OSCILLATIONS DANS DES ÉQUATIONS DE LIÉNARD ET DES ÉQUATIONS D’ÉVOLUTION SEMI-LINÉAIRES

Souhila Boudjema

To cite this version:

HAL Id: tel-00903302
https://tel.archives-ouvertes.fr/tel-00903302
Submitted on 11 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Laboratoire SAMM EA 4543

Thèse de doctorat
Discipline : Mathématiques

présentée par
Souhila BOUDJEMA

OSCILLATIONS DANS DES ÉQUATIONS DE LIÉNARD ET DES ÉQUATIONS D’ÉVOLUTION SEMI-LINÉAIRES

dirigée par
Joël BLOT

Soutenue le 10 Septembre 2013 devant le jury composé de :

M. Jean-Pierre FRANÇOISE Université Pierre et Marie Curie Rapporteur
M. Mostafa ADIMY INRIA Antenne Lyon La Doua Rapporteur
M. Joël BLOT Université Paris 1 Panthéon-Sorbonne Directeur
M. Bruno NAZARET Université Paris 1 Panthéon-Sorbonne Président
M. Jean-Marc BARDET Université Paris 1 Panthéon-Sorbonne Examinateur
M. Philippe CIEUTAT Université Versailles-Saint-Quentin-en-Yvelines Examinateur
Remerciements

Je tiens dans un premier temps à remercier mon directeur de thèse, le Professeur Joël BLOT, de m’avoir confié ce travail de recherches, ainsi que pour son aide, sa disponibilité, ses qualités pédagogiques et scientifiques, sa sympathie et ses précieux conseils aux cours de ces années.

Je tiens à remercier Monsieur Jean-Pierre FRANÇOISE, Professeur à l’université Pierre et Marie Curie, et Monsieur Mostafa ADIMY, Directeur de Recherche à l’INRIA, d’avoir accepté d’être les rapporteurs de ce travail.

Je suis très honorée du fait que Monsieur Philine CIEUTAT ait accepté de collaborer avec moi dans deux travaux de ma thèse ainsi que d’avoir accepté d’être membre de jury.

J’exprime ici toute ma considération à mes examinateurs Messieurs les professeurs, Bruno NAZARET Jean-Marc BARDET.

Ce travail n’aurait pu aboutir sans le soutien de nombreuses personnes. Que me pardonnent celles que j’oublie ici ; j’adresse tout d’abord mes remerciements à tous les membres du laboratoire SAMM, et son équipe dirigeante en la personne Madame la Professeur Marie Cottrell relayée depuis septembre 2012 par Monsieur le Professeur Jean-Marc Bardet qui m’ont soutenu et m’ont aidé en me fournissant d’excellentes conditions de travail.

Un immense merci à ma famille, et surtout à mes parents, qui m’ont permis de poursuivre mes études jusqu’à présent.
Table des matières

Introduction générale 5

1 RAPPELS SUR DIVERS TYPES DE FONCTIONS PRESQUE-PÉRIODIQUES 8
 1 Fonctions presque-périodiques 8
 2 Fonctions presque-périodiques avec un paramètre 10
 3 Existence d'une solution presque-périodique pour certains types d'équations différentielles 13
 4 Fonctions presqu'automorphes 16
 5 Fonctions presqu'automorphes avec un paramètre 16
 6 Existence et unicité d'une solution "mild" presqu'automorphe pour l'équation différentielle non homogène 18
 7 Fonctions asymptotiquement presque-périodiques (respectivement asymptotiquement presqu'automorphes) 19
 8 Fonctions pseudo presque-périodiques (respectivement pseudo presqu'automorphes) 20
 9 Fonctions pseudo presque-périodiques avec poids (respectivement pseudo presqu'automorphes avec poids) 22

2 PETITES OSCILLATIONS PRESQU'AUTOMORPHES ET PRESQUE-PÉRIODIQUES DE L'ÉQUATION DE LIÉNARD FORCÉE. 26
 1 Introduction 26
 2 Préliminaires 27
 3 Résultats 30
 4 Démonstration des théorèmes 32

3 DIFFÉRENT TYPES D'OSCILLATIONS DE L'ÉQUATION DE LIÉNARD FORCÉE. 39
 1 Introduction 39
 2 Préliminaires 40
 3 Résultats 44
 4 Cas particuliers 49
4 RÉSULTATS DE DÉPENDANCE POUR LES SOLUTIONS S-ASYMPTOTIQUEMENT \(\omega \)-PÉRIODIQUES D’ÉQUATIONS D’ÉVOLUTION

1 Introduction ... 51
2 Notations ... 52
3 Opérateurs de Nemytskii 58
4 Résultat principal 63
5 Preuve du résultat principal 63
6 Application ... 67
Introduction générale

La notion de fonction presque-périodique (p.p.) est introduite pour la première fois par H. Bohr en 1925-1926. Jouant un rôle important dans l’étude des équations différentielles, elle a été développée après par d’autres auteurs, notamment par Bochner qui a donné, en 1933, une propriété équivalente à la définition donnée par Bohr.

Comme généralisation des fonctions p.p., Bochner a introduit la notion de fonctions presqu’automorphes (p.a.) pour lesquelles certaines propriétés fondamentales des fonctions p.p. ne sont pas vérifiées. Cette notion a été développée aussi par G.M. N’Guérékata dans [39].

\[X'(t) = M(t, X(t)). \] \hspace{1cm} (0.1)

Dans le même travail, l’auteur a prouvé d’abord l’existence et l’unicité d’une solution bornée de l’équation (0.1) ; il a aussi constaté que cette solution peut
être presque-périodique ou même périodique en ajoutant des conditions sur
la fonction M de cette équation. Toujours dans le but d’étudier l’existence et
l’unicité des solutions presque-périodiques de l’équation de Liénard, on peut
citer le travail de Cieutat dans [19] sur le système
\[x''(t) + \frac{d}{dt}(\nabla F(x(t))) + Cx(t) = e(t), \]
et aussi celui de Blot, Cieutat et Mawhin dans [8] sur la recherche d’une
solution presque-périodique de l’équation différentielle forcée
\[x''(t) + [b(t)I + B(t)]x(t) - F(t, x(t)) = e(t). \] (0.2)

De même existe l’article de Cieutat [20] sur un cas plus général que (0.2),
qui est
\[x''(t) = f(t, x(t), x'(t)), \]
où il a appliqué des résultats utilisés dans [8] pour l’équation (0.2).

Plan de la thèse

Les principaux résultats obtenus dans ce travail concernent l’existence
et l’unicité des solutions de différents types de l’équation de Liénard forcée
des résultats de dépendance pour les solutions S-asymptotiquement $\omega-$
périodiques d’équations d’évolution.

Pour réaliser notre objectif, nous utilisons des outils d’analyse fonctionnelle
non linéaire et des résultats sur les équations linéaires qu’on trouve dans les
travaux suivants : [9], [10], [11], [12], [24], [38].

Dans le Chapitre I, on rappelle les définitions et propriétés de di-
vers types de fonctions presque-périodiques en abordant quelques résultats
d’existence de solutions presque-périodiques pour quelques types d’équations
différentielles et des solutions "mild" presqu’automorphes pour une équation
différentielle non homogène.

Dans le Chapitre II, on établit un résultat d’existence et d’unicité
d’une solution presque-périodique (respectivement presqu’automorphe) x_p
de la famille d’équations suivantes :
\[x''(t) + f(x(t), p)x'(t) + g(x(t), p) = e_p(t), \] (0.3)

pour un p, dans un voisinage de 0, dans un espace de Banach, et pour
e_p p.p. (respectivement p.a.). Pour aboutir à notre résultat, on traduit
le problème dans un cadre d’analyse Fonctionnelle Non Linéaire et on applique
le théorème des fonctions implicites.

On considère aussi deux cas particuliers de la famille (0.3), qui sont
\[x''(t) + f_1(x(t)),x'(t) + g_1(x(t)) = e(t), \]
et

\[x''(t) + f_2(x(t), q)x'(t) + g_2(x(t), q) = e(t). \]

Dans le Chapitre IV, nous étudions la dépendance différentielle des solutions S-asymptotiquement \(\omega \)-périodiques du problème de Cauchy

\[x'(t) = A(t)x(t) + f(t, x(t), u(t)) \quad x(0) = \xi \]

par rapport à \(u \) et à la valeur initiale \(\xi \). Pour atteindre l’objectif de ce chapitre, nous utilisons les propriétés des fonctions S-asymptotiquement \(\omega \)-périodiques du problème linéaire forcé de Cauchy suivant :

\[x'(t) = A(t)x(t) + e(t) \quad x(0) = \zeta. \]

Nous établissons aussi de nouvelles propriétés sur les opérateurs de superposition.
Chapitre 1

RAPPELS SUR DIVERS TYPES DE FONCTIONS PRESQUE-PÉRIODIQUES

Pour toute la suite, $(E, \| \cdot \|_E)$ et $(\mathbb{F}, \| \cdot \|_\mathbb{F})$ sont deux espaces de Banach.

1 Fonctions presque-périodiques

Définition 1.1 Un ensemble T de \mathbb{R} est dit relativement dense dans \mathbb{R} s’il existe un nombre réel $\ell > 0$, tel que, $T \cap [a, a + \ell] \neq \emptyset$ pour tout $a \in \mathbb{R}$.

Définition 1.2 (Harald Bohr) Soit $f \in C^0(\mathbb{R}, E)$. On dit que f est presque-périodique (p.p.) au sens de Bohr si pour $\forall \varepsilon > 0$ l’ensemble

$$T := \{ \tau \in \mathbb{R}; \quad \sup_{t \in \mathbb{R}} \| f(t + \tau) - f(t) \|_E \leq \varepsilon \}$$

est relativement dense dans \mathbb{R}. [28], [30].

Alors on dit que f est presque-périodique au sens de Bohr si

$$\forall \varepsilon > 0, \exists \ell > 0, \forall \alpha \in \mathbb{R}, \exists \tau \in [\alpha, \alpha + \ell], \quad \sup_{t \in \mathbb{R}} \| f(t + \tau) - f(t) \|_E \leq \varepsilon.$$

On notera par $AP^0(\mathbb{R}, E)$ ou $AP^0(E)$ l’espace des fonctions presque-périodiques au sens de Bohr à valeurs dans E.

8
Proposition 1.1 \(AP^0(E)\) muni de la norme de la convergence uniforme

\[
\|f\|_\infty := \sup\{\|f(t)\|_E; \ t \in \mathbb{R}\}
\]

est un espace de Banach, [2], [16], [30]

exemple 1.1 [5]

\(t \mapsto f(t) = \sin 2\pi t + \sin 2\pi \sqrt{2}\) est une fonction presque-périodique. En effet pour un \(\varepsilon > 0\), si on choisi \(\tau\) un entier et que pour un autre entier \(q\) on a \(|\tau \sqrt{2} - q| \leq \frac{\varepsilon}{2\pi}\), on obtient

\[
f(t + \tau) = \sin(2\pi t + 2\pi\tau) + \sin(2\pi t \sqrt{2} + 2\pi\tau \sqrt{2}),
\]

alors

\[
f(t + \tau) = \sin(2\pi t) + \sin(2\pi \tau \sqrt{2} + (2\lambda - 1)\varepsilon + 2\pi q),
\]

où \(\lambda \in [0, 1]\), donc puisque \(q\) est un entier et si on pose \((2\lambda - 1) = \theta\) on obtient

\[
f(t + \tau) = \sin(2\pi t) + \sin(2\pi t \sqrt{2} + \theta \varepsilon); \text{ avec } \theta \in [-1, 1].
\]

En appliquant le théorème des accroissements Finis sur la fonction \(t \mapsto \sin t\) entre \(A := 2\pi \sqrt{2}\) et \(B := 2\pi \sqrt{2} + \theta \varepsilon\) on obtient

\[
f(t + \tau) = f(t) + \theta \varepsilon \cos(\zeta); \text{ avec } \zeta \in [A, B].
\]

Puisque \(\zeta \in [A, B]\), donc \(\zeta = 2\pi \sqrt{2} + \alpha \theta \varepsilon\) avec \(\alpha \in [0, 1]\). Posant \(\theta \cos(\zeta) = \theta',\) alors

\[
f(t + \tau) = f(t) + \varepsilon \theta'; \text{ avec } \theta' \in [-1, 1].
\]

Propriétés 1.1 [3]

Si \(f \in AP^0(E)\), alors

- \(f\) est uniformément continue.
- L'image de \(f\) est relativement compacte dans \(E\), donc \(f\) est bornée sur \(\mathbb{R}\).
- Si \(F\) est un espace de Banach, \(g : E \rightarrow F\) est une application continue sur l'adhérence de l'image de \(f\), alors \(g \circ f \in AP^0(E)\).
- Si \(f \in AP^0(E) \cap C^1(\mathbb{R}, E)\) et \(f'\) est uniformément continue sur \(\mathbb{R}\), alors \(f' \in AP^0(E)\).
- On note \(H(t) = \int_0^t f(s)ds\). Si l'image de \(H\) est relativement compact dans \(E\), alors \(H \in AP^0(E)\).

Proposition 1.2 Soit \(f : \mathbb{R} \rightarrow E\), et \(a \in \mathbb{R}\). On définit l'opérateur de translation

\[
\tau_a(f)(t) := f(t + a).
\]

Si \(f \in AP^0(E)\), alors pour tout \(a \in \mathbb{R}\), on a \(\tau_a(f) \in AP^0(E)\).
Soit $BC^0(\mathbb{R}, E)$ l’ensemble des fonctions continues bornées de \mathbb{R} dans E.

Théorème 1.1 (Bochner) Soit $f \in BC^0(\mathbb{R}, E)$, Alors $f \in AP^0(E)$ si et seulement si $\{\tau_a(f); \ a \in \mathbb{R}\}$ est relativement compact dans $BC^0(\mathbb{R}, E)$ muni de la norme de la convergence uniforme. [2]

Pour $k \in \mathbb{N}^*$, on note

$$AP^k(E) := \{ f \in AP^0(E) \cap C^k(\mathbb{R}, E); \ \forall i = 1, \ldots, k \ \frac{d^i f}{dt^i} \in AP^0(E) \}.$$

Proposition 1.3 Muni de la norme

$$\|f\|_{AP^k(E)} := \sup_{t \in \mathbb{R}} \|f(t)\|_E + \sum_{i=1}^k \sup_{t \in \mathbb{R}} \frac{d^i f}{dt^i}(t) \|_E$$

$AP^k(E)$ est un espace de Banach.

2 Fonctions presque-périodiques avec un paramètre

Définition 2.1 Soit $f \in C^0(\mathbb{R} \times E, F)$, on dit que f est presque-périodique en t uniformément par rapport à x sur tout compact K de E lorsque :

$$\forall \varepsilon > 0, \exists \ell > 0, \forall \alpha \in \mathbb{R}, \exists \tau \in [\alpha, \alpha + \ell], \ \sup_{t \in \mathbb{R}} \sup_{x \in K} \|f(t+\tau, x) - f(t, x)\|_F \leq \varepsilon.$$

L’ensemble des fonction presque-périodiques en t uniformément par rapport à x de $\mathbb{R} \times E$ sur F est noté $APU(\mathbb{R} \times E, F)$.

Lemme 2.1 ([13], lemme 3.4). Soit $f \in APU(\mathbb{R} \times E, F)$ et soit $u \in AP^0(E)$ alors on a $[t \mapsto f(t, u(t))] \in AP^0(F)$.

Théorème 2.1 ([13], théorème 3.5). Si $f \in C^0(\mathbb{R} \times E, F)$ est presque-périodique uniformément en t par rapport à x alors l’opérateur de Nemytski construit sur f, $N_f : AP^0(E) \rightarrow AP^0(F)$ défini par l’application $N_f(u) := [t \mapsto f(t, u(t))]$, est continu.

Pour la démonstration on utilise le lemme suivant :

Lemme 2.2 ([13], lemme 3.7). Soit $f \in APU(\mathbb{R} \times E, F)$. Alors on a, pour tout compact K dans E et pour tout $\varepsilon > 0$, il existe $\delta = \delta(K, \varepsilon)$ tel que, pour tout $x \in K$ et pour tout $z \in E$, si $\|x - z\| \leq \delta$ alors $\|f(t, x) - f(t, z)\| \leq \varepsilon$, pour tout $t \in \mathbb{R}$.
Démonstration du théorème 2.1.
On fixe $u \in AP^0(\mathbb{E})$, et $\varepsilon > 0$. Puisque $K = \overline{u(\mathbb{R})}$ est un compact, on considère $\delta = \delta(K, \varepsilon)$ donnée par le lemme 2.2. Alors pour $v \in AP^0(\mathbb{E})$ qui satisfait $\|v - u\|_{\infty} \leq \delta$, on a $\|v(t) - u(t)\| \leq \delta$, pour tout $t \in \mathbb{R}$, et avec $u(t) \in K$. Donc le lemme 2.2 implique qu’on a
$$
\|f(t, v(t)) - f(t, u(t))\| \leq \varepsilon,
$$
pour tout $t \in \mathbb{R}$; on passe au sup sur t et on obtient
$$
\|N_f(v) - N_f(u)\|_{\infty} \leq \varepsilon.
$$
\[\square\]

Théorème 2.2 ([13], théorème 5.1). Soit $f \in APU(\mathbb{R} \times \mathbb{E}, \mathbb{F})$ tel que $D_x f(t, x)$ existe pour tout $(t, x) \in \mathbb{E} \times \mathbb{R}$ (au sens de Fréchet) et tel que $D_x f \in APU(\mathbb{R} \times \mathbb{E}, \mathcal{L}(\mathbb{E}, \mathbb{F}))$. Alors l’opérateur de superposition $N_f(u) := [t \mapsto f(t, u(t))]$ de $AP^0(\mathbb{E})$ sur $AP^0(\mathbb{F})$ est de classe C^1, et on a
$$
DN_f(u).v = [t \mapsto D_x f(t, u(t)).v(t)],
$$
pour chaque $u, v \in AP^0(\mathbb{E})$.

Démonstration du théorème 2.2
Puisque $D_x f \in APU(\mathbb{R} \times \mathbb{E}, \mathcal{L}(\mathbb{E}, \mathbb{F}))$, et par l’utilisation du théorème 2.1 on a :
$$
N_{D_x f} \text{ est continu de } AP^0(\mathbb{E}) \text{ dans } AP^0(\mathcal{L}(\mathbb{E}, \mathbb{F})). \tag{2.1}
$$
On fixe $u \in AP^0(\mathbb{E})$ et on pose :
$$
\forall t \in \mathbb{R} \quad L(t) := D_x f(t, u(t)). \tag{2.2}
$$
$L \in AP^0(\mathcal{L}(\mathbb{E}, \mathbb{F}))$ d’après (2.1). La fonction F de $\mathbb{R} \times \mathbb{E}$ dans \mathbb{F}, donnée par
$$
F(t, z) := L(t)z, \tag{2.3}
$$
est dans $APU(\mathbb{R} \times \mathbb{E}, \mathbb{F})$. En effet, puisque $F = B \circ (L \circ pr_1, pr_2)$ où B est l’opérateur défini de $\mathcal{L}(\mathbb{E}, \mathbb{F}) \times \mathbb{E}$ dans \mathbb{F} par $B(T, x) = T.x$ et pr_1, pr_2 les deux projections sur $\mathbb{R} \times \mathbb{E}$, alors F est continu comme une composition d’opérateurs continus. On fixe K compact dans \mathbb{E} et $\varepsilon > 0$. Soit $\rho > 0$ tel que $\|x\| \leq \rho$ pour tout $x \in K$, et puisque L est presque-périodique, pour tout $t \in \mathbb{R}$, on a
$$
\exists \ell = l(\varepsilon, \rho), \quad \forall r \in \mathbb{R}, \quad \exists \tau \in [r, r + \ell] \quad \text{tels que} \quad \|L(t + \tau) - L(t)\| \leq \frac{\varepsilon}{\rho}.
$$
Par conséquent on a
$$
\|F(t + \tau, x) - F(t, x)\| \leq \|L(t + \tau) - L(t)\|\|x\| \leq \frac{\varepsilon}{\rho} \rho = \varepsilon,
$$
d'où $F \in APU(\mathbb{R} \times \mathbb{E}, \mathbb{F})$. D'après le lemme 2.1 on a
\[
\forall v \in AP^0(\mathbb{E}) \quad \Lambda. v := [t \mapsto D_x f(t, u(t))v(t)] \in AP^0(\mathbb{F}).
\] (2.4)

D'après le théorème de la moyenne ([26], p.164), on a, pour tout $v \in AP^0(\mathbb{E})$, et pour tout $t \in \mathbb{R}$,
\[
\| f(t, u(t) + v(t)) - f(t, u(t)) - D_x f(t, u(t))v(t) \| \leq \sup_{\epsilon \in]u(t),u(t)+v(t)[} \| D_x f(t, \epsilon) - D_x f(t, u(t)) \| \cdot \| v(t) \|.
\] (2.5)

On pose $K = \overline{u(\mathbb{R})}$, on applique le lemme 2.2, et on obtient : pour tout $\epsilon > 0$, il existe $\delta = \delta(K, \epsilon)$ tels que pour tout $x \in K$ et pour tout $z \in \mathbb{E}$, si $\| x - z \| \leq \delta$ alors $\| D_x f(t, x) - D_x f(t, z) \| \leq \epsilon$, pour tout $t \in \mathbb{R}$. On fixe ϵ et on considère $v \in AP^0(\mathbb{E})$ tel que $\| v \|_{\infty} \leq \delta$, alors pour tout $t \in \mathbb{R}$ et pour tout $\zeta \in]u(t), u(t) + v(t)[$ on a $\| \zeta - u(t) \| \leq \delta$ et alors
\[
\| D_x f(t, \zeta) - D_x f(t, u(t)) \| \leq \epsilon,
\]

donc l’inégalité (2.5) implique :
\[
\| f(t, u(t) + v(t)) - f(t, u(t)) - D_x f(t, u(t))v(t) \| \leq \epsilon \| v(t) \|.
\]

On passe au sup sur $t \in \mathbb{R}$ et on obtient
\[
\| N_f(u + v) - N_f(u) - \Lambda v \|_{\infty} \leq \| v \|_{\infty}
\]

donc N_f est Fréchet-différentiable, et
\[
DN_f(u) \cdot v = [t \mapsto D_x f(t, u(t))v(t)].
\] (2.6)

Il suffit de montrer la continuité de DN_f. Par l’utilisation de (2.1) et du théorème 2.1, on a : pour tout $u \in AP^0(\mathbb{E})$ et pour tout $\epsilon > 0$, il existe $\eta = \eta(u, \epsilon)$ tel que, pour tout $u_1 \in AP^0(\mathbb{E})$, si $\| u - u_1 \|_{\infty} \leq \eta$ alors $\| N_{D_x f(u)} - N_{D_x f(u_1)} \| \leq \epsilon$. Donc si on fixe $u \in AP^0(\mathbb{E})$ et $\epsilon > 0$, alors pour $v \in AP^0(\mathbb{E})$ tel que $\| v \|_{\infty} \leq 1$ on a
\[
\| D_x f(t, u(t))v(t) - D_x f(t, u_1(t))v(t) \| \leq \| D_x f(t, u(t)) - D_x f(t, u_1(t)) \| \cdot \| v(t) \|
\]
\[
\leq \| N_{D_x f(u)} - N_{D_x f(u_1)} \| \cdot \| v \|_{\infty} \leq \epsilon.
\]

En passant au sup sur \mathbb{R} on obtient
\[
\| DN_f(u) \cdot v - DN_f(u_1) \cdot v \|_{\infty} \leq \epsilon,
\]
et si on passe au sup sur $v \in AP^0(\mathbb{E})$ tel que $\| v \|_{\infty} \leq 1$, on obtient
\[
\| DN_f(t, u(t)) - DN_f(t, u_1(t)) \|_{\infty} \leq \epsilon;
\]
d'où la continuité de DN_f.
\hfill \Box
Remarque 2.1 Si $\phi \in C^0(\mathbb{E}, \mathbb{F})$, et si on pose $f(t,x) = \phi(x)$, pour tout $(t,x) \in \mathbb{R} \times \mathbb{E}$, alors on a $f \in \text{APU}(\mathbb{R} \times \mathbb{E}, \mathbb{F})$.

