N

N
N

HAL

open science

Distribution and storage in networks

Remigiusz Modrzejewski

» To cite this version:

Remigiusz Modrzejewski. Distribution and storage in networks. Other. Université Nice Sophia
Antipolis, 2013. English. NNT: 2013NICE4075 . tel-00905186

HAL Id: tel-00905186
https://theses.hal.science/tel-00905186
Submitted on 17 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00905186
https://hal.archives-ouvertes.fr

UNIVERSITE DE NICE - SOPHIA-ANTIPOLIS
ECOLE DOCTORALE DES SCIENCES ET TECHNOLOGIES DE
L’INFORMATION ET DE LA COMMUNICATION

PHD THESIS

to obtain the title of

Docteur en Sciences

de I’Université de Nice Sophia Antipolis
Mention : Informatique

Defended by
Remigiusz MODRZEJEWSKI

Distribution and Storage in
Networks

COATT Project
(I3S (CNRS/UNS), Inria)
Advisor:
Jean-Claude BERMOND

Jury:
Reviewers:
ANNIE GRAVEY - TELECOM Bretagne (Brest, France)
JosepH G. PETERS - Simon Fraser University (Vancouver, Canada)
LAURENT VIENNOT - Inria (Paris, France)
Examinators:

LAURENT LEFEVRE
JEAN-CLAUDE BERMOND CNRS (Sophia Antipolis, France)
STEPHANE PERENNES CNRS (Sophia Antipolis, France)
FREDERIC GIROIRE - CNRS (Sophia Antipolis, France)
Invited:

JEROME GALTIER - Orange Labs (Sophia Antipolis, France)

Inria (Lyon, France)

To my beloved wife and my family.

Acknowledgments

First of all, I want to thank all the persons who worked with me on this
text. My reviewers: Annie Gravey, Joseph Peters and Laurent Viennot.
My advisor, Jean-Claude Bermond, as well as Stéphane Pérennes and
Frédéric Giroire who helped me forge it chapter by chapter. Thanks to
all the coauthors of the studies the thesis is based on.

I thank my wife, my parents and my sister for all the support that
kept me going for these years. T also thank all the MASCOTTE/COATI
team for making the doctoral studies so pleasant. Thanks to Issam and
Julio for all the times I would be lost without your help. Special thanks
to Patricia, without whom I would never succeed with any office.

Abstract

In this thesis we study multiple approaches to efficiently accomo-
dating for the future growth of the Internet. The exponential growth of
Internet traffic, reported to be as high as 41% in peak throughput in 2012
alone, continues to pose challenges to all interested parties. Therefore,
to accommodate this growth, smart management and communication
protocols are needed.

The basic protocols of the Internet are point-to-point in nature. How-
ever, the traffic is largely broadcasting, with projections stating that as
much as 80-90% of it will be video by 2016. This discrepancy leads
to an inefficiency, where multiple copies of essentially the same messages
travel in parallel through the same links. In this thesis we study multiple
approaches to mitigating this inefficiency.

The contributions are organized by layers and phases of the network
life. We look into optimal cache provisioning during network design.
Next, we move to managing an existing network. We look into putting
devices to sleep mode, using caching and cooperation with Content Dis-
tribution Networks. In the application layer, we look into maintaining
balanced trees for media broadcasting. Finally, we analyze data surviv-
ability in a distributed backup system, which can reduce network traffic
by putting the backups closer to the client than if using a data center.

Our work is based on both theoretical methods, like Markov chains
and linear programming, as well as empirical tools, like simulation and
experimentation.

Abstract

Dans cette these, nous étudions divers problemes dont I'objectif est
de gérer la croissance d’internet plus efficacement. En effet celle-ci est
trés vive : 41% pour le pic en 2012. Afin de répondre aux défis posés par
cette évolution aux divers acteurs du réseau, des protocoles de gestion et
de communication plus intelligents sont nécessaires.

Les protocoles de I'Internet furent congus comme des protocoles point
apoint. Or, la part de la diffusion de média dans le trafic est prépondérante
et en nette hausse, et des projections indiquent qu’en 2016 80-90% du
trafic sera engendré par de la diffusion vidéo. Cette divergence entraine
des inefficacités, car des multiples copies d’un message transitent par un
lien. Dans cette these, nous étudions comment remediér a cette ineffi-
cacité.

Nos contributions sont organisées selon les couches et les phases de
déploiement du réseau. Nous étudions le placement de caches lors de la
conception du réseau. Ensuite, pour la gestion d’'un réseau, nous regar-
dons quand placer des appareils en veille, en utilisant un mécanisme de
cache et en coopération avec des réseaux de distribution. Puis, au niveau
de la couche application, nous étudions un probleme de maintenance
d’arbres équilibrés pour la diffusion de média. Enfin, nous analysons la
probabilité de survie des données dans un systéme de sauvegarde dis-
tribuée.

Notre travail se fonde a la fois sur des méthodes théoriques (Chaines
de Markov, Programmation Linéaire), mais aussi sur des outils em-
piriques tels que la simulation et ’expérimentation.

Contents|

(1.2 Network transmission taxonomy|
(1.3 Content popularity and cachingl
(.4 Content distribution modeld
(L. Metrics studied|
(1.6 Techniquesused|
(L7 Contributionsl
(1.8 Bibliography|

Energy Efficient Cache Provisioning|

Contents

[2.1 Preliminary: modelling content flow over a networkl . . . 33

[2.2 Preliminary: modelling energy consumption in a networkl| 35

[2.3 Preliminary: algorithmic approach| 36
2.4 Publicationl 40
2.5 Introductionl 40
2.6 Related Workl 41
[2.7 Problem Description|. 43
2.8 GC'T Algorithm Description| 46
RO Resultsd 50
2.10 Conclusionsl 59
(2.11 Addendum: cache hierarchies and the filter effectl 60
[2.12 Bibliography|o 61
[3 Energy Efficient Routing| 67
[3.1 Preliminary: Linear programming| 67

6

[3.2 Preliminary: roundingf. 70

3.3 Publication|. oo 71
3.4 Introduction| 71
3.5 Related Workl 73
[3.6 Problem Modeling| 75
[3.7 Instance generation| 81
BR Resulldo 82
3.9 Conclusions and further researchl 93
[3.10 Bibliography| oo oL 93
[4 Maintaining Balanced Trees For Structured Distributed |
[Streaming Systems| 99
4.1 Preliminary: live streaming overlay networks 99
4.2 Publication|. oo o 101
4.3 Introduction|o 101
4.4 Problem and Balancing Process| 104
4.5 Worst case analysis| 110
4.6 Adding an extra global knowledge to the nodes| 113
4.7 Simulations.o 114
4.8 Conclusions and future researchl 115
4.9 Bibliography| o000 116
[> Analysis of the Repair Time in Distributed Storage Sys- |
[_temsl 119
[>.1 Preliminary: Queues and Markov chains|. 119
H.2 Publication|.o 120
.3 Introduction|o 120
[>.4 System Description| 123
[>.5 Preliminary: Impact of Disk Asymmetry] 126
(5.6 The Queueing Model| 132
BT Resullsd oo 138
[>.8 Experimentation| L. 146
0.9 Conclusionl oo 150
[>.10 Bibliography| oL 150
[6 Conclusions and perspectives| 155

(A Weighted Improper Colouring| 159

[A.4 Squares ot Particular Graphs|

[A.5 Integer Linear Programming Formulations, Algorithms and

Resultsl

[A.6 Conclusion, Open Problems and Future Directions|
[A.7 Bibliography| oo

CHAPTER

Introduction

In this thesis we study multiple approaches to optimizing the current
and future Internet. In this introduction we motivate these approaches,
mention the techniques used and finally enumerate our main contribu-
tions.

1.1 Motivation

The impact of the Internet on our lives has been becoming more and more
evident in recent years. Nowadays, people are using it in work, in free
time and in the commute between them. It is gradually replacing printed
press, radio and television. This results in an exponential-like growth in
network traffic, that is likely to last in the foreseeable future. According
to a report by Cisco [Cis13], the peak global throughput has increased by
41% through the year 2012 alone. Sustaining such a growth, while min-
imizing investments and energy consumption, requires new approaches
to how the networks comprising the Internet are used and operated.

In parallel to the increase of traffic volume, we see a shift in its nature.
An increasing part of the traffic is media broadcasting. In fact, according
to projections in the same Cisco report, video traffic alone will constitute
69 percent of all consumer traffic in 2017, up from 57 percent in 2012.
Together with file sharing, this should approach 90% of all traffic. These
kind of flows share the property that they are not concerned by which

9

server serves the client. This motivates the main questions of the thesis,
which are concentrated on the study of content dissemination and peer-
to-peer systems. Particularly, it is beneficial to all involved parties if
a client is served from a location as close as possible. We study three
different classes of such close locations:

e a mirror server located closer in the network, what is the case for
Content Distribution Networks (CDN),

e a cache located at a nearby network device (in-network caching),

e or another client sharing his own resources, as in Peer-to-Peer net-
works (P2P).

They are described in more detail in Section and studied in various
chapters of this thesis, utilizing a set of techniques described in Sec-
tion [L6l

In this thesis I study multiple models of communication over Inter-
net. I also look into multiple phases of the network life, from conception
of physical layer, dimensioning, management, to using it in a more dis-
tributed way.

1.2 Network transmission taxonomy

Due to convergence of communications, computer networks transmit any
kind of files and streams. Observing the nature of network traffic, in
general one can divide the volume into three main categories: video
streaming, file sharing (includes video files) and everything else. The
historical and projected traffic amounts are plotted in Figure[I.T} In this
section, we classify the bulk of the traffic into a few more categories and
briefly describe them in terms of: volume of traffic, delay sensitivity and
whether they may be cached, relocated or multicasted.

Conversations First, there is a broad category of communication be-
tween users. This may include emails, instant messages, video chat as
well as many specific applications, e.g. computer games. All messages
in this category have two given endpoints and are unique, transmitted
only once. All the other characteristics vary from application to applica-
tion. Email is usually low traffic and very tolerable towards transmission

3000 1 1 1 1 1 1 1 1
Hll Video streaming

2500 HEEE File sharing

B Other

2000
1500
1000

500

Global Consumer Traffic [PB/day]

0
2008 200920102011 201220132014 20152016 2017
Year

Figure 1.1: Traffic evolution according to [Cis13], historical data taken from
[Cis09, [Cis10, [Cis1, [Cis12).

delays and failures. Computer games are low traffic, but very sensitive
towards delay. Video chat is high traffic and somewhat sensitive towards
delay. Other applications can be any mixture of above. Flows belong-
ing into this category generally cannot be cached nor relocated and they
would not benefit from any form of multicasting.

Web This category contains the huge interlinked collection of objects,
known as the World Wide Web. While it may be used as a front-end to
the other categories, its main purpose is publishing. Traffic requirements
depend on the type of viewed content, from tiny in case of plain text
to huge in case of rich multimedia. Delay tolerance is medium, real
time transmission is not required, but quick delivery is crucial for client
satisfaction. Many objects are static and common across web sites, like
logos or other images, and can be cached. However, the transmissions
connected to a single location are usually relatively small and predicting
the next location visited by the user is not a trivial problem. This has
led to numerous studies on pre-fetching, surveyed in [Wan99].

Live streaming Live streaming can be seen as television over internet.
A source broadcasts live media and clients display it after a short delay.
This delay accommodates for buffering, transmissions and eventual re-

transmissions. It also serves as a deadline — it is useless for a client to
receive a fragment of the stream delayed by more, as its playback time
already passed and it will never be used again. Along this delay bound,
these kind of flows often have very big bandwidth. The fact that we have
a big number of clients interested in receiving exactly the same content
at the same time makes a perfect match for multicasting.

On-demand streaming On-demand is another type of streaming, where
user chooses a media file from a previously offered collection. While
transmission requirements are roughly the same as in live streaming, the
user may choose to pause and resume the playback at will. Optimizing
this kind of streaming raises more challenges. The sizes of collections
are usually much larger than number of live channels. Additionally, two
users watching the same file may be too far apart in playback time to
treat them as watching the same thing.

File sharing A big part of Internet’s bandwidth is used by file shar-
ing. In this kind of application users typically share single big files. As
download times are often counter in hours, there is not much pressure on
delays. However, as the user typically wants to receive the file as soon
as possible, there is demand for practically unlimited bandwidth.

Cloud computing One use case for computer networks, that has been
gaining on importance in the recent years, is cloud computing. This is a
broad category, containing any kind of tasks performed server-side, con-
trolled by a remote operator. These might be as different as multimedia
editing, distributed computing or simply data storage. The main moti-
vation is moving computing resources from the client, which can become
simpler, towards centralized facilities, where economies of scale can be
leveraged.

Delay tolerance depends on the actual application and cloud com-
puting flows rarely refer static data that could be cached. However, as
the operator is already remote to the servers performing the tasks and is
usually oblivious to their location, the servers themselves can be placed
at a possibly close location to the client.

Category Traffic volume Delay tolerance Optimization

Conversations Variable Low —

Web Variable Medium Caching

Live streaming High Low Multicasting

On-demand streaming High Low Caching

File sharing High High Caching,
relocating

Cloud computing Variable Variable Relocating

Table 1.1: Summary of the network flow classes, their properties and natural
optimizations.

Table summarizes the above classification. Note that the only
class without a natural way of optimization, from network perspective,
are conversations. On the other hand, there is little redundancy in this
class. Thus, we can state that in most cases if there is an inefficiency, we
can attempt to address it.

1.3 Content popularity and caching

As discussed in previous section, the majority of transmissions over In-
ternet are expected to be video streaming. In both live and on-demand
streaming, the same content is received by multiple users. For live
streaming this opens the possibility of multicasting, either by IP mul-
ticast or peer-to-peer networks, studied in Chapter [l For on-demand
streaming caching can be employed. It plays important roles in Chap-
ters 2l and Bl

In general, caching means storing a subset of a collection of objects
in another place, from where retrieval is significantly cheaper than from
said collection. Caches are ubiquitous in all areas of computing. A
remarkable example are CPU caches. A small amount of static RAM
located on the CPU, usually a few megabytes, mirrors some parts of the
main memory, usually a few gigabytes of dynamic RAM. If data accessed
by the processor is present within a cache, we say it is a cache hit and
the access takes a few nanoseconds. Otherwise, we face a cache miss
and the access is directed towards the main memory, what is measured
hundreds of nanoseconds. Therefore the probability of the required data

being present in the cache, called cache hit ratio, is crucial for the overall
efficiency of the system. An in-depth explanation of caching in hardware
can be found in [JNWI0].

In networking, a well known usage of caching are web proxies. They
are servers usually located in the same network as their clients. Proxies
essentially cache any web content. They are either enabled explicitly in
client’s browser configuration, or the network is configured to redirect
requests to a proxy, possibly without client’s knowledge. In the latter
case we say the proxy is transparent. Another notable example of a cache
is a server of a Content Distribution Network, as described in Section [I.4]
Such a server is located at a network close to the client, but in case of
a miss it needs to forward the request to the original content provider,
which may be very far. In this thesis we look into in-network caches,
also described in Section [L.4]

The interest in caching in networking is to allow many clients to
obtain some data from a nearby cache, thus saving multiple redundant
long-range transmissions. This implies that the effectiveness of caches
depends on popularity, understood as the number of clients requesting
for an object (web page, song, movie, etc.) over some time. It is often
stated in the literature that it follows a power-law. This means that
there are very few objects that are very popular and a lot objects that
are not popular.

Zipt’s law is proposed to described popularity of objects in the Inter-
net. In was proposed in |Zip32], in order to study natural languages. It
states that the frequency of any word is inversely proportional to its rank
in the frequency list. More formally, the popularity f of object ranked &

£k B) =75 (1)

where [is a positive real parameter. A probability distribution of ac-
cessing a given object is obtained by simply dividing the above by the
sum for all objects. This distribution was found to be a good fit for Web
traffic in [BCET99], where it was found that the value of § falls within
the range [0.6,0.8], depending on the collection and viewers population.
More recent studies, specializing on video traffic, tend to confirm this,
e.g. [CDLOS, IGHM13|. However, values observed can be as low as 0.56
in [GALMO7] and as high as 1.5 in [CKR*07].

102 p————r——————

—
o
—

Hit rate[%]

100 |

107! E—— EEE———
107° 1074 1073
Collection size / Cache size

Figure 1.2: Hit rates in function of cache size relative to the size of the col-
lection it caches, for three different values of the distribution’s exponent .
Computed for n = 107 objects in collection. Note the log-log scales.

Assume that we know the object popularity for a period of time, we
store in the cache the most popular content for that time and the period
is long enough to make any initial cache misses insignificant. Then, we
obtain the formula for the hit rate of a cache mirroring s objects of a
collection of n objects:

_ 2 b

h(s,n,B) = Nk

(1.2)

which is plotted in Figure [[.2] It shows the hit rates obtained, with
conservative values of 3, by a single cache that can store up to /00
of the collection. For example, if the collection is 1OPB|I| of video clips
100MB each, with 8 = 0.8, we would obtain 22.4% hit ratio with a 10TB
cache, 12.8% with a 1TB and 6.7% with a 10GB one. An important
observation in the plot is that, even within this conservative range, small
variations of the [parameter have a huge effect on cache efficiency.

'PB = 103TB = 10°GB = 10°MB = 10'°B

1.4 Content distribution models

The majority of current internet traffic is delivered using a protocol stack
built on the Internet Protocol (IP), which takes its name from being
the one used to deliver messages between hosts that may be connected
to different networks. Below it we have the link layer, which governs
communications of devices sharing a link. Above there is the transport
layer, which ensures continuity of host-to-host communication, mainly
by the Transmission Control Protocol (TCP) protocol, and the applica-
tion layer, which engulfs any communication abstracting over the layers
below.

The TCP/IP stack is conversational by design. On the other hand,
most of the data flows through today’s networks are either content dis-
tribution or, starting recently and gaining momentum, cloud based ser-
vices. This mismatch creates a range of opportunities to introduce more
efficient architectures for the future Internet. In this section we briefly
characterize the main ones.

Network

Server W@m/\ Client)

Figure 1.3: A communication flow between a server and a client, passing a
network comprised of multiple routers.

Client-server

TCP/IP assumes communication between two points. These usually
are a single client and a single server. This is depicted in Figure [1.3|
Distinction between both endpoints comes down to the fact, that it is the
client who initiates the communication. Thus, he must know the address
of the server. This reflects how actual users use network services. Even
if ultimately they want to send a message to another user, usually they
will do so, e.g., by the service provided by email servers.

Inefficiency arises if the communication is one-to-many by nature.
Extreme, but increasingly significant, example of such communication is

media broadcasting. In this case, multiple copies of essentially the same
messages flow in parallel through the network, often sharing and proba-
bly congesting the same links. This is shown in Figure|l.4. Furthermore,
media broadcasting requires high and ever-growing bandwidth. There-
fore, mitigating this redundancy is particularly important.

1/

= Client)
\‘

Figure 1.4: Multiple communication flows between a server and its clients,
passing in parallel through the same routers in the network.

Network

Server

IP multicast

7

Network

Server R O ce CR—A Client)

N\

Figure 1.5: A single flow is multicasted at IP routers towards all interested
clients using IP multicast.

The first solution to this inefficiency is IP multicast. It was proposed
in [DEESS]. It is implemented in standard IP routers. Every broadcast
channel is assigned a multicast address. Clients interested in receiving
it subscribe using the Internet Group Management Protocol, or the Mul-
ticast Listener Discovery component of IPv6. A router, seeing such a
subscription, will forward any messages related to this channel towards
the client. This is illustrated in Figure If it is not receiving it yet,
it will also signal to its default route that it has clients interested. The

broadcaster is simply sending single messages to the multicast address,
it is not responsible for multicasting or retransmissions.

This solution is obviously limited to live broadcasting. Due to lack of
applications, following a mismatch between protocol and popular needs,
economic reasons and security issues, [P multicast is not widely deployed.
In practice it is restricted to specific services, like providing traditional
television inside an operator’s network. IP multicast traversing multiple
networks is rare.

Content distribution networks

Transit Networks ISP Network /’

Figure 1.6: Multiple clients request the same content from a Content Provider.
Only one copy of the content is passed, traversing possibly multiple transit
networks, to a CDN server. This server, located on an edge of an ISP network,
distributes the content to all the clients connected to it.

One response to aforementioned inefficiency, widely deployed in the
wild, are Content Distribution Networks (CDNs). This solution leverages
a particular socio-economical phenomena: in case of media distribution,
both clients and providers are willing to pay anybody who can ensure
swift transmission, not only to network operators giving them connectiv-
ity. In fact, clients pay, probably indirectly by watching advertisements,
for the received content to big Content Providers (CPs). CDNs install
themselves as a man-in-the-middle. They are paid by the CPs and serve
to clients content previously obtained from the CPs. Aggregating mul-
tiple CPs, they can afford to put their servers in the edges of many
networks.

When a client wants to access some content of a CP, he is redirected
towards the nearest CDN server. If it is the first request for this content

in some time, the CDN server obtains a copy from original CP, stores it
and provides to the client. On subsequent requests the copy stored by the
server will be used, unless it is deleted due to too long time between re-
quests, thus eliminating the need for parallel long-haul communications.
This is shown in Figure (1.6

Arguably the most notable CDN is Akamai, founded in 1998. By
their own claim in [Akal3], they serve 15-30% of the world’s Internet
traffic on a daily basis. This is achieved using a global network of more
than 85,000 servers in 70 countries. Less is known about other major
CDNes, like Level 3 or Limelight. Some ISPs maintain their own CDNs.
These, like IP multicast for live streaming, usually serve their own on-
demand streaming offerings. The Cisco report [Cisl3] estimates that
CDNs currently account for 34% of Internet traffic. That number should
rise to 51% by the year 2017.

Content Distribution Networks play a major role in Chapter

Peer-to-Peer

Network

Source [

Figure 1.7: A source providing a single peer, who then shares with multiple
local peers.

If the content provider cannot, or is unwilling to, employ a CDN,
then efficient content distribution can be undertaken by the clients. The
basic principle of Peer-to-Peer (P2P) networks is that most of its users
are clients and servers at the same time. Hence, they are called peers.
After receiving a fragment of media, a peer is expected to pass it to
others, as shown in Figure [1.7] The obvious exception is the original
source of the media, or more generally any peer that is not interesting
in receiving, but has some data to serve.

P2P networks got some popularity in multiple areas. Arguably the
one with biggest mindshare is the file sharing network Bit Torrent, pro-
posed in [Coh03]. A popular solution for amateur video broadcasting
is SopCast, investigated in [LEKT09]. A commercial success in China
was achieved by the P2P broadcaster PPTV, formerly PPLive, stud-
ied in [HLLT07]. As they claim in [PPL13], PPTV has more than
260 million users. A number of P2P storage systems have been pro-
posed [DROI, BTcCT04, [KBCT00]. However, the only well-known com-
mercial system, Wuala, has switched to a purely client-server architec-
ture. According to [MBM12], this was dictated by a significant drop in
data center prices, making this easier design economically feasible. Ac-
cording to the Cisco report |Cis13], just P2P file sharing constitutes 23%
of current Internet traffic.

Note that many popular P2P networks do not explicitly optimize for
locality. However, prioritizing peers with high throughput, like in Bit
Torrent, indirectly favors peers which are closer network-wise. Addition-
ally, many popular clients implement the Local Peer Discovery extension,
see [Bit13].

Peer-to-Peer networks are analyzed in Chapters {4f and

In-network caching and Content Centric Networking

Network

—
Server

Figure 1.8: Object dissemination over a network of caching routers. Each
router on a path between a client and source server stores the object in its
cache. When other clients request the same object, it needs to be disseminated
only from the closest router common to their paths to the source server.

Finally, network operators can battle the inefficiency by deploying
in-network caches. A scenario, where each router is augmented with a

cache and on a missed request passes it to the next cache on the path to-
wards a server, is depicted in Figure(l1.8] Unlike in [P multicast, caching
is not restricted to live streaming. Any popular objects can be stored
in-network, to be accessed at client’s convenience. The motivation for an
ISP to undertake such an investment is twofold. First, caches reduce the
latency, making its clients happier. Second, they reduce long-haul traffic,
thus saving money to the operator. While both of these are achieved, to
some extent, by the third-party operation of CDNs (which essentially can
be seen as caches themselves), there are some advantages to operator’s
caches. First, they can be provider-agnostic, therefore optimizing the
savings of the operator, disregarding the nature of the source of the con-
tent. However, note there may be possible copyright issues, as providers
want to be in control of who and when can access their content. Second,
placement and dimensioning can be tailored to benefit the particular
network (Chapter [2| studies this problem). Third, it is the ISP who con-
trols the operation, allowing it to respond to current network conditions
(studied in Chapter [3)).

In-network caching is attracting research interest thanks to Content
Centric Networking (CCN), proposed in [JSTT09]. It uses the concept
of nearest replica routing, where requests are propagated towards the
nearest cache containing the data, instead of going along the shortest
route towards a known host. This broadcast-centric approach allows for
massive reuse of media chunks, virtually eliminating redundant parallel
transfers seen before. CCN’s network layer can be used as an alternative
to the Internet Protocol, as well as be layered over it (or over UDP) for
easier deployment. Also, unlike TCP which concerns connection, CCN
ensures that the content is received intact and as requested.

1.5 Metrics studied

In different studies we are interested in optimizing or evaluating different
metrics. These need to be defined and modeled in a clear and simple way.
In this section we briefly describe them.

One concern that has been growing throughout the recent years, be-
cause of rising prices of electricity and worries about global warming,
is energy consumption. According to [LVHVT™12|, the Information and
Communication Technology sector already consumes 2% of global elec-

tricity and experiences 10% of yearly increase. In Chapters[2land [3, both
concerned in network layer, we optimize power consumption.

When it comes to telecommunication networks, we see huge improve-
ments in energy efficiency achieved by device manufacturers. In [LKWGTI]
it is shown that power consumed per unit of data transmitted is halved
every four or five years. However, as we know from [Cis13], the amount of
data transmitted is at least tripled over the same period. Furthermore,
the trend towards decreasing per bit energy efficiency can slow down
significantly. As discussed in an ICC 2013 keynote [Winl3], per-fiber
capacities are approaching the Shannon limit computed in [EFKWO0S].
On the other hand, there is no clear reason to believe traffic growth will
come to a standstill. Thus, we arrive at the conclusion that improving
network power efficiency is of global importance.

Three ways of achieving this are considered in this thesis. The first
is shortening the routes travelled by traffic, either by caching or choos-
ing a server that is closer to the client. The second is putting unused
components into sleep or low-power modes. This has been first proposed
in [GS03]. The third way is aggregating the traffic. It has been shown, in
the influential paper of Chabarek |[CSBT08|, that the energy consump-
tion of network equipment is not proportional to the volume of traffic.
Thus, using fewer devices with higher load may lead to significant sav-
ings. This may happen both in network deployment, or by putting more
devices to sleep mode.

For Peer-to-Peer broadcasting in Chapter [l we look into the time
between a failure and finishing repair of the tree. The time is expressed in
number of turns, where a turn is the time needed for each node in the tree
to perform a single operation. For the simulations we can look into other
metrics, like the average delay or fraction of media received correctly.
Both the values are improved by the algorithm. The delay is the time
between the source sending some content and the nodes receiving it. It
depends on the distance of the node from the source; thus balancing
the tree minimizes delay. When a node has too many children, it cannot
sustain streaming to every one of them. Thus nodes that have overloaded
ancestors do not receive all the media. Our algorithm improves this as
well.

In Chapter [5] we look into Peer-to-Peer backup systems. To ensure
data survival, such a system employs a continuous self-repair process.

Whenever a fragment of the data is lost, it is being reconstructed from
redundant data in the network. To achieve it, peers need to upload the
data. Thus, the system continuously uses bandwidth and we evaluate its
usage. If available bandwidth is too low to accommodate all the losses,
we arrive at a probability of losing some data. This probability is the
most important characteristic for such a system.

When solving frequency assignment problem in Appendix [A], we want
to minimize either the number of radio channels needed or the interfer-
ences between nodes. Radio channels, modeled as the colours in a graph
colouring, are a monetary cost to obtain. Interference, induced by other
nearby devices using the same channel, has to be kept below a threshold
to keep transmission reliable.

1.6 Techniques used

Over the course of this thesis we faced different problems, calling for
different solutions. The main techniques used, ordered from the more
theoretical to more empirical, are:

e Queueing and Markov chain analysis, in Chapter [5], described in
Section (.1

e Integer Linear Programming approaches, in Chapter [3| and Ap-
pendix [A] described in Section [3.1

e Rounding or fractional relaxations of mixed integer linear programs,

in Chapter [3] described in Section
e Branch-and-bound methods, in Appendix [A]
e Discrete event simulation, in Chapter
e Cycle based simulation, in Chapter

e Experiments, using commercial softwareﬂ on a testbed platformEL
in Chapter

’http://www.ubistorage.fr/
3https://www.grid5000.fr/

http://www.ubistorage.fr/
https://www.grid5000.fr/

A sizeable part of the work presented here does not fall into this
classification. For example the analysis in Chapter [2| relies only on basic
probability and algebra, leading to a straightforward exact algorithm.
In Chapter 4] we use a potential function approach, similar to the ones
used to prove the convergence to a Nash Equilibrium in game theory. In
Appendix [A] it is a case-by-case analysis.

1.7 Contributions

The remainder of this thesis is organized around my contributions. What
follows in this section are their short descriptions. Following the cus-
toms in our team, the alphabetic order of authors is employed for every
paper other than Energy Efficient Content Distribution in an ISP Net-
work [MCTT13].

Chapters begin with preliminary sections, setting up some context for
the contribution. The bodies of chapters mainly correspond to research
report versions of the respective publications. These are more detailed
than the published articles.

Chapter Energy Efficient Cache Provisioning

We look into saving the energy in the network design phase, by min-
imizing the requirements for deployed devices. The main contribution
itself is lead by some general insights on caching and deriving power
models of networks. Then, we study the problem of reducing power con-
sumption in an Internet Service Provider (ISP) network by designing the
content distribution infrastructure managed by the operator. We pro-
pose an algorithm to optimally decide where to cache the content inside
the ISP network. We evaluate our solution over two case studies driven
by operators feedback. Results show that the energy-efficient design of
the content infrastructure brings substantial savings, both in terms of
energy and in terms of bandwidth required at the peering point of the
operator. Moreover, we study the impact of the content characteristics
and the power consumption models. Finally, we derive some insights for
the design of future energy-aware networks.

The results of this chapter have been accepted for publication in

GLOBECOM 2013 [MCT*13].

Chapter [3; Energy Efficient Routing

In this chapter, we move to the management of an already deployed net-
work. We consider saving the energy by aggregating traffic and putting
some devices to sleep or low power modes. We study the impact of using
in-network caches and content delivery network (CDN) cooperation on
an energy-efficient routing. We formulate this problem as Energy Effi-
cient Content Distribution and propose an integer linear program (ILP)
and an efficient heuristic algorithm to solve it. The objective is to find a
feasible routing, so that the total energy consumption of the network is
minimized subject to satisfying all the demands and link capacity. We
exhibit the range of parameters (size of caches, popularity of content,
demand intensity, etc.) for which caches are useful. Experimental re-
sults show that by placing a cache on each backbone router to store the
most popular content, along with well choosing the best content provider
server for each demand to a CDN, we can save about 20% of power in the
backbone, while 16% can be gained solely thanks to the use of caches.

The results of this chapter have been accepted for publication in ICC
2013 [AGL™13].

Chapter [4; Maintaining Balanced Trees For Structured
Distributed Streaming Systems

In this chapter, we move to content distribution in the application layer.
As discussed before, peer-to-peer networks reduce the broadcasting re-
dundancy by allowing clients to share the content among themselves. We
deal with some concerns about robustness of such a setup. We propose
and analyze a simple localized algorithm to balance a tree. The moti-
vation comes from live distributed streaming systems in which a source
diffuses a content to peers via a tree, a node forwarding the data to its
children. Such systems are subject to a high churn, peers frequently
joining and leaving the system. It is thus crucial to be able to repair the
diffusion tree to allow an efficient data distribution. In particular, due to
bandwidth limitations, an efficient diffusion tree must ensure that node
degrees are bounded. Moreover, to minimize the delay of the streaming,
the depth of the diffusion tree must also be controlled. We propose here
a simple distributed repair algorithm in which each node carries out local
operations based on its degree and on the subtree sizes of its children.

In a synchronous setting, we first prove that starting from any n-node
tree our process converges to a balanced tree in O(n?) turns. We then
describe a more restrictive model, adding a small extra information to
each node, under which we adapt our algorithm to converge in ©(n logn)
turns. Finally, we exhibit by simulation that the convergence is much
faster (logarithmic number of turns in average) for a random tree.

The results of this chapter have been accepted for publication in
STROCCO 2013 [GMNP13].

Chapter [5t Analysis of the Repair Time in Distributed Storage
Systems

In the final chapter, we move from content distribution to distributed
applications. One such application, with big bandwidth requirements,
are online backups. A conservative approach to this task employs data
centers. However, these usually are far away from the users. Instead, it
is possible to use storage located at the perimeters of other nearby users
of a distributed system. This, again, raises questions about reliability.
To that end, these storage systems introduce redundancy to preserve
the data in case of peer failures or departures. To ensure long-term
fault tolerance, the storage system must have a self-repair service that
continuously reconstructs lost fragments of redundancy. The speed of
this reconstruction process is crucial for the data survival. This speed
is mainly determined by available bandwidth, a critical resource of such
systems. We propose a new analytical framework that takes into account
the correlation of concurrent repairs when estimating the repair time and
the probability of data loss. Mainly, we introduce queuing models in
which reconstructions are served by peers at a rate that depends on the
available bandwidth. The models and schemes proposed are validated by
mathematical analysis, extensive set of simulations, and experimentation
using the Grid’5000 test-bed platform.
The results of this chapter have been published in Globe 2013 [GGM™13].

Appendix [A} Weighted Improper Colouring

Appendix[A] contains work that is not concerned by reducing redundancy
in network traffic. Instead, it is motivated by frequency assignment in
satellite networks. Thus, it concerns link layer. In wireless networks, a

node interferes with other nodes, the level of interference depending on
numerous parameters: distance between the nodes, geographical topog-
raphy, obstacles, etc. We model this as a new graph colouring problem.
We find some general bounds and optimal solutions for infinite grids. We
model the problem using integer linear programming, propose and test
heuristic and exact Branch-and-Bound algorithms on random cell-like
graphs.
The results of this chapter have been published in IWOCA 2011 [ABG™11]

and JDA 2012 [ABG™].

1.8 Bibliography

[ABGT] J. Araujo, J-C. Bermond, F. Giroire, F. Havet, D. Mazau-
ric, and R. Modrzejewski. Weighted improper colouring. In
Journal of Discrete Algorithms volume 16, pages 53-66.

[ABGT11] J. Araujo, J-C. Bermond, F. Giroire, F. Havet, D. Mazauric,
and R. Modrzejewski. Weighted improper colouring. In 22nd
International Workshop on Combinatorial Algorithms, pages
1-18, 2011.

. Araujo, F. Giroire, Y. Liu, R. Modrzejewski, an
AGL*13] J. Araujo, F. Giroi Y. Liu, R. Modrzejewski d
J. Moulierac. Energy efficient content distribution. In IEEFE

International Conference on Communications 2013 (ICC
2013), 2013. Accepted.

[Akal3] Akamai Technologies, Inc. The akamai internet, June
2013. URL: http://www.akamai.com/html/riverbed/
akamai_internet.htmll

[BCFT99] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. Web caching and zipf-like distributions: Evi-
dence and implications. In INFOCOM’99. FEighteenth An-
nual Joint Conference of the IEEE Computer and Commu-

nications Societies. Proceedings. IEEE, volume 1, pages 126
134. TEEE, 1999.

[Bit13] BitTorrent, Inc. Basic bittorrent features, June 2013.
URL: http://www.bittorrent.com/help/manual/

http://www.akamai.com/html/riverbed/akamai_internet.html
http://www.akamai.com/html/riverbed/akamai_internet.html
http://www.bittorrent.com/help/manual/appendixa0206#Basic_BitTorrent_Features.Enable_Local_Peer_Discovery
http://www.bittorrent.com/help/manual/appendixa0206#Basic_BitTorrent_Features.Enable_Local_Peer_Discovery

[BTcC+04]

[CDLOS]

[Cis09]

[Cis10]

[Cis11]

[Cis12]

[Cis13]

appendixa0206#Basic_BitTorrent_Features.Enable_
Local_Peer_Discovery.

Ranjita Bhagwan, Kiran Tati, Yu chung Cheng, Stefan Sav-
age, and Geoffrey M. Voelker. Total recall: System sup-
port for automated availability management. In Proc. of the
USENIX NSDI, pages 337-350, 2004.

Xu Cheng, Cameron Dale, and Jiangchuan Liu. Statistics
and social network of youtube videos. In Quality of Service,
2008. IWQoS 2008. 16th International Workshop on, pages
229-238. IEEE, 2008.

Cisco Systems, Inc. Cisco visual networking in-
dex: Forecast and methodology, 2008-2014, June
2009. URL: http://www.cisco.com/web/BR/assets/
docs/whitepaper_VNI_06_09.pdf.

Cisco Systems, Inc. Cisco visual networking index: Fore-
cast and methodology, 2009-2014, June 2010. URL:
http://large.stanford.edu/courses/2010/ph240/
abdul-kafil/docs/white_paper_c11-481360.pdf.

