Modélisation, simulation, métrologie et optimisation en génie des procédés – Quatre piliers pour une science
François Lesage

To cite this version:

HAL Id: tel-00881534
https://tel.archives-ouvertes.fr/tel-00881534
Submitted on 8 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Modélisation, simulation, métrologie et optimisation en génie des procédés
Quatre piliers pour une science

MÉMOIRE

présenté et soutenu publiquement le 14 décembre 2010

pour l’obtention de l’

Habilitation à diriger les recherches de l’Institut National
Polytechnique de Lorraine
(Spécialité Génie des Procédés)

par

François LESAGE
Ingénieur ENSIC – Docteur INPL en Génie des Procédés

Composition du jury

Président : Dr G. WILD – LRGP – CNRS – Nancy

Rapporteurs : Pr F. LARACHI – Université Laval – Québec (CANADA)
Pr J. LEGRAND – GEPEA – Université de Nantes – St Nazaire
Pr S. MARTEMIANOV – LET– ESIP – Poitiers

Examinateurs : Dr Ch. BOYER – Institut Français du Pétrole – Solaize
Pr M. FIKA – Université de Bratislava (SLOVAQUIE)
Pr M.A. LATIFI – LRGP – ENSIC– Nancy
Dr J.-R. LLINAS – JRL Consultant – Marseille
Mis en page avec la classe thloria.
Table des matières

Table des figures \hfill v
Nomenclature \hfill ix
Introduction \hfill 1

Modélisation, simulation et aspect expérimental dans l'étude des procédés \hfill 3

1 Étude de procédés : approche globale \hfill 5
1.1 Introduction \hfill 5
1.2 Mesure de la distribution de liquide en trickle-bed \hfill 5
 1.2.1 Quantification de la maldistribution \hfill 6
 1.2.2 Méthodes de mesure \hfill 6
 1.2.3 Système étudié \hfill 9
 1.2.4 Résultats \hfill 10
 1.2.5 Conclusions \hfill 14
1.3 Analyse des fluctuations de pression en trickle-bed \hfill 14
 1.3.1 Colonne de petit diamètre \hfill 14
 1.3.2 Colonne de grand diamètre \hfill 16
 1.3.3 Conclusions \hfill 18
1.4 Modélisation et simulation des écoulements et transferts en milieux poreux \hfill 18
 1.4.1 Écoulements monophasiques \hfill 18
 1.4.2 Écoulements gaz-liquide \hfill 20
 1.4.3 Conclusions \hfill 22
1.5 Modélisation et mesure des transferts en milieux fibreux \hfill 23
 1.5.1 Premières études \hfill 23
 1.5.2 Modélisation des transferts \hfill 24
 1.5.3 Mesures \hfill 24
Table des matières

1.6 Autres études ... 26
1.6.1 Métrologie globale d’un réacteur agité gaz-liquide à auto-aspiration . 26
1.6.2 Modélisation dynamique de séparateurs eau-huile 28
1.6.3 Modélisation dynamique d’un réacteur de production de polypropylène 29
1.7 Conclusions ... 31

2 Approche locale ... 33
2.1 Mesures locales de l’hydrodynamique en milieu poreux 33
2.1.1 Méthode de mesure polarographique 33
2.1.2 Gradient de vitesse et direction locale de l’écoulement 41
2.1.3 Analyse des séries temporelles des signaux 41
2.1.4 Mesures directes du champ de vitesses 43
2.1.5 Conclusion ... 44
2.2 Simulation numérique de l’écoulement local en lit fixe 44
2.2.1 Introduction .. 44
2.2.2 Bibliographie ... 44
2.2.3 Définition des modèles 45
2.2.4 Quelques résultats 46
2.2.5 Validation expérimentale 48
2.2.6 Conclusion .. 49
2.3 Conclusion .. 49

Optimisation : de l’identification des modèles à l’amélioration des procédés 51

3 Identification paramétrique des modèles 53
3.1 Introduction .. 53
3.2 Notion d’estimabilité 53
3.2.1 Généralités .. 53
3.2.2 Calcul de l’estimabilité 54
3.3 Calcul des intervalles de confiance 56
3.4 Application aux transferts dans les fibres 56
3.5 Problématique de l’extraction de données 57
3.6 Conclusion .. 58

4 Optimisation des procédés 59
4.1 Introduction .. 59
4.2 Optimisation dynamique 59
 4.2.1 Position du problème 59
 4.2.2 Conditions d’optimalité 60
 4.2.3 Méthode CVP .. 61
 4.2.4 Logiciel DYNO 62
 4.2.5 Conclusion ... 64
4.3 Optimisation globale 65
 4.3.1 Généralités .. 65
 4.3.2 Méthode de résolution 65
 4.3.3 Application au calcul de flash 67
 4.3.4 Applicabilité à l’optimisation dynamique 69
 4.3.5 Conclusion ... 69
4.4 Conclusion ... 70

Conclusion et perspectives 71

Bibliographie ... 75

Annexes .. 83

A Activités d’encadrement 83
 A.1 Thèses .. 83
 A.2 Diplômes d’Études Approfondies et Masters Recherche 83
 A.3 Participation à des jurys 84
 A.3.1 Jurys de thèse 84
 A.3.2 Jurys de DEA/master 84
B Production scientifique 85
 B.1 DEA et thèse de doctorat 85
 B.2 Revues internationales à comité de lecture 85
 B.3 Actes de congrès à comité de lecture 86
 B.4 Communications sans actes 87
C Activités d’enseignement 89
 C.1 Modification de l’enseignement d’informatique appliquée 89
 C.2 Mécanique des fluides numérique 89
 C.3 Autres enseignements 90
 C.4 Encadrement d’étudiants 90
D Valorisation & transfert – Administration

D.1 Contrat CEA ... 91
D.2 Contrat SAIPEM ... 91
D.3 Contrat et collaboration DECATHLON 91
D.4 Collaboration TOTAL .. 92
D.5 Délégation INEOS ... 92
D.6 Activités administratives ... 92

Quatre publications choisies

Momentum transfer in a fixed-bed reactor described by the surface renewal model ... 95

Some computational aspects in the simulation of hydrodynamics in a trickle-bed reactor 105

Local liquid saturation measurements inside a trickle bed reactor operating near the transition between pulsing and trickling flow .. 115

Modelling and measurements of the velocity gradient and local flow direction at the pore scale of a packed bed .. 125

Résumé ... 134

Abstract .. 134
Table des figures

1.1 Thermistances avant et après implantation .. 7
1.2 Schéma de principe de la tomographie à fils .. 8
1.3 Vue du dispositif de tomographie à fils avant implantation 8
1.4 Distributeurs utilisés .. 9
1.5 Système de distribution des fluides ... 10
1.6 Résultats de tomographie à fil en chargement sock 11
1.7 Amélioration A de la distribution pour les trois garnissages étudiés 12
1.8 Images de tomographie à fils – Distributeur en croix 12
1.9 Comparaison des performances pour un distributeur en croix 13
1.10 Exemple de mesure de vitesses locales par les thermistances 14
1.11 Taux de fluctuation des vitesses de liquide ... 14
1.12 Fréquence de passage des pulsations .. 15
1.13 Vitesse des pulsations en petite colonne ... 15
1.14 Distribution des taux de fluctuation de β_L 16
1.15 Saturation liquide en fonction du temps pour trois points de croisement 17
1.16 Modification du distributeur complet .. 17
1.17 Comparaison du modèle 1D aux valeurs expérimentales 19
1.18 Profils axiaux de saturation et de pression .. 22
1.19 Comparaison du rayon mouillé modélisé et déterminé expérimentalement 23
1.20 Schéma du MMT ... 25
1.21 Modélisation du séchage – Identification et prédiction 26
1.22 Schéma du réacteur agité gaz-liquide à autoaspiration 27
1.23 Schéma du réacteur de fabrication du polypropylène 29
1.24 Débits de quench par zone en fonction du débit de mélange de la poudre 31
2.1 Profil de vitesse sur une microélectrode ... 34
2.2 Courbes intensité-potentiel du couple Fe(CN)$_6^{3-}$/Fe(CN)$_6^{4-}$ 34
2.3 Schéma de principe d’une sonde électrochimique 35
2.4 Photographie microscopique d’une sonde électrochimique 36
2.5 Assemblage des sondes ... 36
2.6 Sondes électrochimiques disposées en tétraèdre 36
2.7 Positionnement des sondes dans la colonne .. 36
2.8 Champ de vitesses sur une électrode tri-segmentée idéale 37
2.9 Détail d’une sonde réelle .. 37
2.10 Électrode insérée dans sa sonde porteuse ... 38
2.11 Montage pour l’implantation des sondes tri-segmentées 38
2.12 Définition de l’angle η ... 38
Table des figures

2.13 Écoulement local au voisinage d’une sonde .. 39
2.14 Schéma de principe du banc d’étalonnage ... 40
2.15 Caractéristique de la sonde 1 ... 40
2.16 Définition de l’angle réduit η^* .. 41
2.17 Direction et gradient de vitesse normé de l’écoulement 41
2.18 Exemple de détection d’un événement .. 43
2.19 Temps de renouvellement t_0 en fonction du débit – $k = 0,8$ 43
2.20 Comparaison des valeurs de S mesurées et issues du modèle 43
2.21 Comparaison des maillages sans et avec réduction du diamètre des sphères . 46
2.22 Deux types de maillages utilisés ... 47
2.23 Lignes de courant au sein du pore, en coupe horizontale – $Re_p = 100$. 47
2.24 Comparaison des gradients de vitesses pariétaux modélisés et mesurés . 48
2.25 Direction locale de l’écoulement ... 49

3.1 Algorithme de quantification de l’estimabilité des paramètres 55

4.1 Organisation du code Dyno .. 63
4.2 Comparaison de trajectoires optimales ... 64
4.3 Séquence de construction de la bitangente pour un binaire 68
4.4 Construction de la bitangente pour $x = 0,5$.. 69
Remerciements

Ma sincère gratitude va tout d’abord à mon collègue Razak Latifi, avec qui j’ai eu la chance de collaborer depuis qu’il fut mon directeur de thèse. Il y a des encadrants qui encadrent, et d’autres qui aident à grandir : tu fais partie de la seconde catégorie. Merci Razak !

Gabriel Wild a accepté de présider mon jury, et je lui en suis très reconnaissant, de même que pour m’avoir pressenti comme co-encadrant à ses côtés.

Je remercie vivement Fayçal Larachi, Jack Legrand et Sergueï Martemianov, qui ont accepté d’ajouter à des emplois du temps déjà surchargés l’évaluation de mes travaux. Un grand merci également à Christophe Boyer, Miroslav Fikar et Jean-Richard Llinas pour leur présence et leurs remarques.

À mes trois doctorants diplômés, j’adresse mes sincères remerciements. Les encadrer a été une expérience enrichissante sur le plan scientifique et agréable sur le plan humain. Merci donc à Thibault Dumas, Juan David Llamas et Stéphane Quiniou.

Nombreux sont ceux qui devraient être cités ici, non seulement comme mes collègues mais aussi comme celles et ceux qui m’ont aidé à construire ma réflexion scientifique et ma carrière d’enseignant. Je veux remercier plus particulièrement Jean-Marc Commenge, Jean-Pierre Corriou, Caroline Gentic, Noël Midoux et Souhila Poncin. Merci également à Laurent Perrin et Eric Schae pour leur aide dans la préparation de ce mémoire.

Mes remerciements vont également à tous les membres du Centre de Technologie de Lavéra (INEOS) que j’ai côtoyé et avec qui j’ai pu travailler ou échanger.

Merci à Cyril, Fabien, Moh et Gacem pour leur amitié.

Merci enfin et surtout à mes parents, à mon frère et à ma belle-sœur. Rien n’aurait été possible sans eux.
Nomenclature

Symboles latins

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Définition</th>
<th>Unité</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>amélioration – équation (1.2)</td>
<td></td>
</tr>
<tr>
<td>A_e</td>
<td>surface active de l’électrode</td>
<td>m²</td>
</tr>
<tr>
<td>c</td>
<td>concentration</td>
<td>mol·m⁻³</td>
</tr>
<tr>
<td>D</td>
<td>coefficient de diffusion</td>
<td>m²/s</td>
</tr>
<tr>
<td>d_p</td>
<td>diamètre de particule</td>
<td>m</td>
</tr>
<tr>
<td>D</td>
<td>diamètre de colonne</td>
<td>m</td>
</tr>
<tr>
<td>D_{m}</td>
<td>diamètre de mobile d’agitation – section 1.6.1</td>
<td>m</td>
</tr>
<tr>
<td>$E_{\beta_{L}}$</td>
<td>évolution relative de la saturation liquide – équation (1.3)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>constante de Faraday</td>
<td>96500 C</td>
</tr>
<tr>
<td>f_p</td>
<td>fréquence des pulsations</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>F</td>
<td>partie intégrale du critère J</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>accélération de la pesanteur</td>
<td>m/s²</td>
</tr>
<tr>
<td>G</td>
<td>partie non intégrale du critère J</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Hamiltonien</td>
<td></td>
</tr>
<tr>
<td>H_0</td>
<td>hauteur de liquide – section 1.6.1</td>
<td>m</td>
</tr>
<tr>
<td>H_a</td>
<td>position axiale de la turbine – section 1.6.1</td>
<td>m</td>
</tr>
<tr>
<td>I</td>
<td>courant mesuré</td>
<td>A</td>
</tr>
<tr>
<td>i_j</td>
<td>courant réduit sur le j^{e} segment de l’électrode</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>critère d’optimalité</td>
<td></td>
</tr>
<tr>
<td>K_{ϕ}</td>
<td>perméabilité intrinsèque du milieu à la phase ϕ</td>
<td>m²</td>
</tr>
<tr>
<td>k_d</td>
<td>coefficient de transfert de matière en paroi</td>
<td>m²/s</td>
</tr>
<tr>
<td>$k_{r,\phi}$</td>
<td>perméabilité relative du milieu à la phase ϕ</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>débit spécifique de liquide</td>
<td>kg·m⁻²·s⁻¹</td>
</tr>
<tr>
<td>L_c</td>
<td>longueur de colonne</td>
<td>m</td>
</tr>
<tr>
<td>M_f</td>
<td>indice de maldistribution des débits – équation (1.1)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>vitesse de rotation</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>p</td>
<td>paramètres d’un modèle</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>pression</td>
<td>Pa</td>
</tr>
<tr>
<td>P_ϕ</td>
<td>pression de la phase ϕ</td>
<td>Pa</td>
</tr>
<tr>
<td>P_C</td>
<td>pression capillaire</td>
<td>Pa</td>
</tr>
<tr>
<td>Q</td>
<td>débit volumique</td>
<td>m³/s</td>
</tr>
<tr>
<td>S</td>
<td>gradient de vitesse en paroi</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>u</td>
<td>variables de commande – chapitre 4</td>
<td></td>
</tr>
<tr>
<td>u_ϕ</td>
<td>vitesse de la phase ϕ</td>
<td>m/s</td>
</tr>
<tr>
<td>u_b</td>
<td>vitesse moyenne de l’écoulement</td>
<td>m/s</td>
</tr>
<tr>
<td>V_p</td>
<td>vitesse des pulsations</td>
<td>m/s</td>
</tr>
</tbody>
</table>
Nomenclature

T température \hspace{1cm} K
d diamètre de cuve – section 1.6.1
x variables d’état
z coordonnée axiale \hspace{1cm} m

Symboles grecs

β_{ϕ} saturation de la phase ϕ ($\phi = L$ ou G)
ϵ porosité d’un garnissage
η angle de positionnement de la sonde dans le montage – chapitre 2
η_{CE} efficacité de mouillage
σ^2 variance totale d’un signal
σ^2_x variance locale d’un signal x – équation (2.8)
θ angle entre la direction principale de la sonde et l’écoulement moyen – chapitre 2
θ_L taux de fluctuation

Nombres adimensionnels

$Fr^* = \frac{N^2D^2}{g(H_0-H_a)}$ Nombre de Froude modifié (1.6.1)
$Re_p = \frac{\rho u D}{\mu}$ Nombre de Reynolds de particule
$Sc = \frac{\mu}{\rho D^2}$ Nombre de Schmidt
Introduction

La recherche en génie des procédés, comme toute science de l’ingénieur, comporte deux axes complémentaires parfois difficilement compatibles :

– nous sommes responsables de l’approfondissement des connaissances sur la physique des phénomènes intervenant dans les procédés étudiés, afin d’améliorer le caractère prédictif des représentations mathématiques à disposition de l’industrie tout en limitant le besoin d’expériences pilotes. Ceci va nécessiter des modèles et des expériences aux échelles spatiales et temporelles de ces phénomènes, qui sont très inférieures à celles des procédés, ainsi que des méthodologies de changement d’échelle.

