2S) (3.14)

3.3.3 Stationary random fields over rectangles on RN

Let S =
∏N
i=1[0, Li] be a rectangle on RN , and suppose J be a face of

k−dimensions in S, (J ∈ ∂kS), where ∂kS is the collection of faces of dimension k
in S. The set ∂NS contains the entire S, ∂0S includes 2N vertices of the rectangle
S, and ∂kS has 2N−k

(
N
k

)
faces of k−dimensions (see Fig. 9.3 as example). Then,

J = {x ∈ RN : xi = εiLi, if i /∈ σ(J), 0 ≤ xi ≤ Li,
if i ∈ σ(J)}

(3.15)

where σ(J) ⊆ {1, ...., N}, and ε(J) = {εi, i /∈ σ(J)} is a sequence of N − k zeros
and ones. Then, the Lipschitz-Killing curvatures of S are given by

Lj(S) =
∑
J∈Oj

|det(ΛJ)|1/2volj(J) (3.16)

where ΛJ is the k× k matrix of the second order spectral moments associated with
the k−dimensional face J . Thus, the expected Euler-Poincaré characteristic can be
given by:

E[χ(Eh(Y, S))] =

N∑
j=0

∑
J∈Oj

|det(ΛJ)|1/2volj(J)

 ρj(h) (3.17)
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Figure 3.2: Example of a rectangle in R3, and its k−dimensional faces, k = 0, ..., 3.

3.4 Mean intrinsic volumes of excursion sets

Besides the expected Euler-Poincaré characteristic of the excursion sets, another
geometric quantifiers appeared in its explicit formula, known as Lipschitz-Killing
curvatures or Minkowski functionals of the metric space S, can also be defined over
these excursion sets. In this case, the aim is to find the mean intrinsic volumes, or
mean Lipschitz-Killing curvatures, of the excursion sets that describe their geometric
structures, such as their size, boundary length, and etc.
Let Y be a real-valued stationary random field defined by a smooth transformation of
i.i.d. non-isotropic stationary Gaussian random fields, then the following expression,
proved by [AT03] and reported in [AT07, Adl08, AT11], gives the mean intrinsic
volumes of the excursion sets of Y :

E[Lj(Eh(Y, S))] =

N−j∑
k=0

[
j + k

k

]
Lj+k(S)ρk(h) (3.18)

where
[
j + k

k

]
is the flag coefficient 3, ρj(h) are the EC densities for Y , and Lj(S)

are the LKCs of S with respect to the Riemannian metric induced on S by Y .
Note that, when j = 0, then E[L0(Eh(Y, S))] = E[χ(Eh(Y, S))] is the expected
Euler-poincaré characteristic of Eh, given in the previous section.
The last expression in equation (3.18) has been proved for isotropic Gaussian random
fields as the result of Crofton’s formula and Hadwiger’s formula. Then, it was
extended to the non-isotropic Gaussian random fields and the class of non-Gaussian
random fields defined in chapter 2.

3. The flag coefficient is defined as[
n

k

]
=

n!

k!(n− k)!
ωn

ωkωn−k
, (3.19)

where ωk = πk/2

Γ( k
2

+1)
is the volume of the unit ball in Rk



3.5. Conclusion 33

Suppose a regular (convex) set E ⊂ RN , then Crofton’s formula [San76, Bla36]
states that under the affine Grassmanian 4, Graff(N, k), of k−dimensional linear
subspaces of Rk, (k = 0, ..., N),∫

Graff(N,N−k)
Lj(E ∩ V )dµNN−k(V ) =

[
k + j

j

]
Lk+j(E) (3.21)

where µNk is a Haar measure, and V ∈ Graff(N, k). The special case is when j = 0,
then Crofton’s formula becomes the known Hadwiger’s formulae [Had57] so that

Lk(E) =

∫
Graff(N,N−k)

L0(E ∩ V )dµNN−k(V ) (3.22)

Hadwiger’s formula shows that Lipschitz-Killing curvatures of the set E can be
obtained from the Euler-Poincaré characteristic of the cross-sections, of various di-
mensions, of the set E.
For an isotropic Gaussian random field Y , one need to find the expectations of
Lipschitz-Killing curvatures of the excursion set Eh(Y, S). Thus, [AT03] showed
that E[Lj(Eh(Y, S))] can be obtained immediately from Hadwiger’s formula. Re-
placing the set E by the excursion sets Eh(Y, S) of Y , we have

E[Lk(Eh(Y, S))] =

∫
Graff(N,N−k)

E[L0(Eh(Y, S) ∩ V )]dµNN−k(V )

=

N−k∑
j=0

ρj(h)

∫
Graff(N,N−k)

Lj(S ∩ V )dµNN−k(V )

=

N−k∑
j=0

[
k + j

j

]
Lj+k(S)ρj(h)

(3.23)

Further details and proofs of the expression in (3.18) for the non-isotropic Gaussian
and the non-Gaussian random fields can be found in [AT03, AT07, Adl08, AT11].

3.5 Conclusion

This chapter highlights the basic results in both integral geometry and differen-
tial topology that enables estimating the geometric structure of the random excur-
sion sets. At the first stage, the expected number of the local maxima of a regular
random field, and the expected Euler-Poincaré characteristic of its excursion sets

4. The Grassmanian of k−dimensional linear subspaces of Rk, (k = 0, ..., N) is a compact
homogeneous space with respect to the rotation group [SW08]. The affine Grassmanian Gr(N, k)
is locally compact homogeneous space with respect to the motion group and carries a locally finite
motion invariant measures, denoted by µk, and normalized so that

µNk (Gr(N, k)) =

[
N

k

]
(3.20)

.
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are reviewed. The expected Euler-Poincaré characteristic of the excursion sets ob-
tained at high threshold becomes very close to the number of the local maxima,
and for higher thresholds it tends to that number with probability one, since the
excursion set will include only the number of the connected components, whereas
the holes will disappear. In the second stage, a general formulae of the geomet-
ric structure of the excursion sets known as the mean intrinsic volumes, or mean
Lipschitz-Killing curvatures are expressed by Hadwiger’s formulae, which states that
one can characterise the geometry of a given set using Euler-Poincaré characteristic
of its lower dimensional cross-sections. For the random fields, the mean intrinsic
volumes including the expected Euler-Poincaré characteristic are expressed in terms
of the intrinsic volumes of the metric space, and the EC densities which depend on
the random field model. In the next part, we will give the expectations of the EC
densities of some interesting non-Gaussian random fields, that were not evaluated
in the literature, in order to estimate their local maxima (or minima) and to esti-
mate the LKCs of their excursion sets. The interest of these geometric descriptors
is derived in the application part.
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4.1 Introduction

This chapter defines a class of mixed random fields that results from the linear
sum of Gaussian and non-Gaussian random fields, exclusively, student’s t random
fields, or so called t−fields, defined on a non-empty compact subsets of the two-
dimensional euclidean space R2. We are interested in studying the behaviour of the
mixed Gaussian-t random fields using their geometric and topological characteris-
tics, namely intrinsic volumes (Lipschitz-Killing curvatures LKCs), or equivalently
Minkowski functionals with respect to normalization. We gave the explicit formu-
lae of these functionals for the two-dimensional excursion sets, [AP12, AP13a], in
order to model the topography of real surfaces, (see the application part). Then, we
studied the behaviour of the Gaussian-t random field near its extremal points using
the expected Euler-Poincaré characteristic on simulation examples.

4.2 Linear mixed Gaussian−t distribution

4.2.1 Univariate distribution

Definition 4.2.1. Let G ∼ Normal(0, 1) be a random variable of standard normal
distribution and T ∼ tν be a student’s t random variable with ν degrees of free-
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dom independent of G. A random variable Y is said to have a mixed Gaussian−t
distribution if it is expressed as:

Y = µY + σY (G+ βT ν), (4.1)

where νY , σ2
Y are the mean and the variance of Y , respectively, and β ∈ R+ \ {0}.

A random variable Y that has a mixed Gaussian−t distribution will be denoted by
(Y ∼ GT νβ ).

The probability density function of Y , denoted by pY (y), is then the convolution
between the G and T ν probability density functions, and it is written by:

pY (y) =
Γ
(
ν+1

2

)
2πβσY Γ

(
ν
2

) (
ν
2

)1/2 ∫ ∞−∞
(

1 +
(y − µY − u)2

β2σ2
Y ν

)− ν+1
2

e−u
2/2σ2

Y du, (4.2)

4.2.2 Mixed Gaussian−t multivariate distribution

Let Y = (Y1, ..., Yd)
t, (d > 1) be Rd-valued random variable on Rd, where each

vector component Yi is represented as:

Yi = Gi + βiT
ν
i , (i = 1, ..., d) (4.3)

Then, Y has a mixed Gaussian−t multivariate distribution with ν degrees of free-
dom, and its probability density function is given by:

pY(y) = φ(y; ΣG) ∗ td(y;β, ν,Σ), y ∈ Rd (4.4)

where φ(y; Σ) is the multivariate normal probability density function (pdf) of
the d−dimensional normal vector G with the (d × d) covariance matrix ΣG, and
td(.;β, ν,Σ) is the d−dimensional pdf of the t variate with ν degrees of freedom,
(d× d) covariance matrix Σ, and scale vector β = (β1, ..., βd)

t.

4.3 Mixed Gaussian−t random field, GT ν
β

Let {Y (x) : x ∈ S}, be a stationary random field on a non-empty compact
subset S ⊂ RN , then Y (x) belongs to the mixed Gaussian-t random fields if it is
defined as follows:

4.3.1 Definition

Let Z0(x), Z1(x), ..., Zν(x), x ∈ S, be centered, homogeneous, independent, and
identically distributed (i.i.d.) Gaussian random fields, with unit variance, and with
Var(∂Zi/∂x) = Λ, (i = 0, ..., ν). Let G(x) be a stationary centered real-valued
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Gaussian random field, independent of all Zi, (i = 0, ..., ν), with unit variance, and
Var(∂G/∂x) = ΛG. Then, for a real value β > 0, the sum given by:

Y (x) = G(x) +
βZ0(x)[∑ν

k=1 Z
2
k(x)/ν

]1/2 , (4.5)

defines a stationary GT νβ real-valued random field with ν degrees of freedom, at any
fixed point x ∈ S. The marginal distribution of Y (x) at any fixed x is the GT νβ
probability density function, given in equation (4.2), with ν degrees of freedom.
Notice that the second term in the right hand of the equation (4.5) is the t−field
with ν degrees of freedom, and with the scale factor β. It is restricted to the
condition ν > N , in order to ensure that the t−field is well defined with almost no
zeros in the denominator, [Wor94]. Thus, the definition of Y (x) well be restricted
to ν > N .

4.3.2 Representation of derivatives

Following Lemmas A.0.1 and A.0.3, in the appendix part, in the next Lemma,
the first and second derivatives of the mixed Gaussian−t random field Y (x) can be
directly expressed in terms of independent random variables.

Lemma 4.3.1. The first and second derivatives Ẏ , and Ÿ of the mixed Gaussian−t
random field, Y = Y (x), can be expressed in terms of independent random variables
at any fixed point x ∈ S as follows:

(i) Ẏ = z1 + βν1/2

(
1 +

(Y −G)2

β2ν

)
W−1/2z2

(ii) Ÿ = −GΛG + V + βν1/2

(
1 +

(Y −G)2

β2ν

)
W−1{−β−1ν−1/2(Y −G)(Q− 2z2z

t
2)

− z2z
t
3 − z3z

t
2 +W 1/2H}

where G ∼ Normal1(0, 1), W ∼ χ2
ν+1, z1 ∼ NormalN (0,ΛG), z2, z3 ∼

NormalN (0,Λ), Q ∼ WishartN (Λ, ν − 1), V ∼ NormalN×N (0,M(ΛG)), and
H ∼ NormalN×N (0,M(Λ)), all independently.

In the next section, we will focus on calculating the EC densities of the two-
dimensional excursion sets of the Gaussian−t random field, Y (x). Toward this aim,
Y (x) should be considered suitably regular in order to use the derivatives in Lemma
4.3.1. It is trivial that Y (x) satisfies the regularity conditions discussed in chapter 3
(section 3.2), since both Gaussian and t−field do, as proved by [Adl81] and [Wor94],
respectively. Notice that if ΛG = Λ, then one can use the coordinate transformation
x̃ = Λ1/2x to simplify the calculations. In our case, we will keep the coordinates
and we will assume that the variance-covariance matrix ΛG and Λ are not equal,
for generality.
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4.4 The EC densities of the GT ν
β excursion sets

In the following theorem we derive the first three EC densities of the two-
dimensional mixed Gaussian−t random field, Y (x), x ∈ S, where S ⊂ RN ,
N = 2. To prove this theorem, we shall use some Lemmas and theorems given
in [Adl81, Wor94, CW99].

Theorem 4.4.1. The j−th dimensional EC density, ρj(.), j = 0, 1, 2 for an
isotropic GTνβ random field, Y (x), x ∈ R2, with ν degrees of freedom, ν > 2,
and β > 0, can be expressed at a given level h as follows:

(i) ρ0(h) =
Γ
(
ν+1

2

)
(2π)βΓ

(
ν
2

) (
ν
2

)1/2 ∫ ∞
h

∫ ∞
−∞

(
1 +

(y − u)2

β2ν

)− ν+1
2

e−u
2/2dudy

(ii) ρ1(h) =
λ1/2

(2π)3/2

∫ ∞
−∞

(
1 +

(h− u)2

β2ν

)− ν−1
2

e−u
2/2du

+
λ

1/2
G Γ

(
ν+1

2

)
(2π)3/2β

√
νΓ
(
ν
2

) ∫ ∞
−∞

(
1 +

(h− u)2

β2ν

)− ν+1
2

e−u
2/2du

(iii) ρ2(h) =
2

1
2λΓ

(
ν+1

2

)
(2π)2Γ

(
ν
2

) ∫ ∞
−∞

(h− u)

β
√
ν

(
1 +

(h− u)2

β2ν

)− ν−1
2

e−u
2/2du

+
λGΓ

(
ν+1

2

)
(2π)2Γ

(
ν
2

)
β
√
ν/2

∫ ∞
−∞

u

(
1 +

(h− u)2

β2ν

)− ν+1
2

e−u
2/2du

where ΛG = λGI2, and Λ = λI2.

Proof. In this proof the general formula of the EC density given in chapter 3 will
be used. Furthermore, the expectations will be evaluated by conditioning on the
Gaussian component, G = u, on Y = h and on W , where W is independent of both
Y and G, as follows:

ρj(h) = (−1)j−1

∫ ∞
−∞

EW
[
E
(
Ẏ +
j det(Ÿ |j−1)|Ẏ1 = 0, ..., Ẏj−1 = 0, Y = h,G = u,W

)
p ˜̇Y

(0;h,G,W )
]
pY (h;G = u)φ(u)du

where the term Ÿ |j−1 represents the sub-matrix of the first (j−1)×(j−1) elements
of the Hessian matrix Ÿ with respect to x1, ..., xj−1, and Ẏj refers to the j−th
component of the gradient Ẏ with respect to xj . p ˜̇Y

(0;h,G) is the joint probability

density of the first (j − 1) component of Ẏ , denoted ˜̇Y , at zero conditional on
Y = h, W , and G. Whereas pY (h;G = u) is the probability density function of
Y = h conditional on G = u, and φ(u) is the normal probability density function.
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Conditional on G = u, Y is a t−field with ν degrees of freedom, scale factor
β, and with mean value G = u. Thus, its marginal distribution is the known t

probability density function:

pY (h;G = u) =
Γ
(
ν+1

2

)
β
√
πνΓ

(
ν
2

) (1 +
(h− u)2

β2ν

)− ν+1
2

(4.6)

Let D = ΛG + β2ν(1 + (h − u)2/β2ν)2W−1Λ, the probability density function of
˜̇Y at zero conditioning on Y = h, G = u, and W is:

p ˜̇Y
(0;Y = h,G = u,W ) = (2π)−

j−1
2 det(D̃)−

1
2 (4.7)

where D̃ is the (j − 1)× (j − 1) sub-matrix of D.
Furthermore, Ÿ |j−1 and Ẏj are independent, so one can write:

E
[
(Ẏ +
j )det(Ÿ |j−1)| ˜̇Y = 0, Y = h,G = u,W

]
=

E
[
(Ẏ +
j )| ˜̇Y = 0, Y = h,G = u,W

]
× E

[
det(Ÿ |j−1)| ˜̇Y = 0, Y = h,G = u,W

]
(4.8)

Conditioning on ˜̇Y = 0, i.e., (Ẏ1 = 0, ..., Ẏj−1 = 0), then the first (j−1) components
of z1 and z2 will be zeros since z1 and z2 are independent. Hence, one can write by
also conditioning on Y = h, G = u, and W :

E
[
(Ẏ +
j )| ˜̇Y = 0, Y = h,G = u,W

]
= (2π)−

1
2

(
λGj + β2ν

(
1 +

(h− u)2

β2ν

)2

W−1λj

) 1
2

(4.9)
where λGj , λj are the j−th elements of the matrix ΛG,Λ, respectively, and due to
isotropy one can write λGj = λG and λ = λj .
and

E
[
(Ÿ|j−1)| ˜̇Y = 0, Y = h,G = u,W

]
= E

[
det
(
A+ aQ̃+ bH̃

)]
(4.10)

where a = −(h − u)(1 + (h − u)2/β2ν)W−1, b = βν1/2(1 + (h − u)2/β2ν)W−1/2,
A = (−uΛ̃G + Ṽ ), Λ̃G, Λ̃ are the (j − 1) × (j − 1) matrix of the first (j − 1)

rows and columns of ΛG and Λ, respectively, Ṽ ∼ Normal(j−1)×(j−1)(0,M(Λ̃G)),
H̃ ∼ Normal(j−1)×(j−1)(0,M(Λ̃)), and Q̃ ∼Wishartlj−1(Λ̃, ν − 1).