Corollaire 2.1 ([13], p.56).
Soit $n \in \mathbb{N}$, et $\phi \in C^n(\mathbb{E}, \mathbb{F})$. Alors l’opérateur de superposition $N_\phi : u \mapsto \phi \circ u$ est de classe C^n de $\text{AP}^0(\mathbb{E})$ sur $\text{AP}^0(\mathbb{F})$ et pour tout u, $v_1, \ldots, v_n \in \text{AP}^0(\mathbb{E})$, on a

$$D^n N_\phi(u). (v_1, \ldots, v_n) = [t \mapsto D^n \phi(u(t)). (v_1(t), \ldots, v_n(t))].$$

Lorsque $f \in C^0(\mathbb{R} \times \mathbb{E}^n, \mathbb{R}^m)$ est presque-périodique en t uniformément par rapport à x, on note

$$\Lambda(f) := \{ \lambda \in \mathbb{R} : \mathcal{M}\{f(t,x)e^{-i\lambda t}\}_{t \neq 0} \neq 0\},$$

$$:= \{ \lambda \in \mathbb{R} : \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{+T} f(t,x)e^{-i\lambda t}dt \neq 0\}.$$

Le module de f, noté $\text{Mod}(f)$ est le sous-groupe de \mathbb{R} engendré par $\Lambda(f)$.

3 Existence d’une solution presque-périodique pour certains types d’équations différentielles.

Dans cette partie, on donne des théorèmes sur l’existence et l’unicité d’une solution presque-périodique de divers types d’équations, comme les équations différentielles non linéaires $\frac{dx}{dt} = Ax + f(t), \ y' = Ay + q(t,y,\varepsilon)$ et l’équation $X'(t) = M(t,X(t))$, et aussi les équations forçées $x''(t) + \frac{d}{dt}(\nabla F(x(t))) + Cx(t) = e(t)$, $x''(t) + [b(t) + B(t)]x'(t) - F(t,x(t)) = e(t)$.

Théorème 3.1 (Bohr-Neugebauer) ([44], p.207).
Si A une matrice constante dont les valeurs propres sont toutes à partie réelle non nulle, f une fonction vectorielle continue presque-périodique, l’équation

$$\frac{dx}{dt} = Ax + f(t)$$

possède une solution presque-périodique unique x, et il existe un nombre α qui ne dépend que de A tel que :

$$\sup_{t \in \mathbb{R}} \|x(t)\| \leq \alpha \sup_{t \in \mathbb{R}} \|f(t)\|.$$

Théorème 3.2 (A.I. Perov) [44].
Soit la fonction $M : \mathbb{R} \times H \longrightarrow H$ à valeurs dans un espace de Hilbert H, continue par rapport à t $(-\infty < t < +\infty)$ et satisfaisant :
(1) La condition de Lipschitz par rapport à X :
\[\|M(t, X_1) - M(t, X_2)\| \leq k\|X_1 - X_2\|. \]

(2) $\forall t \in \mathbb{R} ; \forall X_1, X_2 \in H,$
\[(M(t, X_1) - M(t, X_2)|A(X_1 - X_2)) \geq \theta\|X_1 - X_2\|^2, \]
où A est un opérateur borné auto-adjoint et θ est une constante positive.
Alors, si $t \mapsto \|M(t, 0)\|$ est bornée, l'équation
\[X'(t) = M(t, X(t)), \]
possède une unique solution bornée. Si de plus M est périodique par rapport à t ($M(t + T, X) = M(t, X)$) ou uniformément presque-périodique pour tout compact $K \subseteq H$, alors cette solution bornée est T-périodique ou presque-périodique, respectivement.

Théorème 3.3 (P. Cieutat) [19].
Sur le système de Liénard
\[x''(t) + \frac{d}{dt}(\nabla F(x(t))) + Cx(t) = e(t), \quad (3.1) \]
on suppose vérifiées les hypothèses suivantes :

A C est un opérateur linéaire symétrique et inversible de \mathbb{R}^n vers \mathbb{R}^n.

B ∇F est le gradient d'une fonction convexe de classe C^2 de \mathbb{R}^n vers \mathbb{R}.

C $\exists c_\star > 0$ tel que $\forall x_1, x_2 \in \mathbb{R}^n$
\[\langle \nabla F(x_1) - \nabla F(x_2)|x_1 - x_2 \rangle \geq c_\star \|x_1 - x_2\|^2. \]

D $\exists k_\star > 0$ tel que $\forall x_1, x_2 \in \mathbb{R}^n$
\[\|\nabla F(x_1) - \nabla F(x_2)\| \leq k_\star \|x_1 - x_2\|. \]

Si $e(\cdot) \in AP^0(\mathbb{R}^n)$ alors il existe une unique solution x_0 presque-périodique de l'équation (3.1). De plus, $x_0 \in AP^2(\mathbb{R}^n)$ et $\text{Mod}(x_0) \subseteq \text{Mod}(e)$.

Théorème 3.4 (J.K. Hale) ([31], p.123)
Soit l'équation
\[y' = Ay + q(t, y, \varepsilon), \quad (3.2) \]
on où ε est un paramètre, y, q des fonctions vectorielles et A une matrice constante $(n \times n)$. On suppose les conditions suivantes vérifiées :

1. Les valeurs propres de la matrice A sont toutes à partie réelle non nulle.
2. q est une fonction presque-périodique en t uniformément par rapport à (y, ε) pour $\|y\| \leq R$, $(R > 0)$ et $0 \leq \varepsilon \leq \varepsilon_0$, $(\varepsilon_0 > 0)$.

3. Il existe deux fonctions $\eta(\varepsilon, \rho)$ et $M(\varepsilon)$ continues et croissantes de ε, ρ pour $0 \leq \varepsilon \leq \varepsilon_0$ et $0 \leq \rho \leq R$ et tel que : $\eta(0, 0) = 0$, $M(0) = 0$ et

$$\|q(t, y_1, \varepsilon) - q(t, y_2, \varepsilon)\| \leq \eta(\varepsilon, \rho)\|y_1 - y_2\|$$

$$q(t, 0, \varepsilon) \leq M(\varepsilon),$$

pour $-\infty < t < +\infty$, $\|y_1\| \leq \rho$, $\|y_2\| \leq \rho$, $0 \leq \varepsilon \leq \varepsilon_0$.

Alors il existe $\delta > 0$, $\varepsilon_1 > 0$ tels que :

1. Il existe une solution $y^*(t, \varepsilon)$ de l'équation (3.2) pour $0 < \varepsilon \leq \varepsilon_1$, tel que y^* est presque-périodique en t pour tout ε dans $[0, \varepsilon_1]$.

2. $y^*(t, \varepsilon)$ est continue en ε dans $[0, \varepsilon_1]$.

3. $y^*(t, \varepsilon) \to 0$ pour $\varepsilon \to 0$ uniformément en $t \in]-\infty, +\infty[$.

4. y^* est l'unique solution de (3.2) pour $0 \leq \|y\| \leq \delta$, $\forall t \in]-\infty, +\infty[.$

Théorème 3.5 [8] (J. Blot, P. Cieutat, J. Mawhin)

Soit l'équation différentielle forcée suivante

$$x''(t) + [b(t)I + B(t)]x'(t) - F(t, x(t)) = e(t), \quad (3.3)$$

où $F : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, $b : \mathbb{R} \to \mathbb{R}$, $B : \mathbb{R} \to \mathcal{L}(\mathbb{R}^n)$ et $e : \mathbb{R} \to \mathbb{R}^n$.

sous les conditions :

1. $\exists c_* \in (0, +\infty)$, $\forall t \in \mathbb{R}$, $\forall x, y \in \mathbb{R}^n$, tel que

$$\left(F(t, y) - F(t, x) - \frac{1}{4} B(t) B^*(t)(y - x) \right) \geq c_* \|y - x\|^2$$

où $B^*(t)$ est le transposé de $B(t)$

2. $e \in AP^{0}(\mathbb{R}^n)$

3. F est une fonction presque-périodique en t uniformément par rapport à $x \in \mathbb{R}^n$

4. $b \in AP^{0}(\mathbb{R})$

5. $B \in AP^{0}(\mathcal{L}(\mathbb{R}^n))$,

il existe une unique solution $u \in C^2(\mathbb{R}, \mathbb{R}^n) \cap AP^{0}(\mathbb{R}^n)$, de l'équation (3.3) dans \mathbb{R}. En plus on a $u \in AP^{2}(\mathbb{R}^n)$, et si b et B sont des constantes on a $\text{Mod}(u) \subset \text{Mod}(F + e)$.

4 Fonctions presqu’automorphes

Définition 4.1 [15] Une fonction continue \(f : \mathbb{R} \rightarrow \mathbb{E} \) est dite presqu’automorphe (p.a.) si pour toute suite de nombres réels \((s_n)_n \) on peut extraire une sous-suite \((s'_n)_n \) telles que :

\[
\lim_{n \to +\infty} f(t + s'_n) = g(t) \quad \text{est bien définie pour tout} \quad t \in \mathbb{R},
\]

et

\[
\lim_{n \to +\infty} g(t - s'_n) = f(t) \quad \text{pour chaque} \quad t \in \mathbb{R}.
\]

On note par \(AA^0(\mathbb{E}) \) l’ensemble des fonctions presqu’automorphes de \(\mathbb{R} \) dans \(\mathbb{E} \). On a \(AA^0(\mathbb{E}) \subset BC^0(\mathbb{R}, \mathbb{E}) \), et \(AA^0(\mathbb{E}) \), muni de la norme \(\| \cdot \|_\infty \), est un espace de Banach. Pour \(k \in \mathbb{N}^* \), on note

\[
AA^k(\mathbb{E}) := \{ f \in AA^0(\mathbb{E}) \cap C^k(\mathbb{R}, \mathbb{E}) ; \forall i = 1, \ldots, k \quad \frac{d^i f}{dt^i}(t) \in AA^0(\mathbb{E}) \}.
\]

Proposition 4.1 \(AA^k(\mathbb{E}) \), muni de la norme

\[
\| f \|_\infty := \sup_{t \in \mathbb{R}} \| f(t) \|_{\mathbb{E}} + \sum_{i=1}^k \sup_{t \in \mathbb{R}} \| \frac{d^i f}{dt^i}(t) \|_{\mathbb{E}},
\]

est un espace de Banach.

Propriétés 4.1 ([39], p. 13). Si \(f, f_1, f_2 : \mathbb{R} \rightarrow \mathbb{E} \) des fonctions presqu’automorphes, alors on a :

- \(f_1 + f_2 \) est presqu’automorphe.
- \(cf \) est presqu’automorphe quand \(c \in \mathbb{R} \).
- \(\tau_a(f)(t) \equiv f(t + a) \) est presqu’automorphe pour tout a fixé dans \(\mathbb{R} \).
- \(\sup_{t \in \mathbb{R}} \| f(t) \| < \infty ; f \) est une fonction bornée.
- L’image \(R_f = \{ f(t) : t \in \mathbb{R} \} \) est relativement compacte dans \(\mathbb{E} \).

5 Fonctions presqu’automorphes avec un paramètre

Définition 5.1 ([13], p. 45). Une fonction \(f : \mathbb{R} \times \mathbb{E} \rightarrow \mathbb{F} \) est dite presqu’automorphe en \(t \) uniformément pour \(x \) si

1. \(f(\cdot, x) \in AA^0(\mathbb{F}) \) pour tout \(x \in \mathbb{E} \).
2. pour tout compact \(K \subset \mathbb{E} \) et pour tout \(\varepsilon > 0 \), il existe \(\delta = \delta(K, \varepsilon) > 0 \) satisfaisant \(\| f(t, y) - f(t, z) \| \leq \varepsilon \) pour chaque \(t \in \mathbb{R} \) et pour tout \(y, z \in K \) tels que \(\| y - z \| < \delta \).

On note par \(AAU(\mathbb{R} \times \mathbb{E}, \mathbb{F}) \) l’ensemble des fonctions presqu’automorphes dans \(t \) uniformément pour \(x \).
Lemme 5.1 ([13], lemme 9.4) Soit $f \in AAU(\mathbb{R} \times E, F)$ et $u \in AA^0(E)$. Alors on a $[t \mapsto f(t, u(t))] \in AA^0(F)$.

Pour $f \in AAU(\mathbb{R} \times E, F)$ et par le lemme 5.1 on peut donner la définition d'opérateur de superposition suivant :

$$N_f : AA^0(E) \rightarrow AA^0(F), \quad N_f(u) := [t \mapsto f(t, u(t))].$$

Théorème 5.1 Soit $f : \mathbb{R} \times E \rightarrow F$ une fonction. Alors on a l'équivalence entre les assertions suivantes :

(i) $f \in AAU(\mathbb{R} \times E, F)$.

(ii) L'opérateur de superposition N_f est continu de $AA^0(E)$ dans $AA^0(F)$.

Avant de passer à la démonstration de ce théorème on donne d'abord le lemme suivant.

Lemme 5.2 ([13], lemme 9.6). Soit $f \in AAU(\mathbb{R} \times E, F)$. Alors on a : pour tout compact K dans E et pour tout $\varepsilon > 0$, il existe $\delta = \delta(K, \varepsilon)$ tels que pour tout $t \in K$ et pour tout $z \in E$, si $\|x - z\| \leq \delta$ alors $\|f(t, x) - f(t, z)\| \leq \varepsilon$, pour tout $t \in \mathbb{R}$.

Démonstration du théorème 5.1

(i) \Rightarrow (ii).

La démonstration de cette implication est la même que celle du théorème 2.1, si on remplace l'utilisation du lemme 2.2 par le lemme 5.2.

(iii) \Rightarrow (i).

(1) Pour tout $x \in E$, on considère la fonction constante $u_x : \mathbb{R} \rightarrow E$ donnée par $u_x(t) = x$. Alors on a $u_x \in AA^0(E)$, et puisque $N_f(AA^0(E)) \subset AA^0(F)$, on obtient donc $f(\cdot, x) = N_f(u_x) \in AA^0(F)$.

(2) Puisque la fonction

$$U : E \rightarrow AA^0(E), \quad U(x) = u_x,$$

est continue, et puisque N_f est continu, alors la composition $N_f \circ U$ est aussi continue sur E. Alors par l'utilisation du théorème de Heine, pour tout compact K, la fonction $[x \mapsto f(\cdot, x) = N_f \circ U(x)]$ est uniformément continue sur K.

Donc de (1) et (2) on a $f \in AAU(\mathbb{R} \times E, F)$.

Théorème 5.2 ([13], p.67). Soit $f \in AAU(\mathbb{R} \times E, F)$ tel que $D_x f(t, x)$ existe pour tout $(t, x) \in \mathbb{R} \times E$ (au sens de Fréchet) et tel que $D_x f \in AAU(\mathbb{R} \times E, L(E, F))$. Alors l'opérateur de superposition $N_f(u) := [t \mapsto f(t, u(t))]$ de $AA^0(E)$ dans $AA^0(F)$ est Fréchet continûment différentiable, et on a

$$DN_f(u).v = [t \mapsto D_x f(t, u(t)).v(t)], \quad \text{pour chaque } u, \ v \in AA^0(E).$$
La démonstration de ce théorème est similaire à celle du théorème 2.2 en remplaçant l’utilisation du théorème 2.1 par le théorème 5.1, et par le remplacement de l’utilisation du Lemme 2.1 par le Lemme 5.1.

Remarque 5.1 Si $\phi \in C^0(E, F)$ et si on pose $f(x,t) = \phi(x)$ pour tout $(x,t) \in E \times \mathbb{R}$, alors $f \in AAU(E \times \mathbb{R}, F)$.

6 Existence et unicité d’une solution "mild" pres-qu’automorphe pour l’équation différentielle non homogène.

On a besoin d’abord de quelques définitions importantes avant de donner le théorème d’existence et d’unicité d’une solution mild pres-qu’automorphe de l’équation différentielle non homogène

$$x'(t) = Ax(t) + f(t), \quad t \in \mathbb{R}, \quad (6.1)$$

Définition 6.1 Une famille à un paramètre $(T(t))_{t \geq 0}$ d’opérateurs linéaires bornés sur un espace de Banach E est un semi-groupe fortement continu (ou C_0-semi-groupe) si

(i) $T(0) = I_{\mathcal{L}(E)}$

(ii) $\forall (s,t) \geq 0, \quad T(s + t) = T(s) \circ T(t)$

(iii) $\forall x \in E, \quad \lim_{t \to 0^+} T(t)x = x$, ce qui implique, $\forall x \in E$ la fonction $t \mapsto T(t)x$ est continue de $[0, +\infty)$ sur E.

Définition 6.2 Le C_0-semi-groupe $(T(t))_{t \geq 0}$ est exponentiellement stable s’il existe $K > 0$, $w < 0$ tel que

$$\|T(t)\| \leq Ke^{wt}, \quad \text{pour chaque } t \geq 0.$$

Définition 6.3 [39]. On définit le générateur infinitésimal A d’un semi-groupe fortement continu $(T(t))_{t \geq 0}$ comme l’opérateur $A : D(A) \subset E \rightarrow E$ où :

$$D(A) = \{x \in E, \quad \lim_{t \to 0} \frac{T(t)x - x}{t} \text{ existe} \}$$

et

$$\forall x \in D(A), \quad Ax = \lim_{t \to 0} \frac{T(t)x - x}{t}.$$
Définition 6.4 [39].
La fonction x continûment dérivable et telle que $x(t) \in D(A)$ pour chaque $t \in \mathbb{R}$ est dite solution classique de l’équation (6.1) si elle vérifie cette dernière.

Définition 6.5 [39].
La fonction $x \in C^0(\mathbb{R}, E)$ donnée par

$$x(t) = T(t-a)x(a) + \int_a^t T(t-s)f(s) ds,$$

pour tout $a \in \mathbb{R}$ et pour tout $t \geq a$, est dite solution mild de (6.1).

Il est clair que toute solution classique est une solution mild. L’inverse n’est pas toujours vrai.

Théorème 6.1 [39], p.56.
Soit $f \in AA^0(E)$ et A un générateur infinitésimal d’un C_0-semi-groupe exponentiellement stable, alors l’équation (6.1) possède une unique solution mild presqu’automorphe sur \mathbb{R}.

7 Fonctions asymptotiquement presque-périodiques (respectivement asymptotiquement presqu’auto-

morphes)

On note par $BC(\mathbb{R} \times E,F)$ l’ensemble des fonctions continues et bornées de $\mathbb{R} \times E$ vers F. On considère les deux espaces suivants :

$$C_0(E) := \{u \in BC(\mathbb{R}, E) : \lim_{|t| \to \infty} \|u(t)\| = 0\},$$

$$C_0(\mathbb{R} \times E, F) := \{u \in BC(\mathbb{R} \times E, F) : \lim_{|t| \to \infty} \|u(t, x)\| = 0 \text{ uniformément pour tout compact dans } E\}.$$

Définition 7.1. [38] Une fonction continue et bornée $u : \mathbb{R} \to E$ est dite asymptotiquement presque-périodique (respectivement asymptotiquement presqu’automorphe) si u se décompose comme suit :

$$u = u_1 + u_2$$

où u_1 est presque-périodique (respectivement presqu’automorphe) et $u_2 \in C_0(E)$.

On note par $AAP^0(E)$ (respectivement $AAA^0(E)$) l’ensemble des fonctions asymptotiquement presque-périodiques (respectivement asymptotiquement presqu’automorphes). $AAP^0(E)$ (respectivement $AAA^0(E)$) muni de la norme $\| \cdot \|_{\infty}$ est un espace de Banach.
Définition 7.2. [38] Une fonction continue et bornée \(u : \mathbb{R} \times \mathbb{E} \rightarrow \mathbb{F} \) est dite asymptotiquement presque-périodique (respectivement asymptotiquement presqu’automorphe) en \(t \) uniformément par rapport à \(x \) sur tout compact de \(\mathbb{E} \) si \(u \) se décompose comme suit :

\[
 u = u_1 + u_2
\]

où \(u_1 \) est presque-périodique (respectivement presqu’automorphe) en \(t \) uniformément par rapport à \(x \) sur tout compact de \(\mathbb{E} \) et \(u_2 \in C_0(\mathbb{R} \times \mathbb{E}, \mathbb{F}) \).

On note par \(APU(\mathbb{R} \times \mathbb{E}, \mathbb{F}) \) (respectivement \(AAAU(\mathbb{R} \times \mathbb{E}, \mathbb{F}) \)) l’ensemble des fonctions asymptotiquement presque-périodiques (respectivement asymptotiquement presqu’automorphes) en \(t \) uniformément par rapport à \(x \) sur tout compact de \(\mathbb{E} \).

Remarque 7.1 La décomposition de \(u \) dans les deux définitions 7.1 et 7.2 est unique.

Théorème 7.1 Soit \(f \) une fonction de \(\mathbb{R} \times \mathbb{E} \) vers \(\mathbb{F} \) telle que \(f(t,x) = f_1(t,x) + f_2(t,x) \) et telle que \(f \) est une fonction asymptotiquement presque-périodique en \(t \) uniformément par rapport à \(x \) sur tout compact de \(\mathbb{E} \) alors pour \(x \in AAP^0(\mathbb{E}) \) on a \(f(\cdot, x(\cdot)) \in AAP^0(\mathbb{F}) \).

Pour la démonstration voir ([13], Lemme 8.3).

Théorème 7.2 [37] Soit \(f \) une fonction de \(\mathbb{R} \times \mathbb{E} \) vers \(\mathbb{F} \) telle que \(f(t,x) = f_1(t,x) + f_2(t,x) \) et telle que \(f \) est une fonction asymptotiquement presqu’automorphe en \(t \) uniformément par rapport à \(x \) sur tout compact de \(\mathbb{E} \) et on a \(f_2(t,x) \) est uniformément continue sur tout sous ensemble borné \(K \) de \(\mathbb{E} \), alors pour \(x \in AAA^0(\mathbb{E}) \) on a \(f(\cdot, x(\cdot)) \in AAA^0(\mathbb{F}) \).

Pour la démonstration voir ([37], Théorème 2.3). Pour \(k \in \mathbb{N}^* \), on note

\[
AAP^k(\mathbb{E}) := \{ f \in AAP^0(\mathbb{E}) \cap C^k(\mathbb{R}, \mathbb{E}) ; \forall i = 1, \ldots, k \quad \frac{d^i f}{dt^i} \in AAP^0(\mathbb{E}) \}
\]

\[
AAA^k(\mathbb{E}) := \{ f \in AAA^0(\mathbb{E}) \cap C^k(\mathbb{R}, \mathbb{E}) ; \forall i = 1, \ldots, k \quad \frac{d^i f}{dt^i} \in AAA^0(\mathbb{E}) \}
\]

8 Fonctions pseudo presque-périodiques (respectivement pseudo presqu’automorphes)

Soit l’espace

\[
P_0(\mathbb{E}) := \{ u \in BC(\mathbb{R}, \mathbb{E}) : \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} \| u(s) \| ds = 0 \}. \]
\[P_0(\mathbb{R} \times E, F) := \{ u \in BC(\mathbb{R} \times E, F) : u(\cdot, x) \in BC(\mathbb{R}, E) \text{ pour tout } x \in E \} \]

\[
\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} \|u(s, x)\| ds = 0 \text{ uniformément pour } x \in E
\]

Définition 8.1. [23], [38] Une fonction continue et bornée \(u : \mathbb{R} \to E \) est dite pseudo presque-périodique (respectivement pseudo presqu’automorphe) si \(u \) se décompose comme suit :

\[u = u_1 + u_2 \]

où \(u_1 \) est presque-périodique (respectivement presqu’automorphe) et \(u_2 \in P_0(E) \). La fonction \(u_1 \) est appelée la partie presque-périodique (respectivement presqu’automorphe) de \(u \) et \(u_2 \) est appelée la perturbation ergodique de la fonction \(u \).

On note par \(PAP^0(E) \) (respectivement \(PAA^0(E) \)) l’ensemble des fonctions pseudo presque-périodiques (respectivement pseudo presqu’autormorphes). \(PAP^0(E) \) (respectivement \(PAA^0(E) \)), muni de la norme \(\| \cdot \|_\infty \), est un espace de Banach.