– nous devons développer des outils scientifiques d’ingénierie, intégrant un maximum de connaissance tout en restant utilisable dans un cadre industriel, ce qui implique un transfert rapide vers le procédé, une relative simplicité d’utilisation et des temps de calculs suffisamment courts. En effet, dans le contexte de concurrence actuel, l’industrie doit innover à la fois dans le développement de nouveaux produits, l’augmentation de la productivité, la diminution et la valorisation des rejets. Pour tout cela, il est nécessaire de disposer de modèles, qui permettront une prise de décision éclairée en permettant d’estimer le plus précisément possible la faisabilité et les gains potentiels d’une politique par le biais de méthodes d’optimisation adaptées.

Pour un quelconque projet, appliqué ou plus fondamental, la séquence de développement se compose de la modélisation mathématique du système, de la simulation du ou des modèles obtenus, de la mesure de grandeurs d’intérêt propres à fournir les informations des modèles développés, à corroborer leurs résultats ou à fournir des indications sur leur forme. Ces trois premiers points sont en général menés de concert, en interaction forte et permanente. L’optimisation, quatrième étape du développement, intervient en général majoritairement en aval, et doit impérativement être intégrée dans le processus global.

Levenspiel (2002), récapitulant l’historique de la modélisation en génie des procédés, conclut que des approches phénoménologiques fines (et coûteuses) ne sont pas toujours nécessaires à la modélisation du procédé en lui-même. Cependant, même si les approches traditionnelles (DTS, par exemple) sont encore largement d’actualité, les modèles numériques plus pointus, de type mécanique des fluides numérique (MFN), peuvent permettre, lorsqu’ils sont utilisables, d’améliorer la qualité des résultats et éventuellement de proposer différents designs. En ce moment, on assiste d’ailleurs à un regain d’intérêt de nos partenaires industriels pour les simulations dynamiques et les approches MFN, indiquant que ces types de travaux sont passés du stade de curiosité de laboratoire à partie intégrante des processus de développement industriel.

Développer des modèles, qu’il s’agisse d’une application industrielle ou d’un travail plus académique et fondamental, nécessite en outre d’extraire de l’information utilisable des données disponibles. Ceci suppose le développement de trois axes :

– la conception de nouvelles techniques de mesure et l’extension de méthodes éprouvées à d’autres systèmes ;
Introduction

– une analyse exhaustive des données, par le biais du traitement du signal en particulier ;
– l’analyse a priori ou a posteriori des mesures au travers du modèle, grâce à des méthodes statistiques adaptées à la taille et à la variabilité importante des systèmes auxquels nous sommes confrontés.

Enfin, les méthodes de recherche de configuration et de politique d’opération optimales, que ce soit au niveau d’une opération unitaire, de l’installation de production, du site entier ou de l’entreprise, font intégralement partie des domaines de recherches essentiels du génie des procédés. Elles n’ont été qu’abordées dans les différentes études que j’ai menées ou encadrées.

Ce mémoire présente la majorité de mes travaux portant sur les thèmes présentés plus haut, en distinguant deux parties. La première est dédiée à la modélisation, simulation et métrie appliquées à certains objets rencontrés en génie des procédés, et s’intéresse pour une large part aux milieux poreux.

– dans le chapitre 1, une approche relativement classique des procédés, souvent proche des préoccupations industrielles sera exposée ;
– dans le chapitre 2, au travers de l’étude locale des milieux poreux, je m’attacherai à essayer de mesurer et simuler les phénomènes à des échelles spatiales réduites. Ceci constitue un travail plus fondamental, mais qui devrait à terme permettre d’améliorer notre compréhension des phénomènes aux grandes échelles et amener à une meilleure modélisation de celles-ci.

La seconde partie est plus prospective, reprenant des études plus récentes ou plus courtes sur des thèmes que j’ai l’intention d’étoffer dans les prochaines années. Elle se compose :

– du chapitre 3 sur l’estimation des paramètres d’un modèle à partir de données expérimentales, avec en particulier une analyse de la possibilité d’estimer un paramètre donné à partir des mesures disponibles (estimabilité), qui rejoint la conception optimale de plans d’expériences ;
– du chapitre 4 qui traite de l’optimisation des procédés, en en abordant deux aspects que sont l’optimisation dynamique et l’optimisation globale.

Enfin, le lecteur trouvera en annexe, outre le résumé de mes publications et encadrements, une présentation de mes activités d’enseignement, d’administration, et un récapitulatif des travaux contractuels. Trois publications, représentatives des grandes tendances exposées dans ce manuscrit, sont disponibles intégralement à partir de la page 95.
Modélisation, simulation et aspect expérimental dans l’étude des procédés
Chapitre 1

Étude de procédés : approche globale

1.1 Introduction

Dans ce chapitre, je développerai les différents travaux que j’ai effectués ou encadrés portant sur l’étude de procédés via des mesures ou des modèles empiriques ou semi-empiriques, souvent considérés à des échelles spatiales et temporelles macroscopiques. Il sera moins question de comprendre les phénomènes à l’origine du comportement global que de caractériser et prédire ce comportement. Je ferai une large part au cas des milieux poreux, qui est longtemps resté mon sujet de recherche central.

1.2 Mesure de la distribution de liquide en trickle-bed

Les réacteurs catalytiques à lit fixe arrosé à co-courant vers le bas (RCLFA), communément appelés trickle-beds, sont largement utilisés en milieu industriel (par exemple pour l’hydrodesulfuration et l’éémétallation, en raffinage). Un de leurs défauts majeurs vient de leur mauvaise capacité de transfert de chaleur, auquel s’additionne la difficulté de maintenir, en particulier dans le cas de réacteurs de grande taille, une distribution de liquide suffisamment uniforme. En effet, si l’on est en présence de zones sèches, le transfert de chaleur y sera d’autant plus dégradé, conduisant à la formation de points chauds. Bien évidemment, une mauvaise répartition des phases dans le réacteur engendrera également une baisse du rendement.

Il est donc nécessaire d’étudier les mécanismes de la maldistribution de liquide, de la modéliser en fonction des conditions opératoires et de permettre ainsi d’améliorer la répartition des phases. Tous les résultats présentés dans cette section sont issus du travail de thèse de Juan-David Llamas (2008)

Dans ce travail, nous avons cherché à différencier les hétérogénéités de vitesse et de saturation liquide. En effet, pour un débit donné, on peut être en présence d’une zone riche en liquide mais dont la vitesse est faible, ou au contraire d’une zone plus sèche où le filet de liquide a une vitesse élevée. Or, ces deux configurations ne sont pas identiques en terme de mouillage, et donc de coefficients de transfert. Il a donc été décidé de mesurer ces deux types de distribution, en essayant par ce moyen de reconstituer les hétérogénéités de débits (qui étaient mesurées par ailleurs).
Chapitre 1. Étude de procédés: approche globale

1.2.1 Quantification de la maldistribution

La qualité de la distribution des fluides peut être considérée au niveau microscopique (à l'échelle de quelques particules), ou à l'échelle - macroscopique - du réacteur. Seule cette dernière nous intéresse pour cette étude.

Dans le cas de la maldistribution macroscopique, les définitions peuvent varier. Ainsi, Marcan-delli et al. (2000) ont défini un indice de maldistribution basé sur les débits mesurés par un collecteur en sortie de lit :

\[M_f = \sqrt{\frac{1}{N(N-1)} \sum_i (Q_i - \bar{Q})^2} \] (1.1)

où les débits \(Q_i \) sont mesurés sur des surfaces de même dimension, et \(\bar{Q} \) est le débit moyen.

Pour la distribution de saturation liquide, nous avons cherché des indices de performance caractérisant au mieux la qualité de la répartition. Nous avons considéré le taux de fluctuation de \(\beta_L \), rapport de l'écart type de la distribution spatiale à la moyenne. Un taux de fluctuation bas indique une répartition régulière du liquide, et donc une bonne distribution. Un taux de fluctuation « de réacteur », \(\theta_R \), défini comme la moyenne des taux de fluctuation des dispositifs de mesure supérieurs \(\theta_{sup} \) et inférieurs \(\theta_{inf} \), a également été proposé comme indice global.

Cependant, la seule connaissance de ces indices ne suffit pas à quantifier la capacité de distribution d’un garnissage ; aussi, deux autres critères ont été proposés :

– l’amélioration, définie par

\[A = \frac{\theta_{sup} - \theta_{inf}}{\theta_R} \times 100 \% \] (1.2)

qui est d’autant plus élevée que le garnissage disperse bien le liquide ; cette définition permet de prendre en compte la qualité de la distribution sur le dispositif supérieur : une distribution uniforme en bas de la colonne pourrait en effet être attribuée à une bonne qualité de dispersion du garnissage entre les deux dispositifs, alors que cette distribution pourrait déjà être bonne en tête de colonne.

– l’évolution relative de la saturation moyenne au centre :

\[E_{\beta_L} = \frac{\left| \frac{\beta_{centre}}{\beta_L} \right|_{sup} - \left| \frac{\beta_{centre}}{\beta_L} \right|_{inf}}{\left| \frac{\beta_{centre}}{\beta_L} \right|_{moyenne}} \times 100 \% \] (1.3)

où la zone centrale est arbitrairement fixée comme 1/9 de la surface passante totale ; la diminution de la saturation sur cette zone centrale donne une idée de la capacité du garnissage à disperser radialement le liquide.

Pour les vitesses de liquide, on peut également définir des critères de vitesse moyenne et de taux de variation spatiale sur une section passante. Comme nous ne disposons au mieux que de vitesses en sortie de réacteur, des critères relatifs comme (1.2) ou (1.3) ne peuvent être calculés.

1.2.2 Méthodes de mesure

Distribution des vitesses de liquide

Afin de mesurer les vitesses de liquide en différents points, nous avons utilisé un ensemble de thermistances disposées au sein du lit, proche de la sortie. La mesure du coefficient de transfert
1.2. Mesure de la distribution de liquide en trickle-bed

thermique autour de la thermistance donne accès, sous réserve de la justesse du modèle de transfert thermique utilisé, à la valeur de la vitesse à cet endroit.

Ce coefficient de transfert est déterminé en chauffant la sonde en lui appliquant une intensité i élevée, et mesurant la température résultante. On a alors accès de façon simple au coefficient de transfert H.

$$\dot{Q} = R_i i^2 = H S (T_{sonde} - T_{fluide})$$

Si l’on dispose d’une relation entre H et la vitesse locale u, la simple mesure de la température du fluide (à basse intensité) et de la sonde (à forte intensité) donne accès à u.

Cependant, le coefficient H prend en compte à la fois le transfert dû à l’écoulement et la résistance intrinsèque de la sonde. Cette résistance intrinsèque (due à la couche de verre protégeant le thermocouple) est mesurée en plaçant chaque sonde dans un écoulement connu, la résistance intrinsèque correspondant à la valeur de $\frac{1}{\pi S}$ lorsque la vitesse du fluide tend vers l’infini.

La technique est connue depuis longtemps (Del Pozo, 1992), mais il s’agissait du premier essai comprenant autant de sondes (voir figure 1.1).

![Figure 1.1 – Thermistances avant et après implantation](image)

(a) Avant l’implantation
(b) Dans le lit

Dans notre cas, et en partant d’une corrélation proposée par Briens et al. (1999), des mesures préliminaires ont permis d’établir une relation de type $H = au_L^{0.55}$ pour un garnissage de billes de verre. Dans le cas d’un garnissage d’extrudés cylindriques poreux, l’obtention de lois de ce type est beaucoup plus délicate du fait de la grande dispersion des résultats et de la méconnaissance de certains paramètres nécessaires à la corrélation de Briens et al. (nombre de points de contact entre particules, en particulier).

De nombreux problèmes techniques ont empêché l’utilisation de cette méthode. Seuls quelques résultats (en garnissage sock) ont pu être présentés (voir 1.2.4).
Distribution de la saturation liquide

Le taux de rétention de liquide β_L a été mesuré par un dispositif dit de tomographie à fils, dont le principe a été publié par Prasser et al. (1998), qui l’ont utilisé dans le cas d’écoulements gaz-liquide.

On place deux faisceaux horizontaux de fils parallèles entre eux, les fils du premiers étant perpendiculaires à ceux du second. Un seul fil du premier faisceau est alimenté en courant, et on effectue la mesure de ce courant sur un fil unique du second faisceau ; ceci donne accès à la conductivité au niveau du point de croisement des fils, et permet d’en déduire le taux de liquide présent localement.

La mesure est en premier lieu effectuée dans la colonne garnie remplie de liquide, afin de déterminer la conductivité maximale. La saturation β_L est alors donnée par le rapport de la conductivité mesurée à cette conductivité maximale. Les problèmes inhérents à la méthode (par exemple, l’influence du mouillage d’une zone voisine sur le croisement considéré) ont été discutés dans la thèse de J.D. Llamas (2008), et ont été considérés comme négligeables après quelques modifications du dispositif expérimental.

Le système et sa mise au point sont également présentés dans la publication P7 (Llamas et al., 2008).

Cette méthode présente l’inconvénient de ne pas fonctionner dans le cas d’extrudés poreux (puisque l’eau résiduelle assure une conductivité suffisante). Nous avons donc décidé, lors de l’étude de ce type de garnissage, d’utiliser des billes de verre de même diamètre équivalent comme garnissage au niveau des dispositifs de tomographie. Nous avons estimé que la présence de 2 cm de billes n’était pas suffisante pour perturber notablement l’écoulement.

Cette méthode est également intrusive, contrairement à des dispositifs de tomographie capacitif, X ou γ.

De nombreuses expériences préliminaires, avec des garnissages de billes de verre, ont eu lieu.
1.2. Mesure de la distribution de liquide en trickle-bed

afin de tester la méthode *in situ*. En l’absence de dispositif de validation de la mesure de saturation (comme les dispositifs de tomographie cités précédemment), les tests ont essentiellement porté sur des cas où la distribution était parfaitement contrôlée.

Distribution des débits liquide

Nous avons repris le système de mesure des débits sortant utilisé par Marcandelli *et al.* (2000), pour lequel on disposait de 9 compartiments de surfaces égales. La mesure était faite par empotage et contrôle visuel.

1.2.3 Système étudié

Nous avons travaillé avec une colonne de 30 cm de diamètre et 1,3 m de hauteur, alimentée par le haut en air et eau de ville. Il s’agit du même montage que celui de Marcandelli (1999). Deux dispositifs de tomographie à fils identiques (comprenant 19 fils par nappe pour un total de 313 points de croisement, avec 0,4 cm entre les nappes) ont été disposés dans le lit, à 33 cm et 96 cm en dessous du distributeur de liquide.

Tous les distributeurs de liquide sont des plateaux perforés, la différence provenant de la densité et la répartition des orifices (figure 1.4) ; trois ont été étudiés :

- un distributeur « complet » (figure 1.4(a)) présentant 24 entrées de liquide, soit 340 entrées/m², ce qui en fait un bon distributeur ;
- un distributeur « en croix » (figure 1.4(b)), plateau à 5 entrées de liquide ;
- un distributeur central (figure 1.4(c)).

![Diagrammes des distributeurs](image)

Figure 1.4 – Distributeurs utilisés

Pour chacun d’eux, la distribution de gaz est identique, et effectuée par quatre cheminées (figure 1.5).

Le garnissage était constitué d’extrudés cylindriques utilisés soit en chargement dense (deux essais, l’un avec une porosité $\epsilon \approx 0,40$ noté Dense1, l’autre noté Dense2 avec $\epsilon \approx 0,38$), soit en chargement en vrac (dit « à la chaussette » ou « sock »), avec $\epsilon \approx 0,48$. Le chargement en vrac, dénommé « sock » dans le reste de ce manuscrit, est très hétérogène, et tend à favoriser des zones à forte porosité locale ; la porosité moyenne est relativement élevée. Le chargement dense est obtenu ici en introduisant lentement les particules et les laissant s’orienter horizontalement ;
ceci a pour conséquence de diminuer la porosité globale (jusqu’à 15% d’amélioration par rapport à un garnissage vrac), mais aussi, selon Tukač et Hanika (1992), d’améliorer la distribution radiale du liquide.

