S. Jacob, B. De-salvo, and L. Perniola, Integration of CVD silicon nanocrystals in a 32Mb NOR flash memory, Solid-State Electronics, vol.52, issue.9, pp.1452-1459, 2008.
DOI : 10.1016/j.sse.2008.04.032

Z. Liu, C. Lee, and V. Narayanan, Metal nanocrystal memories-part II: electrical characteristics, IEEE Transactions on Electron Devices, vol.49, issue.9, pp.1614-1622, 2002.
DOI : 10.1109/TED.2002.802618

K. Yano, I. Tomoyuki, and T. Hashimoto, Room-temperature single-electron memory, IEEE Transactions on Electron Devices, vol.41, issue.9, pp.1628-1638, 1994.
DOI : 10.1109/16.310117

A. G. Cullis, L. T. Canham, and P. D. , The structural and luminescence properties of porous silicon, Journal of Applied Physics, vol.82, issue.3, p.909, 1997.
DOI : 10.1063/1.366536

S. Cheylan and R. G. , Effect of hydrogen on the photoluminescence of Si nanocrystals embedded in a SiO2 matrix, Applied Physics Letters, vol.78, issue.9, p.1225, 2001.
DOI : 10.1063/1.1338492

M. Molinari, H. Rinnert, and M. Vergnat, Evolution with the annealing treatments of the photoluminescence mechanisms in a-SiNx:H alloys prepared by reactive evaporation, Journal of Applied Physics, vol.101, issue.12, p.123532, 2007.
DOI : 10.1063/1.2749283

F. L. Bregolin, M. Behar, U. S. Sias, and E. C. , Structural and photoluminescence properties of Si nanoclusters obtained by ion implantation into Si3N4 films, Journal of Luminescence, vol.131, issue.11, pp.2377-2381, 2011.
DOI : 10.1016/j.jlumin.2011.05.066

C. Delerue, G. Allan, and M. , Theoretical aspects of the luminescence of porous silicon, Physical Review B, vol.48, issue.15, pp.11024-11036, 1993.
DOI : 10.1103/PhysRevB.48.11024

W. Shockley and H. J. Queisser, Junction Solar Cells, Journal of Applied Physics, vol.32, issue.3, p.510, 1961.
DOI : 10.1063/1.1736034

M. C. Beard, K. P. Knutsen, and P. Yu, Multiple Exciton Generation in Colloidal Silicon Nanocrystals, Nano Letters, vol.7, issue.8, pp.2506-2518, 2007.
DOI : 10.1021/nl071486l

Y. Kurokawa, S. Yamada, and S. Miyajima, Effects of oxygen addition on electrical properties of silicon quantum dots/amorphous silicon carbide superlattice, Current Applied Physics, vol.10, issue.3, pp.435-438, 2010.
DOI : 10.1016/j.cap.2010.02.014

P. Löper, D. Stüwe, and M. Künle, A Membrane Device for Substrate-Free Photovoltaic Characterization of Quantum Dot Based p-i-n Solar Cells, Advanced Materials, vol.18, issue.23, pp.3124-3129, 2012.
DOI : 10.1002/adma.201200539

S. Kim, C. Cho, and B. Kim, Electrical and optical characteristics of silicon nanocrystal solar cells, Applied Physics Letters, vol.95, issue.14, p.143120, 2009.
DOI : 10.1063/1.3242030

A. Nakajima, Y. Sugita, and K. Kawamura, Si Quantum Dot Formation with Low-Pressure Chemical Vapor Deposition, Japanese Journal of Applied Physics, vol.35, issue.Part 2, No. 2B, pp.189-191, 1996.
DOI : 10.1143/JJAP.35.L189

Y. Kurokawa, S. Miyajima, A. Yamada, and M. K. Jpn, Preparation of Nanocrystalline Silicon in Amorphous Silicon Carbide Matrix, Japanese Journal of Applied Physics, vol.45, issue.No. 40, p.1064, 2006.
DOI : 10.1143/JJAP.45.L1064