Cisco Systems, Inc. Cisco visual networking index: Fore-
cast and methodology, 2010-2015, June 2011. URL:
http://www.df.cl/prontus_df/site/artic/20110602/

asocfile/20110602113637/white_paper_c11_481360_1_
.pdf.

Cisco Systems, Inc. Cisco visual networking index:
Forecast and methodology, 2011-2016, May 2012. URL:
http://ec.europa.eu/information_society/newsroom/
cf/dae/document.cfm?doc_id=2037.

Cisco Systems, Inc. Cisco visual networking index: Forecast
and methodology, 2012-2017, May 2013. URL: http:
//www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white_paper_c11-481360_
ns827_Networking_Solutions_White_Paper.html|

http://www.bittorrent.com/help/manual/appendixa0206#Basic_BitTorrent_Features.Enable_Local_Peer_Discovery
http://www.bittorrent.com/help/manual/appendixa0206#Basic_BitTorrent_Features.Enable_Local_Peer_Discovery
http://www.bittorrent.com/help/manual/appendixa0206#Basic_BitTorrent_Features.Enable_Local_Peer_Discovery
http://www.cisco.com/web/BR/assets/docs/whitepaper_VNI_06_09.pdf
http://www.cisco.com/web/BR/assets/docs/whitepaper_VNI_06_09.pdf
http://large.stanford.edu/courses/2010/ph240/abdul-kafi1/docs/white_paper_c11-481360.pdf
http://large.stanford.edu/courses/2010/ph240/abdul-kafi1/docs/white_paper_c11-481360.pdf
http://www.df.cl/prontus_df/site/artic/20110602/asocfile/20110602113637/white_paper_c11_481360_1_.pdf
http://www.df.cl/prontus_df/site/artic/20110602/asocfile/20110602113637/white_paper_c11_481360_1_.pdf
http://www.df.cl/prontus_df/site/artic/20110602/asocfile/20110602113637/white_paper_c11_481360_1_.pdf
http://ec.europa.eu/information_society/newsroom/cf/dae/document.cfm?doc_id=2037
http://ec.europa.eu/information_society/newsroom/cf/dae/document.cfm?doc_id=2037
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html

[CKR*07]

[Coh03]

[CSB*08]

[DEESS]

[DRO1]

[EFKWO08]

[GALMO07]

[GGM*+13]

Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-
Yeol Ahn, and Sue Moon. I tube, you tube, everybody tubes:
analyzing the world’s largest user generated content video
system. In Proceedings of the 7th ACM SIGCOMM confer-
ence on Internet measurement, pages 1-14. ACM, 2007.

Bram Cohen. Incentives build robustness in bittorrent. In
Workshop on Economics of Peer-to-Peer systems, volume 6,
pages 68-72, 2003.

Joseph Chabarek, Joel Sommers, Paul Barford, Cristian Es-
tan, David Tsiang, and Steve Wright. Power awareness in
network design and routing. In INFOCOM’08: the 27th
IEEE Conference on Computer Communications., pages
457-465, 2008.

S DEERING. Host extension for ip multicasting. RFC 1112,
1988.

Peter Druschel and Antony Rowstron. Past: A large-scale,
persistent peer-to-peer storage utility. In Hot Topics in Op-
erating Systems, 2001. Proceedings of the Eighth Workshop
on, pages 75-80. IEEE, 2001.

René-Jean Essiambre, Gerard J Foschini, Gerhard Kramer,
and Peter J Winzer. Capacity limits of information

transport in fiber-optic networks. Physical review letters,
101(16):163901, 2008.

Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Ma-
hanti. Youtube traffic characterization: a view from the
edge. In Proceedings of the Tth ACM SIGCOMM conference
on Internet measurement, pages 15-28. ACM, 2007.

F. Giroire, S. K. Gupta, R. Modrzejewski, J. Monteiro, and
S. Pérennes. Repair time in distributed storage systems.

In 6th International Conference on Data Management in
Cloud, Grid and P2P Systems, pages 99-111, 2013.

[GHM13]

[GMNP13]

[GS03]

[HLL*07]

[INW10]

[JST+09]

[KBC*00]

[LFKT09]

Fabrice Guillemin, Thierry Houdoin, and Stéphanie Moteau.
Volatility of youtube content in orange networks and conse-
quences. In 2013 IEEE International Conference on Com-
munications (1ICC2013), June 2013. Accepted.

F. Giroire, R. Modrzejewski, N. Nisse, and S. Pérennes.
Maintaining balanced trees for structured distributed
streaming systems. In 20th International Colloguium
on Structural Information and Communication Complexity

(SIROCCO 2013), 2013. Accepted.

Maruti Gupta and Suresh Singh. Greening of the internet.
In Proceedings of the 2003 conference on Applications, tech-
nologies, architectures, and protocols for computer commu-
nications, pages 19-26. ACM, 2003.

Xiaojun Hei, Chao Liang, Jian Liang, Yong Liu, and
Keith W Ross. A measurement study of a large-scale p2p
iptv system. In IEEE Transactions on Multimedia, volume 9,
pages 1672-1687, 2007.

Bruce Jacob, Spencer Ng, and David Wang. Memory sys-
tems: cache, DRAM, disk. Morgan Kaufmann, 2010.

Van Jacobson, Diana K Smetters, James D Thornton,
Michael F Plass, Nicholas H Briggs, and Rebecca L Bray-
nard. Networking named content. In Proceedings of the
oth international conference on Emerging networking exper-
iments and technologies, pages 1-12. ACM, 2009.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells,
et al. OceanStore: an architecture for global-scale persis-
tent storage. ACM SIGARCH Computer Architecture News,
28(5):190-201, 2000.

Y. Lu, B. Fallica, F.A. Kuipers, R.E. Kooij, and P.V.
Mieghem. Assessing the quality of experience of sop-
cast. International Journal of Internet Protocol Technology,
4(1):11-23, 2009.

[LKWG11]

[LVHV*12]

[MBM12]

[MCT+13]

[PPL13]

[Wan99|

[Win13]

[Zip32]

C. Lange, D. Kosiankowski, R. Weidmann, and A. Glad-
isch. Energy consumption of telecommunication networks

and related improvement options. Selected Topics in Quan-
tum Electronics, IEEE Journal of, 17(2):285-295, 2011.

S. Lambert, W. Van Heddeghem, W. Vereecken, B. Lan-
noo, D. Colle, and M. Pickavet. Worldwide electricity
consumption of communication networks. Optics Ezpress,
20(26):513-524, 2012.

Thomas Mager, Ernst Biersack, and Pietro Michiardi. A
measurement study of the wuala on-line storage service. In
Peer-to-Peer Computing (P2P), 2012 IEEE 12th Interna-
tional Conference on, pages 237-248. IEEE, 2012.

R. Modrzejewski, L. Chiaraviglio, I. Tahiri, F. Giroire,
E. Le Rouzic, E. Bonetto, F. Musumeci, R. Gonzalez, and
C. Guerrero. Energy efficient content distribution in an isp
network. In IEFE Global Communications Conference 2013
(Globecom 2013), 2013. Accepted.

PPLive, Inc. Pptv, June 2013. URL: http://www.pptv.
com/aboutus/en/.

Jia Wang. A survey of web caching schemes for the inter-
net. ACM SIGCOMM Computer Communication Review,
29(5):36-46, 1999.

Peter Winzer. Optical transport is going mimo. In
2013 IEEFE International Conference on Communications
(ICC2013), June 2013. Keynote address.

George Kingsley Zipf. Selected studies of the principle of
relative frequency in language. 1932.

http://www.pptv.com/aboutus/en/
http://www.pptv.com/aboutus/en/

CHAPTER

Energy Efficient Cache
Provisioning

In this chapter we look into saving energy by optimizing the dimension-
ing of the network infrastructure. Dimensioning is the phase of design
after deciding the connection structure, when the numbers and capac-
ities of deployed devices are decided. The network is augmented by
in-router caches. The caches are organized into a hierarchy, what has
been previously discredited in the literature. Thus, in the first prelimi-
nary to the chapter, we discuss why hierarchy of caches can be beneficial,
when taking into account traffic aggregation. In the second preliminary,
we discuss the multiple possible approaches towards constructing power
models. This is relevant both for this and the next chapter.

2.1 Preliminary: modelling content flow over a
network

The real ISP network design that we take into consideration is divided
into the core network, which ensures long-range connectivity, and mul-
tiple metropolitan networks, which cover geographical regions to give
access to the clients. The core is a two-connected graph of some tens of
nodes. Metropolitan network is comprised of two core routers, that are
its connection to the core network, an optical ring consisting a number

33

metro _ - content provider

Figure 2.1: Example network comprising a core and three metropolitan net-
works, out of which one is displayed. Core routers are depicted with squares,
metropolitan routers with circles and access nodes with solid dots. An exam-
ple routing from a single content provider towards the visible access nodes is
overlaid in red dashed lines.

of edge routers and some access nodes connected to each edge router,
usually also in some two-connected arrangement. Optical bypass is of-
ten used in the metropolitan networks, creating a logical topology where
nodes that are distant in the physical topology can have a direct connec-
tion in the network layer.

However, the setting becomes much simpler when considering media
coming from a single content provider. Note that most media comes from
big providers and enters the considered network through some peering
point. By looking at shortest routes between this point and all clients,
we obtain a tree over which the data is disseminated. This is depicted
in Figure 2.1}

Looking at the trees obtained for the networks studied in this work,
we found some distinctive levels. For example in the France Telecom
network, we have a level of core routers that connect only to core routers,
core routers that are edge to metropolitan networks, some more metropoli-

tan routers and access nodes. The fan-out of nodes within a level does
not vary too much. Thus, we simplify the network as a rooted tree, where
all nodes that have the same distance from root have the same degree.
Note that while we have a tree for each possible content provider, all the
trees are independent and have the same structure. Therefore, we treat
them as a single aggregated tree, without affecting the results.

2.2 Preliminary: modelling energy consumption in
a network

Expressing power consumption of a system as complex as a computer
network in terms simple enough to be an optimization metric is not a
trivial task. In a study focused on minimizing the number of active
devices of single kind, it may be abstracted simply as the number of
devices running. One example of such study is [GMMI12], where the
optimization metric is simply the number of links turned on.

However, assuming a device’s power usage is constant is a simpli-
fication, which may be imprecise for some device types. Some modern
electronics are known to switch to lower power consumption modes when
under moderate load. One well known example of such a solution is CPU
Throttling. Some devices may also enter low power mode on short in-
activity. Overall, this promises that in future devices we will see power
consumption approach proportionality to the load.

Nowadays a middle ground model is closer to reality. Whenever a de-
vice is turned on, it consumes a baseline power. This power is committed
to spinning disks, fans and overall upkeep of an idle system. Figure
shows a comparison of these 3 models. Note that if we consider multiple
devices sharing the same load, when the number of devices turned on is
kept to a minimum, we approach the linear model, as shown on plot
Thus, when considering a provisioning problem like in this chapter, the
linear model can be an acceptable approximation.

Once the model considers multiple device types, or absolute figures
on energy consumed are required, a need arises for knowing the actual
characteristics. This is where databases like Powerlib [VHI12] come in
handy. However, the data presented therein contains only capacities and
producer rated peak power consumption. This allows using either con-
stant or linear models, as described in the previous paragraph. A number

5 10 I I I I — .5 5 I I I . __/‘ g
2 IR -y =
g 0.8 - 7] g ”)'/
; - Z 3t - .
2 06 P - E z L
S : _ S -
C04Ff - — Linear H © 2F — Linear
> 7 > LS
o0 ~ — Constant o0 - — Constant ||
g 02 H g1 7
= P -++ Baseline = L -++ DBaseline
m 0.0 1 1 I I €3 0 1 1 I I
00 02 04 06 08 1.0 0 1 2 3 4 5
Total load Total load
(a) One device (b) Five devices

Figure 2.2: Three power models of a device, shown for one and five devices.
The baseline power consumption is assumed to be half of the peak.

of measurement studies aimed at getting more insight were conducted,
e.g. [VHILR™12| or [VLM™09a|. These studies show that baseline power
usages, for a handful of current devices, tend to be over 80% of the
maximum.

However, each such study is limited only to devices available to its
authors; there are methodology differences between separate works. Fur-
thermore, some of the numbers get outdated quickly. For example Solid
State Drives are still in explosive growth phase, where each next gener-
ation is faster, bigger, cheaper and consumes less power. When looking
into total server energy consumption for a unit of transfer, numbers found
in the literature [VLM™09bl, (GAKG11] are over 2009/an. However, for the
results of this chapter we obtained current numbers from an innovative
company E|, which turned out to be around 207/gy. Therefore it is im-
portant to consider the power model carefully for each separate problem
and attempt to obtain the most current data possible.

2.3 Preliminary: algorithmic approach

The general problem that underlies this section, Copy Placement, can
be defined as follows.

"http://www.cloudflare. com/

http://www.cloudflare.com/

Input We are given a digraph G = (V, A) modelling the network, a
set of files ' and a set of demands D. Each file can be served from
a source according to a function s : F — V. Each demand d € D is
characterized by the requesting vertex, a file identifier and request rate,
d = (va, fa,7a),va € V, fs € F,rq € R. We are also given the cost
functions for: transmission of a file over an arc t : A — R, placement of
a copy of a file in a vertex p: V — R and access to a copy of a file in a
vertex a : V — R.

Output A solution consists of copy placement C' and routing R. Copy
placement assigns to each file f € F' a subset of nodes C'y C V' in which
copies of f are placed. Routing determines for each demand d € D a
directed path in the digraph Ry C A, that begins in wg € Cy, U {s(fa)}
and ends in vy.

Metric The solution should minimize the cost, determined by:

NI CIDS {ma wa) if wy # s(fa) 2.1)

fEF veCy deD ec€Ry ‘=5 | 0 otherwise

Above problem is, in general digraphs, hard to compute. In fact we
can show inapproximability with a simple reduction from the Set Cover
problem, defined as follows.

Set Cover Given an universe U = {uq,us,. .., u,}, a collection of sub-
sets of U, § = {51, 52,...,S5k}, and a cost function ¢ : § — R, find a
minimum cost subcollection of § that covers all elements of U.

Now, we show how to transform an instance of the Set Cover prob-
lem into an instance of Copy Placement. Take two sets of vertices,
X ={x,...,xx} and Y = {y1,...,yr}, corresponding respectively to
elements of § and U and a source vertex s. Put an arc from any ver-
tex in X to one in Y if the corresponding element of Y belongs to the
corresponding subset from S and an arc from s to every vertex in X.
An example of such graph is shown in Figure Let there be a single
file served from the vertex s and requested once from each vertex in Y,
with rate equal to one. Let M >} s c(S). For the cost functions, let
t(a) = M for every arc a from s and 0 for the other ones, a(v) = 0 for

Figure 2.3: An example Copy Placement digraph obtained by transforming a
Set Cover instance, where § = {{u1, ua}, {ui,ua}, {ua,us}, ..., {un}}.

any v € V', and p be equal to the cost of corresponding elements of S for
vertices in X and M for other vertices.

Consider an optimal solution to the instance of Copy Placement. For
any demand d € D, it can be routed either from v, or s for a cost of
M, or from a vertex x € X for a, possibly shared, cost of p(x) < M.
Thus, in an optimal solution, each demand is routed from a vertex in
X, that is a neighbour of requesting vertex. The solution is determined
by placing copies of the file in a minimum cost subset of X that domi-
nates Y. Choosing the corresponding subsets from S directly gives us an
optimal solution of Set Cover with the same cost. Following the results
in [AMSO06], this can not be approximated within a ratio better than
O(log | X|).

As explained in Section [2.1], for content distribution we can model net-
work as a tree. The data is requested by the leaves and can be served by
any node on the path between requesting leave and root. This has been
solved in [LGIT99] using dynamic programming. However, the solution
takes O(|V]?) time to place a single file. Thus, we make an additional
assumption, that is in line with what we observed in Section [2.T} nodes
on the same level (at the same distance from root) have an equal degree.
An example of such a tree is shown in Figure Data is requested
according to a static distribution and we statically place data in the op-
timal levels. If a file 7 is stored at level j, the total cost of serving it to
all the leaves is:

njoj + Tidj, (22)

INT

Figure 2.4: A tree representing the France Telecom network. All devices
residing at the same distance from root of the tree have the same degree. For
clarity of presentation, only a subset is drawn. The last level of the tree,
representing consumers’ premises, is omitted as there are 5000 such nodes per
DSLAM node (the last level shown).

where n; is the number of nodes on level j, 0, is the overhead cost to place
the data in a node on level j, r; is the total number of requests for file ¢
and d; is the cost of delivery from a device on level j to a leaf. In practice,
d; is nearly proportional to the distance between j and leafs and o; is
nearly constant. Thus, as we show in Section [2.8] the optimal placement
depends on a file’s popularity. We can efficiently compute for each level
a request rate interval, such that files with rate within this interval are

optimally stored in each node in this level. This means that we can
optimally place any number of files in time O(h?), where h is height of
the tree. We define a simple algorithm to perform that placement. The
main contribution of this study is determining practical values of all the
factors of equation obtaining the results and sensitivity analysis.

2.4 Publication

The remainder of this chapter corresponds to Energy Efficient Content
Distribution in an ISP Network by R. Modrzejewski, L. Chiaraviglio, I.
Tahiri, F. Giroire, E. Le Rouzic, E. Bonetto, F. Musumeci, R. Gonzalez
and C. Guerrero, which is accepted for publication in the proceedings of
IEEE Global Communications Conference 2013.

2.5 Introduction

The electricity consumption of the Information and Communication Tech-
nology (ICT) sector represents today almost 2% of the world electricity
[LVHV™12], having observed an annual increase of 10% from 2007 to
2012. In this context, data centers and backbone networks will expe-
rience the highest energy consumption growth rates in the forthcoming
years [LKWGTI], due to the increase of traffic, especially for multimedia
content. As an example, Cisco estimates that the sum of all forms of
videos will represent 86% of the global consumer traffic by 2016 [Cis12].
In order to mitigate this trend, different solutions have been proposed
in the literature for the design and the management of energy-efficient
backbone networks (see [BBDCII] for an overview).

Recently, the problem of reducing power consumption in a backbone
network by moving the contents accessed by users has attracted attention
of the research community. In particular, in [CM10] we have studied the
problem of reducing power consumption of an Internet Service Provider
(ISP) and a Content Provider (CP) jointly, showing that considerable
energy savings can be obtained when the CP and the ISP cooperate
to minimize the total power consumption. In [LRHI0] authors propose
an architecture based on Content Centric Networking (CCN) to reduce
the power consumption. Additionally, in [VLMT09b| an architecture
based on home gateways forming a distributed data center infrastructure

managed by the ISP is proposed and evaluated. Finally, the energy
trade-offs of an architecture based on immersive video centric services
are evaluated in [LGAKI2]. All these works prove that a huge amount
of power is saved when the ISP takes control of the content and caches
it considering the energy consumed to move the information across the
network.

In this work we study the problem of reducing power consumption in
an ISP network by considering the design of a content distribution infras-
tructure managed by the ISP. Our aim is to study where to cache content
inside the network in order to reduce the overall power consumption of
the system composed by the network elements and the installed storage.
In current ISP networks a huge amount of traffic is exchanged between
the users and the data centers owned by large CPs, such as as Google,
Yahoo, Amazon, and Limelight. Normally, the data centers of large CPs
are located close to the peering points of the ISP [GALMOS]. Therefore,
the traffic originated from the data centers has to traverse a number of
hops in the ISP network before reaching the users. We therefore study the
optimal content caching inside the ISP, rather than sending the content
from the data centers to the users. In our scenario, we consider a hier-
archical logical topology composed of different levels (e.g. core, metro,
and access), and we optimize the energy consumption by choosing the
best level where to put each content.

The benefits of the energy-efficient design of content distribution ar-
chitectures inside the ISP are multiple. First of all, it is possible to
reduce jointly the electricity costs of the storage and of the network,
as their energy is explicitly taken into account during the design phase.
Secondly, the ISP reduces the amount of traffic that is exchanged across
the network. This in turn may decrease the maintenance costs incurred
by the ISP, since network elements are upgraded less frequently and less
new switching devices need to be installed. Third, the monetary costs for
sending/receiving information from outside the network are also reduced,
since less bandwidth is required.

2.6 Related Work

There have been several works tackling the problem of web object efficient
caching. Most of these works were not focusing on energy savings but

rather reducing the latency, the network traffic and/or the server load.

In [LDGS98], authors studied the optimal placement (for reducing
either latency or network traffic) of M multiple web proxies among N
potential sites under a given traffic pattern. They considered a simple
path of N + 1 nodes where the extremity of it corresponds to the original
web server and the other nodes correspond to the potential sites. In
case of no data replication, all the requests coming from the different
sites would need to go until the main web server before being fulfilled.
Dispatching some web proxies efficiently among the N potential sites
can reduce the latency and the traffic load. Authors give an algorithm
to find the best solution in O(N?M) time. In [LGIT99| they extended
this algorithm to the case where the topology is a rooted tree, the main
server is in the root and potential sites are all the other tree nodes.
Again they show that the best solution can be found using a polynomial
algorithm with time complexity O(N3M?).

[BRSO8] focuses on a more general case. Instead of having only one
web object as in the previously cited papers, several objects should be
simultaneously taken into account by the optimization. They considered
also a set of caches that have a limited capacity and a cost for storing each
of those objects. Finally they assume a set of clients that have demands
for different objects and to each client they assign a cost for getting a
specific object when it is stored in a specific cache. For efficiently solving
this NP-complete problem, on a general topology, they presented a 10-
approximation algorithm.

We want to mention also that some works investigated the possibility
of managing the caches in a distributed scheme. In [TC02], authors pro-
pose a novel caching scheme that integrates both object placement and
replacement policies and which makes caching decisions on all candidate
sites in a coordinated fashion.

The closest papers to our work are [SK09, INWCTI, MLG™11]. In
[SK09] authors detail an analytical model for caching considering the cost
for transporting information and the cost for storing the content. How-
ever, the model is derived for a simple scenario (a metro network), with
at most three levels in the topology as possible locations to cache content.
Moreover, the evaluation of savings in terms of energy is not performed.
In [JNWCTI] authors propose a model for caching that integrates en-
ergy costs. The evaluation is performed considering five possible levels

for caching. Finally, in [MLGT11] an ILP model and two simple heuris-
tics for the energy-efficient content distribution are detailed. However,
authors do not consider the energy consumed for sending the content to
the possible locations inside the network and a limited number of levels
is also assumed.

In contrast to previous work, in this paper we go one step further by:
a) defining a model with a generic number of levels and not only restricted
to specific values or specific segments of the network, b) proposing an
optimal algorithm to decide where to cache the content and compute
the total energy consumption, c¢) evaluating the results over two case
studies. Moreover, we consider the impact of the topology properties on
the content caching, and we derive some insights for the design of future
energy-aware networks.

The rest of the paper is organized as follows. In Sec. 2.7 we describe
the problem. Sec. details the algorithm we propose to solve the
problem. Results are presented in Sec. Finally, Sec. concludes

our work.

2.7 Problem Description

We assume that the network is organized in a hierarchical structure com-
posed of different levels. In particular, we assume a tree-like network to
represent the collection of paths between each user and the Internet peer-
ing node. Nodes are grouped according to a hierarchy, and each level of
the tree corresponds to a different level of the hierarchy. The content
data is delivered towards the clients following a path on the tree from
the root, i.e., the Internet peering point. A storage cache can be located
at each node of the network, providing a potential facility for storing
data. Moreover, caches are organized in a hierarchical structure: if a
requested content is not available in a given cache, the request is for-
warded to the parent cache of the hierarchy, without any collaboration
among the caches located in the same level of the tree. Finally, we do
not impose a given cache size, i.e., the cache size is an output of our
approach.ﬂ

2Tn our scenarios the obtained cache size is always lower than the maximum capacity of
current storage devices.

The content distribution procedure is divided in the following steps:
a) the content is fetched from the peering point to the storage caches
located at a given level of the tree, b) the content is cached for a fixed
amount of time, c¢) during this period the content is retrieved by users,
based on its popularity. We then associate an energy cost to each of
these steps, and we compute the total energy consumption. Our aim is
then to find the optimal amount of data to cache at each level of the tree
in order to minimize the overall energy consumption.

Focusing on power requirements, we consider the cost of keeping
the content stored in the cache, the cost of reading/writing the content
from/to the cache and the cost of sending the content through one hop of
the tree. We assume that the cost for traversing one hop is different for
each level, due to the different switching devices deployed in each segment
of the network [LRKHI1]. In order to model the power consumption of
each device, we assume a linear dependency with traffic volume, follow-
ing the assumptions of previous works [BAHT09, FGK™10, MLG™11]. In
particular, the cost of transporting information is expressed in terms of
energy per bit, i.e., the total power consumption divided by the average
throughput.

More formally, the set of levels in the network is £ = {1,..., L},
L = |L] being the number of levels. The peering point is located at
level 1, while the users are connected to level L (e.g., the DSLAMs). We
denote the total number of switching devices located at level j € L as
N{). Let us define the storage cost for a single cache as Cs. Cp is the
cost of reading /writing content on one cache. C}‘{ is the cost of traversing
one node located at level j in the network. Moreover, we consider the
characteristics of the content. We assume that the content is represented
by videos watched by users. 7 is the total throughput of videos requested
by users. Let us denote the average video size as A and the popularity
window duration as I. Thus, the total number of videos Vi watched
during the popularity window is:

71

Vv = 1 (2.3)

Let us define Vg as the total number of videos provided by the CP. We
divide the videos into classes according to their popularity, No being the
number of classes. The set of classes is denoted as K = {1,..., N¢'}. Class
1 is the most popular while class N¢ is the least popular. We assume

that, on average, each class has the same number of videos, which we
denote as Vo = 1‘\%
For each class k € K we adopt the Zipf-based popularity model of
[CRCT08] and compute the number of videos watched per class as
k kP
Vi =Wem (2.4)
k=1
[being the parameter of the Zipf distribution.

We then compute the energy consumed for disseminating class k when
it is stored on the caches located at level j. In particular, we first compute
the energy consumed for fetching the content into the caches, and to keep
the content stored:

j—1
o(j) = AVe N}, (Z C% + Cr + cg) (2.5)
z=1
The first term inside parentheses is the cost of traversing (j — 1) hops.
The second term is the cost of writing the content on the cache. The
third term is the cost of keeping the content stored, which is multiplied
by the popularity window duration I since this cost has to be always
accounted for the whole time period. All the costs are then multiplied
by the amount of information that it is stored in level 7, i.e., AX Vo x N j{).
Note that ¢(j) does not depend directly on the popularity of the class

but only on the level j chosen for caching.
We then compute the energy consumed for retrieving the content as:

L
2. k) = AR (oR Y oz) (2.6)
2=
In particular, we consider the cost of reading the content and the cost
of sending the content from the caches at level j to users. The retrieved
information corresponds to the videos that are watched during the pop-
ularity window duration, i.e, A x V{¥. Differently from ¢(5), (4, k)
depends on both the class popularity and the level where the content is
cached.
The total energy consumed for disseminating class k on level j is:

B {¢<j> te(k), >0

= 2.7

Note that level 0 is the special case where the data is served from the
original source, i.e., caching is not exploited within the considered net-
work. In this case, the total energy consumption is the cost of sending
the watched videos directly from the peering point to the users.

The best level to store the videos of class k is then:

hy = argmin E,i (2.8)
jeL
Note that the best level for each class is computed independently from
the other classes. We therefore repeat this procedure for each class k.
The total energy consumption with caching is computed as:

T=> E* (2.9)

kel

Which we can compare to the energy consumption without caching:

T'=) E} (2.10)

kek

By comparing T with T”, we can estimate if caching is effective or
not in saving energy. However, computing Eq. for each class is not
feasible, since the iteration over the levels has to be repeated for all the
classes, resulting in a time complexity of O(L x N¢). To solve this issue,
we have proposed a new algorithm in order to efficiently compute 7.

2.8 GCT Algorithm Description

We first detail the properties that we have exploited to design our algo-
rithm. In particular, since there is no limit on the storage, we can choose
the best level for every video class independently from the others. More-
over, for level j that is optimal for the video class k, we have necessarily
E,Jc < E,f;/ for any j" different from j. This implies:

In addition to that, when two video classes are stored in the same level,
less videos will be retrieved from this level for the less popular class.

Namely, if a class £’ is less popular than another class k, then: ¢(j, k') <
o(4, k) and ¢(5', k') < ¢(4', k). This leads to the following inequality:

The two previous equations imply:
p(4, k') — o(J", k') < (") — o). (2.13)

And hence we get the following property.

Property 1. Let k and k' be two video classes such that k-class videos
are more popular than k'-class ones (k' > k) and let j be the optimal level

for k. Then for every level j' lower than j (' < j) we have EY, < Ej,.

The intuition of the Green Content Threshold (GCT) algorithm is to
restrict the evaluation of Eq. to specific k, which we call thresholds.
A threshold is defined as the last class to be stored at level j, before start-
ing storing in another level z (with x < j). The rule for deciding when
to pass from one level to another one is based on the energy consump-
tion FJ (recall that level 0 correspond to the case without caching). In
particular, we find the class index k = k(j,) that verifies, for arbitrary
levels j and x the following equality:

El = E} (2.14)

For some classes, the caching of their videos in level j is preferred to
caching them in level z in term of energy efficiency; and for some other
classes it is the opposite. k(j,) is the index that separates both set of
classes. In fact, Eq. being verified by k implies:

plz, k) — (5, k) = 6(j) — (). (2.15)
On the other side k < k iff:
oz, k) — (i, k) < oz, k) — o(j, k). (2.16)

And this leads to the following property.

Property 2. Let x and j be two levels such that x < j and let k be the
solution to EY = EY. Then k < k iff Ef > EJ.

Algorithm 1 Pseudo-Code of the
best threshold selection procedure.

Input: threshold matrix K, number of levels L, number of classes N¢;
Output: array of best thresholds B

1:
2:
3:

o

12:
13:

curr_level = L;
B [0]=N¢- 1;
while curr_level '= 1 do
min_thre=inf;
for upper_level = 1:curr_level-1 do
curr_thre = K [curr_level,upper_level];
if curr_thre < min_thre then
min_thre=curr_thre;
end if
end for
B [curr_level]=min_thre;
curr_level=curr_level-1;
end while

To compute k(j,) we solve Eq.(2.14) using Eq.(2.7), obtaining:

=

[(Afw)) ﬁ_ﬂk-ﬂ] I

k(j,x) = (2.17)

1
Vi (52, C=Cr) | © 0
{ 70) £06, k7 } o

with f(j) = N, (I Ch+Cr+ OSI) and As(j,2) = f(x) — f(4)-

The matrix with elements k(j, 2) is denoted as K. Each element of

this matrix represents a threshold class for moving from one level to
another one.

The algorithm that we propose is then divided into three steps: a)

computation of the thresholds matrix, b) best threshold selection, and
¢) computation of total power consumption.

The first step is performed by computing K with Eq.(2.17) for each

j € L and each x < j. In the next step, we select the best threshold for
each level, by adopting the procedure reported in Algl[l] The function
takes as input the matrix K, the number of levels L, and the number of
classes N¢. The array of best thresholds B is produced as output. The

algorithm searches the best thresholds from the lower levels (i.e., the
access nodes) to the upper ones. In particular, the minimum threshold
is selected by evaluating k(j, z) from the current level to each upper level
(lines 5-10): in fact, thanks to property , we can ignore levels that are
lower than the current level. Moreover, we know, thanks to property
that for every video that has a popularity rank lower than the minimum
threshold it is better to cache it in current level than in any higher level.
The procedure is repeated until the last level is reached (line 3). It is
clear that when the values of K are computed optimally, this algorithm
is optimal.

We then detail how the total energy consumption is computed from
the best thresholds. We first derive the energy consumption consumed
at level 7. This term includes the energy consumption corresponding to
the classes that are assigned to the current level j, ie., bj_1 < k < b,
(bj_1 and b; being elements of the array of the best thresholds B), which
can be expressed as{|

bj bj
Z Ef = [b; —bj—1 + 1]o(j) + Z o, k) (2.18)
k=(bj_1+1) k=(bj—1+1)

In particular, from the definition of ¢(7, k) the last term can be expressed
as:

b L Zl]?*(b 1 kfﬁ
> (k) =AViwNp | Cr+ Z s B e (2.19)
k=(bj_1+1) z=j k=1
The exponential terms can be expressed as:
> kP =((Ba) = ¢(B,c+ 1) (2.20)

k=a

¢ being the Hurwitz zeta function [Vor03]. To compute the total energy
consumption 7', the algorithm solves Eq.— for all the levels,
and the sum of the energy consumption is stored in 7.

GCT has a time complexity that depends on the time needed to evalu-
ate 7 k7P for 0 < a < ¢ < No. When this time is bounded by T, the

3 A similar expression can be derived for the j = 0 case (with b_1 = 0).

complexity is O(L* + L x T). Since there are efficient ways to approxi-
mate ¢, we can have a good approximation of > ;_, k= and of GCT with
a low time complexity. In particular, if there exists a p-approximation
of ¢ which has a time complexity 7,, then we can get a p-approximation
on the optimal solution (the minimum energy consumption induced by
all classes) that have a time complexity O(L? + L x 7,) which is better
than the original approach since normally L << N¢ and 7, << N¢.

2.9 Results

We have implemented the GCT algorithm in Python. In particular,
we have adopted the mpmath library for an efficient computation of the
Hurwitz Zeta function ¢ [[] We have then evaluated GCT over two realistic
networks of national ISPs, namely France Telecom (FT) and an ISP in
Morocco. The main features of the networks, together with the setting
of the main parameters, are reported in Tab. 2.1 Both networks are
composed of six levels in total (core, core-regional, metro-core, metro,
access-metro, access), and with a different number of switching devices
deployed at each level.

Focusing on power requirements, the cost of storage Cyg is taken
from [OCZ]. The cost of reading/writing the cache is provided privately
by CloudFlare Inc [Clo], based on their global network of content caches.
This cost may be a slight overestimation of what the cost in our model
should be, as it already accounts for storage energy consumption. Fur-
thermore, computational overhead falls with the size of objects cached
and we propose to cache videos, which would be in the order of hundreds
of megabytes, whereas for CloudFlare only 0.4% objects exceed 1MB.
The costs of network hops are based on equipment datasheets, measure-
ments and operational conditions published in [VHILR™12| and provided
by France Telecom.

We then consider the characteristics of the content. In particular,
we assume that for the F'T scenario traffic forecasts are provided for the
year 2020. We refer the reader to [RLB12| for a detailed description on
how these forecasts are obtained. On the contrary, for the Moroccan
scenario we set values in accordance to the current traffic measured over

4 The complexity of the implemented Hurwitz function is in the order of O(p?*¢),

being the precision (the number of significant bits) and € a small number.

p

Table 2.1: Main parameters for the considered scenarios.

Parameter FT Moroccan
L [units] 6 6
N, [units] [1824 216 216 2160] [1 20 20 20 200 10000]
Cs [W/GD] 9.375-10~4 9.375-10~4
Cr [J/GD] 24.3 24.3
Ci, [J/Gb] [12.5 25 30 35 200 300] [12.5 25 30 35 200 300
7 [Gb/s] 8-10° 103
I [days] 7 7
A [GD] 15 0.6
B [units] 0.8 0.8
Vs [units] 120 - 106 120 - 106
N¢ [units] Vg Vg

the network. As a consequence, the total video throughput 7 is eight
times higher in the F'T scenario compared to the Moroccan one. To this
extent, we have also considered different values for the average video
size A, assuming for the F'T scenario a value that corresponds to a high
definition video provided today on optical disks. Moreover, we have
assumed a popularity duration of one Weekﬂ and a value for the exponent
of the Zipf distribution from [CRCT0§| for both scenarios. Finally, we
assume a number of videos of a typical video CP, and one video for each
class.

Evaluation Metrics We describe the metrics adopted to evaluate
the performance of our algorithm. We first derive the energy saving as:

T -T

S = T

(2.21)

We then compute the percentage of bandwidth that is saved at the

5Even though the popularity of the watched videos can actually change during this
time period, the popularity of the most viewed videos is almost constant. As an example,
[CRC™08] shows that the popularity of the 50 most viewed videos does not consistently vary
over the days. In this work, we are interested in the most popular videos, as these contents
are cached inside the ISP network.

Table 2.2: Summary of results for the two network scenarios

Metric FT Moroccan
Energy savings (S) 8.7% 11.0%
Yearly monetary savings [k€] 769 122
Bandwidth savings (¥) 18.2% 30.2%
Cache Size [GB] Al 0 0
A2 0 0
A% 32546 0
A? 0 23510
A® 35878 5581
A 2041 46
Cache Bandwidth [Mbps] ©! 0 0
©? 0 0
©3 7907 0
ot 0 4550
05 2946 721
e 290 6

peering point when caches are exploited:

h

Tl — Zk:{hk:O} AVv]f/ - Zk:{hk>0} AVeNp'
U= (2.22)

Tl
In particular, 71 is the total amount of information flowing through
the peering point without caching; >, {he=0} AV¥ is the amount of
watched videos not stored inside the network in the case with caching;
D ke {hy>0) AVoNM s the total amount of information initially fetched
inside the caches.