1.2.4 Résultats

Généralités

La visualisation directe (figure 1.6) permet de constater facilement l’effet du paramètre étudié (ici la vitesse de gaz) sur la distribution des fluides, mais la seule utilisation de ces images ne permet pas une quantification des phénomènes. Aussi les indices présentés précédemment ont-ils été employés pour comparer différentes conditions opératoires. On s’est en particulier attaché à différencier les deux types de chargement (sock et dense).

Comparaison des modes de chargement

Il est communément admis que le mode de garnissage dense favorise une bonne distribution radiale du liquide, laquelle est en général mesurée en termes de débits. Nous avons voulu savoir si la conclusion était identique en termes de répartition de la saturation. Pour cela, nous avons effectué des mesures avec un garnissage sock et deux denses. Un exemple de résultat est porté sur la figure 1.7.

Il s’agit là d’une comparaison relative, puisqu’on quantifie l’écart entre la mesure haute et la mesure en position basse. Une analyse des résultats absolus (en terme de taux de fluctuation en bas du réacteur) donne cependant les mêmes tendances. On constate donc de façon générale que le garnissage sock semble mieux distribuer la saturation de liquide que le garnissage dense, ce qui est contraire aux attentes. Une étude plus large a été faite, et corrobore les résultats présentés pour une majorité des conditions opératoires testées (et pour les quatre critères présentés plus haut). Ce n’est que dans le cas d’une bonne distribution de liquide en tête de colonne que les garnissages denses montrent une meilleure répartition du fluide, en particulier aux faibles débits de liquide. Il semble que les chargements denses tendent à conserver la distribution initiale, comme l’illustrent ces images de la saturation observée pour un distributeur en croix (figure...
1.2. Mesure de la distribution de liquide en trickle-bed

Figure 1.6 – Résultats de tomographie à fil en chargement sock à $u_L = 8.2$ mm/s pour différents débits de gaz et un distributeur en croix – Pour chaque débit, l’image du haut correspond au distributeur supérieur
Figure 1.7 – Amélioration A de la distribution pour les trois garnissages étudiés en fonction de u_g avec un distributeur central.

1.8) : la répartition en bas de colonne conserve encore la forme de la distribution initiale pour les deux garnissages denses.

Figure 1.8 – Images de tomographie à fils pour les trois chargements à $u_L = 0.0016 \text{ m/s}$ et $u_G = 0.17 \text{ m/s}$ – Distributeur en croix.

La variabilité due au mode de garnissage manuel (l’utilisation d’outils mécaniques de répartition n’a pas été possible) ne permet pas de conclure définitivement quant aux phénomènes mis en jeu. On a cependant mesuré une différence de porosité entre les deux garnissages denses, celui noté Dense2 étant plus compact que Dense1. Or, c’est le chargement dense de plus faible porosité qui distribue mieux le liquide des deux : une explication basée sur la seule porosité est donc nettement insuffisante, puisque le garnissage sock, nettement plus poreux, distribue également bien le liquide.

Une hypothèse a été avancée dans la thèse de J.D. Llamas : le garnissage étant horizontal, les canaux horizontaux sont peu ouverts au liquide, alors que la taille des canaux verticaux...
1.2. Mesure de la distribution de liquide en trickle-bed

serait plus dépendante de la porosité. Ainsi, pour un empilement dense de porosité relativement élevée, on aurait un écoulement préférentiel vertical qui diminuerait la dispersion radiale, cet effet s’atténuant pour une grande compacité.

Mais cette hypothèse ne peut être vérifiée par des moyens globaux : une étude plus locale, à la fois expérimentale et théorique, devra être menée. Notons que, même dans ce cas, l’empilement dense restera utilisé puisque plus intéressant industriellement du point de vue du rendement. Il faudra alors réfléchir à d’autres méthodes d’amélioration de la distribution.

Comparaison des différentes mesures

![Diagramme](image.png)

(a) Indice de maldistribution des débits

(b) Taux de fluctuation des saturations

Figure 1.9 – Comparaison des performances en terme de distribution des saturations et des débits pour un distributeur en croix à $u_L = 0,0064$ m/s

On peut voir sur la figure 1.9 que la distribution en terme de débits s’améliore légèrement (diminution de M_f) avec le débit de gaz, alors que la distribution des saturations aurait plutôt tendance à empirer. Cette inversion n’est pas systématique (pour un distributeur central, par exemple, on aboutit aux mêmes conclusions pour un indice de maldistribution calculé à partir des débits ou des saturations), mais elle montre qu’il est difficile de se baser sur un indice (ou un type de mesure) unique.

Dans l’idéal, nous aurions pu comparer également ces résultats avec les mesures de vitesses fournies par les thermistances. Malheureusement, comme indiqué plus haut, nous n’avons pu obtenir que des résultats partiels en chargement sock, pour le distributeur complet. On a simplement pu identifier qualitativement, à partir de résultats comme ceux de la figure 1.10, une augmentation du taux de fluctuation spatial des vitesses en fonction de la vitesse du gaz u_G (figure 1.11). Pour ce distributeur et ce garnissage, nous avions observé une influence bénéfique du débit de gaz sur la distribution des débits, mais aucune influence sur la distribution des saturations. On en a conclu que l’effet de l’augmentation du débit gazeux serait d’accélérer le liquide présent au niveau des zones peu irriguées sans mieux le répartir. Cependant, même si ces résultats nous confortent dans l’idée qu’il est indispensable de considérer différents quantificateurs de la maldistribution, des mesures de vitesse supplémentaires seraient nécessaires pour conclure définitivement.
Chapitre 1. Étude de procédés : approche globale

Figure 1.10 – Exemple de mesure de vitesses locales par les thermistances à \(u_L = 0,0082 \) m/s et \(u_g = 0,09 \) m/s pour un chargement sock et un distributeur complet – Zone hachurée : absence de sonde fonctionelle

Figure 1.11 – Taux de fluctuation des vitesses de liquide en fonction de la vitesse superficielle de gaz – Distributeur complet – Garnissage sock

1.2.5 Conclusions

Ce travail a permis de développer un système de mesure quantitatif de la distribution de liquide en lit fixe. Il a également permis de s’interroger sur la définition de cette distribution, et de mettre en évidence la non-adéquation des différentes maldistributions : le débit peut être relativement bien distribué, tout en conservant des zones sèches ou mal irriguées où la vitesse de liquide est importante.

Contrairement à ce qui est généralement admis si l’on considère une distribution des débits, on a mis en évidence la bonne capacité du chargement sock à distribuer le liquide, et celle du chargement dense à conserver une bonne distribution initiale : ainsi, on devra s’attacher particulièrement à répartir correctement les fluides en tête de colonne.

Il reste à mieux comprendre les mécanismes de cette maldistribution, comme on a pu le voir en comparant les deux chargements denses utilisés. Cette meilleure compréhension des mécanismes passe par la mesure et la simulation à des échelles inférieures ; cependant, elle est rendue difficile par la géométrie locale très complexe du milieu.

1.3 Analyse des fluctuations de pression en trickle-bed

L’étude des caractéristiques des pulsations (vitesse et fréquence) présente un intérêt pour l’intensification des procédés. En effet, un réacteur industriel peut être opéré à la limite du régime pulsé (Saroha et Nigam, 1996) ; on a même cherché à se placer dans un régime artificiellement pulsé, à des débits correspondants au régime ruisselant, afin de bénéficier en même temps des faibles pertes de charges et de l’intensification des transferts (programme européen Cyclops).

1.3.1 Colonne de petit diamètre

Les mesures présentées ici ont été obtenues dans une colonne de faible diamètre (5,67 cm). Bien que cela n’ait pas été vérifié sur cette installation, on considère que les pulsations occupent l’ensemble de la surface passante. Le système consiste en la mesure simultanée de la pression
1.3. Analyse des fluctuations de pression en trickle-bed

en deux points de la paroi en fonction du temps, la variation étant attribuée au passage d’une pulsation. Une simple intercorrétion des mesures donne alors la vitesse de passage d’une pulsation, la fréquence étant directement fournie par analyse de Fourier. Le tracé du maximum des densités spectrales de puissance permet aussi de bien quantifier la transition ruisselant-pulsé, mais non la transition dispersé-pulsé.

La figure 1.12 présente les fréquences de passage mesurées pour deux débits de liquide. La figure 1.12(a) est caractéristique des débits liquide inférieurs à 37 kg·m$^{-2}$s$^{-1}$, la tendance à l’augmentation de f_p avec G s’inversant ensuite (figure 1.12(b)). Bien que ce comportement soit attribué à la coalescence des pulsations, il est difficile de le prouver.

![Figure 1.12 – Fréquence de passage des pulsations](image)

Les vitesses obtenues pour deux transitions différentes sont présentées sur la figure 1.13. On constate qu’il est ici possible de quantifier l’apparition du régime pulsé depuis un régime dispersé de façon plus exacte qu’en utilisant les densités spectrales de puissance.

![Figure 1.13 – Vitesses des pulsations](image)

Peu de relations existaient dans la littérature concernant les caractéristiques des pulsations naturelles, et aucune ne s’appliquait à nos données. Ce n’est que plus récemment que Liu et Mi (2004) ont cherché à corrélérer l’ensemble des mesures de ces 30 dernières années, en utilisant
une approche par réseau de neurones. Dans notre cas, cette approche n’a pas été essayée, et on a seulement pu proposer des relations similaires dans la forme à celles de Tsochatzidis et Karabelas (1995) pour la fréquence des pulsations :

\[
\frac{f_{pl0}}{u_{i,G}} = 22 \left(\frac{Re_{i,L}}{Re_{i,G}} \right)^{1.27}
\]

et leur vitesse :

\[
\frac{V_p}{u_{i,G}} = 2.23 \left(\frac{Re_{i,L}}{Re_{i,G}} \right)^{0.472}
\]

Notons que les calculs sont effectués avec une saturation liquide qui n’est pas mesurée mais issue de corrélations, ce qui nous incite à considérer ces relations avec prudence.

1.3.2 Colonne de grand diamètre

On a utilisé le dispositif de tomographie à fils présenté en 1.2.2, mais en régime transitoire. Ceci a nécessité quelques ajustements de la méthode de mesure (entre autres une réduction du nombre de croisements étudiés à 72) afin d’obtenir des fréquences d’échantillonnage de l’ordre de 130 Hz, pour des mesures non multiplexées. Ceci est loin des performances possibles de la méthode (Prasser et al. (1998) obtiennent des fréquences d’acquisition sur plusieurs points simultanément de l’ordre du kHz), mais reste suffisant pour l’étude des pulsations.

Le taux de fluctuation de la série temporelle de la saturation liquide a été choisi comme indicateur du caractère d’interaction faible ou forte de l’écoulement. Même si aucune validation ne vient étayer cette hypothèse, il est raisonnable de penser que les taux de fluctuations élevées correspondent à des régimes de forte interaction. Ce taux a été mesuré pour chaque point de croisement. Un exemple de résultat est porté sur la figure 1.14.

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{figure1.14.pdf}
\caption{Distribution des taux de fluctuation de β_L dans un lit de billes de verre avec $u_L = 0,0105$ m/s et $u_g = 0,197$ m/s}
\end{figure}

On observe la coexistence de zones ruisselantes et de zones à forte interaction au sein de la colonne. Christensen et al. (1986) avaient déjà observé des pulsations qui n’occupaient pas...
1.3. Analyse des fluctuations de pression en trickle-bed

Figure 1.15 – Saturation liquide en fonction du temps pour les points de croisement A, B et C de la figure 1.14

l’intégralité de la surface passante, mais uniquement pour une colonne bidimensionnelle (5,1 cm × 45,7 cm).

On a porté sur la figure 1.15 le graphe de la saturation en fonction du temps pour les trois points A, B et C de la figure 1.14. Cependant, il n’a pas été possible de déterminer des fréquences dominantes sur les zones de forte interaction, qui devraient pourtant correspondre à un régime pulssé au vu des débits utilisés ; ceci est malgré tout en accord avec les résultats de Blok et Drinkenburg (1982), pour qui les variations n’étaient pas parfaitement stables.

La disposition des zones pulsées et ruisselantes suggérerait une influence du distributeur de liquide. En effet, la zone centrale est légèrement plus irriguée (elle dispose de plus d’orifices par unité de surface). Mais si cela peut expliquer la présence d’un régime à fortes interactions au centre du lit, seule la variation de topologie du garnissage pourrait expliquer le déséquilibre entre les zones droite et gauche. Le déséquilibre d’alimentation a été grossièrement corrigé en condamnant deux orifices de distribution du liquide, situés dans la partie du réacteur qui semblait la plus irriguée, comme indiqué sur la figure 1.16. On constate alors à la fois une uniformisation des taux de fluctuation sur l’ensemble de la surface et l’apparition d’une fréquence dominante de l’écoulement d’environ 0,75 Hz. Par ailleurs, la perte de charge n’est pas modifiée. La même conclusion est obtenue pour un garnissage d’extrudés cylindriques.

Figure 1.16 – Modification du distributeur complet

Il est intéressant de noter que, sans cette modification du distributeur, l’obtention d’un régime pulsé régulier nécessite une augmentation du débit de gaz, et donc de la perte de charge.
Chapitre 1. Étude de procédés : approche globale

(d’environ 10%).
L’ensemble de ces résultats a fait l’objet de la publication P6 (Llamas et al., 2007).

1.3.3 Conclusions

Il a été possible, pour une colonne de petit diamètre, de proposer des relations pour les caractéristiques des pulsations ; cela n’est pas d’un grand intérêt pour une application industrielle, d’autant que ces relations n’ont pas été validées par des mesures complémentaires, et que des auteurs ont proposé des relations plus générales.

Par contre, il ressort de l’étude dans des colonnes de grandes dimensions qu’il est envisageable d’adapter la distribution de liquide en tête de colonne afin de tenir compte de la topologie du milieu poreux, et de placer l’ensemble du réacteur en régime pulsé sans induire d’augmentation importante de la perte de charge. De plus, il s’agit à notre connaissance de la seule étude de pulsations concernant une colonne tridimensionnelle de grande taille.

1.4 Modélisation et simulation des écoulements et transferts en milieux poreux

Toutes les simulations présentées ici sont des approches de type Euler-Euler, où les caractéristiques (vitesse, pression, saturation) de chaque phase sont moyennées sur un volume de contrôle. Ceci permet de considérer des termes de couplage entre phases dans les équations de conservation classiques. Cependant, la détermination des expressions de ces couplages, qui conditionne la qualité (voire la convergence) de la simulation, est délicate. En effet, il faut moyener des phénomènes se produisant à des échelles spatiales et temporelles inférieures, lesquels phénomènes ne sont d’ailleurs pas forcément bien connus. Une solution possible, qui a été retenue ici, est de postuler la forme des lois de couplage, et d’ajuster les paramètres, par exemple à partir de relations empiriques globales.

1.4.1 Écoulements monophasiques

Un des volets de mon travail de thèse (Lesage, 2000) consistait à développer un code de calcul de l’écoulement en colonne garnie, permettant en particulier de prendre en considération la variation locale de porosité du milieu, et ainsi de quantifier l’effet de paroi. L’objectif était de comparer les résultats à des mesures expérimentales (essentiellement de transfert de matière pariétal) issues des travaux précédents (Naderifar, 1995), et de disposer d’une base pour le calcul des écoulements gaz-liquide en milieu poreux.

On a pu proposer une expression analytique du coefficient de transfert de matière en paroi basé sur l’existence, sur le rayon, de deux zones de vitesses différentes (publication P1, Latifi et al. (1998)). Les vitesses moyennes sur ces zones (ou même le nombre de zones à considérer) dépendent du profil de vitesse radial dans le réacteur ; dans la publication, nous avions utilisé le profil donné par Vortmeyer et Schuster (1983), mais il est possible de considérer des moyennes issues de résultats numériques, et éventuellement (au prix de calculs complémentaires) de diviser en un nombre de zones plus important. Même si le modèle analytique ne représentait pas parfaitement les résultats de Naderifar (1995) pour le transfert en paroi, il est toujours intéressant de disposer de relations de ce type afin de valider les calculs numériques dans les cas limites.