S. Perret-tran-van, K. Makasheva, and B. Despax, Controlled fabrication of Si nanocrystals embedded in thin SiON layers by PPECVD followed by oxidizing annealing, Nanotechnology, vol.21, issue.28, p.285605, 2010.
DOI : 10.1088/0957-4484/21/28/285605

C. Song, Y. Rui, and Q. Wang, Structural and electronic properties of Si nanocrystals embedded in amorphous SiC matrix, Journal of Alloys and Compounds, vol.509, issue.9, pp.3963-3966, 2011.
DOI : 10.1016/j.jallcom.2010.12.191

E. Cho, S. Park, and X. Hao, Silicon quantum dot/crystalline silicon solar cells, Nanotechnology, vol.19, issue.24, p.245201, 2008.
DOI : 10.1088/0957-4484/19/24/245201

O. Debieu, R. P. Nalini, and J. Cardin, Structural and optical characterization of pure Si-rich nitride thin films, Nanoscale Research Letters, vol.8, issue.1, p.31, 2013.
DOI : 10.1063/1.1485302

URL : https://hal.archives-ouvertes.fr/hal-01138071

J. Robertson and M. J. Powell, Gap states in silicon nitride, Applied Physics Letters, vol.44, issue.4, p.415, 1984.
DOI : 10.1063/1.94794

D. Jousse, J. Kanicki, and J. H. , Observation of multiple silicon dangling bond configurations in silicon nitride, Applied Physics Letters, vol.54, issue.11, p.1043, 1989.
DOI : 10.1063/1.101558

V. J. Kapoor, R. S. Bailey, and H. , Hydrogen???related memory traps in thin silicon nitride films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.1, issue.2, p.600, 1983.
DOI : 10.1116/1.571966

Y. C. Park, W. B. Jackson, D. L. Smith, and N. M. Johnson, Deposited silicon nitride with low electron trapping rates, Journal of Applied Physics, vol.74, issue.1, p.381, 1993.
DOI : 10.1063/1.354121

H. Yan, M. Kumeda, N. Ishii, and T. Shimizu-jpn, Identification of a New Defect in Silicon Nitride Films, Japanese Journal of Applied Physics, vol.32, issue.Part 1, No. 2, pp.876-886, 1993.
DOI : 10.1143/JJAP.32.876

L. Gier, A. Scharmann, and D. Schalch-phys, Hopping Conduction and Defect States in Reactively Sputtered Silicon Nitride Thin Films, physica status solidi (a), vol.3, issue.2, pp.605-610, 1986.
DOI : 10.1002/pssa.2210980234

A. Fissel, K. Pfennighaus, and W. Richter, Investigations of Stranski-Krastanov growth kinetics of Si-dots on 6H-SiC(0001), Applied Physics Letters, vol.71, issue.20, p.2981, 1997.
DOI : 10.1063/1.120236

F. Giorgis, C. Pirri, C. Vinegoni, and L. Pavesi, Luminescence processes in amorphous hydrogenated silicon-nitride nanometric multilayers, Physical Review B, vol.60, issue.16, pp.11572-11576, 1999.
DOI : 10.1103/PhysRevB.60.11572

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition, Journal of Applied Physics, vol.77, issue.12, p.6534, 1995.
DOI : 10.1063/1.359062

N. Park, T. Kim, and S. Park, Band gap engineering of amorphous silicon quantum dots for light-emitting diodes, Applied Physics Letters, vol.78, issue.17, p.2575, 2001.
DOI : 10.1063/1.1367277

W. Yu, J. Y. Zhang, W. G. Ding, and G. S. Fu, Excitonic photoluminescence characteristics of amorphous silicon nanoparticles embedded in silicon nitride film, The European Physical Journal B, vol.74, issue.1, pp.53-56, 2007.
DOI : 10.1140/epjb/e2007-00151-2