Let consider B a (j − 1)× (j − 1) orthogonal matrix which diagonalises Λ̃, such
that BtΛ̃B = Ij−1, then:

E
[
det(Ÿ |j−1)| ˜̇Y = 0, Y = h,G = u,W

]
= det(Λ̃)E[det(Bt(Ã+ aQ̃+ bH̃)B)]

= det(Λ̃)E[det(A? + aQ? + bH?)]
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where A? = BtÃB, Q? = BtQ̃B ∼ Wishartj−1(Ij−1, ν − 1), and
H? = BtH̃B ∼ Normal(j−1)×(j−1)(0,M(I)).

Using Lemma A.0.6 in Appendix A, we obtain:

E
[
det(Ÿ |j−1)| ˜̇Y = 0, Y = h,G = u,W

]
= det(Λ̃)

b j−1
2 c∑

n=0

j−1−2n∑
k=0

(
ν − 1

k

)
(−1)n(2n+ k)!

2nn!
b2nE(detrj−1−2n−k(A

?))

(4.11)

where detrl(A?), (l = j − 1 − 2n − k), is the sum of the determinants of all l × l
principal minors of A?. Let C = BtΛ̃GB, such that A? = −uC + K, where
K ∼ Normal(j−1)×(j−1)(0,M(C)), and let L be an orthogonal matrix such that
LtCL = Ij−1, then:

E(detrl(A?)) =

(
j − 1

l

)
det(C |l)E(det(−uIl +K?

|l)) (4.12)

where K? ∼ Normal(j−1)×(j−1)(0,M(I)), and the notation |l represents the sub-
matrix composed of the l × l components.
Since, the distribution of any l × l principal minor of K? is Normall×l(0,M(I)),
then using Lemma A.0.4, and using the fact that the determinant det(B) =

det(Λ̃)−1/2 we have:

E(detrl(A?)) = det(Λ̃−1
|l )det(Λ̃G|l)

(
j − 1

l

) b l2 c∑
m=0

(−1)l−m(2m)!

2mm!
ul−2m (4.13)

Putting equations (4.13) and (4.11) together yields:

E
[
det(Ÿ |j−1)| ˜̇Y = 0, Y = h,G = u,W

]
= det(Λ̃)×

b j−1
2 c∑

n=0

j−1−2n∑
k=0

(
j − 1

j − 1− 2n− k

)(
ν − 1

k

)
β2nνn(h− u)k

(
1 +

(h− u)2

β2ν

)2n+k

W−(n+k)

× det(Λ̃
−1
|j−1−2n−k)det(Λ̃G|j−1−2n−k)

b j−1−2n−k
2 c∑

m=0

(−1)j−1−n−m(2n+ k)!(2m)!

2n+mn!m!
uj−2n−k−2m−1

(4.14)
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Hence:

E
[
(Ẏ +
j )det(Ÿ |j−1)| ˜̇Y = 0, Y = h,G = u,W

]
p ˜̇Y

(0;h, u,W ) =

(2π)−
j
2λj−1

G

(
λG + λβ2ν(1 + (h− u)2/β2ν)2W−1

)− j
2

+1

b j−1
2 c∑

n=0

j−1−2n∑
k=0

(
ν − 1

k

)(
j − 1

j − 1− 2n− k

)
β2nνn(h− u)k

(
1 +

(h− u)2

β2ν

)2n+k (
λG
λ

)−(2n+k)

×
b j−1−2n−k

2 c∑
m=0

(−1)j−1−n−m(2n+ k)!(2m)!

2n+mn!m!
W−(n+k)uj−2n−k−2m−1 (4.15)

where Λ̃G = λGIj−1, Λ̃ = λIj−1 due to isotropy.
Since W ∼ χ2

ν+1, and the moment E(W k) are given by:

E[W k] = 2k
Γ((ν + 1)/2 + k)

Γ((ν + 1)/2)
(4.16)

Then by applying the expectation over W , and multiplying by the probability den-
sity function of Y conditioning on G, then integrating over the probability density
function of G, we obtain the results for ρ2(h) and ρ1(h).
Finally, for j = 0, ρ0(h) = P[Y > h] which given the result in (i) of theo-
rem 4.4.1.

4.5 The extreme values of the Gaussian−t random field

Corollary 4.5.1. The expected Euler-Poincaré characteristic of the two-dimensional
excursion set, Eh(Y, S), at high levels h, (h → ∞), where it does not touch the
boundaries of S, is:

E[χ(Eh(Y, S))] = Area(S)
2

1
2λΓ

(
ν+1

2

)
(2π)2Γ

(
ν
2

) ∫ ∞
−∞

(h− u)

β
√
ν

(
1 +

(h− u)2

β2ν

)− ν−1
2

e−u
2/2du

+Area(S)
λGΓ

(
ν+1

2

)
(2π)2Γ

(
ν
2

)
β
√
ν/2

∫ ∞
−∞

u

(
1 +

(h− u)2

β2ν

)− ν+1
2

e−u
2/2du

(4.17)

Corollary 4.5.2. Let Ymax = sup{Y (x) : x ∈ S}. Then, for ν > 2, and h→∞

P(Ymax ≥ h)→ Area(S)
2

1
2λβν−2ν

ν−2
2 Γ

(
ν+1

2

)
(2π)

3
2 Γ
(
ν
2

) h−(ν−2), if β > 0

P(Ymax ≥ h)→ Area(S)
λG

(2π)
3
2

× he−
h2

2 , if β → 0

(4.18)
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Proof. From [Has78] and [Adl81], we have

P(Ymax ≥ h) = P(M+
h (Y, S)) ≈ E[χ(Eh(Y, S))] (4.19)

when h → ∞. Where M+
h (Y, S) denotes the number of the local maxima of Y (x)

above h inside S. Then, the first result can be obtained immediately from equa-
tion (4.17). Whereas, the second result is obtained from replacing (h− u)/β, equa-
tion (4.17), by a variable y, then, letting β → 0 when h→∞.

4.6 The expected intrinsic volumes of the GT ν
β excursion

sets over rectangles of R2

Let S = [0, a]2, where a is the one side length of S, then for an isotropic
stationary centered real-valued Gaussian−t random field, Y (x), the expected in-
trinsic volumes, which are in this case Minkwoski functionals, of its excursion set,
Eh(Y, [0, a]2), at a given level h, using the general formula in equation (3.18), chap-
ter 3 are:

1. E(Ar(h)) = ρ0(h) : the mean area function of Eh(Y, [0, a]2)

2. E(Cr(h)) = 2aρ1(h) + ρ0(h) : half the mean contour length of Eh(Y, [0, a]2)

3. E(χ(h)) = a2ρ2(h) + 2aρ1(h) +ρ0(h) : the mean Euler-Poincaré characteristic
of Eh(Y, [0, a]2)

where L0([0, a]2) = 1, L1([0, a]2) = 2a, and L2([0, a]2) = a2.

4.7 Simulation Results

In order to represent the previous formulae in theorem 4.4.1, simulation
results are illustrated in this section. A set of 100 two-dimensional realizations
of the GT νβ random fields are generated on a rectangle [0, 1]2 with a resolution
n = 512 × 512 pixels. Each random realization is supposed to be a linear mixture
of a two-dimensional homogeneous Gaussian random field with covariance matrix
ΣG = σ2

GI2, such that σG = 11 pixels, and a two-dimensional t−field with 5 degrees
of freedom, and with scale factor β = 0.2, at each pixel, (see one representative
result in Fig. 4.1). The 100 realizations of the t random fields in the aforementioned
example are generated each one using 6 (i.i.d) homogeneous Gaussian random
fields with covariance matrix Σ = σ2I2, such that σ = 3 pixels. Then, the mean
Minkowski functionals, including the expected Euler-Poincaré characteristic, are
estimated from the 100 simulations and they are compared to the mean ones given
analytically, (see Fig. 4.2). The results show a good approximation between the
simulated and the theoretical Minkowski functionals.

Now, we will focus on illustrating the influence of the scale factor β on the
expected Euler-Poincaré characteristic at the high thresholds, where it estimates
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Figure 4.1: An exemplary illustration of a two-dimensional GT νβ random field gener-
ated from the linear mixture of a Gaussian RF and a student’s t one with 5 degrees
of freedom and with β = 0.2.

Figure 4.2: Fitting the analytical and the simulated mean Minkowski functionals of
100 realizations of the GT 5

0.2 RFs.
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Figure 4.3: Comparing the expected Euler-Poincaré characteristic, E[χ(Eh)], of the
GT νβ excursion sets to the Gaussian one for β = 0.05, β = 0.8, respectively, and
ν = 5 degrees of freedom. In the second example (right plot), the E[χ(Eh)] for the
GT 5

0.8 is also compared to the theoretical one for the t−field of 5 degrees of freedom.

the extrema of Y , for 0 < β < 1. Toward this aim, two simulation examples are
generated using the same parameters with different values of β, (β = 0.05, 0.8).
The analytical upper tail probability of Y , P[Ymax ≥ h], in both examples is
compared to the one, P[Gmax ≥ h], of the Gaussian random field, (see Fig. 4.3),
given analytically by [Adl81]:

P[Gmax ≥ h] ≈ E[χ(Eh(G, h))] = Area(S)λGhe
−h2/2/(2π)3/2

In the second example, we also compared the upper tail probability of Y to the one
of a t−field, [Wor94], with same degrees of freedom and β = 0.8.
Fig. 4.3 shows that β = 0.05 the number of the local maxima of the GT νβ random
field, Y , approximates the one of the Gaussian random field. Whereas, for β = 0.8,
the number of the extreme values of Y are close to the one of t−field. However, the
size of the isolated clusters will change,(see Fig.??) as example. Several simulation
examples are done for different values of β in the interval [0, 1]. The results show
that when β < 0.1, the number of the maxima of Y is always close to the number of
the Gaussian maxima, whereas when β ≥ 0.5 they approximate the number of the
t−field maxima.

4.8 Conclusion

A stationary Gaussian−t random field is defined, in this chapter, from the linear
mixture of independent Gaussian and scaled t random fields. The expected EC
densities are given analytically for the two-dimensional excursion sets. The EC
densities are used to estimate the intrinsic volumes including the Euler-Poincaré
characteristics of the isotropic, centred Gaussian−t random fields defined on two-
dimensional rectangles of the Euclidean space. Simulation examples are investigated
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in order to illustrate the analytical expectations with the numerical one computed
from the simulation examples. Furthermore, the simulations are used to illustrate
the influence of the scale factor β of the t−field on the behaviour of the Gaussian−t
random field near the global maxima, and demonstrated what expected theoretically.
The results showed that the expected number of the maximas of the GT νβ random
field approximates the number of the maximas of the t−field. However, when β → 0,
the GT νβ behaves differently and the number of its extreme values converges to the
number of the ones of Gaussian random fields. The motivation of this chapter could
be seen in the application part (see Part IV).
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5.1 Introduction

In this chapter, we present a class of skew random fields, namely skew stu-
dent’s t (or skew−t) random fields. The new theoretical results given in this chap-
ter, published in [AP13b, AP13c], are concerned about the geometric quantifiers
of the excursion sets of the skew−t random fields, i.e.; the mean intrinsic volumes
(Lipschitz-Killing curvatures) and the EC densities in both R2 and R3. The defi-
nition of the skew−t random field is based on the stochastic representation of its
multivariate distribution given by [AC03].

5.2 Representation of skew−t distribution

Before tackling the skew−t random fields, and the geometry of there excursion
sets, this section reviews the skew−t distribution, since it will be used later in
this chapter. The skew−t distribution arises as an extension of the student’s t
distribution family, and it has been defined in the literature by different ways, [AC03,
Gen04, Jon08, BLCG10], each associated with skewing the symmetric t distribution
in order to make it more useful for empirical stochastic modelling. We will focus, in
this thesis, on the nicest type of the skew−t family that is based on the skew-normal
distribution, related to [AC99, AC03] and also cited in [Jon08, LLBG10, BLCG10,
CLP12].
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5.2.1 Univariate skew−t distribution

A real-valued random variable Y is said to have a univariate skew−t distribution,
of type [AC03], with ν degrees of freedom, and skewness parameter α ∈ R if its
probability density function is given by:

fY (y;α, ν) =
2

σY
t1(h; ν)T1

(
αh

√
ν + 1

ν + h2
; ν + 1

)
, h = (y− µY )/σY , y ∈ R (5.1)

where µY ∈ R is the mean of Y , σY > 0 is the standard deviation of Y , t1(.; ν) is the
standard student’s t distribution with ν degrees of freedom, and T1 is the student’s
t cumulative distribution function with ν + 1 degrees of freedom at αh

√
ν+1
ν+h2

The real parameter α conflates its skewing role with alternation of the weight of one
of the two density tails. For α > 0 (resp. α < 0) the probability density function
has a positive (resp. negative) skewness, so the right (resp. left) tail will be longer.
When α = 0 the skew−t probability density is the known student’s t distribution.

The stochastic representation of Y that has the probability density function
defined in (5.1), is given by:

Y = µY + σY V
−1/2

(
δ|Z|+

√
1− δ2G

)
(5.2)

where νV ∼ χ2
ν , z,G ∼ Normal(0, 1) are all independent random variables, and

δ = α/
√

1 + α2 [AC99]. So, Y in Eq. (5.2) will be written such that Y ∼ St(ν;α).

5.2.2 Multivariate skew−t distribution

An Rd-valued random variable 1 Y = (Y1, ..., Yd)
t is said to have a multivariate

skew−t distribution with ν degrees of freedom, and skewness α ∈ Rd if, for a
mean vector µY ∈ Rd and a non-negative definite d × d covariance matrix Σ, the
probability density function of Y can be expressed as follows:

fY(y) = 2td(y; ν)T1

(
αt(y− µY )

(
ν + d

ν + hth

)1/2

; ν + d

)
, y ∈ Rd (5.3)

where h = Σ−1/2(y − µY ), tp(.; ν) is the pdf of the d-dimensional t variate with
ν degrees of freedom, and T1(.; ν + d) is the scalar t cumulative distribution with
ν + d degrees of freedom.

Example 5.2.1. For d = 2, (see Fig. 5.1), Y = (Y1, Y2)t. Setting µY = 0, the pdf
of the bivariate skew−t random variable Y is:

fY(y1, y2) = 2t2(y1, y2; ν)T1 (q(α1y1 + α2y2); ν + 2) (5.4)

where q =
√

(ν + 2)/(ν + ytΣ−1y), and Σ =

[
σ2

1 σ1σ2

σ2σ1 σ2
2

]
1. The vectors in all chapters are represented as row vectors and the notation Y t indicates the

vector transpose of Y
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Figure 5.1: Three illustrations of the contour plot of the bivariate skew−t pdf. (a)
α = 0, Σ = 0.5I2, ν = 3, the skew−t bivariate pdf is equivalent to the symmetric
bivariate t pdf. (b) α = (−2;−2), Σ = 0.5I2, ν = 3. (c) α = (2;−2), Σ =

(1,−0.3;−0.3, 1), ν = 5. (d) α = (2; 2), Σ = (1,−0.3;−0.3, 1), ν = 5

5.3 Skew student’s t random field

Let {Y = Y (x) : x ∈ S} be a real-valued smooth random field defined on a non-
empty compact subset S ⊂ RN . Let Ẏ = ∂Y (x)/∂x and Ÿ = ∂2Y (x)/∂x∂xt

be the gradient N−vector and the N ×N Hessian matrix of Y , respectively. This
section will concern about the stochastic representation of Y and its derivatives on
RN assuming that Y is a real-valued skew−t random field.