Concernant les calculs numériques, on a tout d’abord simulé les champs de vitesse et de concentration dans le cas 1D (uniquement fonction du rayon), en tenant compte de la variation locale de porosité selon des expressions issues de la littérature comme celle de Vortmeyer et
La résolution numérique elle-même a été faite en utilisant une méthode intéressante (la méthode des éléments frontières) proposée pour cet usage par Ramachandran (1992), qui a l’avantage de permettre le calcul simultané de la variable (par exemple \(c \)) et de son gradient (donnant accès directement au coefficient de transfert), et ce avec un maillage totalement libre. Les résultats peuvent être comparés aux mesures en terme de perte de charge et de coefficient de transfert : les pertes de charge semblent correctes à condition d’utiliser le profil de porosité de Cohen et Metzner (1981), par contre le transfert de matière est mal modélisé ; ceci est très probablement dû au fait que l’on a pas modélisé la dispersion radiale (uniquement la diffusion).

Ces résultats font l’objet de la publication P2 (Lesage et al., 2000).

Les équations de conservation de la masse et de la quantité de mouvement ont été également résolues en 2 dimensions (\(r \) et \(z \)), à l’aide d’une méthode de différences finies et d’un schéma vorticité-fonction de courant, semblable à celui proposé par Papageorgiou et Froment (1995). Les résultats sont identiques à ceux obtenus en 1D, sauf bien entendu au niveau de la distribution de liquide. À cet endroit, on a pu calculer la distance d’établissement de l’écoulement, qui était de l’ordre de la dizaine de diamètres de particules, ce qui était cohérent avec l’usage mais n’a pu être validé.

De façon générale, la validation complète de ces calculs est difficile, le milieu étant peu accessible à la mesure. La comparaison des pertes de charge calculée et mesurée est trop globale pour assurer que l’on a bien calculé un profil de vitesse correct. On dispose de données concernant les coefficients de transfert de matière en paroi, issus des travaux de Naderifar (1995), que nous avons pu comparer aux valeurs issues des simulations. Cependant, les nombreuses hypothèses faites pour résoudre tant l’hydrodynamique que le transfert de masse, ainsi que la piètre qualité de la comparaison nous empêchent de valider le modèle hydrodynamique. Des mesures plus directes (par Anémométrie Laser Doppler, par exemple) auraient pu permettre de trancher. Il est cependant clair que les méthodes numériques utilisées (différences finies) sont largement obsolètes, et doivent laisser place à des formulations de type volumes finis, nettement plus adaptées aux problèmes de calcul de l’hydrodynamique et des transferts.

Les DEA de B. Lacombe (Lacombe, 2001), M. Ch. Guillot de Suduiraut (Guillot de Suduiraut, 2002) et R. Boutoba (Boutoba, 2003) ont été consacrés au développement de modèles.
d’écoulement réactifs et thermiques, essentiellement en modifiant le code de calcul en volumes finis CFDLib\(^1\) (Kashiwa et Rauenzahn, 1994). Les résultats n’ont pas été concluants, et nous avons décidé de recentrer les activités sur l’hydrodynamique et les transferts non réactifs.

1.4.2 Écoulements gaz-liquide

Formulation pression-saturation

Nous avions souhaité étendre le calcul au cas des écoulements gaz-liquide ruisselants. Ceci a été tout d’abord fait en collaboration avec A. SOUADNIA, qui a mis au point l’essentiel du code pression/saturation dans le cadre de son post-doctorat.

Afin de fermer les modèles, nous avions utilisé les lois de Darcy généralisées (Sáez et Carbonell, 1985; Sáez et al., 1986) pour le couplage liquide-solide et gaz-solide. Le couplage gaz-liquide n’a pas été considéré, le terme \(F_{GL}\) est donc supposé nul, ce qui est cohérent avec le cas étudié des écoulements en faible interaction. On a donc pu écrire une relation entre les pressions et saturations des fluides et leurs vitesses, en supposant la porosité \(\epsilon\) du milieu constante :

\[
\begin{align*}
\mathbf{u}_L &= \frac{K_L}{\mu_L} (\nabla P_L - \rho_L \mathbf{g}) \\
\mathbf{u}_G &= \frac{K_G}{\mu_G} (\nabla P_G - \rho_G \mathbf{g})
\end{align*}
\]

(1.7)

(1.8)

où \(K_L\) et \(K_G\) sont les perméabilités intrinsèques du milieu poreux :

\[
\begin{align*}
K_L &= A \left(\frac{(1-\epsilon)^2}{\epsilon^3 d_p^2} \right) \mu_L + B \frac{1-\epsilon}{\epsilon^3 d_p} \rho_L |\mathbf{u}_L| \\
K_G &= A \left(\frac{(1-\epsilon)^2}{\epsilon^3 d_p^2} \right) \mu_G + B \frac{1-\epsilon}{\epsilon^3 d_p} \rho_G |\mathbf{u}_G|
\end{align*}
\]

(1.9)

(1.10)

et \(k_{rL}\) et \(k_{rG}\) les perméabilités relatives données par Sáez et Carbonell (1985) :

\[
\begin{align*}
k_{rL} &= \left(\frac{\beta_L - \beta^0_L}{1 - \beta^0_L} \right)^{2.43} \\
k_{rG} &= (1 - \beta_L)^{4.8}
\end{align*}
\]

(1.11)

(1.12)

où la saturation résiduelle \(\beta^0_L\) est donnée par (Sáez et al., 1986) :

\[
\beta^0_L = \frac{1}{\epsilon \left(20 + 0.9 \frac{\sigma_L}{\sigma_g} \right)}
\]

(1.13)

La fermeture complète est assurée par :

– la relation entre \(P_L\) et \(P_G\), liés par la pression capillaire :

\[
P_G - P_L = P_C = \sqrt{\frac{\epsilon}{K}} \sigma_L \mathcal{J}(\beta_L)
\]

(1.14)

où \(K = \frac{\epsilon^3 d_p^2}{A(1-\epsilon)^2}\) est la perméabilité au sens de Darcy, et \(\mathcal{J}\) est la fonction de Leverett (1941) :

\[
\mathcal{J}(\beta_L) = 0.48 + 0.036 \ln \left(\frac{1 - \beta_L}{\beta_L} \right)
\]

(1.15)

\[^1\text{http://www.lanl.gov/orgs/t/t3/codes/cfdlib.shtml}\]
1.4. Modélisation et simulation des écoulements et transferts en milieux poreux

- et par la relation évidente :

\[\beta_L + \beta_G = 1 \] (1.16)

Le problème initial a donc été transformé en un système d’équations concernant uniquement la pression du gaz \(P_G \) et la saturation liquide \(\beta_L \).

\[\varepsilon \frac{\partial \beta_L}{\partial t} + \nabla \cdot F = -\nabla \cdot (H \nabla P_C) \] (1.17)

\[\nabla \cdot [(\alpha_L + \alpha_G) \nabla P_G] = \nabla \cdot [\alpha_L \nabla P_C + (\alpha_G \rho_G + \alpha_L \rho_L) g] \] (1.18)

avec

\[\alpha_L = K_L \frac{k_{rL}}{\mu_L} \] (1.19)

\[\alpha_G = K_G \frac{k_{rG}}{\mu_G} \] (1.20)

\[H = \frac{\alpha_L \alpha_G}{\alpha_L + \alpha_G} \] (1.21)

\[F = \frac{\alpha_L}{\alpha_L + \alpha_G} u_T - H(\rho_L - \rho_G) g = \frac{\alpha_L}{\alpha_L + \alpha_G} \left(u_T - \alpha_G(\rho_L - \rho_G) g \right) \] (1.22)

\[u_T = u_L + u_G = -\left(\alpha_L + \alpha_G \right) \nabla P_G - \left(\alpha_L \rho_L + \alpha_G \rho_G \right) g + \alpha_L \nabla P_C \] (1.23)

On a utilisé une méthode de volumes finis et une discrétisation temporelle selon un schéma de Crank-Nicholson pour résoudre ce système. La résolution numérique reste délicate, en raison de la propagation d’un front de saturation qui rend difficile l’estimation des valeurs sur les faces, nécessaires au calcul du flux convectif.

En suivant Propp (1998), on a utilisé la méthode de Godunov d’ordre 2, qui consiste à extrapolé la saturation sur la face et au demi-pas de temps suivant en utilisant des dérivées spatiales calculées par les pentes de Van Leer. Sans rentrer dans les détails, ces dérivées sont limitées à la plus faible valeur absolue entre schéma à droite, à gauche et centré, et s’annulent en présence du front. Cette résolution est présentée en détail dans la publication P 5 (Souadnia et al., 2005), et il ne paraît pas nécessaire d’en donner tous les développements. Par contre, il est essentiel de noter l’importance de la méthode numérique dans la convergence et la qualité du résultat. L’usage de codes de calcul clé en main limite la nécessité de s’intéresser aux fondamentaux numériques, mais ces codes ne sont pas nécessairement disponibles, ni adaptés aux problèmes particuliers rencontrés.

Un exemple de résultats est donné sur la figure 1.18 pour un code monodimensionnel (uniquement axial).

Des essais ont également été menés en faisant varier la porosité du lit comme dans le cas monophasique, mais les lois de Darcy étendues n’étant plus valides aux fortes porosités, on n’a pu continuer dans cette voie.

Formulation en variables de base et validation partielle

La résolution numérique des écoulements ruisselants a donc été effectuée d’abord par un programme développé en interne, puis, dans le cadre de la thèse de F. Soltana, à l’aide du code CFDLIB, qui utilise la formulation pression/vitesse et permettait de travailler facilement en 2D (voire 3D). Il était également plus simple d’implanter des conditions de fermeture différentes, adaptées par exemple à des zones de forte porosité.
Chapitre 1. Étude de procédés : approche globale

Le manque de validation expérimentale de ces différents modèles nous a amené à effectuer quelques simulations dans le cadre de la thèse de Juan David Llamas. En effet, nous disposions alors de mesures à l’intérieur du lit, qui permettaient une meilleure validation des simulations (meilleure, mais toujours incomplète puisque les champs de vitesses étaient inconnus).

Nous avons utilisé les fermetures préconisées par Boyer et al. (2005), qui avaient également appliqué ce modèle à l’étude de la distribution de liquide, suivie par tomographie X.

\[
P_c = P_G - P_L = 2\sigma (1 - \eta_{CE}) \left(\frac{\epsilon_S}{1 - \epsilon_G} \right)^{1/3} \left(\frac{1}{d_P} + \frac{1}{d_{min}} \right) \left(1 + 88,1 \frac{\rho_L}{\rho_G} \right) \tag{1.24}
\]

où \(d_{min}\) est donné par :

\[
d_{min} = d_P \left(\sqrt{\frac{3}{\pi}} - 0,5 \right)^{1/2} \tag{1.25}
\]

L’efficacité de mouillage \(\eta_{CE}\) est fournie, en suivant Boyer et al. (2005), par la relation de El Hisnawi :

\[
\eta_{CE} = 1,021 \beta^{0,224} \tag{1.26}
\]

Les résultats du calcul peuvent être comparés aux valeurs expérimentales dans une certaine mesure ; on a en particulier estimé le rayon de la zone mouillée pour un distributeur central, en fonction du débit de liquide pour un débit de gaz nul. On a considéré comme mouillé un point de mesure où la saturation dépassait 10%. La figure 1.19 montre ces comparaisons pour les deux hauteurs de mesure. Si la tendance est correcte, le modèle sous-estime considérablement la dispersion radiale. Il est possible, mais cela n’a pas été testé, que les lois de fermeture, en particulier pour l’interaction gaz-liquide, nécessitent une modification pour représenter correctement la réalité.

1.4.3 Conclusions

Ces différents travaux montrent les efforts accomplis en terme de simulation des écoulements en milieu poreux, et indiquent le chemin restant à accomplir : les comparaisons aux mesures.
1.5 Modélisation et mesure des transferts en milieux fibreux

Au cours d’un partenariat avec la société Oxylane Group, j’ai pu m’intéresser aux transferts de chaleur et de matière dans les tissus, à leur incidence sur le confort durant l’activité sportive, et donc à la conception de vêtements de sport.

Pour des raisons de confidentialité, seule une brève présentation des études réalisées est possible ici.

1.5.1 Premières études

Différentes études contractuelles ont été menées (par Abderrazak Latifi et moi-même) afin de prédire de façon dynamique les températures corporelles et les taux de sudation d’un sportif en activité physique, vêtu d’un tissu modélisé à partir de ses équations fondamentales. En effet, les études classiques concernaient uniquement des valeurs stationnaires, et ne considéraient l’habillement que comme une couche de résistance aux transferts de chaleur et de matière – en l’occurrence de vapeur d’eau – connue. Or, ces valeurs permettent de prédire l’inconfort ressenti par un individu (par exemple, lors de l’arrêt d’un effort), et de le minimiser en jouant sur la nature du tissu constituant le vêtement.

Nous cherchions à prédire les caractéristiques de transfert global d’un vêtement soumis à

Figure 1.19 – Comparaison du rayon mouillé modélisé et déterminé expérimentalement pour un écoulement de liquide ruisselant à \(u_g = 0 \) sur un lit de billes de verre

en particulier pour des écoulements gaz-liquide, prouvent que les lois de fermeture utilisées ne sont pas forcément adaptées à ces calculs. Par ailleurs, on a rencontré différents problèmes liés au calcul numérique ; s’il est certain que des codes de calcul généralistes comme Fluent ou Comsol Multiphysics intègrent les schémas numériques capables de gérer les différents problèmes rencontrés, par exemple les discontinuités, il n’est à mon avis pas inutile de pouvoir disposer de programmes de résolution de problèmes très ciblés dans des géométries simples. Le gain potentiel en temps de calcul et en facilité de modification, la capacité d’intégration à d’autres applications, ainsi bien sûr que le faible coût de développement et d’utilisation, peut rendre cette approche intéressante. Dans des cas plus complexes, les solveurs génériques sont cependant bien souvent la solution retenue.
Chapitre 1. Étude de procédés : approche globale

des conditions extérieures connues à partir des données physicochimiques des fibres (chaleur et capacité de sorption d’eau, conductivité thermique...), de la nature du tissu (construction, nombre de couches,...). Le modèle comprenait ainsi des équations de transfert pour la chaleur, l’eau liquide, l’eau vapeur et l’eau sorbée dans les fibres du tissu. Les conditions aux limites pouvaient correspondre à l’extérieur (et donc à des coefficients d’échange connus), ou à la face interne du vêtement, et donc à des réponses physiologiques (en termes de sudation et source thermique) aux variations de la température du tissu.

Les modèles, monodimensionnels, étaient résolus en utilisant les routines préprogrammées de Matlab, la routine de calcul des conditions aux limites incluant l’ensemble du modèle physiologique. Ce code, baptisé ACTIF a été utilisé au sein de Oxylane Group afin de déterminer, pour une activité et un individu donné, les paramètres clés d’un tissu. Une version simplifiée a été développée pour modéliser le confort thermique d’un plongeur, et permettre de proposer les épaisseurs de combinaisons les plus adaptées aux différentes conditions.

La difficulté d’extension de ces modèles à la présence de plusieurs couches de tissus, séparées éventuellement par une couche d’air, et la volonté de travailler en deux dimensions au moins a conduit à des travaux décrits ci-après.

1.5.2 Modélisation des transferts

Le développement du modèle a continué indépendamment des aspects physiologiques, et s’est essentiellement axé sur la caractérisation des tissus à partir des paramètres physiques, et le lien entre ces paramètres et les grandeurs normalisées.

Définition du modèle

Il se compose de trois équations de diffusion de matière (concernant l’eau liquide, l’eau vapeur et l’eau sorbée), et une équation de diffusion de chaleur, fortement couplées via les termes d’échange et les coefficients de diffusion.