Finally, we consider the cache size for a device in level j, defined as:

N= > AV (2.23)

General Analysis Tab. reports the results for the two scenarios
obtained with the GCT algorithm. We first consider the energy savings
compared to the case in which caching is not exploited. Energy savings of
almost 9% and 11% are possible for the FT and the Moroccan scenarios,
respectively. By assuming that caches are refreshed once a week for

an entire year, we have estimated monetary savingsﬁ of more than 700
k€ for FT, and more than 100 k€ for the Moroccan network. Moreover,
the savings in terms of bandwidth saved at the peering point are even
larger, reaching 18% for the FT scenario and 30% for the Moroccan one.

The table also reports the cache size A7 per device for each level j.
Interestingly, A/ is at most 36 TB, a value that can be covered by a
commercial array of disk drives. Moreover, the capacity requirements
tend to decrease moving closer to users, with at most 2041 GB of storage
required at the access level for the FT network and only 46 GB for
the Moroccan one. This is due to the fact that the number of switching
devices per level increases when moving from the core to the access, hence
the cost of increasing cache size is much higher than in higher levels and
outweighs the gains faster. Finally, the table reports the average required
bandwidth © per level. In this case, up to 7.9 Gbps and 4.5 Gbps are
required for the F'T and the Moroccan networks, respectively.

To give more insight, Fig. reports the best level h; for each class
k for the two scenarios. k ranges between 1 and Viz. The levels on the left
are the most popular ones and hence, to minimize the costs of moving the
information frequently from the cache to users, it is better to store these
classes in the closest level to users, i.e., the access part of the network.
Moving from left to right, the popularity decreases, and therefore the
classes are stored in the inner levels of the topology (metro and core).
At last, very unpopular classes are assigned to level 0, i.e., they are
not cached at all. Interestingly, the percentage of the total number of
stored classes is around 1.7% and 0.5% for the Moroccan and the FT
networks, respectively. Thus, we can conclude that with the considered
power and popularity models, the ISP needs to store a little amount of
content information to achieve energy and bandwidth savings. This is
an encouraging result showing that caching not only has benefits on QoS
and customer experience, but it can also lead to a better management of
the ISP power consumption.

Impact of Content Characteristics We then consider how much
the characteristics of the content impact the energy and the bandwidth
savings. We first vary one parameter per time, keeping the others with
the default values reported in Tab.

5We have assumed an electricty cost of 0.21€/kWh.

6 T LA B LA B 100 I I T T T
o5 N 80 H
4k |
. < 60f
< 3 1 =
9l | © 40}
1H A 20
[e e s SRR R INI 0 =]]]
10° 10t 102 102 10* 10° 105 107 10® 04 06 08 10 12 14 16
k B
(a) Best levels hy, for each class k (b) Energy Saving vs. 8
12
100 —= 3.0 B —
g0 H — | 25 —| Routing 1
E 1/0
g 60 | 1 = ?g Bl Storage ||
| ~
40 1.0
201 i 0.5
gl 0.0
04 06 08 10 12 14 1.6 04 06 08 10 12 14 1.6
B B
(c) Bandwidth Saving vs. 3 (d) Energy breakdown vs.

Figure 2.5: Best levels for each class k£ (a) and impact of the variation of (
(b-d).

We start considering the variation of 3, as reported in Fig. [2.5bl and
Fig. . With low values of 3 (left part of the figures) all the classes tend
to have a similar popularity. Intuitively, there is not a huge benefit in
terms of energy in storing these classes inside the network, since the cost
of storing this amount of information would be huge. On the contrary,
when f takes higher values (right part of the figures), the variation on
the popularity also increase. This means that few classes have a very
high popularity, while most of the content is seldom accessed by users.
This in turn imposes to store the most popular classes close to users, and
therefore both the energy and the bandwidth savings steadily increase.
At last, when 8 =1.6, the bandwidth savings are almost equal to 100%,
while energy savings are more than 90%. This corresponds to the case
in which the most popular contents are cached in the last level of the

network (i.e., the access part), and the main cost incurred by the ISP
is to transfer these contents from the caches to the users. Thus, we can
conclude that S greatly influences the performance in the network.

To give more insight, Fig[2.5d] reports the breakdown of energy for
the FT scenario considering: a) the energy consumed to route the con-
tent inside the ISP network, either from the peering point to the cache
or from the cache to users ('Rout.” label), b) the energy consumed for
reading/writing the content from/to the caches ("I/O’ label), c) the en-
ergy consumed for keeping the content stored (’Stor.” label). For S
=0.4 the caching is not exploited, and therefore the largest amount of
energy is due to the routing, i.e., the cost of moving information inside
the network. However, as [increases, the routing energy steadily de-
creases, since caches are more frequently used. This in turn implies that
the energy consumed for reading and writing the content on the caches
increases. However, the total energy consumption is always decreased,
producing high energy savings. Finally, we can distinguish three different
zones for characterizing the evolution of the energy consumed by stor-
ing. The first one (f &~ 0.4) corresponds to the case in which contents
are not stored in the ISP, and therefore their storage costs is zero. On
the contrary, when g = 1.6 most of users watch a very limited number
of videos, whose storing cost is almost zero again. However, for inter-
mediate popularity values (8 = 1.0) the storing energy is not negligible,
since a greater amount of videos is frequently watched by users.

We then consider the impact of the number of videos in the collection
Vs. Fig. 2.6 reports the energy and bandwidth savings. The reference
values of Tab. are reported as vertical lines. When Vg decreases, the
savings tend to steadily increase. In this case, Vg is decreasing, while
the actual number of watched videos Vyy is kept constant. Thus, the
gain introduced by caches increases, i.e., few videos frequently viewed by
users. On the contrary, when Vs increases, the saving tend to decrease,
since the efficiency of adopting the caches is reduced.

In the following, we consider the variation of the total number of
videos watched Vyy, reported in Fig. . When Vjy increases (right part
of the figures), both the energy and the bandwidth saving increase. This
is due to the fact that as Vjy increases the caches are more frequently
accessed by users, and therefore the introduced gain in terms of energy
and bandwidth is higher. Clearly, when the users seldom access the

18 I I I 1 50 I I I I
16 |--. — FT H 45 F .. — FT H
14 -+ Mor. | 0F ~+- Mor. H
glz- | §‘35_ |
w 10 1230k .
8 \ 20 | e
6 B _] 15 B \
4 | | | | | 1 | | | | I
225 226 227 228 229 225 226 227 228 229
Vs Vs
(a) Energy Saving (b) Bandwidth Saving
Figure 2.6: Impact of the total number of videos V.
16
14 |
__12F
% 10 |
8 I .
— FT — FT
6F Mor. [] 15 Mor. ||
4 - 1 1 I 10 1 1 I
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Vv x10° Vir x 109
(a) Energy Saving (b) Bandwidth Saving

Figure 2.7: Impact of the total number of videos watched Vyy.

content (left part of the figures) there is no need to put caches.

Finally, we have applied a variance-based sensitivity analysis [SRAT0S]
to precisely characterize the relative impact of the parameters. In par-
ticular, we have considered how much the variance of the energy saving
S is impacted by the variation of the content parameters. To this end,
we have considered the first order index and the total effect index. The
first order index takes into account how much the variance of a single
parameter influences the variance of the output. On the contrary, the
total effect index takes into account the effects of varying the parame-
ter on the model’s output, including all the variances from interaction
with the other parameters. To compute both indexes, we have adopted

Table 2.3: Variance Decomposition of S for the Content Parameters (FT
Scenario)

Parameter First Order Index Total Effect Index

B 0.9950 0.9988

T 0.0004 0.0007

Vs 0.0001 0.0002

A 0.0000 0.0000
15 I I I Il 35 I I I L
12F:-.. — FT Q — FT
1l -+ Mor. | 30 | Mor. [|

8
7
6 | | | | 10 | | | |
0 20 40 60 80 100 0 20 40 60 80 100
Cr [J/Gb] Cr [3/Gb]
(a) Energy Saving (b) Bandwidth Saving

Figure 2.8: Impact of the cost for reading and writing Cg.

a Monte Carlo method. In particular, we have generated a pool of 18
million samples, in which each parameter take a random value in the
interval [1/2,2] w.r.t. the standard values reported in Tab.

Tab. reports the computed indexes considering the total energy
savings. The largest contribution to the output variance of the first order
index is due to 3, while the other parameters play a minor role. Moreover,
the average video size does not impact the energy savings since this
parameter is simplified when computing S. The table also reports the
values of the total effect index. These values are very similar to the ones
of the first order index. This shows that simultaneous varying multiple
input variables does not have a strongly amplified (multiplicative) effect
on energy savings when compared to varying them separately.

Impact of Power Consumption Models We first consider the
variation of the cost for reading and writing Cr. Fig. reports the
saving in terms of energy and bandwidth. As expected, the savings
are increasing when Cr decreases. Intuitively, the lower is the cost for

Table 2.4: Variance Decomposition of S for the Power Consumption Parame-
ters (FT Scenario)

First Order Index Total Effect Index

Cs 0.2738 0.2699
Cr 0.0303 0.0265
Ch 0.1942 0.2009
o 0.3062 0.3125
% 0.0367 0.0436
Cy 0.0152 0.0210
C% 0.0066 0.0143
(o 0.1251 0.1259

reading and writing information, the higher is the gain introduced by
caching. In particular, when Cr ~ 0 energy savings of more than 9% and
12% are possible for the FT and the Moroccan networks, respectively.
Thus, we can expect that, if the energy efficiency of caches improves
faster than the one of transport equipment, the benefit introduced by
caching will be greater in the future.

Finally, we have performed the variance decomposition analysis also
for the power consumption parameters, adopting the same procedure as
in the previous subsection. Tab. summarizes the main results for the
FT scenario. Interestingly, the energy savings are greatly impacted by
the cost of storing the content C's. This is due to the fact this term
has to be counted for all the time periods and for all the caches, thus at
the end its contribution is not negligible. Thus, it is very important to
deploy energy efficient storage inside the ISP to obtain energy savings.
Moreover, the energy costs in the first levels are also impacting the energy
savings, since most of traffic reduction occurs in these levels.

Impact of Network Properties To give more insight, we have
considered a network with the same degree for all levels, and we have
studied the impact of the variation of the degree and the number of
levels. In this way, we are able to study the impact of caching over a set
of topologies. In particular, the degree of level j is defined as the average
number of links connecting a device in level j with the devices in level
(j+1). Moreover, we assume a number of video requests proportional to
the degree and the number of levels. Specifically, we have assumed 5000

Degree

FNWER U0 OO

1

24

21

18 g
15 &
12 A
9

6

3

12345678910 12345678910
J IJ
(a) Energy Saving [%)] (b) Bandwidth Saving [%]

FNWER U0 O O

Figure 2.9: Impact of the number of levels and the average degree.

users connected for each device in the last level (i.e., the access one)ﬂ
each of them watching 3 videos of size A = 15 Gb during a popularity
window duration I of one week. Additionally, we have set Vg = 120 x
105. Focusing on power requirements, we have set Cy = 9.375 x 10~*
W/Gb, Cr = 24.3 J/Gb,Cy = 25 J/Gb for each level j, respectively.
Fig. reports the energy and the bandwidth savings. Interestingly, the
savings increase with the number of levels and the average degree. In
particular, energy savings of more than 20% are possible for very large
networks. Moreover, bandwidth savings quickly approach 100%. The
fact that energy and bandwidth savings increase with the degree and the
number of levels L is due to two main reasons: i) increased cost of moving
information inside the network when the number of levels is increased,
and ii) total number of watched video increased, while total number of
stored videos kept constant.

2.10 Conclusions

We have studied the energy-efficient design of a content architecture in
a ISP network, by exploiting caches managed by the ISP. Our results
indicate that caching brings substantial savings in terms of energy and
bandwidth.

"Note that while the number of user per device is constant, the total number of users
scales with the degree and the number of levels L.

As next steps, we will consider the joint management of the content
distribution architecture. In particular, our aim is to study the traffic
variation over time and to compute the best set of caches powered on to
satisfy a given traffic demand, while leaving the remaining caches pow-
ered off. Another possible direction is to introduce cooperation between
neighboring caches to serve users and to reduce the amount of stored
information. To better fit real topologies, we can study the case where
devices on the same level of the tree have different degrees. Finally, we
plan to study the impact of considering more than one peering node and
the impact of introducing realistic traffic matrices inside the ISP.

2.11 Addendum: cache hierarchies and the filter
effect

In this chapter we have studied a hierarchy of caches with popularity
following a power law. Most of the gain is achieved by storing only the
few most popular objects. When multiple caches are queried in a row,
the big gain is achieved in the first one, leaving the others with much
less popular objects. This is called the filter effect and has been studied
in [Wil02]. Figure shows results of a trace-based simulation. Three
caches of the same size have been put one after another, storing any
passing object and evicting the least recently used one, asking another

T T T P . L LI I LI
4 ! . x*xx Input
& 10 E Voo, - - - After level 1 [}
¢ i v After level 3 |
o 3 --— .
8 10 E ! """'""""ll-m..,“l 3
3 oL
g 10°F E
g
Z 10'F E
: ”..'I'
100 PRI BRI R SRS R |m

109 10' 102 103 10* 10° 108 107
Popularity rank

Figure 2.10: Object popularity in a hierarchy of caches, as observed in [Wil02].

cache, or the original source in case of third cache, in case of a cache
miss. What we can see from the figure, is that the first cache observed
an order of magnitude more requests for the most popular objects. This
is reflected by the hit rates, which were respectively 19.66%, 2.05% and
0.94%. Intuitively, this can raise doubts if the results presented in this
study do not stand in contradiction.

However, the above example differs from what we presented in the
study. In the example there are three levels of caches, a single source of
traffic and a single receiver. In a more practical setup, cache hierarchy
would not be a path. A cache on a higher level should aggregate requests
that were missed by several lower level caches. Therefore, the traffic seen
by a cache grows exponentially with the distance in the hierarchy from
the clients.

As explained in Section [I.4] the hit ratio does not depend on the
volume of traffic. However, as we have seen in this chapter, just the raw
number of cache hits can be enough to make such an aggregated cache
beneficial (aggregating overhead costs makes up for the lower hit rate).

The same effect cannot be exploited easily in Chapter |3 due to as-
sumption of all-to-all traffic in a core network. Therefore, it is assumed
there that at most one cache is queried for a request and after a miss the
original source is reached.

2.12 Bibliography

[AMS06] Noga Alon, Dana Moshkovitz, and Shmuel Safra. Algorith-
mic construction of sets for k-restrictions. ACM Transac-
tions on Algorithms (TALG), 2(2):153-177, 2006.

[BAHT09] J. Baliga, R. Ayre, K. Hinton, and R.S. Tucker. Architec-
tures for energy-efficient iptv networks. In Optical Fiber
Communication Conference, San Diego, California, 2009.

[BBDC11] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti. En-
ergy efficiency in the future internet: a survey of existing
approaches and trends in energy-aware fixed network in-

frastructures. Communications Surveys & Tutorials, IEFE,
13(2):223-244, 2011.

[BRS08]

[Cis12]

[Clo]

[CM10]

[CRC08]

[FGK*10]

[GAKG11]

[GALMOS]

[GMM12]

Ivan Baev, Rajmohan Rajaraman, and Chaitanya Swamy.
Approximation algorithms for data placement problems.
SIAM J. Comput., 38(4):1411-1429, August 2008.

Cisco. Visual networking index: Forecast and methodology,
2011-2016, 2012.

Cloud Flare Inc. URL: https://www.cloudflare.com/.

L. Chiaraviglio and I. Matta. Greencoop: cooperative green
routing with energy-efficient servers. In Proceedings of
the 1st ACM International Conference on Energy-Efficient
Computing and Networking, pages 191-194, Passau, Ger-
many, 2010.

M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Am-
atriain. Watching television over an IP network. In ACM
IMC 08, pages 71-84, Vouliagmeni, Greece, 2008.

Anja Feldmann, Andreas Gladisch, Mario Kind, C Lange,
G Smaragdakis, and F-J Westphal. FEnergy trade-offs
among content delivery architectures. In IEEE CTTE ’10,
pages 1-6, 2010.

Kyle Guan, Gary Atkinson, Daniel C. Kilper, and Ece
Gulsen. On the energy efficiency of content delivery ar-
chitectures. In IEEFE International Conference on Commu-
nications Workshops (ICC), pages 1 -6, Kyoto, Japan, june
2011.

P. Gill, M. Arlitt, Z. Li, and A. Mahanti. The flattening
internet topology: Natural evolution, unsightly barnacles
or contrived collapse? In Passive and Active Network Mea-
surement, pages 1-10, Cleveland, USA, 2008. Springer.

F. Giroire, D. Mazauric, and J. Moulierac. Energy efficient
routing by switching-off network interfaces. Energy-Aware

Systems and Networking for Sustainable Initiatives, pages
207-237, 2012.

https://www.cloudflare.com/

[INWC11]

[LDGSO8]

[LGAK12]

[LGI*99]

[LKWG11]

[LRHI10]

[LRKH11]

[LVHV*12]

[MLG*11]

C. Jayasundara, A. Nirmalathas, E. Wong, and C.A. Chan.
Energy efficient content distribution for VoD services. In

Optical Fiber Communication Conference, pages 1-3, Los
Angeles, USA, 2011.

B. Li, X. Deng, M.J. Golin, and K. Sohraby. On the op-
timal placement of web proxies in the internet: The linear
topology. pages 485-495, 1998.

J. Llorca, K. Guan, G. Atkinson, and D.C. Kilper. Energy
efficient delivery of immersive video centric services. In

IEEE INFOCOM, pages 1656-1664, Orlando, USA, 2012.

Bo Li, M.J. Golin, G.F. Italiano, Xin Deng, and K. Sohraby.
On the optimal placement of web proxies in the internet. In
INFOCOM °99. Eighteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceed-
ings. IEEE, volume 3, pages 1282 —1290 vol.3, mar 1999.

C. Lange, D. Kosiankowski, R. Weidmann, and A. Glad-
isch. Energy consumption of telecommunication networks
and related improvement options. Selected Topics in Quan-
tum Electronics, IEEE Journal of, 17(2):285-295, 2011.

U. Lee, I. Rimac, and V. Hilt. Greening the internet with
content-centric networking. In Proceedings of the 1st ACM
International Conference on Energy-Efficient Computing
and Networking, pages 179182, Passau, Germany, 2010.

U. Lee, I. Rimac, D. Kilper, and V. Hilt. Toward energy-
efficient content dissemination. Network, IEEE, 25(2):14—
19, 2011.

S. Lambert, W. Van Heddeghem, W. Vereecken, B. Lan-
noo, D. Colle, and M. Pickavet. Worldwide electricity
consumption of communication networks. Optics Express,
20(26):513-524, 2012.

U. Mandal, C. Lange, A. Gladisch, P. Chowdhury, and
B. Mukherjee. Energy-efficient content distribution over

(0CZ]

[RLB12]

[SKO09]

[SRA*08]

[TCO02]

[VHI12]

[VHILR*12)

[VLM*09a]

telecom network infrastructure. In 13th International Con-
ference on Transparent Optical Networks (ICTON), pages
1-4, Stockholm, Sweden, 2011.

0C%Z Technology Group. URL:
http://www.ocztechnology.com/
ocz-revodrive-3-x2-pci-express—-ssd.html.

Olivier Renais and Jacques Le Briand. Tracks for transport
network architecture optimization. In NETWORKS 2012,
pages 1-6, Rome, Italy, 2012.

L.B. Sofman and B. Krogfoss. Analytical model for hier-
archical cache optimization in iptv network. Broadcasting,
IEEE Transactions on, 55(1):62-70, 2009.

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cari-
boni, D. Gatelli, M. Saisana, and S. Tarantola. Global sen-
sitivity analysis: the primer. Wiley-Interscience, 2008.

Xueyan Tang and Samuel T. Chanson. Coordinated en-
route web caching. [EEE Trans. Comput., 51(6):595-607,
June 2002.

W. Van Heddeghem and F'. Idzikowski. Equipment power
consumption in optical multilayer networks-sour ce data.
Technical report, Technical Report IBCN-12-001-01 (Jan-
uary 2012), available at http://powerlib. intec. ugent. be,
2012.

Ward Van Heddeghem, Filip Idzikowski, Esther Le Rouzic,
J Mazeas, Hubert Poignant, Suzanne Salaun, Bart Lannoo,
and Didier Colle. Evaluation of power rating of core net-
work equipment in practical deployments. In IEEE Online
conference on green communications (GreenCom), pages
126-132, 2012.

Vytautas Valancius, Nikolaos Laoutaris, Laurent Mas-
soulié, Christophe Diot, and Pablo Rodriguez. Greening
the internet with nano data centers. In Proceedings of the

http://www.ocztechnology.com/ocz-revodrive-3-x2-pci-express-ssd.html
http://www.ocztechnology.com/ocz-revodrive-3-x2-pci-express-ssd.html

[VLM*09b)]

[Vor03]

[Wil02]

Sth international conference on Emerging networking ex-
periments and technologies, pages 37-48. ACM, 2009.

Vytautas Valancius, Nikolaos Laoutaris, Laurent Mas-
soulié, Christophe Diot, and Pablo Rodriguez. Greening
the internet with nano data centers. In ACM CoNEXT
09, pages 3748, Rome, Italy, 2009.

André Voros. Zeta functions for the riemann zeros. In
Annales de linstitut Fourier, volume 53, pages 665-700,
2003.

Carey Williamson. On filter effects in web caching hierar-
chies. ACM Transactions on Internet Technology (TOIT),
2(1):47-77, 2002.

CHAPTER

Energy Efficient Routing

This chapter, like the previous one, is also devoted to energy saving in a
network augmented with caches. However, this time the network struc-
ture is already deployed and the saving is achieved by putting devices
into sleep mode. To maximize this, we utilize traffic aggregation and co-
operation with Content Distribution Networks. Before the study itself,
we present a preliminary introduction to Linear programming. Then,
we describe how to use it to design heuristic algorithms, in a technique
called Rounding.

3.1 Preliminary: Linear programming

For some problems, optimal solutions can be obtained with Integer Linear
Programming (ILP) models. It is a general framework that can be used
to model many combinatorial problems.

A Linear Program (LP) comprises a linear objective function, a set of
linear inequality constraints and a set of variables, upon which the ob-
jective and constraints are defined. The objective function can be either
minimized or maximized. It is also possible for a program to have no
objective, where its goal is determining whether the set of constraints is
feasible, i.e. if any assignment of the variables satisfies all constraints.
The constraints are inequalities stating that a linear combination of vari-
ables must be not greater than a given constant. If all the variables are

67

real numbers, we simply call the program linear. A LP can be written
as:
max{c’x : Ax < b,x > 0}, (3.1)

where A is a matrix and ¢ and b are vectors of known coefficients and x
is the vector of variables. However, if some variables are integers, we say
we face a Mized Integer Linear Program (MILP) (ILP if all the variables
are integral). A MILP extends LP:

max{c'x: Ax < b,x > 0,V,,c/z; € Z}, (3.2)

where [is its subset of variables meant to be integer.

An interesting property of linear programs is their duality. For any
LP of the form presented in equation [3.1} called the primal problem, its
dual problem is:

min{b’y : ATy > c,y > 0} (3.3)

Notice that the dual of the dual problem is the original primal problem.
The objective function of the dual problem, at any feasible solution, is
always greater than the value of the objective function of the primal, at
any feasible solution. Furthermore, if the primal has an optimal solution
x*, then its dual has an optimal solution y* given by:

c'x* =bly*. (3.4)

These properties are often used to find bounds on the objective function
value. This can be useful for solving algorithms, or as a stopping criterion
when a solution that is close enough to optimum is sufficient.

Solving MILP is NP-hard. It is trivial to express SAT using ILP:
simply limit the variables to be 0 or 1 and transform each clause into a
constraint saying that the sum of positive variables minus sum of negative
variables must be not less than one (e.g. (a V bV —¢) becomes a + b +
(1 —c¢) > 1). Indeed, binary programming is among the original 21 NP-
complete problems put by Karp in [Kar72]. Still, due to wide application
over practical problems, there is a big interest in solving these models.
Many exact methods have been proposed: cutting plane, branch and
bound, column generation and row generation to name a few. See [Sch9§]
for further reading. These methods are usually accessed through solvers
— software packages which allow finding exact or approximate solutions

of specified MILP. A brief overview of currently available solvers can be
found in [LLI10].

The fundamental problem behind routing, multicommodity flow, is
classically approached in this way, see [Min06] for a survey. It constitutes
a broad body of special cases. Here, we look into a simple integral
problem. We are given a graph G = (V, E') and a set of single commodity
flow requirements ®. Each flow requirement ¢ € ® has given endpoints
and value, ¢ = (S¢, s, o), 5o, ty € V. First, there is a set of constraints
called flow conservation, that basically reads that what flows in must
flow out, unless we’re in an endpoint:

—py ifv=-s5
Voo Vvev Z 1 - Z foo=Kpifv=t (3.5)
eV jev 0 otherwise

Then, for each link, the sum of values of flows flowing through it cannot
exceed link capacity c:

Viuser Y (o + fou) < (3.6)

PP

Finally, if our flow requirements come in indivisible units, we set the
variable units:

Vuwevoeafe, € N (3.7)

The program given without an objective tests whether the flow is feasible.
If so, for each flow requirement ¢ we obtain quv — a matrix determining
the flow itself.

Basing on the above we can obtain a number of useful variants. The
capacity can be a constant (maybe given for each link), when doing
routing over a given network, or some cost function, when doing network
provisioning. Depending on the exact problem, there may be various
optimization goals basing on the costs, some possible rewards, or even
no goal when the only interest is finding a feasible routing. Later in
this chapter, we extended this approach by taking into account Content
Distribution Networks and in-network caches. Solving the ILP directly
yields an exact solution, albeit the running time is exponential in the in-
stance size. Limiting the time given to the solver may yield sub-optimal,
but possibly acceptable solutions.

The usage of Integer Linear Programming is not limited to routing. A
number of various graph problems are solved with it in [Cohll]. In Ap-
pendix [A]] we look into a graph coloring problem motivated by frequency
assignment in satellite networks. It can be solved by an ILP, where for
each vertex we limit interferences for a given color (frequency) up to a
given threshold and minimize the total number of colors used.

3.2 Preliminary: rounding

The aforementioned Integer Linear Programs can be used as a basis for
heuristics. This approach is generally called rounding. For the mul-
ticommodity flow problem randomized rounding has been introduced
in [RT87]. The flows are of unit value and the optimization goal is
minimizing the uniform link capacity C'. Figure displays two steps of
a solution to a simple example. First, a fractional relaxation (a version
of the program with integer variables are changed to fractional) of the
ILP is computed. This can be achieved, using Karmarkar’s algorithm
proposed in [Kar84], in time O(n*?), where n is the number of variables
in the ILP. Solving a relaxation leads to some flows being split among
a number of edges, as shown on Figure [3.1a] The second step of the
algorithm is decomposing such flows into a set of paths, see Figure [3.1b|
Finally, we choose which path should the flow follow in an integer solu-
tion. The choice is random, weighted by the flow value of each of the
paths. This simple, computable in polynomial time, procedure is guar-

(a) Fractional st flow (b) The flow decomposed into trhee paths

Figure 3.1: An example path decomposition of a fractional st flow

anteed to give a solution with C' < C, +4/3-C, - In @ with probability
at least 1 — ¢, where C, is the optimal value, E is the edge set and ¢ a
small positive real number.

A rounding heuristic is proposed for the network management prob-
lem dealt with in this chapter. In our specific problem, the routing is
fractional and link capacities are given. Furthermore, for some flows,
one endpoint can be chosen from among a subset of nodes, modeling
demands towards Content Distribution Networks. The problem is NP-
complete because of binary choice of turning devices on or off. Our
rounding approach is greedy, instead of randomized. Having a solved
relaxation, we turn on the most loaded devices and then iterate by solv-
ing a fractional relaxation with these additional constraints. As there
is a polynomial number of relaxations to be solved, and a relaxation is
solved in polynomial time, the whole algorithm has a polynomial time
complexity.

While we formulate an ILP for the improper colouring problem in
Appendix [A] the heuristic is unrelated to it. Instead, it uses potential
interference. Whenever a node is being coloured, it is computed what
would be the interference for each possible colour and the colour with
smallest value is chosen. In contrast to the previously described algo-
rithm, this has randommness: the node to be coloured next is chosen
randomly (from among the ones with highest interference) as well as the
colour (from among the ones with lowest interference).

3.3 Publication

The remainder of this chapter corresponds to FEnergy Efficient Content
Distribution by J. Araujo, F. Giroire, Y. Liu, R. Modrzejewski and J.
Moulierac which has been submitted to the journal of Computer Com-
munications, which is an extended version of the work of same title and
authors accepted for publication in the proceedings of IEEE International
Conference on Communications 2013.

3.4 Introduction

Energy efficiency of networking systems is a growing concern, due to both
increasing energy costs and worries about CO, emissions. In [Web08] it

is reported that Information and Communication Technology sector is
responsible for up to 10% of global energy consumption. 51% of that is
attributed to telecommunication infrastructure and data centers. Thus,
saving power is important. Backbone network operators study the de-
ployment of energy-efficient routing solutions. The general principle is
to aggregate traffic in order to be able to turn off a maximum number of
devices [ZYLZ10, ICMNT11, BCMR12, [GMM12].

On the other hand, in order to reduce network load and improve
quality of service, content providers and network operators try to disag-
gregate traffic by replicating their data in several points of the networks,
reducing the distance between this data and their users. Recent years
have seen, along the growing popularity of video over Internet, a huge
raise of traffic served by Content Delivery Networks (CDNs). These kinds
of networks operate by replicating the content among its servers and serv-
ing it to the end users from the nearest one. CDNs deliver nowadays a
large part of the total Internet traffic: estimation ranges from 15% to
30% of all Web traffic worldwide for the single most popular CDN [Aka].
Chiaraviglio et al. [CM10, [CM11] have shown how the choice of CDN
servers impacts the backbone energy consumption. More precisely, they
aim at turning off network devices by choosing, for each demand from
a client to a content provider, the best server of this CDN while being
energy aware.

Here, we go further on this idea by also considering the usage of
caches on each of backbone routers, while still taking into account the
choice of CDN servers. It is important to mention that there have been
several proposals for developing global caching systems [RK09], in par-
ticular recently using in-network storage and content-oriented routing to
improve the efficiency of content distribution by future Internet archi-
tectures [PYRKOS, Dan09, JSTT09]. Among these studies, we mention
that in this paper we do not assume any specific technology for future
Internet architectures, nor anything else that would require major over-
haul of how the Internet works. Thus, there is no content routing among
our caches. We assume that a cache serves a single city, taking all of
its contents from the original provider. We consider that caches can be
turned on or off. Thus, there is a trade-off between the energy savings
they allow, by reducing network load, and their own consumption.

We propose an Integer Linear Programming (ILP) formulation to re-

duce energy consumption by using caches and properly choosing content
provider servers, for each demand. We implemented this formulation on
the ILP solver CPLEX [CPL] version 12 and made experiments on real,
taken from SNDIib [SNDJ|, and random, Erdés-Rényi [ER60], network
topologies. We study the impact of different parameters: size of caches,
demand intensity, network size, etc. In particular, we found that almost
maximal energy gain can be achieved, in our scenarios, by caches of the
order of 1 TB. Larger caches do not lead to significantly better gains.
We discuss the increase of cache usage with network size. Experimental
results show potential energy savings of around 20% by putting devices
to sleep outside peak hours; introducing CDN to the network without
caches gives 16% savings; introducing caches to network without CDN
also gives around 16% savings. Furthermore, we observed that the impact
of caches is more prominent in bigger networks. To be able to quantify
this effect, we propose an efficient heuristic. This heuristic, called SPAN-
NING TREE HEURISTIC, allows us to obtain acceptable solutions in a
time orders of magnitude shorter than solving the model directly with
CPLEX. Furthermore, the heuristic accepts a parameter controlling a
speed/quality trade-off. This trade-off is also studied in this paper.

The main take away of our work is thus that, by storing the most
popular content in caches at each router and by choosing the best content
provider server, we may save around 20% of power in the backbone.

The paper is organized as follows. We discuss the related work in
Section [3.5] We present the problem and its formulation in Section [3.6
Section |3.7 describes how we built the instances used in the experimenta-
tions.Finally, we present the experiments we did and discuss the results

in Section [A.5

3.5 Related Work

Reducing energy consumption of the backbone network has been ap-
proached before multiple times. A model where it was achieved by shut-
ting down individual links is studied in [GMM12]. An interesting way of
performing this in a distributed manner is shown in [BCMRI12]. Energy
efficient CDNs have also been studied recently. Authors in [MSS12] pro-
pose to reduce energy consumption in CDN networks by turning off CDN
servers through considering user SLAs. In order to optimize the power

consumption of content servers in large-scale content distribution plat-
forms across multiple ISP domains, a strategy is proposed in [GWS12] to
put servers into sleep without impact on content service capability. Our
work is different from these works, since they do not consider in-network
caches.

Network caches have been used in global caching systems [RK09).
In recent years, several Information Centric Networking architectures,
such as Cache and Forward Network (CNF) [PYRKO0S8], Content Cen-
tric Networking (CCN) [JSTT09] and NetInf [Dan09], have exploited
in-network caching. Their objectives are to explore new network ar-
chitectures and protocols to support future content-oriented services.
Caching schemes have been investigated in these new Internet archi-
tectures [PYRKOS, LSGI12, [PCP12]. Similar to our work, these works
also use in-network caches, however they do not consider energy savings.

Energy efficiency in content-oriented architectures with an in-network
caching had been studied recently in [GAKGI11, SLWTI[CGKA12]. In [GAKGI1],
authors analyze the energy benefit of using CCN by comparison to CDN
networks. A further work [CGKA12] considered the impact of different
memory technologies on energy consumption. Adding network caches
that work transparently with current Internet architecture has been stud-
ied, with linear power models, in [MLG™11], where caches are added to
backbone routers and in [JNWCTI], where it is found that optimal place-
ment during peak hours is in the access network. These works focus on
the energy efficiency considering data delivery and storage, however, they
do not take into account the energy savings by turning on/off network
links. Authors in [SLW11] extend GreenTE [ZYLZ10] to achieve a power-
aware traffic engineering in CCN network. It is different from our work,
since we consider energy consumption of in-network caches that could
be turned on or off, as well as a cooperation between network operators
and content providers.

Most closely related to ours is the work from Chiaraviglio et al. [CM10,
CM11], which enables the cooperation between network operators and
content providers, to optimize the total energy consumption by an ILP
formulation for both sides. In this paper, we also consider this coopera-
tion to achieve such a total energy saving. Our work is an extension of
this optimization problem formulation, through considering in-network
caching.

3.6 Problem Modeling

What follows in this section is a discussion of model parameters, formal
problem definition and a Mixed Integer Linear formulation used to solve
it.

However, let us first informally recall the problem description and
some assumptions we consider. Our goal is to save energy on a backbone
network by aggregating traffic and turning off as many devices as possi-
ble. We consider that this network has a set of demands between pairs
of routers and a set of demands to CDN servers in an overlay of this net-
work. A demand to a CDN can be satisfied by any of its servers, which
are placed in different routers of our backbone network. Thus, these
demands have of course a single destination, but several possibilities of
sources, one for each CDN server. Moreover, we consider that each back-
bone router of our network has a cache, with a limited amount of storage,
that can only be used to satisfy demands to its router. Our goal is to
satisfy all these demands, under the capacity contraints of CDN servers,
caches and links, while minimizing the number of links and caches that
are turned on.

Parameters

For in-network caches, it is still an open question: if and how they should
be deployed. Therefore, we avoid making specific assumptions about the
details. Once the question is answered, the model we propose can be up-
dated to answer any possible specific concerns. However, the conclusions
can change, if the actual parameters vary heavily from our estimates.

Cache hit rate A cache, located in each router, automatically caches
the most popular content, potentially saving a fraction of any demand.
Establishing this fraction is a non-trivial task. According to [HHI10],
content popularity follows a Zipf-like distribution. In their study, they
computed the relation between cache size and hit rate for a trace of
traffic towards YouTube. Note that this relation does not depend on the
number of cache accesses, only on the relative size of the cache and all
the content collection. This relation is shown on Figure |3.2] with the
assumption that an average video is 100 megabytes. The figure shows
results for two algorithms: least recently used, a classic caching algorithm,

90 e
80 H — LRU
0H — Static 4

Cache hit rate [%)]

i el
1010 1011 1012 1013 1014
Cache size [bytes]

Figure 3.2: Cache hit ratio for YouTube trace, assuming average video size
100MB, following the results in [HH10].

and static most popular, a simple algorithm proposed by the authors. For
example with a cache of around 800GB the expected hit rate is around
17.7% using LRU and around 32.5% using the static algorithm, thus
saving an equivalent fraction of traffic.

As the situation changes frequently, both regarding to the volume of
popular content and available storage, we leave this fraction as a param-
eter of the model: a — the maximal part of any demand that can be
served from a cache. Network operator can establish it empirically, by
means of measurements. Typically, we take a € [0.2,0.35].

Cache power usage In our model we deal with two types of equipment:
links and caches. In practice, main energy drain of links are port cards
and amplifiers. As can be seen in Powerlib [VHI12], power requirements
of single port cards suitable for long haul networks are well over 100
Watts, while other backbone cards can be as few as a quarter of that.
For the caches, the main concern is fast mass storage. This has improved
recently, with current SSD models offering 1TB of storage accessed at
10Gbps consuming below 10 Watts of power, for example [OCZ].

Again, as the practical values in the time of implementation are hard
to predict, we make this ratio another parameter of the model: S — the
power consumption of a cache divided by the power consumption of a
link. Typically we take 8 € [0.1,1].