5.3.1 Definition

Let G0(x), ...., Gν(x), x ∈ S, be a i.i.d, homogeneous, real-valued Gaussian
random fields with zero mean, unit variance, and with second order-spectral moment
matrix Λ = Var(∂Gi/∂x), i = 0, ..., ν. Let Z be a Normal(0, 1) random variable
independent of all Gi, i = 0, .., ν. Then, for a real δ ∈ (−1, 1), a skew−t random
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field is defined at any fixed point x as follows:

Y (x) =
δ|Z|+

√
1− δ2G0(x)(∑ν

k=1G
2
k(x)/ν

)1/2 (5.5)

Notice that the marginal distribution of Y , at any fixed x, is the skew−t distribution
with ν degrees of freedom and skewness α = δ/

√
1− δ2.

Again recalling that the t−field is well defined when ν ≥ N , [Wor94]. Thus, the
definition of the skew−t field will be also restricted to the condition ν ≥ N in order
to avoid that the numerator and denominator both take the value zero inside a
compact set S.

5.3.2 Representation of derivatives

In the following lemma, we extended the representation of the t−field derivatives
given by [Wor94] to represent Ẏ and Ÿ of the skew−t random field Y .

Lemma 5.3.1. The first and second derivatives of Y = Y (x), at any fixed point
x ∈ RN , can be expressed in terms of independent random variables, where the
equality D

= is equality in law, such that:

(i) Ẏ
D
= ν

1
2 (1− δ2)

1
2
(
1 + Y 2/ν

(
1− δ2

))
W−

1
2z

(ii) Ÿ
D
= ν

1
2 (1− δ2)

1
2
(
1 + Y 2/ν

(
1− δ2

))
W−1

{
−ν−1/2

(
1− δ2

)−1/2
Y (P − 2z1z

t
1)

−z2z
t
1 − z1z

t
2 + α|Z|

(
1 + Y 2/ν

(
1− δ2

))−1/2
W 1/2Λ +W 1/2H

}
where δ = α/

√
1 + α2, Z ∼ Normal1(0, 1), Y ∼ St(ν;α), z, z1, z2 ∼

NormalN (0,Λ), P ∼ WishartN (Λ, ν − 1), W ∼ χ2
ν+1(α2), H ∼

NormalN×N (0,M(Λ)), are all independent.

Proof. First, let define V = V (x) such that V =
∑ν

k=1G
2
k, then, the marginal

distribution for V , at any fixed point x ∈ S, is the χ2
ν distribution with ν degrees

of freedom. We shall use the notation F = ν−1/2
(
1− δ2

)−1/2
Y to simplify the

algebraic operations. So, F = V −1/2(α|Z| + G), where V is a χ2 field with ν

degrees of freedom, G is a Gaussian random field, and Z ∼ Normal1(0, 1) is a
normal random variable, all are independent.

Let considerW = V +(α|Z|+G)2. Then, conditional on Z,W has a non-central
χ2
ν+1 marginal distribution with ν + 1 degrees of freedom and with non-centrality

parameter (α2Z2). Since Z is a standard normal random variable with unit
variance, then, the unconditional distribution of W is the χ2

ν+1 distribution with
non-centrality parameter α2, i.e.; W ∼ χ2

ν+1(α2).

The first derivative of F is given by:

Ḟ = −1

2
(α|Z|+G)V −3/2V̇ + V −1/2Ġ (5.6)
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where Z is independent of x ∈ S. Recalling the representation of the first and second
χ2 derivatives derived in [Wor94], and the derivatives for the Gaussian random field
derived in [Adl81], (see Appendix A). The last equation can be written such that:

Ḟ = V −1
[
V 1/2z2 − (α|Z|+G) z1

]
(5.7)

where z1, z2 ∼ NormalN (0,Λ) and are independent.
Let suppose z such that

z = W−1/2
[
V 1/2z2 − (α|Z|+G) z1

]
(5.8)

then, z ∼ NormalN (0,Λ). On the other hand, we have:

V =
W

1 + F 2
; and G =

WF 2

1 + F 2
− α|Z| (5.9)

Replacing F by Y , and putting equations (5.8), (5.9) in (5.7) ends the proof of (i).

For the second derivative F̈ we have:

∂2F

∂x∂xt
=

3

4
(α|Z|+G)V −5/2∂V

∂x

∂V

∂xt
− 1

2
V −3/2

[
∂V

∂x

∂G

∂xt
+
∂G

∂x

∂V

∂xt

]
− 1

2
(α|Z|+G)V −3/2 ∂

2V

∂x∂xt
+ V −1/2 ∂2G

∂x∂xt

By replacing the second derivative of the χ2 field, V , and the Gaussian field, G, (see
Appendix A), we have:

∂2F

∂x∂xt
= V −1

(
−F (P − 2z1z

t
1)− z1z

t
2 − z2z

t
1 + α|Z|V 1/2Λ +

[
V 1/2H2−

(α|Z|+G)H1

])
(5.10)

where H1,H2 ∼ NormalN×N (0,M(Λ)), and P ∼WishartN (Λ, ν − 1).

Notice that H1 and H2 are independent, so letting H be such that:

H = W−1/2
[
V 1/2H1 − (α|Z|+G)H2

]
(5.11)

yields H ∼ NormalN×N (0,M(Λ)). Putting (5.9) and (5.11) in (5.10) gives the
result in (ii), and end the proof of the lemma.

In the following section, we will assume that the variance-covariance matrix
Λ = IN for simplicity, and we will use the derivatives given in 5.3.1 to calculate
the EC densities for the isotropic skew−t random fields. The extension to the
general case including Λ, for the stationary skew−t random fields, can then be done
by changing the coordinates of the set S such that x̃ = Λ1/2x. In order to find
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the mean Lipschitz-Killing curvatures for the skew−t random fields, we have to
assume some regularity conditions on Y (x). Since Y (x) is based on components
of Gaussian random fields by definition, then, it is sufficient that each component
satisfies the conditions of theorem to consider Y is suitably regular. This was proved
by [Wor94] for F and student’s t random fields. Thus, the proof also directly holds
for the skew−t random fields following the same arguments given by [Wor94].

5.4 The EC densities of the skew−t excursion sets

Under the assumption that the skew−t random field satisfies the regularity con-
ditions presented by Theorem in chapter 3, the following theorem gives the j−th EC
densities ρj(h) of the skew−t random field, Y (x), x ∈ S, where S is a non-empty
compact subset of RN , (N ≤ 3).

Theorem 5.4.1. For ν ≥ N , (N > 1), the j−th dimensional EC density, ρj(.),
(0 < j ≤ N), of the skew−t random field Y , on S ⊂ RN , for a given threshold h is
expressed as:

ρj(h) = (−1)j−1(2π)−
j+2

2 2
j+2

2

(
1 +

h2

ν

)− ν+1
2

T1

(
αh

√
ν + 1

ν + h2
; ν + 1

)
b j−1

2
c∑

n=0

j−1−2n∑
k=0

(
ν − 1

k

) (−1)k+n(2n+ k)!Γ
(
j−2n−k

2

)
Γ
(
ν−k

2

)
22n+kn!Γ

(
ν+1

2

) ν−
k
2 δj−2n−k−1

(1− δ2)−
k−2

2 hk
(

1 +
h2

ν(1− δ2)

)− j−2n−k−3
2

(5.12)

where α = δ/
√

1− δ2 and δ2 < 1.

Proof. The theorem extends the results obtained by [Wor94] for the t−fields. In
this proof, to evaluate the EC densities, we will use Morse theory mentioned in
chapter 3, while the expectations will be evaluated by conditioning on Y , W and
Z, and then by taking the expectations over W conditional on Z.

Conditional on Z, W ∼ χ2
ν+1(α2Z2) independent of Y , where Z ∼

Normal1(0, 1). So, we ρj(h) can be expressed as:

ρj(h) =
(−1)j−1

(2π)
1
2

pY (h)∫ ∞
−∞

EW
[
E
[
Ẏ +

(j)det(Ÿ |j−1)|Ẏ |j−1 = 0, Y = h,W,Z
]
pẎ |j−1

(0;h,W,Z)
]

× e−u2/2du

(5.13)
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where Ẏ |j−1 = (Ẏ1, ..., Ẏj−1), with j > 0.
The joint probability density function of the first (j−1) components of Ẏ conditional
on Y , W , and Z is a Gaussian multivariate density function which has the following
expression at zero:

pẎ |j−1
(0, ..., 0;h,W,Z) =

[
2πν(1− δ2)

(
1 +

h2

ν(1− δ2)

)2

W−1

]− j−1
2

(5.14)

The components Ẏ(j) and Ÿ |j−1 are both independent under the conditional ex-

pectations. Thus, the term E
(
Ẏ +

(j)det(Ÿ |j−1)|Ẏ1 = 0, ..., Ẏj−1 = 0, Y = h,W,Z
)
, in

(5.13), can be written as:

E
(
Ẏ +

(j)det(Ÿ |j−1)|Ẏ1 = 0, ..., Ẏj−1 = 0, Y = h,W,Z
)

=

E
(
Ẏ +

(j)|Ẏ |j−1 = 0, Y = h,W,Z
)
E
(
det(Ÿ |j−1)|Ẏ |j−1 = 0, Y = h,W,Z

) (5.15)

Conditioning on Y = h, W , and Z, Ẏ = az, where a = ν
1
2 (1 − δ2)

1
2 (1 + h2/ν(1 −

δ2))W−1/2 and z ∼ NormalN (0, IN ) which yields:

E
(
Ẏ

+
(j)|Ẏ |j−1 = 0, Y = h,W,Z

)
= a(2π)−1/2 (5.16)

On the other hand, let A = ν1/2(1 − δ2)1/2α|Z|(1 + h2/ν(1 − δ2))1/2W−1/2, b =

ν1/2(1 − δ2)1/2(1 + h2/ν(1 − δ2))W−1/2, and c = −h(1 + h2/ν(1 − δ2))W−1 such
that Ÿ can be written as

Ÿ = c

(
P +

b

c
H +

1

c
A

)
(5.17)

Then, using lemmas (A.0.5) and (A.0.6) due to [Wor94], (see appendix A), we
get:

E
(
det(Ÿ |j−1)|Ẏ j−1 = 0, Y = h,W,Z

)
= cj−1E

[
det|j−1

(
P +

b

c
H +

1

c
A

)]

=

b j−1
2
c∑

n=0

j−1−2n∑
k=0

(
ν − 1

k

)
(−1)n(2n+ k)!

2nn!
b2nckAj−2n−k−1

(5.18)

Since W is independent of Y , the expectations are computed over W . Notice that
conditioning on Z, W is the non-central χ2 field with ν + 1 degrees of freedom and
non-centrality parameter α2Z2, which yields to:

E[W k|Z] ≈ 2ke−
α2Z2

2
Γ((ν + 1)/2 + k)

Γ((ν + 1)/2)
(5.19)
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where Z ∼ Normal1(0, 1).
which yields to:

EW
[
E
[
Ẏ

+
(j)det(Ÿ |j−1)|Ẏ |j−1 = 0, Y = h,W,Z

]
pẎ |j−1

(0, ..., 0;h,W,Z)
]

=

(2π)−
j
2 ν

1
2 (1− δ2)

1
2

b j−1
2
c∑

n=0

j−2n−1∑
k=0

(
ν − 1

k

)
(−1)n+k(2n+ k)!Γ

(
ν−k

2

)
2(2n+k+1)/2n!Γ

(
ν+1

2

) ν−
k
2 (1− δ2)−

k
2

(
1 +

Y 2

ν(1− δ2)

)− j−2n−k−3
2

Y k × (α|Z|)j−2n−k−1 e−
α2Z2

2

(5.20)

Putting the last result in equation (5.13), then integrating over the probability
density function of Z, φZ(.), and multiplying by the probability density function of
Y :

pY (h) = 2
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

) (1 +
h2

ν

)− ν+1
2

T1

(
αh

√
ν + 1

ν + h2
; ν + 1

)
, (5.21)

gives ρj(h), for j > 0, and ends the proof.

For j = 0, ρ0(h) = P[Y ≥ h], which yields together with theorem 5.4.1 to the
following result.

Corollary 5.4.1. The first four EC densities, ρj(.), j = 0, 1, 2, 3, of the skew−t
random field Y , for a given threshold h are:

(i) ρ0(h) = 2
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

) ∫ ∞
h

(
1 +

y2

ν

)− ν+1
2

T1

(
αy

√
ν + 1

y2 + ν
; ν + 1

)
dy

(ii) ρ1(h) =
2

2π
(1− δ2)

(
1 +

h2

ν(1− δ2)

)(
1 +

h2

ν

)− ν+1
2

T1

(
αh

√
ν + 1

ν + h2
; ν + 1

)

(iii) ρ2(h) =
2

(2π)3/2

(1− δ2)
1
2 Γ
(
ν+1

2

)(
ν
2

) 1
2 Γ
(
ν
2

) h

(
1 +

h2

ν(1− δ2)

)(
1 +

h2

ν

)− ν+1
2

T1

(
αh

√
ν + 1

ν + h2
; ν + 1

)[
1− 2δ(1− δ2)

1
2
π−

1
2 ν

1
2 Γ
(
ν
2

)
Γ
(
ν+1

2

)
h

(
1 +

h2

ν(1− δ2)

)− 1
2

]

(iv) ρ3(h) =
2

(2π)2

(
1 +

h2

ν(1− δ2)

)(
1 +

h2

ν

)− ν+1
2

T1

(
αh

√
ν + 1

ν + h2
; ν + 1

)
[
ν − 1

ν
h2 − (1− δ2)−

Γ
(
ν+1

2

)
π

1
2 ν

1
2 Γ
(
ν
2

)δ(1− δ2)
1
2h

(
1 +

h2

ν(1− δ2)

)− 1
2

+

δ2(1− δ2)

(
1 +

h2

ν(1− δ2)

)−1
]
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5.5 The extreme values of the skew−t random field

Let M+
h (Y, S), and M−h (Y, S), be the number of the local maxima and the num-

ber of the local minima, greater and less than a threshold h, respectively, of a the
skew−t random field Y inside S. Then, the following theorem gives the expected
number of the local maxima and minima of Y inside S.

Theorem 5.5.1. Under the regularity conditions, for a stationary skew−t random
field, Y , and for ν > N ,we have:

(i) P[M+
h (Y, S)] =

volN (S)det(Λ)(ν − 1)!ν
ν−N

2 Γ
(
ν−N+1

2

)
2N−1(π)

N+1
2 (1− δ2)

N−1
2 (ν −N)!Γ

(
ν
2

)h−(ν−N)T1(α
√
ν + 1; ν + 1)

×
{

1 +O(h−1)
}

(ii) P[M−h (Y, S)] =
volN (S)det(Λ)(−1)N−1(ν − 1)!ν

ν−N
2 Γ

(
ν−N+1

2

)
2N−1(π)

N+1
2 (1− δ2)

N−1
2 (ν −N)!Γ

(
ν
2

) h−(ν−N)

× T1(−α
√
ν + 1; ν + 1)

{
1 +O(h−1)

}
volN (S)det(Λ) = L2(S) is the N−dimensional Lipschitz-Killing curvature of S, and
α = δ/

√
1− δ2 is the skewness parameter.