Définition 8.2. [23], [38] Une fonction continue et bornée \(u : \mathbb{R} \times E \to F \) est dite pseudo presque-périodique (respectivement pseudo presqu’automorphe) en \(t \) uniformément par rapport à \(x \) sur tout compact de \(E \) si \(u \) se décompose comme suit :

\[u = u_1 + u_2 \]

où \(u_1 \) est presque-périodique (respectivement presqu’automorphes) en \(t \) uniformément par rapport à \(x \) sur tout compact de \(E \) et \(u_2 \in P_0(\mathbb{R} \times E, F) \).

On note par \(PAPU(\mathbb{R} \times E, F) \) (respectivement \(PAAU(\mathbb{R} \times E, F) \)) l’ensemble des fonctions pseudo presque-périodiques (respectivement pseudo presqu’autormorphes) en \(t \) uniformément par rapport à \(x \) sur tout compact de \(E \).

Remarque 8.1 La décomposition de \(u \) dans les deux définitions 8.1 et 8.2 est unique.

Théorème 8.1 Soit \(f \) une fonction de \(\mathbb{R} \times E \) vers \(F \) pseudo presque-périodique en \(t \) uniformément par rapport à \(x \) sur tout compact de \(E \) tel que \(f \) vérifie la condition de Lipschitz :

\[\| f(t, x) - f(t, y) \|_F \leq k \| x - y \|_E, \text{ for all } x, y \in E, t \in \mathbb{R}. \]

alors pour \(x \in PAP^0(E) \) on a \(f(\cdot, x(\cdot)) \in PAP^0(F) \).
Pour la démonstration voir ([3], Théorème 5).

Théorème 8.2 Soit f une fonction de $\mathbb{R} \times E$ vers F tel que $f(t, x) = f_1(t, x) + f_2(t, x)$ et tel que f est une fonction pseudo presqu’automorphe en t uniformément par rapport à x sur tout compact de E et on a
- $f(t, x)$ est uniformément continue sur tout sous-ensemble borné K de E
- $f_2(t, x)$ est uniformément continue sur tout sous-ensemble borné K de E

alors pour $x \in PAA^0(E)$ on a $f(\cdot, x(\cdot)) \in PAA^0(F)$.

Pour la démonstration voir ([37], Théorème 2.4)

Pour $k \in \mathbb{N}^*$, on note
\[
PAP^k(E) := \{f \in PAP^0(E) \cap C^k(\mathbb{R}, E); \quad \forall i = 1, \ldots, k \quad \frac{d^i f}{dt^i} \in PAP^0(E)\}
\]
\[
PAA^k(E) := \{f \in PAA^0(E) \cap C^k(\mathbb{R}, E); \quad \forall i = 1, \ldots, k \quad \frac{d^i f}{dt^i} \in PAA^0(E)\}.
\]

9 Fonctions pseudo presque-périodiques avec poids

(repectivement pseudo presqu’automorphes avec poids)

Soit $L^1_{loc}(\mathbb{R}, (0, \infty))$ l’ensemble des toutes les fonctions $\rho : \mathbb{R} \rightarrow (0, \infty)$ qui sont positives et localement Lebesgue-intégrables sur \mathbb{R}.

Pour $r > 0$, soit
\[
m(r, \rho) := \int_{-r}^{+r} \rho(x)dx, \quad \text{pour tout } \rho \in L^1_{loc}(\mathbb{R}, (0, \infty)),
\]
et on définit
\[
U_\infty := \{\rho \in L^1_{loc}(\mathbb{R}, (0, \infty)) : \lim_{r \rightarrow \infty} m(r, \rho) = \infty\}
\]

Pour $\rho \in U_\infty$ on considère
\[
P_0(E, \rho) := \{u \in BC(\mathbb{R}, E) : \lim_{r \rightarrow \infty} \frac{1}{m(r, \rho)} \int_{-r}^{+r} \|u(s)\|\rho(s)ds = 0\}.
\]
\[
P_0(\mathbb{R} \times E, F, \rho) := \{u \in BC(\mathbb{R} \times E, F) : u(\cdot, x) \in BC(\mathbb{R}, F) \text{ pour tout } x \in E
\]
et
\[
\lim_{r \rightarrow \infty} \frac{1}{m(r, \rho)} \int_{-r}^{+r} \|u(t, s)\|\rho(s)ds = 0; \text{uniformément pour } x \in E\}.
\]
Définition 9.1 . [24], [14] Une fonction continue et bornée $u : \mathbb{R} \rightarrow \mathbb{E}$ est dite pseudo presque-périodique avec poids (respectivement pseudo presqu’automorphe avec poids) si elle se décompose comme suit :

$$u = u_1 + u_2$$

où u_1 est presque-périodique (respectivement presqu’automorphe) et $u_2 \in P_0(\mathbb{E}, \rho)$.

On note par $WPAP^0(\mathbb{E}, \rho)$ (respectivement $WPAA^0(\mathbb{E}, \rho)$) l’ensemble des fonctions pseudo presque-périodiques avec poids (respectivement pseudo presqu’automorphes avec poids).

Définition 9.2 . [24], [14] Une fonction continue et bornée $u : \mathbb{R} \times \mathbb{E} \rightarrow \mathbb{F}$ est dite pseudo presque-périodique avec poids (respectivement pseudo presqu’automorphe avec poids) en t uniformément par rapport à x sur tout compact de \mathbb{E} si elle se décompose comme suit :

$$u = u_1 + u_2$$

où u_1 est presque-périodique (respectivement presqu’automorphe) en t uniformément par rapport à x sur tout compact de \mathbb{E} et $u_2 \in P_0(\mathbb{R} \times \mathbb{E}, \mathbb{F}, \rho)$.

On note par $WPAPU(\mathbb{R} \times \mathbb{E}, \mathbb{F}, \rho)$ (respectivement $WPAAU(\mathbb{R} \times \mathbb{E}, \mathbb{F}, \rho)$) l’ensemble des fonctions pseudo presque-périodiques avec poids (respectivement pseudo presqu’automorphes avec poids).

Remarque 9.1 La décomposition de u dans les deux définitions 9.1 et 9.2 n’est pas unique.

Soit

$$\mathcal{U}_T := \{ \rho \in \mathcal{U}_\infty : \text{\rho satisfait (H)} \},$$

où (H) est la condition suivante due à [9]

(H) Pour tout $\tau \in \mathbb{R}$, il existe une constante $\beta \in (0, \infty)$ et un intervalle borné I tel que

$$\rho(t + \tau) \leq \beta \rho(t) \text{ presque pour tout } t \in \mathbb{R} \setminus I.$$

Soit μ une mesure positive sur \mathbb{R}. La fonction u est dite μ-pseudo presque périodique (respectivement μ pseudo presqu’automorphe) si $u = g + \phi$, avec g est une fonction presque-périodique (respectivement presqu’automorphe) et ϕ satisfait :

$$\lim_{r \to \infty} \frac{1}{\mu([-r, r])} \int_{[-r, r]} \|\phi(s)\| \, d\mu(s) = 0,$$
où $\mu[-r,r]$ est la mesure de $[-r,r]$. On peut remarquer que une fonction pseudo presque périodique avec poids (respectivement pseudo presqu’auto-
morphe avec poids) est une fonction μ—pseudo presque périodique (respecti-
vement μ—pseudo presqu’automorphe), où la mesure μ est absolument con-
nu par rapport à la mesure de Lebesgue et sa dérivée de Radon-Nikodym
par rapport à la mesure de Lebesgue est $\rho = \frac{d\mu}{dt}$, ρ satisfait (H) si et se-
ulement si la mesure μ satisfait :
Pour tout $\tau \in \mathbb{R}$, il existe $\beta > 0$ est un intervalle borné I tel que
$$\mu(\{a + \tau : a \in K\}) \leq \beta \mu(K),$$
pour tout $K \in \mathfrak{B}$ (\mathfrak{B} est la tribu de Lebesgue de \mathbb{R}), satisfait $K \cap I = \emptyset$,
Remarque 3.1 [9].

Lemme 9.1 Soit $\rho \in \mathcal{U}_T$. Alors on a
$$WPAP^0(\mathcal{E}, \rho) := AP^0(\mathcal{E}) \oplus P_0(\mathcal{E}, \rho),$$
(respectivement $WPAA^0(\mathcal{E}, \rho) := A^0(\mathcal{E}) \oplus P_0(\mathcal{E}, \rho)$). De plus on a
$$WPAPU(\mathbb{R} \times \mathcal{E}, \mathcal{F}, \rho) := APU(\mathbb{R} \times \mathcal{E}, \mathcal{F}) \oplus P_0(\mathbb{R} \times \mathcal{E}, \mathcal{F}, \rho),$$
(respectivement $WPAAU(\mathbb{R} \times \mathcal{E}, \mathcal{F}, \rho) := A^0(\mathbb{R} \times \mathcal{E}, \mathcal{F}) \oplus P_0(\mathbb{R} \times \mathcal{E}, \mathcal{F}, \rho)$).
Pour la démonstration voir (Corollaire 2.29 [10]) pour le cas $WPAP^0(\mathcal{E}, \rho)$
et (Théorème 4.7 [9]) pour le cas $WPAA^0(\mathcal{E}, \rho)$.

Lemme 9.2 Soit $\rho \in \mathcal{U}_T$. Alors $(WPAP^0(\mathcal{E}, \rho), \| \cdot \|_{\infty})$ (respectivement
$(WPAA^0(\mathcal{E}, \rho), \| \cdot \|_{\infty})$) est un espace de Banach.
Pour la démonstration voir (Corollaire 2.31 [10]) pour le cas $WPAP^0(\mathcal{E}, \rho)$
et (Théorème 4.9 [9]) pour le cas $WPAA^0(\mathcal{E}, \rho)$.

Théorème 9.1 Soit f une fonction de $\mathbb{R} \times \mathcal{E}$ vers \mathbb{F} pseudo presque-périodique
avec poids en t uniformément par rapport à x sur tout compact de \mathcal{E} tel que
f vérifie la condition de Lipschitz :
$$\|f(t, x) - f(t, y)\|_F \leq k\|x - y\|_E, \text{ for all } x, y \in \mathcal{E}, t \in \mathbb{R}.$$
alors pour $x \in WPAP^0(\mathcal{E}, \rho)$ on a $f(\cdot, x(\cdot)) \in WPAP^0(\mathcal{E}, \rho)$.
Pour la démonstration voir ([24], Théorème 3.4)

Théorème 9.2 Soit $\rho \in \mathcal{U}_\infty$ et f une fonction de $\mathbb{R} \times \mathcal{E}$ vers \mathbb{F} tel que
$f(t, x) = f_1(t, x) + f_2(t, x)$ tel que f est une fonction pseudo presqu’auto-
morphe avec poids en t uniformément par rapport à x sur tout compact
de \mathcal{E} et on a
- \(f(t,x) \) est uniformément continue sur tout sous ensemble borné \(K \) de \(E \)
- \(f_2(t,x) \) est uniformément continue sur tout sous ensemble borné \(K \) de \(E \)

alors pour \(x \in WPAA^0(E,\rho) \) on a \(f(\cdot,x(\cdot)) \in WPAA^0(F,\rho) \).

Pour la démonstration voir ([14], Théorème 2.10)

Pour \(k \in \mathbb{N}^* \), on note

\[
WPAP^k(E,\rho) := \{ f \in WPAP^0(E,\rho) \cap \mathcal{C}^k(\mathbb{R},E); \ \forall i = 1,\ldots,k \quad \frac{d^i f}{dt^i} \in WPAP^0(E,\rho) \}
\]

\[
WPAA^k(E,\rho) := \{ f \in WPAA^0(E,\rho) \cap \mathcal{C}^k(\mathbb{R},E); \ \forall i = 1,\ldots,k \quad \frac{d^i f}{dt^i} \in WPAA^0(E,\rho) \}.
\]
Chapitre 2

PETITES OSCILLATIONS PRESQU’AUTOMORPHES ET PRESQUE-PÉRIODIQUES DE L’ÉQUATION DE LIÉNARD FORCÉE.

1 Introduction

Soit P un espace de Banach, $f : \mathbb{R} \times P \rightarrow \mathbb{R}$ et $g : \mathbb{R} \times P \rightarrow \mathbb{R}$ deux fonctions. On fixe $(e_p)_{p \in P}$ qui est une famille de fonctions presque-périodiques ou presqu’automorphes. On considère la famille d’équations de Liénard forcées suivantes :

$$(\mathcal{E}, p) \quad x''(t) + f(x(t), p)x'(t) + g(x(t), p) = e_p(t).$$

À partir de $0 \in P$ pour lequel $e_0 = 0$ et pour lequel la fonction nulle est une solution de (\mathcal{E}, p), on donne des conditions pour établir le résultat suivant : pour tout p appartenant à un voisinage de 0, il existe une solution x_p presque-périodique (respectivement presqu’automorphe) de (\mathcal{E}, p) où e_p est presque-périodique (respectivement presqu’automorphe) et la dépendance $p \mapsto e_p$ est continûment différentiable. Alors ce qui implique que x_p est uniformément convergente vers 0 quand p converge vers 0.

On considère aussi la famille d’équations suivantes.

$$(\mathcal{F}, e) \quad x''(t) + f_1(x(t)).x'(t) + g_1(x(t)) = e(t).$$

est un cas particulier de (\mathcal{E}, p) en prenant P l’espace des fonctions presque-périodiques (ou fonctions presqu’automorphes) et en posant $f(x, p) = f_1(x)$,
\[g(x, p) = g_1(x) \text{ et } p \mapsto e_p \] est l’application identité.

Enfin on considère la famille d’équations :
\[(G, e, q) \quad x''(t) + f_2(x(t), q) \cdot x'(t) + g_2(x(t), q) = e(t) \]

où \(q \) appartient à l’espace de Banach \(Q \), est un cas particulier de \((E, p)\) en prenant \(p = (e, q), f(x, e, q) = f_2(x, q), g(x, e, q) = g_2(x, q) \) et \(e_{(e, q)} = e \).

Sur \((F, e)\) et \((G, e, q)\) on obtient les mêmes résultats obtenus sur \((E, p)\).

Notons que \((E, p)\) ne sont pas des cas particuliers des équations différentielles \(x''(t) + [b(t)I + B(t)]x'(t) + F(t, x(t)) = e(t) \), puisque le terme \([b(t)I + B(t)]\) ne contient pas \(x(t) \), et notons que \((E, p)\) ne sont pas des cas particuliers des équations différentielles \(x''(t) + \frac{\partial}{\partial t} F(x(t)) + Cx(t) = e(t) \), puisque le \(C \) est linéaire et \(g \) n’est pas linéaire. Notons aussi que \((E, p)\) ne sont pas des cas particuliers des équations différentielles \(x'(t) = Ax(t) + q(t, x, \varepsilon) \) où \(A \) est une matrice constante non nulle. Maintenant nous décrivons le contenu de ce chapitre. Dans la section 2 nous précisons les notations des espaces de fonctions qui sont utilisés dans le chapitre et nous rappelons certaines de leurs propriétés. Dans la section 3 on formule les résultats principaux du chapitre. Dans la section 4 on donne la démonstration des théorèmes principaux.

2 Préliminaires

Pour \(X \) et \(Y \) deux espaces de Banach, \(\mathcal{L}(X, Y) \) est l’espace de Banach des opérateurs linéaires continus de \(X \) dans \(Y \), et \(\| \cdot \|_\mathcal{L} \) est la norme des opérateurs :
\[\|T\|_\mathcal{L} = \sup_{\|x\| \leq 1} \|Tx\|_Y. \]

Pour \(F \in C^0(\mathbb{R} \times \mathbb{R} \times \mathbb{R}, \mathbb{R}) \), une solution p.p. (respectivement p.a.) d’une équation différentielle du second ordre \(x''(t) = F(t, x(t), x'(t)) \) est une fonction \(x \in AP^2(\mathbb{R}) \) (respectivement \(AA^2(\mathbb{R}) \)) qui est une solution classique de l’équation différentielle.

Le lemme suivant généralise le théorème de Bohr-Neugebauer (Théorème 3.1 du chapitre 1) sur les solutions presqu’automorphes, et qu’on l’utilise dans notre preuve.

Lemme 2.1 Soit \(A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n) \) tel que toutes ses valeurs propres ont une partie réelle différente de zéro. Alors, pour tout \(h \in AA^0(\mathbb{R}^n) \), il existe une unique solution presqu’automorphe de l’équation différentielle
\[u'(t) = Au(t) + h(t). \]

Démonstration
On note par \(\lambda_1, \ldots, \lambda_n \), les valeurs propre de \(A, \nu \leq n \), on fixe \(h \in AA^0(\mathbb{R}) \).
Étape 1 :
Le cas où $\Re \lambda_k < 0$ pour tout $k = 1, \ldots, \nu$.
Dans cette situation l’origine est un point foyer ([34] p. 145) pour le système dynamique
\[u' = Au \]
et par l’utilisation du théorème 1 de [34] (p. 145), il existe $K \in (0, \infty)$ et $\omega \in (0, \infty)$ tels que
\[\forall t \in [0, \infty), \quad \|e^{tA}\|_\mathcal{L} \leq Ke^{-t\omega}. \]

D’après la terminologie de la théorie des semi-groupes, cette dernière condition signifie que $(e^{tA})_{t \geq 0}$ est un C_0-semi-groupe exponentiellement stable. On remarque que : dire que u est une solution classique de (2.1) est équivalent à dire que u est une solution mild de (2.1) (au sens donné dans le chapitre 1) puisque le domaine de A est \mathbb{R}^n. Alors, le Théorème 6.1 du chapitre 1 assure l’existence d’une unique solution p.a. de 2.1.

Étape 2 :
Dans le cas où $\Re \lambda_k > 0$ pour tout $k = 1, \ldots, \nu$.
u est une solution de (2.1) sur \mathbb{R} si et seulement si v est une solution sur \mathbb{R} de l’équation
\[v'(t) = -Av(t) - h(-t) \quad (2.2) \]
on où v est définie par
\[v(t) := u(-t). \]

Puisque les valeurs propres de $-A$ sont $-\lambda_1, \ldots, -\lambda_\nu$. Et puisque $t \mapsto -h(-t)$ appartient à $AA^0(\mathbb{R}^n)$, et par l’application de la première étape sur le système dynamique (2.2), il existe une unique solution p.a. de (2.2), notée v. Donc la fonction u définie par
\[u(t) := v(-t), \]
est l’unique solution p.a. de (2.1).

Étape 3 : Dans le cas complexe.
On peut considérer le système complexe associé à (2.1).
\[z'(t) = Az(t) + \zeta(t), \quad z(t) \in \mathbb{C}^n, \zeta(t) \in \mathbb{C}^n. \quad (2.3) \]

Soit
\[z(t) = x(t) + iy(t), \]
avec $x(t) \in \mathbb{R}^n$ et $y(t) \in \mathbb{R}^n$ sont des solutions de (2.3). Puisque A est réel, x est une solution de 2.1 avec $h = \Re \zeta$, et y est une solution de 2.1 avec $h = \Im \zeta$.

Dans un premier temps on suppose que $\Re \lambda_k < 0$ pour tout $k = 1, \ldots, \nu$. Quand $\zeta \in AA^0(\mathbb{C}^n)$, alors $\Re \zeta$ et $\Im \zeta$ appartiennent à $AA^0(\mathbb{R}^n)$, et par l’utilisation de la première étape, il existe une unique solution p.a. x de (2.1).
pour \(h = \Re \zeta \) et il existe une unique solution p.a. \(y \) de (2.1) pour \(h = \Im \zeta \), et donc \(z := x + i.y \) est l’unique solution p.a. de (2.3).

Avec le même raisonnement, on utilise la deuxième étape pour le cas où \(\Re \lambda_k > 0 \) pour tout \(k = 1, ..., \nu \). On obtient pour tout \(\zeta \in AA^0(C^n) \) qu’il existe une unique solution a.p. de (2.3).

Etape 4 :
Dans le cas où il existe un nombre entier \(m \) tel que \(1 \leq m < \nu \) satisfaisant

\[
\Re \lambda_k < 0 \text{ pour } 1 \leq k \leq m
\]

et

\[
\Re \lambda_k > 0 \text{ pour } m < k \leq \nu.
\]

On note par \(E(A, \lambda_j) \) le sous-espace spectral associé à \(\lambda_j \). On pose comme dans ([34] p. 110)

\[
E_- := E(A, \lambda_1) \oplus ... \oplus E(A, \lambda_m)
\]

et

\[
E_+ := E(A, \lambda_{m+1}) \oplus ... \oplus E(A, \lambda_\nu).
\]

On a

\[
\mathbb{C}^n = E_- \oplus E_+
\]

avec

\[
A(E_-) \subset E_- \text{ et } A(E_+) \subset E_+.
\]

On note

\[
A_- \in \mathcal{L}(E_-, E_-)
\]

la restriction de \(A \) sur \(E_- \), et on note

\[
A_+ \in \mathcal{L}(E_+, E_+)
\]

la restriction de \(A \) sur \(E_+ \). Les valeurs propres de \(A_- \) ont des parties réelles négatives et les valeurs propres de \(A_+ \) ont des parties réelles positives.

Pour \(h \in AA^0(\mathbb{R}^n) \) on peut considérer \(h = h + i.0 \), un élément de \(AA^0(\mathbb{C}^n) \). On pose

\[
h = h_- \oplus h_+
\]

où \(h_-, h_+ \in AA^0(E_-) \) et \(h_+ \in AA^0(E_+) \). Par l’utilisation de la troisième étape, il existe \(z_- \in AA^1(E_-) \) l’unique solution p.a. de

\[
z'_-(t) = A_-z_-(t) + h_- (t),
\]

et il existe \(z_+ \in AA^1(E_+) \) l’unique solution p.a. de

\[
z'_+(t) = A_+z_+(t) + h_+ (t).
\]

Alors \(z := z_- \oplus z_+ \) est l’unique solution p.a. de (2.3) avec \(\zeta = h \), et donc \(x := \Re z \) est l’unique solution p.a. de (2.1). □
3 Résultats

D’abord on donne une liste d’hypothèses concernant l’équation \((\mathcal{E}, p)\).

(A1) \(f \in C^1(\mathbb{R} \times P, \mathbb{R}) \) et \(g \in C^1(\mathbb{R} \times P, \mathbb{R}) \).

(A2) \(g(0, 0) = 0 \).

(A3) \(p \mapsto e_p \in C^1(P, AP^0(\mathbb{R})) \) et \(e_0 = 0 \).

(A4) \(f(0, 0) \neq 0 \) lorsque \(f(0, 0)^2 < 4 \frac{\partial g(0, 0)}{\partial x} \), et
\(\frac{\partial g(0, 0)}{\partial x} \neq 0 \) lorsque \(f(0, 0)^2 \geq 4 \frac{\partial g(0, 0)}{\partial x} \).

(A5) \(p \mapsto e_p \in C^1(P, AA^0(X)) \) et \(e_0 = 0 \).

Sur les solutions p.p. de \((\mathcal{E}, p)\), on donne le résultat suivant :

Théorème 3.1 Sous les hypothèses (A1-A4), il existe un voisinage \(\mathcal{U} \) de 0 dans \(AP^2(\mathbb{R}) \), un voisinage \(\mathcal{V} \) de 0 dans \(P \) et une application \(p \mapsto \mathcal{Z}[p] \) de classe \(C^1 \) de \(\mathcal{V} \) dans \(\mathcal{U} \) qui satisfait les conditions suivantes :

(i) \(\mathcal{Z}[0] = 0 \).

(ii) Pour tout \(p \in \mathcal{V} \), \(\mathcal{Z}[p] \) est une solution p.p. de \((\mathcal{E}, p)\).

(iii) Si \(x \in \mathcal{U} \) est une solution p.p. de \((\mathcal{E}, p)\) avec \(p \in \mathcal{V} \), alors \(x = \mathcal{Z}[p] \).

Sur les solutions p.a. de \((\mathcal{E}, p)\), on donne le résultat suivant :

Théorème 3.2 Sous les hypothèses (A1-A2) et (A4-A5), il existe un voisinage \(\mathcal{U}_1 \) de 0 dans \(AA^2(\mathbb{R}) \), un voisinage \(\mathcal{V}_1 \) de 0 dans \(P \) et une application \(p \mapsto \mathcal{Z}_1[p] \) de classe \(C^1 \) de \(\mathcal{V}_1 \) dans \(\mathcal{U}_1 \) qui satisfait les conditions suivantes :

(i) \(\mathcal{Z}_1[0] = 0 \).