Problem definition

We use a typical model, from the perspective of a backbone provider,
where aggregated traffic between cities is expressed as a demand matrix.
We augment this matrix to represent not only cities, but also content
providers. This is motivated by the fact that content providers generate
traffic that can easily be equal to that of a city.

Let us first formally define the optimization problem we are dealing
with. We call it ENERGY EFFICIENT CONTENT DISTRIBUTION. In this
problem, we model the network by a graph G = (V| E), for which we
have a link capacity function ¢ : £ — R, and city to city demands
f)z, Vs, t € V. Moreover, we are given a set of content providers P. For
each content provider p € P, the subset of vertices of V(G) containing
its servers is given by the function £, C V(G). Each server placed in
location [€ £, of a content provider p has a capacity C (ﬁé). We are also

given demands from cities to content providers given by the function ’}575’ ,
for every s € V,p € P. We consider that the data is replicated at each
node of £,. Finally, each node v € V(G) in the network has a cache of
bandwidth capacity b(v).

The goal of our problem is to find a feasible routing in G satisfying
all the demands D! and ©? under the capacity constraints ¢(u, v), C ()
and b(v) that minimizes the total energy consumption of the network.
By total energy consumption, we mean the energy used by the links plus
the energy used by the caches. For each cache, despite of a fixed energy
cost of turning it on, we also consider an increased usage of energy in

terms of its load.

Mixed Integer Linear Programming Formulation

First recall that our goal is to turn off links and caches in order to
minimize the amount of energy used in the underlying network. Conse-
quently, we use a variable x,, to indicate if the link wv is turned on or
off, for every {u,v} € E. The model is normalized as to say that every
link uses 1 unit of energy. We denote this unit /.. We use a variable y,
to indicate if the cache at router v is turned on or off, for every v € V.
We say that a cache uses at most [units of energy. Finally, we recognize
that mass memory access can constitute a significant energy cost. Thus,
we use a variable z, to indicate the load (fraction of used bandwidth) of

the cache in router v. We assume that an idle cache uses fraction 7y of
B and its power consumption grows linearly with load to reach [once
fully utilized. The objective function is then written formally as:

min Z) + 257% + Zﬁ(l - V)Zv-

{uv}eE veV veV

Denote D and © as the demands posed in the problem instance,
respectively from other cities and content providers. A cache in a source
router s, when turned on, allows to save a portion of any demand up
to «, call these savings respectively C and €. We will consider reduced
demands, denoted D and ©, which are the wnput demands with the
caching savings subtracted:

D! =D!-C' Vs,teV,
Cﬁgaﬁi Vs, t eV,
DP=9P —¢” VseV,peP

eggoﬁbg’ ,VseV,pe P.

Then, we record the load of the cache:

dCl+) @ =zb(s) Vs,tcV,VpeP.
t D

Finally, the load cannot exceed the capacity and needs to be zero if cache
is off:
2, <ys ,VseV.

Each possible source s € V' demands from each provider p € P an
amount of data flow 2 > 0. The provider has a set of servers of s,
located in a subset of nodes of the network [€ £, C V. Each of those
servers sends 6;;5 flow units, to collectively satisfy the demand:

d e =20 VseVpeP
leg,

Each server ﬁé has a constrained capacity C(ﬁé), which limits the
demands it can satisfy:

d e <C(s,) WpePleg,

seV

Popularity Server capacity Server locations

CDN1 40 0.3 Berlin Hamburg Duesseldorf
Frankfurt Muenchen Nuernberg

CDN2 20 0.45 Berlin Duesseldorf Frankfurt
Muenchen

CDN3 15 0.6 Berlin Frankfurt

CDN4 15 0.5 Hamburg Frankfurt Muenchen

CDN5 10 0.2 Berlin Duesseldorf Frankfurt Ham-
burg Muenchen Nuernberg Os-
nabrueck

Table 3.1: Content Distribution Networks assumed for the germany50 net-
work.

Now we set flow constraints. By f;, we denote the flow on edge
{u,v} corresponding to demands originating from s.

SN =Y fa=

vENy, 2ENy
_ p_ to,
= ZPEPQS 2uev Dy u=s) Vs, ueV.
Dy + 2 (peplucse,y Sp° otherwise

Finally we consider capacities of links, denoted ¢(uv). The constraints
involve both kinds of flows and the on/off status of the links:

S (fowt o)+ < clwv)y, V{u, v} € L.

seV

All variables are non-negative real numbers, except for z,, and vy,
which admit only values in {0, 1}.

Spanning tree heuristic

Since CPLEX was not able to solve the ILP model described in the last
section for bigger instances, we describe here a polynomial-time heuristic
to our problem. For instance, for a random example with 150 cities and
300 links, CPLEX was not able to produce any feasible solution within
two hours, while the proposed algorithm can give a good solution in two
minutes.

Our heuristic is an iterative algorithm that, at each step ¢ > 0, com-
putes an optimal (fractional) solution s; for the relaxation of our model
and fix value of some variables of the model corresponding to the usage
of links and caches (i.e. the integral variables z,, and y,). When we say
that we fiz a variable z to a value ¢ € {0, 1} at step i, we mean that we
add a constraint = = ¢ to the model used to compute s;, for all j > <.

At the first step 0, our heuristic computes a solution sg of relaxation
of the model. Then, by setting the weight of each edge to be the value
of its corresponding variable in sy, a maximum spanning tree T' of the
input network graph G is computed and all the variables x,, of all the
edges uwv € E(T) are fixed to one.

After this initialization step, the heuristic solves, at each step i > 0,
the relaxation of the model (which will already have several variables with
fixed values) to get an optimal solution s;. Then, if some other variables
Ty O Y, have value v € {0, 1} in the solution s;, these variables are fixed
to this value v. Finally, at least one most loaded device is fixed to be
turned on. To speed up the process, the heuristic has a parameter S. At
each step i, we also fix S fraction of the highest value variables z,, or
Y, whose values v are in 0 < v < 1 to one. Once all the integer variables
are fixed, the relaxation is solved one last time. This gives us a valid
solution to the Integer Linear Program.

The heuristic has been implemented in Java and it can be downloaded
as open sourcd’} Note that we use CPLEX to solve the relaxations of the
model at each step of the heuristic. The performance of this heuristic is

analyzed in Section [A.5]

On the complexity of the heuristic algorithm The model we propose
has a polynomial number of constraints on the size of the input. It is
well-known that its relaxation can then be solved in polynomial time.
The number of devices whose variables have to be set to 0 or 1 by our
heuristic is n caches (one at each node) plus m edges. The first iteration
puts n — 1 edge variables to 1. When a variable is set to 0 or 1, it is
not reconsidered during the algorithm execution. Hence, the number of
relaxations solved, i.e. of steps of the heuristic, is bounded by m + 1.
Note that we indicated the number of iterations and the execution
times in seconds for varied values of S in Section [B.8] and for networks of

"https://github.com/lrem/GreenContentDistribution

https://github.com/lrem/GreenContentDistribution

varying size in Section [3.8]

3.7 Instance generation

The Survivable fixed telecommunication Network Design (SND) Library
contains a set of real network topologies, which we use as a base for most
of our instances. In particular, we have decided to use three networks
with considerably different sizes:

o Atlanta — |V| = 15, |F| = 22, unidentifiable cities
e Nobel-EU — |V| = 28, |E| = 41, major European cities
e Germany50 — |V| =50, |E| = 88, major German cities

We added the position of the Content Distribution Network servers. Usu-
ally, Content Distribution Networks locate their servers in Internet Ex-
changes and major Points of Presence, to minimize the network distance
to the end users. Locations of such points are publicly known. Thus, for
topologies with clearly identifiable cities, we have ready sets of candidate
locations for CDN servers. Otherwise (Atlanta network), we put them
manually at cities which minimize the route lengths.

We used a population model to build the traffic matrices of the de-
mands between cities. Then, we augmented matrices with the demands
towards content providers. Obtaining exact figures about CDN market
shares and operational details is out of scope of this study. Still, we
explored the publicly available information, e.g. [Aka], to come up with
a list of the major providers. Each of the networks is assigned a popu-
larity, which is based on market share either claimed by the company or
media. The number of servers is heterogeneous and we try to arrange it
into distinct classes in regard to popularity /server capacity proportion,
i.e. there can be networks with many small servers, or few strong ones.

Table exemplifies CDN specification used in the germany50 net-
work. Server capacity means what part of total demand towards a net-
work can be satisfied by the infrastructure in a single location. For ex-
ample, just two servers with capacity 0.5 can satisfy all demands towards
CDN4.

A more detailed description of the instance generation can be found
in the research report |[AGLT12.

3.8 Results

In this section, we first validate our heuristic. We show that it is able to
find good solutions for small and medium-sized networks by comparing
with optimal solutions given by the model. We implemented the for-
mulation on the ILP solver CPLEX version 12. We then show that the
heuristic is fast and is able to quickly find solutions for large networks
for which CPLEX was not able to find any feasible solutuion.

Then, we investigate the potential energy savings of our solution on
realistic networks. We exhibit the impact of the cache, CDN and network
parameters, such as cache size, number of CDN servers, or route lengths.
Note that, as described in Section [A.5] energy consumption is given in
normalized energy units equal to energy used by one link, denoted I..

When directly solving the ILP, by default we set a limit on the exe-
cution time to five minutes per instance.

Validation of the Heuristic Algorithm

In order to validate the SPANNING TREE HEURISTIC, we compare its
performance to solving the integer model directly with CPLEX. First we
show the differences in several examples. Then, we focus on showing the
impact of the parameter S, which governs the speed/quality trade-off,
on three chosen examples.

Comparison of the heuristic and the ILP

Table displays performance comparison between SPANNING TREE
HEURISTIC and solving the ILP directly by CPLEX version 12. It com-
pares the values of objective function and wall clock time taken by the
computation on an Intel i7-powered computer. The A columns mean,
respectively, by what percentage the solution found by the heuristic is
worse and how much time is saved by using it. The heuristic parameter
S is set to 0.2. It is discussed in the next section.

First, notice that for very small networks it is feasible to solve the
ILP optimally. This is exemplified by the 15-node Atlanta network. The
optimal solution is found within two seconds. Interestingly, the running
time grows for lower traffic. This is entirely because rising the lower
bound, which has to be equal to the objective value to state the solution

Topology V] Total energy|l,] A
Model Heuristic

Atlanta (high traffic) 15 18.8% 19.0 1%
Atlanta (medium traffic) 15 16.6x 18.6 12%
Atlanta (low traffic) 15 14.1% 14.4 2%
Nobel-EU (high traffic) 28 31.4% 35.1 12%
Nobel-EU (medium traffic) 28 28.4 32.2 13%
Nobel-EU (low traffic) 28 27.9 30.2 8%
Germany50 (high traffic) 50 69.7 69.0 -1%
Germany50 (medium traffic) 50 54.2 61.6 14%
Germany50 (low traffic) 50 50.0 56.2 12%
Random 150 No solution 203.7 —
Topology |V| Computation timels]| A
Model Heuristic

Atlanta (high traffic) 15 1.5 0.6 60%
Atlanta (medium traffic) 15 5.2 0.6 88%
Atlanta (low traffic) 15 344 0.6 98%
Nobel-EU (high traffic) 28 1075 1.8 99.8%
Nobel-EU (medium traffic) 28 1800 1.3 99.9%
Nobel-EU (low traffic) 28 1800 1.1 99.9%
Germany50 (high traffic) 50 300 8.5 97%
Germany50 (medium traffic) 50 300 5.0 98%
Germany50 (low traffic) 50 300 2.9 99%
Random 150 7200 127.8 —

Table 3.2: Comparison of results given by the SPANNING TREE HEURISTIC
(labelled Heuristic) and by solving the model directly with CPLEX (labelled
Model). The x symbol denotes optimal solutions.

is optimal, becomes much harder. Solutions given by the heuristic are
close to the optimum, while the time needed to find them is much shorter.
Still, for networks of this size, we would strongly recommend solving the
model directly.

For networks up to 30 nodes it is still feasible to find optimal solutions.
However, the cost of obtaining the solution is rather high, while closing
the gap to the lower bound becomes impractical for low traffic. Thus,
we limited the CPLEX execution time to half an hour. On the other
hand, SPANNING TREE HEURISTIC provides its solutions in under two
seconds. Again, by choosing the heuristic, we accept only a slight increase
in consumed energy. Precisely, to obtain a solution within 12% of the
optimum, we save 99.8% of the computation time.

In medium-sized networks, such as Germany50, finding exact solution
becomes impractical. Thus, we set a limit of 5 minutes to obtain near-
optimal results. This allows SPANNING TREE HEURISTIC to obtain a
slightly better solution than the ILP, while taking only 3% of the running
time, in the case of high traffic. In the other cases it is still not far
quality-wise, while taking negligible time.

Finally, we take a big random instance. The topology is a two-
connected Erdos-Renyi graph, with 150 nodes, an average degree of four
and one CDN with fifteen servers. Each city issues demands only to
seven other cities. The overall traffic level is medium (demand ratio
4.0), as these kind of instances are prone to bottlenecks, which could
render higher traffic levels unrouteable. It is infeasible to directly obtain
any integer solution of the model. After two hours CPLEX was not able
to propose even a trivial solution (e.g. turning on all the devices). SPAN-
NING TREE HEURISTIC, in just above two minutes, gives a solution that
is 35.8% over the trivial lower bound of a minimal connected network.

To conclude, we say that the SPANNING TREE HEURISTIC is clearly
the better choice for big networks. For small to medium-sized ones, its
results are always reasonably good, while its running time is very short.
Therefore, it is a viable choice whenever the computation time is an issue.

Speed/quality trade-off of the Spanning Tree Heuristic

As stated in Section the parameter S governs an execution speed vs
quality of solution trade-off for the SPANNING TREE HEURISTIC. We
investigate its influence in this section.

First, recall that & determines the fraction of undecided variables to
be fixed to an integer value within an iteration. Each iteration at least
one variable is set to one, so setting S to zero means turning on devices
one by one. It is easy to see how increasing S reduces the number of
iterations. To comprehend how it can decrease the quality of obtained
solution, imagine a simple example, that represents a fragment of an
instance. Take two cities with two disjoint paths and one demand be-
tween them. Let the value of that demand be equal to bandwidth of a
link. One valid solution of the relaxation can be splitting the demand
in half and routing both halves along both paths. The optimal integer
solution for this case is all the flow going through one route, the links of
the other turned off. If & = 0, then after the first step one link will be
turned on. The only possible solution of the relaxation will route all the
traffic through the path containing this link. Thus, the solution found
by SPANNING TREE HEURISTIC will be optimal. However, if § > 0 and
two links are turned on in the first step, then it is possible the two links
will be on different paths. Thus, the integer solution will have some un-
necessary links turned on. In the extreme case of S = 1 all devices will
always be turned on.

Figure |3.3| shows the impact on three examples. In all cases, the x
axis determines the value of parameter §. The left column plots the
value of the objective function in integer solutions. The right column
shows computational costs, both in terms of wall clock time in seconds
(solid blue lines) and number of relaxations solved (dashed red lines).

First, look into an instance based on maximum traffic sustainable in
the Germany50 network. Solutions obtained are displayed on plot
Recall that the value found by a solver for this instance was 69.7 energy
units. Taking between 24 and 8 seconds, SPANNING TREE HEURISTIC
with & < 0.3 obtains solutions with 69.0 units. This means it is in this
case both faster by an order of magnitude and gives a marginally better
solution. Note that even at & = 1 not all devices are turned on. This
is because, after freezing the spanning tree, some devices get turned off
before all the undecided ones are turned on. Looking at plot we see
that the number of relaxations solved and the running time are falling
drastically for & < 0.2. Then, they decrease more slowly, with 6 seconds
at § = 0.5 and 4 seconds at § = 1.0.

Second, we assign to the same network a small load, that sill does not

82 T T T T 25 T T T T 70

= 80) 60 2
2 Z 20K e B
2 18 S 150 8
g 76 g 15 440 2
3 3 -
2} A, \ . 0
§ ™ g 101 130 2
o 72 i 420 =
) E o5 S LR
g 70 -~o o H410 =
5 68 1 ! ! ! 0 ! L — S m ===y 2
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
STH speed parameter S STH speed parameter S
(a) Germany, demand ratio = 0.25 (b) Germany, demand ratio = 0.25
o 59 T T T T @
g 58 |- B _ E
2 57T 1 2 Z
=56 {1 § 8 %
= 9] 7 <2
z 1 = 6 2
=]
8 54 | . ﬂé 5 g
i 1 & s :
g 52 — 3 g
5 51 ! ! ! ! 9 ! ! ! ! 0 &
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
STH speed parameter S STH speed parameter S
(¢) Germany, demand ratio = 1.0 (d) Germany, demand ratio = 1.0
< 270 4000 180 7
= 260 | . 3500 160 9
S 250 1 Z 3000 140 %
= 0| I 100 2
=1 B N o} —
£ 220 | 1 = 2000 80 2
S 210 | 4 g 1500 60 2
2 200 [4 £ 1000 40 E
g 190 | . 500 20 =
= Q
M 180 0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
STH speed parameter S STH speed parameter S
(e) Random graph, n = 150 (f) Random graph, n = 150

Figure 3.3: Impact of the parameter S, left column plots the energy consump-
tion of obtained designs, while right column plots the computational cost.

allow for routing on a spanning tree (which would be a trivial case for
the heuristic). With model given directly to a solver, we have obtained
in 5 minutes a solution with value 50. Plot [3.3d shows that the best
solution found by SPANNING TREE HEURISTIC is still one unit worse
and can deteriorate by almost eight further units. On the other hand, the

maximum time taken by SPANNING TREE HEURISTIC is 10.8 seconds.
For § = 0.1 it is already 3.3 seconds, reaching 2.8 at § = 1.

Finally, we present results for the same random graph as in the pre-
vious section. Looking at plot [3.3¢ we see that there is significant but
steady increase in energy consumption until S = 0.4. At that point, the
value objective function is nearly saturating, at 1.44 times the value for
S = 0. On the other hand, plot shows that there is a sharp decrease
in computational cost until S = 0.2. As the objective value at that point
is not far from the best known value, we deduce that this is a reasonable
value of § for fast solving of big instances. Note that when solving the
model directly, CPLEX 12 is not able to produce any integer solution
within reasonable timespan of two hours. The only lower bound on the
objective value we know comes from the fact, that the network needs to
be connected. Thus, there are at least 149 links needed. This means
that the heuristic, with S = 0, is at most within 20.8% from the optimal
solution.

As we have seen in the above examples, the SPANNING TREE HEURIS-
TIC is a good alternative to solving the model directly for big networks.
Furthermore, even when it is possible to obtain a solution directly from
the model, it may be possible that the heuristic provides a solution of
similar quality in a shorter time.

Impact of cache parameters

In this section, we exemplify the impact of parameters of the cache. We
look into how the obtained network designs differ on changing values of
the cache hit rate a and of the cache power usage 5. Due to lack of space,
results are given here for the germany50 network. The demand ratio
is set to 0.3, which represents high traffic. Similar results on different
networks can be found in [AGL™12].

First, we look at the effects of changing the parameter «, shown in
Figure [3.4al Recall, that it limits what part of any single demand can
be served from a cache. Increasing the significance of caches results in
more being used and energy being saved. However, note that once about
15% of traffic can be cached, further gains are highly diminished. This,
according to Section is equivalent to about 800GB or just 100GB
depending on the cache algorithm used.

74 T T T

T 80— =
g 78 .S 72 -
ey = 70 F |
2 76 a,
E g e8| .
Z 74 2 o6 |- i
S 72 ° 64} .
4 5
270 2 62 i
S 68 & 60 ' ‘ ' '

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5

«: cache hit rate B: cache power / link power

(a) (b)

1.0 : ; 10°
5 0.8 4
E
£ 06 11 .
= a
< 04 :
[}
0.2 .
00 - 10—2

| | |
0.0 0.5 1.0 1.5 2.0
B: cache power / link power

(c)

Figure 3.4: Energy consumption in network designs obtained by model with
different parameters.

Figure |3.4b| shows the effects of changing maximum cache power us-
age, 8. As we can see, when the caches use no energy, the network uses
60 units of power. Then it raises, through 63.4 for g = 0.1, to 69.7 for
B = 0.5. After this point, further increases to § have little effect, not
increasing past 74. This is because at this point caches simply get turned
off as they consume too much energy.

Figure [3.4c| shows combined effects of both parameters. The demand
ratio in it was increased to 0.33, to make routing without caches feasible.
Then, a baseline power consumption has been established with caches
disabled to be 71. For each pair of parameters, energy savings relative to
that baseline are mapped to a color and displayed in appropriate region

=75 . . : T 84 —
= N === With caches =
g 70 BY H g 82
= -— No caches 2
o) 2 80 |
£ 65 g
S 60 S L
> >
%D 55 %D 74 b
=1 = .
= 50 = 72
0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 5 6 7 8
Part of demands towards CDN CDN server locations
(a) In function of CDN popularity. (b) In function of server location cardi-
nality.

Figure 3.5: Total energy consumption varied by CDN properties.

of the figure. The darker the color the higher the savings.

Impact of CDN parameters

Then, we investigate the impact of the cooperation with CDN, shown on
Figure (3.5 Plot shows the evolution of energy consumption in func-
tion of what part of all demands are directed towards CDN networks.
The demand ratio for this plot is set to 0.33, to make routing without
caches nor cooperating content providers feasible. Results both with and
without caches are compared. As we can see, introducing cooperating
content providers to a network without caches is highly beneficial. In the
extreme case when all traffic would be served by CDNs, energy consump-
tion would decrease by 27.4%. At today’s claimed values this number is
still 16.4%. Then, introducing caches to a network without CDN gives
16.7% savings. There remain 8.0% savings at today’s CDN popularity.
What may be a bit surprising, there are still 6.6% savings by introducing
caches when 100% of traffic is served by the Content Delivery Networks.
Finally, comparing network without CDN nor caches, to network with
50% of traffic served by CDN and with enabled caches, we save 23.12%
of energy.

Plot[3.5b]investigates how many location choices are needed to achieve
good savings. In this scenario, for the sake of clarity, there is only one
CDN. Its servers are potentially located in: Berlin, Frankfurt, Muenchen,
Hamburg, Dortmund, Stuttgart, Leipzig and Aachen. In each data point,
only the first n servers from this list are enabled. Each server is able to

19 T I ~ 36 T T I
= === With caches = === With caches
o 18 S 34 F
= -— No caches = -— No caches
g 17 N g‘
=] = 32F]
g 16 i 2 \
3 S 30 \\W -
> >
&0 15 E &0 ~
M 14 - 3 . .
1.5 3.0 4.5 6.0 0.5 1.0 1.5 2.0 2.5
Demand ratio Demand ratio
(a) Atlanta (b) Nobel-EU

= 70 \ === With caches [|

% 65 |\ - No caches

g

3

2 60

9]

o

2 55

g

<]

/= 50

0.25 0.50 0.75 1.00

Demand ratio

(c) Germany

Figure 3.6: Comparison of energy consumption with and without caches in
the model.

provide all the demands alone, 50% of all traffic is served by the CDN. It
is infeasible to route with less than 3 locations. As we can see, increasing
the number of possible choices from 3 to 5 yields around 13% of energy
savings. Further increases have little effect. Thus, in this network of 50
cities, it is optimal to have 5 server locations.

Impact of traffic level

In this section, we look into the potential reduction of energy con-
sumption of the networks in our model, both with and without usage
of the caches, exploiting the variance in network traffic over time. The
parameters used throughout this section are: a = 0.35, § = 0.1 and
cache bandwidth is half of a link.

Figure [3.6] shows energy consumption in function of demand ratio,
that is the inverse of traffic level. As we can see, in all the networks,

Nodes Maximum energy saved Total energy savings

Network count due to caches (load=50%)

Atlanta 15 8.9% 21.3%
Nobel-EU 28 3.2% 21.7%
Germany 50 16.7% 22.3%

Table 3.3: Potential energy savings

enabling caches makes routing feasible under much higher loads than
before. For example in the case of Germany, we can accommodate an
increase in demands by one third. Then, as traffic decreases, we can
save energy by turning off some devices. The right column of Table |3.3
states relative difference between energy consumption of a network under
highest possible load and half of that load, with caches enabled.

For a range of demand values, it is feasible to route without caches,
but at a higher total energy cost. Note that half of maximum sustainable
load is in all cases within this range. The left column of Table |3.3| shows
the highest difference of power consumption accommodating the same
traffic with and without caches.

As can be seen, there is a point after which there are no additional
savings with falling traffic. This is when the routing is feasible on a
spanning tree, using no caches. Turning off any additional device would
disconnect the network.

What is interesting is the fact that caches have a much higher effect in
the germany50 than the smaller instances. We attribute that to longer
routes, which mean higher energy cost to transfer the data through the
network. This effect is investigated in Section

Impact of network size

We have seen varying usage of caches in the studied networks. An expla-
nation for that is the difference of route lengths in the diverse networks.
Energy is saved by serving from a cache close to the user. Savings de-
pend on how long would be the route traversed by the data, if it was
served from content provider. A longer route yields higher reductions.
However, in the biggest network we used, the germany50, the average
route length is only 4. Furthermore, when looking at a distance traveled
by an average bit of data, this length is only 2.6. We claim that in bigger

1.0 T T 10* T T T T
R LI 1 2w 3
“ 06 - g i]
% 2 102 F E
< 04 1) 3 E
Q []
< E ool |
© o2} 4 & 100f

0.0 1L | | | 100 [| | | |

0 50 100 150 200 250 0 50 100 150 200 250
Number of nodes Number of nodes
(a) Cache usage divided by network size (b) Execution time (note the log scale)

Figure 3.7: SPANNING TREE HEURISTIC on Erdos-Rényi graphs.

networks we could see higher utility of caches.

To estimate the impact of route length, we look into results on Erdos-
Rényi graphs. Recall that in these graphs, the route lengths grow loga-
rithmically in respect to the graph size. As we need many big networks to
demonstrate the effect, obtaining integer solutions directly from a solver
would be impractical. Therefore, the results presented are computed
using the SPANNING TREE HEURISTIC.

Figure shows the number of caches used divided by the number
of cities in two-connected Erdds-Rényi graphs of increasing sizes. The
average degree of each graph is 4, each city emits 7 demands to random
other cities, cache parameters are a = 0.35, § = 0.1 and v = 0.5. Each
data point is an average over at least two thousand instances, error bars
represent standard deviation.

As we can see, with no other parameters changing, usage of caches
clearly grows with increasing network sizes. In a network of size 20,
having average route length around 2.3, average number of caches on is
only 4.47 (22.3%), while in networks of size 220, of average route length
around 4.2, there are on average 209.2 (95.1%) caches turned on. Caches
see an average usage over 50% for networks of size at least 80, where
the average route length is only around 3.4. This size can correspond to
small networks comprised of both core and metropolitan parts, or just
big core networks.

Figure displays the computation times. The value of S is 0.2.
The execution time grows quickly. This is not due to the number of
heuristic iterations, between 20 and 220 nodes the number of relaxations

solved only doubles. However, at n = 220 a single relaxation takes 6
minutes on average. Thus, the time needed to find the fractional routing
is the critical part of the computational cost.

3.9 Conclusions and further research

In this work, we addressed to the problem of energy saving in backbone
networks. To the best of our knowledge, this is the first work to consider
that impact of in-router caches, along with assigning servers of Content
Delivery Networks to demands, in an energy-efficient routing.

We have proposed a new Integer Linear Programming model for sav-
ing energy in backbone networks by disabling links and caches of this
network and a polynomial-time heuristic for this problem. We compared
the performance of the solutions proposed by our heuristic against those
found by CPLEX. In small to medium-sized instances the solutions given
by the heuristic are close to that of the integer program. Being faster by
orders of magnitude, it allows to find good solutions for bigger networks,
where CPLEX was not able to produce any feasible solution in hours.

We studied instances based on real network topologies taken from
SNDLib. The total energy savings found oscillate around 20% for realis-
tic parameters. Part of energy saved solely due to introduction of caches
is up to 16% in our instances.

As a future work, the model could be extended to enable the usage
of a single cache to satisfy the demands of multiple cities, i.e. to let a
cache satisfy demands to different routers and not only to its own router.
The energy savings will probably grow in this model, however it would
be interesting to study how this solution could be deployed.

One could also look at different network architectures. This work
considered only the backbone. A next step could be introducing access
networks, leading to larger instances. As the savings due to caches grow
with network size, they should be substantially higher in this case. This
could also motivate study of new mechanisms, e.g. layered caching.

3.10 Bibliography

[AGLT12] J. Araujo, F Giroire, Y. Liu, R. Modrzejewski, and
J. Moulierac. Energy efficient content distribution. Research

Report RR-8091, INRIA, 10 2012.

[Aka]

[BCMR12]

[CGKA12]

[CM10]

[CM11]

[CMN11]

[Cohl1]

[CPL]

[Dan09]

Akamai. URL: http://www.akamai.com/html/riverbed/
akamai_internet.html|

Aruna Prem Bianzino, Luca Chiaraviglio, Marco Mellia, and
Jean-Louis Rougier. Grida: Green distributed algorithm for
energy-efficient ip backbone networks. Computer Networks,
56(14):3219-3232, August 2012.

Nakjung Choi, Kyle Guan, Daniel C. Kilper, and Gary Atkin-
son. In-network caching effect on optimal energy consumption
in content-centric networking. In IEEFE International Con-

ference on Communications Workshops (ICC), pages 2889—
2894, June 2012.

Luca Chiaraviglio and Ibrahim Matta. Greencoop: Coop-
erative green routing with energy-efficient servers. In First
International Conference on Energy-Efficient Computing and
Networking (e-Energy), pages 191-194, April 2010.

Luca Chiaraviglio and Ibrahim Matta. An energy-aware dis-
tributed approach for content and network management. In
IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 337 =342, April 2011.

Luca Chiaraviglio, Marco Mellia, and Fabio Neri. Mini-
mizing isp network energy cost: Formulation and solutions.
IEEE/ACM Transactions on Networking, 20:463-476, April
2011.

Nathann Cohen. Three years of graphs and music: some
results in graph theory and its applications. PhD thesis, Uni-
versité de Nice Sophia-Antipolis, 2011.

CPLEX. URL: http://www.ibm.com/
software/integration/optimization/
cplex-optimization-studio/.

Christian Dannewitz. Netinf: An information-centric design
for the future internet. In Proceedings of 3rd GI/ITG KuVS
Workshop on The Future Internet, May 2009.

http://www.akamai.com/html/riverbed/akamai_internet.html
http://www.akamai.com/html/riverbed/akamai_internet.html
http://www.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www.ibm.com/software/integration/optimization/cplex-optimization-studio/

[ER60]

[GAKG11]

[GMM12]

[GWS12]

[HH10]

[INWC11]

[JST+09]

[Kar72]

[Kar84]

Pal Erdos and Alfréd Rényi. On the evolution of random
graphs. In Publication of The Mathematical Institute of The
Hungarian Academy of Sciences, pages 17-61, 1960.

Kyle Guan, Gary Atkinson, Daniel C. Kilper, and Ece
Gulsen. On the energy efficiency of content delivery architec-

tures. In IFEFE International Conference on Communications
Workshops (ICC), pages 1-6, june 2011.

F. Giroire, D. Mazauric, and J. Moulierac. Energy efficient
routing by switching-off network interfaces. Energy-Aware

Systems and Networking for Sustainable Initiatives, pages
207-237, 2012.

Chang Ge, Ning Wang, and Zhili Sun. Optimizing server
power consumption in cross-domain content distribution in-
frastructures. In IEEFE International Conference on Commu-
nications Workshops (ICC), pages 2628-2633, June 2012.

G. HaBlinger and O. Hohlfeld. Efficiency of caches for content
distribution on the internet. In Teletraffic Congress (ITC),
2010 22nd International, pages 1-8. IEEE, 2010.

Chamil Jayasundara, Ampalavanapillai Nirmalathas, Elaine
Wong, and Chien Aun Chan. FEnergy efficient content dis-
tribution for vod services. In Optical Fiber Communication
Conference. Optical Society of America, 2011.

Van Jacobson, Diana K. Smetters, James D. Thornton,
Michael F. Plass, Nicholas H. Briggs, and Rebecca L. Bray-
nard. Networking named content. In Proceedings of ACM
CoNEXT, pages 1-12, December 2009.

RM Karp. Reducibility among combinatorial problems. Com-
plexity of Computer Computations, 1972.

Narendra Karmarkar. A new polynomial-time algorithm for
linear programming. In Proceedings of the sixteenth annual
ACM symposium on Theory of computing, pages 302-311.
ACM, 1984.

[LL10]

[LSG12]

[Min06]

IMLG*11]

[MSS12]

[0CZ]

[PCP12]

[PYRKOS]

Jeffrey T Linderoth and Andrea Lodi. Milp software. Wiley
encyclopedia of operations research and management science,
2010.

Zhe Li, Gwendal Simon, and Annie Gravey. Caching policies
for in-network caching. In 21st International Conference on
Computer Communications and Networks (ICCCN), pages 1
—7, August 2012.

Michel Minoux. Multicommodity network flow models and
algorithms in telecommunications. In Handbook of Optimiza-
tion in Telecommunications, pages 163—184. Springer, 2006.

U Mandal, C Lange, A Gladisch, P Chowdhury, and
B Mukherjee. Energy-efficient content distribution over tele-
com network infrastructure. In Transparent Optical Networks
(ICTON), 2011 13th International Conference on, pages 1-4.
IEEE, 2011.

Vimal Mathew, Ramesh K. Sitaraman, and Prashant Shenoy.
Energy-aware load balancing in content delivery networks. In
Proceedings IEEE INFOCOM, pages 954 —962, March 2012.

0CZ Technology Group. URL:
http://www.ocztechnology.com/
ocz-revodrive-3-x2-pci-express-ssd.html.

loannis Psaras, Wei Koong Chai, and George Pavlou. Prob-
abilistic in-network caching for information-centric networks.
In Proceedings of the second edition of the ICN workshop on
Information-centric networking (ICN), pages 55-60. ACM,
2012.

Sanjoy Paul, Roy Yates, Dipankar Raychaudhuri, and Jim
Kurose. The cache-and-forward network architecture for effi-
cient mobile content delivery services in the future internet.
In Innovations in NGN: Future Network and Services, pages
367 —374, May 2008.

http://www.ocztechnology.com/ocz-revodrive-3-x2-pci-express-ssd.html
http://www.ocztechnology.com/ocz-revodrive-3-x2-pci-express-ssd.html

[RK09]

[RTS7]

[Schog]

[SLW11]

[SND]
[VHI12]

[Web08]

[ZYLZ10]

Elisha J. Rosensweig and Jim Kurose. Breadcrumbs: Effi-
cient, best-effort content location in cache networks. In IEEE
INFOCOM, pages 2631 —2635, April 2009.

Prabhakar Raghavan and Clark D Tompson. Randomized
rounding: a technique for provably good algorithms and al-
gorithmic proofs. Combinatorica, 7(4):365-374, 1987.

Alexander Schrijver. Theory of linear and integer program-
mang. Wiley, 1998.

Yunlong Song, Min Liu, and Yuwei Wang. Power-aware traffic
engineering with named data networking. In Seventh Inter-

national Conference on Mobile Ad-hoc and Sensor Networks
(MSN), pages 289-296, Dec. 2011.

SNDLib. URL: http://sndlib.zib.de.

W. Van Heddeghem and F. Idzikowski. Equipment power
consumption in optical multilayer networks-source data.
Technical report, Technical Report IBCN-12-001-01 (January
2012), available at http://powerlib. intec. ugent. be, 2012.

M. Webb. Smart 2020: Enabling the low carbon economy in
the information age. The Climate Group London, 2008.

Mingui Zhang, Cheng Yi, Bin Liu, and Beichuan Zhang.
Greente: Power-aware traffic engineering. In ICNP’10: IEEFE
International Conference on Network Protocols, pages 21-30,
2010.

http://sndlib.zib.de

CHAPTER

Maintaining Balanced Trees
For Structured Distributed
Streaming Systems

In this chapter, we move to content distribution in the application layer.
Peer-to-peer networks reduce the broadcasting redundancy by allowing
clients to share the content among themselves. There are two major
classes of peer-to-peer streaming networks: structured and unstructured.
While structured networks allow for lower overheads and higher band-
width utilization, concerns are raised about their robustness, up to the
point that virtually all deployed solutions are unstructured. In this chap-
ter, we attempt to answer these concerns. We show that repairing the
structure of a generic broadcasting tree, after any failure, can happen in
a short time.

4.1 Preliminary: live streaming overlay networks

There are two major classes of peer-to-peer live video streaming ap-
proaches. Their names vary among publications, the first one being
named either unstructured, mesh-based, gossiping or torrent-like; the sec-
ond named either structured or tree-based. This classification was already
used in [ZLLY05].

99

O

(a) Structured (b) Unstructured

Figure 4.1: A visualization of both major overlay classes

Early systems, like [0CRZ00], influenced by IP multicast, attempted
at constructing a multicast tree to stream the media. Battling all the
possible shortcomings, this simple idea has evolved into elaborate al-
gorithms like SplitStream, proposed in [CDKT03]. Throughout all the
possible variations, the signature of this group of systems is active main-
tenance of an overlay structure that clearly defines the data flow, thus
the name structured overlays.