M. L. Hitchman and K. Jensen, Chemical vapor deposition, principles and application, 1993.

S. M. Gates, C. M. Greenlief, S. K. Kulkami, and H. H. , Surface reactions in Si chemical vapor deposition from silane, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.8, issue.3, p.2965, 1990.
DOI : 10.1116/1.576614

R. J. Buss, P. Ho, W. G. Breiland, and M. E. Coltrin, Reactive sticking coefficients for silane and disilane on polycrystalline silicon, Journal of Applied Physics, vol.63, issue.8, p.2808, 1988.
DOI : 10.1063/1.340982

A. Vasin, A. Rusavsky, V. S. Lysenko, and A. N. , The influence of vacuum annealing temperature on the fundamental absorption edge and structural relaxation of a-SiC:H films, Semiconductors, vol.39, issue.5, pp.572-576, 2005.
DOI : 10.1134/1.1923567

P. Kae-nune, J. Perrin, J. Guillon, and J. Jpn, RF Discharges under High Temperature Deposition Conditions of Silicon Carbide, Japanese Journal of Applied Physics, vol.33, issue.Part 1, No. 7B, pp.4303-4307, 1994.
DOI : 10.1143/JJAP.33.4303

P. Kae-nune, J. Perrin, J. Guillon, and J. , glow discharge plasmas, Plasma Sources Science and Technology, vol.4, issue.2, pp.250-259, 1995.
DOI : 10.1088/0963-0252/4/2/009

I. Pereyra, M. N. Carren, M. H. Tabacniks, R. J. Prado, and M. C. Fantini, The influence of ???starving plasma??? regime on carbon content and bonds in a-Si1???xCx:H thin films, Journal of Applied Physics, vol.84, issue.5, p.2371, 1998.
DOI : 10.1063/1.368436

I. Solomon and M. P. Schmidt, Selective low-power plasma decomposition of silane-methane mixtures for the preparation of methylated amorphous silicon, Physical Review B, vol.38, issue.14, pp.9895-9901, 1988.
DOI : 10.1103/PhysRevB.38.9895

R. Hong, J. Huang, X. Chen, Y. Zhou, D. Liu et al., :H Film, Spectroscopy Letters, vol.109, issue.4, pp.298-305, 2010.
DOI : 10.1103/PhysRevB.64.235416

C. Iliescu and D. P. Poenar, Physic and technology of silicon carbide devices, InTech, 2013.

H. Caquineau, G. Dupont, B. Despax, and J. P. , : Comparison between two reactor designs, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.14, issue.4, p.2071, 1996.
DOI : 10.1116/1.580083

D. L. Smith, A. S. Alimonda, and C. C. Chen, Mechanism of SiN[sub x]H[sub y] Deposition from NH[sub 3]-SiH[sub 4] Plasma, Journal of The Electrochemical Society, vol.137, issue.2, pp.614-623, 1990.
DOI : 10.1149/1.2086517

M. Carrada, A. Zerga, and M. Amann, Structural and optical properties of high density Si-ncs synthesized in SiNx:H by remote PECVD and annealing, Materials Science and Engineering: B, vol.147, issue.2-3, pp.218-221, 2008.
DOI : 10.1016/j.mseb.2007.09.042

S. E. Hicks and R. A. , A spectroscopic investigation of growth regimes in silane-ammonia discharges used for plasma nitride deposition, Plasma Chemistry and Plasma Processing, vol.68, issue.60, pp.455-472, 1991.
DOI : 10.1007/BF01447159

J. N. Chiang and D. W. , An x???ray photoelectron spectroscopic analysis of plasma deposited silicon nitride films, Journal of Applied Physics, vol.67, issue.11, p.6851, 1990.
DOI : 10.1063/1.345075

R. Kärcher, L. Ley, and R. Phys, : A photoemission study, Physical Review B, vol.30, issue.4, p.1896, 1984.
DOI : 10.1103/PhysRevB.30.1896

D. Amans, S. Callard, A. Gagnaire, J. Joseph, G. Ledoux et al., Ellipsometric study of silicon nanocrystal optical constants, Journal of Applied Physics, vol.93, issue.7, p.4173, 2003.
DOI : 10.1063/1.1538344