Proof. using the formulae in and conditional on Y , W and Z we can write:

P[M+
h (Y, S)] = volN (S)det(Λ)

1√
2π

∫ ∞
h

∫ ∞
−∞

EW
[
E
[
−det(Ÿ −)|Ẏ = 0, Y = y,W,Z

]
×pẎ (0; y,W,Z)

]
e−u

2/2pY (y)dudy

where pẎ (0; y,W,Z) is the probability density function of Ẏ at 0 conditional on
Y = y, W , and Z, and pY (y) is the probability density function of Y .
From Lemma 5.3.1, for Ẏ = 0 and letting Y →∞, Ÿ will converge to the following
negative definite matrix:

Ÿ → −
(
1 + Y 2/ν

(
1− δ2

))
YW−1P (1 +O(Y −1)) (5.22)

Thus, by computing the determinant of Ÿ −, and multiplying by pẎ (0; y,W,Z), we
obtain:

E
[
−det(Ÿ −)|Ẏ = 0, Y = y,W,Z

]
pẎ (0; y,W,Z) =

(2πν(1− δ2))−
N
2 yNW−

N
2 E[det(P )](1 +O(y−1))

where E[det(P )] = (ν − 1)!/(ν − N − 1)!, and pẎ (0; y,W,Z) = (2πν(1 − δ2)(1 +

y2/ν(1− δ2))2W−1)−N/2.
Computing the expectations over the non-central χ2

ν+1, denoted by W , conditional
on Z, then integrating over Z, we get:

EW
[
E
[
−det(Ÿ −)|Ẏ = 0, Y = y,W,Z

]
pẎ (0; y,W,Z)

]
=

(ν − 1)!Γ
(
ν−N+1

2

)
yN

2N (πν)
N
2 (1− δ2)

N−1
2 (ν −N − 1)!Γ

(
ν+1

2

)
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Multiplying by the density of Y , yields:

EW
[
E
[
−det(Ÿ −)|Ẏ = 0, Y = y,W,Z

]
pẎ (0; y,W,Z)

]
pY (y) =

2(ν − 1)!Γ
(
ν−N+1

2

)
ν
ν−N

2 yN−ν−1

2N (π)
N+1

2 (1− δ2)
N−1

2 (ν −N − 1)!Γ
(
ν
2

)T1(α
√

1 + ν; ν + 1)

Then by integrating and over y, we obtain the first result (i).
Notice that P[M−h (Y, S)] = P[M+

−h(−Y, S)]. Thus, by evaluating the expectations
of P[M+

−h(−Y, S)] and following the same previous arguments when letting h→∞,
we give the result in (ii) and ends the proof.

Corollary 5.5.1. Let Ymax = sup {Y (x) : x ∈ S}, and Ymin = inf {Y (x) : x ∈ S}.
Then, for ν > N , when h→∞:

(i) P[Ymax ≥ h]→
volN (S)det(Λ)(ν − 1)!ν

ν−N
2 Γ

(
ν−N+1

2

)
2N−1(π)

N+1
2 (1− δ2)

N
2 (ν −N)!Γ

(
ν
2

) h−(ν−N)

× T1(α
√
ν + 1; ν + 1),

(ii) P[Ymin ≤ h]→
volN (S)det(Λ)(−1)N−1(ν − 1)!ν

ν−N
2 Γ

(
ν−N+1

2

)
2N−1(π)

N+1
2 (1− δ2)

N
2 (ν −N)!Γ

(
ν
2

) h−(ν−N)

× T1(−α
√
ν + 1; ν + 1)

(5.23)

5.6 Simulation results on two-dimensional rectangles

In this section, simulation examples of the skew−t random fields are illustrated
for positive (resp. negative) values of the skewness parameter α.
The analytical expressions of the mean Lipschitz-Killing curvatures, Lj [Eh(Y, S)],
are tested with the ones computed numerically from the simulations for illustration
and validation. For this aim, 100 realizations of the skew−t random fields have
been generated for two different examples. The simulations are investigated on a
rectilinear lattice of 512×512 points in both x and y directions within the unit square
[0, 1]2. Figures 5.2(a) and 5.3(a) illustrate two exemplars of stationary skew−t
random fields. In the first example, 6 (i.i.d) anisotropic Gaussian random fields
are generated from the convolution of the Gaussian white noise with a Gaussian
covariance kernel of size σx = 3 pixels, and σy = 28 pixels. Then, anisotropic
skew−t random field of 5 degrees of freedom and skewness parameter α = −0.7 is
generated using equation (5.5), (see Fig. 5.2(a)).
In the second example, an isotropic skew−t random field of 5 degrees of freedom
and skewness parameter α = 2 is generated in this time using isotropic Gaussian
covariance kernel of size σx = σy = 3 pixels, (see Fig. 5.3(a)). The analytical and
simulated Lipschitz-Killing curvatures are represented in figures 5.2(b) and 5.3(b),
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(a)

(b)

Figure 5.2: First exemplary simulation. (a) Anisotropic skew −t random field with 5

degrees of freedom and skewness α = −0.7 realized on [0, 1]2 with resolution 512×512

points. (b) The simulated and the analytical LKCs, Ar,Cr and χ, respectively.

respectively.
The simulation results in both examples show good approximation to the theoretical
expectations.

5.7 Conclusion

In this chapter, a skew−t random field is introduced and the expected EC den-
sities are derived analytically on RN , (N > 1). Furthermore, we give in this chapter
the estimated value of the number of the global maxima and minima, which can
be derived from the expected Euler-Poincaré characteristic at high thresholds. This
chapter is ended with simulation results for validation on two-dimensional excursion
sets.
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(a)

(b)

Figure 5.3: Second simulation example. (a) Isotropic skew −t random field with 5

degrees of freedom and skewness α = 0.7 realized on [0, 1]2 with resolution 500×500

points. (b) The simulated and the analytical LKCs, Ar,Cr and χ, respectively.
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Chapter 6

Medical and scientific issue
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6.1 Total hip replacement

The total hip replacement is one of the most performed procedures, and is al-
ways in increasing. In France, more than 80000 total hip arthroplasty (THA) were
performed in 2001. Nowadays, 120000 THA are being performed each year, and
about 800000 in Europe. The reason behind these increasing numbers is related
to the great success of the THA and hence, the amelioration that can offer to the
patients who suffer from the osteoarthritis, necrosis, bone tumour and other related
problems.
A total hip arthroplasty is an orthopaedic procedure that involves surgical replace-
ment of the hip joint components with an artificial prosthesis. The prosthetic im-
plant (Fig. 6.1) consists of a femoral stem associated with a femoral head placed on
the upper part of the stem, and articulated with an acetabular insert (or cup). A
socket (acetabular or metal-back) fixed inside the acetabulum of the pelvis is used
as an intermediate component between the cup and the latter [GBFF10, GBF11].
The introduced design of the artificial implant is due to Bousquet [BGG+85], and it
is defined by the dual mobility. It involves producing two kinds of articulating sur-
faces; one is between the head and the acetabular insert, or the cup, and the other
is between the cup and the metal-back, increasing by this way the amplitude of the
joint movements as possible and allowing for more flexible implant. The acetabular
insert drawn in such design is called the dual mobility cup.

6.2 Choice of materials

Various materials are used in total hip implant, for the couple head-cup. They
are categorized between three essential groups: metal-on metal, ceramic-on-ceramic,
and metal-on-polymer [GBF11]. The materials used in the present work belong to
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Figure 6.1: An illustration of the total hip implant [GBF11].

the third category. The femoral head has been chosen to be made of stainless steel
alloys (SS 316L or SS 316LN), and the cup is composed of a high-molecular-weight
polyethylene (UHMWPE). For the femoral stem and the metal-back, they might
be made of one of the mostly used metals: stainless steel alloy, titanium alloy,
or cobalt-chromium-molybdenum [SJ95]. The couple metal-UHMWPE becomes
nowadays one of the most used options for the total hip implant (THI). The reason
is due to the low friction coefficient, and the hardness of the UHMWPE component
(or bearing surface) which provides an ideal stability and compatibility between the
prosthetic articulations [FPDF09, Lew01].

6.3 Wear of UHMWPE

The major problem of the UHMWPE is associated with its resistance to the wear
which depends on its chemical structure. The wear particles (debris) reduced from
the UHMWPE during its sliding against the femoral head or the metal-back is one
of the most intrinsic factors that will accelerate the degradation (loosening) of the
UHMWPE, and hence reduces the in-vivo life duration of the implant. Furthermore,
the generated wear debris will influence the structure of the bone [FPDF09, Lew01],
such as changing the osteoclast, and osteoblast activity which might lead to the
bone resorption and other non expected effects.
The wear of UHMWPE is related to several factors such as the geometric structure
of the acetabular cup, that means its shape, thickness and diameter, the roughness
of the articulated surfaces, and the type of the materials of both the femoral head
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and the metal-back [WEP+98, GWG+08].

6.4 Motivations and objectives

As mentioned in the previous section, the roughness of the articulating surfaces
is one of the reasons, actually a main reason, beyond the wear of the UHMWPE
component. We should distinguish between different types of contact conditions
for either head-UHMWPE or metal-back-UHMWPE: rough-on-rough, rough-on-
smooth, and smooth-on-rough. The wear mechanisms [ASZ+08] of the UHMWPE
surface strongly depend on the contact condition of the bearing surface [GWG+08],
and it is governed by the roughness of the bearing surface where such types of
contacts occur predominantly at the asperity levels 1. We are interested in the third
condition type, smooth (highly polished) metal-back (or femoral head) on rough
UHMWPE component.
The aim of this application part is to interpret the wear mechanisms, and to analyze
the functional behaviour of the rough UHMWPE surface, during the sliding contact
against the smooth metal-back surface, by means of its topographic roughness
map. A geometrical stochastic model based on integral geometry and random fields
framework is proposed to model the topographic roughness during a long duration
wear engineering simulation process. The predominant wear mechanisms of the
UHMWPE are then defined and associated to the dynamic changes of the surface
hills/valleys at high levels. Thanks to this model one can estimate how much high
these levels, and quantify the geometric properties of the level sets that include
such hills and valleys to achieve our aim.

Before tackle the model of the surface roughness topography, the next chapter
presents the experimental tools used to generate the wear on the UHMWPE com-
ponent in order to obtain worn surfaces, and the technical instrumentation methods
for observing and measuring the roughness topography.

1. Surface asperities are the alternating hills (local height maxima) of rough surfaces observed
in the microscopic scale. They are referred to as peaks in a profile (two-dimensions), and summits
in a surface map (three-dimensions) [Bhu99]. In this thesis we used the mathematical notation
hills to refer to these asperities.
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7.1 Wear engineering simulation

The wear tests are conducted by a one-station hip walking simulator (Fig. 7.1),
858 Mini Bionix R© II test system (MTS), in experimental environment corresponds
to the dynamic conditions of the the normative reference ISO 14242-1 [ISO02], to
emulate the in-vivo hip movements. The artificial hip components, socket, cup, and
femoral components (head, neck and stem), were positioned (Fig. 7.2 (a)) anatom-
ically. A time-dependent axial loading force (held on Z axis), varies between 300N

and 3KN , is applied though the central axis of the socket. Then, internal/external
rotation, flexion/extension, and abduction/adduction are applied to the socket so
the acetabular cup was initially positioned at 30◦ in the plane (ZX) (Fig. 7.2 (b)).
The load force and the motions were all independently controlled.

The tests were run at a frequency of 1Hz with physiological lubricant (calf serum)
being replaced every 500, 000 cycles. The lubricant is controlled to the temperature
37◦ ± 2◦C. Flexion/extension motion of +25◦ and −18◦, abduction/adduction mo-
tion of +7◦ and −4◦, and internal/external rotation of +2◦ and −10◦ were all applied
to the socket with the mechanical contact to emulate those found in-vivo. The kine-
matic and environmental conditions (table 7.1) have been applied with respect to
the standard norm of the simulator ISO 14242-1.
All the measurements related to wear rate, and roughness topography of the

UHMWPE were realized every one million cycles. The total number of achieved
cycles was approximately 20 million cycles.
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Figure 7.1: (a) General view of the one-station hip walking simulator. (b) Max view
of the the hip implant location and the machine axes.

Figure 7.2: Diagram of the artificial hip components with position conditions relative
to the load force (front view). Abd./Add. refers to the abduction/adduction motion,
Flex./Ext. is the flexion/extension motion and I/E is the internal/external motion.
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Table 7.1: Wear test conditions of MTS-858 testing machine:

Parameters ISO14242-1
Normal load force 3.2KN

Frequency 1.0Hz

Cup inclination 30◦

Adduction/Abduction +7̊ /− 4̊

Flexion/Extension +25̊ /− 18̊

Internal/External +2̊ /− 10̊

Test fluid calf serum
Temperature 37̊

Test cycles 1× 106cycles

7.2 Surface roughness topographical measurements

Surface topography is of multiscale nature, ranging from its macroscopic scales
to the microscopic or atomic scales. For engineered surface, surface topography can
be restricted to below certain length scale, smaller than the physical size scale of the
material component. These small-scale variations are of micrometer scales and re-
ferred to as surface roughness, which are the focus of the present thesis. This section
presents the technical methods used to measure and observe the topographic map
of rough engineered surfaces, and the experimental implementations for restoring
the roughness topography from the global geometric form of the surface topography.

7.2.1 Instrumental measurements

Surface roughness topography has been firstly obtained using the tactile pro-
filometer [Sch06, JSWB07a, JSWB07b]. A stylus is dragged over the surface and
record the vertical deflections as the stylus moves along a line over the surface.
This technique provides one-dimensional profile, measured with contacting stylus.
Later, two-dimensional profile measurements have been investigated to represent the
surface roughness topography. The contact profile techniques are not adequate for
measuring a complete 3D height maps [DS95]. They might be damaged, and they
would damage the surface being measured with the direct contact, besides to the
important limitations related to the measurement’s wavelength and measurement’s
speed. Recently, contact profiler techniques have been replaced by non-contact op-
tical methods [JSWB07b], such as the interferometry, which allowed measuring a
full and complete 3D height map at once and the possibility of storing it as a 2D
image. The optical techniques are fast, non-contact, and are thus more convenient
for measuring the surface topography [Sch06].

The convex UHMWPE surface was measured, at different wear times, using a
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(a) Side view (b) Top view

Figure 7.3: A synthetic 3D−dimensional simulation of the convex UHMWPE ac-
etabular cup. (a). a side view of the cup. The blue colored zone refers to the
latitude 45◦. (b) a top view of the cup. The selected samples around the 45◦ are
refereed by blue color.

white light vertical scanning interferometer, (Bruker nanoscope (r), Wyko R© NT
9100, ex. Veeco), [NT-, Wya02], which enables producing a fast, non-contact,
true three-dimensional area measurements for both smooth and rough surfaces to
nanometre precision.
Selected samples (Fig.7.3) of the worn surfaces were suggested from the zones at
the latitudes 45◦ and 100◦. The samples were digitized and 3D maps of real heights
were represented on a rectilinear lattice of 480× 640 points with spatial resolution
equals to 4x = 1.8µm, and 4y = 1.8µm in both X and Y directions, respectively.
Fig. 7.4 illustrates four exemplars of these worn surfaces.

7.2.2 Removing gross geometry and form errors

Generally engineering surfaces are composed of three essential components,
namely form, waviness, and roughness components [Whi94]. The heights varia-
tions of each component are considered of different length scales, or equivalently
wavelengths. The form component has a gross geometric shape (e.g.; perfect flat
shape, perfect cylindrical shape, spherical shape,...etc). It is composed of spatial
components located on the largest scales with wavelength equals to, or greater than,
1/3 the sample length [Whi94], in the measurement space. The waviness and the
roughness components define the surface texture [Cor04]. In fact, there is a great
ambiguity, in the literature (see chapter 1), about which wavelengths define each the
waviness and the roughness components of the topography. Likewise; if they should
be separated or assessed together, since they are dependent [Bhu99], and also their
wavelength ranges differ according to the manufacturing process [Whi94, Cos00]. In
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(a) (b)

(c) (d)

Figure 7.4: Surface topography of four selected samples of the worn UHMWPE
surfaces, from the latitude 45◦, at different wear time cycles, observed by white light
interferometer (NT 9100) with 5.5X objective lens, on a maximum measurement
space 1.1×0.9mm2 with spatial resolution of4x = 1.8µm, and4y = 1.8µm in both
X and Y directions. (a) wear time = 2× 106cycles. (b) wear time = 9× 106cycles.
(c) wear time = 11× 106cycles.(d) wear time = 19× 106cycles.
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our work, the waviness component is included in the surface roughness component,
and they are both referred to as surface roughness.
The surface may contain gross deviations resulted from the nominal shape of long
wavelength, known as the error of the form. They are not considered as part of the
surface texture [Bhu99], and they include the tilt, curvature and the mean heights.
This error type should be removed before characterizing or analysing the surface
roughness.
These gross geometry effects have been removed using a parabolic fitting algorithm
of the form:

z(x, y) = −ax2 − by2 + c, (a > 0, b > 0, c > 0) (7.1)

to the three dimensional surface profile. The coefficients are computed using the
least-squares fit. Then, the typical form (Fig 7.5) has been subtracted from the
surface topography, giving the roughness topography (Fig. 7.6). The roughness is
represented by the heights variations relative to a reference plane.