On the other hand we have systems inspired by the BitTorrent, one
of the best-known peer-to-peer protocols, described by Bram Cohen, its
original author, in [Coh03]. The core idea of this class of overlays is
organizing the peers into a random, highly-connected graph and dissem-
inating the data using a simple, probabilistic algorithm. The first in-
stance of an unstructured system was proposed in [BLBS03] as a way of
enhancing a single-tree overlay. In [ZLLY05)] it was the base for the first
peer-to-peer network that streamed video to a big number of simultane-
ous clients. The distinguishing characteristic of this group of networks
is that they do not have an overlay structure that would define the data
flow, thus the name unstructured overlays.

Figure visualizes both concepts. It is important to note, that the
divide is mostly ideological. Watching forwarding history of any single
packet will give us a tree. In [MR09] the protocol is plainly unstructured,
but an elaborate structure emerges in the analysis. A system can start

by random forwarding, but retain good paths effectively turning into
a structured one, like [LQKT08|. Finally there are systems, which fit
neither of the above descriptions. An example of that is AQCS, proposed
in [GLL0O9]. Despite that the classification is well entrenched, up to the
point of studies comparing both classes, like [MRGO0T7].

Unstructured systems are widely regarded the better choice, to the
extent that, up to our best knowledge, no structured live streaming sys-
tems have been deployed in practice. That is often explained by the
complexity of making a structured system reliable. However, in this
chapter we show that reliability can be ensured, for a simple system,
efficiently by a simple algorithm.

4.2 Publication

The remainder of this chapter corresponds to Maintaining Balanced Trees
For Structured Distributed Streaming Systems by F. Giroire, R. Modrze-
jewski, N. Nisse and S. Pérennes, which is accepted for publication in the
proceedings of 20th International Colloquium on Structural Information
and Communication Complexity.

4.3 Introduction

Trees are inherent structures for data dissemination in general and par-
ticularly in peer-to-peer live streaming networks. Fundamentally, from
the perspective of a peer, each atomic piece of content has to be received
from some source and forwarded towards some receivers. Moreover, most
of the actual streaming mechanisms ensure that a piece of information
is not transmitted again to a peer that already possesses it. Therefore,
this implies that dissemination of a single fragment defines a tree struc-
ture. Even in unstructured networks, whose main characteristic is lack
of defined structure, many systems look into perpetuating such under-
lying trees, e.g. the second incarnation of Coolstreaming [LQKT08] or
PRIME [MR09].

Unsurprisingly, early efforts into designing peer-to-peer video stream-
ing concentrated on defining tree-based structures for data dissemination.
These have been quickly deemed inadequate, due to fragility and unused
bandwidth at the leaves of the tree. One possible fix to these weaknesses

was introduced in SplitStream [CDK™03]. The proposed system main-
tains multiple concurrent trees to tolerate failures, and internal nodes in
a tree are leaf nodes in all other trees to optimize bandwidth. The con-
struction of intertwined trees can be simplified by a randomized process,
as proposed in Chunkyspread [VYF06], leading to a streaming algorithm
performing better over a range of scenarios.

As found in [LQKT0§|, node churn is the main difficulty for live
streaming networks, especially those trying to preserve structure. On
the other hand, in [ZSCI0] authors embrace change. Their stochastic
optimization approach relies on constant random creating and break-
ing of relationships. To ensure network connectivity, nodes are said to
keep open connections with hundreds of potential neighbours. Another
approach, displayed in [LXHLI11], is churn-resiliency by maintaining re-
dundancy within the network structure. Although concentrating on a
different field, authors of [PTT09] face a similar to our own problem of
maintaining balanced trees, needed for connecting wireless sensors. How-
ever, their solution is periodical rebuilding the whole tree from scratch.
Our solution aims at minimizing the disturbance of nodes, whose an-
cestors were not affected by recent failures, as well as minimizing the
redundancy in the network.

The analysis of these systems focus on the feasibility, construction
time and properties of the established overlay network, see for exam-
ple [CDK™03, VYF06] and [DEC07] for a theoretical analysis. But these
works usually abstract over the issue of tree maintenance. Generally, in
these works, when some elements (nodes or links) of the networks fail,
the nodes disconnected from the root execute the same procedure as for
initial connection. To the best of our knowledge, there are no theoreti-
cal analysis on the efficiency of tree maintenance in streaming systems,
reliability is estimated by simulations or experiments as in [CDK™03].

In this paper, we tackle this issue by designing an efficient mainte-
nance scheme for trees. Our distributed algorithm ensures that the tree
recovers fast to a “good shape” after one or multiple failures occur. We
give analytic upper bounds of the convergence time. To the best of our
knowledge, this is the first theoretical analysis of a repair process for
live streaming systems. While the O(n?) worst case bound seems high,
simulations shown in Section suggest that the average case is closer
to O(logn), which is lower than the conceivable time of rebuilding a tree

from scratch.

The problem setting is as follows. A single source provides live media
to some nodes in the network. This source is the single reliable node
of the network, all other peers may be subject to failure. Each node
may relay the content to further nodes. Due to limited bandwidth, both
source and any other node can provide media to a limited number k£ > 2
of nodes. The network is organized into a logical tree, rooted at the
source of media. If node x forwards the stream towards node y, then
x is the parent of y in the logical tree. Note that the delay between
broadcasting a piece of media by the source and receiving by a peer is
given by its distance from the root in the logical tree. Hence our goal is
to minimize the tree depth, while following degree constraints.

As shown in [LQKT08], networks of this kind experience high rate of
node joins and leaves. Leaves can be both graceful, where a node informs
about imminent departure and network rearranges itself before it stops
providing to the children, or abrupt (e.g. due to connection or hardware
failure). In this work, we assume a reconnection process: when a node
leaves, its children reattach to its parent. This can be done locally if
each node stores the address of its grandfather in the tree. Note that
this process is performed independently of the bandwidth constraint,
hence after multiple failures, a node may become the parent of many
nodes. The case of concurrent failures of father and grandfather can be
handled by reattaching to the root of the tree. Other more sophisticated
reconnection processes have been proposed, see for example [HLP*07].

This process can leave the tree in a state where either the bandwidth
constraints are violated (the degree of a node is larger than k) or the tree
depth is not optimal. Thus, we propose a distributed balancing process,
where based on information about its degree and the subtree sizes of
its children, a node may perform a local operation at each turn. We
show that this balancing process, starting from any tree, converges to a
balanced tree and we evaluate the convergence time.

Related Work. Construction of spanning trees has been studied in the
context of self-stabilizing algorithms. Herault et al. propose in [HLPT07]
a new analytic model for large scale systems. They assume that any pair
of processes can communicate directly, under condition of knowing re-
ceiver’s identifier, what is the case in Internet Protocol. They addition-
ally assume a discovery service and a failure detection service. Under this

model they propose and prove correctness of an algorithm constructing a
spanning tree over a set of processes. Similar assumptions have been used
by Caron et al. in [CDPTOS] to construct a distributed prefix tree and
by Bosilca et al. in [BCHT09] to construct a binomial graph (Chord-like)
overlay.

In this paper we assume the results of these earlier works: nodes can
reliably communicate, form connections and detect failures. We do not
analyze these operations at message level. Furthermore, we analyze the
overlay assuming it is already a spanning tree. However, it may have an
arbitrary shape, e.g. be a path or a star (all nodes connected directly to
the root). This can be regarded as maintaining the tree after connection
or failure of an arbitrary number of nodes.

Our results. In Section 4.4 we provide a formal definition of the prob-
lem and propose a distributed algorithm for the balancing process. The
process works in a synchronous setting. At each turn, all nodes are se-
quentially scheduled by an adversary and must execute the process. In
Section we show that the balancing process always succeeds in O(n?)
turns. Then, in Section 4.6] we study a restricted version of the algo-
rithm in which a node performs an operation only when the subtrees
of its children are balanced. In this case, we succeeded in obtaining a
tight bound of ©(nlogn) on the number of turns for the worst tree. Fi-
nally, we show that the convergence is in fact a lot faster in average for
a random tree and takes a logarithmic number of turns.

4.4 Problem and Balancing Process

In this section, we present the main definitions and settings used through-
out the paper, then we present our algorithm and prove some simple
properties of it.

Notations

This section is devoted to some basic notations.

Let n € N*. Let T'= (V, E) be a n-node tree rooted in r € V. Let
v € V be any node. The subtree T, rooted at v is the subtree consisting
of v and all its descendants. In other words, if v = r, then T, = T and,

otherwise, let e be the edge between v and its parent, T, is the subtree
of T\ e = (V,E\ {e}) containing v. Let n, = |V (T,)|.

Let k > 2 be an integer. A node v € V(T') is underloaded if it has
at most k — 1 children and at least one of these children is not a leaf.
v is said overloaded if it has at least k + 1 children. Finally, a node v
with k children is imbalanced if there are two children x and y of v such
that |n, —n,| > 1. A node is balanced if it is neither underloaded, nor
overloaded nor imbalanced. Note that a leaf is always balanced.

A tree is a k-ary tree if it has no nodes that are underloaded or
overloaded, i.e., all nodes have at most k£ children and a node with < &
children has only leaf-children. A rooted k-ary tree T is k-balanced if,
for each node v € V(T'), the sizes of the subtrees rooted in the children
of v differ by at most one. In other words, a rooted tree is k-balanced if
and only if all its nodes are balanced.

As formalized by the next claim, k-balanced trees are good for our live
streaming purpose since such overlay networks (k being small compared
with n) ensure a low dissemination delay while preserving bandwidth
constraints.

Claim 1. Let T be a n-node rooted tree. If T is k-balanced, then each
node of T is at distance at most |log,n| from r.

Distributed Model and Problem

Nodes are autonomous entities running the same algorithm. Each node
v has a local memory where it stores the size n, of its subtree, the size
of the subtrees of its children and the size of the subtrees of its grand-
children, i.e., for any child x of v and for any child y of x, v knows n,
and n,,.

Computations performed by the nodes are based only on the local
knowledge, i.e., the information present in the local memory and that
concerns only nodes at distance at most 2. We consider a synchronous
setting. That is, the time is slotted in turns. At each turn, any node
may run the algorithm based on its knowledge and, depending on the
computation, may do one of the following operations. In the algorithm
we present, each operation done by a node v consists of rewiring at most
two edges at distance at most 2 from v. More precisely, let vy, v; and

Vg1 be children of v, a be a child of v; and b be a child of v, (if any).
The node v may perform:

Pull operation replace the edge {v;,a} by the edge {v,a}. A grand-
child a of v then becomes a child of v. This operation is denoted
by PULL(a) and illustrated in Figure [4.2a}

Push operation replace the edge {v,vr1} by the edge {vg, vei1}. A
child viy; of v then becomes a child of another child vy of v. This
operation is denoted by PUSH (vk+1,4,), see Figure m;

Swap operation replace the edges {vi,a} and {v,b} by the edges
{v1,b} and {wvg,a}. The children v; and v of v exchange two of
their own children a and b. This operation is denoted by SwAP(a,b)
and an example is given in Figure Here, a or b may not exist,
in which case, one of v; and v, “wins” a new child while the other
one “looses” a child. This case is illustrated in Figure [4.3d]

In all cases, the local memory of the at most k% + 1, including the
parent of v, nodes that are concerned are updated. Note that each of
these operations may be done using a constant number of messages of
size O(logn).

In this setting, at every turn, all nodes sequentially run the algorithm.
In order to consider the worst case scenario, the order in which all nodes
are scheduled during one turn is given by an adversary. The algorithm
must ensure that after a finite number of turns, the resulting tree is k-
balanced. We are interested in time complexity of the worst case scenario
of the repair. That is, the performance of the algorithm is measured by
the maximum number of turns after which the tree becomes k-balanced,
starting from any n-node tree.

The Balancing Process

In this section, we present our algorithm, called balancing process. We
prove some basic properties of it. In particular, while the tree is not k-
balanced, the balancing process ensures that at least one node performs
an operation. In the next sections, we prove that the balancing process
actually allows to reach a k-balanced tree after a finite number of steps.

At each turn, a node v executes the algorithm described on Fig-
ure [4.3] To summarize, an underloaded node does a PULL, an over-

(a) puLL(a)

@
A

(b) PUSH(vk+1,Vk)

Figure 4.2: Operations performed by node v in the balancing process

i

(c) swap(a,b)

i

(d) swap(a,)

Figure 4.2: Operations performed by node v in the balancing process

Algorithm executed by a node v in a tree T. If v is not a leaf, let
(v1,v2,- -+ ,vq) be the d > 1 children of v ordered by subtree-size, i.e.,
Uz vag 2 Zn’ud-

1. If v is underloaded (then d < k), let a be a child of v; with biggest
subtree size. Then node v executes PULL(a). // That is, a
becomes a child of v.

2. Else if v is overloaded (then d > k > 2), then node v executes
PUSH (Vg41, Uk)-

// That is, vig11 becomes a child of vy.

3. Else if v is imbalanced (then d = k) and if v; and vy are not
overloaded, let a and b be two children of v; and vy respectively
such that |n,, —ng +np — (N, — Ny + ng)| is minimum (a (resp.
b) may be not defined, i.e., n, = 0 (resp., ny = 0), if v (resp vg)
is underloaded).

Then node v execute SWAP(a,b). // That is, a and b exchange
their parent.

Figure 4.3: Balancing Process

loaded node does a PUSH and an imbalanced node (whose children are
not overloaded) does a SWAP operation. Note that a SWAP operation
may exchange a subtree with an empty subtree, but cannot create an
overloaded node. Intuitively, the children affected by PUSH and PULL
are chosen to get probably the least imbalance (reduce the biggest or
merge the two small). It is important to emphasise that the balancing
process requires no memory of the past operations.

Note that if the tree if k-balanced, no operation are performed, and
that, if the tree is not, at least one operation is performed.

Claim 2. If T is not k-balanced, and all nodes execute the balancing
process, then at least one node will do an operation.

In the next section, we prove that, starting from any tree, the num-
ber of operations done by the nodes executing the balancing process is
bounded. Together with the previous claim, it allows to prove

Theorem 1. Starting from any tree T where each node executes the
balancing process, after a finite number of steps, T eventually becomes
k-balanced.

Before proving the above result in next Section, we give a simple
lower bound on the number of turns required by the Balancing Process.
A star is a rooted tree where any non root-node is a leaf.

Lemma 1. If the initial tree is a n-node star, then at least Q(n) turns
are needed before the resulting tree is k-balanced.

4.5 Worst case analysis

In this Section we obtain an upper bound of O(n?) turns needed to
balance the tree. We prove it using a potential function, whose initial
value is bounded, integral and positive, may rise in a bounded number
of turns and, otherwise, strictly decreases. For clarity of presentation we
assume we want to obtain a 2-balanced tree. The proofs can be extended
to larger k. Due to lack of space, most of them are only sketched here

and can be found in [GRNP13].

Lemma 2. Starting from any n-node rooted tree T, after having executed
the Balancing Process during O(n) turns, no node will do a PUSH oper-
ation anymore.

Let Q be the sum over all nodes u € T of the distance between v and
the root.

Lemma 3. Starting from any n-node rooted tree T', there are at most
O(n?) distinct (not necessarily consecutive) turns with a PULL operation.
More precisely, the sum of the sizes of the subtrees that are pulled during
the whole process does not exceed n?.

Proof. First, by Lemma , there are no PUSH operations after O(n)
turns. Note that a SWAP operation does not change Q. Moreover, a
PULL operation of a subtree T, makes Q decrease by n,. Since Q =
ZHGV(T) d(u,r) < n?, the sum of the sizes of the subtrees that are pulled
during the whole process does not exceed n?. O

Potential function. To prove the main result of this section, we define
a potential function and show that: (1) the initial value of the potential
function is bounded; (2) its value may raise due to PULL operations, but
in a limited number of turns and by a bounded amount; (3) a SWAP
operation may not increase its value; (4) if no PUSH nor PULL operation
are done, there exists at least one node doing a SWAP operation, strictly
decreasing the potential function.

We tried simple potential functions first. However, they led either to
an unbounded number of turns with non-decreasing value, or to a larger
upper bound. For example, it would be natural to define the potential
of a node as the difference between its subtree sizes. For this potential
function, (1) (2) and (3) are true, but, unfortunately, for some trees the
potential function does not decrease during a turn. This function can be
patched so that each operation makes the potential decrease: multiplying
the potential of a node by its distance to the root. However, the potential
in this case can reach O(n?).

The potential function giving the O(n?) bound is defined as follows.
Recall that we consider a n-node tree T' rooted in r such that all nodes
have at most two children. Let Ey = n and, for any 0 < i < [log(n+1)],
let E; = 2F;,1 + 1. Note that (Ei)is"log(n_i_l)" is strictly decreasing, and
0 < Efog(nt+1)] < 1. Intuitively, E; is the mean-size of a subtree rooted
in a node at distance ¢ from the root in a balanced tree with n nodes.

Let K; be the set of nodes of T" at distance exactly ¢+ > 0 from the
root and |K;| = k;, and, for any 0 < ¢ < [log(n + 1)], let m; = 2" — k.
Intuitively, m,; represents the number of nodes, at distance ¢ from the
root, missing compared to a complete binary tree.

For any v € V(T) at distance 0 < i < [log(n + 1)] from the root, the
default of v, denoted by p(v), equals n, — [E;] if n, > E; and | E;| —n,
otherwise. Note that u(v) > 0 since n, is an integer.

Let the potential at distance i from r, 0 < i < [log(n+1)], be
P =m; - |Ei] + > ek, m(u). Finally, let us define the potential P =
> 0<i<ognt1)) i Since p(u) < nforany u € V(T), and 3 o< icriog(ny1) Mt
ki < 2n, then P(T) = O(n?).

Lemma 4. For any n-node rooted tree T', a PULL operation of a subtree
T, may increase the potential P by at most 2n,,.

Let v be a node at distance [log(n+ 1)] > ¢ > 0 from the root r

of T. v is called i-median if it has one or two children a and b and
na > Eiy1 > ny, (possibly v has exactly one child and n, = 0).

Lemma 5. For any n-node rooted tree T', a SWAP operation executed by
any node v does not increase the potential P. Moreover, if v is (i — 1)-
median then P strictly decreases by at least one.

This lemma is proved by calculating the new potential, in all the
possible cases of relative sizes of the children and E; before and after the
operation.

Let v be a node at distance 0 < i < [log(n + 1)] — 1 from the root
r of T. w is called i-switchable if it has one or two children a and b
and n, > F;;1 > ny (possibly v has only exactly child, and n, = 0),
ne, — np > 2 and none of its ancestors can execute a SWAP operation.
Note that, if a node is 7-switchable, then it is i-median.

Lemma 6. Let T be a tree where no PUSH nor PULL operation is possible.
If a node v s i-switchable, then either v can do a SWAP operation, or
0<i<[log(n+1)] —2 and it has a (i + 1)-switchable child.

Lemma 7. At each turn when no PULL nor PUSH operations are done,
if the tree is not balanced, then there is a i-switchable node, 0 < i <
[log(n +1)] — 1.

Theorem 2. Starting from any n-node rooted tree, the balancing process
reaches a 2-balanced tree in O(n?) turns.

Proof. By Lemma , after O(n) turns, no PUSH operations are executed
anymore and all nodes have at most two children. From then, there may
have only pull or SWAP operations. Moreover, by Claim [2, there is at
least one operation per turn while 7" is not balanced. From Lemma [3]
there are at most O(n?) turns with a PULL operation. Once no PUSH
operations are executed anymore, from Lemmata [3] [] and [§] potential
P can increase by at most O(n?) in total (over all turns). Moreover, by
Lemma [f] if a i-median node executes a SWAP operation, the potential
P strictly decreases by at least one.

By Lemma (7], at each turn when no pull nor PUSH operations are
done, there is an i-switchable node, 0 < i < [log(n + 1)] — 1. Thus, by
Lemma [0, at each such turn, there is an i-switchable that can execute a

SWAP operation. Since a i-switchable node is i-median (0 < i < [log(n+
1)] —1), by Lemma 5] the potential P strictly decreases by at least one.
The result then follows from the fact that P < n?. O

4.6 Adding an extra global knowledge to the nodes

In this section, we assume an extra global knowledge: each node knows
whether it has a descendant that is not balanced. This extra information
is updated after each operation. Then, our algorithm is modified by
adding the condition that any node v executing the balancing process
can do a PULL or SWAP operation only if all its descendants are balanced.
Adding this property allows to prove better upper bounds on the number
of steps, by avoiding conflict between an operation performed by a node
and an operation performed by one of its not balanced descendant. We
moreover prove that this upper bound for our algorithm is asymptotically
tight, reached when input tree is a path. The approach presented in this
section is specific for k = 2. l.e., the objective of the Balancing Process
is to reach a 2-balanced tree.

First, we define a function f used to bound the number of turns
needed to balance a tree consisting of two balanced subtrees and a com-
mon ancestor. Let f : N x N — N be the function defined recursively as
follows.

Va > 0, fla,a) =0

Va > 1, fla,a—1) =

Va > 2, f(a,0) =1+ L L],0)

Va>2¥1<b<a—1, fla.b)=1+max (F([5], [52]) 7([%2] [51)

Lemma 8. For anya>0,a>b>0, f(a,b) < max{0,log,a}.

Now, we give a function bounding the number of turns needed to
balance any tree of a given size. Let g : N — N be the function defined
recursively as follows.

Vn € {0,1}, ¢g(n)=0
Vn > 1, g(n) = maxg>p>0,a1+6—n—1(max{g(a), g(b)} + f(a,b))

Lemma 9. For any n > 0, g(n) < max{0,nlog,n}.

We now state our main results:

Theorem 3. Starting from any n-node rooted tree, the balancing process
with global knowledge reaches a 2-balanced tree in O(nlogn) turns.

Next theorem shows that there are trees starting from which the
balancing process actually uses a number of turns of the order of the
above upper bound.

Theorem 4. Starting from an n-node path rooted in one of its ends,
the balancing process with global knowledge reaches a 2-balanced tree in
Q(nlogn) turns.

4.7 Simulations

In the previous sections we obtained upper and lower bounds for the
maximum number of turns needed to balance a tree of a given size. A
significant gap between those bounds raises the question: which bound
is closer to what happens for random instances? We investigate the per-
formance of the algorithm running an implementation under a discrete
event simulation. Scheduling of nodes within a turn is given by a simple
adversary algorithm. First, it detects which nodes can perform no opera-
tion. It schedules them to move first, to ensure that they do not perform
operations enabled by operations of other nodes. Then, it schedules the
remaining nodes in a random order.

The process starts in a random tree. It is obtained by assigning
random weights to a complete graph and building a minimum weight
spanning tree over it. Figure displays the number of turns it took
to balance trees of progressing sizes. For each size the numbers are
aggregated over 10000 different starting trees. The solid line marks the
average, dotted lines the minimum and maximum numbers of turns and
error bars show the standard deviation.

What can be seen from this figure, is that the number of turns spent
to balance a random tree progresses logarithmically in regard to the tree
size. This holds true both for average and the worst cases encountered.
This is significantly less even than the lower bound on maximum time.
This is because that comes from the particular case of star as the starting
tree, which is randomly obtained with probability # and did not occur
in our experiments for bigger values of n.

| | | |
0 500 1000 1500 2000 2500
N

Figure 4.4: Balancing a random tree

4.8 Conclusions and future research

We have proposed a distributed tree balancing algorithm and shown
following properties. The algorithm does stop only when the tree is bal-
anced. After at most 2(n) turns there are no overloaded nodes in the
tree, what corresponds to a broadcast tree where every node receives
content. This bound is reached when the starting tree is a star. Bal-
ancing process after there are no overloaded nodes lasts at most O(n?)
turns. With the additional restriction that a node acts only if all of its
descendants are balanced, the number of turns to balance any tree is
O(nlogn). This bound is reached when the starting tree is a path.

An obvious, but probably hard, open problem is closing the gap be-
tween the O(n?) upper bound and the ©(n) lower bound on balancing
time. Another possibility is examination of the algorithm’s average be-
haviour, which as hinted by simulations should yield O(logn) bound on
balancing time.

The algorithm itself can be extended to handle well the case of trees
that are not regular. Furthermore, in order to approach a practical sys-
tem, moving to multiple trees would be highly beneficial. Allowing the
algorithm to stop with more imbalance, where children are allowed to dif-
fer by a given threshold instead of one, could lead to a faster convergence.

4.9 Bibliography

[BCH*09]

[BLBS03]

[CDK*03]

[CDPTO08]

[Coh03]

[DFCO7]

[GLL09)

[GRNP13]

G. Bosilca, C. Coti, T. Herault, P. Lemarinier, and J. Don-
garra. Constructing resiliant communication infrastructure

for runtime environments. In International Conference in
Parallel Computing, pages 441-451, 2009.

S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan.
Resilient multicast using overlays. In ACM SIGMETRICS
Performance Evaluation Review, volume 31, pages 102-113.

ACM, 2003.

M. Castro, P. Druschel, A.M. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh. SplitStream: high-bandwidth multicast
in cooperative environments. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, page 313,
2003.

E. Caron, A.K. Datta, F. Petit, and C. Tedeschi. Self-
stabilization in tree-structured peer-to-peer service discovery
systems. In IEEE Symposium on Reliable Distributed Sys-
tems, pages 207-216, 2008.

B. Cohen. Incentives build robustness in bittorrent. In Work-

shop on Economics of Peer-to-Peer systems, volume 6, pages
68-72. Citeseer, 2003.

G. Dan, V. Fodor, and I. Chatzidrossos. On the performance
of multiple-tree-based peer-to-peer live streaming. In 26th
IEEFE International Conference on Computer Communica-
tions, pages 2556-2560, 2007.

Y. Guo, C. Liang, and Y. Liu. Aqcs: Adaptive queue-based
chunk scheduling for P2P live streaming. NETWORKING
2008 Ad Hoc and Sensor Networks, Wireless Networks, Next
Generation Internet, pages 433—444, 2009.

Frederic Giroire, Modrzejewski Remigiusz, Nicolas Nisse,
and Stéphane Pérennes. Maintaining Balanced Trees For
Structured Distributed Streaming Systems. Research Report

[hCRZ00]

[HLP+07]

[LQK™*08]

[LXHL11]

[MROY]

[MRGO7]

[PTTOY]

[VYFO6]

[ZLLY05]

RR-8309, INRIA, May 2013. URL: http://hal.inria.fr/
hal-00824269.

Y. hua Chu, S.G. Rao, and H. Zhang. A case for end system
multicast. In Proc. of ACM Sigmetrics, pages 1-12, 2000.

T. Herault, P. Lemarinier, O. Peres, L. Pilard, and
J. Beauquier. A model for large scale self-stabilization. In
IEEFE Parallel and Distributed Processing Symposium, pages
1-10, 2007.

B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang.
Inside the new coolstreaming: Principles, measurements and
performance implications. In 27th IEEFE International Con-
ference on Computer Communications, 2008.

Zhenyu Li, Gaogang Xie, Kai Hwang, and Zhongcheng
Li. Churn-resilient protocol for massive data dissemination
in p2p networks. [IEFE Parallel and Distributed Systems,
22(8):1342-1349, 2011.

N. Magharei and R. Rejaie. Prime: Peer-to-peer receiver-
driven mesh-based streaming. [EEE/ACM Transactions on
Networking, 17(4):1052-1065, 2009.

N. Magharei, R. Rejaie, and Y. Guo. Mesh or multiple-tree:
A comparative study of live p2p streaming approaches. In IN-
FOCOM 2007. 26th IEEE International Conference on Com-
puter Communications. IEEE, pages 1424-1432. Teee, 2007.

Meng-Shiuan Pan, Chia-Hung Tsai, and Yu-Chee Tseng. The
orphan problem in zighee wireless networks. IEEFE Transac-
tions on Mobile Computing, 8(11):1573-1584, 20009.

Vidhyashankar Venkataraman, Kaouru Yoshida, and Paul
Francis. Chunkyspread: Heterogeneous unstructured tree-
based peer-to-peer multicast. In 14/th IEEE International
Conference on Network Protocols, pages 2—-11, 2006.

X. Zhang, J. Liu, B. Li, and T.S.P. Yum. CoolStream-
ing/DONet: A data-driven overlay network for efficient live

http://hal.inria.fr/hal-00824269
http://hal.inria.fr/hal-00824269

media streaming. In proceedings of IEEE Infocom, volume 3,
pages 13-17, 2005.

[ZSC10] Shaoquan Zhang, Ziyu Shao, and Minghua Chen. Optimal
distributed p2p streaming under node degree bounds. In 18th

IEEFE International Conference on Network Protocols, pages
253-262, 2010.

CHAPTER

Analysis of the Repair Time
in Distributed Storage
Systems

In this final contribution towards reducing network inefficiencies, we
move from content distribution to distributed applications. One such
application, with big bandwidth requirements, are online backups. A
conservative approach to this task employs data centers. However, these
usually are far away from the users. Instead, it is possible to use storage
located at the perimeters of other nearby users of a distributed system.
This, again, raises questions about reliability. In this chapter, we look
into expected data lifetime in a distributed storage system, where nodes
are subject to faults and departures and are connected with a limited
bandwidth. This work makes use of queuing theory and more generally
Markov chains, which are introduced in the preliminary section.

5.1 Preliminary: Queues and Markov chains

When looking into the distributed storage system in this chapter, we
analyze the distribution of data and perform a Markov chain analysis
to deduce the data life time. First, we find out how the interactions
of various elements of the system can be hidden behind simple failure

119

Figure 5.1: An example Markov chain of a M?/D/1 queue, with service rate
A, arrival rate [and batch size 5. Only states which can transition to or from
state ¢ are shown.

and repair rates. Then, we model the repair process as a single queue
of all blocks in the network that are in need of repair. Queuing theory
provides us with tools to deal with such models. A good example of
further reading on the subject can be the book [Coo81].

The exact type of queue we have is M?/D/1. M? means that arrivals
are batch Poissonian. In fact, there are batches of two possible sizes, each
type coming at its own rate of the Poisson distribution. D states that
the service time is deterministic, as we know nearly exactly how fast the
peers are able to repair blocks. Finally, 1 stands for a single server, which
is the whole network. The queue is in fact a simple Markov chain, similar
to the one exemplified on figure[5.1] We proceed to find the steady state
of it. From there, we can infer interesting qualities, like probability of
losing data or bandwidth requirements.

5.2 Publication

The remainder of this chapter corresponds to Repair Time in Distributed
Storage Systems by F. Giroire, S. K. Gupta, R. Modrzejewski, J. Mon-
teiro and S. Pérennes, which is accepted for publication in the proceed-
ings of 6th International Conference on Data Management in Cloud, Grid
and P2P Systems.

5.3 Introduction

Nano datacenters (NaDa) are highly distributed systems owned and con-
trolled by the service provider. This alleviates the need of incentives and
mitigates the risk of malicious users, but otherwise they face the same

challenges as peer-to-peer systems. The set-top boxes realizing them are
connected using consumer links, which can be relatively slow, unreliable
and congested. The devices themselves, compared to servers in a tra-
ditional datacenter, are prone to failures and temporary disconnections,
e.g. if the user cuts the power supply when not in home. When originally
proposed in [VLM™'09], they were assumed to be available no more than
85% of the time, with values as low as 7% possible.

In this paper we concentrate on application of NaDa, or any similar
peer-to-peer system, for backup storage. In this application, users want
to store massive amounts of data indefinitely, accessing them very rarely,
i.e. only when original copies are lost. Due to risk of peer failures
or departures, redundancy data is introduced to ensure long term data
survival. To this end, most of the proposed storage systems use either
the simple replication or the space efficient erasure codes [WKO02|, such
as the Reed-Solomon or Regenerating Codes [DGWRO07].

The redundancy needs to be maintained by a self-repair process. Its
speed is crucial to determine the system reliability, as long repairs expo-
nentially increase the probability of losing data. The limiting factor, in
this setting, is the upload link capacity.

Imagine a scenario where the system is realized using home connec-
tions, out of which an average 128kbps are allocated to the backup ap-
plication. Furthermore, each device is limited to 300GB, while average
data stored is 100GB, redundancy is double, 100 devices take part in each
repair and the algorithms are as described in the following sections. A
naive back-of-envelope computation gives that the time needed to repair
contents of a failed device is 17 hours (= 100 -8 - 10°kb/(100 - 128kbps)).
This translates, by our model, to a probability of data loss per year
(PDLPY) of 10~%. But, taking into account all findings presented in this
work, the actual time can reach 9 days. This gives a PDLPY of 0.2,
many orders of magnitude more than the naive computation. Hence, it

is important to have models that estimate accurately the repair time for
limited bandwidth.

Our contribution

We propose a new analytical model that precisely estimates the repair
time and the probability of losing data in distributed storage systems.
This model takes into account the bandwidth constraints and inherent

workload imbalance (young peers inherently store less data than the old
ones, thus they contribute asymmetrically to the reconstruction process)
effect on the efficiency. It allows system designers to obtain an accurate
choice of system parameters to obtain a desired data durability.

We discuss how far the distribution of the reconstruction time given
by the model is from the exponential, classically used in the literature.
We exhibit the different possible shapes of this distribution in function
of the system parameters. This distribution impacts the durability of
the system. We also show a somewhat counter-intuitive result that we
can reduce the reconstruction time by using a less bandwidth efficient
Regenerating Code. This is due to a degree of freedom given by erasure
codes to choose which peers participate in the repair process.

To the best of our knowledge, this is the first detailed model pro-
posed to estimate the distribution of the reconstruction time under lim-
ited bandwidth constraints. We validate our model by an extensive set
of simulations and by test-bed experimentation using the GRID’5000
platform, see [Gri] for its description.

Related Work

Several works related to highly distributed storage systems have been
done, and a number of systems have been proposed |[CDHT06, BDET00,
BTcCT04, [KBCT00], but few theoretical studies exist. In [RP06, [ADNOT,
DAOQG] the authors use a Markov chain model to derive the lifetime of
the system. In these works, the reconstruction times are independent
for each fragment. They follow an exponential or geometric distribution,
which is a tunable parameter of the models. However, in practice, a large
number of repairs start at the same time when a disk is lost, correspond-
ing to tens or hundreds of GBs of data. Hence, the reconstructions are
not independent of each other. Furthermore, in these models, only the
average analysis are studied and the impact of congestion is not taken
into account.

Dandoush et al. in [DANQ9] perform a simulation study of the down-
load and the repairing process. They use the NS2 simulator to measure
the distribution of the repair time. They state that a hypo-exponential
distribution is a good fit for the block reconstruction time. However,
again, concurrent reconstructions are not considered. Picconi et al.
in [PBS07] study the durability of storage systems. Using simulations

they characterize a function to express the repair rate of systems based
on replication. However, they do not study the distribution of the re-
construction time and the case of erasure coding. Venkatesan et al.
in [VIH12] study placement strategies for replicated data, deriving a
simple approximation for mean time to data loss by studying the ex-
pected behaviour of most damaged data block. The closest to our work
is [FLPT10] by Ford et al., where authors study reliability of distributed
storage in Google, what constitutes a datacenter setting. However, they
do not look into load imbalance, their model tracks only one representa-
tive data fragment and is not concerned by competition for bandwidth.

Organization

The remainder of this paper is organized as follows: in the next section
we give some details about the studied system, then in Section [5.5] we
discuss the impact of load imbalance. The queueing model is presented in
the Section [5.0] followed by its mathematical analysis. The estimations
are then validated via an extensive set of simulations in Section [A.5l
Lastly, in Section 5.8 we compare the results of the simulations to the
ones obtained by experimentation.

5.4 System Description

This section outlines the mechanisms of the studied system and our mod-
elling assumptions.

Storage. In this work we assume usage of the Regenerating Codes, as
described in [DGWROT], due to their high storage and bandwidth effi-
ciency. More discussion of them follows later in this section. All data
stored in the system is divided into blocks of uniform size. Each block
is further subdivided into s fragments of size Ly, with r additional frag-
ments of redundancy. All these n = s 4 r fragments are distributed
among random devices. We assume that in practice this distribution
is performed with a Distributed Hash Table overlay like Pastry [RDO01].
This, due to practical reasons, divides devices into subsets called neigh-
bourhoods or leaf sets.

Our model does not assume ownership of data. The device originally
introducing a block into the system is not responsible for its storage or

maintenance. We simply deal with a total number of B blocks of data,
which results in F' = n - B fragments stored in N cooperating devices.
As a measure of fairness, or load balancing, each device can store up to
the same amount of data equal to C' fragments. Note that C' can not be
less than average number of fragments per device D = F.

In the following we treat a device or peer and its disk as synonyms.

Bandwidth. Devices of NaDa are connected using consumer connec-
tions. These, in practice, tend to be asymmetric with relatively low
upload rates. Furthermore, as the backup application occasionally up-
loads at maximum throughput for prolonged times, while the consumer
expects the application to not interfere with his network usage, we as-
sume it is allocated only a fraction of the actual link capacity. Each
device has a maximum upload and download bandwidth, respectively
BW,,, and BWoyn. We set BWypyn = 10BW,, (in real offerings, this
value is often between 4 and 20). The bottleneck of the system is con-
sidered to be the access links (e.g. between a DSLAM and an ADSL
modem) and not the network internal links.

Availability and failures. Mirroring requirements of practical systems,
we assume devices to stay connected at least a few hours per day. Follow-
ing the work by Dimakis [DGWROT7] on network coding, we use values
of availability and failure rate from the PlanetLab [Pla] and Microsoft
PCs traces [BDET00]. To distinguish transient unavailability, which for
some consumers is expected on a daily basis, from permanent failures, a
timeout is introduced. Hence, a device is considered as failed if it leaves
the network for more than 24 hours. In that case, all data stored by it
is assumed to be lost.