W. A. Claassen and J. Bloem, The Nucleation of CVD Silicon on SiO[sub 2] and Si[sub 3]N[sub 4] Substrates, Journal of The Electrochemical Society, vol.128, issue.6, pp.1353-1359, 1980.
DOI : 10.1149/1.2127635

B. Akaoglu, K. Sel, I. Atilgan, and B. , Carbon content influence on the optical constants of hydrogenated amorphous silicon carbon alloys, Optical Materials, vol.30, issue.8, pp.1257-1267, 2008.
DOI : 10.1016/j.optmat.2007.06.005

A. Matsuda, K. Nomoto, and O. Takeuchi, Temperature dependence of the sticking and loss probabilities of silyl radicals on hydrogenated amorphous silicon, Surface Science, vol.227, issue.1-2, pp.50-56, 1990.
DOI : 10.1016/0039-6028(90)90390-T

C. Partha and D. U. Kumar-jpn, Argon Assisted Plasma Chemical Vapour Deposition of Amorphous Silicon Carbide Films, Japanese Journal of Applied Physics, vol.36, issue.Part 2, No. 11A, pp.1426-1429, 1997.
DOI : 10.1143/JJAP.36.L1426

A. I. Jelenak, J. Jovanovic, and S. A. Bzenic, The influence of excited states on the kinetics of excitation and dissociation in gas mixtures containing methane, Diamond and Related Materials, vol.4, issue.9, pp.1103-1112, 1995.
DOI : 10.1016/0925-9635(95)00279-0

E. C. Cho, M. A. Green, and G. Conibeer, Advances in OptoElectronics, pp.1-12, 2007.

R. Dutta, P. K. Banerjee, and S. S. Mitra-phys, Optical and Electrical Properties of Hydrogenated Amorphous Silicon Carbide, physica status solidi (b), vol.8, issue.10, pp.277-284, 1982.
DOI : 10.1002/pssb.2221130128

J. Barbé, L. Xie, and K. Leifer, Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth, Thin Solid Films, vol.522, pp.136-144, 2012.
DOI : 10.1016/j.tsf.2012.08.046

C. Basa and E. A. Irene, Ellipsometric investigation of nucleation sites for chemical vapor deposition of Si on SiO2 and Si3N4 surfaces, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.17, issue.3, p.817, 1999.
DOI : 10.1116/1.581653

I. Zahi, P. Mur, and P. Blaise, Multi-scale modelling of silicon nanocrystal synthesis by Low Pressure Chemical Vapor Deposition, Thin Solid Films, vol.519, issue.22, pp.7650-7658, 2011.
DOI : 10.1016/j.tsf.2011.05.016

M. Bedjaoui and B. , Physico-chemical, structural and physical properties of hydrogenated silicon oxinitride films elaborated by pulsed radiofrequency discharge, Thin Solid Films, vol.518, issue.15, pp.4142-4149, 2010.
DOI : 10.1016/j.tsf.2009.11.068

G. E. Jellison, M. F. Chisholm, and S. M. , Optical functions of chemical vapor deposited thin???film silicon determined by spectroscopic ellipsometry, Applied Physics Letters, vol.62, issue.25, p.3348, 1993.
DOI : 10.1063/1.109067

J. J. Mei, H. Chen, W. Z. Shen, and H. F. , Optical properties and local bonding configurations of hydrogenated amorphous silicon nitride thin films, Journal of Applied Physics, vol.100, issue.7, p.73516, 2006.
DOI : 10.1063/1.2356915

K. C. Lin and S. C. Lee, :H prepared by plasma???enhanced chemical???vapor deposition, Journal of Applied Physics, vol.72, issue.11, p.5474, 1992.
DOI : 10.1063/1.351992

W. A. Lanford and M. J. Rand, The hydrogen content of plasma-deposited silicon nitride, Journal of Applied Physics, vol.49, issue.4, p.2473, 1978.
DOI : 10.1063/1.325095