7.3 Conclusion

This chapter highlighted the materials and the technical methods used to gen-
erate the in-vitro wear on the UHMWPE surface, in conditions similar to those
in-vivo, using the hip simulator mentioned in section 7.1. Worn UHMWPE surfaces
were measured at different wear times using the optical white light interferometer
allowing for a complete 3D height maps visualization. The roughness topography
has been restored after removing the gross geometry and the form errors. Ones
the roughness map is restored, one can characterize and analyse the roughness by
different ways depending on the application and the way the roughness is being mea-
sured and defined. The observed height maps are basically 2D images, and hence,
image analysis methods are widely used for the roughness characterization. Among
those methods are the model-based approaches discussed in chapter 1 such as ran-
dom fields. The next chapter will focus on applying the results obtained from the
random fields introduced in Part II of this thesis, to represent the roughness to-
pography of the UHMWPE surface. Furthermore, a statistical analysis method has
been performed to estimate the evolution of the hills/valleys affected by the wear
process.
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(a) (b)

(c) (d)

Figure 7.5: Gross geometry of the four selected samples, illustrated in Fig. 7.4, of
the worn UHMWPE surfaces at different wear time cycles.(a) wear time = 2× 106

cycles, (b) wear time = 9 × 106 cycles. (c) wear time = 11 × 106 cycles. (d) wear
time = 19× 106cycles.
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(a) (b)

(c) (d)

Figure 7.6: Roughness topography restored from the topography of the four selected
samples, illustrated in Fig. 7.4, of the worn UHMWPE surfaces at different wear
time cycles. (a) wear time = 2× 106cycles. (b) wear time = 9× 106cycles. (c) wear
time = 11× 106cycles.(d) wear time = 19× 106cycles.
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8.1 Introduction

In this chapter, we are interested in studying a practical application associated
with the functional behaviour of the UHMWPE surface, throughout a group of se-
lected samples measured and observed by the optical interferometry, after removing
the gross geometry and the form errors (see section 7.2). We apply the random field
models defined in chapter 4 and chapter 5 to firstly model the topography of the
manufactured UHMWPE surface, and then the deformed one during a wear process,
respectively. The Euler-Poincaré characteristic is used particularly to predict the
significant height levels from the uncertainty ones that might be related to errors of
measurements.

We remind that the surface topography is composed of textural features of multi-
scale nature, and we focus on the small-scale features defined by the hills and valleys
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Table 8.1: roughness parameters
Machined UHMWPE Sa(µm) Sq(µm) Ssk Sku

Sample 1 1.46 1.76 0.42 6
Sample 2 1.41 1.73 0.3 6.35
Sample 3 1.44 1.7 0.33 5.29

and located at high levels. These small-scale features are refereed to, in the litera-
ture, as roughness component of the rough surfaces. A statistical analysis method is
developed to describe the evolution of the hills/valleys (roughness variability) and
the functional behaviour of the UHMWPE surface during the wear process, and it
has been published in [AGGP13].

8.2 Modelling the topographic roughness of the
UHMWPE surface before wear

The topographic roughness of the UHMWPE after a machining process (Fig. 8.3)
has been measured, digitized on a rectilinear lattice of 640×480 points, and extracted
after removing the gross geometry and the form errors (see chapter 7). The total
measurement area is about A = 1.2 × 0.86mm2 and the spatial resolution in both
x and y directions is 1.8µm. The topographic roughness is composed of large-
scale structures (low frequency) periodic (anisotropic) and suitably smooth, and
small-scale, rotation-invariant (isotropic) ones (high frequency) with extreme and
arbitrary roughness. Hence, the microgeometry of the hills and valleys is modelled
by the linear mixture Gaussian-t random field introduced in chapter 4.

8.2.1 Parameter’s estimation

The RMS roughness Sq
1, skewness Ssk and kurtosis Sku parameters (see

Tab. 8.1) of the surface heights are estimated, from three arbitrary samples of the
UHMWPE surface without smoothing, using equations (1.1), (1.2) and (1.3), respec-
tively. The skewness value shown in Table 8.1 is small and its influence is neglected.
Thus, the surface heights distribution is assumed to exhibit a symmetric behaviour.
The kurtosis value of the samples demonstrates the existence of hills and valleys
at high levels spikier than being Gaussian, and they are modelled by the t random
field.

8.2.1.1 Gaussian component

Using the autocorrelation function (Fig. 8.1) and the spectral method, the second
order spectral moment matrix ΛG of the large-scale components, that are modelled
by the Gaussian random field, is estimated so that λGy = 15mm−2 and λGx =

117mm−2. Note that the small-scale (high frequency) structures are located in the

1. The rms roughness of the surface is equivalent to its standard deviation σ
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Figure 8.1: The autocorrelation function of a real 3D rough surface observed from
the UHMWPE and illustrated in (Fig. 8.3(a))

origin of the autocorrelation function, where the large-scale structures are located
at the long distances and they are of periodic nature.

8.2.1.2 t component

Fig. 8.2 shows the log-plot between the empirical Euler-Poincaré characteristic
of the surface upcrossings and the expected Euler-Poincaré characteristic χG for the
Gaussian random field, if the surface assumed as a Gaussian one:

χG(h) = A× det(ΛG)(h/Sq)exp(−h2/2S2
q )/(2π)3/2 (8.1)

where A is the area of the total measurement space.
One can notice the behaviour of the local maxima (hills) above h/Sq > 3 compared
to the Gaussian and t ones, which insures that the hills at the high thresholds do
not come from the Gaussian component but from the t component. This is adequate
with the fact that the LKCs detect the high-frequency features of the surface, which
are due to the t random field component.
Using this assumption, the parameters of the t random field component were esti-
mated using the non linear least-square fit between the empirical and the expected
Euler-Poincaré characteristic χT given for the T νβ random field:

χT (h) = A×
λΓ
(
ν+1

2

)
(2π)3/2

(
ν
2

)1/2
Γ
(
ν
2

) (hβ
)(

1 +
h2

νβ2

)−(ν+1)/2

(8.2)
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Figure 8.2: Log-Plot of the number of the local maxima using the Euler-Poincaré
characteristic at high thresholds for the empirical heights and both Gaussian and t
random fields

to get λ = 190mm−2, for ν = 5, β = 1.4. The parameters ν and β were estimated
from the following equations:

Sq2 = σ2
G + σ2

T
∼=

β2ν

ν − 2

Sku ∼=
6

ν − 4

(8.3)

where the effects of the of the R.M.S. value of the Gaussian component σ2
G is ne-

glected when compared to the σ2
T .

8.2.2 Validation

For validation, the three LKCs (area function, contour length and Euler-Poincaré
characteristic) of the excursion sets of the estimated Gaussian−t random field GT 5

1.4

were compared with the empirical ones, computed on the surface upcrossing levels
(see figure 8.3(b)). The characterizing functions show good approximation between
the model and the rough surface.

8.2.2.1 Concluding remarks

Note that the t random field component of the linear mixture Gaussian−t ran-
dom field is assumed isotropic, whereas the anisotropic features located at larger
scales are modelled by Gaussian random field, and they are estimated using the
covariance function. The roughness and anisotropy properties are adequate with
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(a)

(b)

Figure 8.3: (a) A real sample of 3D rough surface observed from the UHMWPE
component without smoothing. (b) Fitting the empirical, (red curve), and the ex-
pected, (blue curve), intrinsic volumes (LKCs) between the real surface upcrossings,
and the GT 5

1.4 excursion sets, respectively.
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Figure 8.4: A contact deformation model between a randomly rough deformable
surface and a smooth, rigid and flat one (h is the height levels, p(h) is the density
function, and d is the separation between the roughness reference, mean of p(h), and the
rigid flat surface during loading) [ZZ04].

the material properties during the machining process of the UHMWPE compo-
nent [Kur04] and can be changed from one material to another. Nevertheless, the
intrinsic volumes, or the LKCs, for the random field model do not depend on the
shape of the covariance function but on the second spectral moment related with the
derivations of the covariance function. Which means that the geometric properties
of the hills and valleys can be quantified without the need to know the shape or the
model of their covariance function.

8.3 Modelling the topographic roughness of the worn
UHMWPE surfaces

Another application is considered for modelling the topography of rough and
randomly deformable surfaces. This section focuses on the UHMWPE example
which undergoes a wear engineering process as explained in chapter 7.

As seen in the previous section, the surface roughness topography is composed of
two components, waviness (large-scale components) and roughness (small-scale com-
ponents refereed by hills and valleys). The geometry of the small-scale hills/valleys
and their number are characterized by the LKCs of the surface upcrossing’s levels,
since these functions tend to concentrate at the high frequencies [Sch06].
During the contact problem and wear process, the hills at the small-scales (finite
contact patches) and the holes that correspond to the small-scale valleys (or the
pits) are the most important and they have a direct relation with the normal pres-
sure/hardness ratio, and the wear mechanisms [Nay73] (see Fig. 8.4 as example). In
this section, we focus on modelling the microgeometry of the small-scale hills and
valleys. The Lipschitz-Killing curvatures (LKCs) will be used to quantify these hills
and valleys.

A rough surface illustrated in Fig. 8.5 is measured after a wear time t = 13×106

cycles from the 45◦ latitude of the convex side of the UHMWPE component. The
global roughness parameters Sq, Ssk and Sku are estimated overall the roughness
topography, such that Sq = 34.5nm, Ssk = 4.41 and Sku = 111.81. The quantile-
quantile (Q-Q) plot (Fig. 8.6) between the height’s distribution and the Gaussian one
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Figure 8.5: A real sample of worn surface observed at 45◦ latitude of the UHMWPE
component at wear time t = 13× 106 cycles.

shows that the joint distribution of the heights tends to have asymmetric behaviour
(skewed heights) around its mean and the tails of the distribution are heavier at the
positive high thresholds which explains the existence of spiky hills at these heights,
and a high kurtosis value. Following the last arguments, the small-scale roughness
components are modelled as a skew−t random field (see chapter 5). Notice that
when the skewness is zero, then the skew−t model of the hills and valleys becomes
the t random field as seen in the previous section.

8.3.1 Parameter’s estimation

The autocorrelation function (Fig. 8.7) of the roughness topography depicted
in Fig. 8.5 demonstrates the roughness isotropy. The skewness index δ and the
degree of freedom ν of the skew−t random field were estimated using their analytical
formulae [AC03]:

Ssk = µ

[
ν(3− δ2)

ν − 3
− 3ν

ν − 2
+ 2µ2

] [
ν

ν − 2
− µ2

]−3/2

Sku =

[
3ν2

(ν − 2)(ν − 4)
− 4µ2ν(3− δ2)

ν − 3
+

6µ2ν

ν − 2
− 3µ4

] [
ν

ν − 2
− µ2

]−2

, (if ν > 4)

(8.4)

where µ = δ(ν/π)1/2 Γ( ν−1
2 )

Γ( ν2 )
, with (ν > 1).

Then, the spectral moment λ is estimated from fitting the empirical and the expected
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Figure 8.6: Normal Q-Q plot of the surface roughness heights, (blue plot), versus
the normal distribution, (red plot), for a worn UHMWPE sample measured at 45◦

latitude at wear time t = 13 × 106 cycles. The random heights are positively
skewed with heavy tailed distribution of mean µ = 5.37nm, and standard deviation
σ = 34nm.

Figure 8.7: The autocorrelation function of the worn rough surface illustrated in
(Fig. 8.5)
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Figure 8.8: Fitting the empirical and the expected LCKs for both real surface and
the skew−t random field, with 10 degrees of freedom, δ = 0.7 and λ = 0.114µm−2

Euler-Poincaré characteristic between the surface upcrossing levels (excursion sets)
and the skew−t random field, using the non linear least-square method.

8.3.2 Validation

The intrinsic volumes or LKCs of the surface upcrossing levels (excursion sets)
are simply the area, contour length and the Euler-Poincaré characteristic of these
sets. These characterizing functions are used to test the skew−t random field on
the worn surface roughness topography, for validation, by comparing their empirical
values with their analytical formulae (see Fig. 5.3(b)), with δ = 0.7, ν = 10 and
λ = 0.114µm−2.

8.4 Statistical analysis of worn UHMWPE surfaces dur-
ing engineering wear process

Under the assumption that the roughness component of the randomly rough
deformable surfaces can be modelled by the skew−t random field, a statistical
analysis is performed in order to estimate the significant levels including the lo-
cal maxima and minima (hills and valleys). This analysis is based on the expected
Euler-Poincaré characteristic of the skew−t random field. Then, the mean area of
these hills and valleys at the significant levels is calculated in order to describe the
wear mechanisms on some regions of the UHMWPE. In this work, two regions were
considered, as previously discussed in section 7.2, which are located at the longi-
tudes 45◦ and 100◦, and multiple samples were tested from both regions overall the
latitudes.

8.4.1 Estimation of the significant levels from uncertainty heights

The local maxima and minima of the surface upcrossing’s levels refer to the
connected components (isolated regions or disjoint clusters) at these levels, and the
expected Euler-Poincaré characteristic at high thresholds, derived in Eq. (5.23) of
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the skew−t random field approximates the number of these local maxima or minima.
Since the expected Euler-Poincaré characteristic describes the roughness of the sur-
face (small-scale features), it might also be influenced by the measurement errors
related to the uncertainty of the measurement instrument device (systematic error).
When seeing Fig. 8.5, there are spiky heights located around the contour of the
deformed regions, some of them are uncorrelated and they come by chance.
Our interest is to detect the significant levels h including the real hills and valleys
that are associated to the mechanical deformation and wear mechanisms. Towards
this aim, h should be firstly chosen to control the probability of detecting maxima
and minima that are obtained by chance due to the measurement error (uncertainty
levels), which are not significant. These maxima and minima are referred to as the
extreme values and they are located at very high levels, i.e.; they are concentrated
at the tail probability P[Ymax ≥ h] or P[Ymin ≤ h] of the skew−t random field (see
corollary 5.5.1).

Figure 8.9: Extreme values (maxima and minima) of one sample at wear process
time 13× 106 cycles. The white blobs in the image correspond to the excursion set
above the threshold hmax = 0.25µm, as well the dark blobs in the image are the
excursion set below the threshold hmin = −0.13µm.

Two thresholds were calculated such that the tail probability is no more than
ε = 5%, which are hmax = 0.25µm and hmin = −0.13µm. The excursion sets Ehmax
and Ehmin obtained at hmax and hmin, respectively, are combined in one single set
(see Fig. 8.9), denoted E(hmax,hmin), and expressed as:

E(hmax,hmin) =

{
+1, if x ∈ Ehmax
−1, if x ∈ Ehmin

(8.5)
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Table 8.2: Roughness parameters of one worn sample topography
Worn UHMWPE Sq(nm) Ssk Sku
Before threshold 34.5 4.41 111.81
After threshold 21.8 1.17 9.4

This implies that most of the hills and valleys above and below the detected thresh-
olds come by chance and correspond to error of measurement, and the probability
of detecting real hills or valleys will be less than 5%. The roughness component
after rejecting these levels is illustrated in Fig. 8.10(a). Nevertheless, the model’s
parameters will change (see Tab. 8.2) but the topographic roughness could always
be considered and represented as a skew−t random field as can be seen in the Q-Q
plot of the heights distribution (Fig. 8.10(b)), and the fit between the analytical and
empirical LKCs (Fig. 8.11).

Let hhills and hvalleys be the levels including the real hills and valleys of one sam-
ple shown in Fig. 8.10(a). At this time, the local maxima and minima that are con-
centrated at the tail probability will correspond to the real hills and valleys, and their
levels are estimated using the Euler-Poincaré characteristic of the skew−t random
field at the high thresholds, such that hhills = 0.053µm and hvalleys = −0.025µm

(see Fig. 8.12), where the excursion set E(hhills,hvalleys) at both detected hills hhills
and valleys hvalleys is expressed using the same argument given in equation (8.5).

8.4.2 Comments

One can notice that the predominant features on the surface at this stage of
wear process, t = 13 × 106 cycles, are the valleys and pits. Their area is also more
important compared to the area of the detected hills. The number and the size
of the holes refer to a fatigue wear mechanism due to the loss of the UHMWPE
particles after frequent abrasive and adhesive wear mechanisms on the UHMWPE
surface [GWG+08]. Furthermore Fig. 8.10(a) shows that the single peak near the
global maxima has been removed although it has a significant spatial size. In fact,
this maxima is not related to the worn surface but it results from the transfer of
the materials of the metal-back surface in contact with the UHMWPE, yielding a
maxima height value (anomaly), when measured by the optical devices, due to the
maximum reflection of the light from that region.