(ii) Pour tout \(p \in \mathcal{V}_1 \), \(\mathcal{Z}_1[p] \) est une solution p.a. de \((\mathcal{E}, p)\).

(iii) Si \(x \in \mathcal{U}_1 \) est une solution p.a. de \((\mathcal{E}, p)\) avec \(p \in \mathcal{V}_1 \), alors \(x = \mathcal{Z}_1[p] \).

Pour l’équation \((\mathcal{F}, e)\), la liste des hypothèses est :

(A6) \(f_1 \in C^1(\mathbb{R}, \mathbb{R}) \) et \(g_1 \in C^1(\mathbb{R}, \mathbb{R}) \).

(A7) \(g_1(0) = 0 \).

(A8) \(f_1(0) \neq 0 \) lorsque \(f_1(0)^2 < 4g'_1(0) \), et \(g'_1(0) \neq 0 \) lorsque \(f_1(0)^2 \geq 4g'_1(0) \).

Sur les solutions p.p. et p.a. de \((\mathcal{F}, e)\) on donne le résultat suivant :

Corollaire 3.1 Sous les hypothèses (A6-A8), il existe un voisinage \(\mathcal{W} \) de 0 dans \(AP^0(\mathbb{R}) \) (respectivement \(AA^0(\mathbb{R}) \)), un voisinage \(\mathcal{U} \) de 0 dans \(AP^2(\mathbb{R}) \) (respectivement \(AA^2(\mathbb{R}) \)) et une application \(e \mapsto \mathcal{Z}[e] \) de classe \(C^1 \), de \(\mathcal{W} \) dans \(\mathcal{U} \) qui satisfait les conditions suivantes :

(i) \(\mathcal{Z}[0] = 0 \).

(ii) Pour tout \(e \in \mathcal{W} \), \(\mathcal{Z}[e] \) est une solution p.p. (respectivement p.a.) de \((\mathcal{F}, e)\).
(iii) Si $x \in \mathcal{U}$ solution p.p. (respectivement a.a.) de (\mathcal{F}, e) avec $e \in \mathcal{W}$ dans $AP^0(\mathbb{R})$ (respectivement $AA^0(\mathbb{R})$), alors on a $x = \mathcal{E}[e]$.

Démonstration

D'abord, nous traitons le cas de p.p. On pose $P := AP^0(\mathbb{R})$. On définit $f : \mathbb{R} \times AP^0(\mathbb{R}) \rightarrow \mathbb{R}$ en posant $f(x, e) := f_1(x)$, et on définit $g : \mathbb{R} \times AP^0(\mathbb{R}) \rightarrow \mathbb{R}$ en posant $g(x, e) := g_1(x)$. On définit $p \mapsto e_p$ comme un opérateur identité de $AP^0(\mathbb{R})$ dans $AP^0(\mathbb{R})$. Alors (\mathcal{F}, e) devienne (\mathcal{E}, p).

Alors on obtient la conclusion par l'utilisation de théorème 3.1. Le raisonnement est le même dans le cas de p.a. par l'utilisation du théorème 3.2 au lieu du théorème 3.1. □

Les hypothèses pour l'équation (\mathcal{G}, e, q) sont les suivantes :

(A9) $f_2 \in C^1(\mathbb{R} \times Q, \mathbb{R})$ et $g_2 \in C^1(\mathbb{R} \times Q, \mathbb{R})$.

(A10) $g_2(0, 0) = 0$.

(A11) $f_2(0, 0) \neq 0$ lorsque $f_2(0, 0)^2 < 4 \frac{\partial g_2(0, 0)}{\partial x}$, et $
\frac{\partial g_2(0, 0)}{\partial x} \neq 0$ lorsque $f_2(0, 0)^2 > 4 \frac{\partial g_2(0, 0)}{\partial x}$.

Sur les solutions p.p. et p.a. de l'équation (\mathcal{G}, e, q), on donne le résultat suivant :

Corollaire 3.2 Sous les hypothèses (A9-A11), il existe un voisinage \mathcal{W}_2 de 0 dans $AP^0(\mathbb{R})$ (respectivement $AA^0(\mathbb{R})$), un voisinage \mathcal{U}_2 de 0 dans $AP^2(\mathbb{R})$ (respectivement $AA^2(\mathbb{R})$), un voisinage \mathcal{V}_2 de 0 dans Q et une application $e \mapsto \mathcal{G}[e, q]$ de classe C^1, de $\mathcal{W}_2 \times \mathcal{V}_2$ dans \mathcal{U}_2 qui satisfont :

(i) $\mathcal{G}[0, 0] = 0$.

(ii) Pour tout $e \in \mathcal{W}_2$ dans $AP^0(\mathbb{R})$ (respectivement $AA^0(\mathbb{R})$) et pour tout $q \in \mathcal{V}_2$, $\mathcal{G}[e, q]$ est une solution p.p. (respectivement a.a.) de (\mathcal{G}, e, q).

(iii) Si $x \in \mathcal{U}_2$ est une solution p.p. (respectivement a.a.) de (\mathcal{G}, e, q) avec $e \in \mathcal{W}_2$ dans $AP^0(\mathbb{R})$ (respectivement $AA^0(\mathbb{R})$) et $q \in \mathcal{V}_2$, alors on a $x = \mathcal{G}[e, q]$.

Démonstration

D'abord, on commence par le cas de p.p. On pose $P := AP^0(\mathbb{R}) \times Q$. On définit $f : \mathbb{R} \times AP^0(\mathbb{R}) \times Q \rightarrow \mathbb{R}$ en posant $f(x, e, q) := f_2(x, q)$, et on définit $g : \mathbb{R} \times AP^0(\mathbb{R}) \times Q \rightarrow \mathbb{R}$ en posant $g(x, e, q) := g_2(x, q)$. On définit $(e, q) \mapsto e$ de $AP^0(\mathbb{R}) \times Q$ dans $AP^0(\mathbb{R})$ comme la projection de $AP^0(\mathbb{R}) \times Q$ sur le premier ensemble. Alors (\mathcal{G}, e, q) devient (\mathcal{E}, p).

L'hypothèse (A9) implique (A1), l'hypothèse (A10) implique (A2), puisque l'opérateur de projection est linéaire et continu, alors il est de classe C^1 donc...
(A3) est vérifiée. L’hypothèse (A11) implique (A4).
Alors on obtient la conclusion par l’utilisation du théorème 3.1. Le raisonnement est le même dans le cas p.a. par l’utilisation du théorème 3.2 au lieu du théorème 3.1.

4 Démonstration des théorèmes

On définit l’opérateur non linéaire \(\Phi : AP^2(\mathbb{R}) \times P \to AP^0(\mathbb{R}) \) (respectivement \(AA^2(\mathbb{R}) \times P \to AA^0(\mathbb{R}) \))

\[
\Phi(x, p) := [t \mapsto x''(t) + f(x(t), p)x'(t) + g(x(t), p) - e_p(t)]
\]

(4.1)
où \(x \in AP^2(\mathbb{R}) \) (respectivement \(AA^2(\mathbb{R}) \)) et \(p \in P \).
Il est facile de remarquer que, \(x \in AP^2(\mathbb{R}) \) (respectivement \(AA^2(\mathbb{R}) \)) satisfait \(\Phi(x, p) = 0 \) si et seulement si \(x \) est une solution p.p. (respectivement p.a.) de \((\mathcal{E}, p) \).
Pour bien organiser notre démonstration des deux théorèmes (3.1 et 3.2), on va la découper en des lemmes avec leurs démonstrations pour assurer les hypothèses du théorème des fonctions implicites ([17], p. 61) sur \(\Phi(x, p) = 0 \) et donc l’existence et l’unicité d’une solution p.p. (respectivement p.a.) de \((\mathcal{E}, p) \).

Sous les hypothèses (A2) et (A3) (respectivement (A2) et (A5)), \((0, 0) \) est une solution p.p. (respectivement p.a.) de \((\mathcal{E}, 0) \), et alors on a l’égalité suivante :

\[
\Phi(0, 0) = 0.
\]

(4.2)

Lemme 4.1 Sous les hypothèses (A1-A3) (respectivement (A1-A2) et (A5)), l’opérateur \(\Phi \) est bien défini, et il est de classe \(C^1 \) de \(AP^2(\mathbb{R}) \times P \) (respectivement \(AA^2(\mathbb{R}) \times P \)). De plus la dérivée partielle de \(\Phi \) par rapport à la première variable, au point \((x, p) = (0, 0) \), est donnée par

\[
D_x \Phi(0, 0).y = [t \mapsto y''(t) + f(0, 0)y'(t) + \frac{\partial g(0, 0)}{\partial x}.y(t)]
\]

(4.2)
où \(y \in AP^2(\mathbb{R}) \) (respectivement \(AA^2(\mathbb{R}) \)).

Démonstration
Soit les opérateurs linéaires suivants :

\[
- \frac{d^2}{dt^2} : AP^2(\mathbb{R}) \to AP^0(\mathbb{R}) \quad (\text{respectivement } AA^2(\mathbb{R}) \to AA^0(\mathbb{R}))
\]

est défini par

\[
\frac{d^2}{dt^2}x := x''.
\]

(4.3)

Puisque

\[
\|\frac{d^2}{dt^2}x\|_\infty \leq \|x''\|_\infty + \|x'\|_\infty + \|x\|_\infty,
\]
on a
\[\left\| \frac{d^2}{dt^2} x \right\|_\infty \leq \| x \|_{BC^2}. \]

Alors l’opérateur linéaire \(\frac{d^2}{dt^2} \) est continu, donc de classe \(C^1 \), et on a pour tout \(x, y \) dans \(AP^2(\mathbb{R}) \) (respectivement \(AA^2(\mathbb{R}) \))

\[D \frac{d^2}{dt^2}(x(\cdot))(y(\cdot)) = \frac{d^2}{dt^2}(y(\cdot)) \]

\[- \frac{d}{dt} : AP^1(\mathbb{R}) \rightarrow AP^0(\mathbb{R}) \] (respectivement \(AA^1(\mathbb{R}) \rightarrow AA^0(\mathbb{R}) \)) est défini par

\[\frac{d}{dt} x := x'. \] (4.4)

Puisque
\[\left\| \frac{d}{dt} x \right\|_\infty \leq \| x' \|_\infty + \| x \|_\infty, \]
on a
\[\left\| \frac{d}{dt} x \right\|_\infty \leq \| x \|_{BC^1}. \]

Alors l’opérateur linéaire \(\frac{d}{dt} \) est continu, donc de classe \(C^1 \), et on a pour tout \(x, y \) dans \(AP^1(\mathbb{R}) \) (respectivement \(AA^1(\mathbb{R}) \))

\[D \frac{d}{dt}(x(\cdot))(y(\cdot)) = \frac{d}{dt}(y(\cdot)) \]

\[- in_1 : AP^2(\mathbb{R}) \rightarrow AP^1(\mathbb{R}) \] (respectivement \(AA^2(\mathbb{R}) \rightarrow AA^1(\mathbb{R}) \)) est défini par

\[in_1(x) := x. \] (4.5)

Puisque
\[\| x \|_\infty + \| x' \|_\infty \leq \| x \|_\infty + \| x' \|_\infty + \| x'' \|_\infty, \]
on a
\[\| x \|_{BC^1} \leq \| x \|_{BC^2}, \]
d’où
\[\| in_1(x) \|_{BC^1} \leq \| x \|_{BC^2}. \]

Alors l’opérateur linéaire \(in_1 \) est de classe \(C^1 \), et on a, pour tout \(x, y \) dans \(AP^2(\mathbb{R}) \) (respectivement \(AA^2(\mathbb{R}) \))

\[Din_1(x(\cdot))(y(\cdot)) = in_1(y(\cdot)). \]

\[- in_2 : AP^2(\mathbb{R}) \rightarrow AP^0(\mathbb{R}) \] (respectivement \(AA^2(\mathbb{R}) \rightarrow AA^0(\mathbb{R}) \)) est défini par

\[in_2(x) := x. \] (4.6)

Puisque
\[\| x \|_\infty \leq \| x \|_\infty + \| x' \|_\infty + \| x'' \|_\infty, \]
on a
\[\|x\|_\infty \leq \|x\|_{BC^2}, \]
d'où
\[\|\text{in}_2(x)\|_\infty \leq \|x\|_{BC^2}. \]
Alors l'opérateur linéaire \(\text{in}_2 \) est de classe \(C^1 \), et on a, pour tout \(x, y \) dans \(AP^2(\mathbb{R}) \) (respectivement \(AA^2(\mathbb{R}) \))
\[\text{Din}_2(x(\cdot))(y(\cdot)) = \text{in}_2(y(\cdot)) \]
Donc on a,
\[\frac{d^2}{dt^2}, \frac{d}{dt}, \text{in}_1, \text{in}_2 \text{ sont de classe } C^1. \quad (4.7) \]
Maintenant nous définissons les opérateurs de Nemytski (dite aussi opérateur de superposition) construits sur les fonctions \(f \) et \(g \):
- \(N_f : AP^0(\mathbb{R}) \times AP^0(P) \to AP^0(\mathbb{R}) \)
 (respectivement \(AA^0(\mathbb{R}) \times AA^0(P) \to AA^0(\mathbb{R}) \)) défini par
 \[N_f(x,p) := [t \mapsto f(x(t),p(t))], \quad (4.8) \]
- \(N_g : AP^0(\mathbb{R}) \times AP^0(P) \to AP^0(\mathbb{R}) \)
 (respectivement \(AA^0(\mathbb{R}) \times AA^0(P) \to AA^0(\mathbb{R}) \)) défini par
 \[N_g(x,p) := [t \mapsto g(x(t),p(t))]. \quad (4.9) \]
Dans le cas de la presque-périodicité, d'après (A1) et le corollaire 2.1 du chapitre 1, \(N_f \) et \(N_g \) sont de classe \(C^1 \) sur \(AP^0(\mathbb{R}) \times AP^0(P) \equiv AP^0(\mathbb{R} \times P) \).
Dans le cas presqu'automorphe, si on pose
\(\hat{f}(x,p,t) := f(x,p) \) et \(\hat{g}(x,p,t) := g(x,p) \) pour tout \((x,p,t) \in \mathbb{R} \times P \times \mathbb{R} \)
et par l'utilisation de la remarque 5.1 du chapitre 1, on obtient
\(\hat{f}, \hat{g} \in AAU(\mathbb{R} \times P \times \mathbb{R}, \mathbb{R}) \),
et
\[D_{(x,p)}\hat{f}, D_{(x,p)}\hat{g} \in AAU(\mathbb{R} \times P \times \mathbb{R}, \mathcal{L}(\mathbb{R} \times P, \mathbb{R})), \]
donc les fonctions \(\hat{f}, \hat{g} \) et \(D_{(x,p)}\hat{f}, D_{(x,p)}\hat{g} \) satisfont les hypothèses du Théorème 5.2 du chapitre 1 pour lesquelles \(N_f \) et \(N_g \) sont de classe \(C^1 \), donc \(N_f \) et \(N_g \) sont de classe \(C^1 \). Alors on a la propriété :
\[N_f \text{ et } N_g \text{ sont de classe } C^1. \quad (4.10) \]
Dans le cas presque-périodique (respectivement presqu'automorphe), le corollaire 2.1 du chapitre 1 (respectivement théorème 5.2 du chapitre 1) donne la formule de la différentielle de l'opérateur de Nemytski,
\[D_x N_f(x,p) \cdot y = [t \mapsto \frac{\partial f(x(t),p(t))}{\partial x} \cdot y(t)] \quad (4.11) \]
\[D_x N_g(x, p).y = [t \mapsto \frac{\partial g(x(t), p(t))}{\partial x} . y(t)] \]

pour tous \(x, y \in A^0(P) \) (respectivement \(AA^0(P) \)) et pour tout \(p \in A^0(P) \) (respectivement \(AA^0(P) \)).

On peut assimiler le point \(p \in P \) à la fonction constante \(t \mapsto p \) qui appartient à \(A^0(P) \) (respectivement \(AA^0(P) \)), ça nous permet de considérer \(P \) comme un sous-espace vectoriel fermé de \(A^0(P) \) (respectivement \(AA^0(P) \)).

Donc on peut considérer les restrictions suivantes des opérateurs \(N_f \) et \(N_g \) :

- \(S_f : A^0(R) \times P \rightarrow A^0(R) \) (respectivement \(AA^0(R) \times P \rightarrow AA^0(R) \))
 définie par
 \[
 S_f(x, p) := [t \mapsto f(x(t), p)],
 \]

- \(S_g : A^0(R) \times P \rightarrow A^0(R) \) (respectivement \(AA^0(R) \times P \rightarrow AA^0(R) \))
 définie par
 \[
 S_g(x, p) := [t \mapsto g(x(t), p)],
 \]

où \(x \in A^0(R) \) (respectivement \(AA^0(R) \)) et \(p \in P \).

Puisque la restriction d’une fonction de classe \(C^1 \) à un sous-espace de Banach est de classe \(C^1 \), on a

\[
S_f \text{ et } S_g \text{ sont de classe } C^1,
\]

et les conséquences de (4.11) et (4.12) sont les formules suivantes :

\[
D_x S_f(x, p).y = [t \mapsto \frac{\partial f(x(t), p)}{\partial x} . y(t)]
\]

\[
D_x S_g(x, p).y = [t \mapsto \frac{\partial g(x(t), p)}{\partial x} . y(t)]
\]

pour tout \(x, y \in A^0(R) \) (respectivement \(AA^0(R) \)) et pour tout \(p \in P \).

Maintenant on considère les opérateurs suivants :

- \(\pi_1 : A^2(R) \times P \rightarrow A^2(R) \) (respectivement \(AA^2(R) \times P \rightarrow AA^2(R) \))
 défini par
 \[
 \pi_1(x, p) := x
 \]

On a

\[
\|x\|_{BC^2} \leq \sup(\|x\|_{BC^2}, \|p\|_P),
\]

donc

\[
\|\pi_1(x, p)\|_{BC^2} \leq \|(x, p)\|_{BC^2 \times P}.
\]

Alors l’opérateur linéaire \(\pi_1 \) est continu, donc il est de classe \(C^1 \).

- \(\pi_2 : A^2(R) \times P \rightarrow P \) (respectivement \(AA^2(R) \times P \rightarrow P \)) défini par
 \[
 \pi_2(x, p) := p.
 \]

On a

\[
\|p\|_P \leq \sup(\|x\|_{BC^2}, \|p\|_P),
\]
donc
\[\|\pi_2(x, p)\|_p \leq \| (x, p)\|_{BC^2 \times P}. \]
Alors l’opérateur linéaire \(\pi_2 \) est continu, donc il est de classe \(C^1 \).
- \(B : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) défini par
 \[B(r, s) := r.s, \]
est un opérateur bilinéaire continu donc \(B \) est de classe \(C^1 \)
On considère l’opérateur de Nemystki construit sur \(B \), \(N_B : AP^0(\mathbb{R}) \times AP^0(\mathbb{R}) \to AP^0(\mathbb{R}) \) défini par
\[N_B(u, v) := [t \mapsto u(t).v(t) = B(u(t), v(t))]. \quad (4.20) \]
Par l’utilisation du Corollaire 2.1 du chapitre 1 (respectivement Théorème 5.2 du chapitre 1) donc \(N_B \) est de classe \(C^1 \), et on a
\[DN_B(a, b)(u, v) := [t \mapsto DB(a(t), b(t))(u(t), v(t))], \]
donc
\[DN_B(a, b)(u, v) := [t \mapsto B(a(t), v(t)) + B(u(t), b(t))], \]
alors
\[DN_B(a, b)(u, v) = N_B(a, v) + N_B(u, b). \]
- \(C : AP^2(\mathbb{R}) \times P \to AP^0(\mathbb{R}) \) (respectivement \(AA^2(\mathbb{R}) \times P \to AA^0(\mathbb{R}) \)) défini par
 \[C(x, p) := -e_p. \quad (4.21) \]
On note par \(\varepsilon : P \to AP^0(\mathbb{R}) \) (respectivement \(P \to AA^0(\mathbb{R}) \)) la fonction \(p \mapsto e_p, \varepsilon \) est de classe \(C^1 \) d’après (A3) (respectivement (A5)),
et \(C = -\varepsilon \circ \pi_2 \) est de classe \(C^1 \) comme une composition de fonctions de classe \(C^1 \).
Donc
\[\pi_1, \pi_2, N_B \text{ et } C \text{ sont de classe } C^1. \quad (4.22) \]
Maintenant on note que l’égalité suivante est vérifiée :
\[\Phi = \frac{d^2}{dt^2} \circ \pi_1 + N_B \circ (S_f \circ \text{in}_2 \circ \pi_1, \pi_2), \quad \frac{d}{dt} \circ \text{in}_1 \circ \pi_1) + S_g \circ \text{in}_2 \circ \pi_1, \pi_2) + C. \quad (4.23) \]
Par l’utilisation de (4.7), (4.15), (4.22), (4.23) et les règles habituelles du calcul différentiel dans les espaces de Banach, on obtient que \(\Phi \) est de classe \(C^1 \).
De (4.23) on déduit que
\[\Phi(., 0) = \frac{d^2}{dt^2} + N_B \circ (S_f \circ \text{in}_2, 0), \quad \frac{d}{dt} \circ \text{in}_1) + S_g \circ \text{in}_2(0) + C(., 0), \]
et alors, pour tout \(y \in AP^2(\mathbb{R}) \) (respectivement \(AA^2(\mathbb{R}) \)), et par l’utilisation des formules classiques du calcul différentiel dans les espaces de Banach et (4.16), (4.17), on obtient
\[
D_x\Phi(0,0).y = \frac{d^2}{dt^2}y + N_B(D_xS_f(0,0).y,0) + N_B(S_f(0,0) \frac{d}{dt}y + D_xS_g(0,0).y) + 0,
\]
donc, pour tout \(t \in \mathbb{R} \), on a
\[
(D_x\Phi(0,0).y)(t) = y''(t) + f(0,0).y'(t) + \frac{\partial g(0,0)}{\partial x}.y(t).
\]
\[\Box\]

Lemme 4.2 Sous les hypothèses \((A1-A4)\) (respectivement \((A1-A2)\) et \((A4-A5)\)), \(D_x\Phi(0,0)\) est bijectif de \(AP^2(\mathbb{R})\) sur \(AP^0(\mathbb{R})\) (respectivement de \(AP^2(\mathbb{R})\) sur \(AP^0(\mathbb{R})\)).

Démonstration
Soit \(b \in AP^0(\mathbb{R}) \). Nous voulons montrer qu’il existe une unique \(y \in AP^2(\mathbb{R}) \) tel que \(D_x\Phi(0,0).y = b \). En utilisant la formule prouvée par le lemme 4.1, cette équation est équivalente à dire que \(y \) est une solution p.p. de l’équation différentielle linéaire du second ordre (qui est l’équation de Duffing) :
\[
y''(t) + f(0,0).y'(t) + \frac{\partial g(0,0)}{\partial x}.y(t) = b(t). \tag{4.24}
\]

Le système différentiel suivant du premier ordre est équivalent à l’équation (4.24) :
\[
X'(t) = M.X(t) + B(t) \tag{4.25}
\]
ou \(X(t) := \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix} \), \(B(t) := \begin{bmatrix} 0 \\ b(t) \end{bmatrix} \), et \(M := \begin{bmatrix} 0 & 1 \\ -\frac{\partial g(0,0)}{\partial x} & -f(0,0) \end{bmatrix} \).