The Mean Time To Failure (MTTF) in the Microsoft PCs and the
PlanetLab scenarios are respectively 30 and 60 days. The device failures
are then considered as independent, like in [RP06], and Poissonian with
mean value given by the traces explained above. We consider a discrete
time in the following and the probability to fail at any given time step
is denoted as a = Yarrr.

Repair process. When a failure is detected, neighbours of the failed
device start a reconstruction process, to maintain desired redundancy

level. For each fragment stored at the failed disk, a random device from
the neighbourhood is chosen to be the reconstructor. It is responsible
for downloading necessary data from remaining fragments of the block,
reconstructing and storing the fragment.

Redundancy schemes. Minimum Bandwidth Regenerating Codes, as-
sumed in this paper, are very efficient due to not reconstructing the
exact same lost fragment, but creating a new one instead, in the spirit
of Network Coding. The reconstructor downloads, combines and stores
small subfragments from d devices having other fragments of the repaired
block. We call d the repair degree, s < d < n. Construction of the code
requires some additional redundancy for each fragment. In other words
L,, the total amount of data transferred for a repair of a fragment, is
greater than Ly by some overhead factor. This factor, the efficiency of
the code, has been given for MBR in [DGWR07| as:

2d

wenld) = 5 =51

The most bandwidth efficient case is clearly when d = n — 1. However,
as we will show in following sections, it may be beneficial to set it to a
lower value to give the reconstruction an additional degree of freedom.

The model presented in this work was also successfully applied to
other redundancy schemes. Minimum Storage Regenerating Codes, also
defined in [DGWRO7], are more space efficient at the cost of additional
transfer overhead. Reed-Solomon codes, more popular in practice, are
reconstructed by recreating the input data and then coding again the lost
fragment. In both cases the only difference for the model are different
values of L,. In practical systems, it may be interesting for RS-based
systems to reconstruct at one device, but store the new fragment on some
other one. This is especially true for saddle-based systems, where we wait
until a few fragments of a block are lost, to repair them all at once. The
model gives good results also for these more complicated cases. We omit
them due to lack of space, and because this only brings slightly longer
analysis with little new insight.

5.5 Preliminary: Impact of Disk Asymmetry

In this section we show that the efficiency of the system is affected by
the imbalanced distribution of data among devices. Then, we estimate
analytically this imbalance and its impact. After this preliminary study,
the definition of the queuing model is given in Section [5.6

Factor of efficiency. When a device fails, it is replaced by a new de-
vice with an empty disk. Since disks fill up during the system life, a
recently replaced disk is empty, while an old disk contains many frag-
ments. Hence, at any given time, disks with very heterogeneous number
of fragments are present in the system. This heterogeneity has a strong
impact on the reconstruction process: (1) when a disk dies, the number
of block reconstructions that start depends on the number of fragments
present in this disk. A lot of fragments are lost if the disk was full, but
much less for a young disk. (2) during the repair, the devices have to
send fragments to the reconstructors that rebuild the missing fragments.
A device storing more fragments has to send a lot more fragments dur-
ing this phase than a device with fewer fragments. Hence, such devices
become a bottleneck of the system. On the other hand, the less loaded
devices stay idle during some part of the time.

To estimate the impact of this imbalance on the system, we introduce
a factor of efficiency p when the system is under load, defined as

p(load) work

min(load, throughput)

where load is the sum, over all devices, of the number of fragments in
queues at the beginning of the time step; throughput is the maximum
number of fragments that can be reconstructed by the whole system in
one time step (BW,,-N-7, accounted in time steps of size 7); and work
is the number of fragments that were effectively uploaded by the devices
during the time step. When p = 1, the system works at its maximum
speed, meaning that no device was idle while another one could not finish
its work. Note that p greatly depends of the load. If the load is very
large, compared to the bandwidth of the system, every device works at
almost full capacity and the efficiency is close to one. Similarly, when the
load is small, everybody has few fragments to upload and all the work is

Table 5.1: Summary of the main notations.

N Total number of devices
S Number of initial fragments of a block
r Number of redundancy fragments of a block
n Number of fragments of a block, n = s+ r
d Repair degree of the Regenerating Code,
by default d=n — 1
dppr Efficiency of the Regenerating Codes
Ly Size of a fragment, in bytes

L, Amount of data to repair a fragment
B Total number of blocks in the system
F Total number of fragments in the system

e Peer failure rate (o« = 1/MTTF)

Np Number of devices with full disks

© Ratio of full disks, Np/N

C Capacity of a disk (number of fragments)

D Average number of fragments per disk

x Disk size factor, z = C/D

Wyp Peer upload bandwidth (kbit/s)

v Rate at which a disk fills up (fragments per cycle)
Tmax Number of time steps to fill up a disk, Tiyax = C/v

done. But, between these two cases, the imbalance between the devices
causes a range of inefficiencies.

Estimation of the Imbalance The disk size has in fact a very strong
effect on the general imbalance of the system. Figure shows a his-
togram with the number of fragments in failed disks. These results are
obtained by simulation of N = 200 devices with MTTF = 60 days (1440
hours). The amount of data per device is 14GB. We set s =r =7, and
the fragment size [, = 2 MB. Hence we have a total of FF = 7-10° frag-
ments in the system. Then, the average number of fragments per device
is D = 7000.

We denote the disk capacity of devices as C' (number of fragments).
Hence, = C/D is the disk size factor, i.e., how big is the disk when
compared to the average amount of fragments per disk in the system.

When the factor z = 3 (that is, disk capacity C' = 21,000 fragments),
the imbalance is very large. At the opposite, when x = 1.1, the disk size
is close to the average number of pieces per disk in the system. Hence,
most of the disk fillings become full, 83% in our example. The disks that
are not full (17%) have an almost uniform distribution. In the following,
we give a method to calculate that imbalance analytically.

Disk age and disk size distributions can be precisely approximated
for systems with a large number of blocks. The block fragments are re-
constructed by devices that have free space in their disks (i.e., there are
N — N such devices, where Ny is the number of devices with full disks).
Since these devices are chosen at random to reconstruct the blocks, at
each time step the distribution of the rebuilt fragments among devices
follows a multinomial distribution with parameters: the number of re-
built fragments and 1/(N — Ng). As the multinomial distribution is very
concentrated around its mean, the filling up process can be approximated
by an affine process of its age, in which, at each time step, each disk gets
the number of reconstructed fragments divided by the number of non-full
devices, roughly

where « is the device failure rate. This filling process stops when the
disk is full. That is after a number of time steps T, such that C' =
AT ax F'/(N — Np), where C'is the device disk capacity (maximum num-
ber of fragments per disk). The number of fragments of a disk thus
depends on the age of the disk.

At each time step a disk has a probability « to experience a failure.
Hence, the dead age of a disk follows a geometric law of parameter «.
That is, Pr[dead age = T| = (1 — a)” ~*a. Hence the distribution of the
number of fragments in a disk follows a truncated geometric distribution,
that is, for 1 < 7T < Ty

Pr[D=vT]=(1-a)'a, and

PriD = C] =1 (1— a)fs. (5.1)

Note that here v, Np, and Ty, are unknown for the moment. The
value of v depends on the number of full disks Ng, and of T},.. depends
directly of the filling rate v. To find the value of these variables, we
use the fact that we know the expectation of the geometric distribution

Distribution of the number of fragments per disk

Fraction of disks at full capacity = 0.83
— Avg. # of fragments per disk = 7004

0.8
|

Fraction of disks
0.4
1

N
o8
o | === e
o
T T T T 1
0 5000 10000 15000 20000
Number of fragments
(a) x=1.1
Distribution of the number of fragments per disk
o Fraction of disks at full capacity = 0.18
N o Avg. # of fragments per disk = 6900
o —
0
34
o
9
]
2
5 o
= 4
§ o©
k3]
o
I
"
3
o
o
g J
° T T T T 1
0 5000 10000 15000 20000
Number of fragments
(b) x=2.0
Distribution of the number of fragments per disk
° Fraction of disks at full capacity = 0.037
& Avg. # of fragments per disk = 6827
o
"
= 4
[S]
9
]
2
5 9
a4
g ©
S
o
I
0
S 4
S
o
s J
o

T T T T 1
0 5000 10000 15000 20000

Number of fragments

(c) x=3.0

Figure 5.2: Distribution of fragments per failed disk for different disk size fac-
tor z of 1.1, 2, and 3. The number of full disks in each scenario is respectively
83%, 18%, and 4%. (y-scales are different)

which is just the average number of fragments inside the system. This
number is F'/N (we neglect here the fragments that are in reconstruction,
first order approximation for small o). Hence, we get E[D] = D := F/N.
By definition, the expectation is also given by

E[D] = fi"_ vi(l —a) a4+ C(1 — (1 — a)fm).

i=1
To obtain T,,.c, we now have to solve the equation:

I 1-a-(1 — @) Tmaxtl

)

x T ax

obtained by identifying the two expressions for the expectation, by di-
viding by v, and because C' = xD. By solving that equation using the
Maple software, we obtain that

rzta—zxza

aW(in(l-a)z(l—a)” «) —In(l-a)z(l-a)
In(1 — a)a ’

Tmax =

where W is the Lambert W function. For example, when MTTF = 1440
hours (o = 1/1440), the number of full disks and the number of time
steps to fill up a disk are displayed in Table [5.2a] We verify that these
values are very close to the ones obtained by simulation (Figure .

Effects of the Imbalance on the Bandwidth Efficiency Since some
devices store less fragments, their load during the reconstruction process
is also smaller. Thus, the overall bandwidth of the system is not fully
utilized.

In a system using Regenerating Codes encoding, to repair a fragment,
d = n — 1 small sub-fragments have to be sent to the device in charge of
the reconstruction. Simulations show that the speed of the reconstruc-
tion is given by the time that the most loaded device takes to send the
fragment. This time is in turn given by the number of fragments stored
by this device. We get this number from the distribution of the num-
ber of fragments per device previously derived. For a majority of data
blocks, the most loaded device storing one of its fragment is in fact a full
disk. This claim is valid for most systems in practice, that is, for the
parameters usually found in the literature.

x Np (in %) Tmax(hours)

1.1 83 278
1.5 42 1257
2 20 2293
3 6 4060
(a)
x 1.1 1.5 2 3
o 0.91 0.63 04 0.18

Prag 1—107% 1-107° 1-1073 0.92
(b)

Table 5.2: (a) The number of full disks and the number of time steps to fill up
a disk, for MTTF = 1440 hours. (b) Fraction of full disks and the probability
of a block to have at least one fragment on a full disk.

Indeed, recall that Np denotes the number of full disks (and ¢ =
Np/N the fraction of full disks). We compute the probability for a block
that one of its fragment is on a full device (with n—1 available fragments
when it is being repaired). Recall also that a full disk stores = times the
average number of fragments per disk in the system. Then, the fraction
of fragments stored on full disks is px. The probability of a block to
have at least one fragment on a full disk is then

Pfu” = 1 — (1 — .T}(p)nil.

For a system with n = 14 (the value of N for different values of x is
given above), the probability for different disk capacities is displayed in
Table [5.2b] We see that for most practical systems, each block has a
fragment on a full disk. Hence, it is enough to consider the work done by
the most loaded devices to obtain the reconstrution times. These devices
have a load greater than the average load by a factor of %

Factor of efficiency. An other way to phrase it: the factor of efficiency
p of the system is approximately

SR

p%

where x is the fraction between disk capacity and the average number of
fragments per disk.

More complex models for large disk capacities. We consider that in
practice, as a measure of load balancing, the storage system sets a limit
of disk capacity not too far from the average amount of data stored. A
factor = between 1.1 and 3 seems reasonable. For systems with a very
large disk capacity (for example x = 10), p has to be estimated in a
different way. In that case a large number of blocks store no fragments
on full disks. It is thus not enough to only consider the load of the
full disks. This difficulty can be addressed by using a multi-queue model.
The devices are partitioned into a number C' of classes, depending on the
number of data they store. The model has one queue per class. When
a disk fails, we estimate the number of fragments that each class has to
upload, that is how much work they do, and in this way derive the factor
of efficiency p. The analysis of this model is beyond the scope of our
study.

5.6 The Queueing Model

We introduce here a Markovian Model that allows us to estimate the
reconstruction time under bandwidth constraints. The model makes an
important assumption:

1. The limiting resource is always the upload bandwidth.

Assumption 1 is reasonable as download and upload bandwidths are
strongly asymmetric in common installations. Using this assumption,
we model the storage system with a queue storing the upload load of the
global system.

Model Definition

We model the storage system with a Markovian queuing model storing
the upload needs of the global system. The model has one server, Pois-
sonian batch arrivals and deterministic time service (M?/D/1, where /3
is the batch size function). We use a discrete time model. The peers in
charge of repairs process blocks in a FIFO order.

Chain States. The state of the chain at a time ¢ is the current number
of fragments in reconstruction, denoted by Q(t).

Transitions. At each time step, the system reconstructs blocks as fast as
its bandwidth allows it. The upload bandwidth of the system, BW,,N,
is the limiting resource. Then, the service provided by the server is

BW,,Nt

h=p—p

which corresponds to the number of fragments that can be reconstructed
at each time step 7. The factor p is the bandwidth efficiency as calculated
in the previous section, and L, is the number of bytes transferred to repair
one fragment. Hence, the number of fragments repaired during a time
step t is p(t) = min(p, Q(t)).

The arrival process of the model is caused by peer failures. When a
failure occurs, all the fragments stored in that device are lost. Hence, a
large number of block repairs start at the same time. We model this with
batch inputs (sometimes also called bulk arrival in the literature). The
size of an arrival is given by the number of fragments that were stored
on the disk. As explained in Section [5.5] it follows a truncated geometric
distribution.

We define § as a random variable taking values 5 € {0,v,2v, ..., T},
which represents the number of fragments inside a failed disk (see Equa-
tion for the probability distribution function of 3). Recall that v
is the speed at which empty disks get filled, and that T,,,, = C/v is the
elapsed time to fill a disk. Further on, /v is the elapsed time to have a
disk with § fragments.

The arrival process of the model is Poissonian. A batch arrives during
a time step with probability f, with f ~ a/N. For the simplicity of the
exposition, we consider here that only one failure can happen during
a time step (note that to ensure this, it is sufficient to choose a small
enough time step). Formally, the transitions of the chain are, for Vi > p,

Qi — Qi with prob. 1 — f

Qi — Qi_u+p, VB with prob. f(1— a)%_la

Qi — Qi—uic with prob. f(1 — (1 — a)Tmax)
When 0 < i < pu, the ¢ blocks in the queue at the beginning of the time
step are reconstructed at the end. Hence, we have transitions without

F— (1= a)Time) FO— (1 — a)Ton)

Figure 5.3: Transition around state i of the Markovian queuing model.

the term ¢ — pu:

Qi — Qo with prob. 1 — f
-1

Qi — Qp, VB with prob. f(1 —a)" '«
Qi — Qc with prob. f(1 — (1 — q)Tmax)

S

Figure [5.3| presents the transitions for a state ¢. The following table
summarizes the notation introduced in this section.

Q(t) Number of fragments to be repaired
f Batch arrival rate, f = alN
£ Number of fragments on a failed disk
(i.e., batch size)
p Factor of efficiency, p ~ %
Service rate, u = pBW,,N7/L,
(fragments per time step)

=

Analysis

Here, we give the expressions to estimate the values of two important sys-
tem metrics: the distribution of the block reconstruction time and the
probability of data loss. These expressions are derived from the station-
ary distribution of the Markovian model, as presented in the following.

A Normalized Model. The queuing model has a service of p and an input
process of average ff. To simplify the presentation of the analysis, we
introduce then a normalized model with service of 1, hence an input of

mean 5 = B/pu.

Stationary Distribution

We analyze here the stationary state of this normalized queuing model.
As the chain is irreducible and aperiodic, it exists when the service rate
is larger than the load. Let P be the probability generating function of
the Markovian model, that is P is defined as:

P(z) = Z P,

where P; is the probability that the system is in state ¢, that is, ¢ frag-
ments have to be repaired.

The system reconstructs one block per time step (unless of course,
no block is in the queue). It is translated in the generating function
language into a division by z. The effect of a peer failure is translated
by a multiplication by the probability generating function of the input

I, defined as
I(z) =Y L7,
§=0

with I; the probability that the batch is of size j. Hence, we obtain the
functional equation

(P(z) — Py

z

+ PO) I(z) = P(2).

It gives
—1)P,
P(z) = (ZZ—)lo
I(z)

As P(1) = 1, I(z) — z admits 1 as a root and thus can be written as

I(z) — 2z = (2 — 1)Q(z). We have
Q=)
As we have seen in Section [5.5] the size of the input follows a trun-

cated geometric distribution of parameter a. A batch is of size vj with
probability (1 — a)’ o, for j € [0,1, ..., Thay]. It gives

P(2) (5.2)

zﬂmax_1

I(2)=1—N)+F > (1—aytaz 4 f(1 - a)omtp T
j=1

It can be rewritten as

f(2" = D ({1 — a)fee — 1)
(1—a)zv—1 '

We factorize I(z) — 2z by (2 — 1). We get
e (550, #7) (s Tmax (1—q)Tax 1)
f 1-): 2Y)(zV+max (] —q)tmax]

e (Z — 1)<—1 —|— j=1 (1_a)zv_1)

The value of Fy is obtained by the normalization) >° P, = 1 which
implies P(1) = 1.

I(z) =1+

Q(1) 1 T
Ph=—~=1—— 1 —a)'m= —1)).
= S = 1= S = ey =)
We now have an expression of the three terms of Equation and we
get a close form of the probability generating function P(z).

Distribution of the Waiting Time

The distribution of the block reconstruction time is given by the station-
ary distribution P of the model calculated above. As we have Markovian
(batch) arrivals, the probability for a batch to arrive when there are n
blocks in the queue is exactly P, (for the difference of distribution for an
arriving customer and an outside observer, see for example [Coo81]). If
there are () fragments in the queue when a batch of size 8 = jv arrives,
the arriving fragments have waiting times of Q + 1, Q + 2, Q + 3. We
define the probability generating function J as

J(z) = Tizax ((1 — a)j_laiz’).

The probability generating function W of the waiting times then is just
W(z) = P(2)J(2).

The distribution of the waiting times can then be directly obtained
from the generating function by extracting its coefficients
AW (2)

fwwzmzpmw@_ﬁwﬁ-ﬂ. (5.3)

The first coefficients can be computed numerically and then a singularity
analysis gives the asymptotic behavior, see for example [FS08]. Hence,
the value of Pr(W = k) can be computed analytically. However, in the
following, we also use another method and calculate them numerically
by iterating the queuing model.

Number of Dead Blocks

The expected number of dead blocks is indirectly given by the model
by computing the waiting time in the queue of a block that has to be
reconstructed.

As a matter of fact, a block dies if it loses, before the end of the
reconstruction, the » — 1 fragments of redundancy that it has left when
the repair starts, plus an additional fragment. The probability for a
device to still be alive after a period of time of § time step is (1 — a)?,
where « is the probability for a disk to die during a time step, that is

T
“ = MTBF
Hence a good approximation of the probability Pr[die] to die during a
reconstruction lasting a time 6 is given by

Pr[die|W = 0] = Z (S j T) (1—(1—a)?)((1 - a)?)=+.

For practical systems, the ratio §/MTTF is small as the probability to
of data loss should be very low. Hence Pr[die] is well approximated by

Pr|die|W = 0] ~ (S jf 7") (1—(1—a)’)((1-a))

From this and from the distribution of the waiting time, we get the
probability to die during a reconstruction, Pp, with

Pp =" Prldie|W = i| Pr[W =].
i=0
The number of dead blocks during a time 7', Dy, is then obtained by the
number of reconstructions during T', Rr:

Dr = PpRy. (5.4)

Bandwidth Usage

The bandwidth usage is directly given by the distribution of the number
of reconstructions being processed by the system, which comes from the
stationary distribution of the queuing model.

5.7 Results

To validate our model, we compare its results with the ones produced by
simulations, and test-bed experimentation. We use a custom cycle-based
simulator. The simulator models the evolution of the states of blocks
during time (number of available fragments and where they are stored)
and the reconstructions being processed. When a disk failure occurs, the
simulator updates the state of all blocks that have lost a fragment, and
starts the reconstruction if necessary. The bandwidth is implemented
as a queue for each device. The reconstructions are processed in FIFO
order.

We study the distribution of the reconstruction time and compare it
with the exponential distribution which is often used in the literature.
We then discuss the cause of the data losses. Finally, we present two
important practical implementation points: (1) when choosing the pa-
rameters of the Regenerating Code, it is important to give to the device
in charge of the repair a choice between several peers to retrieve the data;
(2) we show the strong impact of different scheduling options on the data
loss rate.

Distribution of Reconstruction Time

Figure [5.4] shows the distribution of the reconstruction time and the im-
pact of the peer asymmetry on the reconstruction time for the following
scenario: N = 100, s =7, r =7, L,=2 MB, B = 50000, MTTF = 60
days, BW,,, = 128 kpbs. All parameters are kept constant, except the
disk size factor x (recall that x is the ratio of the maximum capacity over
the average amount of data per device).

First, we see that the model (dark solid line) closely matches the
simulations (blue dashed line). For example, when = = 1.1 (top plot),
the curves are almost merged. The average reconstruction times are 3.1
cycles vs 3.2 for the model. We see that there is a small gap when x = 3.

Distribution of the Reconstruction Time
(b=500 s=7 r=7 x=1.1 MTBF=1440 rh0=0.9)

0.30
1

—— Model
- - Simulation
\ -+ Exponential

\ (Model) Mean = 3.1 cycles Std.Dev. = 1.8
g (Sim) Mean = 3.2 cycles Std.Dev= 2

Fraction of blocks
010 015 020 0.25

"
3
(=]
1= N] S 0
S 4 .
© T T T T T
0 5 10 15 20
Reconstruction Time (cycles)
(a) z=1.1
Distribution of the Reconstruction Time
(b=500 s=7 r=7 x=2 MTBF=1440 rh0=0.5)
9 | \ —— Model
IS} . - - Simulation
\ -+ Exponential
& \ (Model) Mean = 9.4 cycles Std.Dev. = 7.4
" e (Sim) Mean = 9.6 cycles Std.Dev=7.8
]
3 @
o 2 4+
L o
<]
c
'g <
Q o —
3 3
g o
o~
S
o
8 |
° T T T T
0 20 40 60
Reconstruction Time (cycles)
(b) z=2.0
Distribution of the Reconstruction Time
(b=500 s=7 r=7 x=3 MTBF=1440 rh0=0.33)
\ — Model
. - - Simulation
34 -+ Exponential
= .
\ (Model) Mean = 28 cycles Std.Dev. = 26
y (Sim) Mean = 21 cycles Std.Dev= 17
L o
S 9 o
S o
5
S
s 8
g o
I
=
3
(=]
o
g
(=]

Reconstruction Time (cycles)

(¢) =30

Figure 5.4: Distribution of reconstruction time for different disk capacities x
of 1.1, 2, and 3 times the average amount. The average reconstruction times
of simulations are respectively 3.2, 9.6, and 21 hours (Note that some axis
scales are different).

As a matter of fact, we saw in Section that simulating the queue of
the full disks is an approximation in this case, as only 92% of the blocks
have a fragment on a full disk.

Second, we confirm the strong impact of the disk capacity. We see
that for the three values of x considered, the shape of the reconstruction
times are very different. When the disk capacity is close to the average
number of fragments stored per disk (values of z close to 1), almost all
disks store the same number of fragments (83% of full disks). Hence, each
time there is a disk failure in the system, the reconstruction times span
between 1 and C'/u, explaining the rectangle shape. The tail is explained
by multiple failures happening when the queue is not empty. When x
is larger, disks also are larger, explaining that it takes a longer time to
reconstruct when there is a disk failure (the average reconstruction time
raises from 3.2 to 9.6 and 21. when z goes from 1.1 to 2. and 3.). As the
number of fragments per disk follows a truncated geometric distribution,
we see the rectangle shape is replace by a trapezoidal shape explained
by the large range of disk fillings.

Third, we compare the distributions obtained with the exponential
distribution that is classically used in the literature. We see that the
distributions are far from the exponential when x = 1.1 and =z = 2,
but get closer for x = 3. Hence, as we will confirm, the exponential
distribution is only a good choice for some given sets of parameters. To
finish, note that the tails of the distribution are close to exponential.

Figure presents the distribution of a distributed storage system
experiencing three different rates of failures: MTTF of 90, 180 and 360
days. We clearly see the evolution of the shape of the distribution due to
the larger probability to experience failures when the peer queues are still
loaded. The average reconstruction time increases from 5 hours when the
MTTF is 360 days to 12 hours when the MTTF is 90 days.

We ran simulations for different sets of parameters. We present in
Table [5.3] a small subset of these experiments.

From Where the Deads Come From?

In this section, we discuss in which circumstances the system has more
chances to lose some data. First a preliminary remark: backup systems
are conceived to experience basically no data loss. Thus, for realistic
sets of parameters, it would be necessary to simulate the systems for a

Distribution of the Reconstruction Time for Different Peer MTTF
(N=200, s=7, r=7, b=2000, Lf=2MB, x=1.1, BWup=128kbps)

AR U —— MTTF 90 days (Mean time = 12.09)
=7 -=-- MTTF 180 days (Mean time = 6.20)

-—-- MTTF 360 days (Mean time = 5.08)

_,.__

Fraction of blocks
0.00 0.02 0.04 0.06 0.08 0.10 0.12
|

Reconstruction Time (cycles)

Figure 5.5: Distribution of reconstruction time for different MTBF. Different
shapes for different values.

prohibitive time to see data losses in our simulations. We hence present
here results for scenarios where the redundancy of the data is lowered
(r=3and r =5).

We plot in Figure the cumulative number of dead blocks that
the system experiences for different reconstruction times. We give this
fraction in function of the time the block spent in the system before
dying. For the queuing model, we derive the expected number of blocks
that died at time 7" from the distribution of the reconstruction time. A
block dies at time T if its reconstruction process lasts a time 8 > T and
that it loses r fragments during time 7" with at least one exactly at time
T'. This can be expressed as

Ndie at time 7] = Pr(die at time 7] » NP[W = 0]

0>T
with

Pr[die at time T| = (sjjl)(l —(1—a)T) (1 —a)T) 1=

(H72) (1 = (1= o)™)7 ((1 =)Ty,

r—1

Table 5.3: Reconstruction time 7' (in hours) for different system parameters

(a) Disk capacity c.
c 1.1 1.5 2.0 3.0

Tom 3.26 550 9.63 21.12
Toodel 3.06 534 941 21

(b) Peer Lifetime (MTBF).
MTBF 60 120 180 365

Tsim 3.26 290 275 2.65
Trnodel 2.68 2.60 2.49 2.46

(c) Peer Upload Bandwidth (kbps).
upBW 64 128 256 512

Teim 89 330 1.70 1.07
Tooder 8.3 3.10 1.61 1.03

We give the distribution of the reconstruction times as a reference (ver-
tical lines). The model (black solid line) and the simulation results (blue
dashed line) are compared for two scenarios with different number of
blocks: there is twice more data in Scenario B.

The first observation is that the queueuing models predict well the
number of dead experienced in the simulation, for example, in the sce-
nario A the values are 21,555 versus 20,879. The results for an expo-
nential reconstruction time with the same mean value are also plotted
(queue avg.). We see that this model is not close to the simulation for
both scenarios (almost the double for Scenario A). We also test a second
exponential model (queue tail): we choose it so that its tail is as close as
possible to the tail than the queuing model (see Figures and .
We see that it gives a perfect estimation of the dead for Scenario B, but
not for Scenario A.

In fact, two different phenomena appear in these two scenarios. In
Scenario B (higher redundancy), the lost blocks are mainly coming from
long reconstructions, from 41 to 87 cycles (tail of the gray histogram).
Hence, a good exponential model can be found by fitting the parame-
ters to the tail of the queuing model. On the contrary, in Scenario A

Distribution of the Dead Blocks Occurence Time Distribution of the Dead Blocks Occurence Time

g 3
S | == Model Mean time = 11 +-52 (total 21555 deads) = Model Mean time = 64 +- 23 (total 1676 deads)— §
— - Simulation Meantime = 11 +-4.9 (otal 20879 deads) g — - Simulation Mean time = 53 +- 21 (total 1696 deads]
-+ Exponential (queue avg.) Meantime = 12 +-6.2 (total 39325 deads)- S -+ Exponential (queue avg.) Mean time = 60 +- 23 (total 2827 deads]
o | - — Exponential (queue tai) Mean time = 10 +-5.4 (total 21314 deads) & @ | - — Exponenial (queve tai) Mean time = 56 +- 22 (iotal 1733 deads)
s s ° re
L E
..... g
£ 9 2 3
s 2 o3 He
s Lga =4 Wl s
s 8s ©
g 9] g
N X B
| o
5

8 8 8

s He g

g Lo 8] -

g g

o s ow s om om o 2 w w w w0
Elapsed time of Reconstruction (cycles) Elapsed time of Reconstruction (cycles)
(a) Scenario A (b) Scenario B
Fit of Exponential Distribution to the Tail of Reconstruction Time Fit of Exponential Distribution to the Tail of Reconstruction Time
El = — Model S| s — Model
11 ~ + - Exponential (queue avg.) 2 g -+ Exponential (queue avg.)

RS, - — Exponential (queue tail) B - — Exponential (queue tail)

Fraction of Blocks (Log Scale)
1e-03 1le-02

Fraction of Blocks (Log Scale)

1e-04

1e-05

04
o
5 4
5 -
P
8
PO
]
@
8
°

20 40 60 80

Elapsed time of Reconstruction (cycles) Elapsed time of Reconstruction (cycles)

(¢) Scenario A (fitting) (d) Scenario B (fitting)

Figure 5.6: (Top): Distribution of dead blocks reconstruction time for two
different scenarios. Scenario A: N = 200,s = 8, = 3,b = 1000, MTTF = 60
days. Scenario B: N = 200,s = 8,r = 5,b = 2000, MTTF = 90 days.
(Bottom): Fitting of exponential distribution with the tail of queueing model
(axis scales are different).

(lower redundancy), the data loss comes from the majority of short re-
constructions, from 5.8 to 16.2 cycles (the right side of the rectangular
shape). Hence, in Scenario A, having a good estimate of the tail of the
distribution is not at all sufficient to be able to predict the failure rate
of the system. It is necessary to have a good model of the complete
distribution!

Discussing the Implementation of Regenerating Codes

As presented in Section [5.4, when the redundancy is added using regen-
erating codes, n = s+ 1 devices store a fragment of the block when s are

Distribution of the reconstruction time for different values of d W

(N=200, s=7, n=14, b=500, MTBF=60 days)

6
5
46 43 43 a4
<
~
o
& - o > ® ~
S b= S
T T T T T T d
4 10 20 30 40 50

[[d=13] Mean = 10 cycles
.- d=12

d=11
-- d=10

[d=12]Mean = 6 cycles
[d=11]Mean = 5 cycles
[d=10] Mean = 4.6 cycles

0.15
I

0.10
I

Fraction of blocks
Average Reconstruction Time (cycles)
6
I

0.05
I

0.00
I
13

Reconstucton Time ook
Figure 5.8: Average Reconstruction

Figure 5.7: Distribution of recon- Time for different values of degree d.

struction time for different values of Smaller d implies more data transfers,

degree d. but may mean smaller reconstruction
times!

enough to retrieve the block. When a fragment is lost, s < d <n —1
peers are in charge of repairing the fragments. The larger d is, the smaller
is the bandwidth needed for the repair. Figures[5.7 and [5.8 show the re-
construction time for different values of the degree d. We observe an
interesting phenomena: at the opposite of the common intuition, the av-
erage reconstruction time decreases when the degree decreases: 10 cycles
for d = 13, and only 6 cycles for d = 12. The bandwidth usage increases
though (because the dy;pg is higher when d is smaller). The explanation
is that the decrease of the degree introduces a degree of freedom in the
choice of the devices that send a sub-fragment to the device that will
store the repaired fragment. Hence, the system is able to lower the load
of the more loaded disks and to balance more evenly the load between
peers.

In fact, we can estimate for which degree of freedom, the reconstruc-
tion time is minimum. It happens when the load of the full disks is
the same as the load of the other disks. We define 6 = n — 1 — d the
allowed degree of freedom for the choice of which peers uploads the sub-
fragments. The full disks store a proportion px of the fragments of the
system, with ¢ the fraction of full disks. We simply look at the how much
work we must do on the full disks. The probability to have ¢ fragments
(among the n — 1 fragments) on full disks is (") (pz)(1 — @a)" 17"

i

Those blocks sends ¢ — ¢ units of work the full disks (whenever i > 9).

So the load of the full disks is

n—1

>i-0(" 7)oy oy

=6

We presented here a cut argument for only two classes of peers (full disks
and non full disks). This argument can be generalized to any number of
peer classes.

When the load of the full disks becomes equal to the load of the other
disks (3075 (d — i+ 8) (") (p2)¥(1 — px)" 177, it is no more useful to
decrease d. We see that the average reconstruction time increases when d
is too small, as the increased usage of bandwidth is no more compensated
by a better balance of the load.

Note that this phenomena exists for other codes like Reed Solomon
where the device in charge of the reconstruction has to retrieve s frag-
ments among the s +r — 1 remaining fragments.

Scheduling

As peers have a large number of repairs to carry out but very limited
bandwidth, the question of which repairs to do first is crucial. In this
section, we study three different scheduling choices: FIFO, RANDOM,
and MoST-DAMAGED data block first.

The FIFO is the default scheduling in the simulator, as discussed
in Section the blocks are processed in the order of arrival. In the
RANDOM scheduling, the simulator processes blocks in a random order
(at each time step the list of blocks to be reconstructed is shuffled). In
the MoST-DAMAGED scheduling the blocks are ordered by the level of
redundancy (i.e., blocks with less fragments available come first). In case
of tied values, then the FIFO order is assumed.

Figure[5.9 presents the reconstruction time of these three schedulings.
All strategies give almost the same average reconstruction time, 4.40,
4.43, 4.43 respectively for FIFO, RANDOM and MOST-DAMAGED.
We see that their distribution changes slightly. In the RANDOM order
the shape has the form of a geometric distribution, with many blocks
finishing the reconstruction “early”. However, as depicted in Figure [5.9
the differences in the number of dead blocks are enormous. When using
the RANDOM scheduling, the dead increases considerably, as expected.

Reconstruction Time for Different Scheduling Strategies
Distribution of the Dead Time for Different Scheduling Strategies

— FIFO
- RANDOM
--- MOST_DAMAGED

— FIFO
° -~ RANDOM
2 ——- MOST_DAMAGED

0.20
I
T
14000

Fraction of blocks
0.10 0.15
I I
Fraction of blocks
I
T T T
6000 10000

0.05
I

0.00
I
0 2000

Reconsiruton Time (cyces) o
Figure 5.9: Reconstruction time for
different scheduling strategies. The
average reconstruction time is almost
the same (4.4 cycles), but the distri-
bution changes.

Figure 5.10: Cumulative number of
dead blocks for different scheduling
strategies. Processing the most dam-
aged first is the best strategy.

MoSsT-DAMAGED has a reconstruction time very close to the others
but the number of losses is much lower. Hence, this is the strategy of
choice when implementing such systems.

5.8 Experimentation

Aiming at validating the simulation and the model results, we performed
a batch of real experimentation using the GRID’5000 platform [Gri]. We
used a prototype of storage system implemented by a private company
(Ubistorage [ubil).

Our goal is to validate the main behavior of the reconstruction time in
a real environment with shared and constrained bandwidth, and measure
how close they are to our results.

Storage System Description

In few words, the system is made of a storage layer (upper layer) built
on top of the DHT layer (lower layer) running Pastry [RD01]. The lower
layer is in charge of managing the logical topology: finding peers, routing,
alerting of peer arrivals or departures. The upper layer is in charge of
storing and monitoring the data.

Storing the data. The system uses Reed-Solomon erasure codes [LMS™97]
to introduce redundancy. Each data block has a device responsible of
monitoring it. This peer keeps a list of the devices storing a fragment of
the block. The fragments of the blocks are stored locally on the PASTRY
leafset of the peer in charge [LMSMO09].

Monitoring the system. The storage system uses the information given
by the lower level to discover device failures. In PASTRY, a peer checks
periodically if the members of its leafset are still up and running. When
the upper layer receives a message that a peer left, the peer in charge
updates its block status.

Monitored metrics. The application monitors and keep statistics on
the amount of data stored on its disks, the number of performed re-
constructions along with their duration, the number of dead blocks that
cannot be reconstructed. The upload and download bandwidth of devices
can be adjusted.

The Grid’5000 Infrastructure

GRID’5000 is an infrastructure dedicated to the study of large scale par-
allel and distributed systems. It provides a highly reconfigurable, control-
lable and monitorable experimental platform to scientists. The platform
contains 1582 machines accounting for 3184 processors and 5860 cores.
The machines are geographically distributed on 9 different hosting sites
in France (two additional sites in Luxemburg and Porto Alegre, Brazil
are being added). These site are connected to RENATER Education and
Research Network with a 10Gb/s link.

Results

There exist a lot of different storage systems with different parameters
and different reconstruction processes. The goal of the paper is not
to precisely tune a model to a specific one, but to provide a general
analytical framework to be able to predict any storage system behavior.
Hence, we are more interested here by the global behavior of the metrics
than by their absolute values.