8.4.3 Wear analysis induced by the statistical analysis of surface
roughness

The significant upcrossing levels that include the surface hills and valleys were
estimated (Fig. 8.13) over the wear time (0−19×106 cycles ) for one sample selected
from the latitude 45◦. To insure that we measure approximately the same location
during the wear process, we marked the chosen samples in a safely way that insures
not damaging the samples.
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(a)

(b)

Figure 8.10: (a) Surface roughness component after rejection of the extreme height
levels. (b) The quantile-quantile plot of the heights in (a) versus the normal dis-
tribution. The random heights are always positively skewed with skewness value
Ssk = 1.17, and kurtosis value Sku = 9.4, and rms value Sq = 26nm
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Figure 8.11: Fitting the analytical and empirical LKCs for the real heights illustrated
in Fig.(a) restored after threshold, and the skew−t random field with ν = 6 degrees
of freedom, skewness index δ = 0.5, and roughness λ = 0.086µm−2.

Figure 8.12: Hills and valleys (pits) of one sample at wear process time 13 × 106

cycles. The clusters above the positive threshold hhills are given the value (+1), as
well the clusters indicated below the negative threshold hvalleys are given the value
(−1). The number of the hills Nhills = 508, the number of pits Nvalleys = 1098
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Figure 8.13: Detection of significant upcrossing levels of a sample measured from
the UHMPWE at latitude 45◦ along 19× 106 cycles of wear time

Fig. 8.13 shows a decrease of the absolute value of these levels during wear time, al-
though some undesired spiky and erratic values were obtained at time 6×106 cycles.
These results can also refer to a loosening of the UHMWPE materials occurred on
the selected sample. Nevertheless, the evolution of these levels can also be used to
describe the functional behaviour of the surface if they are weighted by their spatial
extent. The spatial extent of the excursion sets Ehhills , Ehvalleys was estimated dur-
ing the wear time by evaluating their mean areas. The functional interpretation of
these areas can be explained as follows: The evaluation of the mean area of the hills
at level hhills(t) determines the amount of the surface bearing area remaining after
a certain depth of material is removed, and the mean area function of the valleys
estimated at level hvalleys(t) describes the changes of the fluid entrapment or leak-
age, due to the material’s void area changes. Thus, one can computethe difference
between the bearing and the void areas multiplied by their detected levels, denoted
by f(t), during the wear time in order to express the surface functionality as follows:

f(t) = hhills(t)×Area[Ehhills(t)]− |hvalleys(t)| ×Area[Ehvalleys(t)] (8.6)

where

Area[Ehhills(t)] = A

∫ ∞
hhills(t)

p(y)dy, Area[Ehvalleys(t)] = A

∫ hvalleys(t)

∞
p(y)dy

(8.7)
where A ∼= 1mm2 is the total area of measurement, and p(y) is the probability
density function of the surface heights. The evolution of the function f(t) (see
Fig. 8.14) shows significant variability of the surface roughness during the period
0× 106 − 10× 106 cycles, which behaves alternatively and it is correlated with the
predominant wear mechanisms being occurred on the UHMWPE surface at this
stage of wear time [WEP+98]. Different types of wear mechanisms can be depicted
on Fig. 8.14. At the beginning of the wear process until t = 3×106 cycles, an abrasive
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Figure 8.14: Evolution of the difference between the bearing area and the void area
at their significant levels with wear time on one sample example of the UHMWPE
surface at 45◦

wear mechanism, mainly, occurs. The abrasive wear at this stage results from cutting
(eroding) the hills of the rough UHMWPE sample, (see Fig. 8.15), due to the direct
contact with a smooth, rigid surface (metal-back component). Thereafter, during
the time range between t = 4 × 106 cycles and t = 10 × 106 cycles, the function
f(t) behaves alternatively due to the effects of the both abrasion and adhesion
wear mechanisms [GWG+08]. The abrasion mechanism at this time is mainly due
to the wear particles removed from the surface and deposited in the liquid will
abrade randomly the surface during the liquid circulation (see Fig. 8.16 as examples),
whereas the adhesive mechanism results from the transfer of some materials between
the joined surfaces. From 10× 106 cycles, the variability of the roughness indicated
by the function f(t) becomes negligible where a fatigue mechanism might govern
the surface attribute. Nevertheless, the function f(t) can not give a clear physical
interpretation of the surface behaviour, and further expansions are required.

8.5 Results and discussion

8.5.1 Worn regions of the UHMWPE surface at the latitude 45◦

In order to increase the certainty of the results, and to describe globally the wear
mechanism around the most worn regions on the UHMWPE surface, which are lo-
cated, in this case study, at latitude 45◦, five samples were measured and tested at
different positions as discussed in 7.2.1.
The significant levels (Fig. 8.17) included the hills and valleys were estimated, follow-
ing the same arguments in section 8.4, on the five selected samples of the UHMWPE
surface at 45◦ latitude, over the approximative angles 0◦, 45◦, 90◦, 180◦, 175◦.
The function f(t) in equation (8.6), that computes the difference between the

bearing and the void areas of the surface multiplied by their significant height levels
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Figure 8.15: 3D height maps of one worn sample of the UHMWPE cup at 45◦ during
wear time, restored after thresholding. The left figure corresponds to the zone at
t = 0, and the center one is the surface sample at t = 1× 106 wear cycles, while the
right surface is measured at t = 3× 106 cycles.

Figure 8.16: 3D height maps of one worn sample of the UHMWPE cup at 45◦ during
wear time, restored after thresholding. The left figure corresponds to the zone at
t = 4 × 106, and the center one is the surface sample at t = 7 × 106 wear cycles,
while the right surface is measured at t = 9× 106 cycles.
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(a) (b)

Figure 8.17: Significant hills and valleys levels versus wear time for 5 UHMWPE
samples at latitude 45◦. (a) hills levels at hhills. (b) valleys levels at hvalleys

Figure 8.18: The evolution of the difference between the bearing and the void vol-
umes with wear time on five samples of the UHMWPE surface at 45◦

during wear time, is evaluated for the selected 5 samples (Fig. 8.18) in order to
describe the functional behaviour of the surface at the 45◦ latitude. This function
demonstrates, as a priori assumption, a homogeneous functional behaviour over the
different samples measured at the 45◦ latitude. At the first 10×106 wear cycles, the
function shows fast variations due to a significant evolution of the surface rough-
ness, contrary to the wear periods after 10× 106 cycles where a fatigue mechanism
governs the surface and the roughness evolution becomes slow with the time. Never-
theless, more tests should be performed on different UHMWPE specimen to insure
this assumption.
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8.5.2 Quantitative comparison between worn regions at 45◦ and
100◦ latitudes

A quantitative comparison is performed between regions selected from two dif-
ferent latitudes at 45◦ and 100◦ of the convex side of the UHMWPE component.
Eight samples have been selected for the tests, four samples belong to the region
located at 45◦, and the other ones were measured from the region located at 100◦.
The evolution of the surface upcrossing’s levels hhills and hvalleys for each sample
(Fig.8.19) illustrates the non-homogeneous behaviour of the roughness throughout
the UHMWPE latitudes, and hence the non homogeneity of the wear mechanisms.
The regions at 100◦ undergo less wear if compared with the ones at 45◦ latitude.
The results in Fig.8.19 show that the levels slightly alternate around hhills = 3µm

and hvalleys = −2.7µm, respectively, where the surface roughness model does not
exhibit significant changes, conversely to the regions at 45◦ latitude. These results
are convenient with the in-vitro experimental test results drawn in [GBF11].

8.6 Conclusion

Firstly, this chapter was concerned on applying the linear mixture Gaussian−t
random field model on the UHMWPE surface after a machining process. This ran-
dom field model enabled estimating the large-scale and small-scale features on the
surface. Furthermore, the model shows that the Gaussian hills/valleys are mostly
concentrated at low height levels, where at high levels, the hills/valleys follow an-
other model refereed to as t random field. When the UHMWPE get worn, the wear
process affects the whole scale-space structures (hills/valleys) dependently, so the
separation between these scales becomes complicated. Thereby, the second step is
focused on modelling the small-scale structures of the worn rough UHMWPE sur-
face. The skewness and kurtosis parameters are the most significant parameters
that have changed during the wear process. Thus, the skew−t random field was
suggested to predict the functional hills/valleys related to wear. Notice that we can
assume that the small-scale structures for both machined and worn UHMWPE sur-
face are modelled by the skew−t random field since the later is an extension of the
t random field including the skewness concept to the heights distribution function.
The results illustrated in this application part were obtained during 20× 106 cycles
of wear, on samples selected from two longitudes. These results demonstrate the im-
portance of the functional parameters such as hills/valleys level’s heights and their
mean area in describing the wear mechanisms and the functional behaviour of the
surface during the wear. In this chapter, we focused on the intrinsic volumes (LKCs)
and precisely Euler-Poincaré characteristic for estimating the roughness evolution of
the surface. Even if the surface model could change from one material to another,
the strategy given in this chapter is applicable for any surface.
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(a)

(b)

Figure 8.19: A quantitative comparison between the hills and valleys levels of the
UHMWPE samples located at latitudes 45◦ latitude, labelled by , and 100◦ lati-
tude, labelled by , showing different degrees of wear. (a) hills levels. (b) valleys
and pits levels.
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This chapter includes some work in progress and further investigations that have
been realized later and they have not been finished yet. So, we suggested to put all
those investigations in this concluding part of dissertation.

9.1 Introduction

We consider a class of real-valued random fields that appears throughout the
modelling of spatio-temporal phenomena, such as the application provided in this
thesis, modelling the surface roughness topography when the material undergoes
wear and mechanical contact processes over time, or in other applications such as
those in physical oceanography [AMR96], and brain imaging [SSSW03]. For exam-
ple, space-time random fields have been used to describe the time-evolution of the
spatial parameter of the observed measurements and to predict future values [Ma07].

In the previous chapters, a spatial model of the roughness topography has been
realized by the skew−t random fields. An extension of this model can be considered
to include the temporal changes of the surface features, such as the temporal
covariance, and the temporal skewness functions. So, this chapter concerns on
introducing the skew−t random field in space and time, and in deriving the LKCs
of the excursion sets, towards their potential use in practice.
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9.2 Preliminaries

Let G0(x), G1(x), ..., Gν(x), x ∈ S where S is a compact non-empty subset of
RN , be a set of i.i.d. Gaussian random fields, so each has a mean zero, and covariance
function C(x1,x2), x1,x2 ∈ S ⊂ RN , with a second order spectral moment matrix
Λx. Then, the skew−t random field, Y (x), has been defined as extension of the
known t random field including the concept of skewness, as discussed in chapter 5,
such that:

Y (x) =
δ|z|+

√
1− δ2Z(x)(∑ν

i=1G
2
i (x)/ν

)1/2 (9.1)

where δ ∈ (−1, 1) is a skewness index, z ∼ Normal(0, 1) is a normal random vari-
able independent of G0, G1, ..., Gν components.
It can be noticed immediately that the spatio-temporal skew−t random field
might be realized from the i.i.d. centered spatio-temporal Gaussian random field
components each has mean zero, and covariance function C(x1,x2; t1, t2), with
x1,x2 ∈ S ⊂ RN and t1, t2 ∈ R.

9.3 Definition

Let G0(x, t), ..., Gν(x, t), x ∈ S and t ∈ T , be i.i.d. homogeneous, real-valued
spatio-temporal Gaussian random fields, each with mean zero, variances σ2

x and σ2
t ,

and with the second spectral moment matrix Λx = V ar(∂Gi(x, t)/∂x), i = 0, ..., ν,
and the second spectral moment λt = V ar(∂Gi(x, t)/∂t), for all i = 0, ..., ν. Let
Z be a standard normal random variable independent of all Gi, and the temporal
skewness function δ(t) such that δ : T → (−1, 1), then a real-valued spatio-temporal
skew−t random field is defined at any fixed x and t as follows:

Y (x, t) =
δ(t)|Z|+

√
1− δ2(t)G0(x, t)(∑ν

i=1G
2
i (x, t)/ν

)1/2 (9.2)

where ν is the degree of freedom and it is considered as constant over the time, with
respect to the aforementioned condition ν ≥ N as discussed in chapter 5. In more
general case, the degree of freedom could be also assumed to change temporally,
so the shape (peakedness and tail-weight) of the marginal distribution function will
change with time.
The next section concentrate on calculating the Lipchitez-Killing curvatures (LKCs)
and the expected Euler-Poincaré characteristic function of the excursion sets of the
spatio-temporal skew−t random field in one simple case proposed for the spatial
space parameter space defined by rectangles of RN .
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9.4 LKCs and the expected Euler-Poincaré characteris-
tic of the space−time excursion sets

Let consider the subset S is a rectangle of the form S =
∏N
i=1[0, Si] in RN , and

a time interval T = [tmin, tmax] ⊂ R. Then, the Riemannian space induced by the
spatio-temporal Gaussian components on the product space S×T , will be equipped
with a Riemannian metric defined by the variogram of the first order partial
derivatives of the Gaussian random field components, i.e., E[∂Gi/∂s1∂Gi/∂s2] with
s1, s2 ∈ (S × T ).

For Gaussian and Gaussian-related random fields, it was shown [AT07] that the
j−th dimensional LKCs for the aforementioned products of the Riemannian space
induced by such random fields, for any j ≥ 0, can be derived using Hadwiger’s
theorem [Had57], as:

Lj(S × T ) =

j∑
i=0

Li(S)Lj−i(T )

= Lj(S) + |T |Lj−1(S)

where |T | is the length of the temporal interval T .
In the following, a simple case will be discussed which suggests that: Firstly,

the spatio-temporal covariance function, of each Gaussian random field, is stationary
and separable such that:

C(x1,x2; t2, t1) = Cx(|x1 − x2|)Ct(|t1 − t2|) (9.3)

where Cx and Ct are positive-definite functions, with variances σ2
x and σ2

t , respec-
tively, and with second order spectral moments Λx, λt, respectively.
Note: the assumption that the spatio-temporal covariance function C(x, t) is
separable means that the first order temporal and spatial partial derivatives of
each Gaussian random field component Gi, i = 0, ..., ν are uncorrelated, i.e.,
E[∂Gi/∂x∂Gi/∂t] = 0, and so for Y .

Secondly, the skewness function will be considered invariant with time, i.e.;
δ(t) = δ, so the spatio-temporal effects of the skew−t random field are all restricted
to the covariance function of its Gaussian components, or equivalently the second
order spectral moments.
Under the previous assumptions, and the result given in equation (3.16), chapter 3,
the j−th dimensional LKCs of Y on S × T can be expressed as:

Lj(S×T ) = σ−jx
∑
J∈Oj

det(ΛxJ )1/2volj(J)+
λ

1/2
t (tmax − tmin)

σtσ
j−1
x

∑
J∈Oj−1

det(ΛxJ )1/2volj−1(J)

(9.4)
where Oj is the

(
N
j

)
elements of ∂jS and J are as mentioned in chapter 3.

Using the general formula in equation (3.10), the expected Euler-Poincaré charac-
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Figure 9.1: A space−time separable covariance function C(x, t) of exponential form
with σ2

x = 1, σ2
t = 1, and Λx = 9× 103Ix, and λt = 40.

teristic of the spatio-temporal skew−t excursion sets can be expressed as:

E[χ(Y, S × T )] =

dim(S×T )∑
j=0

Lj(S × T )ρSTj (h) (9.5)

where dim(S × T ) = N + 1, and ρSTj (h), for j = 0, ..., N + 1, are the EC densities
for the skew−t random field derived implicitly in chapter 5, theorem 5.4.1.

9.5 Simulation example

This section illustrates simulation example of a spatio-temporal skew−t random
field with 5 degrees of freedom and fixed skewness δ = 0.5, for N = 2. The field
is generated using i.i.d. Gaussian random fields with separable spatio-temporal
covariance function of the exponential form:

C(x; t) = σ2
xσ

2
t e
−τxtΛxτxe−τ

2
t λt (9.6)

where τx, τt reefer to the spatial and temporal differences (x1 − x2), (t1 − t2),
respectively (see Fig. 9.1). All the space-time Gaussian random fields are simulated
on time interval [0, 1] and spatial interval [0, 0.2]2 of 100×100 points. The temporal
and spatial Gaussian covariance kernels are chosen such that λt = 0.01 and Λx =

103 × I2. Then, the spatio-temporal skew−t random field is generated using the
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Figure 9.2: A synthesized spatio-temporal skew−t random field of 5 degrees of
freedom, and fixed skewness δ = 0.5 at different periods. (a). at t = 0, (b) at
t = 0.5, and (c) at t = 1.

definition given in (9.2) for skewness index δ = 0.5 and ν = 5 degrees of freedom.
The results are illustrated in Fig. 9.5 for t = 0, t = 0.5, and t = 1, where Fig. 9.3
represents the evolution of the spatio-temporal skew−t random field over all time
and space. The expected Euler-Poincaré characteristic function is calculated for
the spatio-temporal skew−t random field and illustrated in Fig. 9.4(a) with the
simulated ones computed at each time. In Fig. 9.4(b), the simulated Euler-Poincaré
characteristic is illustrated as a function of time t and height levels h in order to
show the invariance behavior of the spatial parameters with the time due to the
separability assumption.