Le polynôme caractéristique de \(M \) est
\[
\lambda^2 + f(0,0)\lambda + \frac{\partial g(0,0)}{\partial x}.
\]
On note par \(\lambda_1 \) et \(\lambda_2 \) les deux valeurs propres (égales ou différentes) de \(M \). Dans le cas où \(\lambda_1, \lambda_2 \in \mathbb{R} \), c.-à-d.
\[
f(0,0)^2 \geq 4 \frac{\partial g(0,0)}{\partial x},
\]
la condition (A4) implique que \(\lambda_1 \neq 0 \) and \(\lambda_2 \neq 0 \) car on a
\[
\frac{\partial g(0,0)}{\partial x} = \lambda_1.\lambda_2.
\]
Dans le cas où \(\lambda_1, \lambda_2 \in \mathbb{C} \setminus \mathbb{R} \), c.-à-d.
\[
f(0,0)^2 < 4 \frac{\partial g(0,0)}{\partial x},
\]
la condition (A4) implique que \(\Re \lambda_1 \neq 0 \) et \(\Re \lambda_2 \neq 0 \) puisque
\[
f(0,0) = -2\Re \lambda_1 = -2\Re \lambda_2.
\]
Alors les hypothèses du théorème 3.1 de Bohr-Neugebauer (du chapitre 1) sont vérifiées, et donc il existe une unique solution p.p. \(X \in AP^1(\mathbb{R}^2) \) de (4.25). Par conséquent, la première coordonnée de \(X \), notée par \(y \), est l’unique solution p.p. de (4.24). Donc \(y \) est l’unique élément dans \(AP^2(\mathbb{R}) \) qui vérifie
\[
D_x \Phi(0,0).y = b.
\]
Le même raisonnement tient dans le cas presqu’automorphe en utilisant le lemme 2.1 au lieu du théorème 3.1 de Bohr-Neugebauer (du chapitre 1).
En effet, soit \(b \in AA^0(\mathbb{R}) \) et \(y \in AA^2(\mathbb{R}) \). Dire \(D_x \Phi(0,0).y = b \) est équivalent à dire que \(y \) est une solution p.a. de (4.24) qui est aussi équivalent à dire que
\[
X(t) := \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}
\]
est une solution p.a. de (4.25).

La condition (A4) est équivalente à dire que les parties réelles des valeurs propres de \(M \) sont non nulles. Alors par l’utilisation du lemme 2.1 on obtient l’existence d’une unique solution p.a. \(X \) de (4.25), et alors l’existence d’une solution p.a. \(y \) de (4.24), et c’est l’unique solution \(y \in AA^2(\mathbb{R}) \) qui satisfait
\[
D_x \Phi(0,0).y = b.
\]
\(\square \)

Par l’utilisation de (4.2), du lemme 4.1, du lemme 4.2 et du théorème des fonctions implicites ([17], p. 61) on obtient l’existence d’un voisinage \(\mathcal{U} \) (respectivement \(\mathcal{U}_1 \)) de 0 in \(AP^2(\mathbb{R}) \) (respectivement \(AA^2(\mathbb{R}) \)), un voisinage \(\mathcal{V} \) (respectivement \(\mathcal{V}_1 \)) de 0 in \(P \) et une application \(p \mapsto \big| p \big| \) de classe \(C^1 \) (respectivement \(p \mapsto \big| p \big|_1 \)), de \(\mathcal{V} \) dans \(\mathcal{U} \) (respectivement de \(\mathcal{V}_1 \) dans \(\mathcal{U}_1 \)) qui satisfont les conditions suivantes :

a/ \(\big| 0 \big| = 0 \), qui est la condition (i) du théorème 3.1 (respectivement théorème 3.2).

b/ \(\Phi(\big| p \big|, p) = 0 \) pour tout \(p \in \mathcal{V} \) (respectivement \(\mathcal{V}_1 \)), on assure alors que \(\big| p \big| \) est une solution p.p. (respectivement p.a.) de \(\langle E, p \rangle \) pour tout \(p \in \mathcal{V} \) (respectivement \(\mathcal{V}_1 \)), et c’est la conclusion (ii) du Théorème 3.1 (respectivement théorème 3.2).

c/ \(\{(x, p) \in \mathcal{U} \times \mathcal{V} : \Phi(x, p) = 0 \} = \{(x, p) : p \in \mathcal{V} \} \) (respectivement \(\{(x, p) \in \mathcal{U}_1 \times \mathcal{V}_1 : \Phi(x, p) = 0 \} = \{(x, p) : p \in \mathcal{V}_1 \} \) et donc la conclusion (iii) du théorème 3.1 (respectivement théorème 3.2).

Ainsi le théorème 3.1 et le théorème 3.2 sont prouvés.
Chapitre 3

DIFFÉRENT TYPES D’OSCILLATIONS DE L’ÉQUATION DE LIÉNARD FORCÉE.

1 Introduction

Soit la famille des équations suivantes

\[(\mathcal{E}, p) \quad x''(t) + f(x(t), p) \cdot x'(t) + g(x(t), p) = e_p(t)\]

où \(P\) est un espace de Banach, \(f : \mathbb{R} \times P \to \mathbb{R}\) et \(g : \mathbb{R} \times P \to \mathbb{R}\) deux fonctions, pour tout \(p \in P\), \(e_p\) est une fonction de \(\mathbb{R}\) dans \(\mathbb{R}\).

Pour \(e_p\) une fonction p.p. (presque périodique au sens de Bohr) (respectivement p.a. (presqu’automorphe)), dans le chapitre 2 (Théorème 3.1, Théorème 3.2) nous avons prouvé l’existence d’une solution \(x_p\) p.p. (respectivement p.a.) de \((\mathcal{E}, p)\), en utilisant une méthode de perturbation dans un cadre d’analyse fonctionnelle non linéaire, voir [6].

Pour réaliser cet objectif, nous utilisons des outils d’analyse fonctionnelle non linéaire, et des résultats sur les solutions d’équations linéaires dus à : Zaidman, Lizama, N’Guéralata, Diagana, Cieutat, Ezzinbi, Morhou, Pennequin et Blot.

Nous considérons aussi deux cas particuliers de \((\mathcal{E}, p)\) qui sont

\[x''(t) + f(x(t)) \cdot x'(t) + g(x(t)) = e(t)\]
et

\[x''(t) + f(x(t), q) \cdot x'(t) + g(x(t), q) = e(t). \]

Maintenant nous décrivons le contenu de ce chapitre. Dans la section 2, nous fixons nos notations, nous rappelons quelques résultats sur les opérateurs de Nemytski et sur les équations linéaires. Dans la section 3, nous donnons le théorème principal de ce chapitre avec sa preuve. Dans la section 4, on donne deux corollaires pour les deux cas particuliers de \((\mathcal{E}, p)\).

2 Préliminaires

Soit \(X\) un espace de Banach. Pour \(\rho \in \mathcal{U}_R\), \(E^0(X)\) désigne l’un des espaces suivants \(AAP^0(X), A\mathcal{A}^0(X), P\mathcal{A}^0(X), P\mathcal{A}\mathcal{A}^0(X), WPAP^0(X, \rho), WP\mathcal{A}\mathcal{A}^0(X, \rho)\).

\(BK(\mathbb{R}, X)\) désigne l’espace des fonctions \(u \in BC^0(\mathbb{R}, X)\) tel que \(u(\mathbb{R})\) est relativement compact, on note par \(F(X) := E^0(X) \cap BK(\mathbb{R}, X)\).

\((E^0(X), \| \cdot \|_\infty), (F(X), \| \cdot \|_\infty)\) sont des espaces de Banach. \(E^1(X)\) désigne l’espace des fonctions \(u \in BC^1(\mathbb{R}, X)\) tel que \(u, u' \in E^0(X)\). Muni de la norme \(\| \cdot \|_{BC^1}, E^1(X)\) est un espace de Banach. \(E^2(X)\) désigne l’espace des fonctions \(u \in BC^2(\mathbb{R}, X)\) tel que \(u, u', u'' \in E^0(X)\). Muni de la norme \(\| \cdot \|_{BC^2}, E^2(X)\) est un espace de Banach.

Lemme 2.1 Soit \(X\) et \(Y\) deux espaces de Banach, et soit \(\phi : X \to Y\) une fonction continue.

Alors l’opérateur de Nemytski \(N_\phi : F(X) \to F(Y)\), défini par

\[N_\phi(u) := [t \mapsto \phi(u(t))], \]

est continu.

Démonstration

Pour \(E^0(X) = AP^0(X)\) et \(E^0(Y) = AP^0(Y)\) ce résultat est prouvé dans [13], corollaire 3.13.

Pour \(E^0(X) = A\mathcal{A}^0(X)\) et \(E^0(Y) = A\mathcal{A}^0(Y)\) ce résultat est une conséquence du théorème 9.6 dans [13].

Pour \(E^0(X) = AAP^0(X)\) et \(E^0(Y) = AAP^0(Y)\), en remplaçant \(\mathbb{R}_+\) par \(\mathbb{R}\), ce résultat est une variation du théorème 8.4 dans [13].

Notons que le cas des fonctions pseudo presque-périodiques (respectivement pseudo presqu’automorphes) est un cas particulier des fonctions pseudo presque-périodiques avec poids (respectivement pseudo presqu’automorphes avec
poids) en prenant \(\rho(t) := 1 \) pour tout \(t \in \mathbb{R} \); en notant que la mesure associée est exactement la mesure de Lebesgue, il suffit donc de prouver le cas des fonctions pseudo presque-périodiques avec poids et pseudo-presqu’automorphes avec poids. On utilise le corollaire 4.12 dans [10] (respectivement corollaire 5.10 dans [9]), nous savons que \(N_{\phi}(WPAP^0(X, \rho)) \subset WPAP^0(Y, \rho) \) (respectivement \(N_{\phi}(WPAA^0(X, \rho)) \subset WPAA^0(Y, \rho) \)). On a aussi \(N_{\phi}(BK(\mathbb{R}, X)) \subset BK(\mathbb{R}, Y) \). En effet, \(\forall u \in BK(\mathbb{R}, X) \), puisque \(\phi \) est continue on a \(\overline{\phi(u(\mathbb{R}))} \) est un compact, alors \(\overline{\phi(u(\mathbb{R}))} \) est un fermé, et donc \(\phi(u(\mathbb{R})) = \overline{\phi(u(\mathbb{R}))} \), ce qui donne
\[
\phi(u(\mathbb{R})) = \overline{\phi(u(\mathbb{R}))}.
\]
D’une autre part
\[
\phi(u(\mathbb{R})) \subset \overline{\phi(u(\mathbb{R}))},
\]
alors on a
\[
\overline{\phi(u(\mathbb{R}))} \subset \overline{\phi(u(\mathbb{R}))}.
\]
On obtient donc d’après (2.1)
\[
\overline{\phi(u(\mathbb{R}))} \subset \phi(u(\mathbb{R})).
\]

alors \(\phi(u(\mathbb{R})) \) est relativement compact, et donc \(\forall u \in BK(\mathbb{R}, X) \) on a
\[
N_{\phi} = \phi \circ u \in BK(\mathbb{R}, Y).
\]
On obtient donc pour \(F(X) = WPAP^0(X, \rho) \cap BK(\mathbb{R}, X) \) et \(F(Y) = WPAP^0(Y, \rho) \cap BK(\mathbb{R}, Y) \) (respectivement \(F(X) = WPAA^0(X, \rho) \cap BK(\mathbb{R}, X) \) et \(F(Y) = WPAA^0(Y, \rho) \cap BK(\mathbb{R}, Y) \)),
\[
N_{\phi}(F(X)) \subset F(Y).
\]
Pour la continuité de \(N_{\phi} \) sur \(F(X) \), on peut suivre la même démonstration dans le cas de l’espace des fonctions presque-périodiques ([13], corollaire 3.13), seulement on remplace l’espace \(AP^0(X) \) par \(F(X) \) et \(AP^0(Y) \) par \(F(Y) \).

\[\square\]

Remarque 2.1 Si \(X \) un espace de Banach de dimension finie, alors \(F(X) := E^0(X) \).

Lemme 2.2 Soit \(X \) et \(Y \) deux espaces de Banach, et soit \(\phi : X \to Y \) une fonction Fréchet continûment différentiable. Alors l’opérateur de Nemyski \(N_{\phi} : F(X) \to F(Y) \) est Fréchet continûment différentiable de \(F(X) \) dans \(F(Y) \), et on a
\[
DN_{\phi}(u).v = [t \mapsto D_{\phi}(u(t)).v(t)] \text{ pour tout } u, v \in F(X).
\]
Démonstration
Pour $E^0(X) = AP^0(X)$ et $E^0(Y) = AP^0(Y)$ ce résultat est prouvé dans [13], corollaire 5.3.
Pour $E^0(X) = AA^0(X)$ et $E^0(Y) = AA^0(Y)$ ce résultat est une conséquence du théorème 9.7 dans [13].
Pour $E^0(X) = AAP^0(X)$ et $E^0(Y) = AAP^0(Y)$, remplaçant \mathbb{R}_+ par \mathbb{R}, ce résultat est une variante du théorème 8.5 dans [13].
Pour le cas $E^0(X) = WPAP^0(X, \rho)$ et $E^0(Y) = WPAP^0(Y, \rho)$ (respectivement $E^0(X) = WPAA^0(X, \rho)$ et $E^0(Y) = WPAA^0(Y, \rho)$), nous savons que pour $F(X) = WPAP^0(X, \rho) \cap BK(\mathbb{R}, X)$ et $F(Y) = WPAP^0(Y, \rho) \cap BK(\mathbb{R}, Y)$ (respectivement $F(X) = WPAA^0(X, \rho) \cap BK(\mathbb{R}, X)$ et $F(Y) = WPAA^0(Y, \rho) \cap BK(\mathbb{R}, Y)$),

$$N_\phi(F(X)) \subset F(Y),$$

et on a

$$(D\phi) \circ u \in F(L(X, Y)), \quad \forall u \in F(X).$$

Pour démontrer que N_ϕ est Fréchet continûment différentiable de $F(X)$ dans $F(Y)$, et que

$$DN_\phi(u).v = [t \mapsto D\phi(u(t)).v(t)]$$

pour tout $u, v \in F(X)$,
on peut suivre la même démonstration dans le cas de l'espace des fonctions presque-périodiques ([13], corollaire 5.3), seulement on remplace l'espace $AP^0(X)$ par $F(X)$ et $AP^0(Y)$ par $F(Y)$. □

Lemme 2.3 Soit $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ tel que toutes les valeurs propres de A ont une partie réelle différente de zéro. Soit $\rho \in \mathcal{U}_T$, alors pour tout $h \in E^0(\mathbb{R}^n)$, il existe une solution dans $E^0(\mathbb{R}^n)$ de l'équation différentielle

$$u'(t) = Au(t) + h(t). \quad (2.3)$$

Démonstration
Pour le système dynamique $u' = Au$, dans le cas où toutes les valeurs propres de A ont une partie réelle négative, par l'utilisation du théorème 1 dans ([34], p.143), il existe $M \in (0, \infty)$, et $w \in (0, \infty)$ tel que

$$\|e^{tA}\| \leq Me^{-tw}, \quad \text{pour tout } t \geq 0,$$

alors $(e^{tA})_{t \geq 0}$ est un C_0-semi-group exponentiellement stable ([39], p.56).
Pour $h \in E^0(\mathbb{R}^n)$ et par l'utilisation du corollaire 3.6 dans [38] dans le cas de $AAP^0(\mathbb{R}^n)$, $AA^0(\mathbb{R}^n)$, $PAP^0(\mathbb{R}^n)$, $PAA^0(\mathbb{R}^n)$, et par l'utilisation du théorème 6.1 dans [9] dans le cas de $WPAA^0(\mathbb{R}^n, \rho)$, et par l'utilisation du théorème 5.4 dans [10] dans le cas de $WPAP^0(\mathbb{R}^n, \rho)$, il existe une unique
mild solution dans $E^0(\mathbb{R}^n)$ de (2.3), alors il existe une unique solution dans $E^0(\mathbb{R}^n)$ de (2.3), puisque le domaine de A est \mathbb{R}^n.

Dans le cas où toutes les valeurs propres de A ont une partie réelle positive, on pose $v(t) = u(-t)$, alors l'équation (2.3) est équivalente à

$$v'(t) = -Av(t) - h(-t).$$

Dans le cas de $AAP^0(\mathbb{R}^n)$, $AAA^0(\mathbb{R}^n)$, $PAP^0(\mathbb{R}^n)$, $PAA^0(\mathbb{R}^n)$, pour $h \in E^0(\mathbb{R}^n)$, la fonction $t \mapsto -h(-t)$ appartient à $E^0(\mathbb{R}^n)$, mais dans le cas où $E^0(\mathbb{R}^n) = WPAP^0(\mathbb{R}^n, \rho)$ ou $WPAA^0(\mathbb{R}^n, \rho)$, $t \mapsto -h(-t)$ appartient à $WPAP^0(\mathbb{R}^n, \rho^1)$ ou à $WPAA^0(\mathbb{R}^n, \rho^1)$, où $\rho^1(t) =: \rho(-t)$. Puisque les valeurs propres de $-A$ ont une partie réelle négative, alors par l'utilisation du premier cas, il existe une unique solution v dans $WPAP^0(\mathbb{R}^n, \rho^1)$ ou dans $WPAA^0(\mathbb{R}^n, \rho^1)$ de (2.4), et par conséquent il existe une unique solution u de (2.3) dans $E^0(\mathbb{R}^n)$, définie par $u(t) := v(-t)$.

Maintenant on considère le système complexe associé à 2.3 :

$$z'(t) = Az(t) + L(t), \quad z(t) \in \mathbb{C}^n, \quad L(t) \in \mathbb{C}^n.$$

Puisque \mathbb{C}^n est isomorphe à $\mathbb{R}^n \times \mathbb{R}^n$, alors si on utilise la norme

$$\| (x, y) \|_{\mathbb{R}^n \times \mathbb{R}^n} = \max(\|x\|_{\mathbb{R}^n}, \|y\|_{\mathbb{R}^n})$$

et pour $L \in E^0(\mathbb{C}^n)$ on a $\Re L$ la partie réelle de L et $\Im L$ la partie imaginaire de L appartient à $E^0(\mathbb{R}^n)$. Soit $z(t) = x(t) + iy(t)$ avec $x(t) \in \mathbb{R}^n$, $y(t) \in \mathbb{R}^n$, une solution de (2.5). Puisque A est réelle, et si on suppose que ses valeurs propres ont une partie réelle négative, alors par l'utilisation du premier cas et pour $L \in E^0(\mathbb{C}^n)$, il existe une unique solution $x \in E^0(\mathbb{R}^n)$ de l'équation

$$x'(t) = Ax(t) + \Re L(t),$$

et une unique solution $y \in E^0(\mathbb{R}^n)$ de l'équation

$$y'(t) = Ay(t) + \Im L(t).$$

Donc $z := x + iy$ est l'unique solution de (2.3) dans $E^0(\mathbb{C}^n)$. On utilise le même raisonnement dans le cas où toutes les valeurs propres de A ont une partie réelle positive.

Dans le cas où une partie des valeurs propres de A sont de partie réelle négative et une autre avec une partie réelle positive, on a

$$\mathbb{C}^n = S_- \oplus S_+$$

où S_- (respectivement S_+) est la somme directe des sous-espaces propres spectraux associés aux valeurs propres de A qui ont une partie réelle négative (respectivement partie réelle positive) ([34], p.110).
Soit $A_\cdot \in \mathcal{L}(S_-,S_-)$ (respectivement $A_+ \in \mathcal{L}(S_+,S_+)$) la restriction de A sur $S_- \ (\text{respectivement sur } S_+)$, alors les valeurs propres de A_- ont une partie réelle négative (respectivement les valeurs propres de A_+ ont une partie réelle positive). Pour $h \in E^0(\mathbb{R}^n)$, on peut considérer h comme un élément de $E^0(\mathbb{C}^n)$ donc on a $h = h_- \oplus h_+$ où $h_- \in E^0(S_-)$ (respectivement $h_+ \in E^0(S_+)$). Par l’utilisation du cas complexe, il existe une unique solution z_- (respectivement z_+) de $z_-'(t) = A_- z_-(t) + h_-(t)$ (respectivement $z_+'(t) = A_+ z_+(t) + h_+(t)$) dans $E^0(S_-)$ (respectivement dans $E^0(S_+)$), alors avec $L = h$ on a $z := z_- \oplus z_+$ est l’unique solution de (2.5), et par conséquent $x := \Re z$ est l’unique solution de (2.3).

\[\Box\]

3 Résultats

On énonce le théorème principal de ce chapitre.

Théorème 3.1 Soit $\rho \in \mathcal{U}_T$. Sous les hypothèses

(A1) \(f \in C^1(\mathbb{R} \times P, \mathbb{R}) \) et \(g \in C^1(\mathbb{R} \times P, \mathbb{R}) \),

(A2) \(g(0,0) = 0 \),

(A3) \(p \mapsto e_p \in C^1(P, E^0(\mathbb{R})) \) et \(e_0 = 0 \),

(A4) \(f(0,0) \neq 0 \) lorsque \(f(0,0)^2 < 4 \frac{\partial g(0,0)}{\partial z} \), et

\(\frac{\partial g(0,0)}{\partial z} \neq 0 \) lorsque \(f(0,0)^2 \geq 4 \frac{\partial g(0,0)}{\partial z} \),

il existe un voisinage \(\mathcal{U} \) de 0 dans \(E^2(\mathbb{R}) \), un voisinage \(\mathcal{V} \) de 0 dans \(P \) et une application \(p \mapsto \varphi[p] \) de classe \(C^1 \) de \(\mathcal{V} \) dans \(\mathcal{U} \) qui satisfont les conditions suivantes :

(i) \(\varphi[0] = 0 \).

(ii) Pour tout \(p \in \mathcal{V} \), \(\varphi[p] \) est une solution de \((\mathcal{E}, p) \) dans \(E^0(\mathbb{R}) \).

(iii) Si \(x \in \mathcal{U} \) est une solution de \((\mathcal{E}, p) \) dans \(E^0(\mathbb{R}) \) avec \(p \in \mathcal{V} \), alors

\(x = \varphi[p] \).

On définit l’opérateur non linéaire $\Phi : E^2(\mathbb{R}) \times P \to E^0(\mathbb{R})$ en posant

$$\Phi(x,p) := [t \mapsto x''(t) + f(x(t),p)x'(t) + g(x(t),p) - e_p(t)]$$ \hspace{1cm} (3.1)

où \(x \in E^2(\mathbb{R}) \).

Il est facile de remarquer que \(x \in E^2(\mathbb{R}) \) satisfait $\Phi(x,p) = 0$ si et seulement si \(x \) est une solution de \((\mathcal{E}, p) \) dans \(E^0(\mathbb{R}) \).

Sous les hypothèses (A2) et (A3), 0 est une solution de \((\mathcal{E}, 0) \) dans \(E^0(\mathbb{R}) \), et alors on a l’égalité suivante :

$$\Phi(0,0) = 0.$$ \hspace{1cm} (3.2)
Lemme 3.1 Sous les hypothèses (A1-A3), l’opérateur Φ est bien défini, et il est de classe C^1 sur $E^2(\mathbb{R}) \times P$. De plus la différentielle partielle de Φ par rapport à la première variable, au point $(x, p) = (0, 0)$, est donnée par

$$D_x \Phi(0, 0).y = [t \mapsto y''(t) + f(0, 0).y'(t) + \frac{\partial g(0, 0)}{\partial x}.y(t)]$$

où $y \in E^2(\mathbb{R})$.

Démonstration

On considère les opérateurs linéaires suivants :

- $\frac{d^2}{dt^2} : E^2(\mathbb{R}) \rightarrow AP^0(\mathbb{R})$ défini par $\frac{d^2}{dt^2} x := x''$.

 Puisque

 $$\| \frac{d^2}{dt^2} x \|_{\infty} \leq \| x'' \|_{\infty} + \| x' \|_{\infty} + \| x \|_{\infty},$$

 donc

 $$\| \frac{d^2}{dt^2} x \|_{\infty} \leq \| x \|_{BC^2}.$$

 Alors l’opérateur linéaire $\frac{d^2}{dt^2}$ est continu, donc de classe C^1, et on a, pour tout x, y dans $E^2(\mathbb{R})$,

 $$D \frac{d^2}{dt^2}(x(\cdot))(y(\cdot)) = \frac{d^2}{dt^2}(y(\cdot)).$$

- $\frac{d}{dt} : E^1(\mathbb{R}) \rightarrow E^0(\mathbb{R})$ défini par $\frac{d}{dt} x := x'$.