G. Scardera, T. Puzzer, G. Conibeer, and M. A. Green, Fourier transform infrared spectroscopy of annealed silicon-rich silicon nitride thin films, Journal of Applied Physics, vol.104, issue.10, p.104310, 2008.
DOI : 10.1063/1.3021158

G. Sasaki, M. Kondo, S. Fujita, and A. Sasaki-jpn, Alloys, Japanese Journal of Applied Physics, vol.21, issue.Part 1, No. 10, pp.1394-1399, 1982.
DOI : 10.1143/JJAP.21.1394

URL : https://hal.archives-ouvertes.fr/jpa-00226207

]. S. Habermehl, Stress relaxation in Si-rich silicon nitride thin films, Journal of Applied Physics, vol.83, issue.9, p.4672, 1998.
DOI : 10.1063/1.367253

Q. Cheng, E. Tam, S. Xu, and K. K. , Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation, Nanoscale, vol.113, issue.4, pp.594-600, 2010.
DOI : 10.1039/b9nr00371a

H. Richter, Z. P. Wang, and L. , The one phonon Raman spectrum in microcrystalline silicon, Solid State Communications, vol.39, issue.5, pp.625-629, 1981.
DOI : 10.1016/0038-1098(81)90337-9

M. N. Islam, A. Pradhan, and S. Kumar, Effects of crystallite size distribution on the Raman-scattering profiles of silicon nanostructures, Journal of Applied Physics, vol.98, issue.2, p.24309, 2005.
DOI : 10.1063/1.1980537

D. Barba, F. Martin, and G. G. , Evidence of localized amorphous silicon clustering from Raman depth-probing of silicon nanocrystals in fused silica, Nanotechnology, vol.19, issue.11, p.115707, 2008.
DOI : 10.1088/0957-4484/19/11/115707

]. R. Soulairol and F. , Interface structure of silicon nanocrystals embedded in an amorphous silica matrix, Solid State Sciences, vol.12, issue.2, pp.163-171, 2010.
DOI : 10.1016/j.solidstatesciences.2009.05.004

URL : https://hal.archives-ouvertes.fr/hal-00549076

X. J. Hao, E. Cho, and C. Flynn, Effects of boron doping on the structural and optical properties of silicon nanocrystals in a silicon dioxide matrix, Nanotechnology, vol.19, issue.42, p.424019, 2008.
DOI : 10.1088/0957-4484/19/42/424019

G. E. Jellison, F. A. Modine, P. Doshi, and A. , Rohatgi Thin Solid Films 313-314, pp.193-197, 1998.

]. G. Samuelson, The Correlations Between Physical and Electrical Properties of PECVD SiN with Their Composition Ratios, Journal of The Electrochemical Society, vol.129, issue.8, p.1773, 1982.
DOI : 10.1149/1.2124291

E. Lioudakis, A. Othonos, and G. C. , Hadjisavvas Physica E: Low-dimensional Systems and Nanostructures 38, pp.128-134, 2007.

A. E. Naciri, P. Miska, and A. S. Keita, Optical properties of uniformly sized silicon nanocrystals within a single silicon oxide layer, Journal of Nanoparticle Research, vol.89, issue.4, p.1538, 2013.
DOI : 10.1007/s11051-013-1538-0

URL : https://hal.archives-ouvertes.fr/hal-01285171

V. K. Kamineni and A. C. Diebold, Electron-phonon interaction effects on the direct gap transitions of nanoscale Si films, Applied Physics Letters, vol.99, issue.15, p.151903, 2011.
DOI : 10.1063/1.3650470

N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride, Physical Review Letters, vol.86, issue.7, pp.1355-1357, 2001.
DOI : 10.1103/PhysRevLett.86.1355

T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3, Applied Physics Letters, vol.88, issue.12, p.123102, 2006.
DOI : 10.1063/1.2187434