9.6 Application

An interesting application of the space−time random fields can be derived from
the need to predict the evolution of the surface roughness variability during wear
simulation process, without the need to do further experimental tests.
The spatiotemporal Euler-Poincaré characteristic is estimated over 19 × 106 cy-
cles, during wear process, from ones sample at the 45◦ latitude of the UHMWPE
(Fig. 9.5). As can be seen from the evolution of the spatio-temporal Euler charac-
teristic function that the variation of the spatial roughness, described by the matrix
Λx, depends on the wear cycles, which can be noticed through the variations of its
width according to the surface heights. Furthermore, the function exhibits changes
in its symmetry, that means the skewness parameter changes with time. The skew-
ness variability during wear time α(t) = δ(t)/

√
1− δ2(t) (see Fig. 9.6), becomes a

significant characteristic function that interprets the effect of the wear process on the
surface roughness functionality as discussed in chapter 8. Consequently, the separa-
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Figure 9.3: Spatio-temporal skew−t random field with 5 degrees of freedom and
skewness index δ = 0.5.

bility assumption will not be valid in this case, where the effect of the wear process
on the spatial features of the surface roughness is time dependent, and hence, fur-
ther development are required to well establish the space-time skew−t random field,
and the LKCs of its excursion sets, taking into consideration the non-separability
assumption. We suggested a regression method in order to model the temporal evo-
lution of the skewness index, estimated from the skew−t random field at each time,
at the 45◦ latitude of the UHMWPE surface (see Fig.9.7). The method aims at
finding the best-fitting skewness index values α through a least squares regression
in a polynomial function p(t) of n degrees such that:

p(t) = p1t
n + p2t

n−1 + ...+ pn+1 (9.7)

where t is a variable indicating the time (number of cycles per second), and
{pi}i=1,...,n+1 are the polynomial coefficients. The fitted α represented in the solid
line in Fig.9.7 is produced using the regression method for k samples (k=5) as inputs
as follows:

1

k

k∑
j=1

α(j)(t) = p(t) + e(t) (9.8)

where α(j)(t) is the skewness function α(t) of the jth sample, and
e(t) ∼ Normal(0, V ar(α(t))) is the regression error term which is assumed to have
normal distribution with zero mean and variance function V ar(α(t)) (see Fig.9.8).
The best-fit is obtained for a polynomial of 6 degrees. Thus, the regression model
of the temporal skewness index α(t) is expressed as:

α(t) = 3.8× 10−5t6 − 0.002t5 + 0.055t4 − 0.65t3 + 3.74t2 − 8.59t+ 0.92 (9.9)
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(a)

(b)

Figure 9.4: (a) and (b) illustrate the Euler-Poincaré characteristic for the synthesized
spatio-temporal skew−t random field estimated at each time t ∈ [0, 1]. The red line
in Fig. (a) illustrates the analytical Euler-Poincaré characteristic for the spatio-
temporal skew−t random field on the space S × [0, 1] with S = [0, 0.2]2.
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Figure 9.5: The empirical spatio-temporal Euler-Poincaré characteristic estimated,
from one sample topography of the UHMWPE, over t = 0, ..., 19×106 cycles of wear
simulation process at each 1× 106 cycles.

Figure 9.6: Estimation of the skewness index variability α(t) = δ(t)/
√

1− δ2(t)

of the skew−t random field during wear time simulation from one sample of the
UHMWPE component at 45◦ latitude.
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Figure 9.7: Illustration of the regression method to fit the skewness index α in
a polynomial of 6 degrees. The geometric shapes in the figure refer to the esti-
mated skewness α of The skew−t random field for five selected samples of the worn
UHMWPE surface located at the 45◦ latitude. The solid line is the predicted skew-
ness index α by the regression method.

over the worn regions located at 45◦ latitude. Giving α(t) yields to evaluate δ(t) =

α(t)/
√

1 + α2(t), one of the spatio-temporal skew−t random field’s parameters.

9.7 Conclusion

The space−time skew−t random field model is introduced using separable spatio-
temporal stationary Gaussian random fields. A simple case is introduced in this
chapter by fixing the skewness and the degree of freedom of the spatio-temporal
skew−t random field. The Lipschitz-Killing curvatures and the expected Euler-
Poincaré characteristic are derived for this simple case. However, using the pro-
posed spatio-temporal random field in practice requires go far from the simple case
and assume that the skewness index and the degree of freedom are variant with the
time. Furthermore, the separability assumption does not take into consideration the
interactions between spatial and temporal features. Notice that the LKCs given in
equation (9.4) will change since the spectral moments can not be separated between
space and time. A practical example on the UHMWPE surface in Fig.9.5 shows
by the evolution of the spatio-temporal Euler-Poincaré characteristic function that
the surface exhibits high roughness with alternative and fast variations at the first
12 × 106 cycles of the wear time, so that the spatio-temporal model of the surface
topography is of non-homogeneous nature, whereas after 12× 106 cycles the rough-
ness is significantly decreased, and the model of the worn surface exhibits isotropic
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Figure 9.8: Illustration of the variance of the error term e(t) of the predicted skew-
ness function α(t).

and homogeneous behaviour throughout the periods 12 × 106 cycles until 19 × 106

cycles. Also in this chapter, we introduced a regression method for predicting the
temporal evolution of the skewness parameter α(t) of the spatio-temporal skew−t
random field over the regions at 45◦ latitude.
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Conclusion and future work

10.1 General Conclusion

This Ph.D. thesis has focused on a theoretical framework driven by the random
field models that has been used in many scientific applications, and more specifically
in the ones related with rough engineered surfaces. A bibliographic background
about the surface roughness metrology, and the most common approaches used
to represent and characterize the topography of rough surfaces were summarized
within the first part of this dissertation. Due to the random nature of rough
surfaces, the topography is represented by the theory of random fields. A random
field model defines the joint distribution function of the heights, the geometry
and the topological properties of these later with their neighbours, which can be
quantified, using the integral geometry, via the excursion sets of the random fields.
The basic theoretical background of random fields and the geometric properties
of their excursion sets have been reported in the second part of this thesis. The
analytical formulae of the intrinsic volumes for a random field is used for fitting
the model with the real surface, for estimating its parameters, and for the surface
roughness analysis.

The main theoretical developments, in the third part of the manuscript, were
concerned on the integral geometry of random fields, due to the lake in the literature
in giving the aforementioned formulae for some random fields that have of great
interest in practice. We, firstly, derived the analytical formulae of the intrinsic
volumes, or Lipschitz-Killing curvatures (LKCs), of the two-dimensional excursion
sets of a mixture model defined by the linear combination of a Gaussian random
field and a t−field. The motivation comes from the fact that surface topography
can be partitioned into two components, one with a large-scale structure and
narrow roughness which is modelled by Gaussian random fields, and the second
with small-scale features and heavy-tailed distribution which are modelled by
the t−field. The LKCs have been derived based on Morse theory in the case
that the Gaussian−t random field is isotropic, called in this case by Minkowski
functionals. We proved by means of the expected Euler-Poincaré characteristic
that the behaviour of the local maxima and minima of the mixture random field
depends on two basic factors, the degree of freedom ν, and mainly on the scale
factor β of the t−field that control the non-Gaussianity behaviour of the surface
heights. Secondly, the analytical formulae of the LKCs have been derived for the
skew−t random field in the N−dimensional Euclidean space. The skew−t random
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field was introduced as an extension of the t−field including the concept of the
skewness to the height’s distribution. Thus, the small-scale features, defined by the
maxima and the minima (hills and valleys) of a rough surface, can be represented
and characterized by the skew−t random field, and thereby they will behave in
asymmetry according to their mean. An asymptotic formulae of the expected
number of the hills and valleys was calculated and also expressed in terms of the
expected Euler-Poincaré characteristic at high levels. In practice, the later could
be considered as a useful technique to estimate the mean number of the hills
and valleys which are defined by different confusing ways in surface metrology,
or to estimate the significant levels including those small-scale features from the
uncertain heights.

A specific application proposed in this thesis was for analysing and modelling
the topography of worn rough surfaces, particularly, those involved in the total hip
arthroplasty, and known by UHMWPE components. Considering both the medical
and the scientific problems related with the wear of the UHMWPE component when
the later articulates with other type of materials, it was necessary to understand
how the UHMWPE surface gets worn, and which wear mechanisms are mostly
predominant. This study would help for an ultimate aim related with improving
the quality and the life duration of the artificial hip implants, and improving the
manufacturing process. The UHMWPE surface in the non-worn state was modelled
by the Gaussian−t random field, so that the small-scale features (hills/valleys)
of the surface which diverge from Gaussianity were represented and estimated
by the t−field, and the large-scale features were assumed to be of a multivariate
Gaussian distribution and they are characterized using the covariance function.
During the wear process, which has been generated artificially (in-vitro) using a hip
wear simulator machine, the heights of the UHMWPE surface topography became
to behave in asymmetry according to their mean, and led to represent the worn
topography by the skew−t random field.

A statistical analysis approach based on the skew−t random field was then
proposed to study the evolution of the surface roughness during the wear simulation
process, by hierarchically estimating the evolution of the skewness parameter,
the evolution of the hills/valleys, their mean area and their significant height’s
levels during wear time, which indicate the most important characteristics that
interpret the wear mechanisms, tribological properties and the functionality during
the mechanical contact between the articulating surfaces. The evaluation of these
characteristics demonstrated fast and significant variations of roughness at the first
10× 106− 12× 106 cycles where the roughness evolution tends to be very slow after
12 × 106 cycles due to important fatigue wear mechanism on the surface. During
the first 10 × 106 − 12 × 106 cycles the UHMWPE surface at 45◦ latitude exhibits
an alternative functional behaviour, which was dominantly affected by abrasion
and adhesion wear mechanisms. From topological point of view, the excursion sets
detected at the significant levels include more holes with significant spatial extent
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than peaks (connected components), which implies that the void area is much
prominent than the bearing area and yields to low friction and contact influence
between the UHMWPE and the metal-back. This concluding result was also
illustrated by computing the difference between bearing and void areas multiplied
by their significant levels, and by the evolution of the Euler-Poincaré characteristic
function in terms of time and heights.
The quantitative comparison between different zones of the UHMWPE surface at
45◦ and 100◦ latitudes showed non-homogeneous behaviour of the surface where
they demonstrated an important wear on the zones at 45◦ latitude contrary to 100◦

latitude. These in-vitro experimental results confirm the ex-vivo observations on
cups from dual mobility concept.

To conclude, the Lipschitz-Killing curvatures (LKCs) of the excursion sets of ran-
dom fields have three advantages, in practice, for analysing rough surfaces: -firstly
they can be used to fit the rough surface geometry with the appropriate random field
model, -secondly, some model’s parameters can be determined from these character-
istic functions, -and finally, the expected Euler-Poincaré characteristic is a robust
technique that can be used to control and estimate the surface levels including the
hills and valleys, and so for analysis of worn surfaces.

10.2 Future work

There are several possible ideas to extend the work of this thesis, in both
theoretical and practical fields. We derived the analytical formulae of LKCs and
the mean number of the maxima and minima for both Gaussian−t, and skew−t
random fields. However, the local size of these maxima and minima (size of each
connected component), if combined with the height levels of each one, can increase
the robustness of the statistical analysis approach in detecting the significant hills
and valleys from the uncertain ones.

A space-time skew−t random field has been introduced in chapter 9 for a work
in progress which can be continued in the future. This model can be used to
estimate and to predict the spatial and temporal evolution of the surface roughness
during the time wear process. In such case, one can estimate an approximate time
of the final degradation of the surface without the need to do further wear tests,
i.e., the age of the UHMWPE component inside the artificial implant.

The skew−t random field has been defined only over one set of length scales.
Thus, further development can be investigated by extending the model to multi-
scales using the scale-space approach, and so define a scale-space skew−t random
field. In this case, independent and identically distributed scale-space Gaussian ran-
dom field components will be used to realize the model. Each Gaussian component
can be realized by smoothing a Gaussian white noise with a spatial filter over a
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range of filter scales related with λ where λ ∈ [λ1, λ2], closely to the space-time case
(see chapter 9).
The scale-space approach from a practical point of view enables estimating the loca-
tion and the scale of the maxima and minima, and can be considered as one solution
of how estimating their local size. This can increase the reliability of the statistical
analysis approach and also enables the detection of the roughness parameters as-
sociated with each scale. Furthermore, the wear process leads to, according to the
results shown in this manuscript, a strong anisotropic roughness patterns, that are
surely mechanically very important features which could be explored by the rotation
scale-space random fields.

For the medical application given in this thesis, the experimental develop-
ments have been tested on one UHMWPE specimen. Further experimental tests
on more specimens will increase the robustness of the drawn results and conclusions.
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Appendix A

Lemmas

Lemma A.0.1 ([Adl81]). Let G be a real-valued centred Gaussian random field
with unit variance. Let Λ = V ar (∂G/∂x) be the N ×N variance-covariance matrix
of its first partial derivatives with elements λij, (i, j = 1, ..., N), then,

(i) Ġ ∼ NormalN (0,Λ) independent of G and G̈
(ii) Conditioning on G,

G̈ | G ∼ NormalN×N (−GΛ,M(Λ))

where the elements of M(Λ) are such that:

Cov

(
∂2G

∂xi∂xj
,
∂2G

∂xk∂xl
|G
)

= ε(i, j, k, l)− λijλkl

where ε(i, j, k, l) is symmetric in its arguments.

Lemma A.0.2 ([Wor94]). The first two derivatives of a χ2 random field, with ν
degrees of freedom, U = U(x), x ∈ RN can be expressed in terms of independent
random variables, where the equality D

= is equality in law, as follows:

(i) U̇
D
= 2U

1
2 z

(ii) Ü
D
= 2(P + zzt − UΛ + U

1
2 H)

where U ∼ χ2
ν , z ∼ NormalN (0,Λ),P ∼ WishartN (Λ, ν − 1) and H ∼

NormalN×N (0,M(Λ)), all independently.

Lemma A.0.3 ([Wor94]). The first and second order partial derivatives of the
t−field T ν = T ν(x), x ∈ RN with ν degrees of freedom, (at any fixed point x),
can be expressed in term of independent random random variables as follows:

(i) Ṫ ν
D
= ν

1
2 (1 + (T ν)2/ν)W−

1
2 z1

(ii) T̈ ν
D
= ν

1
2 (1 + (T ν)2/ν)W−1{−ν−

1
2T ν(Q− 2z1zt1)− z1zt2 − z2zt1 +W

1
2 H}

where T ν ∼ tν , W ∼ χ2
ν+1, z1, z2 ∼ NormalN (0,Λ), Q ∼ WishartN (Λ, ν − 1) and

H ∼ NormalN×N (0,M(Λ)), all independently.



114 Appendix A. Lemmas

Lemma A.0.4. If H ∼ NormalN×N (0,M(I) then:

E(det(H)) =

{
(−1)2j(2j)!

2jj!
ifN = 2j is even

0 ifN is odd
(A.1)

Lemma A.0.5 ([Wor94]). Let H ∼ NormalN×N (0,M) and let A be a fixed sym-
metric N ×N matrix. Then

E[det(A+H)] =

bN/2c∑
j=0

(−1)j(2j)!