] = Experimentation g5k
© - Simulation
Q -
[«
(Experim.) Mean = 148 seconds Std.Dev. = 76
i) . (Sim) Mean = 145 seconds Std.Dev = 81
5}
o <
o <
5 ©
= -
ie] T !
s 1
o
[CAEN !
L o 4 1
o |
1
|]
1
]
=] |
O_ - —] - - -
[«

0 100 200 300 400 500

Reconstruction Time (seconds)

Figure 5.11: Distribution of reconstruction time on a experimentation with
64 nodes during 4 hours compared to simulations.

Studied Scenario. By using simulations we can easily evaluate several
years of a system, however when doing experimentation this is not the
case. We need to plan our experiments to last a few hours. Hence, we
define an acceleration factor, as the ratio between experiment duration
and the time of real system we want to imitate. Our goal is to check the
bandwidth congestion in a real environment. Thus, we decided to shrink
the disk size (e.g., from 10 gigabytes to 100 megabytes, a reduction of
100x), inducing a much smaller time to repair a failed disk. Then, the
device failure rate is increased (from months to a few hours) to keep the
ratio between disk failures and repair time proportional. The bandwidth
limit value, however, is kept close to the one of a “real” system. The idea
is to avoid inducing strange behaviors due to very small packets being
transmitted in the network.

Figure presents the distribution of the reconstruction times for
two different experimentation involving 64 nodes on 2 different sites of
GRID’5000. The amount of data per node is 100 MB (disk capacity
120MB), the upload bandwidth 128 KBps, s = 4, r = 4, Lp = 128
KB. We confirm that the simulator gives results very close to the one

Timeseries of the Reconstructions in Queue (Experimentation)

1500 2000
I I

Queue Length (fragments)
1000
1

500
I

T T T T T T T T
4000 5000 6000 7000 8000 9000 10000 11000

Time (seconds)

Upload Bandwidth Consumption over Time (Experimentation)

1.0

Mean rho = 0.78

0.4 0.6 0.8
I I I

Ratio of Bandwidth Usage (rho)

0.2
I

0.0

T T T T T T T T
4000 5000 6000 7000 8000 9000 10000 11000

Time (seconds)

Figure 5.12: Timeseries of the queue size during time (top) and the upload
bandwidth ratio (bottom).

obtained by experimentation. The average value of reconstruction time
differs from some seconds.

Moreover, to have an intuition of the system dynamics over time, in
Figure[5.12| we present a timeseries of the number of blocks in the queues
(top plot) and the total upload bandwidth consumption (bottom plot).
We note that the rate of reconstructions (the descending lines on the top
plot) follows an almost linear shape. Comforting our claim that a deter-
minist processing time of blocks could be assumed. In these experiments
the disk size factor is = 1.2, which gives a theoretical efficiency of 0.83.
We can observe that in practice, the factor of bandwidth utilization, p,
is very close to this value (value of p = 0.78 in the bottom plot).

5.9 Conclusion

In this paper, we propose and analyze a new Markovian analytical model
to model the repair process of distributed storage systems. This model
takes into account the correlation between data repairs that compete for
the same bandwidth. We bring to light the impact of peer heterogeneity
on the system efficiency. The model is validated by simulation and by
real experiments on the GRID’5000 PLATFORM.

We show that the exponential distribution classically taken to model
the reconstruction time is valid for certain sets of parameters, but that
different shapes of distribution appear for other parameters. We show
that it is not enough to be able to estimate the tail of the repair time
distribution to obtain a good estimate of the system loss rate.

The results provided are for systems using Regenerating Codes that
are the best codes known for bandwidth efficiency, but the model is
general and can be adapted to other codes. We exhibit an interesting
phenomena to keep in mind when choosing the code parameter: it is
useful to keep a degree of freedom on the choice of the users participating
in the repair process so that loaded or deficient users do not slow down
the repair process, even if it means less efficient codes.

In addition, we confirm the strong impact of scheduling on the system
loss rate.

5.10 Bibliography

[ADNO7] Sara Alouf, Abdulhalim Dandoush, and Philippe Nain. Per-
formance analysis of peer-to-peer storage systems. Proceed-
ings of the 20th International Teletraffic Congress (ITC),
LNCS 4516:642-653, 2007.

[BDETO00] William J. Bolosky, John R. Douceur, David Ely, and Mar-
vin Theimer. Feasibility of a serverless distributed file system
deployed on an existing set of desktop PCs. ACM SIGMET-
RICS Perf. Eval. Review, 28:34—43, 2000.

[BTcC*04] Ranjita Bhagwan, Kiran Tati, Yu chung Cheng, Stefan Sav-
age, and Geoffrey M. Voelker. Total recall: System sup-

[CDH*06]

[Coo81]

[DAO6]

[DANOY]

[DGWRO7]

[FLP+10]

[FSO08]

[Gri]
[KBCH00]

port for automated availability management. In Proc. of the
USENIX NSDI, pages 337-350, 2004.

Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil
Sit, Hakim Weatherspoon, M. Frans Kaashoek, John Kubi-
atowicz, and Robert Morris. Efficient replica maintenance
for distributed storage systems. In Proc. of USENIX NSDI,
pages 45-58, 2006.

Robert B. Cooper. Introduction to Queuwing Theory. North
Holland New York, 1981.

Anwitaman Datta and Karl Aberer. Internet-scale storage
systems under churn — a study of the steady-state using
markov models. In Procedings of the IEEE Intl. Conf. on
Peer-to-Peer Computing (P2P), pages 133-144, 2006.

A. Dandoush, S. Alouf, and P. Nain. Simulation analysis
of download and recovery processes in P2P storage systems.
In Proc. of the Intl. Teletraffic Congress (ITC), pages 1-8,
France, 2009.

A.G. Dimakis, P.B. Godfrey, M.J. Wainwright, and K. Ram-
chandran. Network coding for distributed storage systems.
In Proc. of IEEE INFOCOM, pages 2000-2008, May 2007.

Daniel Ford, Francois Labelle, Florentina I Popovici, Mur-
ray Stokely, Van-Anh Truong, Luiz Barroso, Carrie Grimes,
and Sean Quinlan. Availability in globally distributed stor-
age systems. In Proceedings of the 9th USENIX conference
on Operating systems design and implementation, pages 1-7,
2010.

P. Flajolet and R. Sedgewick. Analytic combinatorics. Cam-
bridge University Press, 2008.

Grid5000Platform. https://www.grid5000.fr/.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells,

[LMS*97]

[LMSMO09]

[PBSO07]

[Pla]
[RDO1]

[RPO6]

[ubi]
[VIH12]

[VLM*09]

et al. OceanStore: an architecture for global-scale persis-
tent storage. ACM SIGARCH Computer Architecture News,
28(5):190-201, 2000.

M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, D.A. Spiel-
man, and V. Stemann. Practical loss-resilient codes. In Pro-
ceedings of the 29th annual ACM symposium on Theory of
computing, pages 150-159, 1997.

S. Legtchenko, S. Monnet, P. Sens, and G. Muller. Churn-
resilient replication strategy for peer-to-peer distributed
hash-tables. In Proceedings of SSS, volume LNCS 5873,
pages 485-499, 2009.

Fabio Picconi, Bruno Baynat, and Pierre Sens. Predicting
durability in dhts using markov chains. In Proceedings of

the 2nd Intl. Conference on Digital Information Management
(ICDIM), volume 2, pages 532-538, Oct. 2007.

Planetlab. URL: http://www.planet-lab.org/.

A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. In Proc. of IFIP/ACM Intl. Conf. on Distributed
Systems Platforms (Middleware), volume LNCS 2218, pages
329-350, 2001.

Sriram Ramabhadran and Joseph Pasquale. Analysis of long-
running replicated systems. In Proc. of IEEE INFOCOM,
pages 1-9, Spain, 2006.

Ubistorage. http://www.ubistorage.com/.

Vinodh Venkatesan, Ilias Iliadis, and Robert Haas. Reliabil-
ity of data storage systems under network rebuild bandwidth
constraints. In 2012 IEEE 20th International Symposium on

Modeling, Analysis € Simulation of Computer and Telecom-
munication Systems (MASCOTS), pages 189-197, 2012.

Vytautas Valancius, Nikolaos Laoutaris, Laurent Massoulié,
Christophe Diot, and Pablo Rodriguez. Greening the internet

http://www.planet-lab.org/

[WK02]

with nano data centers. In ACM CoNEXT ’09, pages 3748,
Rome, Italy, 2009.

H. Weatherspoon and J. Kubiatowicz. Erasure coding vs.
replication: A quantitative comparison. In Revised pa-
pers from the 1st Intl. Workshop on Peer-to-Peer Systems
(IPTPS), volume LNCS 2429, pages 328-337, 2002.

CHAPTER

Conclusions and perspectives

The contributions of this thesis provide tools to assess a number of po-
tential solutions for making the future Internet more efficient. There
are many approaches to reducing the redundancy in the traffic, some of
them well established. We looked into the ones which are not yet the
standard, but are considered as possible future directions. From a high
level perspective, these are all simple ideas: store a copy close to your
users for further reuse, make the users share among themselves and store
their own data as close as possible. Complexity arises when one tries to
implement them. However, we do not look deep into details of particular
implementations. We try to abstract over the complexity, to look into the
potential of the ideas themselves, keeping to a realistic setting. Instead
of proposing systems and tweaking their efficiency, we evaluate impact of
systems with a given efficiency. Ultimately the questions we are trying
to answer take the form of what would really be the potential benefit of
putting any system of some known properties into realistic conditions?

Two models are devoted to estimating the potential energy savings
thanks to introductions of caches. First, we studied energy optimization
in network provisioning with in-network caches. We found that basing on
realistic network and power models, but with some optimistic simplifying
assumptions, up to 11% of energy can be saved by introducing the caches.
The most propitious enhancements to the model could be studying the
actual dynamics encountered by caching algorithms, as well as relaxing
the regularity of the network model.

155

Then, we looked into energy-aware management of an already de-
ployed core network. This has shown that, over a number of realistic
network instances, we can save over 20% of energy exploiting daily traf-
fic variations. A palpable way to enhance this result would be merging
this model with the aforementioned one.

Both studies treat cache as a black box, which performs its work ac-
cording to some static properties. Real-life caches are more complicated.
Their performance is determined by the interplay of replacement algo-
rithms and the stream of requests served, which are intrinsically random.
Exploring how temporal and geographical distributions of requests affect
the optimal cache deployment and operation is an interesting research
direction. Furthermore, we had to speculate about devices that are not
available yet, as well as about network structure and traffic, which are
trade secrets of the operators. The best way to fully benefit of this work
is to apply it from inside an operator, using specific and accurate data.

Both studies hint that substantial savings are possible. Even if the
money saved by reducing energy consumption do not outweigh deploy-
ment cost in a short term, bandwidth savings themselves are already a
good incentive for augmenting networks with caches. However, the ad-
vantages of in-network caching may be overshadowed by alternatives and
the whole picture may change with next generations of hardware not yet
revealed to the public. Thus, until a decisive trend arises in the industry,
they remain an active research topic.

The next two studies are concentrating on highly distributed systems,
which can be either user ran peer-to-peer or operator controlled (e.g.
nano data centers). First, we analyzed a live streaming network with
a tree structure. We proved an upper time limit for repairing the tree,
after an arbitrary failure, by a simple algorithm. We also found, by
means of simulation, that on average such a repair takes very short time.
The obvious continuations of this work are formal study of the average
behaviour and modelling multiple concurrent trees structure.

Second, we looked into data survivability in distributed backups sys-
tem. We found that back-of-envelope calculations may overestimate it
by orders of magnitude, comparing to a model carefully following data
and workload distributions. The general framework presented in this
study can be improved by adjusting the model to closely match a target
system.

Currently, this kind of systems do not play a major role in the in-
dustry. Data backup relies heavily on trust. Delegating it to unknown
stranger in a peer-to-peer network is deemed too high risk by many users.
Centralized solutions, especially some recent backup-oriented offeringd]
are already cost-effective and ensure the trust by contracts. On the other
hand, peer-to-peer video streaming will probably gain importance. Raise
of video streaming traffic leads to network congestions. This in turn leads
to tensions between content providers and network operators. These have
already escalated up to involving law enforcement?] This raises incen-
tives for p2p video streaming and coincides with new means. WebRT(J]
is being implemented in the major web browsers. It allows real-time
browser-to-browser communication. Browser support removes a major
issue, which always was the need to install additional software, making
participation in a peer-to-peer streaming network as easy as clicking a
YouTube link today. All things considered, design and implementation
of peer-to-peer streaming networks may be a very interesting perspective
in the coming years.

To answer questions posed in this thesis, I have learnt a number of
useful techniques. Some of them are theoretical tools, which allow me
to approach algorithmic challenges in a structured way. Other are more
empirical, like simulations and experiments. One trick [am particularly
satisfied with is using simple but revealing implementations of abstract
systems for a quick peek into their properties. This has allowed us to
weed out a number false hypotheses early, in our more theoretical forays.
Another lesson is the importance of changing directions as more promis-
ing ones are appearing. This happened when we explored unstructured
streaming networks, to finally concentrate on a structured one.

!For example http://aws.amazon.com/glacier/
2http://www.reuters.com/article/2013/07/11/eu-telecoms-idUSLENOFH10L20130711
3http://www.webrtc.org/reference/architecture

http://aws.amazon.com/glacier/
http://www.reuters.com/article/2013/07/11/eu-telecoms-idUSL6N0FH1OL20130711
http://www.webrtc.org/reference/architecture

APPENDIX
Weighted Improper Colouring

This appendix presents a study that is not concerned by reducing redun-
dancy in network traffic. Instead, it is motivated by frequency assignment
in satellite networks, what places in it the link layer. While energy sav-
ing in network was not an original motivation of this work, notice that
reducing radio interference does significantly reduce power consumption
(and therefore increase battery life) of mobile devices.

A.1 Publication

The remainder of this chapter corresponds to Weighted Improper Colour-
ing by J. Araujo, J-C. Bermond, F. Giroire, F. Havet, D. Mazauric and
R. Modrzejewski which was published in the Journal of Discrete Algo-
rithms volume 16, which is an extended version of the work of same title
and authors published in the proceedings of 22nd International Workshop
on Combinatorial Algorithms.

A.2 Introduction

Let G = (V, E) be a graph. A k-colouring of G is a function ¢ : V' —
{1,...,k}. The colouring c is proper if uv € E implies c(u) # c(v).
The chromatic number of G, denoted by x(G), is the minimum integer
k such that G admits a proper k-colouring. The goal of the VERTEX

159

COLOURING problem is to determine x(G) for a given graph G. It is a
well-known NP-hard problem [Kar72].

A k-colouring ¢ is l-improper if |{v € N(u) | c(v) = c(u)}]| < I,
for all u € V' (as usual in the literature, N(u) stands for the set {v |
wv € E(G)}). Given a non-negative integer [, the [-improper chromatic
number of a graph G, denoted by x;(G), is the minimum integer k such
that G admits an [-improper k-colouring. Given a graph GG and an integer
[, the IMPROPER COLOURING problem consists in determining x;(G)
and is also NP-hard [Woo90l [CHS09]. Indeed, if I = 0, observe that
Xo(G) = x(G). Consequently, VERTEX COLOURING is a particular case
of IMPROPER COLOURING.

In this work we define and study a new variation of the IMPROPER
COLOURING problem for edge-weighted graphs. An edge-weighted graph
is a pair (G, w) where G = (V, E) is a graph and w : £ — R*. Given an
edge-weighted graph (G, w) and a colouring ¢ of G, the interference of a
vertex u in this colouring is defined by

I,(G,w,c) = Z w(u,v).

{veN (u)le(v)=c(u)}

For any non-negative real number ¢, called threshold, we say that c is a
weighted t-improper k-colouring of (G, w) if ¢ is a k-colouring of G such
that I,(G,w,c) <t, forallueV.

Given a threshold ¢ € R, the minimum integer k such that the
graph G admits a weighted t-improper k-colouring is the weighted t-
improper chromatic number of (G,w), denoted by x;(G,w). Given an
edge-weighted graph (G, w) and a threshold t € R*, determining x:(G, w)
is the goal of the WEIGHTED IMPROPER COLOURING problem. Note
that if ¢ = 0 then xo(G,w) = x(G), and if w(e) =1 for all e € E, then
Xi(G,w) = xi(G) for any positive integer [. Therefore, the WEIGHTED
IMPROPER COLOURING problem is clearly NP-hard since it generalises
VERTEX COLOURING and IMPROPER COLOURING.

On the other hand, given a positive integer k, we define the mini-
mum k-threshold of (G, w), denoted by Ti(G,w) as the minimum real ¢
such that (G, w) admits a weighted ¢-improper k-colouring. Then, for a
given edge-weighted graph (G, w) and a positive integer k, the THRESH-
oLD IMPROPER COLOURING problem consists in determining 7j (G, w).
The THRESHOLD IMPROPER COLOURING problem is also NP-hard. This

fact follows from the observation that determining whether x;(G) < k is
NP-complete, for every [> 2 and k > 2 [CCW86, [CGJ95, [CHS09]. Con-
sequently, in particular, it is a NP-complete problem to decide whether a
graph G admits a weighted ¢-improper 2-colouring when all the weights
of the edges of GG are equal to one, for every t > 2.

Motivation

Our initial motivation to these problems was the design of satellite an-
tennas for multi-spot MFTDMA satellites [AAGT05]. In this technology,
satellites transmit signals to areas on the ground called spots. These
spots form a grid-like structure which is modelled by an hexagonal cell
graph. To each spot is assigned a radio channel or colour. Spots are
interfering with other spots having the same channel and a spot can use
a colour only if the interference level does not exceed a given threshold
t. The level of interference between two spots depends on their distance.
The authors of [AAGT05] introduced a factor of mitigation v and the
interference of remote spots are reduced by a factor 1 — . When the
interference level is too low, the nodes are considered to not interfere any-
more. Considering such types of interference, where nodes at distance
at most ¢ interfere, leads to the study of the i-th power of the graph
modelling the network and a case of special interest is the power of grid

graphs (see Section [A.4)).

Related Work

Our problems are particular cases of the FREQUENCY ASSIGNMENT
problem (FAP). FAP has several variations that were already studied
in the literature (see [AvHKT07] for a survey). In most of these varia-
tions, the main constraint to be satisfied is that if two vertices (mobile
phones, antennas, spots, etc.) are close, then the difference between the
frequencies that are assigned to them must be greater than some function
which usually depends on their distance.

There is a strong relationship between most of these variations and
the L(p1, ..., pq)-LABELLING problem [Yeh06]. In this problem, the goal
is to find a colouring of the vertices of a given graph G, in such a way
that the difference between the colours assigned to vertices at distance ¢
is at least p;, for every 1 =1,...,d.

In some other variants, for each non-satisfied interference constraint
a penalty must be paid. In particular, the goal of the MINIMUM INTER-
FERENCE FREQUENCY ASSIGNMENT problem (MI-FAP) is to minimise
the total penalties that must be paid, when the number of frequencies to
be assigned is given. This problem can also be studied for only co-channel
interference, in which the penalties are applied only if the two vertices
have the same frequency. However, MI-FAP under these constraints does
not correspond to WEIGHTED IMPROPER COLOURING, because we con-
sider the co-channel interference, i.e. penalties, just between each vertex
and its neighbourhood.

The two closest related works we found in the literature are [MS03]
and [FLM™00]. However, they both apply penalties over co-channel in-
terference, but also to the adjacent channel interference, i.e. when the
colours of adjacent vertices differ by one unit. Moreover, their results
are not similar to ours. In [MS03|, they propose an enumerative algo-
rithm for the problem, while in [FLM™00] a Branch-and-Cut method is
proposed and applied over some instances.

Results

In this article, we study both parameters x:(G,w) and Tx(G,w). We
first present general bounds; in particular we show a generalisation of
Lovész’s Theorem for y;(G,w). We after show how to transform an
instance of THRESHOLD IMPROPER COLOURING into an equivalent one
where the weights are either one or M, for a sufficiently large M.

Motivated by the original application, we then study a special in-
terference model on various grids (square, triangular, hexagonal) where
a node produces a noise of intensity 1 for its neighbours and a noise
of intensity 1/2 for the nodes that are at distance two. We derive the
weighted t-improper chromatic number for all possible values of t.

Finally, we propose a heuristic and a Branch-and-Bound algorithm
to solve THRESHOLD IMPROPER COLOURING for general graphs. We
compare them to an integer linear programming formulation on random
cell-like graphs, namely Voronoi diagrams of random points of the plan.
These graphs are classically used in the literature to model telecommu-
nication networks [BKLZ97, [GK00, HABT09).

A.3 General Results

In this section, we present some results for WEIGHTED IMPROPER COLOUR-
ING and THRESHOLD IMPROPER COLOURING for general graphs and
general interference models.

Upper bounds

Let (G,w) be an edge-weighted graph with positive real weights given
by w : E(G) = Q. For any vertex v € V(G), its weighted de-
gree is dy(v) = 3 ,cnp W, v). The mazimum weighted degree of G
is A(G,w) = maxyey diy(v).

Given a k-colouring ¢ : V. — {1,...,k} of G, we define, for every
vertex v € V(G) and colour i = 1,..., k, di, ,(v) = D (ueN ()| e(u)=i} (U V)-

Note that dfu(fé)(v) = [,(G,w,c). We say that a k-colouring ¢ of G is
w-balanced if ¢ satisfies the following property:

For any vertex v € V(G), I,(G,w,c) < dj, (v), forevery j =1,... k.

We denote by ged(w) the greatest common divisor of the weights of
w (observe that ged(w) > 0 because we just consider positive weights).
We use here the generalisation of the ged to non-integer numbers (e.g.
in Q) where a number x is said to divide a number y if the fraction y/z
is an integer. The important property of ged(w) is that the difference
between two interferences is a multiple of ged(w); in particular, if for two
vertices v and u, d}, .(v) > dJ, .(u), then di, .(v) > dJ, .(u) + ged(w).

If t is not a multiple of the ged(w), that is, there exists an integer a €
Z such that a ged(w) <t < (a+ 1)ged(w), then X' (G) = X gea(w) (G)-

Proposition 1. Let (G,w) be an edge-weighted graph. For any k > 2,
there exists a w-balanced k-colouring of G.

Proof. Let us colour G = (V, E) arbitrarily with & colours and then
repeat the following procedure: if there exists a vertex v coloured ¢ and
a colour j such that d;, (v) > dJ, .(v), then recolour v with colour j.
Observe that this procedure neither increases (we just move a vertex
from one colour to another) nor decreases (a vertex without neighbour
on its colour is never moved) the number of colours within this process.
Let W be the sum of the weights of the edges having the same colour

in their end-vertices. In this transformation, W has increased by dJ, .(v)
(edges incident to v that previously had colour j in its endpoint opposite
to v), but decreased by di, .(v) (edges that previously had colour 4 in both
of their end-vertices). So, W has decreased by d, .(v)—dJ, .(v) > ged(w).
As W < |E|max.cp w(e) is finite, this procedure finishes and produces
a w-balanced k-colouring of G. m

The existence of a w-balanced colouring gives easily some upper
bounds on the weighted t-improper chromatic number and the minimum
k-threshold of an edge-weighted graph (G, w). It is a folklore result that
X(G) < A(G) 4 1, for any graph G. Lovasz [Lov66] extended this result
for IMPROPER COLOURING problem using w-balanced colouring. He
proved that y;(G) < [A(ﬁ)ﬁl] In what follows, we extend this result to
weighted improper colouring.

Theorem 5. Let (G,w) be an edge-weighted graph with w : E(G) — Q7
and t a multiple of ged(w). Then

w(Gw) < {A(Gﬂv) +gcd(w)w ‘

t + ged(w)

Proof. If t, w, and G are such that x;(G,w) = 1, then the inequality is
trivially satisfied. Thus, consider that x;(G,w) > 1.

Observe that, in any w-balanced k-colouring ¢ of a graph G, the
following holds:

dy(v) = > wlu,v) > kd? (v). (A1)

ueN (v)

+ | A(Gw)+ged(w)
Let k* = ’V t+ged(w)

G. We claim that ¢* is a weighted t-improper k*-colouring of (G, w).

By contradiction, suppose that there is a vertex v in G such that
¢*(v) = i and that di, .(v) > t. Since ¢* is w-balanced, dJ, .(v) > t, for
all j = 1,...,k* By the definition of ged(w) and as t is a multiple of
ged(w), it leads to dl, (v) >t + ged(w) for all j =1,...,k*. Combining
this inequality with Inequality , we obtain:

-‘ > 2 and ¢* be a w-balanced k*-colouring of

A(G,w) = dy(v) = k*(t + ged(w)),

giving
A(G,w) > AG,w) + ged(w),
a contradiction. The result follows.
O]

Note that when all weights are unit, we obtain the bound for the
improper colouring derived in [Lov66]. Brooks [Bro4l] proved that for
a connected graph G, x(G) = A(G) + 1 if, and only if, G is complete
or an odd cycle. One could wonder for which edge-weighted graphs the
bound we provided in Theorem [f]is tight. However, Correa et al. [CHS09]
already showed that it is NP-complete to determine if the improper chro-
matic number of a graph G attains the upper bound of Lovasz, which
is a particular case of WEIGHTED IMPROPER COLOURING, i.e. of the
bound of Theorem [l

We now show that w-balanced colourings also yield upper bounds
for the minimum k-threshold of an edge-weighted graph (G, w). When
k =1, then all the vertices must have the same colour, and T1(G,w) =
A(G,w). This may be generalised as follows, using w-balanced colour-
ings.

Theorem 6. Let (G,w) be an edge-weighted graph with w : E(G) — R?,
and let k be a positive integer. Then

A(G,w)

Proof. Let ¢ be a w-balanced k-colouring of G. Then, for every vertex

v e V(G):
KT4(Gw) < kdi®) (0) < dy(v) = D w(u,v) < A(G,w)
u€N (v)

]

Because T3 (G, w) = A(G, w), Theorem [6|may be restated as kT, (G, w) <
... <Ti(G,w). This inequality may be generalised as follows.

Theorem 7. Let (G, w) be an edge-weighted graph with w : E(G) — R,
and let k and p be two positive integers. Then

T
7 (Gow) <)

Proof. Set t = T,(G,w). Let ¢ be a t-improper p-colouring of (G, w).
For i = 1,...,p, let G; be the subgraph of GG induced by the vertices
coloured i by ¢. By definition of improper colouring A(G;, w) < t for
all 1 <4 < p. By Theorem [6] each (G;,w) admits a ¢/k-improper k-
colouring ¢; with colours {(i — 1)k + 1,...,ik}. The union of the ¢;’s is
then a t/k-improper kp-colouring of (G, w). O

Theorem [f|and its proof suggest that to find a kp-colouring with small
impropriety, it may be convenient to first find a p-colouring with small
impropriety and then to refine it. In addition, such a strategy allows to
adapt dynamically the refinement. In the above proof, the vertex set of
each part G; is again partitioned into k parts. However, sometimes, we
shall get a better kp-colouring by partitioning each GG; into a number of k;
parts, with Y7 | k; = kp. Doing so, we obtain a T-improper kp-colouring
of (G,w), where T' = maX{A(i—z’w), 1 <i<p}

One can also find an upper bound on the minimum k-threshold by
considering first the £ — 1 edges of largest weight around each vertex.
Let (G,w) be an edge-weighted graph, and let vy,..., v, be an ordering
of the vertices of G. The edges of G may be ordered in increasing order
of their weight. Furthermore, to make sure that the edges incident to
any particular vertex are totally ordered, we break ties according to the
label of the second vertex. Formally, we say that v;v; <,, v;v; if either
w(v;v;) < w(vvy) or w(vv;) = w(vvy) and j < j'. With such a partial
order on the edge set, the set EX(v) of min{|N(v)|, k — 1} greatest edges
(according to this ordering) around a vertex is uniquely defined. Observe
that every edge incident to v and not in E¥(v) is smaller than an edge
of Ey(v) for <.

Let G* be the graph with vertex set V(G) and edge set Useva) Ef(v).
Observe that every vertex of E¥ (v) has degree at least min{|N (v)], k—1},
but a vertex may have an arbitrarily large degree. For if any edge in-
cident to v has a greater weight than any edge not incident to v, the
degree of v in G¥ is equal to its degree in G. However we now prove that
at least one vertex has degree k — 1.

Proposition 2. If (G, w) is an edge-weighted graph, then G* has a vertex
of degree at most k — 1.

u W’ (u,v)=w(u,v)-1 \

_______ = ————————
70 < - S~ o PRGN
I - - ~ N

*—— ~ - \’/ ‘&‘
\ S~ ~ TN -]
| "~ 1 1 PRGN)
\ - - P ~ ,

- == - ~
Ol " g7 NTZIl____= »
K" u’ v K

Figure A.1: Construction of G’ from G using edge wv € E(G) and k = 4
colours. Dashed edges represent edges of weight M.

Proof. Suppose for a contradiction, that every vertex has degree at least
k, then for every vertex z there is an edge xy in E(GF)\ EF(x), and
so in E¥(y) \ E¥(z). Therefore, there must be a cycle (z1,...,z,) such
that, for all 1 < i < r, zw € EF(xi1) \ EF (2;) (with 2,4, = 7).

It follows that x1xe <, Toxs <, -+ <, T,x7 <, T1T9. Hence, by
definition, w(xizs) = w(xexs) = -+ = w(r,x1) = w(r122). Let m be
the integer such that z,, has maximum index in the ordering vy, ..., v,.

Then there exists j and j’ such that z,, = v; and 2,40 = vjy. By
definition of m, we have j > j'. But this contradicts the fact that

TmTm+1 Sw Tm4+1Tm+2- O

Corollary 1. If (G,w) is an edge-weighted graph, then G* has a proper
k-colouring.

Proof. By induction on the number of vertices. By Proposition [2, G¥
has a vertex z of degree at most k — 1. Trivially, G — x is a subgraph
of (G — x)k. By the induction hypothesis, (G — z)¥ has a proper k-
colouring, which is also a proper k-colouring of GX — x. This colouring
can be extended in a proper k-colouring of G¥ | by assigning to = a colour

not assigned to any of its £ — 1 neighbours. O]

Corollary 2. If (G, w) is an edge-weighted graph, then T(G,w) < A(G\
E(Gy),w).

Transformation

In this section, we prove that the THRESHOLD IMPROPER COLOURING
problem can be transformed into a problem mixing proper and improper
colouring. More precisely, we prove the following:

Theorem 8. Let (G, w) be an edge-weighted graph where w is an integer-
valued function, and let k be a positive integer. We can construct an edge-
weighted graph (G*,w*) such that w*(e) € {1, M} for any e € E(G*),
satisfying Ty (G, w) = T (G*,w*), where M =143y w(e).

Proof. Consider the function f(G,w) = > c p@yuw(e)emy(wle) = 1).

If f(G,w) = 0, all edges have weight either one or M and G has
the desired property. In this case, G* = G. Otherwise, we construct
a graph G’ and a function w’ such that Tp(G',w') = Ty(G,w), but
f(G" W) = f(G,w) — 1. By repeating this operation f(G,w) times
we get the required edge-weighted graph (G*, w*).

In case f(G,w) > 0, there exists an edge e = uv € E(G) such that
2 <w(e) < M. G is obtained from G by adding two complete graphs
on k — 1 vertices K* and K" and two new vertices ' and v'. We join u
and ' to all the vertices of K" and v and v’ to all the vertices of K.
We assign weight M to all these edges. Note that, v and ' (v and ')
always have the same colour, namely the remaining colour not used in
K" (resp. K").

We also add two edges uv’ and u'v both of weight 1. The edges of G
keep their weight in G’, except the edge e = uv whose weight is decreased
by one unit, i.e. w’'(e) = w(e) — 1. Thus, f(G',w') = f(G,w) — 1 as we
added only edges of weights 1 and M and we decreased the weight of e
by one unit.

Now consider a weighted ¢-improper k-colouring ¢ of (G,w). We
produce a weighted t-improper k-colouring ¢’ of (G',w’) as follows: we
keep the colours of all the vertices in G, we assign to v’ (v') the same
colour as u (resp. v), and we assign to K* (resp. K") the k — 1 colours
different from the one used in u (resp. v).

Conversely, from any weighted improper k-colouring ¢ of (G',w'),
we get a weighted improper k-colouring ¢ of (G, w) by just keeping the
colours of the vertices that belong to G.

For such colourings ¢ and ¢ we have that I.(G,w,c) = I.(G', v,),
for any vertex x of G different from v and v. For x € K" U K",
I,(G",w',d) = 0. The neighbours of u with the same colour as u
in G’ are the same as in G, except possibly v which has the same
colour of u if, and only if, v has the same colour of u. Let ¢ = 1
if v has the same colour as u, otherwise ¢ = 0. As the weight of
uv decreases by one and we add the edge uv’ of weight 1 in G', we

get I,(G",w') = I,(G,w,c) — e + w'(u,v")e = I,(G,w,c). Similarly,
w,c). Finally, I,(G',w') = I,(G v, d) = e
w(u,v) — 1)e and so L, (G",w',d) < I,(G' W',)
I,(G',w',). In summary, we have

and therefore Ty,(G,w) = T,(G', w'). O

In the worst case, the number of vertices of G* is n + m(Winar — 1)2k
and the number of edges of G* is m + m(wpe, — 1)[(k +4)(k — 1) + 2]
with n = |[V(GQ)|, m = |E(G)| and Wye, = Maxeepc) w(e).

In conclusion, this construction allows to transform the THRESH-
OLD IMPROPER COLOURING problem into a problem mixing proper and
improper colouring. Therefore the problem consists in finding the min-
imum [such that a (non-weighted) l-improper k-colouring of G* exists
with the constraint that some subgraphs of G* must admit a proper
colouring. The equivalence of the two problems is proved here only for
integers weights, but it is possible to adapt the transformation to prove
it for rational weights.

A.4 Squares of Particular Graphs

As mentioned in the introduction, WEIGHTED IMPROPER COLOURING
is motivated by networks of antennas similar to grids [AAGT05]. In these
networks, the noise generated by an antenna undergoes an attenuation
with the distance it travels. It is often modelled by a decreasing function
of d, typically 1/d* or 1/(2¢71).

Here we consider a simplified model where the noise between two
neighbouring antennas is normalised to 1, between antennas at distance
two is 1/2 and 0 when the distance is strictly greater than two. Study-
ing this model of interference corresponds to study the WEIGHTED IM-
PROPER COLOURING of the square of the graph G, that is the graph
G? obtained from G by joining every pair of vertices at distance two,
and to assign weights we(e) = 1, if e € E(G), and wy(e) = 1/2, if
e € E(G*) \ E(G). Observe that in this case the interesting threshold
values are the non-negative multiples of 1/2.

Figure shows some examples of colouring for the square grid.
In Figure [A.2B] each vertex x has neither a neighbour nor a vertex at
distance two coloured with its own colour, so I,(G? ws,c¢) = 0 and G?
admits a weighted 0-improper 5-colouring. In Figure [A.2d each vertex
x has no neighbour with its colour and at most one vertex of the same
colour at distance 2. So I.(G? wy,c) = 1/2 and G? admits a weighted
0.5-improper 4-colouring.

For any t € R,, we determine the weighted t-improper chromatic
number for the square of infinite paths, square grids, hexagonal grids
and triangular grids under the interference model wy,. We also present
lower and upper bounds for x;(T?, ws), for any tree T and any threshold
t.

Infinite paths and trees

In this section, we characterise the weighted ¢t-improper chromatic num-
ber of the square of an infinite path, for all positive real ¢t. Moreover, we
present lower and upper bounds for x;(T?, w,), for a given tree 7.

Theorem 9. Let P = (V, E) be an infinite path. Then,

3, if0<t<l;
xe(P2owy) =42, ifl<t<3;
1, if3<t.

Proof. Let V.=A{v; | i € Z} and E = {(v;—1,v;) | i € Z}. Each vertex of
P has two neighbours and two vertices at distance two. Consequently,
the equivalence x;(P?,wy) = 1 if, and only if, ¢ > 3 holds trivially.

There is a 2-colouring ¢ of (P?,w,) with maximum interference 1 by
just colouring v; with colour (i mod 2) + 1. So x¢(P* wq) < 2 if t > 1.
We claim that there is no weighted 0.5-improper 2-colouring of (P?, wy).
By contradiction, suppose that ¢ is such a colouring. If ¢(v;) = 1, for
some i € Z, then c¢(v;—1) = c(vi41) = 2 and ¢(v;—2) = ¢(vi42) = 1. This
is a contradiction because v; would have interference 1.

Finally, the colouring c¢(v;) = (i mod 3) + 1, for every ¢ € Z, is a
feasible weighted O-improper 3-colouring. O]

Theorem 10. Let T = (V, E) be a (non-empty) tree. Then, [A(T%M-‘ +

2t+1
Sl < [5051] 4

Proof. The lower bound is obtained by two simple observations. First,
Xi(H,w) < x4(G,w), for any H C G. Let T be a tree and v be a node
of maximum degree in 7. Then, observe that the weighted t-improper
chromatic number of the subgraph of 72 induced by v and its neighbour-
hood is at least [A(gz:lw} + 1. Indeed, the colour of v can be assigned to
at most |t| vertices on its neighbourhood. Any other colour used in the
neighbourhood of v cannot appear in more than 2t + 1 vertices because

each pair of vertices in the neighbourhood of v is at distance two.