Y. Wang and N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties, The Journal of Physical Chemistry, vol.95, issue.2, pp.525-532, 1991.
DOI : 10.1021/j100155a009

M. Wang, D. Li, Z. Yuan, D. Yang, and D. , Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters, Applied Physics Letters, vol.90, issue.13, p.131903, 2007.
DOI : 10.1063/1.2717014

M. Molinari, H. Rinnert, and M. Vergnat, Visible photoluminescence in amorphous SiNx thin films prepared by reactive evaporation, Applied Physics Letters, vol.77, issue.22, p.3499, 2000.
DOI : 10.1063/1.1329163

J. Martin, F. Cichos, F. Huisken, and C. Von, Electron???Phonon Coupling and Localization of Excitons in Single Silicon Nanocrystals, Nano Letters, vol.8, issue.2, pp.656-660, 2008.
DOI : 10.1021/nl0731163

]. D. Monroe, Hopping in Exponential Band Tails, Physical Review Letters, vol.54, issue.2, pp.146-149, 1985.
DOI : 10.1103/PhysRevLett.54.146

T. Burr, A. Seraphin, E. Werwa, and K. Kolenbrander, Carrier transport in thin films of silicon nanoparticles, Physical Review B, vol.56, issue.8, pp.4818-4824, 1997.
DOI : 10.1103/PhysRevB.56.4818

T. Baron, P. Gentile, N. Magnea, and P. , Single-electron charging effect in individual Si nanocrystals, Applied Physics Letters, vol.79, issue.8, p.1175, 2001.
DOI : 10.1063/1.1392302

E. Jacques, L. Pichon, O. Debieu, and F. Gourbilleau, Electrical behavior of MIS devices based on Si nanoclusters embedded in SiOxNy and SiO2 films, Nanoscale Research Letters, vol.6, issue.1, p.170, 2011.
DOI : 10.1063/1.2119431

K. Kobayashi and K. Ishikawa-jpn, Ultraviolet Light-Induced Conduction Current in Silicon Nitride Films, Japanese Journal of Applied Physics, vol.50, issue.3R, p.31501, 2011.
DOI : 10.7567/JJAP.50.031501

I. Balberg, J. Jedrzejewski, and E. Savir, Electrical transport in three-dimensional ensembles of silicon quantum dots, Physical Review B, vol.83, issue.3, p.35318, 2011.
DOI : 10.1103/PhysRevB.83.035318

J. Barbé, L. Xie, K. Leifer, P. Faucherand, C. Morin et al., Silicon nanocrystals on amorphous silicon carbide alloy thin films: Control of film properties and nanocrystals growth, Thin Solid Films, vol.522, pp.136-144, 2012.
DOI : 10.1016/j.tsf.2012.08.046

S. Perraud, E. Quesnel, S. Parola, J. Barbé, V. Muffato et al., Silicon nanocrystals: Novel synthesis routes for photovoltaic applications, Kremena Makasheva, and Bernard Despax « Silicon nanocrystals: novel synthesis routes for photovoltaic applications, pp.649-657, 2013.
DOI : 10.1002/pssa.201200533

J. Barbé, K. Makasheva, S. Perraud, and M. , Carrada and B. Despax « Si nanocrystals embedded in an amorphous SiN x matrix: evidences of partial crystallization and limited phase separation after high temperature annealing, MRS Spring Meeting, 2013.

J. Barbé, K. Makasheva, S. Perraud, M. Carrada, and B. , Despax Faiatio aad haaateeizatio of silicon nanocrystals in silicon nitride matrix: study of the interface states aad sttuutuuee Réunion plénière, 2013.

L. Xie, S. Rubino, J. Barbé, P. Faucherand, C. Morin et al., The visualization of Silicon nanoparticles by 3D electron tomography: use of mass-thickness contrast bright field imaging, 2012.

J. Barbé, K. Makasheva, and B. , Despax « Microstructural and optical characterization of silicon nitride alloy thin films aiming at an optimization of the matrix properties for tandem cells, 2012.