2j
detrN−2j(A) (A.2)

Lemma A.0.6 ([CW99]). Let P ∼ Wishart(IN , ν), H ∼ NormalN×N (0,M) are
independent, and A be a fixed symmetric N × N matrix. Let a, b be fixed scalars.
Then

E[det(A+ aP + bH)] =

bN/2c∑
j=0

(−1)j

2jj!
b2j

N−2j∑
k=0

ak
(
ν

k

)
(2j + k)!detrN−2j−k(A) (A.3)
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Simulation of Gaussian random
fields with isotropic/anisotropic

correlation functions

B.1 Orthogonal expansion (Karhunen-Loève expansion)

One of the most important practical aspects in Gaussian modelling and simula-
tion is the orthogonal expansion, or Karhunen-Loève expansion, using its covariance
function [AT03]. It states that every centred Gaussian random field, Y (x), x ∈ S,
defined on a compact subset S of RN (in the following, S is assumed a rectangle
[0, 1]N ), with a continuous covariance function has an expansion of the form:

Y (x) =
∞∑
n=1

√
λnψn(x)gn (B.1)

where {gn}n≥1, is the orthonormal sequence of i.i.d. centred Gaussian variables,
λ1 ≥ λ2 ≥ ..., and ψ1, ψ2, ... are, respectively, the eigenvalues and the normalized
eigenfunctions of the covariance matrix such that λn and ψn solve the integral:∫

S
C(x, s)ψ(s)ds = λψ(x) (B.2)

with the normalization ∫
S
ψn(x)ψm(s) =

{
1 n = m

0 n 6= m
(B.3)

These eigenfunctions are the natural expansion of C defined by Mercer’s Theo-
rem [Mer09], such that:

C(x, s) =
∞∑
n=1

λnψn(x)ψn(s) (B.4)

Thus, for Gaussian random field, Y , on S ⊂ RN , {
√
λnψn(x)} is a complete or-

thonormal system in the Hilbert space H equipped by the following inner product
〈., .〉:

〈f, h〉H =

∞∑
n=1

anbn (B.5)
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where f(x) =
∑∞

n=1 an
√
λnψn(x) and h(x) =

∑∞
n=1 bn

√
λnψn(x), with∑∞

n=1 a
2
n < ∞ and

∑∞
n=1 b

2
n < ∞. Notice that the coefficients an and bn

will be replaced by the i.i.d. Gaussian variables.
The Karhunen-Loève expansion is the general approach for simulation of Gaussian
random fields that might be defined on the non-Euclidean space, or they might be
non-stationary fields in the Euclidean-space. However, the Karhunen-Loève is an
infinite expansion, even if the random field is isotropic. Thus, one might take a
finite expansion using a finite number the eigenvalues which is not enough [AT03].
Further demonstrations can be found in [GM07].

B.2 Spectral expansion using Fourier transform

For stationary Gaussian (or non-Gaussian) random fields, the direct approach to
generate such random fields is via the spectral representation approach (see chapter).
Dealing with stationary Gaussian random fields using the spectral representation
means that Y can be considered as a complex-valued Gaussian random field. Thus,
its covariance function can be expressed as , and the eigenfunctions of C(x, s) can
be established in Fourier space via complex exponentials such that:

∫
S
C(x, s)eiKsds =

∫
S
C(x− s)eiKs

= eiKx
∫
S
C(u)e−iKu

= C̃(K)eiKx

(B.6)

where K stands for spectral measure (frequency).
Since Y is stationary field, so the covariance function C is symmetric and C̃(K)

is the power spectral density of Y , or the Fourier transform of the autocorrelation
function. Following the orthogonal expansion theorem, the real-valued Gaussian
random field can be written as:

Y (x) = Re{
∞∑
n=1

√
C̃n(K)gne

iKx} (B.7)

where Re stands for the real part, gn is a complex-valued zero mean Gaussian
noise. The last expansion is the inverse Fourier transform of the spectral coefficients√
C̃n(K)gn. Furthermore, the sum in the expansion can be considered to finite

number, when Y is defined on a finite number of points giving exact generation of
Y .
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B.3 Some isotropic covariance functions

In the following some isotropic positive definite 1 covariance function models de-
picted in [Yag87a, Mat86] are introduced as examples (see Fig. B.1) to generate
stationary isotropic Gaussian random fields (see Fig. B.2). We remind that station-
ary Gaussian random fields with zero mean are uniquely determined by a positive
definite covariance function C which depends only on the distance τ = ‖x − y‖.
The following covariance function models are parametrized by r and ν which define
the correlation length and the slope of the covariance function, respectively.

– Exponential covariance function:

C(τ ; ν, r) = σ2e−( τr )
ν

, 0 ≤ ν ≤ 2 (B.8)

When ν = 2 the corresponding function is the known Gaussian covariance
function. Note that ν = 0 corresponds to the white noise with constant
covariance equals to σ2 (see Fig. B.1(a)).

– Cauchy covariance function:

C(τ ; ν, r) = σ2

(
1 +

τ2

r2

)−ν
, ν > 0 (B.9)

This covariance function decays rapidly for small values of ν, but very slowly
when ν > 2. It is close to the exponential covariance function. Fig. B.1(b)
shows different sample paths for different ν.

– Modified Bessel covariance function:

C(τ ; ν, r) = σ22νΓ(ν + 1) (ωτ)−ν Jν (ωτ) , ν ≥ (N − 2)/2 (B.10)

where Jν is the modified Bessel function of the first kind of order ν, and Γ(.) is
the Gamma function. Notice that Bessel type functions can have negative val-
ues. Nevertheless, the covariance function is positive definite [Yag87a, Mat86]
for any arbitrary integer ν. This covariance function has a damped oscillation
behaviour with period 2π/ω (see Fig. B.1(c) for different sample paths).

– Exponentially damped cosine covariance function:

C(τ ;ω, r) = σ2Cos (ωτ) e−3( τr ) (B.11)

where ν ≥ 0. Notice that when ω > 0 and r ≥ 0, then the corresponding
function is continuous and positive definite only for N = 1. If ω > 0 and
3/ω ≥ r ≥ 0, then it will be continuous and positive definite for N = 2, and
for N = 3 it should be satisfied that ω > 0,

√
3/ω ≥ r ≥ 0. This oscillating

function (Fig. B.1(d)) has a period of 2π/ω.

1. C is a positive definite function on S × S, if for any choice of n, (x1, ...,xn) ∈ S, and
(c1, ..., cn) ∈ R:

∑n
i=1

∑n
j=1 cicjC(xi,xj) > 0. Matérn [Mat86] has been shown that the covariance

function C of centred, isotropic random fields on RN that satisfies: C(τ ) ≥ −C(0)/N , τ ∈ RN , is
never negative.



118
Appendix B. Simulation of Gaussian random fields with

isotropic/anisotropic correlation functions

The parameter σ2, in the last examples, denotes the correlation amplitude at the
origin C(0) = σ2. Further isotropic covariance families can be seen in [Yag87a,
Mat86, Abr97].

B.4 Numerical simulation of anisotropic stationary
GRFs

In the case of stationarity and anisotropy, then following the discussion in chap-
ter 2, the covariance function will depend on the distance τD = ‖x − s‖D, where
D is N ×N positive definite matrix, and x, s ∈ RN .
The matrix D determines the correlation properties of the spatial structures, such
as their correlation length and their directions. We take the simple case N = 2,
then D can be written as:

D =

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

] [
c2

1 0

0 c2
2

] [
cos(θ) −sin(θ)

sin(θ) cos(θ)

]t
(B.12)

where θ ∈ [−π, π] is the rotation angle, and c1, c2 ∈ R are, generally, the correlation
length parameters, (see Fig. B.3).
we illustrate in Fig. B.4 two examples of two-dimensional anisotropic Gaussian ran-
dom fields generated numerically using the anisotropic exponentially damped co-
variance function in R2, seen in Fig. B.3. The corresponding anisotropic covariance
function is defined in this example such as:

C(d; θ, ω1, ω2, r1, r2) = σ2exp−3(dtK−1d)1/2
cos((dtAd)1/2) (B.13)

where σ, is the covariance amplitude at the origin (C(0) = σ2), d is the difference
vector x− s, for any x, s ∈ S, and

A = Rθ

[
ω2

1 0

0 ω2
2

]
Rt
θ, K = Rθ

[
r2

1 0

0 r2
2

]
Rt
θ (B.14)

where r1, r2 are the damping parameters, and 2π/ω1, 2π/ω2 are the oscillation
periods, all in the orthogonal coordinates in R2. Rθ is the rotation matrix given by:

Rθ =

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

]
(B.15)

The damping coefficient should be restricted to 0 ≤ r1 ≤ 3/2ω1 and 0 ≤ r2 ≤ 3/2ω2,
in order to satisfy that C is positive definite in R2.
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(a)

(b)

(c)

(d)

Figure B.1: Different isotropic continuous and positive definite covariance func-
tions.(a) Exponential covariance function for ν = 0, 0.5, 1, 1.5 and 2.0 with
correlation length r = 1 for all. (b) Cauchy covariance function for ν =

0.01, 0.2, 0.5, 1.5, 2, 10, 50 and 100, with correlation length r = 1 for all. Notice
the very fast and very slow decays of the covariance function with decreased and in-
creased ν, respectively. (c) Bessel covariance function for ν = 0, 0.2, 0.5, 1, 5 and 10,
with angular frequency ω = 2 for all. (d) Exponentially damped cosine covariance
function with damping r = 0.2, 0.5, 0.7, 1.25 and 2.5. The angular frequency ω = 1

for all.
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(a) (b)

(c) (d)

Figure B.2: Numerical simulation of stationary isotropic Gaussian random fields
(GRFs) generated by Fourier transform on [0, 1]2 using one example of each of
the four isotropic covariance function models illustrated in Fig. B.1.(a) GRF with
Gaussian covariance function of ν = 2 and correlation length r = 1. (b) GRF
with Cauchy covariance function of ν = 0.5 and correlation length r = 1. (c) GRF
with Bessel covariance function of ν = 0.2 and period 2π/ω = 1. (d) GRF with
exponentially damped cosine covariance function of period 2π/ω = 1 and damping
r = 1.
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(a) (b)

Figure B.3: Examples of a two-dimensional anisotropic exponentially damped cosine
covariance function with different correlation parameters. (a) Correlation rotation
angle θ = 45◦ with damping parameters r1 = 100, r2 = 0.03, and periods 2π/ω1 =

0.01, 2π/ω2 = 15. (b) Correlation direction θ = 0◦, with damping r1 = 0.5, r2 = 0.2

and period 2π/ω1 = 0.01, 2π/ω2 = 10.

(a) (b)

Figure B.4: Numerical simulation of two-dimensional stationary anisotropic GRFs
generated by the covariance functions illustrated in B.3 (a), and B.3 (b), respec-
tively..





List of Abbreviations

pdf probability density function

cdf cumulative distribution function

EC Euler Characteristic

RMS Root Mean Square

UHMWPE Ultra-High-Molecular-Weight Polyethylene

THA Total Hip Arthroplasty

ISO International Organization for Standardization

ACF Auto-Correlation Function

LKCs Lipschitz-Killing Curvatures

i.i.d. independent and identically distributed





Notation Index

N Dimension of the parameter space

φ(.) Normal pdf

Φ(.) Normal cdf

ν The degree of freedom

T ν t−field with ν degrees of freedom

tν(.) The t distribution with ν degrees of freedom

td The d−dimensional t variate pdf

T1(.) The scalar student’s t cdf

χ2 Squared-Chi random field

χ2
ν Squared-Chi distribution with ν degrees of freedom

STν;α(.) skew−t distribution with ν degrees of freedom and skewness index α

RN The N−dimensional Euclidean space

WishartN Wishart distribution

GT νβ Gaussian−t distribution

µ(.) First order moment function

C(.) Covariance function

Σ Covariance kernel matrix

σ Standard deviation

µY First order moment of Y

σY Standard deviation of Y

Λ Second order spectral matrix

S A compact subset of RN

λ second order spectral moment

ΛJ Second order spectral matrix

λi1...in Spectral moments

λij second order spectral moment

δ, α Skewness index

β Scale factor
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Sq RMS value

Ssk skewness

Sku kurtosis

Eh The excursion set at a level h

Y A random process

ρn(.) The n−dimensional EC density

Mn(.) The n−dimensional Minkowski functional

Ln(.) The n−dimensional Lipschitz-killing curvature

Hn Hausdorff measure of n dimension

ωn The volume of the unit ball in Rn

χ Euler-Poincaré characteristic[
n

m

]
Flag coefficient

χG Euler-Poincaré characteristic of Gaussian random field

χT Euler-Poincaré characteristic of t random field

detrn The sum over principal minors

Graff(N, k) The affine Grassmanian

Ẏ The first partial derivative of Y

Ar(.) The area function

Cr(.) The contour function

M+
h The number of maxima

M−h The number of minima

|.| Determinant

det Determinant

Γ(.) Gamma function

Ÿ The second partial derivative of Y

pY (.) The marginal pdf of Y

PY (.) The cdf of Y

Normald(.) d−variate Normal distribution
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Abstract: 

Surface topography is, generally, composed of many length scales starting from its physical geometry, 

to its microscopic or atomic scales known by roughness. The spatial and geometrical evolution of the 

roughness topography of engineering surfaces avail comprehensive understanding, and interpretation 

of many physical and engineering problems such as friction, and wear mechanisms during the 

mechanical contact between adjoined surfaces. Obviously, the topography of rough surfaces is of 

random nature. It is composed of irregular hills/valleys being spatially correlated. The relation 

between their densities and their geometric properties are the fundamental topics that have been 

developed, in this research study, using the theory of random fields and the integral geometry. 

An appropriate random field model of a rough surface has been defined by the most significant 

parameters, whose changes influence the geometry of its excursion. The excursion sets were 

quantified by functions known as intrinsic volumes. These functions have many physical 

interpretations, in practice. It is possible by deriving their analytical formula to estimate the 

parameters of the random field model being applied on the surface, and for statistical analysis 

investigation of its excursion sets. These subjects have been essentially considered in this thesis. 

Firstly, the intrinsic volumes of the excursion sets of a class of mixture models defined by the linear 

combination of Gaussian and t random fields, then for the skew-t random fields are derived 

analytically. They have been compared and tested on surfaces generated by simulations. In the second 

stage, these random fields have been applied to real surfaces measured from the UHMWPE 

component, involved in application of total hip implant, before and after wear simulation process. The 

primary results showed that the skew-t random field is more adequate, and flexible for modelling the 

topographic roughness. Following these arguments, a statistical analysis approach, based on the skew-

t random field, is then proposed. It aims at estimating, hierarchically, the significant levels including 

the real hills/valleys among the uncertain measurements. The evolution of the mean area of the 

hills/valleys and their levels enabled describing the functional behaviour of the UHMWPE surface 

over wear time, and indicating the predominant wear mechanisms.  
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Résumé : 

La topographie d'une surface se compose généralement de plusieurs échelles, depuis l'échelle 

macroscopique (sa géométrie physique), jusqu'aux échelles microscopiques ou atomiques appelées 

rugosité. L'évolution spatiale et géométrique de la rugosité fournit une description plus complète de la 

surface, et une interprétation physique de certains problèmes importants tels que le frottement et les 

mécanismes d'usure pendant le contact mécanique entre deux surfaces. La topographie d'une surface 

rugueuse est de nature aléatoire, ce qui traduit par des altitudes spatialement corrélées, appelées pics 

et vallées. La relation entre leurs densités de probabilité et leurs propriétés géométriques sont les 

aspects fondamentaux qui ont été développés dans cette thèse, en utilisant la théorie des champs 

aléatoires et la géométrie intégrale.  

Un modèle aléatoire approprié pour représenter une surface rugueuse a été mis en place et étudié au 

moyen des paramètres les plus significatifs, dont les changements influencent la géométrie des 

ensembles de niveaux (excursion sets) de cette surface. Les ensembles de niveaux ont été quantifiés 

par des fonctionnelles connues sous le nom de fonctionnelles de Minkowski, ou d'une manière 

équivalente sous le nom de volumes intrinsèques. Dans un premier temps, les volumes intrinsèques 

des ensembles de niveaux sont calculés analytiquement sur une classe de modèles mixtes, qui sont 

définis par la combinaison linéaire d'un champ aléatoire Gaussien et d'un champ de t-student (t-field), 

et ceux d'une classe de champs aléatoires asymétriques appelés skew-t. Ces volumes sont comparés et 

testés sur des surfaces produites par des simulations numériques. Dans un second temps, les modèles 

aléatoires proposés ont été appliqués sur des surfaces réelles acquises à partir d'une cupule 

d'UHMWPE (provenant d’une prothèse totale de hanche) avant et après les processus d'usure. Les 

résultats ont montré que le champ aléatoire skew-t est un modèle mieux approprié pour décrire la 

rugosité de surfaces usées, contrairement aux modèles adoptés dans la littérature. Une analyse 

statistique, basée sur le champ aléatoire skew-t, est ensuite proposée pour détecter les niveaux des 

pics/vallées de la surface usée et pour décrire le comportement et la fonctionnalité de la surface usée.  
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