 Puisque

 $$\| \frac{d}{dt} x \|_{\infty} \leq \| x' \|_{\infty} + \| x \|_{\infty},$$

 donc

 $$\| \frac{d}{dt} x \|_{\infty} \leq \| x \|_{BC^1}.$$

 Alors l’opérateur linéaire $\frac{d}{dt}$ est continu, donc de classe C^1, et on a, pour tout x, y dans $E^1(\mathbb{R})$,

 $$D \frac{d}{dt}(x(\cdot))(y(\cdot)) = \frac{d}{dt}(y(\cdot)).$$

- $\text{in}_1 : E^2(\mathbb{R}) \rightarrow E^1(\mathbb{R})$ défini par $\text{in}_1(x) := x$.

 Puisque

 $$\| x \|_{\infty} + \| x' \|_{\infty} \leq \| x \|_{\infty} + \| x' \|_{\infty} + \| x'' \|_{\infty},$$

 donc

 $$\| x \|_{BC^1} \leq \| x \|_{BC^2},$$

 d’où

 $$\| \text{in}_1(x) \|_{BC^1} \leq \| x \|_{BC^2}.$$

 Alors l’opérateur linéaire in_1 est de classe C^1, et on a, pour tout x, y dans $E^2(\mathbb{R})$,

 $$D \text{in}_1(x(\cdot))(y(\cdot)) = \text{in}_1(y(\cdot)).$$
- $\text{in}_2 : AP^2(\mathbb{R}) \to AP^0(\mathbb{R})$ est défini par $\text{in}_2(x) := x$.

Puisque
$$\|x\|_\infty \leq \|x\|_\infty + \|x'\|_\infty + \|x''\|_\infty,$$
donc
$$\|x\|_\infty \leq \|x\|_{BC^2},$$
d'où
$$\|\text{in}_2(x)\|_\infty \leq \|x\|_{BC^2}.$$

Alors l'opérateur linéaire in_2 est de classe C^1, et on a, pour tout x, y dans $E^2(\mathbb{R})$,
$$D\text{in}_2(x)(\cdot)(y(\cdot)) = \text{in}_2(y(\cdot))$$

Donc on a pour tout $x \in E^2(\mathbb{R})$.

$$\frac{d^2}{dt^2}, \frac{d}{dt}, \text{in}_1, \text{in}_2 \text{ sont de classe } C^1. \quad (3.3)$$

Maintenant nous définissons les opérateurs de Nemytski (dit aussi opérateurs de superposition) construits sur les fonctions f et $g : N_f : F(\mathbb{R} \times P) \to F(\mathbb{R})$ et $N_g : F(\mathbb{R} \times P) \to F(\mathbb{R})$ définis par $N_f(x, p) := [t \mapsto f(x(t), p(t))]$ et $N_g(x, p) := [t \mapsto g(x(t), p(t))]$. Par l'utilisation du lemme 2.2 N_f et N_g sont de classe C^1 sur $F(\mathbb{R}) \times F(P)$ assimilées à $F(\mathbb{R} \times P)$, et par le même lemme on obtient les formules différentielles des deux opérateurs N_f et N_g :

$$
\begin{align*}
D_x N_f(x, p).y & = [t \mapsto \frac{\partial f(x(t), p(t))}{\partial x}y(t)] \\
D_x N_g(x, p).y & = [t \mapsto \frac{\partial g(x(t), p(t))}{\partial x}y(t)]
\end{align*}
$$

pour tout $x, y \in F(\mathbb{R})$. Évidemment $F(\mathbb{R}) \times F(P) = E^0(\mathbb{R}) \times F(P)$ et $F(\mathbb{R}) = E^0(\mathbb{R})$.

On peut assimiler le point $p \in P$ à la fonction constante $t \mapsto p$ qui appartient à $F(P)$, ce qui nous permet de considérer P comme un sous espace vectoriel fermé de $F(P)$. Donc on peut considérer les restrictions des opérateurs N_f et N_g suivantes :

$S_f : E^0(\mathbb{R}) \times P \to E^0(\mathbb{R})$ définie par
$$S_f(x, p) := [t \mapsto f(x(t), p)],$$
et $S_g : E^0(\mathbb{R}) \times P \to E^0(\mathbb{R})$ définie par
$$g(x, p) := [t \mapsto g(x(t), p)],$$
on $x \in E^0(\mathbb{R})$ et $p \in P$.

Puisque la restriction d’une fonction de classe C^1 sur un sous-espace de Banach est de classe C^1 donc on a

S_f et S_g sont de classe C^1, \quad (3.5)$
et des conséquences de (3.4) sont les formules suivantes :
\[
\begin{align*}
D_x S_f(x, p) . y &= \left[t \mapsto \frac{\partial f(x(t), p)}{\partial x} . y(t) \right] \\
D_x S_g(x, p) . y &= \left[t \mapsto \frac{\partial g(x(t), p)}{\partial x} . y(t) \right]
\end{align*}
\]
(3.6)

pour tout \(x, y \in E^0(\mathbb{R}) \) et pour tout \(p \in P \).

Maintenant on considère les opérateurs suivants :
- \(\pi_1 : E^2(\mathbb{R}) \times P \to E^2(\mathbb{R}) \) défini par \(\pi_1(x, p) := x \). On a
\[
\| x \|_{BC^2} \leq \sup(\| x \|_{BC^2}, \| p \|_P).
\]
donc
\[
\| \pi_1(x, p) \|_{BC^2} \leq \| (x, p) \|_{BC^2 \times P}.
\]
Alors l’opérateur linéaire \(\pi_1 \) est continu, donc il est de classe \(C^1 \).
- \(\pi_2 : E^2(\mathbb{R}) \times P \to P \) défini par \(\pi_2(x, p) := p \). On a
\[
\| p \|_P \leq \sup(\| x \|_{BC^2}, \| p \|_P),
\]
donc
\[
\| \pi_2(x, p) \|_P \leq \| (x, p) \|_{BC^2 \times P}.
\]
Alors l’opérateur linéaire \(\pi_2 \) continu, donc il est de classe \(C^1 \).
- \(B : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) défini par \(B(r, s) := r \cdot s \) est un opérateur bilinéaire continu donc \(B \) est de classe \(C^1 \).

On considère l’opérateur de Nemytski construit sur \(B \), \(N_B : E^0(\mathbb{R}) \times E^0(\mathbb{R}) \to E^0(\mathbb{R}) \) défini par \(N_B(u, v) := [t \mapsto u(t) . v(t) = B(u(t), v(t))] \).

Par l’utilisation du lemme 2.2 et la remarque 2.1 l’opérateur \(N_B \) est de classe \(C^1 \), et on a
\[
DN_B(a, b)(u, v) := [t \mapsto DB(a(t), b(t))(u(t), v(t))],
\]
donc
\[
DN_B(a, b)(u, v) := [t \mapsto B(a(t), v(t)) + B(u(t), b(t))],
\]
alors
\[
DN_B(a, b)(u, v) = N_B(a, v) + N_B(u, b).
\]
- \(C : E^2(\mathbb{R}) \times P \to E^0(\mathbb{R}) \) défini par \(C(x, p) := -e_p \). On note par \(\varepsilon : P \to E^0(\mathbb{R}) \) la fonction \(p \mapsto e_p \). \(\varepsilon \) est de classe \(C^1 \) d’après (A3), et donc \(C = -\varepsilon \circ \pi_2 \) est de classe \(C^1 \) comme une composition de fonctions de classe \(C^1 \).
Maintenant on note que l'égalité suivante est vérifiée :
\[\Phi = \frac{d^2}{dt^2} \circ \pi_1 + N_B \circ (S_f \circ (\text{in}_2 \circ \pi_1, \pi_2), \frac{d}{dt} \circ (\text{in}_1 \circ \pi_1)) + S_g \circ (\text{in}_2 \circ \pi_1, \pi_2) + C. \]
(3.7)

Pour \(y \in E^2(\mathbb{R}) \) et par l'utilisation des règles habituelles du calcul différentiel dans les espaces de Banach et (3.6), on obtient
\[\Phi(.,0) = \frac{d^2}{dt^2} + N_B \circ (S_f \circ (\text{in}_2, 0), \frac{d}{dt} \circ \text{in}_1) + S_g \circ (\text{in}_2, 0) + C(.,0), \]
donc, pour tout \(t \in \mathbb{R} \),
\[(D_x \Phi(0,0).y)(t) = y''(t) + f(0,0).y'(t) + \frac{\partial g(0,0)}{\partial x}.y(t), \]
qui est la formule annoncée.

\[\Box \]

Lemme 3.2 Sous les hypothèses (A1-A4), \(D_x \Phi(0,0) \) est bijectif de \(E^2(\mathbb{R}) \) sur \(E^0(\mathbb{R}) \).

Démonstration
Soit \(b \in E^0(\mathbb{R}) \). Nous voulons montrer qu'il existe une unique \(y \in E^2(\mathbb{R}) \) tel que \(D_x \Phi(0,0).y = b \), en utilisant la formule prouvée par le lemme 3.1, cette équation est équivalente à dire que \(y \) est une solution dans \(E^0(\mathbb{R}) \) de l'équation différentielle linéaire du second ordre (qui est l'équation de Duffing) :
\[y''(t) + f(0,0).y'(t) + \frac{\partial g(0,0)}{\partial x}.y(t) = b(t). \]
(3.8)

Soit le système différentiel du premier ordre équivalent à l'équation (3.8) :
\[X'(t) = M.X(t) + B(t) \]
(3.9)

où \(X(t) := \begin{bmatrix} y(t) \\ y'(t) \end{bmatrix}, \)
\(B(t) := \begin{bmatrix} 0 \\ b(t) \end{bmatrix}, \)
\(M := \begin{bmatrix} 0 & 1 \\ -\frac{\partial g(0,0)}{\partial x} & -f(0,0) \end{bmatrix}. \)

Pour \(\rho \in \mathcal{U}_T \) et prises que les conditions (A4) et les hypothèses du lemme 2.3 sont vérifiées, alors il existe une unique solution \(X \in E^1(\mathbb{R}^2) \) de (3.9). Donc la première coordonnée de \(X \), notée par \(y \), est l'unique solution de (3.8) dans \(E^1(\mathbb{R}) \) et par conséquent \(y \) est l'unique élément dans \(E^2(\mathbb{R}) \) qui satisfait
\[D_x \Phi(0,0)y = b. \]

\[\Box \]

Par l'utilisation de (3.2), lemme 3.1, lemme 3.2 on peut appliquer le théorème des fonctions implicites ([17], p. 61) donc il existe un voisinage \(\mathcal{U} \) de 0 dans \(E^2(\mathbb{R}) \), et un voisinage \(\mathcal{V} \) de 0 dans \(P \) et une fonction de classe \(C^1 \)
\(p \mapsto \varphi[p] \), de \(\mathcal{V} \) sur \(\mathcal{U} \) tel que on a :
a/ $z[0] = 0$, et c’est la condition (i) de notre théorème.

b/ $\Phi(z[p], p) = 0$ pour tout $p \in \mathcal{V}$, qui assure $z[p]$ est une solution de (\mathcal{E}, p) dans $E^1(\mathbb{R})$ pour tout $p \in \mathcal{V}$.

c/ $\{ (x, p) \in \mathcal{U} \times \mathcal{V} : \Phi(x, p) = 0 \} = \{ (z[p], p) : p \in \mathcal{V} \}$ et donc on a la conclusion (iii) du théorème principal de ce chapitre.

4 Cas particuliers

On considère l’équation

$$(\mathcal{F}, e) \quad x''(t) + f_1(x(t)) \cdot x'(t) + g_1(x(t)) = e(t),$$

qui est un cas particulier de (\mathcal{E}, p), si on pose P est l’espace $E^0(X)$, et $f(x, p) = f_1(x)$, $g(x, p) = g_1(x)$ et $p \mapsto e_p$ et la fonction Identité.

Pour l’existence d’une solution de (\mathcal{F}, e) dans $E^0(\mathbb{R})$ on donne le corollaire suivant.

Corollaire 4.1 Soit $\rho \in \mathcal{U}_T$. Sous les hypothèses suivantes :

(A6) $f_1, g_1 \in C^1$,

(A7) $g_1(0) = 0$,

(A8) $f_1(0) \neq 0$ quand $f_1(0)^2 < 4g_1'(0)$, et $g_1'(0) \neq 0$ quand $f_1(0)^2 \geq 4g_1'(0)$,

il existe un voisinage \mathcal{W} de 0 dans $E^0(\mathbb{R})$, et un voisinage \mathcal{U} de 0 dans $E^2(\mathbb{R})$ et une fonction de classe C^1 $e \mapsto x[e]$, de \mathcal{W} dans \mathcal{U} tels que :

(i) $z[0] = 0$,

(ii) pour tout $e \in \mathcal{W}$, $z[e]$ est une solution de (\mathcal{F}, e) dans $E^0(\mathbb{R})$,

(iii) Si $x \in \mathcal{U}$ est une solution de (\mathcal{F}, e) avec $e \in \mathcal{W}$ dans $E^0(\mathbb{R})$, alors on a $x = z[e]$.

Le deuxième cas particulier de (\mathcal{E}, p) est

$$(\mathcal{G}, e, q) \quad x''(t) + f_2(x(t), q) \cdot x'(t) + g_2(x(t), q) = e(t)$$

où q est dans un espace de Banach Q, on pose $p = (e, q)$, $f(x, e, q) = f_2(x, q)$, $g(x, e, q) = g_2(x, q)$ et $e(e, q) = e$. Pour l’existence d’une solution de (\mathcal{G}, e, q) dans $E^0(\mathbb{R})$ on a le résultat suivant :

Corollaire 4.2 Soit $\rho \in \mathcal{U}_T$. Sous les hypothèses suivantes :

(A10) $f_2, g_2 \in C^1$,

(A11) $g_2(0, 0) = 0$,

(A12) $f_2(0, 0) \neq 0$ quand $f_2(0, 0)^2 < 4 \frac{\partial g_2(0, 0)}{\partial x}$, et $\frac{\partial g_2(0, 0)}{\partial x} \neq 0$ quand $f_2(0, 0)^2 \geq$
alors il existe un voisinage W_2 de 0 dans $E^0(\mathbb{R})$, et un voisinage U_2 de 0 dans $E^2(\mathbb{R})$, un voisinage \mathcal{V}_2 de 0 dans Q et une fonction de classe C^1, $e \mapsto \underline{x}[e,q]$, de $W_2 \times \mathcal{V}_2$ dans U_2 tel que on a

(i) $x[0,0] = 0,$

(ii) pour tout $e \in W_2$ dans $E^0(\mathbb{R})$ et pour tout $q \in \mathcal{V}_2$, $x[e,q]$ est une solution de (\mathcal{G}, e, q) dans $E^0(\mathbb{R})$,

(iii) Si $x \in U_2$ est une solution (\mathcal{G}, e, q) avec $e \in W_2$ dans $E^0(\mathbb{R})$ et $q \in \mathcal{V}_2$, alors on a $x = \underline{x}[e,q]$.
Chapitre 4

RÉSULTATS DE DÉPENDANCE POUR LES SOLUTIONS S-ASYMPTOTIQUEMMENT ω-PÉRIODIQUES D’ÉQUATIONS D’ÉVOLUTION

1 Introduction

Nous considérons les équations d'évolution contrôlées sous la forme du problème de Cauchy suivant

\[x'(t) = A(t)x(t) + f(t, x(t), u(t)), \quad x(0) = \xi \quad (1.1) \]

où la famille des opérateurs linéaires non bornés \((A(t))_{t \in \mathbb{R}_+}\) génère un \(\omega\)-périodique processus évolutif exponentiellement stable, avec \(\omega \in (0, \infty)\), où \(f : \mathbb{R} \times X \times Y \to X\) est une fonction linéaire et \(X\) et \(Y\) sont deux espaces de Banach.

Dans ce chapitre nous étudions les solutions S-asymptotiquement \(\omega\)-périodiques en un point de vue de la dépendance ; plus précisément lorsque \(u\) est une fonction S-asymptotiquement \(\omega\)-périodique nous étudions la dépendance différentielle de la solution S-asymptotiquement \(\omega\)-périodique de (1.1) par rapport à \(u\) et la valeur initiale \(\xi\).

Nous donnons des conditions pour assurer une telle dépendance. Pour réaliser notre objectif, nous utilisons les propriétés des solutions S-asymptotique-
ment \(\omega \)-périodiques du problème linéaire forcé de Cauchy suivant
\[
x'(t) = A(t)x(t) + e(t), \quad x(0) = \zeta,
\]
notamment des résultats qui sont établis dans [12] et dans [33].

Des résultats de dépendance ont été établis en [6], (chapitre 2) et [11] pour les solutions presque-périodiques et presqu’automorphes des équations d’évolution. Dans les travaux précédents, l’équation linéaire (1.2) possède une solution unique pour un type de fonctions sans utiliser la condition initiale; il s’agit d’une différence importante avec le présent chapitre.

Maintenant nous décrivons le contenu de ce chapitre. Dans la section 2, on précise nos définitions et notations sur les espaces de fonctions et les processus évolutifs. Dans la section 3 nous établissons des nouvelles propriétés sur les opérateurs de Nemytskii sur les espaces des fonctions S-asymptotiquement \(\omega \)-périodiques. Dans la section 4 nous établissons un résultat de dépendance des solutions S-asymptotiquement \(\omega \)-périodiques de (1.1) par rapport à la condition initiale \(\xi \) et à la fonction de contrôle \(u \).

2 Notations

Soit \(X \) et \(Y \) deux espaces de Banach. \(BC^0(\mathbb{R}_+, X) \) désigne l'espace des fonctions bornées et continues de \(\mathbb{R}_+ \) dans \(X \).

\[
\|x\|_{\infty} = \sup_{t \in \mathbb{R}_+} |x(t)|,
\]
est la norme usuelle dans \(BC^0(\mathbb{R}_+, X) \).

Définition 2.1 [33], [12] Soit \(\omega \in (0, \infty) \). Une fonction \(x \in BC^0(\mathbb{R}_+, X) \) est dite S-asymptotiquement \(\omega \)-périodique si elle vérifie
\[
\lim_{t \to \infty} (x(t + \omega) - x(t)) = 0.
\]

On note par \(SAP_\omega(X) \) l'espace des fonctions S-asymptotiquement \(\omega \)-périodiques.

Théorème 2.1 \((SAP_\omega(X), \|\cdot\|) \) est un espace de Banach.

Pour la démonstration voir [12].

\(\mathcal{P}_b(X) \) désigne l'ensemble des parties bornées de \(X \). On note par
\[
B_X(0, R) := \{ \xi \in X : |\xi| \leq R \}
\]
la boule fermée du centre zéro et de rayon \(R \).

Définition 2.2 Soit \(f : \mathbb{R}_+ \times X \to Y \) une fonction, on dit que \(f \) est bornée uniformément continue si on a les conditions suivantes:
(i) $f \in C^0(\mathbb{R}_+ \times X, Y)$.

(ii) Pour tout $B \in \mathcal{P}_b(X)$,

$$f(\mathbb{R}_+ \times B) \in \mathcal{P}_b(Y).$$

(iii) $\forall B \in \mathcal{P}_b(X), \forall \varepsilon \in (0, \infty), \exists \delta(B, \varepsilon) \in (0, \infty), \forall x, x_1 \in B$ on a

$$|x - x_1| \leq \delta(B, \varepsilon) \implies (\forall t \in \mathbb{R}_+, \ |f(t, x) - f(t, x_1)| \leq \varepsilon).$$

On note par $UC_b(\mathbb{R}_+ \times X, Y)$ l’espace de ces fonctions.

Lorsque f est indépendante de t, nous considérons la définition suivante.

Définition 2.3 Soit $\phi : X \rightarrow Y$ une fonction, on dit que ϕ est bornée uniformément continue si on a les conditions suivantes :

(a) Pour tout $B \in \mathcal{P}_b(X)$,

$$\phi(B) \in \mathcal{P}_b(Y).$$

(b) $\forall B \in \mathcal{P}_b(X)$, la restriction $\phi|_B$ est uniformément continue.

On note par $UC_b(X, Y)$ l’espace de ces fonctions.

Pour $\phi \in UC_b(X, Y)$ on considère la fonction $f : \mathbb{R}_+ \times X \rightarrow Y$ définie par $f(t, x) = \phi(x)$ pour tout $(t, x) \in \mathbb{R}_+ \times X$. Puisque $\mathcal{P}_b(X)$ contient toutes les boules de X, et puisque la continuité uniforme implique la continuité donc la condition (b) de la définition 2.3 implique la condition (i) de la définition 2.2. Puisque la condition (a) de la définition 2.3 implique la condition (ii) de la définition 2.2 et la condition (b) de la définition 2.3 implique la condition (iii) de la définition 2.2, alors $f \in UC_b(\mathbb{R}_+ \times X, Y)$.

Définition 2.4 Soit $f \in UC_b(\mathbb{R}_+ \times X, Y)$. On dit que f S-asymptotiquement ω-périodique uniformément sur les ensembles bornés de X si on a la condition suivante :

$$\lim_{t \to \infty} (\sup_{x \in B} |(f(t + \omega, x) - f(t, x))|) = 0 \text{ pour tout } B \in \mathcal{P}_b(X).$$

On note par $USAP_\omega(\mathbb{R}_+ \times X, Y)$ l’espace de ces fonctions.

Remarque 2.1 Soit $\phi \in UC_b(X, Y)$ et $e \in SAP_\omega(Y)$. On pose $f(t, x) = \phi(x) + e(t)$ pour tout $(t, x) \in \mathbb{R}_+ \times X$. Notons que la condition de la définition précédente tient toujours, car elle est

$$\lim_{t \to \infty} (\sup_{x \in B} |(f(t + \omega, x) - (f(t, x)|) = \lim_{t \to \infty} (|e(t + \omega) - e(t)|) = 0.$$

Donc $f \in USAP_\omega(\mathbb{R}_+ \times X, Y)$.

Notre définition 2.4 est différente de la définition 4.3 de [33], puisque dans [33] \(f \) est continue sur \(\mathbb{R}_+ \times X \) et dans la définition 2.4, \(f \) est de plus uniformément continue sur les bornes. Et donc la définition 4.3 de [33] est plus faible que la notre. La motivation de choisir une notion plus forte est d’obtenir la continuité des opérateurs de Nemstskii sans aucune condition de Lipschitz. Notons que, pour \(f \) indépendante de \(t \), notre Définition 2.4 coïncide avec la définition 4.3 de [33].

Après ces conditions de continuité, on considère des notions qui concernent la différentiabilité au sens de Fréchet.

Définition 2.5 soit \(f \in UC_b(\mathbb{R}_+ \times X, Y) \). On dit que \(f \) est \(C^1 \) uniformément sur les sous-ensembles bornés de \(X \) si la différentielle partielle \(D_2f(t,x) \) existe pour tout \((t,x) \in \mathbb{R}_+ \times X \), et \(D_2f \in UC_b(\mathbb{R}_+ \times X, \mathcal{L}(X,Y)) \). On note par \(UC^1_b(\mathbb{R}_+ \times X, Y) \) l’espace de ces fonctions.

Les conditions pour qu’une fonction \(f : \mathbb{R}_+ \times X \rightarrow Y \) soit dans \(UC^1_b(\mathbb{R}_+ \times X, Y) \), sont les suivantes

(i) \(f \in C^0(\mathbb{R}_+ \times X, Y) \).