Il nécessite la connaissance de paramètres inconnus, les coefficients d’échange de matière au niveau de la fibre entre les trois phases, qui doivent donc être déterminés à l’aide de corrélations (dont on ne dispose pas) ou identifiés à l’aide d’expériences adéquates. Par ailleurs, les paramètres d’échange au niveau des limites sont également inconnus, même s’ils peuvent être estimés à l’aide de corrélations usuelles.

Ce modèle, s’il intègre la connaissance que nous avons du milieu considéré, nécessite toujours la détermination de coefficients qui ne peuvent être estimées (éventuellement) que par une minimisation d’écart à l’expérience. Il nous permet cependant de déterminer des grandeurs usuelles (et obtenues de façon normalisée) comme la résistance thermique globale ou la perméabilité à la vapeur à partir de paramètres physiques. Ceci ne nous permet donc pas d’affirmer a priori que le modèle sera prédictif, mais l’affine en y incorporant le maximum de connaissances à notre disposition. Le caractère prédictif est assuré par des validations en dehors des plages utilisées pour la détermination des coefficients.

1.5.3 Mesures

Un des objectifs du travail de thèse de S. QUINIOU était la détermination des données nécessaires à la simulation à partir d’expériences contrôlées en laboratoire. Différentes techniques
1.5. Modélisation et mesure des transferts en milieux fibreux

ont été utilisées pour cela.

Type de mesures

On a cherché à mesurer les différents transferts, pour des tissus monocouches mais aussi pour deux couches, séparées par une lame d’air.

Différentes configurations ont été utilisées, soit à partir de montages normalisés, soit en concevant des expériences permettant le découplage des phénomènes. Trois techniques de mesure ont été utilisées :

- mesure directe de température de surface du tissu par des thermocouples ;
- mesure de température par caméra infra-rouge, pour des surfaces accessibles optiquement ;
- mesures de saturation liquide par un dispositif de mesure de conductivité \(^2\) industriel mais non encore normalisé, appelé MMT (Moisture Measurement Tester).

Comme pour les lits fixes, il est difficile d’obtenir ici des mesures significatives. On a pu obtenir de bons résultats pour un tissu monocouche, mais le développement de méthodes non intrusives capables d’accéder aux grandeurs modélisées au sein d’un milieu complexe comme un tissu semble nécessaire pour améliorer notre modèle multicouche.

Flash MMT

La méthode MMT classique consiste à mesurer la conductivité du tissu entre deux capteurs, chacun constitué d’aiguilles disposées en 6 anneaux concentriques. Cette conductivité est obtenue pour chaque anneau. On injecte alors une certaine masse d’eau sur la face supérieure du tissu, au centre des anneaux.

![Figure 1.20 – Schéma du MMT](image)

2. qui n’est pas sans rappeler le dispositif de tomographie à fil décrit en 1.2.2)
La valeur de la teneur en eau au niveau de chaque anneau est déduite des valeurs de conductivité, après étalonnage, et peut être comparée aux résultats de simulation numérique.

Nous avons pu proposer une modification du dispositif de mesure qui permet d’établir un modèle de la teneur en eau présentant une solution analytique. Ceci permettrait d’accélérer notablement l’identification des coefficients de diffusion, puisque la résolution numérique complète ne serait plus nécessaire.

En effet, si l’injection centrale pouvait être suffisamment rapide pour être considérée comme instantanée, le problème (sous réserve de quelques simplifications) présente une solution analytique semblable à celles obtenues en thermique dans le cas des méthodes Flash (Parker et al., 1961).

Cette méthode n’a pas pu être testée, faute de modification effective du MMT.

Résultats

Un exemple de résultat est proposé sur la figure 1.21 pour une expérience de séchage d’un tissu mouillé, posé sur une plaque chauffante.

![Figure 1.21 – Modélisation du séchage – Identification et prédiction](image)

On a pu déterminer certains coefficients empiriques du modèle et valider ces résultats grâce à la mesure des champs de température en surface du tissu (par thermocouples ou caméra IR) et des saturations locales de liquide (par mesures conductimétriques). On verra dans le chapitre 3 quelle a été la procédure utilisée pour l’identification et le calage du modèle.

1.6 Autres études

1.6.1 Métrologie globale d’un réacteur agité gaz-liquide à auto-aspiration

Il s’agit de mon travail de DEA (Lesage, 1996), réalisé dans le cadre plus général d’une série de thèses effectuées au laboratoire, la dernière étant celle de Belgacem (2000).
1.6. Autres études

Cadre de l’étude et description du procédé

Le système étudié est un réacteur agité gaz-liquide pour lequel l’injection de gaz ne se fait pas par un distributeur en fond de cuve, mais par l’aspiration du ciel gazeux au travers de l’arbre (creux) d’agitation et des tubes placés derrière les pales, la force motrice étant assurée par la dépression due à la rotation.

Points d’injection

Ouies d’aspiration

Gaz

D

H0

Arbre creux

Moteur

 Figure 1.22 – Schéma du réacteur agité gaz-liquide à autoaspiration

L’utilisation de corrélations usuelles pour la détermination des grandeurs utiles n’était pas immédiate, l’hydrodynamique du système étant différente vu la position de l’injection de gaz. La réduction du nombre de degrés de libertés (le débit de gaz est une fonction de la vitesse d’agitation) réduit cependant le nombre d’expériences à réaliser.

Deux types de mobiles d’agitation ont été étudiés, une turbine Rushton à 6 pales et une turbine à pales inclinées.

Résultats

Les mesures ont porté sur différentes variables :
– vitesse critique d’aspiration N_c (vitesse de rotation minimale pour aspirer le ciel gazeux);
– taux de gaz moyen;
– dépression derrière la pale;
– débit aspiré;
– puissance consommée par la turbine;
– coefficient de transfert de matière gaz-liquide k_{La} par la méthode à l’hydrazine.

On dispose par exemple d’une relation entre débit aspiré, nombre de Froude modifié $Fr^* = \frac{N^2D^2}{g(H_0-H_a)}$, et nombre de Froude modifié critique (calculé à $N = N_c$), qui s’écrit pour une turbine à pales inclinées :

$$\frac{Q}{ND^2} = 7,98 \times 10^{-3} \ln (Fr^* - Fr_{c*}^*) + 0,0205$$ \hspace{1cm} (1.27)$$

Outre des relations de ce type, le travail a permis de comparer les performances des deux types de turbines sur un plan économique, en montrant que, à puissance consommée égale, la turbine Rushton permettait d’aspirer un débit plus important ou au moins égal à celui de la
turbine à pales inclinées. Une étude expérimentale plus détaillée aurait pu être effectuée en mesurant des grandeurs plus locales ; ceci avait été fait pour la turbine Rushton, ce qui nous a permis de proposer un modèle de zone grossier. Une modélisation plus poussée (de type CFD) n’était pas envisageable avec les outils disponibles à l’époque.

Conclusions

On a ainsi pu proposer des corrélations spécifiques à la turbine étudiée, qui demandent encore à être validées pour des rapports géométriques et des conditions opératoires différents, mais qui peuvent être utiles à un industriel pour choisir et opérer un procédé.

Une perspective majeure était l’extension de la technique d’auto-aspiration à des mobiles multi-étages. Nous avions commencé à réfléchir au dimensionnement des structures d’agitation en fonction des objectifs : réduction de la puissance d’agitation, meilleure dispersion du gaz, par exemple. À mon sens, un traitement par des méthodes modernes (en particulier une modélisation CFD, ce qui d’ailleurs a été commencé récemment pour un mobile unique à pales inclinées par Murthy et al. (2007)) permettrait de valoriser ces résultats. Bien que cette activité (réacteurs agités gaz-liquide) ait été arrêtée en 2001, une reprise, qui pourrait s’appuyer dans un premier temps, et pour des raisons de coût, sur la simulation, est envisageable. Les mécanismes de formation des bulles, issus du développement et de la rupture de cavités aérées situées derrière chaque pale, demanderaient en particulier à être étudiés de façon plus approfondie, via des modèles physiques.

1.6.2 Modélisation dynamique de séparateurs eau-huile

Ce travail avait été effectué à la demande de la société SAIPEM, afin de comparer les performances de séparateurs eau-huile (et éventuellement gaz) classiques à celles d’hydrocyclones. On cherchait en particulier à estimer la capacité de ces systèmes à amortir les perturbations de l’entrée : variations du débit global, de la quantité de phase dispersée, voire de la nature de la phase dispersée.

Une partie de cette étude a constitué le travail de DEA de Nicolas Butin (2006).

Cadre de l’étude

L’objectif était la comparaison de deux types de séparateur, un décanteur classique et un hydrocyclone, en terme de robustesse vis-à-vis des fluctuations de l’alimentation. En effet, de très fortes perturbations sur les teneurs en eau, huile et gaz peuvent être observées en sortie de puits. En général, les volumes offerts à la séparation (décanteurs) suffisent à amortir ces perturbations, qui ne dégradent pas la qualité de la séparation. Cependant, la question se posait de savoir si des hydrocyclones, utilisés seuls ou en complément de décanteurs plus petits, pourraient eux aussi supporter de telles variations.

On a donc conçu un modèle dynamique très simple pour chacun de ces séparateurs, et l’avons implanté dans le logiciel Simulink (un greffon de Matlab permettant la simulation dynamique via une interface conviviale).

Nous avons utilisé une représentation Lagrangienne simple de la phase dispersée, soumise uniquement aux forces de portance. L’interaction des inclusions liquides entre elles a été totalement négligée, de même que les phénomènes de coalescence et rupture. Il ne s’agissait pas de décrire finement la physique des phénomènes, mais de proposer rapidement une simulation dynamique fonctionnelle. La modification des champs de vitesse de la phase continue était représentée par le biais de corrélations de la littérature ; des vérifications de la faisabilité de cette approche avaient
été entamées (par le biais de simulations numériques), mais n’ont pu être menées à bien sur la durée de l’étude.

Résultats et conclusions

Nous avons pu proposer un modèle dynamique utilisable pour chacun des deux séparateurs, qui ont été implantés en tant que S-fonctions Simulink et sont donc utilisables sans nécessiter un quelconque codage. Le niveau de modélisation des phénomènes physiques est cependant resté très sommaire, et comprend de nombreuses approximations. En l’absence de moyens expérimentaux, qui nous auraient éventuellement permis d’identifier les modèles, et faute du temps nécessaire à la mise en place de simulations plus rigoureuses, l’étude a pris fin et notre partenaire industriel a repris le développement en interne.

1.6.3 Modélisation dynamique d’un réacteur de production de polypropylène

Dans le cadre d’une délégation en entreprise (de décembre 2007 à juin 2008), j’ai développé un modèle dynamique des réacteurs industriels de fabrication de polypropylène utilisés et vendus par la société INEOS.

Réacteur

Le réacteur est constitué d’une calandre horizontale agitée mécaniquement et deux dômes en forme de cônes inversés permettant la sortie du gaz et le désengagement de la majorité des particules entraînées. L’injection de catalyseur et de co-catalyseur se fait à une extrémité du réacteur, la décharge de poudre de polypropylène à l’autre. L’alimentation se fait en phase gaz par des buses situées en bas du réacteur, et en phase liquide (quench) par des buses situées en haut. Le rôle de la phase liquide est essentiellement de refroidir le réacteur, le débit d’alimentation est donc piloté par la température du lit. L’écoulement de la poudre est globalement considéré comme piston, ce qui différencie ce type de réacteur des lits fluidisés utilisés par exemple pour le polyéthylène et permet d’atteindre des distributions de poids moléculaires intéressantes.

Figure 1.23 – Schéma du réacteur de fabrication du polypropylène
Chapitre 1. Étude de procédés : approche globale

Des modèles existaient déjà au sein de l’entreprise pour ce réacteur, mais ils étaient essentiellement stationnaires et ne permettaient pas de modifications du schéma cinétique. Il a donc été décidé de développer un modèle propriétaire en utilisant le logiciel Aspen Custom Modeler. Un des éléments importants du cahier des charges était l’implantation du schéma cinétique proposé par Xie et al. (1995) et sa modification pour la prise en compte de la génération de sites « dormants ».

Schéma cinétique

Le modèle développé ne concerne que les catalyseurs de type Ziegler-Natta. Les équations du modèle cinétique de Xie et al. (qui prennent en compte les étapes d’activation du catalyseur, d’initiation, propagation, transferts à l’hydrogène ou au co-catalyseur et terminaison) permettent de calculer directement les moments d’ordre 0, 1 et 2 de la distribution des chaînes de polymère, ce qui donne accès, outre la production, à l’indice de polydispersité (rapport des masses molaires moyennes en poids et en nombre, et donc des moments d’ordre 2 et 0). On peut définir plusieurs types de sites catalytiques, chacun disposant de ses réactivité s propres (un minimum de 2 sites est requis pour décrire correctement la distribution), et on aboutit à un minimum de 5 équations (soit au moins 10 inconnues – constantes de vitesses et énergies d’activation) par site pour un système donné.

Par parenthèse, on rejoint ici les thématiques du « génie des produits » : la recherche d’une ou plusieurs propriétés d’usage passe en particulier par une modification du procédé. Si la relation entre les propriétés d’usage et les paramètres physicochimiques du produit est connue, et que ces paramètres sont contrôlables par le procédé, on peut appliquer une méthode d’optimisation pour déterminer les conditions d’élaboration d’un produit souhaité.

On a ajouté à ce schéma classique une étape qui pourrait permettre d’expliquer l’effet activateur de faibles concentrations d’hydrogène. En effet, certains auteurs (par exemple Lin et al. (2000)) attribuent cet effet à un phénomène en deux étapes :

– Une mauvaise insertion du propylène qui provoque une importante diminution de la réactivité de la chaîne ;
– Un transfert à l’hydrogène de cette chaîne « dormant » qui réactive donc le site catalytique.

Des mesures effectuées en laboratoire ont permis de caler le modèle cinétique ; cependant, le grand nombre de constantes à déterminer, l’absence de certaines mesures (indice de polydispersité par exemple) ainsi que l’écart entre les conditions opératoires en laboratoire et en milieu industriel ne permettent pas de garantir l’applicabilité directe de ce modèle. Une procédure particulière de calage (développée en ce moment) est donc requise, au lieu d’une régression classique.

Modèle et quelques résultats

Plusieurs représentations du procédé ont été considérées. L’une d’elles est un modèle classique de réacteurs agités en cascade, avec échange de la phase solide à la fois par le mouvement dû à la production (unidirectionnel) et par l’agitation (bidirectionnel). Un modèle de ce type (sans rétromélange) avait été proposé par Khare et al. (2004), qui établissaient la nécessité de considérer plusieurs types de sites catalytiques, et proposaient un moyen de caler les cinétiques en déconvoluant les distributions de poids moléculaires.

Le modèle permet la prise en considération de façon fine de la sorption des gaz (en particulier des monomères et de l’hydrogène) dans le polymère, via des équations d’état de type PC-SAFT. Une hypothèse très forte du modèle, qui n’est pas nécessairement valide, est que les transferts de
matière et de chaleur sont considérés comme instantanés : par exemple, le quench est considéré comme vaporisé dès son entrée dans le réacteur (alors que certains indices laissent à penser qu’il peut exister une phase liquide localement, même loin des injecteurs).

Figure 1.24 – Débits de quench par zone en fonction du débit de mélange de la poudre

Le niveau de modélisation reste donc ici très global : il n’est pas encore question – même si certaines relations sont implantées – de prendre en compte les transferts gaz-solide, liquide-solide, la vaporisation du quench (hors son aspect purement thermodynamique), ni même la thermique locale du système (sauf à discrétiser plus finement le réacteur). De même, les débits de mélange de solide et de fluide entre les différents réacteurs doivent être estimés à partir de résultats expérimentaux, et sont donc difficilement extrapolables.

On a pu valider une partie du modèle en calculant les débits de quench nécessaires au maintien de la température de consigne dans chaque section du réacteur (figure 1.24) et en les comparant à des données atelier. Ceci nous a permis d’estimer les débits de mélange de la poudre (et donc l’écart à un écoulement piston).

Bien que des approches de type CFD soient possibles pour prédire ces grandeurs, considérer tous ces phénomènes à des échelles de l’ordre de plusieurs mètres tout en ne disposant que de peu de données expérimentales reste délicat à l’heure actuelle. Il faut donc utiliser le maximum de modélisation et de mesures physiques via des grandeurs moyennes ; on peut par exemple estimer les échanges de solide entre deux RPA en utilisant des résultats issus d’un suivi de particules par émission de positrons. Le calcul des débits de quench nécessaires permettrait alors de valider une autre partie du modèle (par exemple, de mieux caler les cinétiques de production).

