Statistical methods for descriptor matching

Résumé : De nombreuses applications, en vision par ordinateur ou en médecine notamment,ont pour but d'identifier des similarités entre plusieurs images ou signaux. On peut alors détecter des objets, les suivre, ou recouper des prises de vue. Dans tous les cas, les procédures algorithmiques qui traitent les images utilisent une sélection de points-clefs qu'elles essayent ensuite de mettre en correspondance par paire. Elles calculent pour chaque point un descripteur qui le caractérise, le discrimine des autres. Parmi toutes les procédures possibles,la plus utilisée aujourd'hui est SIFT, qui sélectionne les points-clefs, calcule des descripteurs et propose un critère de mise en correspondance globale. Dans une première partie, nous tentons d'améliorer cet algorithme en changeant le descripteur original qui nécessite de trouver l'argument du maximum d'un histogramme : en effet, son calcul est statistiquement instable. Nous devons alors également changer le critère de mise en correspondance de deux descripteurs. Il en résulte un problème de test non paramétrique dans lequel à la fois l'hypothèse nulle et alternative sont composites, et même non paramétriques. Nous utilisons le test du rapport de vraisemblance généralisé afin d'exhiber des procédures de test consistantes, et proposons une étude minimax du problème. Dans une seconde partie, nous nous intéressons à l'optimalité d'une procédure globale de mise en correspondance. Nous énonçons un modèle statistique dans lequel des descripteurs sont présents dans un certain ordre dans une première image, et dans un autre dans une seconde image. La mise en correspondance revient alors à l'estimation d'une permutation. Nous donnons un critère d'optimalité au sens minimax pour les estimateurs. Nous utilisons en particulier la vraisemblance afin de trouver plusieurs estimateurs consistants, et même optimaux sous certaines conditions. Enfin, nous nous sommes intéressés à des aspects pratiques en montrant que nos estimateurs étaient calculables en temps raisonnable, ce qui nous a permis ensuite d'illustrer la hiérarchie de nos estimateurs par des simulations
Type de document :
Thèse
General Mathematics [math.GM]. Université Paris-Est, 2013. English. <NNT : 2013PEST1080>
Liste complète des métadonnées


https://tel.archives-ouvertes.fr/tel-00904686
Contributeur : Abes Star <>
Soumis le : jeudi 20 mars 2014 - 14:27:12
Dernière modification le : mardi 27 juin 2017 - 12:13:41
Document(s) archivé(s) le : vendredi 20 juin 2014 - 11:25:11

Fichier

Th2013PEST1080_complete.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-00904686, version 2

Collections

Citation

Olivier Collier. Statistical methods for descriptor matching. General Mathematics [math.GM]. Université Paris-Est, 2013. English. <NNT : 2013PEST1080>. <tel-00904686v2>

Partager

Métriques

Consultations de
la notice

414

Téléchargements du document

322