(ii) Pour tout \(B \in \mathcal{P}_b(X) \),

\[
f(\mathbb{R}_+ \times B) \in \mathcal{P}_b(Y).
\]

(iii) \(\forall B \in \mathcal{P}_b(X), \forall \varepsilon \in (0, \infty), \exists \delta(B, \varepsilon) \in (0, \infty), \forall x_1 \in B \) on a

\[
|x - x_1| \leq \delta(B, \varepsilon) \implies (\forall t \in \mathbb{R}_+, \ |f(t,x) - f(t,x_1)| \leq \varepsilon).
\]

(iv) Pour tout \((t,x) \in \mathbb{R}_+ \times X \), \(D_2f(t,x) \) existe, et

\[
D_2f \in C^0(\mathbb{R}_+ \times X, \mathcal{L}(X,Y)).
\]

(v) Pour tout \(B \in \mathcal{P}_b(X) \),

\[
D_2f(\mathbb{R}_+ \times B) \in \mathcal{P}_b(\mathcal{L}(X,Y)).
\]

(vi) \(\forall B \in \mathcal{P}_b(X), \forall \varepsilon \in (0, \infty), \exists \delta_1(B, \varepsilon) \in (0, \infty), \forall x_1 \in B \) on a

\[
|x - x_1| \leq \delta_1(B, \varepsilon) \implies (\forall t \in \mathbb{R}_+, \ |D_2f(t,x) - D_2f(t,x_1)| \leq \varepsilon).
\]

Si (iv) et (v) sont vérifiées, alors, pour tout \(B \in \mathcal{P}_b(X) \), en prenant \(R \in (0, \infty) \) et utilisant le théorème de la moyenne, on obtient, pour tout \((t,x) \in \mathbb{R}_+ \times B \),

\[
|f(t,x)| \leq |f(t,x) - f(t,0)| + |f(t,0)|,
\]

et donc

\[
|f(t,x)| \leq \sup_{z \in B(0,R)} |D_2f(t,z)| \|x\| + |f(t,0)|,
\]
et avec les conditions (iv) et (v) et \(f(\mathbb{R}_+ \times \{0\}) \in \mathcal{P}_b(Y) \), on obtient (ii). En plus pour \(B \in \mathcal{P}_b(X) \), et si on utilise (iv) et (v) et le théorème de la moyenne, on obtient, pour tout \(x, x_1 \in B \)
\[
|f(t, x) - f(t, x_1)| \leq \sup_{z \in \mathbb{B}(0, R)} |D_2 f(t, z)||x - x_1|,
\]

où \(B \subset \mathbb{B}(0, R) \), et donc on obtient (iii). Et ainsi nous pouvons abréger la liste des conditions qui assurent l’appartenance à \(UC^1_b(\mathbb{R}_+ \times X, Y) \).

Remarque 2.2 Soit \(f \in UC_b(\mathbb{R}_+ \times X, Y) \), \(f \in UC^1_b(\mathbb{R}_+ \times X, Y) \) si et seulement si \(f \) satisfait

(a) \(f \in C^0(\mathbb{R}_+ \times X, Y) \).
(b) Pour tout \((t, x) \in \mathbb{R}_+ \times X \), \(D_2 f(t, x) \) existe, et
\[
D_2 f \in C^0(\mathbb{R}_+ \times X, \mathcal{L}(X, Y)).
\]
(c) \(f(\mathbb{R}_+ \times \{0\}) \in \mathcal{P}_b(Y) \).
(d) Pour tout \(B \in \mathcal{P}_b(X) \),
\[
D_2 f(\mathbb{R}_+ \times B) \in \mathcal{P}_b(\mathcal{L}(X, Y)).
\]
(e) \(\forall B \in \mathcal{P}_b(X) \), \(\forall \varepsilon \in (0, \infty) \), \(\exists \delta_1(B, \varepsilon) \in (0, \infty) \), \(\forall x, x_1 \in B \) on a
\[
|x - x_1| \leq \delta_1(B, \varepsilon) \implies (\forall t \in \mathbb{R}_+, |D_2 f(t, x) - D_2 f(t, x_1)| \leq \varepsilon).
\]

Définition 2.6 soit \(\phi : X \to Y \) une fonction. On dit que \(\phi \) est \(C^1 \) uniformément sur les sous-ensembles bornés de \(X \) si

(a) \(\phi \in UC_b(X, Y) \).
(b) \(\phi \in C^1(X, Y) \).
(c) \(D\phi \in UC_b(\mathcal{L}(X, Y)) \).

On note par \(UC^1_b(X, Y) \) l’espace de ces fonctions.

Utilisant la remarque 2.2, nous pouvons abréger la liste des conditions qui assure l’appartenance à \(UC^1_b(X, Y) \).

Remarque 2.3 Soit \(\phi : X \to Y \) une fonction. On dit que \(\phi \in UC^1_b(X, Y) \) si on a les conditions suivantes :

(a) \(\phi \in C^1(X, Y) \).
(b) Pour tout \(B \in \mathcal{P}_b(X) \), \(D\phi(B) \in \mathcal{P}_b(\mathcal{L}(X, Y)) \).
(c) \(\forall B \in \mathcal{P}_b(X) \), la restriction \(D\phi_{|B} \) est uniformément continue.

Définition 2.7 Soit \(f \in UC^1_b(\mathbb{R}_+ \times X, Y) \). On dit que \(f \) est \(C^1 \) uniformément S-asymptotiquement \(\omega \)-périodique sur les sous-ensembles bornés de \(X \) si on a :
- $D_2f(t,x)$ existe pour tout $(t,x) \in \mathbb{R}_+ \times X$.
- $f \in USAP_\omega(\mathbb{R}_+ \times X,Y)$.
- $D_2f \in USAP_\omega(\mathbb{R}_+ \times X,L(X,Y))$.

On note par $USAP_\omega^1(\mathbb{R}_+ \times X,Y)$ l’espace de ces fonctions.

Remarque 2.4 Soit $\phi \in UC_\omega^1(X,Y)$ et $e \in SAP_\omega(Y)$. Posant $f(t,x) := \phi(x) + e(t)$ pour tout $(t,x) \in \mathbb{R}_+ \times X$, utilisant la remarque 2.1, puisque $\phi \in UC_0(X,Y)$ et $D\phi \in UC^1_0(X,L(X,Y))$ donc $f \in USAP_\omega(\mathbb{R}_+ \times X,Y)$ et $D_2f = D\phi \in USAP_\omega(\mathbb{R}_+ \times X,L(X,Y))$, alors on a

$$f \in USAP_\omega^1(\mathbb{R}_+ \times X,Y)$$

Remarque 2.5 Pour $e \in BC^0(\mathbb{R}_+,Y)$ et $M \in BC^0(\mathbb{R}_+,L(X,Y))$, on considère la fonction $f : \mathbb{R}_+ \times X \to Y$ définie comme suit

$$f(t,x) = M(t)x + e(t), \text{ pour tout } (t,x) \in \mathbb{R}_+ \times X.$$

Alors avec

$$D_2f(t,x) = M(t),$$

on déduit que $f \in UC_\omega^1(\mathbb{R}_+ \times X,Y)$ et si en plus $e \in SAP_\omega(Y)$ et $M \in SAP_\omega(L(X,Y))$, alors $f \in USAP_\omega^1(\mathbb{R}_+ \times X,Y)$.

Après ces définitions relatives à des espaces de fonctions, on donne des définitions relatives aux équations d’évolution.

Définition 2.8 ([40] Définition 5.3, p. 129) La famille à deux paramètres des opérateurs linéaires bornés $(U(t,s))_{t \geq s}$ sur X est appelée un système d’évolution si on a les conditions suivantes :

1. pour tout $t \in \mathbb{R}$, $U(t,t) = I$ (I est l’opérateur identité sur X),
2. pour tout $t \geq s \geq r$, $U(t,s) \circ U(s,r) = U(t,r)$,
3. pour tout $x \in X$, la fonction $(t,s) \mapsto U(t,s)$ est fortement continue sur $F := \{(t,s) \in \mathbb{R}^2 : t \geq s\}$, c.-à-d. la fonction

$$(t,s) \mapsto U(t,s)x$$

est continue de F dans X pour tout $x \in X$.

Définition 2.9 un système d’évolution sur X $(U(t,s))_{t \geq s}$

1. est appelé ω périodique $(w > 0)$ si

$$U(t + \omega, s + \omega) = U(t,s), \text{ pour tout } t \geq s.$$
(2) est appelé exponentiellement stable si il existe $K \geq 1$ et $a > 0$ tel que

$$\|U(t, s)\|_L \leq Ke^{-a(t-s)}, \text{ pour tout } t \geq s.$$

Définition 2.10 Soit $(A(t))_{t \in \mathbb{R}_+}$ une famille des opérateurs non bornés sur un espace de Banach X. On dit que $(A(t))_{t \in \mathbb{R}_+}$ génère un système d'évolution $(U(t, s))_{t \geq s}$ sur X si on a :

(1) Pour tout $t \geq s$, pour tout $x \in \mathcal{D}(A(s))$,

$$U(t, s)x \in \mathcal{D}(A(t))$$

(2) Pour tout $s \in \mathbb{R}$, pour tout $x \in \mathcal{D}(A(s))$, la fonction

$$t \mapsto U(t, s)x$$

est différentiable sur $\{t \in \mathbb{R} : t \geq s\}$ et

$$\frac{\partial U(t, s)x}{\partial t} = A(t)U(t, s)x.$$

(3) Pour tout $t \geq s_0$, pour tout $x \in \mathcal{D}(A(s_0))$ la fonction

$$s \mapsto U(t, s)x$$

est différentiable en $s = s_0$ et

$$\frac{\partial U(t, s)x}{\partial s} \big|_{s=s_0} = -U(t, s_0)A(s_0)x.$$

Remarque 2.6 On précise quelques éléments dans [40], p. 129-130. Pour $e \in C^0(\mathbb{R}^+, X)$, la fonction $x \in C^0(\mathbb{R}^+, X)$ est dite solution classique du problème (1.2) où $x \in C^0([0, \infty), X) \cap C^1((0, \infty), X)$, $x(t) \in \mathcal{D}(A(t))$ pour tout $t \in \mathbb{R}_+$ et elle vérifie (1.2) (cf. [40], p. 126). Sous les conditions de la définition 2.10, on peut mètre la solution classique x de (1.2) sous la forme

$$x(t) = U(t, 0)\zeta + \int_0^t U(t, s)e(s)ds \text{ pour tout } t \in \mathbb{R}_+. \quad (2.1)$$

En effet, en utilisant la définition 2.10, la fonction

$$r \mapsto U(t, r)u(r)$$

est dérivable sur $[0, t]$, et puisque u est une solution de (1.2) donc $\frac{\partial u(r)}{\partial r} = A(r)u(r)$, et d'après la définition 2.8 on a, $\frac{\partial U(t, r)}{\partial r} = -U(t, r)A(r)$, alors on obtient

$$\frac{\partial U(t, r)u(r)}{\partial r} = U(t, r)e(r). \quad (2.2)$$
Soit \((r_n)_n\) une suite à valeurs dans \([0,t]\) tel que
\[
\lim_{n \to \infty} r_n = r_*.
\]
D’après la définition 2.8, on a pour tout \(x \in X\),
\[
\lim_{n \to \infty} U(t, r_n)x = U(t, r_*)x,
\]
puisque \(U(t, r_n)\) une suite d’applications linéaires continues de \(X\) dans \(X\), convergente simplement, pour \(n\) infini, vers une limite \(U(t, r_*)\), alors en utilisant le théorème de Banach-Steinhaus ([45], p. 327), \(U(t, r_n)\) converge uniformément sur tout compact \(K\) de \(X\), c-à-d
\[
\lim_{n \to \infty} \sup_{x \in K} |U(t, r_n)x - U(t, r_*)x| = 0.
\]
Alors pour \(\{e(r_n), \ n \in \mathbb{N}\} \subset K\) et puisque
\[
|U(t, r_n)e(r_n) - U(t, r_*)e(r_*)| \leq |U(t, r_n)e(r_n) - U(t, r_*)e(r_*)| + |U(t, r_*)||e(r_n) - e(r_*)|,
\]
on déduit que la fonction \(r \mapsto U(t, r)e(r)\) est continue sur \([0,t]\) et l’intégration de l’équation (2.2) de 0 à \(t\) nous donne (2.1).

Définition 2.11 [12] La fonction \(x \in C^0(\mathbb{R}_+, X)\) est dite solution mild du problème (1.2) si on a la relation
\[
x(t) = U(t, 0)\zeta + \int_0^t U(t, s)e(s)ds, \ \text{pour tout} \ t \in \mathbb{R}_+.
\]

Définition 2.12 [12] La fonction \(u \in C^0(\mathbb{R}_+, X)\) est dite solution mild du problème (1.1) si on a la relation
\[
u(t) = U(t, 0)\xi + \int_0^t U(t, s)f(s, u(s), e(s))ds, \ \text{pour tout} \ t \in \mathbb{R}_+.
\]

3 Opérateurs de Nemytskii

En premier temps nous étudions la continuité des opérateurs de Nemytskii.

Pour \(f : \mathbb{R}_+ \times X \to Y\) une fonction, l’opérateur de Nemytskii par rapport à \(f\) est l’opérateur
\[
N_f : [t \mapsto u(t)] \mapsto [t \mapsto f(t, u(t))].
\]

Théorème 3.1 Soit \(f \in UC_b(\mathbb{R}_+ \times X, Y)\). Alors on a
\[
N_f \in C^0(BC^0(\mathbb{R}_+, X), BC^0(\mathbb{R}_+, Y)).
\]
Définition
On fixe \(u \in BC^0(\mathbb{R}_+, X) \). On pose
\[
y(t) := f(t, u(t)), \text{ pour tout } t \in \mathbb{R}_+;
\]
et donc nous définissons la fonction \(y : \mathbb{R}_+ \to Y \). Puisque \(u \) est bornée, alors on a
\[
u(\mathbb{R}_+) \in \mathcal{P}_b(Y),
\]
et par l'utilisation de (ii) de la définition 2.2, on obtient
\[
y(\mathbb{R}_+) \subset f(\mathbb{R}_+ \times u(\mathbb{R}_+)) \in \mathcal{P}_b(Y).
\]
Et donc \(y \) est bornée. Notons que
\[
y = f \circ (id_{\mathbb{R}_+}, u).
\]
Puisque \(u, \ id_{\mathbb{R}_+} \) et \(f \) (d'après (i) de Définition 2.2) sont continues, alors il en est de même pour \(y \). Et donc \(N_f : BC^0(\mathbb{R}_+, X) \to BC^0(\mathbb{R}_+, Y) \) est bien défini.
Maintenant nous étudions la continuité de \(N_f \). On fixe \(u \in BC^0(\mathbb{R}_+, X) \). Alors il existe \(R \in (0, \infty) \) tel que
\[
u(\mathbb{R}_+) \subset B_X(0, R).
\]
On pose
\[
B_1 := B(0, R + 1) \in \mathcal{P}_b(X).
\]
On fixe \(\varepsilon \in (0, \infty) \). Soit \(u_1 \in BC^0(\mathbb{R}_+, X) \) tel que
\[
\|u - u_1\|_\infty \leq \delta(B_1, \varepsilon),
\]
et que \(\delta(B_1, \varepsilon) \) donner par (iii) dans Définition 2.2 que l'on peut choisir plus petit que 1. Alors pour tout \(t \in \mathbb{R}_+ \), on a
\[
|u_1(t)| \leq |u_1(t) - u(t)| + |u(t)|,
\]
et donc on a
\[
|u_1(t)| \leq R + 1.
\]
Alors \(u_1(\mathbb{R}_+) \subset B_1 \). Par l'utilisation de (iii) de la définition 2.2 et puisque on a
\[
\|u - u_1\|_\infty \leq \delta(B_1, \varepsilon), \text{ pour tout } t \in \mathbb{R}_+,
\]
on obtient
\[
|f(t, u(t)) - f(t, u_1(t))| \leq \varepsilon, \text{ pour tout } t \in \mathbb{R}_+,
\]
c-à-d
\[
\|N_f(u) - N_f(u_1)\|_\infty \leq \varepsilon.
\]
D'où la continuité de \(N_f \). \(\square \)

En utilisant les commentaires après la définition 2.3, on obtient le corollaire du théorème 3.1 suivant.
Corollaire 3.1 Soit $\phi \in UC_b(X,Y)$. Alors on a
$$N_\phi \in C^0(BC^0(\mathbb{R}_+, X), BC^0(\mathbb{R}_+, Y)).$$

Théorème 3.2 Soit $f \in USAP_\omega(\mathbb{R}_+ \times X, Y)$. Alors on a
$$N_f \in C^0(SAP_\omega(X), SAP_\omega(Y)).$$

Démonstration
Nous savons que $N_f(SAP_\omega(X)) \subset SAP_\omega(Y)$ d’après [33] ou Théorème 3.14 de [12]. Puisque la restriction d’un opérateur continu est continue, on obtient la continuité de N_f d’après le théorème 3.1.

En utilisant la remarque 2.1 on obtient le corollaire du théorème 3.2.

Corollaire 3.2 Soit $\phi \in UC_b(X,Y)$. Alors on a
$$N_\phi \in C^0(SAP_\omega(X), SAP_\omega(Y)).$$

Ce résultat est une amélioration du théorème 3.7 de [12].
Maintenant nous traitons la différentiabilité des opérateurs de Nemytskii.

Théorème 3.3 Soit $F \in UC^1_b(\mathbb{R}_+ \times X, Y)$. Alors on a
$$N_F \in C^1(BC^0(\mathbb{R}_+, X), BC^0(\mathbb{R}_+, Y)),$$
et on a pour tout $u, h \in BC^0(\mathbb{R}_+, X)$
$$DN_F(u).h = [t \mapsto D_2F(t, u(t)).h(t)].$$

Démonstration
Nous fixons $u \in BC^0(\mathbb{R}_+, X)$ et nous étudions la différentiabilité de N_F en u. Il existe $R \in (0, \infty)$ tel que
$$u(\mathbb{R}_+) \subset B_X(0, R).$$

On pose
$$c := \sup_{t \in \mathbb{R}_+} |D_2F(t, u(t))| < \infty.$$ Nous introduisons la fonction $\Lambda : \mathbb{R}_+ \times X \to Y$ comme suit
$$\Lambda(t, x) := D_2F(t, u(t)).x.$$ Pour $h \in BC^0(\mathbb{R}_+, X)$, la fonction
$$[t \mapsto \Lambda(t, h(t))] = [t \mapsto D_2F(t, u(t)).h(t)]$$
est continue et on a
\[\sup_{t \in \mathbb{R}_+} |\Lambda(t, h(t))| \leq c \|h\|_{\infty}. \]

Et donc on a
\[N\Lambda(BC^0(\mathbb{R}_+, X)) \subset BC^0(\mathbb{R}_+, Y). \]

Nous voyons que la linéarité de \(\Lambda \) et l'inégalité précédente assurent sa continuité.

Par conséquent on obtient
\[N\Lambda \in \mathcal{L}(BC^0(\mathbb{R}_+, X), BC^0(\mathbb{R}_+, Y)). \]

Nous fixons arbitrairement \(\epsilon \in (0, \infty) \), et on pose
\[B_1 := B_X(0, R + 1), \]
et on considère \(h \in BC^0(\mathbb{R}_+, X) \) tel que
\[\|h\|_{\infty} \leq \min\{\delta(B_1, \epsilon), 1\}, \]
où \(\delta(B_1, \epsilon) \) provient de la Définition 2.2 sur \(D_2F \). Alors nous utilisons le théorème ([1] p. 92), et on obtient, d’après la définition de \(\delta(B_1, \epsilon) \), pour tout \(t \in \mathbb{R}_+, \)
\[|F(t, u(t) + h(t)) - F(t, u(t)) - D_2F(t, u(t)).h(t)| \leq \]
\[\sup_{\xi \in [u(t), u(t) + h(t)]} |D_2F(t, \xi) - D_2F(t, u(t))|.|h(t)| \leq \epsilon|h(t)|. \]

Alors si en prenant le sup par rapport à \(t \in \mathbb{R}_+ \) on obtient
\[\|N_F(u + h) - F(u) - N\Lambda(h)\|_{\infty} \leq \epsilon\|h\|_{\infty}, \]
doù la différentiabilité au sens de Fréchet de \(N_F \) en \(u \), et en plus on a
\[DN_F(u).h = N\Lambda(h) = [t \mapsto D_2F(t, u(t)).h(t)]. \]
Maintenant on démontre la continuité de \(DN_F \). Puisque
\[D_2F \in UC_b(\mathbb{R}_+ \times X, \mathcal{L}(X, Y)), \]
en utilisant le théorème 3.1 on obtient
\[N_{D_2F} \in C^0(BC^0(\mathbb{R}_+, X), BC^0(\mathbb{R}_+, \mathcal{L}(X, Y))). \]

Pour tout \(u, u_1 \in BC^0(\mathbb{R}_+, X) \), on a
\[\|DN_F(u) - DN_F(u_1)\|_{\mathcal{L}} = \sup_{\|h\|_{\infty} \leq 1} \|DN_F(u).h - DN_F(u_1).h\|_{\infty} \]
\[
\sup_{\|h\|_{\infty} \leq 1} \sup_{t \in \mathbb{R}_+} |D_2F(t, u(t)) - D_2F(t, u_1(t))|, |h(t)|,
\]

et donc on a

\[
\|DN_F(u) - DN_F(u_1)\|_{\mathcal{L}} \leq \sup_{t \in \mathbb{R}_+} |D_2F(t, u(t)) - D_2F(t, u_1(t))|,
\]

donc

\[
\|DN_F(u) - DN_F(u_1)\|_{\mathcal{L}} \leq \|N_{D_2}F(u) - N_{D_2}F(u_1)\|_{\infty},
\]

et alors la continuité de \(N_{D_2}F\) implique la continuité de \(DN_F\).

En utilisant les commentaires après la définition 2.2, on obtient le corollaire du théorème 3.3 suivant.

Corollaire 3.3 Soit \(\phi \in UC^1_b(X, Y)\). Alors on a

\(N_{\phi} \in C^1(BC^0(\mathbb{R}_+, X), BC^0(\mathbb{R}_+, Y))\),

et on a pour tout \(u, h \in BC^0(\mathbb{R}_+, X)\)

\(DN_{\phi}(u).h = [t \mapsto D_\phi(u(t)).h(t)]\).

Théorème 3.4 Soit \(f \in USAP^1_\omega(\mathbb{R}_+ \times X, Y)\). Alors on a

\(N_f \in C^1(SAP_\omega(X), SAP_\omega(Y))\),

et on a pour tout \(u, h \in SAP_\omega(X)\)

\(DN_f(u).h = [t \mapsto D_2f(t, u(t)).h(t)]\).

Démonstration

Puisque \(f \in USAP^1_\omega(\mathbb{R}_+ \times X, Y)\) on a donc \(f \in UC^1_b(\mathbb{R}_+ \times X, Y)\). En utilisant le théorème 3.3 on obtient

\(N_f \in C^1(BC^0(\mathbb{R}_+, X), BC^0(\mathbb{R}_+, Y))\).

D’après le théorème 3.2 on a

\(N_f(SAP_\omega(X)) \subset SAP_\omega(Y)\).

Puisque la restriction d’un opérateur de classe \(C^1\) est de classe \(C^1\), \(N_f\) est de classe \(C^1\) sur \(SAP_\omega(X)\), et la formule de la différentielle est une conséquence de celle du théorème 3.3.

En utilisant la remarque 2.4 on obtient le corollaire du théorème 3.4.

Corollaire 3.4 Soit \(\phi \in UC^1_b(X, Y)\). Alors on a

\(N_{\phi} \in C^1(SAP_\omega(X), SAP_\omega(Y))\),

et on a pour tout \(u, h \in SAP_\omega(X)\)

\(DN_{\phi}(u).h = [t \mapsto D_\phi(u(t)).h(t)]\).
4 Résultat principal

On considère les conditions suivantes :

(A1) : \((A(t))_{t \in \mathbb{R}_+} \) génère un processus évolutif \(\omega\)-périodique exponentiellement stable \((U(t,s))_{t \geq s}\) sur \(X\).

(A2) : \(f \in \text{USAP}^1(\mathbb{R}_+ \times (X \times Y), X)\).

Théorème 4.1 On suppose que (A1) et (A2) sont satisfaits. Soit \(u_0 \in \text{SAP}_\omega(Y)\) et soit \(\xi_0 \in X\). On suppose qu’il existe une solution mild \(x_0 \in \text{SAP}_\omega(X)\) de (1.1) pour \(u = u_0\) et \(\xi = \xi_0\). On suppose en plus qu’on a la condition suivante :

\[
\sup_{t \in \mathbb{R}_+} |D_2 f(t, x_0(t), u_0(t))| < \frac{a}{k},
\]

où \(k\) et \(a\) viennent de la condition (2) de la définition 2.9.

Alors il existe un voisinage ouvert \(N\) de \(\xi_0\) dans \(X\), et un voisinage ouvert \(\mathcal{X}\) de \(x_0\) dans \(\text{SAP}_\omega(X)\), et un voisinage ouvert \(\mathcal{U}\) de \(u_0\) dans \(\text{SAP}_\omega(Y)\), et une fonction \(\varphi : N \times \mathcal{U} \rightarrow \mathcal{X}\) de classe \(C^1\) tels que on a

(i) \(\varphi(\xi_0, u_0) = x_0\).