Pour des raisons de confidentialité, une présentation plus poussée du modèle et des résultats n’est pas possible.

Cette étude a fait l’objet de la communication (CA12), et d’un rapport confidentiel (Lesage, 2008).

1.7 Conclusions

Les mesures présentées dans ce chapitre permettent de mettre en évidence des phénomènes à l’échelle du procédé : mauvaise distribution des fluides, pulsations pour les milieux poreux,

Les modèles numériques plus complexes, de type CFD, requièrent des lois de fermeture, dont la forme, voire les valeurs des coefficients, sont en général issus de corrélations d’ingénierie, mais dont l’applicabilité peut être discutable.

De plus, la simulation de phénomènes, même relativement simples, peut poser des problèmes numériques, comme nous l’avons vu en particulier dans le cas des écoulements gaz-liquide en lit fixe. Dans les cas industriels, la dimension (spatiale et temporelle) importante des systèmes augmente encore la difficulté d’obtention de résultats de qualité dans des temps compatibles avec leur exploitation sur le terrain.

L’extrapolation des résultats et des modèles peut de plus être extrêmement difficile, comme par exemple pour la caractérisation du régime pulsé. De même, si les simulations effectuées en utilisant des lois moyennées peuvent conduire à de bons résultats en laboratoire, il est peu probable qu’ils soient facilement extrapolables.

La mesure à ces échelles globales et la modélisation afférente sont importantes et nécessaires, ne serait-ce que dans un but d’ingénierie. Mais les lois de fermeture utilisées doivent être affinées, pour essayer de rendre les modèles les plus prédictifs possibles.

On a pu proposer des explications phénoménologiques aux comportements observés, par exemple dans le cas de la distribution de fluides en lit fixe, mais les observations faites ne peuvent permettre d’infirmer ou confirmer définitivement ces hypothèses. Afin de comprendre les phénomènes sous-jacents, il est donc nécessaire d’étudier le procédé à des échelles spatiales et temporelles inférieures aux échelles industrielles. Il ne s’agit pas là forcément de maquettes ou de simulations limitées, mais plutôt d’essayer de représenter les phénomènes physiques à l’origine du comportement global du procédé. Ceci nécessite des mesures et des modélisations à l’échelle de ces phénomènes, très inférieures à celle du procédé lui-même. Les travaux menés dans cette optique font l’objet du chapitre suivant.
Chapitre 2

Approche locale

Les seuls modèles réellement extrapolables sont ceux qui prennent en compte tous les phénomènes physiques intervenant aux différentes échelles. Il est certain que cela pose de lourds problèmes à la fois de représentation mathématique de ces phénomènes, mais aussi de résolution numérique. Ces méthodes sont donc très difficilement applicables directement pour les cas industriels, qui sont le cœur de nos activités, à la notable exception des procédés microstructurés. Cependant, ainsi que précisé dans le chapitre 1, elles peuvent être utilisées pour déduire des lois globales. Par ailleurs, dans une optique plus académique, des études expérimentales ou numériques à des petites échelles de temps et d’espace améliorent notre compréhension des phénomènes, et sont donc essentielles à long terme.

2.1 Mesures locales de l’hydrodynamique en milieu poreux

Le principal problème des mesures au sein d’un milieu poreux est leur caractère intrusif, qui peut localement perturber l’écoulement et induire un biais difficilement quantifiable. C’est d’ailleurs l’un des défauts les plus importants de la tomographie à fils. Or, comme on l’a vu précédemment, la connaissance des phénomènes aux échelles les plus fines pourrait permettre le développement de modèles prédictifs. Le développement de techniques non intrusives permettant d’accéder à des grandeurs locales est donc nécessaire, et fait l’objet de toute cette section.

2.1.1 Méthode de mesure polarographique

Présentation de la technique

Le transfert de matière local au voisinage d’une électrode rectangulaire insérée dans une paroi inerte (voir figure 2.1) peut être décrit par l’équation (2.1) :

\[\frac{\partial c}{\partial t} + u_x \frac{\partial c}{\partial x} = D \frac{\partial^2 c}{\partial y^2} \] (2.1)

La méthode nécessite un système électrochimique rapide : ici, on utilise le classique couple Fe(CN)$_6^{3-}$/Fe(CN)$_6^{4-}$. Pour un potentiel correspondant au palier de diffusion (voir figure 2.2), on a alors $c(y = 0) = 0$. On peut également exprimer la densité de courant par :
Chapitre 2. Approche locale

Figure 2.1 – Profil de vitesse sur une microélectrode

Figure 2.2 – Courbes intensité-potentiel du couple $\text{Fe(CN)}_6^{4-}/\text{Fe(CN)}_6^{3-}$ pour différents débits de liquide – Électrolyte support : K_2SO_4
2.1. Mesures locales de l’hydrodynamique en milieu poreux

\[i_L = F k_d c_0 = F D \frac{\partial c}{\partial y} \quad (2.2) \]

En se plaçant dans des conditions telles que la couche limite matérielle soit largement incluse dans la couche limite hydrodynamique, on peut écrire \(u = S y \) où \(S \) est le gradient de vitesse. En ajoutant la condition aux limites loin de la paroi \(\lim_{y \to \infty} c(y) = c_0 \), l’équation (2.1) admet une solution analytique (Latifi, 1988, p.154). Cette solution, valable dans le cas d’une électrode rectangulaire, peut être utilisée pour une électrode circulaire en considérant une largeur équivalente \(l_e = 0.82 d_e \) (Reiss et Hanratty, 1963). On a alors :

\[k_d = 0,862 \left(\frac{D^2 S}{d_e} \right) \quad (2.3) \]

En utilisant (2.2), on aboutit à la relation :

\[S = \frac{d_e}{0.640 D^2 F^3 (A_e C_L)^3} I^3 \quad (2.4) \]

qui nous permet donc, à partir de la mesure de l’intensité et de la connaissance des caractéristiques géométriques de l’électrode, de calculer le gradient pariétal de vitesse.

En réalité, la relation (2.4) doit être corrigée pour tenir compte des variations du signal, ce qui amène, après une décomposition de \(S \) et \(I \) en leurs composantes stationnaires (\(\overline{S} \) et \(\overline{I} \)) et fluctuantes (\(\tilde{S} \) et \(\tilde{I} \)) :

\[\overline{S} = \alpha \overline{I}^3 \left(1 + 3 \frac{\overline{I}^2}{\overline{I}^2} + \frac{\overline{I}^3}{\overline{I}^3} \right) \quad (2.5) \]

où \(\alpha = \frac{d_e}{0.640 D^2 F^3 (A_e C_L)^3} \).

Une sonde est constituée d’une microélectrode insérée dans une bille de mêmes dimensions que le garnissage. Le schéma de principe en est donné sur la figure 2.3, le détail de l’électrode elle-même est présenté sur la figure 2.4. Chaque sonde est ensuite assemblée en un tétraèdre, représentant un pore idéal du milieu (figures 2.5 et 2.6). Cet assemblage est ensuite positionné dans la colonne, qui est ensuite garnie de billes de verres (figure 2.7).

Nous avons ainsi pu mesurer des gradients de vitesse à la surface du garnissage dans une géométrie correspondant à des conditions d’usage (bien que l’effet de paroi soit important), et ce, de façon non intrusive. Cependant, le positionnement dans la colonne et l’orientation des sondes vis-à-vis de l’écoulement ne peuvent être modifiés, et sont relativement mal maîtrisés.

Figure 2.3 – Schéma de principe d’une sonde électrochimique
Chapitre 2. Approche locale

Figure 2.4 – Photographie microscopique d’une sonde électrochimique – diamètre approximatif : 500 µm

Figure 2.5 – Assemblage des sondes

Figure 2.6 – Sondes électrochimiques disposées en tétraèdre

Figure 2.7 – Positionnement des sondes dans la colonne
2.1. Mesures locales de l’hydrodynamique en milieu poreux

Cas des sondes tri-segmentées

La méthode polarographique a également été utilisée durant la thèse de Thibault Dumas (Dumas, 2006), avec une modification importante du système de mesure, qui permettait de mesurer à la fois le gradient de vitesse comme présenté ci-dessus, mais aussi la direction de l’écoulement (Sobolik et al., 1990). Comme pour le dispositif précédent, la microsonde a été implantée à la surface d’un élément (sphérique) de garnissage. Il est ensuite possible de déterminer les directions de l’écoulement par rapport à la sphère porteu-sa. La figure 2.8 présente le champ de vitesse au dessus de l’électrode de mesure. Il s’agit d’une électrode tri-segmentée, chaque segment constituant en réalité une électrode indépendante. La somme des courants mesurés sur les trois électrodes permet d’accéder à la valeur des gradients de vitesse, comme dans le cas de l’électrode classique, tandis que la distribution des trois courants permet la détermination de l’angle θ, c’est à dire la direction locale de l’écoulement.

![Figure 2.8 – Champ de vitesses sur une électrode tri-segmentée idéale](image)

En supposant la sonde idéale (épaisseur entre les segments négligeable, division parfaite en trois segments identiques, surfaces d’activité identiques) et en négligeant la diffusion radiale sur le bord de l’électrode, on peut calculer sa réponse à un écoulement connu. Sous l’hypothèse supplémentaire d’un écoulement bidimensionnel ($u_z = 0$), Sobolik et al. (1990) ont montré que l’on pouvait écrire le courant partiel i_j, rapport du courant limite I_j sur le segment j au courant total $I_{tot} = \sum_{j=1}^{3} I_j$, à l’aide d’un développement de Fourier en θ tronqué à l’ordre 4, qui constitue la caractéristique directionnelle de la sonde :

$$i_j(\theta) = \frac{I_j}{I_{tot}} = f_{s0} + \sum_{m=1}^{4} [f_{jm} \cos(m\theta) + g_{jm} \sin(m\theta)] \quad \forall j \in \{1..3\} \quad (2.6)$$

La mesure d’un triplet d’intensité permet ainsi de déterminer l’angle θ. Les coefficients de Fourier peuvent être calculés de manière théorique. Cependant, les défauts de réalisation (figure 2.9) interdisent l’utilisation directe de ces coefficients ; on réalisera donc un étalonnage préliminaire, afin de déterminer la caractéristique directionnelle de chaque sonde. Ceci sera détaillé plus loin, de même que la détermination de θ.

![Figure 2.9 – Détail d’une sonde réelle](image)
Une électrode tri-segmentée est insérée dans une bille identique à celles constituant le garnissage, qui est elle-même montée sur une tige métallique permettant sa rotation. L’ensemble constitue une sonde (figure 2.10).

Figure 2.10 – Électrode insérée dans sa sonde porteuse

Concernant le montage où les sondes ont été implantées, il a été réalisé spécifiquement afin de disposer de conditions contrôlées (en particulier concernant le positionnement des billes de garnissage) permettant la simulation du problème, et n’est donc pas représentatif d’un milieu poreux « industriel ». On peut le voir sur la figure 2.11.

Figure 2.11 – Montage pour l’implantation des sondes tri-segmentées

Une fois en place, la sonde ne peut que pivoter sur son axe. On appelerà η l’angle entre l’électrode et la direction principale de l’écoulement, défini comme sur la figure 2.12.

Figure 2.12 – Définition de l’angle η
Étalonnage des sondes

Dans le cas des sondes classiques, on a déterminé la surface effective de chaque électrode en mesurant la réponse à un échelon de polarisation dans un milieu liquide stagnant. Cette réponse est théoriquement donnée par l’équation de Cottrell (Bard et Faulkner, 1980, pp. 142–144) :

\[i(t) = \nu c_0 F A_e \left(\frac{D}{\pi t} \right)^{1/2} \]

Cette méthode permet d’étalonner les sondes in situ, et donc de vérifier leur surface régulièrement sans avoir à démonter le dispositif (qui est fragile).

Pour l’étalonnage des sondes tri-segmentées, il faut à la fois déterminer les surfaces des électrodes, mais aussi la caractéristique directionnelle de la sonde, c’est-à-dire la relation entre les intensités relatives mesurées et l’angle de l’écoulement sur la sonde \(\theta \). Dans le cas d’une sonde idéale, cette caractéristique directionnelle peut être calculée de façon théorique, comme expliqué plus haut. L’écart à l’idéalité provient de la fabrication : les secteurs ne sont pas exactement de la même surface, l’espace inter secteurs peut être non négligeable, la forme même de l’électrode n’est pas exactement circulaire, et il peut exister des zones non réactives sur la surface.

On a donc placé la sonde dans un écoulement connu, et fait varier l’angle \(\theta \), en jouant sur les angles \(\eta \) et \(\zeta \) indiqués sur la figure 2.13, comme proposé par Sobolik et al. (2007). On a pour cela utilisé un chariot porteur, la sonde étant fixée sur le chariot dans une position définie par les deux angles (figure 2.14).

Ceci donne pour chaque sonde une courbe caractéristique, telle que celle présentée sur la figure 2.15 pour la sonde 1. Cette courbe présente six secteurs correspondant à un ordre unique des courants réduits. Au sein de chaque secteur, la connaissance du courant médian (le second en terme d’intensité) permet donc de déterminer \(\theta \). Une linéarisation des courants médians en
La fonction de θ est effectuée afin de simplifier la détermination de l’angle, comme présenté sur la figure 2.15.

La séquence d’étalonnage de chaque sonde tri-segmentée est donc la suivante (Sobolik et al., 2007) :

- mesure des intensités sur chaque segment de la sonde et calcul des valeurs réduites ;
- tri de ces valeurs réduites pour déterminer le secteur correspondant (par exemple, $i_1 > i_3 > i_2$ correspond au secteur 1) ;
- identification du courant réduit médian (i_3 pour le secteur 1) ;
- calcul de θ en utilisant sa relation linéaire avec i pour le secteur considéré.

Cette méthode a également été présentée dans la publication P 10 (Dumas et al., 2009).
2.1. Mesures locales de l’hydrodynamique en milieu poreux

2.1.2 Gradient de vitesse pariétal sur le garnissage et direction locale de l’écoulement

Les valeurs du gradient de vitesse pariétal n’ont qu’un intérêt limité en elles-mêmes. On verra plus loin que l’analyse de leurs fluctuations peut par contre permettre de déterminer certaines caractéristiques de l’écoulement. La mesure conjointe de la valeur absolue de S et de la direction de l’écoulement fournit par contre des indications sur le comportement du fluide dans le pore.

Des exemples de mesures sont fournis sur la figure 2.17, pour des nombres de Reynolds relativement bas (100) et élevés (650). L’axe des abscisses des graphes correspond à la direction globale de l’écoulement, et le tracé est fait en fonction de la position angulaire de la sonde par rapport à l’écoulement, avec $\eta^* = \frac{180^\circ - \eta[180^\circ]}{90^\circ}$ (voir figure 2.16). La norme de chaque vecteur correspond à la norme du gradient de vitesse mesuré normé par le gradient maximal mesuré.

![Figure 2.16 – Définition de l’angle réduit η^*](image)

![Figure 2.17 – Direction et gradient de vitesse normé de l’écoulement](image)

Comme on s’y attend, les zones de fort gradient correspondent aux restrictions entre deux pores ; plus intéressant, on observe des recirculations de fluide au niveau du pore pour $Re_p = 100$, qui se traduisent par une inversion locale du sens de l’écoulement. À fort Re_p, ces recirculations semblent s’atténuer voire disparaître ; on observe par contre des changements bruts de direction.

2.1.3 Analyse des séries temporelles des signaux

En partant des gradients de vitesse mesurés en paroi ou au cœur du lit, l’analyse des taux de fluctuation permet de distinguer trois régimes d’écoulement en fonction du nombre de Reynolds.
de particule \(Re_p \), déjà observés par différents auteurs (Dybb et Edwards, 1984; Latifi, 1988; Rode, 1992; Seguin, 1997):

- un régime laminaire stationnaire pour \(Re_p < 110 \);
- un régime intermédiaire, avec une forte augmentation du taux de fluctuation du signal;
- un régime pseudo-turbulent, pour \(Re_p > 280 \) environ.