Let us look now at the upper bound. Choose any node r € V' to be
the root of T'. Colour r with colour 1. Then, by a breadth-first traversal
in the tree, for each visited node v colour all the children of v with the
(%&T—FW colours different from the ones assigned to v and to its parent
in such a way that at most 2t + 1 nodes have the same colour. This is
a feasible weighted t-improper k-colouring of T2, with k < [%2;11 + 2,
since each vertex interferes with at most 2¢ vertices at distance two which
are children of its parent. m

For a tree T and the weighted function w?, Theorem provides upper
and lower bounds on x;(T?, ws), but we do not know the computational
complexity of determining x; (772, ws).

Grids

In this section, we show the optimal values of x;(G?,w,), whenever G is
an infinite square, hexagonal or triangular grid, for all the possible values
of t.

Square Grid

The square grid is the graph & in which the vertices are all integer linear
combinations ae; + beg of the two vectors e; = (1,0) and ey = (0, 1), for
any a,b € Z. Each vertex (a,b) has four neighbours: its down neighbour
(a,b—1), its up neighbour (a,b-+ 1), its right neighbour (a+ 1,b) and its
left neighbour (a — 1,b) (see Figure [A.2a]).

Theorem 11.

if t =0;

if t = 0.5;
if 1 <t <3;
, if3<t<8;
if 8 < t.

Xt(627 wQ) =

N W = O

\)

Proof. If t = 0, then the colour of vertex (a,b) must be different from
the ones used on its four neighbours. Moreover, all the neighbours have
different colours, as each pair of neighbours is at distance two. Con-
sequently, at least five colours are needed. The following construction
provides a weighted O-improper 5-colouring of (&2, ws,): for 0 < j < 4,
let A; ={(J,0)+a(5e1)+b(2e;1 +ley) | Va,b € Z}. For 0 < j < 4, assign
the colour j + 1 to all the vertices in A; (see Figure [A.2D)).

When t = 0.5, we claim that at least four colours are needed to colour
(&2, w,). The proof is by contradiction. Suppose that there exists a
weighted 0.5-improper 3-colouring of it. Let (a,b) be a vertex coloured
1. None of its neighbours is coloured 1, otherwise (a, b) has interference
1. If three neighbours have the same colour, then each of them will have
interference 1. So two of its neighbours have to be coloured 2 and the two
other ones 3 (see Figure[A.3a]). Now consider the four nodes (a—1,b—1),
(a—1,b4+1), (a+1,b—1) and (a+ 1,b+ 1). For all configurations, at
least two of these four vertices have to be coloured 1 (the ones indicated
by a * in Figure . But then (a,b) will have interference at least
1, a contradiction. A weighted 0.5-improper 4-colouring of (&2, w,) can
be obtained as follows (see Figure : for 0 < j < 3, let B; =
{(4,0) +a(der) +b(3e1 +2¢2) | Va,b € Z} and B} = {(j +1,2) +a(de)) +
b(3e1 + 2¢e3) | Ya,b € Z}. For 0 < 7 < 3, assign the colour j + 1 to all
the vertices in B; and in B.

If t = 1, there exists a weighted 1-improper 3-colouring of (&2, ws)
given by the following construction: for 0 < j < 2, let C; = {(4,0) +
a(3e1) +b(e; +e2) | Ya,b € Z}. For 0 < j < 2, assign the colour j + 1 to
all the vertices in Cj.

Now we prove by contradiction that for ¢ = 2.5 we still need at least
three colours in a weighted 2.5-improper colouring of (&2, w,). Consider
a weighted 2.5-improper 2-colouring of (&2, wy) and let (a,b) be a ver-

(a—1,b) (a+1,0)

Figure A.2: Optimal colourings of (&2 ws): (b) weighted O-improper 5-
colouring of (&2, wy), (c) weighted 0.5-improper 4-colouring of (&2, wy), and
(d) weighted 3-improper 2-colouring of (&2, w,).

Figure A.3: Lower bounds for the square grid: (a) if ¢ < 0.5 and k < 3, there is
no weighted t-improper k-colouring of (&2, ws); (b) the first case when t < 2.5
and k < 2, and (c) the second case.

tex coloured 1. Vertex (a,b) has at most two neighbours of colour 1,
otherwise it will have interference 3. We distinguish three cases:

1. Exactly one of its neighbours is coloured 1; let (a — 1,b) be this
vertex. Then, the three other neighbours are coloured 2 (see Fig-
ure [A.3b). Consider the two sets of vertices {(a — 1,b — 1), (a +
1,b—1),(a,b—2)} and {(a — 1,0+ 1),(a + 1,0+ 1), (a,b + 2)}
(these sets are surrounded by dotted lines in Figure ; each
of them has at least two vertices coloured 1, otherwise the vertex
(a,b—1) or (a,b+ 1) will have interference 3. But then (a, b) hav-
ing four vertices at distance two coloured 1 has interference 3, a
contradiction.

2. Two neighbours of (a,b) are coloured 1.

a) These two neighbours are opposite, say (a —1,b) and (a+ 1, b)
(see Figure left). Consider again the two sets {(a — 1,b—
1), (a+1,b6—1),(a,b—2)} and {(a—1,b+1), (a+1,b+1), (a, b+

2)} (these sets are surrounded by dotted lines in Figure [A.3(]
left); they both contain at least one vertex of colour 1 and
therefore (a,b) will have interference 3, a contradiction.

b) The two neighbours of colour 1 are of the form (a,b— 1) and
(a — 1,b) (see Figure right). Consider the two sets of
vertices {(a+1,b—1),(a+1,b+1),(a+2,b)} and {(a+1,b+
1), (a—1,b+1),(a,b+2)} (these sets are surrounded by dotted
lines in Figure right); these two sets contain at most one
vertex of colour 1, otherwise (a,b) will have interference 3.
Moreover, each of these sets cannot be completely coloured 2,
otherwise (a + 1,b) or (a,b+ 1) will have interference at least
3. So vertices (a+1,b—1), (a+2,b), (a,b+2) and (a—1,b+1)
are of colour 2 and the vertex (a+1,b+ 1) is of colour 1. But
then (a—2,b) and (a—1,b—1) are of colour 2, otherwise (a, b)
will have interference 3. Thus, vertex (a —1,) has exactly one
neighbour coloured 1 and we are again in Case 1.

3. All neighbours of (a,b) are coloured 2. If one of these neighbours
has itself a neighbour (distinct from (a,b)) of colour 2, we are in
Case 1 or 2 for this neighbour. Therefore, all vertices at distance
two from (a,b) have colour 1 and the interference in (a,b) is 4, a
contradiction.

A weighted 3-improper 2-colouring of (&% w;) can be obtained as

follows: a vertex of the grid (a,b) is coloured with colour (|%| + [2]

mod 2) + 1, see Figure [A.2d] i i
Finally, since each vertex has four neighbours and eight vertices at

distance two, there is no weighted 7.5-improper 1-colouring of (&2, w-)

and, whenever ¢ > 8, one colour suffices. O

Hexagonal Grid

There are many ways to define the system of coordinates of the hexag-
onal grid. Here, we use grid coordinates as shown in Figure The
hexagonal grid graph is then the graph $) whose vertex set consists of
pairs of integers (a,b) € Z* and where each vertex (a, b) has three neigh-
bours: (a — 1,b), (a + 1,b), and (a,b+ 1) if a 4+ b is odd, or (a,b — 1)
otherwise.

Theorem 12.

if 0 <t <1
if 1 <t <2
if 2 <t <6;
if 6 < t.

= N W

Figure A.4: Weighted 0-improper 4-colouring of (£2,ws). Left: Graph with
coordinates. Right: Corresponding hexagonal grid in the euclidean space.

Figure A.5: (a) weighted 1-improper 3-colouring of ($2,ws) and (b) weighted
2-improper 2-colouring of (2, ws).

Proof. Note first, that when ¢t = 0, at least four colours are needed to
colour the grid, because a vertex and its neighbourhood in $ form a
clique of size four in $%. The same number of colours are needed if we
allow a threshold ¢ = 0.5. To prove this fact, let A be a vertex (a,b) of $
and B = (a—1,b), C = (a,b—1) and D = (a+1,b) be its neighbours in
$. Denote by G = (a—2,b), E=(a—1,0—1), F=(a—2,b—1), H=
(a+1,b—1),I = (a+2,b—1) and J = (a+1,b—2) (see Figure[A.64). By

contradiction, suppose there exists a weighted 0.5-improper 3-colouring
of $2. Consider a node A coloured 1. Its neighbours B, C, D cannot be
coloured 1 and they cannot all have the same colour. W.l.o.g., suppose
that two of them B and C have colour 2 and D has colour 3. Then F,
F and G cannot be coloured 2 because of the interference constraint in
B and C. If F is coloured 3, then G and E are coloured 1, creating
interference 1 in A. So F' must be coloured 1 and G and FE must be
coloured 3. Then, H can be neither coloured 2 (interference in C') nor
3 (interference in E). So H is coloured 1. The vertex I is coloured 3,
otherwise the interference constraint in H or in C' is not satisfied. Then,
J can receive neither colour 1, because of the interference in H, nor
colour 2, because of the interference in C', nor colour 3, because of the
interference in I.

There exists a construction attaining this bound and the number of
colours, i.e. a O-improper 4-colouring of (£?,w,) as depicted in Fig-
ure We define for 0 < 5 < 3 the sets of vertices A; = {(5,0) +
a(4ey) + b(2e; + e9)|Va,b € Z}. We then assign the colour j + 1 to
the vertices in A;. This way no vertex experiences any interference as
vertices of the same colours are at distance at least three.

For ¢t = 1.5 it is not possible to colour the grid with less than three
colours. By contradiction, suppose that there exists a weighted 1.5-
improper 2-colouring. Consider a vertex A coloured 1. If all of its neigh-
bours are coloured 2, they have already interference 1, so all the vertices
at distance two from A need to be coloured 1; this gives interference 3
in A. Therefore one of A’s neighbours, say D, has to be coloured 1 and
consider that the other two neighbours B and C are coloured 2. B and
C have at most one neighbour of colour 2. It implies that A has at least
two vertices at distance two coloured 1. This is a contradiction, because
the interference in A would be at least 2 (see Figure [A.6b)).

Figure presents a weighted 1-improper 3-colouring of (2, wy).
To obtain this colouring, let B; = {(j,0)+a(3e1)+b(e1+e2) | Va,b € Z},
for 0 < j < 2. Then, we colour all the vertices in the set B; with colour
Jj+1, forevery 0 < 5 < 2.

For ¢ < 6, it is not possible to colour the grid with one colour. As
a matter of fact, each vertex has three neighbours and six vertices at
distance two in §). Using one colour leads to an interference equal to 6.
There exists a 2-improper 2-colouring of the hexagonal grid as depicted

Figure A.6: Lower bounds for the hexagonal grid. (a) when ¢t < 0.5 and k£ < 3,
there is no weighted t-improper k-colouring of ($2,ws); (b) vertices coloured
2 force a vertex coloured 1 in each ellipse, leading to interference 2 in central
node.

in Figure . We define for 0 < j < 1 the sets of vertices C; =
{(4,0) + a(2e1) + bes|Va,b € Z}. We then assign the colour j + 1 to the
vertices in Cj.

]

Triangular Grid

The triangular grid is the graph T whose vertices are all the integer linear
combinations afi + bfs of the two vectors f; = (1,0) and fo = (3, ‘/75)
Thus we may identify the vertices with the ordered pairs (a, b) of integers.
Each vertex v = (a,b) has six neighbours: its right neighbour (a + 1,b),
its right-up neighbour (a,b+1), its left-up neighbour (a—1,b+1), its left
neighbour (a — 1,b), its left-down neighbour (a,b— 1) and its right-down
neighbour (a +1,b— 1) (see Figure [A.§).

Theorem 13.

ift =0;

if t =0.5;

ift =1,

if 1.5 <t <3;
if 3 <t <5
if b <t <12
if 12 < t.

Xt(‘32,w2) =

— N W e Ot O

Proof. The full proof of this theorem comprises 45 pages of technical
details. Tt can bee found in [ABGT1la]. Here, we only present the
optimal constructions.

There is a weighted 0-improper 7-colouring of (%2, w,) as depicted in
Figure [A.7al This colouring can be obtained by the following construc-
tion: for 0 < j <6, let A; = {(5,0) + a(7f1) +b(2f1 + f2) | Va,b € Z}.
For 0 < j <6, assign the colour j + 1 to all the vertices in A;.

A weighted 0.5-improper 6-colouring of (%2, w,) can be obtained by
the following construction (see Figure : for 0 < j <11, let B; =
{(5,0) + a(12f1) + b(2f1 + f2) | Va,b € Z}. For 0 < j < 5, assign the
colour j + 1 to all the vertices in B;, Bs with colour 2, B; with colour
1, Bg with colour 4, By with colour 3, Bjy with colour 6 and By; with
colour 5.

To obtain a weighted 1-improper 5-colouring of (T2, ws), for 0 < j
4, let C; = {(4,0) + a(5f1) + b(2f1 + fo) | Ya,b € Z}. For 0 < j < 4,
assign the colour j + 1 to all the vertices in C;. See Figure [A.7d

(%2, wy) has a weighted 1.5-improper 4-colouring as depicted in Fig-
ure [A.7d] Formally, this colouring can be obtained by the following con-
struction: for 0 < j <3, let D; = {(4,0)+a(4f1)+b(fi+2f2) | Va,b € Z};
then assign colour 4 to all the vertices in Dy, 1 to all the vertices in Dy,
3 to all the vertices in Dy and 2 to all the vertices in D3. Now, for
0<j <3, let D)={(j,1) +a(4f1) +b(f1 +2f2) | Va,b € Z}. Then, for
0 < j < 3, assign colour j + 1 to all the vertices in D;.

For a weighted 3-improper 3-colouring of (T2, ws) set, for 0 < j < 2,
E; = {(4,0) + a(3f1) + b(f2) | Ya,b € Z}. Then, for 0 < j < 2, assign
the colour j 4 1 to all the vertices in E;. See Figure [A.7¢

B8 850gacagachchy
DO 0B RCRcRef ol a
S R
e
‘.‘.‘.’.‘.‘.‘.‘."'.'.'
& K23 B LD

@-@~3-(6)5 %)
IaSgSaNe ey Ry e Rgele
S B B2 I B D
55 (B BT 36 (5 T
G an I Eaec 80 ECeerer 8r
B BT S
acaCaon acacess

Gag8. o8 cE

A S aTaaaaa
Oyl A pad had hal o o dl o™ o o)
RIG858,Rongacasoncate sy

&3] @ 35283 5
e enecste s ecace:
BT 35 D-@ T3

R cu Gegacace acusacech
S a G a g n a RoRC ot on

eRetetgngagey g acnce,
e8g8 gt 805808,8 8,
o808 808c8, oReN

(o5 o o5 ond o5 o i54 ¢

et etatetatanitanceosil
ene et tedetedetesatene
B Bgbataba by by bataba®
& WX WX WAL WX RAZD
Cagedecacacedacace e
ogagngngagndagande
OB T-O- ST
(e) (®)

Figure A.7: Optimal colourings of (T2 ws): (a) weighted O-improper 7-
colouring, (b) weighted 0.5-improper 6-colouring, (c¢) weighted 1-improper
5-colouring, (d) weighted 1.5-improper 4-colouring, (e) weighted 3-improper
3-colouring, and (f) weighted 5-improper 2-colouring.

g BaSgleBsale B Balety
B R A A
- BT D AT DB B DTS
a e alalale

(a—1,b+1) (a,b+1)

Figure A.8: Notations used in proofs of existence of weighted improper colour-
ings of (T2, wy).

A weighted 5-improper 2-colouring of (%%, ws,) is obtained as follows:
for 0 < j <1, let F; = {(4,0) +a(2f1) + b(f1 +2f2) | Va,b € Z} and
Fi={(j —1,1) +a(2f1) + b(f1 +2f) | Ya,b € Z}. Then, for 0 < j < 1,
assign the colour j+1 to all the vertices in Fj and in Fj. See Figure

O

A.5 Integer Linear Programming Formulations,
Algorithms and Results

In this section, we look at how to solve the WEIGHTED IMPROPER
COLOURING and THRESHOLD IMPROPER COLOURING for general in-
stances inspired by the practical motivation. We present integer linear
programming models for both problems. These models can be solved
exactly for small sized instances using solvers like CPLEX[T For larger
instances, the solvers can take a prohibitive time to provide exact solu-
tions. It is usually possible to obtain a sub-optimal solution stopping
the solver after a limited time. If the time is too short, the quality of
the solution may be unsatisfactory. Thus, we introduce two algorithmic
approaches to find good solutions for THRESHOLD IMPROPER COLOUR-
ING in a short time: a simple polynomial-time greedy heuristic and an
exact Branch-and-Bound algorithm. We compare the three methods on
different sets of instances, among them Poisson-Voronoi tessellations as
they are good models of antenna networks [BKLZ97, (GK00, HAB™09].

"http://www-01.ibm.com /software/integration /optimization/cplex-optimizer,/

Integer Linear Programming Models

Given an edge-weighted graph G = (V,E,w), w : £ — RY, and a
positive real threshold ¢, we model WEIGHTED IMPROPER COLOURING
by using two kinds of binary variables. Variable z;, indicates if vertex
¢ is coloured p and variable ¢, indicates if colour p is used, for every
1 <i<mnand 1l <p<I where [is an upper bound for the number of
colours needed in an optimal weighted ¢-improper colouring of GG. [can
be trivially chosen of value n, but a better value may be given by the
results of Section [A.3l The model follows:

min 2221 p
subject to
D ije and j2i WG 1) Tjp ST+ M(L—xyp) VieV,1<p<I
Cp > Tip VieV,1<p<lI
Zi}:l Tip = 1 VieV
T, € {0,1} VieV,1<p<lI
¢, €40,1} 1<p<li

where M is a large integer. For instance, it is sufficient to choose M >
ZquE 'LU(’LL, U).

For THRESHOLD IMPROPER COLOURING, given an edge-weighted
graph G = (V,E,w), w : E — R, and a number of possible colours
k € IN*, the model we consider is:

min t
subject to
D ijer and jpi WO)2 <+ M(1—2y) VieV,1<p<l
ZI;:1 Ty =1 VieV
xiyp € {0,1} VieV,1<p<lI

We give directly these models to the ILP solver CPLEX without
using any preprocessing or any other technique to speed the search for
an optimal solution.

Algorithmic approach

In this section, we show a Branch-and-Bound algorithm and a ran-
domised greedy heuristic to tackle THRESHOLD IMPROPER COLOURING.

Both are based on common procedures to determine the order in which
vertices are coloured and colours are tried for a single vertex. Although,
the Branch-and-Bound needs an ordering of the vertices to be coloured
as input while the heuristic colours the vertices at the same time the
order is being processed.

Order of vertices and colours

The order in which the vertices are chosen to be coloured follows es-
sentially the same idea as the DSATUR algorithm, created by Daniel
Brélaz [Bré79).

Consider a graph G = (V, E,w), w : E — R and a partial colouring
c:U—{1,...,k}, where U C V. We say that vertex v is coloured if v €
U, otherwise it is uncoloured. We define the total potential interference
in vertex v to be:

Iy = > w(u, v),

{u€V]uveE and v¢U}

which is the sum of interferences for all colours induced in v by all its
already coloured neighbours.

The idea for both algorithms is to first colour vertices with highest
total potential interference. Whenever more than one vertex has the
highest total potential interference, one of them is chosen at random.
At the beginning, when all vertices have ' = 0, one of the highest
weighted degree is chosen instead.

Consider the following steps:

1. Colour a random vertex with maximal sum of incoming weights.
2. Colour a random vertex with maximal total potential interference.
3. If all vertices all coloured, stop. Otherwise, repeat step 2.

Note that the total potential interference does not depend on the
actual colours assigned to the vertices. Thus, in order to decide which
is the next vertex to be coloured, both algorithms, Branch-and-Bound
and heuristic, use these three steps. However, the Branch-and-Bound
algorithm needs an order to colour the vertices as input. So, we decide
which order to give to the Branch-and-Bound algorithm as input by
running these three steps and using a single colour.

The procedure above specifies the order of vertices. For the order of
colours to try, we define the potential interference in vertex v for colour

T as:
Iyse= Z w(u,v)

{ueV]uveE and c(v)=x}

Anytime one of our algorithms colours a vertex, it tries the colours in
order of increasing potential interference.

Branch-and-Bound Algorithm

Having an ordering procedure for both vertices and colours, we construct
a simple Branch-and-Bound algorithm using them. The order of vertices
to colour is fixed before running the algorithm, following the procedure
in Section [A.5] Then, the ordered vertices are coloured by a recursive
function that tries all the possible colours for each vertex as far as no
interference constraint is violated. The order in which the colours are
tried is also presented in the previous section. Our algorithm outputs all
the feasible colourings it finds and, as all the possible colours are tried,
the one using the minimum number of colours is an optimal one.
Here you have a pseudo code for the algorithm:

Algorithm 1: Branch&Bound
input : edge-weighted graph (G, w), number of colours k, partial
colouring ¢, upper bound ¢ and corresponding colouring ¢,
order in which vertices should be coloured O
output: new upper bound ¢’ and corresponding colouring ¢’
if max,ey I,(G,w,c) >t then
L return ¢t and ¢

if all vertices are coloured in ¢ then
| return(max,cy I,(G,w, c) and ¢)

v = next vertex uncoloured in ¢ according to O
for x € possible colours in order of increasing I., . do

| (t and ¢) = Branch&Bound(G, k, cN (v < z), t, ¢, O)
return ¢t and ¢

Where by ¢N (v < x) we mean a partial colouring where colour of vertex
v (which was uncoloured in ¢) is set to x, and colours of all other vertices

are as in ¢. The algorithm is first called with all vertices uncoloured and
t = oo.

This algorithm displays a problematic behaviour. Imagine the partial
colouring of the first few vertices yields good results locally, but implies
a suboptimal interference at a more distant part of the graph. As the
solution search takes exponential time in number of vertices, it is easy to
envision that the time required to change the colouring of first vertices
can be prohibitively long.

Greedy Heuristic

Here we propose a randomised greedy heuristic that, repeated multiple,
but not exponentially many times, finds similar solutions to the above
Branch-and-Bound without the mentioned problem. On the other hand,
there are some solutions that are impossible to find with it, no matter
the number of tries. An example of such an unobtainable solution is the
optimal colouring of infinite square grid with 2 colours.

Algorithm 2: Levelling Heuristic

input : edge-weighted graph (G, w), number of colours k, upper
bound ¢
output: failed or a colouring ¢

cv)=0 YveV
forie{1,...,|V]} do
v = next, in order of increasing I, on, vertex uncoloured in ¢

for x € possible colours in order of increasing 1., do
if colouring v with x does not cause max,cy I,(G,w,c) >t then

clv) ==z
break the inner loop

if ¢(v) =0 then
L return failed

return c

Note that there is substantial randomness in this algorithm. The
first vertex is the one of the ones with highest weighted degree. In the
extreme case of regular graphs, this already means any vertex at random.
If we use the simple interference function defined in Section [A.4] then
the second vertex is a random neighbour of the first vertex. Any time

there are multiple vertices with maximum total potential interference,
we choose one at random. Similarly, the choice of colours is also random
in case of equal potential interference.

Above algorithm is first called with ¢ = oco. Whenever it returns
a colouring, we set t = max,cy [,(G,w,c) for further iterations. It is
repeated for a given number of times, or until a time limit is reached.
In all instances in the following sections the program is constrained by a
time limit. This means that the algorithm is called for an unknown, but
probably big number of times (e.g. for a 6-regular grid of 1024 vertices
the program performs on average over 500 runs of the algorithm per
second).

As a randomised greedy colouring heuristic, it has to be ran multiple
times to achieve satisfactory results. This is not a practical issue due
to low computational cost of each run. The local immutable colouring
decision is taken in time O(kA). Then, after each such decision, the
interference has to be propagated, which takes linear time in the vertex
degree. This gives a computational complexity bound O(knA)-time.

Validation

In this section we validate our algorithmic approaches at THRESHOLD
IMPROPER COLOURING, by examining performance of their implemen-
tations. Tests cover a wide range of parameters, mostly on Delaunay

graphs (see section [A.5)).

Implementation

The ILP model is constructed out of the input graph and given directly
to the CPLEX ILP solver. Branch-and-Bound algorithm is implemented
in a straightforward way in the Python programming language. The
greedy heuristic has a highly optimised implementation in the Cython
programming languagef]

In results displayed below, all programs are run simultaneously on
the same quad-core enterprise-grade CPU. Both the Branch-and-Bound
and greedy heuristic are limited to a single core. CPLEX is allowed to
both the remaining cores.

2This is the faster implementation envisioned in [ABGT11b].

Delaunay graph, n=2000 vertices, k=5 colors
T

35
o, - -
S 30 \ n
L o5t \ E
[0}
22| \ B
o
& 15[E
S 10} R
=
= |
Lo5E
0 il e
1071 100 10! 102 103
[- Time limit [seconds]
—— Branch & Bound - - - Heuristc — — IP
(a) Example Delaunay graph, dotted lines de- (b) Over time
limit corresponding Voronoi diagram cells
5 Delaunay graph, n=2000 vertices, k=2 colors - Delaunay graph, k=2 colors, /=60 sec
_E _________\ T g T T T T T - = -
5 30 < g s 4
< 95 | \ . - i
[0] \ [0}
2 20 |- . g i
o \ o
T 15| 4 8 |
§ T e I P t; _ - - :&_, i
= - [
T 5t R v 7

0 N | N el

1071
[- Time limit [seconds]
- —IP

—— Branch & Bound - - - Heuristic

(c) Over time

100 10! 102 103

Delaunay graph, N=2000 vertices, L=60 sec
T

t — interference found

k — number of colors

—— Branch & Bound - - - Heuristc — — IP

(e) Over colours

—— Branch & Bound - - -

t — interference found

—— Branch & Bound - - -

I I I I I
1000 1500 2000 2500 3000 3500

n - number of vertices

0 |
0 500
Heuristic — — IP

(d) Over size

_ Erdos-Renyi gr. p=0.1, N=500 vertices, L=120 s
160 /\ N T T T T
140 AN - b
120
100
80
60
40
20

0 I I I I I I
2 4 6 8 10 12 14 16

k — number of colors

Heuristic — — IP

(f) Over colours

Figure A.9: Results comparison for Levelling heuristic, Branch-and-Bound
algorithm and Integer Linear Programming Formulation.

Graphs

We consider random Delaunay graphs (dual of Voronoi diagram). This
kind of graphs is an intuitive approximation of a network of irregular

cells. To obtain a graph in this class, take a set of random points uni-
formly distributed over a square. These represent the vertices of the
graph. To obtain the edges, compute a Delaunay triangulation. This can
be done e.g. with Fortune’s algorithm described in [For87] in O(nlogn)
time.

See Figure for a depiction of a fragment of such graph. Vertices
are arranged according to the positions of original random points. Dotted
lines delimit corresponding Voronoi diagram cells. Only edges between
vertices visible on the illustration are displayed.

Note that, to follow the model of the physical motivation, we are
dealing with very sparse graphs. The average degree in Delaunay graph
G converges to six (this results follows from the observation that G is
planar and triangulated, thus |E(G)| = 3|V(G)| — 6 by Euler’s formula).
To get an idea about the proposed algorithms’ performance in denser
graphs, we also run some tests on Erdos-Rényi graphs with expected
degree equal to 50.

The interference model we consider in all experiments is the one de-
scribed in Section [A.4} adjacent nodes interfere by 1 and nodes at dis-
tance two interfere by 1/2.

Results

Figure shows a performance comparison of the above-mentioned al-
gorithms. For all the plots, each data point represents an average over a
number (between 24 and 100) of different graphs. The experiment pro-
cedure is as follows. For each graph size considered in an experiment,
a number of graphs is generated. Each of those graphs is transformed
into a set of instances, one for each desired number of allowed colours.
All the programs are run on each instance, once for each desired value
of time limit. Finally, a data point is created with results and all the
parameters, averaged over the number of graphs.

Figures [A.9b] and [A.9¢| plot how results for a problem instance get
enhanced with increasing time limits. Plot shows how well all the
programmes scale with increasing graph sizes. Plots [A.9¢ and [A 9 show
decreasing interference along increasing the number of colours allowed.

One immediate observation about both the heuristic and Branch-and-
Bound algorithm is that they provide good solutions in relatively short
time. On the other hand, with limited time, they fail to improve up

to optimal results, especially with a low number of allowed colours. An
example near-optimal solution found in around three minutes was not
improved by Branch-and-Bound in over six days.

The heuristic, is able to provide good results in sub-second times and
scales better with increasing graph sizes than the Branch-and-Bound. It
is also not prone to spending a lot time exploring a sub-optimal branch
of a decision tree. Still, in many cases it is unable to obtain optimal
results and displays a worse end result than an integer linear program,
given enough time.

Solving the ILP does not scale with increasing graph sizes as well
as our simple algorithms. Furthermore, Figure reveals one problem
specific to ILP. When increasing the number of allowed colours, obtaining
small interferences gets easier. But this introduces additional constraints
in the formulation, thus increasing the complexity for a solver.

Proposed algorithms also work well for denser graphs. Figure
plots interferences for different numbers of colours allowed found by the
programs for an Erdos-Rényi graph with n = 500 and p = 0.1. This gives
us an average degree equal to 50. Both Branch-and-Bound and heuristic
programs achieve acceptable, and nearly identical, results. But the large
number of constraints makes the integer linear programming formulation
very inefficient.

A.6 Conclusion, Open Problems and Future
Directions

In this paper, we introduced and studied a new colouring problem,
WEIGHTED IMPROPER COLOURING. This problem is motivated by the
design of telecommunication antenna networks in which the interference
between two vertices depends on different factors and can take various
values. For each vertex, the sum of the interferences it receives should
be less than a given threshold value.

We first give general bounds on the weighted-improper chromatic
number. We then study the particular case of infinite paths, trees and
grids: square, hexagonal and triangular. For these graphs, we provide
their weighted-improper chromatic number for all possible values of t.
Finally, we propose a heuristic and a Branch-and-Bound algorithm to
find good solutions of the problem. We compare their results with the

one of an integer linear programming formulation on cell-like networks,
Poisson-Voronoi tessellations.

Many problems remain to be solved:

e The study of the grid graphs, we considered a specific function
where vertices at distance one interfere by 1 and vertices at distance
two by 1/2. Other weight functions should be considered. e.g. 1/d?
or 1/(2¢71), where d is the distance between vertices.

e Other families of graphs could be considered, for example hyper-
cubes.

e We showed that the THRESHOLD IMPROPER COLOURING problem
can be transformed into a problem with only two possible weights on
the edges 1 and oo, that is a mix of proper and improper colouring.
This simplify the nature of the graph interferences but at the cost
of an important increase of instance sizes. We want to further
study this. In particular, let G = (V, E,w) be an edge-weighted
graph where the weights are all equal to 1 or M. Let G,; be the
subgraph of G induced by the edges of weight M; is it true that if

A(Gar) << A(G), then vi(G,w) < x+(G) < [%] ? A similar
result for L(p, 1)-labelling [HRS08] suggests it could be true.

Note that the problem can also be solved algorithmically for other
classes of graphs and for other functions of interference. We started
looking in this direction in [ABG™11a]. The problem can be expressed as
a linear program and then be solved exactly using solvers such as CPLEX
or Glpkﬂ for small instances of graphs. For larger instances, we propose
a heuristic algorithm inspired by DSATUR [Bré79] but adapted to the
specifics of our colouring problem. We used it to derive colouring with
few colours for Poisson-Voronoi tessellations as they are good models
of antenna networks [BKLZ97, [GK00, [HABT09]. We plan to further
investigate the algorithmic side of our colouring problem.

3http://www.gnu.org/software/glpk/

A.7 Bibliography

[AAGT05]

[ABG*11a]

[ABG*11b]

[AVHK*07]

[BKLZ97]

[Bré79]

[Bro41]

[COWS6]

S. Alouf, E. Altman, J. Galtier, J.F. Lalande, and C. Touati.
Quasi-optimal bandwidth allocation for multi-spot MFT-
DMA satellites. In INFOCOM 2005. 2/th Annual Joint
Conference of the IEEE Computer and Communications So-
cieties. Proceedings IEEFE, volume 1, pages 560-571. IEEE,
2005.

J. Araujo, J.-C. Bermond, F. Giroire, F. Havet, D. Maza-
uric, and R. Modrzejewski. Weighted Improper Colouring.
Research Report RR-7590, INRIA, 2011.

Julio Araujo, Jean-Claude Bermond, Frédéric Giroire,
Frédéric Havet, Dorian Mazauric, and Remigiusz Modrze-
jewski. Weighted improper colouring. In Costas Iliopoulos
and William Smyth, editors, Combinatorial Algorithms, vol-
ume 7056 of Lecture Notes in Computer Science, pages 1-18.
Springer Berlin / Heidelberg, 2011.

K.I. Aardal, S.P.M. van Hoesel, A.M.C.A. Koster, C. Man-
nino, and A. Sassano. Models and solution techniques for

frequency assignment problems. Annals of Operations Re-
search, 153(1):79-129, 2007.

F. Baccelli, M. Klein, M. Lebourges, and S. Zuyev. Stochas-
tic geometry and architecture of communication networks.
Telecom. Systems, 7(1):209-227, 1997.

D. Brélaz. New methods to color the vertices of a graph.
Communications of the ACM, 22(4):251-256, 1979.

R. L. Brooks. On colouring the nodes of a network. Mathe-
matical Proceedings of the Cambridge Philosophical Society,
37(02):194-197, 1941.

L. J. Cowen, R. H. Cowen, and D. R. Woodall. Defective
colorings of graphs in surfaces: Partitions into subgraphs of
bounded valency. Journal of Graph Theory, 10(2):187-195,
1986.

[CGJ95]

[CHS09]

[FLM+00]

[For87]

[GKO0]

[HAB*09]

[HRS08)]

[Kar72]

[Lov66]

[MS03]

L.J. Cowen, W. Goddard, and C.E. Jesurum. Defective col-
oring revisited. J. Graph Theory, 24:205-219, 1995.

R. Correa, F. Havet, and J-S. Sereni. About a Brooks-type
theorem for improper colouring. Australasian Journal of
Combinatorics, 43:219-230, 2009.

M. Fischetti, C. Lepschy, G. Minerva, G. Romanin-Jacur,
and E. Toto. Frequency assignment in mobile radio systems

using branch-and-cut techniques. European Journal of Op-
erational Research, 123(2):241-255, 2000.

S. Fortune. A sweepline algorithm for voronoi diagrams.
Algorithmica, 2(1):153-174, 1987.

P. Gupta and P.R. Kumar. The capacity of wireless
networks. Information Theory, IEEE Transactions on,
46(2):388-404, 2000.

M. Haenggi, J.G. Andrews, F. Baccelli, O. Dousse, and
M. Franceschetti. Stochastic geometry and random graphs
for the analysis and design of wireless networks. Selected Ar-
eas in Communications, IEEE Journal on, 27(7):1029-1046,
2009.

Frédéric Havet, Bruce Reed, and Jean-Sébastien Sereni.
L(2,1)-labelling of graphs. In Proceedings of the mnine-
teenth annual ACM-SIAM symposium on Discrete algo-
rithms, SODA 08, pages 621-630, Philadelphia, PA, USA,
2008. Society for Industrial and Applied Mathematics.

R. Karp. Reducibility among combinatorial problems. In
R. Miller and J. Thatcher, editors, Complexity of Computer
Computations, pages 85-103. Plenum Press, 1972.

L. Lovasz. On decompositions of graphs. Studia Sci. Math.
Hungar., 1:273-238, 1966.

C. Mannino and A. Sassano. An enumerative algorithm for
the frequency assignment problem. Discrete Applied Math-
ematics, 129(1):155-169, 2003.

[Wo0090]

[YehO6]

D. R. Woodall. Improper colorings of graphs. In R. Nelson
and R. J. Wilson, editors, Pitman Res. Notes Math. Ser.,
volume 218, pages 45—-63. Longman Scientific and Technical,
1990.

Roger K. Yeh. A survey on labeling graphs with a condition
at distance two. Discrete Mathematics, 306(12):1217 — 1231,
2006.

	Contents
	Introduction
	Motivation
	Network transmission taxonomy
	Content popularity and caching
	Content distribution models
	Metrics studied
	Techniques used
	Contributions
	Bibliography

	Energy Efficient Cache Provisioning
	Preliminary: modelling content flow over a network
	Preliminary: modelling energy consumption in a network
	Preliminary: algorithmic approach
	Publication
	Introduction
	Related Work
	Problem Description
	GCT Algorithm Description
	Results
	Conclusions
	Addendum: cache hierarchies and the filter effect
	Bibliography

	Energy Efficient Routing
	Preliminary: Linear programming
	Preliminary: rounding
	Publication
	Introduction
	Related Work
	Problem Modeling
	Instance generation
	Results
	Conclusions and further research
	Bibliography

	Maintaining Balanced Trees For Structured Distributed Streaming Systems
	Preliminary: live streaming overlay networks
	Publication
	Introduction
	Problem and Balancing Process
	Worst case analysis
	Adding an extra global knowledge to the nodes
	Simulations
	Conclusions and future research
	Bibliography

	Analysis of the Repair Time in Distributed Storage Systems
	Preliminary: Queues and Markov chains
	Publication
	Introduction
	System Description
	Preliminary: Impact of Disk Asymmetry
	The Queueing Model
	Results
	Experimentation
	Conclusion
	Bibliography

	Conclusions and perspectives
	Weighted Improper Colouring
	Publication
	Introduction
	General Results
	Squares of Particular Graphs
	Integer Linear Programming Formulations, Algorithms and Results
	Conclusion, Open Problems and Future Directions
	Bibliography