(ii) Pour tout \((\xi, u) \in N \times \mathcal{U}\), \(\varphi(\xi, u)\) est une solution mild de (1.1) dans \(\text{SAP}_\omega(X)\).

(iii) Pour \((\xi, x, u) \in N \times \mathcal{X} \times \mathcal{U}\), si \(x\) est une mild solution de (1.1) dans \(\text{SAP}_\omega(X)\), alors on a \(x = \varphi(\xi, u)\).

Ce théorème donne des conditions pour s’assurer que, au voisinage d’une mild solution S-asymptotiquement \(\omega\)-périodique \(x_0\) de (1.1) et pour la valeur initiale \(\xi_0\) et le paramètre \(u_0\), et quand \(\xi\) est proche de \(\xi_0\) et \(u\) proche de \(u_0\), il existe \(x\) mild solution S-asymptotiquement \(\omega\)-périodique pour \(\xi\) et \(u\), et \(x\) est une fonction de classe \(C^1\) de \(\xi\) et \(u\).

5 Preuve du résultat principal

D’abord, nous introduisons l’opérateur

\[\Psi : X \times \text{SAP}_\omega(X) \times \text{SAP}_\omega(Y) \rightarrow \text{SAP}_\omega(X)\]

défini par

\[\Psi(\xi, x, u) := [t \mapsto U(t, 0)\xi + \int_0^t U(t, s) \cdot f(s, x(s), u(s))ds].\]

Notons que \(\Psi(\xi, x, u) = x\) signifie que \(x\) est une mild solution S-asymptotiquement \(\omega\)-périodique de (1.1).
\textbf{Lemme 5.1} Sous les hypothèses \((A1)\) et \((A2)\), l'opérateur \(\Psi\) est bien défini et il est de classe \(C^1\) sur \(X \times \text{SAP}_\omega(X) \times \text{SAP}_\omega(Y)\), de plus la différentielle partielle par rapport au deuxième variable est

\[D_2\Psi(\xi, x, u).h := [t \mapsto \int_0^t U(t, s).D_2f(s, x(s), u(s)).h(s)ds] \hspace{1cm} (5.2) \]

Pour la démonstration de ce lemme on a besoin des lemmes suivants.

\textbf{Lemme 5.2} \([12]\) Soit \(f \in \text{SAP}_\omega(X)\) et \((U(t, s))_{t \geq s}\) un processus évolutif \(\omega\)-périodique exponentiellement stable. Alors la fonction

\[u(t) := \int_0^t U(t, s).f(s)ds \]

est aussi dans \(\text{SAP}_\omega(X)\).

Pour la démonstration de ce lemme voir (le lemme 4.2, [12]).

\textbf{Lemme 5.3} Soit \(f \in \text{SAP}_\omega(X)\) et \((U(t, s))_{t \geq s}\) un processus évolutif \(\omega\)-périodique exponentiellement stable, alors toute mild solution de

\[
\begin{aligned}
x'(t) &= A(t)x(t) + f(t) &\text{Pour} \ t \geq 0, \\
x(0) &= x_0,
\end{aligned}
\]

appartient à \(\text{SAP}_\omega(X)\), où \((A(t))_{t \geq 0}\) génère \((U(t, s))_{t \geq s}\).

Pour la démonstration de ce lemme voir le théorème 4.3 dans [12].

\textbf{Démonstration du lemme 5.1} Si \(x \in \text{SAP}_\omega(X)\) et \(u \in \text{SAP}_\omega(Y)\), alors \((x, u) \in \text{SAP}_\omega(X \times Y)\), en utilisant le théorème 3.2 on obtient \(N_f(x, u) \in \text{SAP}_\omega(X)\), et par l'utilisation du lemme 5.2, on a

\[[t \mapsto \int_0^t U(t, s).f(s, x(s), u(s)).h(s)ds] \in \text{SAP}_\omega(X). \]

En utilisant (5.3) avec un terme de forcing égal à zéro, on obtient

\[[t \mapsto U(t, 0)\xi] \in \text{SAP}_\omega(X). \]

Alors l'opérateur \(\Psi\) est bien défini de \(X \times \text{SAP}_\omega(X) \times \text{SAP}_\omega(Y)\) vers \(\text{SAP}_\omega(X)\).

Maintenant nous étudions la différentiabilité continue de \(\Psi\). Nous introduisons les deux opérateurs suivants

\[E : X \times \text{SAP}_\omega(X) \times \text{SAP}_\omega(Y) \to \text{SAP}_\omega(X) \]
défini comme suit
\[E(\xi, x, u) := \left[t \mapsto U(t, 0)\xi \right] \]
et
\[F : X \times SAP_\omega(X) \times SAP_\omega(Y) \to SAP_\omega(X) \]
défini comme suit
\[F(\xi, x, u) := \left[t \mapsto \int_0^t U(t, s).f(s, x(s), u(s))ds \right]. \]

Remarquons que \(\Psi = E + F \). Nous voyons que \(E \) est linéaire et on a,
pour tout \((\xi, x, u) \in X \times SAP_\omega(X) \times SAP_\omega(Y)\),
\[\|E(\xi, x, u)\|_\infty = \sup_{t \in \mathbb{R}_+} |U(t, 0)\xi| \leq K|\xi| \leq K \sup_{t \in \mathbb{R}_+} |(\xi, x, u)|, \]
et d’où la continuité de \(E \), donc \(E \) est de classe \(C^1 \).

Pour étudier \(F \), on considère l’opérateur
\[\pi_{2,3} : X \times SAP_\omega(X) \times SAP_\omega(Y) \to \times SAP_\omega(X) \times SAP_\omega(Y) \]
défini comme suit
\[\pi_{2,3}(\xi, x, u) := (x, u). \]
Il est clair que \(\pi_{2,3} \) est linéaire et continu, donc il est de classe \(C^1 \). On considère aussi l’opérateur
\[\Gamma : SAP_\omega(X) \to SAP_\omega(X) \]
défini comme suit
\[\Gamma(v) := \left[t \mapsto \int_0^t U(t, s).v(s)ds \right]. \]
D’après le lemme 5.2, \(\Gamma \) est bien défini. \(\Gamma \) est linéaire et on a de plus,
\[\|\Gamma(v)\|_\infty \leq \frac{K}{a} \|v\|_\infty, \]
qui est valable pour tout \(v \in SAP_\omega(X) \), d’où la continuité de \(\Gamma \). Alors \(\Gamma \) est
de classe \(C^1 \). En utilisant le théorème 3.4, on obtient,
\[N_f \in C^1(SAP_\omega(X \times Y), SAP_\omega(X)). \]
Puisque
\[F = \Gamma \circ N_f \circ \pi_{2,3}, \]
donc \(F \) est de classe \(C^1 \) comme composition d’opérateurs de classe \(C^1 \).
En utilisant la règle de la différentiabilité des fonctions composées, on obtient,
pour tout \((\xi, x, u), (l, h, k) \in X \times SAP_\omega(X) \times SAP_\omega(Y)\),
\(DF(\xi, x, u).(l, h, k) = D\Gamma(N_f \circ \pi_{2,3}(\xi, x, u)) \circ DN_f(\pi_{2,3}(\xi, x, u)) \)
\(\circ D\pi_{2,3}(\xi, x, u).(l, h, k), \)

puisque \(\pi_{2,3} \) et \(\Gamma \) sont linéaires, on a

\(D\pi_{2,3}(\xi, x, u).(l, h, k) = (h, k), \)

et donc (5.3), pour tout \((\xi, x, u), (l, h, k) \in X \times SAP_\omega(X) \times SAP_\omega(Y) \), est équivalente à

\(DF(\xi, x, u).(l, h, k) = D\Gamma(N_f(x, u)) \circ DN_f(x, u).(h, k), \)

car \(\Gamma \) est linéaire on a, pour tout \((\xi, x, u), (l, h, k) \in X \times SAP_\omega(X) \times SAP_\omega(Y) \),

\(DF(\xi, x, u).(l, h, k) = \Gamma(DN_f(x, u))(h, k), \)

et donc la différentielle partielle par rapport au deuxième variable est la suivante :

\[D_2 F(\xi, x, u).h = \Gamma(D_2 N_f(x, u)).h = \]
\[[t \mapsto \int_0^t U(t, s).D_2 f(s, x(s), u(s)).h(s)ds]. \]

D'où la formule (5.2).

Maintenant on considère l'opérateur

\[W : X \times SAP_\omega(X) \times SAP_\omega(Y) \to SAP_\omega(X) \]
défini comme suit :

\[W(\xi, x, u) = x - \Psi(\xi, x, u). \]

D'après le lemme 5.1

\(W \) est de classe \(C^1 \).

(5.4)

Puisque \(x_0 \) est une solution S-asymptotiquement \(\omega \)-périodique de (1.1) avec \(\xi = \xi_0 \) et \(u = u_0 \), on a donc

\[W(\xi_0, x_0, u_0) = 0. \]

(5.5)

De plus on a

\[D_2 W(\xi_0, x_0, u_0) = I - D_2 \Psi(\xi_0, x_0, u_0), \]

où \(I \) est l'opérateur identité sur \(SAP_\omega(X) \). En utilisant le lemme 5.1, pour tout \(h \in SAP_\omega(X) \) et pour tout \(t \in \mathbb{R}_+ \) on a

\[||D_2 \Psi(\xi_0, x_0, u_0)h||(t)| = |\int_0^t U(t, s).D_2 f(s, x_0(s), u_0(s)).h(s)ds| \]
\[
\leq \int_0^t K e^{-a(t-s)} ds \left(\sup_{t \in \mathbb{R}_+} |D_2 f(s, x_0(s), u_0(s))| \right) \|h\|_{\infty}
\]
donc
\[
\|[D_2 \Psi(x_0, x_0, u_0)]\|_{\mathcal{L}} \leq \left(\sup_{t \in \mathbb{R}_+} |D_2 f(s, x_0(s), u_0(s))| \right) \frac{K}{a},
\]
et par l'utilisation de l'hypothèse (4.1) on obtient alors
\[
\|[D_2 \Psi(x_0, x_0, u_0)]\|_{\mathcal{L}} < 1
\]
qui nous donne
\[
D_2 W(x_0, x_0, u_0) \text{ est inversible. (5.6)}
\]
Et donc d'après (5.4), (5.6) et (5.5) et l'utilisation du théorème des fonctions implicites (théorème 4.7.1 dans [17]) sur la fonction W on obtient notre résultat.

6 Application

On considère l'équation d'évolution parabolique avec coefficients périodiques par rapport au temps

\[
(P) \begin{cases}
\frac{\partial x(t, z)}{\partial t} - a_1(t) \Delta x(t, z) + a_2(t) x(t, z) = g(x(t, z), u(t, z)) + h(t, z) & \text{sur } \mathbb{R}_+ \times \Omega \\
x(t, z) = 0 & \text{sur } \mathbb{R}_+ \times \partial \Omega \\
x(0, z) = \xi(z) & \text{sur } \Omega
\end{cases}
\]
on où Ω est un sous-ensemble ouvert non vide de \mathbb{R}^N de frontière lèchitzienne, a_1 and a_2 sont deux fonctions continues ω-périodiques de \mathbb{R} sur \mathbb{R} avec $\omega > 0$ et $\inf_{t \in \mathbb{R}} a_1(t) > 0$, et $\xi \in C_0(\Omega, \mathbb{R}) := \{ \varphi \in C^0(\overline{\Omega}, \mathbb{R}) : \varphi|_{\partial \Omega} = 0 \}$. Pour appliquer notre résultat principal, nous considérons l'espace $X := C_0(\Omega, \mathbb{R})$ muni de la norme uniforme, l'opérateur linéaire $B : X \to X$ défini par $\mathcal{D}(B) := \{ \varphi \in X \cap H_0^1(\Omega) : \Delta \varphi \in X \}$ et $B\varphi := \Delta \varphi$ pour tout $\varphi \in \mathcal{D}(B)$ où Δ est l'opérateur laplacien. On considère la famille des opérateurs linéaires définie par

\[
A(t)\varphi = a_1(t) B \varphi - a_2(t) \varphi \text{ avec } \varphi \in \mathcal{D}(A(t)) = \mathcal{D}(B) \quad \text{où } t \in \mathbb{R}. \quad (6.1)
\]
Clairement la famille $(A(t))_{t \in \mathbb{R}}$ génère le système d'évolution défini par

\[
U(t, s) = \exp(- \int_s^t a_1(r) dr) T(\int_s^t a_2(r) dr) \quad \text{où } t \geq s \quad (6.2)
\]
dans le sens de la définition 2.8 et la définition 2.10, où $(T(t))_{t \in \mathbb{R}_+}$ est un C^0 semi-groupe généré par l'opérateur linéaire B. On considère la solution
mild \(t \mapsto x(t) = [z \mapsto x(t, z)] \) dans \(X = C_0(\Omega, \mathbb{R}) \) de \((P) \) qui appartient à \(SAP_\omega(C_0(\Omega, \mathbb{R})) \) où \(u \in SAP_\omega(C_0(\Omega, \mathbb{R})) \) dans le sens de la définition 2.12. D’après le corollaire 3.5.1 dans [18] il existe \(K > 1 \) et \(\lambda_1 > 0 \) tel que
\[
|T(t)| \leq Ke^{-\lambda_1 t} \quad \text{pour tout} \quad t \in \mathbb{R}_+.
\]

On considère les hypothèses suivantes sur le problème parabolique \((P) \).

\textbf{(H1)} \(a_1, a_2 \in C^0(\mathbb{R}, \mathbb{R}) \) sont \(\omega \)-périodiques \((\omega > 0) \), \(m := \inf_{t \in \mathbb{R}} a_1(t) > 0 \) et \(\inf_{t \in \mathbb{R}} a_2(t) \geq 0 \).

\textbf{(H2)} \(h : \mathbb{R}_+ \times \mathbb{R}^N \rightarrow \mathbb{R} \) est une fonction continue bornée tel que \(h_{|\mathbb{R}_+ \times \partial \Omega} = 0 \) et
\[
\lim_{t \rightarrow \infty} \sup_{z \in \Omega} |h(t + \omega, z) - h(t, z)| = 0.
\]

\textbf{(H3)} \(g \in C^1(\mathbb{R} \times \mathbb{R}^2, \mathbb{R}), g(0, 0) = 0. \)

\textbf{(H4)} Il existe \(R \in (0, \infty) \) tel que
\[
\sup_{|r,s| \leq R} \left| \frac{\partial g(r,s)}{\partial r} \right| < \frac{m\lambda_1}{K}
\]
ôù \(\lambda_1 \) et \(K \) sont donnés par (6.3).

Par (6.3) et (H1) il est évident que le système d’évolution \((U(t, s))_{t \geq s} \) est \(\omega \)-périodique et exponentiellement stable :
\[
|U(t, s)| \leq Ke^{-m\lambda_1(t-s)} \quad \text{pour tout} \quad t \geq s.
\]

\textbf{Théorème 6.1} Sous \((H1)-(H4) \), on suppose qu’il existe \(\xi_0 \in C_0(\Omega, \mathbb{R}), u_0 \in SAP_\omega(C_0(\Omega, \mathbb{R})) \) et \(x_0 \in SAP_\omega(C_0(\Omega, \mathbb{R})) \) tel que \(x_0 \) est une solution mild de \((P) \) avec \(\xi = \xi_0 \) et \(u = u_0 \). On suppose aussi qu’on a les conditions suivantes.

\[
|x_0(t, z)| \leq R \quad \text{et} \quad |u_0(t, z)| \leq R \quad \text{pour tout} \quad (t, z) \in \mathbb{R}_+ \times \overline{\Omega}.
\]

Alors il existe un voisinage ouvert \(N \) de \(\xi_0 \) dans \(C_0(\Omega, \mathbb{R}) \), un voisinage ouvert \(\mathcal{X} \) de \(x_0 \) dans \(SAP_\omega(C_0(\Omega, \mathbb{R})) \) un voisinage ouvert \(\mathcal{U} \) de \(u_0 \) dans \(SAP_\omega(C_0(\Omega, \mathbb{R})) \), et une fonction \(\pi : \mathcal{N} \times \mathcal{U} \rightarrow \mathcal{X} \) de classe \(C^1 \) tel que on a

(i) \(\pi(\xi_0, u_0) = x_0. \)

(ii) Pour tout \((\xi, u) \in \mathcal{N} \times \mathcal{U} \), \(\pi(\xi, u) \) est une mild solution \(S \)-asymptotiquement \(\omega \)-périodique de \((P) \).

(iii) Pour \((\xi, u, x) \in \mathcal{N} \times \mathcal{U} \times \mathcal{X} \), \(x \) est une mild solution \(S \)-asymptotiquement \(\omega \)-périodique de \((P) \) alors \(x = \pi(\xi, u) \).
Démonstration
On pose $X = Y := C_0(\Omega, \mathbb{R})$ muni de la norme la topologie uniforme. Posant $F : \mathbb{R} \times \overline{\Omega} \to \mathbb{R}$, défini comme suit

$$F := g \circ (x, u),$$

tel que $g : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ est une fonction continue et $x : \mathbb{R} \times \overline{\Omega} \to \mathbb{R}$, et $u : \mathbb{R} \times \overline{\Omega} \to \mathbb{R}$ deux fonctions continues. Utilisons le lemme 3.10 dans [13], puisque $\overline{\Omega}$ est compact et F est continue comme il est une composition des fonctions continues, donc l’opérateur $N_F : C^0(\overline{\Omega}, \mathbb{R}) \to C^0(\overline{\Omega}, \mathbb{R})$ défini comme suit

$$N_F(g) := [z \mapsto F(g(z), z)],$$
est continu pour tout $g \in C^0(\overline{\Omega}, \mathbb{R})$. On remarque que, pour tout $g \in C^0(\overline{\Omega}, \mathbb{R})$ on a

$$N_F(g) = N_{g \circ (x,u)}(g) := [z \mapsto g \circ (x(g(z), z), u(g(z), z))].$$

Soit $\varphi : \overline{\Omega} \to \mathbb{R}$ et $\psi : \overline{\Omega} \to \mathbb{R}$ qui sont dans $C^0(\overline{\Omega}, \mathbb{R})$ définies comme suit

$$\varphi(z) := x(g(z), z) \text{ et } \psi(z) := u(g(z), z),$$
et donc

$$N_{g \circ (x,u)}(g) = [z \mapsto g(\varphi(z), \psi(z))] = N_g(\varphi, \psi).$$

Donc l’opérateur de Nemytskii

$$N_g(\varphi, \psi) := [z \mapsto g(\varphi(z), \psi(z))]$$
est continu de $C^0(\overline{\Omega}, \mathbb{R}) \times C^0(\overline{\Omega}, \mathbb{R})$ vers $C^0(\overline{\Omega}, \mathbb{R})$. Puisque \mathbb{R}^N et \mathbb{R} sont de dimension finie, en utilisant un raisonnement similaire que celui de la preuve du théorème 3.3, on obtient que N_g est de classe C^1 de $C^0(\overline{\Omega}, \mathbb{R}) \times C^0(\overline{\Omega}, \mathbb{R})$ sur $C^0(\overline{\Omega}, \mathbb{R})$ et on a

$$DN_g(\varphi, \psi)(\delta \varphi, \delta \psi) = [z \mapsto Dg(\varphi(z), \psi(z))(\delta \psi(z), \delta \varphi(z))] \quad (6.6)$$
et en particulier

$$D_1 N_g(\varphi, \psi) \delta \varphi = [z \mapsto \frac{\partial g(\varphi(z), \psi(z))}{\partial r} \delta \varphi(z)]. \quad (6.7)$$
Puisque $g(0, 0) = 0$ on obtient

$$N_g(C_0(\Omega, \mathbb{R}) \times C_0(\Omega, \mathbb{R})) \subset C_0(\Omega, \mathbb{R}),$$
et puisque $X = Y = C_0(\Omega, \mathbb{R})$ est un sous-espace de Banach de $C^0(\overline{\Omega}, \mathbb{R})$, on obtient l’assertion suivante :

$$N_g \in C^1(X \times Y, X). \quad (6.8)$$
Et on a donc la condition (α) de la remarque 2.3.
Si $B \in \mathcal{P}_b(X \times Y)$ alors il existe $\rho \in (0, \infty)$ tel que $B \subset B_{X \times Y}(0, \rho)$ la boule fermée dans $X \times Y$. Puisque \mathbb{R}^2 est de dimension finie, la boule fermée $B_{\mathbb{R}^2}(0, \rho)$ est compact. Puisque Dg est continue, $g(B_{\mathbb{R}^2}(0, \rho))$ est compact et par conséquent il est borné, c.-à-d. il existe $M \in (0, \infty)$ tel que $|Dg(r, s)| \leq M$ pour tout $(r, s) \in B_{\mathbb{R}^2}(0, \rho)$. Alors pour tout $(\varphi, \psi) \in B$, on a

$$(\varphi(z), \psi(z)) \in B_{\mathbb{R}^2}(0, \rho) \quad \text{pour tout } z \in \overline{\Omega},$$

ce qui implique

$$|Dg(\varphi(z), \psi(z))| \leq M \quad \text{pour tout } z \in \overline{\Omega},$$

et par conséquent avec (6.6) on obtient $\|Dg(\varphi, \psi)\|_\infty \leq M$ pour tout $(\varphi, \psi) \in B$. Et donc la condition (β) de la remarque 2.3 est satisfaite.

En plus puisque Dg est continue sur un ensemble compact $B_{\mathbb{R}^2}(0, \rho)$, utilisant le théorème de Heine, Dg est uniformément continu sur $B_{\mathbb{R}^2}(0, \rho)$, et on a

$$\forall \varepsilon > 0, \exists \delta_\varepsilon > 0, \forall (r, s), (r_1, s_1) \in B_{\mathbb{R}^2}(0, \rho),
\quad (|r - r_1| \leq \delta_\varepsilon, |s - s_1| \leq \delta_\varepsilon) \implies |Dg(r, s) - Dg(r_1, s_1)| \leq \varepsilon.$$

Alors pour $\varphi, \psi, \varphi_1, \psi_1 \in B_{X \times Y}(0, \rho)$, et pour $\|\varphi - \varphi_1\|_\infty \leq \delta_\varepsilon$ et $\|\psi - \psi_1\|_\infty \leq \delta_\varepsilon$, on obtient $|Dg(\varphi(z), \psi(z)) - Dg(\varphi_1(z), \psi_1(z))| \leq \varepsilon$ for all $z \in \overline{\Omega}$, alors $\|Dg_\varphi(\varphi, \psi) - Dg_\varphi(\varphi_1, \psi_1)\|_\infty \leq \varepsilon$. Et donc la condition (γ) de la remarque 2.3 est satisfaite.

Et par conséquent

$$N_g \in UC_b^1(X \times Y, X). \quad (6.9)$$

Maintenant on considère

$$h_1(t) := [z \mapsto h(t, z)] \in X.$$

D’après (H2) on a

$$h_1 \in SAP_{\omega}(X). \quad (6.10)$$

On définit la fonction $f : \mathbb{R}_+ \times X \times Y \to X$ en posant

$$f(t, \varphi, \psi) := N_g(\varphi, \psi) + h_1(t) \quad (6.11)$$

pour tout $(t, \varphi, \psi) \in \mathbb{R}_+ \times X \times Y$.

D’après (6.9), (6.10) et (6.11) et l’utilisation de la Remarque 2.4 on obtient

$$f \in USAP_\omega^1(\mathbb{R}_+ \times (X \times Y), X). \quad (6.12)$$

En utilisant (H4) et (6.5) on obtient

$$\sup_{t \in \mathbb{R}_+} \sup_{z \in \Omega} \left| \frac{\partial g(x_0(t, z), u_0(t, z))}{\partial r} \right| < \frac{m\lambda_1}{K}.$$
et d’après (6.7) et (6.11) on déduit que

\[\sup_{t \in \mathbb{R}^+} \| D_2 f(t, x_0(t), u_0(t)) \| = \sup_{t \in \mathbb{R}^+} \| D_1 \mathcal{N}_g(x_0(t), u_0(t)) \| < \frac{m \lambda_1}{K}. \]

Et donc toutes les hypothèses du théorème 4.1 sont vérifiées, d’où notre résultat.
Bibliographie