Pour les régimes intermédiaires et pseudo-turbulents, on constate l’apparition de structures cohérentes dans l’écoulement, dont la taille peut être approchée par une analyse d’autocorrélation des signaux. En effet, on peut relier le temps de cohérence \(\tau_c \) (temps de première annulation de la fonction d’autocorrélation) du signal au temps de passage des structures porteuses d’énergie. On a déduit des résultats obtenus avec les microélectrodes non segmentées que les dimensions moyennes de ces structures étaient de l’ordre de 0,5 mm, pour une taille de pore d’environ 2,2 mm. Ces valeurs, déterminées pour un écoulement en colonne cylindrique, n’ont pas été vérifiées ni simulées. Il serait d’ailleurs intéressant maintenant de reprendre ces données et d’en effectuer la simulation numérique locale ainsi que présenté en 2.2, afin de comparer les résultats. Cependant, la caractérisation de la taille des tourbillons éventuellement obtenus par le calcul n’est pas immédiate, et nécessitera sans doute un traitement numérique important. Par ailleurs, la simulation devra évidemment être menée en transitoire, ce qui posera un problème de puissance de calcul.

Une autre analyse des signaux issus des sondes a été mise en œuvre au cours de ma thèse ; il s’agit de la méthode VITA — pour Variable Interval Time Averaging (Blackwelder et Kaplan, 1976). Elle permet de détecter des « événements » d’importance suffisante ayant lieu de façon transitoire dans l’écoulement. Pour cela, on calcule la variance locale du signal sur un intervalle de temps de largeur \(\Delta t \) :

\[
\sigma_x^2(t, \Delta t) = \hat{x}^2(t, \Delta t) - \hat{x}^2(t, \Delta t)
\]

où la moyenne locale de \(x \) notée \(\hat{x} \) est définie par :

\[
\hat{x}(t, \Delta t) = \frac{1}{\Delta t} \int_{t-\Delta t/2}^{t+\Delta t/2} x(\tau) d\tau
\]

Un évènement est détecté lorsque cette variance locale \(\sigma_x^2(t, \Delta t) \) dépasse un certain seuil, proportionnel à la variance totale du signal \(\sigma^2 = \lim_{\Delta t \to \infty} \sigma_x^2(t, \Delta t) \) (figure 2.18) ; on définit ainsi la fonction de détection \(D(t) \) telle que :

\[
\begin{array}{cc}
D(t) = 1 & \text{si } \sigma_x^2 > k\sigma^2 \\
D(t) = 0 & \text{sinon}
\end{array}
\]

La méthode requiert donc un choix de la valeur de seuillage \(k \) et de la largeur d’intervalle \(\Delta t \).

La distribution de ces évènements peut ensuite être utilisée dans un modèle. Dans notre cas, nous avons supposé que chaque évènement correspondait à l’arrivée d’un élément de fluide sur l’électrode. Le temps entre deux détections correspond alors au temps de renouvellement du modèle de renouvellement de surface de Danckwerts (1951), et un temps moyen \(t_0 \) peut être calculé (présenté figure 2.19 pour différents débits et pour une valeur de seuil donnée). On peut donc facilement calculer le gradient de vitesse (sous les hypothèses du modèle de Danckwerts) par :

\[
\tilde{S} = \frac{u_b}{\sqrt{\mu L t_0/\rho L}}
\]
2.1. Mesures locales de l’hydrodynamique en milieu poreux

Le choix du paramètre de seuillage k a été fait en recherchant une distribution exponentielle des temps de contact, ce qui permet de fournir un intervalle de variation ($k \in [0,7; 1,3]$). Le choix définitif de la valeur est effectué en comparant les valeurs de S mesurées directement et celles prédites par le modèle pour une sonde donnée (figure 2.20(a)). On a pu vérifier, en utilisant une autre sonde, que cette valeur de k permettait le calcul de S pour des valeurs du gradient suffisamment élevées (figure 2.20(b)).

Ainsi, on peut calculer la valeur moyenne du gradient de vitesse local à partir de ses fluctuations temporelles. L’utilisation de la méthode VITA a fait l’objet de la publication P3 (Lesage et al., 2002).

2.1.4 Mesures directes du champ de vitesses

Lors du travail de thèse de Thibault Dumas, des essais de mesure de vitesse par vélocimétrie laser-Doppler (LDA) ont été menés, dans l’optique de disposer de mesures hydrodynamiques au sein du pore, qui auraient été complémentaires des mesures au voisinage du garnissage obtenues.
par la méthode électrochimique. Le système requiert une parfaite adaptation de l'indice de réfraction du milieu à celui des billes de garnissage, difficile à réaliser en pratique. Des exemples de telles mesures existent dans la littérature pour la LDA (Giese et al., 1998) ou la vélométrie par imagerie de particules – ou PIV (Peurrung et al., 1995; Rashidi et al., 1996).

Les résultats, s’ils n’étaient que préliminaires, sont décevants, puisque des mesures cohérentes n’ont pu être obtenues que sur la zone entre la paroi et le premier élément de garnissage, ainsi que sur quelques points entre le premier et le second élément. Cependant, il semble que, sous réserve d’une plus grande rigueur expérimentale (verres de grande qualité optique, contrôle plus efficace de la température), il soit possible d’utiliser cette technique.

2.1.5 Conclusion

On a montré dans cette section le développement de techniques de mesures locales de l’écoulement en lit fixe ainsi que quelques éléments de traitement des données, en particulier le lien possible entre comportement transitoire et valeurs locales moyennes. Les mesures ainsi réalisées vont permettre de valider des simulations aux mêmes échelles, comme présenté dans la section suivante.

2.2 Simulation numérique de l’écoulement local en lit fixe

2.2.1 Introduction

L'idée est ici de résoudre de façon exacte, et sans faire appel à des lois de fermeture empiriques, l'écoulement dans un milieu poreux. Il faut donc décrire géométriquement le milieu de façon complète, et résoudre les équations de Navier-Stokes dans cette géométrie complexe. L'intérêt évident est que des équations de fermeture ne sont plus nécessaires, supprimant le côté empirique. Deux principaux inconvénients existent cependant : la lourdeur des calculs, puisque le détail géométrique sous-entend un effort au niveau des maillages, et la nécessité de connaître parfaitement la topologie du milieu, ce qui est impossible dans le cas d’un lit industriel, d’autant plus que les éléments de garnissages ont alors des formes plus complexes. Si l’on peut envisager de s’affranchir partiellement du second problème en considérant des empilements de référence, la taille des maillages reste élevée, conduisant à des temps de calcul importants même pour des systèmes de faible taille. Les résultats présentés sont issus de la thèse de Thibault Dumas, et correspondent aux expériences effectuées lors de ce travail.

2.2.2 Bibliographie

Les premiers travaux sur la modélisation locale des écoulements en milieu poreux sont relativement récents (Logtenberg et Dixon, 1998; Logtenberg et al., 1999; Magnico, 2003) ; en effet, la représentation fine de milieux granulaires, même simples, nécessite des maillages de grande taille, et donc une puissance de calcul qui n’a été accessible pour de telles application que dans la seconde moitié des années 90.

La validation expérimentale des calculs est délicate ; par exemple, dans le cas des études menées par Logtenberg et Dixon (1998), elle a consisté à comparer un coefficient de transfert de chaleur à la paroi déterminé par les simulations locales de l’écoulement et de la thermique avec une valeur expérimentale ou obtenue par des relations empiriques. Outre le fait qu’il s’agit d’une validation très indirecte du calcul du champ de vitesses, le caractère global du critère ne garantit pas la qualité des résultats à l’échelle locale.
2.2. Simulation numérique de l’écoulement local en lit fixe

Magnico (2003) a effectué la simulation d’un lit cylindrique contenant une centaine de sphères, avec un rapport \(\frac{D}{d_p} \) de 5,96 et 7,8 (donc un très fort effet de paroi). Il a effectué des calculs sur des maillages structurés comprenant de \(9 \times 10^6 \) à \(17 \times 10^6 \) mailles, en utilisant des schémas numériques classiques (excepté l’interpolation des termes convectifs, réalisée par un schéma relaxé entre schéma amont et schéma centré). Il a pu comparer les résultats obtenus à deux corrélations usuelles de pertes de charges (Ergun (1952) et Liu et al. (1994)) : il a ainsi pu calculer, à partir des simulations, les coefficients \(A \) et \(B \) de la loi d’Ergun :

\[
\frac{\Delta P}{L} = A \left(1 - \epsilon \right)^2 \mu u_L + B \frac{1-\epsilon}{\epsilon d_p} \rho u_L^2.
\]

Ces coefficients diffèrent selon la structure (aléatoire ou ordonnée) du milieu, en particulier le coefficient correspondant aux pertes inertielles, \(B \), qui est particulièrement sensible à la nature de l’empilement (cubique centré, cubique faces centrées ou cubique simple). Ceci montre que l’on peut extraire de l’information macroscopique intéressante à grande échelle de simulation locales qui ne nécessitent pas d’ajustement de paramètres. Ceci étant, les valeurs trouvées par Magnico ne sont pas vérifiées expérimentalement (la comparaison des valeurs de \(B \), par exemple, montre un écart important), et la validation, si elle est plus directe que dans le cas de Logtenberg et Dixon (1998), reste globale.

Récemment, des études similaires concernant des écoulements gaz-liquide ont été menées par Augier et al. (2010). Elles se limitent pour l’instant à des configurations géométriques plus simples (empilement de trois sphères, plaques...), mais devraient permettre à terme d’améliorer la compréhension et la quantification des phénomènes dans le cas d’écoulements ruisselants, en particulier en ce qui concerne le mouillage du garnissage.

2.2.3 Définition des modèles

Dans tout ce qui suit, les équations résolues sont celles de Navier-Stokes :

\[
\nabla \cdot \mathbf{u} = 0 \quad (2.12)
\]

\[
\rho \frac{D\mathbf{u}}{Dt} = \mu \nabla^2 \mathbf{u} - \nabla P \quad (2.13)
\]

Ces équations sont discrétisées en volumes finis (Patankar, 1980) ; une attention particulière doit être portée au modèle géométrique et à son maillage.

En effet, chaque modèle doit reproduire le plus exactement possible la structure du milieu poreux. On a donc positionné les sphères consituant les éléments de garnissage de la même façon que dans le montage expérimental. Cependant, la difficulté de mailler correctement des géométries où il existe de nombreux points de tangence nous a conduit à réduire faiblement (de 1%) le diamètre des particules, tout en maintenant leurs centres à la même position. Déjà utilisée par Nijemeisland et Dixon (2001), cette modification n’a pas d’incidence sur la résolution. On peut constater sur la figure 2.21 la différence entre les maillages obtenus sans cette réduction (figure 2.21(a)) et avec (figure 2.21(b)) : les facteurs de forme des mailles sont nettement meilleurs dans le second cas.

Cette modification mise à part, on peut donc construire un maillage correspondant au montage expérimental complet, sur un rang de sphères en premier lieu. Ceci permet de considérer une géométrie identique à celle du système de mesure et de ne faire aucune hypothèse sur la nature de l’écoulement.

On verra plus loin que la qualité des résultats obtenus en utilisant ce maillage n’est pas satisfaissante. Nous avons donc considéré que, en raison de la périodicité géométrique, et compte tenu de la position des sondes, situées très en aval de l’alimentation, l’écoulement pouvait être
Chapitre 2. Approche locale

(a) Sans réduction

(b) Avec réduction

Figure 2.21 – Comparaison des maillages sans et avec réduction du diamètre des sphères

modélisé à l’aide de conditions périodiques. Ceci a conduit à utiliser une géométrie plus réduite, permettant donc une plus grande densité de mailles. Les deux maillages sont présentés sur la figure 2.22.

On voit ici une difficulté de ce type de modèles : ils requièrent des maillages de très petites tailles, et des pas de temps également faibles si l’on souhaite modéliser des phénomènes transitoires. Ceci nécessite donc, même pour des géométries relativement réduites, des puissances de calcul et des capacités mémoire importantes. Il sera donc là encore hors de question d’utiliser ce type de modèles directement à des échelles industrielles.

2.2.4 Quelques résultats

Les simulations ont été effectuées en utilisant le logiciel Fluent, dans sa version 6.2.

Les résultats obtenus sont difficiles à visualiser et donc à interpréter. On a sur la figure 2.23 une représentation des lignes de courant, où l’on peut identifier différentes zones :
- En amont de la restriction principale suivant X, les vitesses maximales sont obtenues au centre du pore (zone (b) sur la figure), le reste correspond à un fluide stagnant (zone (a)).
- En aval, le fluide décolle et une recirculation se développe. L’écoulement ne reprend dans la direction principale qu’au voisinage de la restriction suivante (zone pointillée notée 2 sur la figure).

Des calculs ont également été faits pour des nombres de Reynolds de particule plus élevés (240 et 650) ; on a alors adjoint aux équations de Navier-Stokes un modèle de turbulence $k – \omega – SST$ (Shear Stress Transport) pour tenter de rendre compte de la nature pseudo-turbulente de l’écoulement. Ce modèle permet de travailler à de bas nombres de Reynolds, en présence de parois. Les calculs du gradient de vitesse diffèrent très peu de ceux effectués pour un même Re_p mais en considérant l’écoulement comme laminaire.

Pour les valeurs les plus élevées de Re_p ($Re_p = 650$) le modèle $k–\epsilon–RNG$ (Re-Normalisation Group) a été utilisé. Ce modèle est mieux adapté que le modèle $k–\epsilon$ classique aux écoulements turbulents présentant des changements de direction, ce qui est le cas ici. Le traitement des parois passe par une modélisation de la couche limite (et non l’utilisation d’une loi logarithmique), nécessitant une densité de maille importante en proche paroi. Les maillages utilisés pour les
2.2. Simulation numérique de l’écoulement local en lit fixe

Figure 2.22 – Deux types de maillages utilisés

Figure 2.23 – Lignes de courant au sein du pore, en coupe horizontale – $Re_p = 100$
bas nombres de Reynolds sont utilisables tels quels (on a vérifié que les valeurs de \(y^+ \) soient de l’ordre de l’unité).

La question se pose quant à la possibilité de moyennir les fluctuations de l’écoulement (qui sont, comme on l’a vu en 2.1.3, très importantes à ces valeurs de \(Re_p \)) et de les représenter par des modèles classiques. Notre approche était ici préliminaire, et devrait à mon avis être poursuivie par une simulation transitoire, sans modèle de turbulence, permettant peut-être de simuler le passage des structures de grande taille, et de détecter la transition de régime.

Afin de valider au mieux les simulations, on a utilisé les résultats des mesures présentées en 2.1.2.

2.2.5 Validation expérimentale

Les gradients de vitesse calculés par les différents modèles ont été comparés aux valeurs expérimentales, comme présenté sur la figure 2.24, pour un nombre de Reynolds de particule égal à 100. L’accord n’est bon que dans le cas du modèle local, l’influence du raffinage du maillage au voisinage des parois restant minime dans le cas du modèle global. On voit ici la difficulté de modélisation à ces échelles, comme évoqué plus haut.

![Figure 2.24 – Comparaison des gradients de vitesses pariétaux modélisés aux valeurs expérimentales – \(Re_p = 100 \)](image)

En ce qui concerne la direction de l’écoulement, les résultats sont satisfaisants (figure 2.25). Les écarts observés au voisinage de \(\eta = 90^\circ \) sont explicables par le fait que, à cette position, les conditions d’application de la méthode (présence d’une couche limite développée) ne sont pas forcément vérifiées, de même que dans les positions où le gradient est très faible.

Pour les régimes d’écoulement à plus fort nombre de Reynolds, la concordance entre les valeurs mesurées et simulées est nettement moins bonne, même si les grandes tendances sont présentes. L’écart est particulièrement important en amont des restrictions, soit pour les zones de décelération rapide du fluide. Des essais de comparaison avec un modèle laminaire ou \(k – \epsilon \)...
classique montrent que le modèle \(k – \epsilon – RNG \) améliore tout de même la prédiction du gradient de vitesse et de la direction de l’écoulement.

Les résultats présentés ici ont fait l’objet de la publication P12 (Dumas et al., 2010).