J. Barbé, L. Xie, K. Leifer, P. Faucherand, C. Morin et al., Perraud « Silicon nanocrystals grown on amorphous silicon carbide alloy thin films for third generation photovoltaics, 2012.

J. Barbé, K. Makasheva, and S. Perraud, Despax « Caractérisation par spectroscopie Raman de nanocristaux de silicium encapsulés dans des couches minces de SiN x » Réunion plénière, pp.8-12, 2012.

J. Barbé, K. Makasheva, and S. Perraud, Despax « Elaboration par PPECVD de couches minces de SiN x contenant des nanocristaux de silicium : estimation de la taille et de la dispersion en taille des cristallites par spectroscopie Raman » 13èmes journées de la matière condensée, 2012.

A. Tableau, 1 : seuils eegtiues pou l'eeeitatio, la dissoiatio ou l'ioisatio de AA

]. S. Motlagh and J. H. Moore, Cross sections for radicals from electron impact on methane and fluoroalkanes, The Journal of Chemical Physics, vol.109, issue.2, p.432, 1998.
DOI : 10.1063/1.476580

T. Nakano, H. Toyoda, and H. Sugai-jpn, Radicals II. Absolute Cross Sections, Japanese Journal of Applied Physics, vol.30, issue.Part 1, No. 11A, pp.2912-2915, 1991.
DOI : 10.1143/JJAP.30.2912

[. Rapp and P. Englander-golden, Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization, The Journal of Chemical Physics, vol.43, issue.5, p.1464, 1965.
DOI : 10.1063/1.1696957

[. Perrin, O. Leroy, and M. C. Bordage-contrib, Cross-Sections, Rate Constants and Transport Coefficients in Silane Plasma Chemistry, Contributions to Plasma Physics, vol.184, issue.1, pp.3-49, 1996.
DOI : 10.1002/ctpp.2150360102

P. Aps-aoi-tudi-et-aitis-les-ooditios-de-dpôth-par, 2 par LPCVD est favorisée en raison de la concentration en Si élevée de la matrice Des densités surfaciques de nc-Si supérieures à 10 12 cm -2 ont ainsi été atteintes, même pour des temps de dépôt courts ou des débits de silane faibles. Ces premiers résultats indiquent la faisabilité de ce type de structure Une étude approfondie sur le couple nc-Si/nitrure de silicium a ensuite été menée. Les propriétés structurales, optiques et électriques de couches de nitrure contenant des nc-Si ont été aaatttises à paati d'u laage entail de techniques. Après avoir estimé la taille des nc-Si par spectroscopie Raaaa, la dooolutio des spettes XP " ous a peis d'epliue les processus de formation des nc-Si lors du recuit et de proposer un modèle pour décrire la structure des interfaces nc-Si/a-Si 3 N 4 . Les propriétés optiques des nc-Si ont ensuite été déterminées par ellipsométrie spectroscopique et spectrophotométrie UV- Vis. L'laagisseet du gap, le lissage des oostates dilettiues et l'augetatio du oeffiiet d'aasoptio au failes egies aae la diiutio de la taille des paatiules suggget u effet de confinement quantique au sein des nc-Si. Des mesures de photoluminescence résolue en temps nous ont peis de ooluue ue l'utilisatioo d'ue atie de ittue est peu appopie à l''tude de l''issioo optiue des nc-Si en raison des nombreux défauts radiatifs et non radiatifs présents dans la matrice et aux interfaces

. Enfin, les mécanismes de transport des porteurs de charge à travers la couche nanocomposite ont été étudiés à partir de mesures courant-tension. En raison de son caractère percolé, la couche se comporte de façon analogue à une couche de Si polycristallin avec une faible concentration de liaisons pendantes du Si, effet de photoconduction attribué aux nc-Si est observé

_. Mots-cles, nanocristaux de silicium, LPCVD, PECVD, nitrure de silicium, carbure de silicium, photovoltaïque. DISCIPLINE : microélectroniques et microsystèmes