2.2.6 Conclusion

On a donc pu calculer avec succès l’écoulement local dans un milieu poreux parfaitement contrôlé, pour des vitesses d’écoulement relativement faibles. Des vitesses plus élevées requièrent sans doute une simulation transitoire qui, sans être hors de portée, demandera plus d’efforts et n’a pas été effectuée. Si des simulations de transfert de matière ou de chaleur n’ont pas été effectuées (pour des raisons de temps et de contrainte techniques), elles constituent une perspective à court terme importante, permettant ainsi de déterminer des coefficients de transfert globaux.

Cette approche est utilisable uniquement dans le cas de milieux poreux de structure connue. Il sera donc nécessaire de trouver des méthodes de changement d’échelle permettant de moyenner les résultats obtenus afin d’en extraire des lois comportementales macroscopiques.

2.3 Conclusion

Nous avons réussi à établir et valider partiellement par des mesures électrochimiques locales un modèle numérique de l’écoulement en régime laminaire stationnaire qui ne fasse appel à aucun coefficient ajustable. Nous disposons également de mesures qui nous permettraient de valider d’éventuelles simulations instationnaires à plus fort débit.

L’objectif, dans notre cas, n’est pas de disposer d’un outil de simulation à l’échelle locale, mais bien d’améliorer le dimensionnement du procédé. L’utilisation des résultats obtenus localement dans des lois de fermeture globales telles que celles utilisées dans la section 1.4 est donc un point essentiel. Malheureusement, le calcul direct sur des géométries industrielles reste impossible, à
la fois du fait de la taille du problème résultant et de la méconnaissance de la structure fine du milieu.

La connaissance issue de l’expérimentation et de la simulation locales devra donc, dans le cas général, être extrapolée aux échelles supérieures par le biais de méthodes de prise de moyenne adaptées, et incluse dans des lois de fermeture utilisables dans des simulations à plus grande échelle. Ceci constitue la plus importante perspective de ces travaux.
Optimisation : de l’identification des modèles à l’amélioration des procédés
Chapitre 3
Identification paramétrique des modèles

3.1 Introduction

L'identification de paramètres est couramment pratiquée dans tous les domaines de l'ingénierie, et en particulier en génie des procédés, où les modèles, comme on l’a vu au chapitre 1, sont fortement dépendants de paramètres a priori inconnus. Si des modélisations au niveau local, telles celles présentées au chapitre 2 peuvent en théorie fournir ces paramètres, les difficultés pratiques déjà évoquées imposent une approche plus pragmatique.

En supposant le modèle identifiable, il faut s’interroger sur la possibilité d’obtenir les valeurs de ses paramètres à partir des données disponibles : sont-elles suffisantes en nature, en quantité et en qualité ? Si la réponse est non, ce qui est en général le cas, peut-on déterminer les valeurs d’un sous ensemble de ces paramètres, et lequel ? Répondre à ces questions est l’objectif principal de ce chapitre.

Nous verrons également une perspective intéressante dans le domaine de l'extraction de données, qui élargit notablement la problématique principale.

L’estimabilité paramétrique est une notion que nous n’avons réellement abordée que dans les derniers travaux encadrés (Quiniou, 2009), et qui devra être systématiquement utilisée et développée lors d’études ultérieures.

3.2 Notion d’estimabilité

3.2.1 Généralités

On considère un modèle dynamique de la forme :

\[\dot{x} = f(x, p, t) \] \hspace{1cm} (3.1)

avec les conditions initiales :

\[x(0,p) = x_0(p) \] \hspace{1cm} (3.2)

où p est un vecteur de paramètres inconnus. Les grandeurs observées y sont données par :

\[y(t,p) = h(x(t,p), p) \] \hspace{1cm} (3.3)
On notera $N^p = \text{dim}(p)$ le nombre de paramètres, N^{mes} le nombre de mesures expérimentales de l’ensemble des paramètres, et N^{var} le nombre de variables. Les valeurs mesurées $y_{r, n}^{exp}$ (avec r l’indice de la variable, la mesure étant faite au temps t_n) peuvent être comparées aux valeurs prédites par le modèle :

$$y_{r, n}^{exp} = y_r(t_n, \theta_{tot}) + \epsilon_{r, n} \text{ avec } r \in [1, N^{var}], \ n \in [1, N^{mes}]$$ \hspace{1cm} (3.4)

L’identification paramétrique consiste par exemple à calculer le vecteur de paramètres p^* solution de :

$$\min_p F(p) = \sum_r \sum_i \left(y_r(t_i, p) - y_{r, i}^{exp} \right)^2$$ \hspace{1cm} (3.5)

De nombreuses méthodes permettent alors de résoudre (3.5), qui est un problème d’optimisation. Certains choix seront discutés plus loin.

3.2.2 Calcul de l’estimabilité

On cherche, pour un modèle et un jeu de valeurs expérimentales donnés à connaître les paramètres estimables p^E parmi l’ensemble des paramètres p du modèle. Nous avons employé une méthode proposée par Yao et al. (2003), basée sur l’analyse directe de la matrice de sensibilité normée.

La sensibilité de la variable y_r du modèle à un paramètre p_j s’écrit $\frac{\partial y_r(t_n, p)}{\partial p_j}$ (pour un temps t_n).

La matrice de sensibilité normée M^S regroupe les influences de chaque paramètre sur chaque variable, pour tous les temps d’échantillonnage, et s’écrit :

$$M^S = \begin{bmatrix}
\frac{\hat{p}_1}{y_1^{exp}|_{t_1}} \frac{\partial y_1}{\partial p_1}|_{t=t_1} & \cdots & \frac{\hat{p}_N^{par}}{y_1^{exp}|_{t_1}} \frac{\partial y_1}{\partial p_N^{par}}|_{t=t_1} \\
\vdots & \ddots & \vdots \\
\frac{\hat{p}_1}{y_N^{var}|_{t_N^{mes}}} \frac{\partial y_N^{var}}{\partial p_1}|_{t=t_N^{mes}} & \cdots & \frac{\hat{p}_N^{par}}{y_N^{var}|_{t_N^{mes}}} \frac{\partial y_N^{var}}{\partial p_N^{par}}|_{t=t_N^{mes}}
\end{bmatrix}$$ \hspace{1cm} (3.6)

où \hat{p}_j est la valeur du paramètre p_j supposée ou issue d’une précédente estimation.

Le calcul des dérivées peut être effectué numériquement (p. ex. par différences centrées), ce qui nécessite la réalisation de deux calculs supplémentaires par dérivée. Toutes ces valeurs sont obtenues pour le jeu de paramètres \hat{p}.

Le calcul de la norme de chaque colonne, correspondant chacune à un paramètre p_j, permet de quantifier la sensibilité du modèle à ce paramètre. Il faut également vérifier que les différents paramètres sont linéairement indépendants ; ceci se traduit par l’égalité entre le rang de M^S et le nombre de paramètres N^p. Cependant, dans le cas de paramètres linéairement dépendants (donc si le rang de la matrice est inférieur au nombre de colonnes), on ne sait pas quel sous-ensemble de paramètres peut être estimé. Par ailleurs, l’erreur induite par l’approximation des dérivées rend difficile la détermination d’une dépendance linéaire exacte.

La figure 3.1 présente la séquence de détermination des paramètres estimables d’un modèle.
3.2. Notion d’estimabilité

Cette méthode permet de classer les paramètres selon leur estimabilité, mais le choix du critère de sélection $N_{\text{arrêt}}$ revient à l’utilisateur. Un des inconvénients est qu’elle peut occulter l’influence d’un paramètre sur une plage temporelle réduite.

Après son application et la décision sur la valeur de seuil, on dispose donc de deux vecteurs de paramètres, les estimables p_E et les non estimables p_{NE} (avec $p = [p_E; p_{\text{NE}}]$). Ces derniers doivent être fixés (à des valeurs qui peuvent être issues de la littérature, d’expériences précédentes ou d’une estimation raisonnable basée sur la connaissance du procédé) avant d’identifier les paramètres du modèle par la résolution de (3.5), qui devient donc :

$$\min_{p_E} F(p^E; p_{\text{NE}}) = \sum_r \sum_i \left(y_{r,i}(t_i, p^E; p_{\text{NE}}) - y^\text{exp}_{r,i}\right)^2$$ \hspace{1cm} (3.7)

Notons qu’il existe d’autres méthodes, basées sur l’analyse des valeurs propres et vecteurs propres de la Matrice d’Information de Fisher, ou MIF (Vajda et al., 1989), qui auraient pu être utilisées pour notre cas particulier, mais ne sont pas adaptées à des problèmes présentant un grand nombre de paramètres (voir Yao et al. (2003)). Le même type d’analyse (de la MIF) appliquée à des systèmes d’équations aux dérivées partielles a été présenté par Schittkowski (2008); malheureusement, tout comme pour la méthode que nous avons utilisée, il semble qu’il n’existe pas de théorie mathématique justifiant cette approche. Mais les résultats obtenus montrent son efficacité, et il sera donc intéressant, à court terme, de comparer les deux méthodes, par exemple sur le cas des transferts en milieu fibreux.

Le calcul de la matrice de sensibilité permet également de proposer un plan d’expérience optimal (au sens de la D-optimalité) en terme de précision des paramètres, qui revient, à la condition de négliger les intercorrélations entre les réponses du modèle, à trouver des conditions expérimentales maximisant $||M^S T M^S||$ (Yao et al., 2003). Pour des modèles fortement non linéaires, il peut être nécessaire de réévaluer la construction de ce plan d’expérience au fur et à mesure de la détermination des paramètres.
3.3 Calcul des intervalles de confiance

Une fois les valeurs des paramètres estimables déterminées (par le biais d’une méthode d’optimisation adaptée minimisant la somme des carrés des écarts à l’expérience), on cherche à connaître le degré de confiance que l’on peut accorder à cette valeur. Il faut donc déterminer l’intervalle de variation du ou des paramètres, via des intervalles ou des régions de confiance.

Pour cela, on construit la matrice jacobienne J du système, constituée de N_{var} blocs correspondants à chaque variable de sortie mesurée :

$$J = \begin{bmatrix} J^1 \\ \vdots \\ J^i \\ \vdots \\ J^{N_{var}} \end{bmatrix} \quad (3.8)$$

Les matrices jacobienes J^i du modèle de y_i ont pour terme général $J_{n,m}^i = \frac{\partial y_i}{\partial p_m}|_{t_n}$, avec $1 \leq n \leq N_{mes}$ et $1 \leq m \leq N_{est}$, et correspondent donc à la matrice de sensibilité non normée pour la variable y_i. Leur détermination ne nécessite donc aucun effort numérique supplémentaire, les sensibilités ayant déjà été calculées pour obtenir M^S.

La matrice de covariance du problème non linéaire est approximée dans notre cas (Sharma et Arora, 1993) par :

$$C \approx \frac{F(p^*)}{N_{mes} - N_p} (J^T J)^{-1} \quad (3.9)$$

L’incertitude associé au paramètre p_m est alors donnée par :

$$|I_m| = \sqrt{\frac{C_{m,m} t^{1-\alpha/2}}{p_m^2}} \times 100\% \quad (3.10)$$

où t est la variable de Student à ν degrés de libertés (avec $\nu = N_{mes} - N_p$) et α vaut en général 0,05.

Cependant, la corrélation entre les paramètres n’est pas prise en considération ici. Il est possible d’améliorer le traitement par la détermination de régions de confiance, en considérant les termes non diagonaux de la matrice de covariance C. Ceci a été formalisé par exemple par Sharma et Arora (1993), qui ont proposé un algorithme de détermination de ces régions de confiances (des hypéllipsoïdes dans l’espace des paramètres).

3.4 Application aux transferts dans les fibres

Le modèle considéré a été présenté sommairement dans la section 1.5.2. On rappellera seulement qu’il comprend quatre équations aux dérivées partielles fortement couplées, et dans le cas le plus général, 9 paramètres inconnus représentant les transferts entre la fibre et le milieu, ainsi que les transferts aux limites, auxquels s’ajoutent éventuellement les 8 termes des tenseurs de diffusion présents dans les 4 équations de transport.

Une expérience de séchage d’un tissu, comme celle dont les résultats sont partiellement présentés en 1.5.3, peut être décrite par 6 paramètres (trois constants de transfert externe et trois internes, après réduction du modèle), ce qui oblige à effectuer les calculs 12 fois (pour 6
paramètres) afin de déterminer la matrice de sensibilités M^{S}. Les valeurs des paramètres utilisés pour ce calcul sont des valeurs arbitraires, et deux sorties sont mesurées (la température T et la teneur en eau M_{e}). L'échantillonnage temporel est réalisé sur 398 pas de temps, ce qui nous donne 796 résultats, et donc une matrice M^{S} de taille 796×6.

On choisis enfin un critère d’arrêt, valeur de la norme en dessous de laquelle le paramètre ne sera plus considéré comme estimable. Les calculs menés selon l’algorithme présenté figure 3.1 donnent des valeurs comprises entre environ 40 pour le paramètre le plus estimable et 10^{-23} pour le moins estimable. Avec le critère d’arrêt choisi, on obtient 3 paramètres estimables ; bien que le critère d’arrêt soit fixé \textit{a priori}, l’analyse des valeurs des normes montre un rapport d’environ 100 entre le dernier paramètre choisi et le premier rejeté, qui nous paraît être suffisamment significatif pour accepter le résultat. Un écart très faible entre les valeurs des normes de ces deux paramètres aurait pu conduire à une réévaluation du critère d’arrêt, bien que ceci ne soit pas prévu dans la séquence de calcul.

Une fois déterminés les paramètres estimables du modèle, il est nécessaire de mettre en œuvre une méthode d’optimisation qui permettra leur identification. Les trois autres paramètres sont fixés à des valeurs raisonnables, issues de la littérature, et ne sont donc plus considérées dans la résolution du problème d’optimisation.

On a, pour le présent travail, utilisé un algorithme génétique couplé à une méthode de gradient classique, qui calcule un jeu de ces 3 paramètres en minimisant la somme des carrés des écarts entre modèle et expérience. Un écart relatif a été utilisé pour la température, et un écart absolu pour la masse d’eau (qui tend vers 0 en fin d’expérience). On n’a pas jugé nécessaire de pondérer les deux écarts, qui sont du même ordre de grandeur ; une telle pondération aurait eu pour effet de modifier la relation (3.9) (Sharma et Arora, 1993), mais ne pose aucun problème pratique.

L’algorithme génétique a fourni le point de départ de la méthode de gradients, ce qui permet de minimiser la convergence vers des minima locaux (sans certitude mathématique toutefois), tout en conservant les avantages de rapidité des méthodes déterministes.

Les paramètres identifiés ont été trouvés suffisamment proches des valeurs utilisées pour le calcul initial de M^{S} pour ne pas nécessiter une réévaluation de celle-ci. Dans le cas général cependant, cette séquence serait nécessaire afin de redéfinir les paramètres estimables, comme indiqué en 3.2.2.

3.5 Problématique de l’extraction de données

Toute l’identification paramétrique présentée est issue de données obtenues au laboratoire, dans des conditions contrôlées, et appliquée à un modèle parfaitement défini. Les différents types de mesure sont en général choisies de façon à faciliter l’identification.

Dans le cas de données industrielles, on peut se poser le problème de la disponibilité, de la qualité et de la quantité de données disponibles :

- la quantité de données est en général très importante, les enregistrements ayant lieu sur plusieurs années et sur un grand nombre de capteurs ;
- les mesures peuvent être fortement corrélées ;
- la qualité des données est inégale, certains capteurs pouvant largement dériver entre deux opérations de maintenance, alors que d’autres, jugés critiques, sont vérifiés plus souvent ;
- l’application d’un modèle ou d’un jeu de paramètres unique n’est pas forcément possible, en raison de l’existence de changement de marche de l’unité (voulu ou non), qui peuvent être non précisés et doivent être identifiés ;
Chapitre 3. Identification paramétrique des modèles

- certaines grandeurs, qui pourraient être nécessaires à la validation des modèles, peuvent ne pas être mesurées, soit du fait d’une panne des capteurs, soit de l’impossibilité d’implantation d’un système de mesure, soit de la disponibilité temporaire de certains systèmes (campagnes de mesure).

La problématique du « data mining » (Wang et McGreavy, 1999) est de fournir des méthodes permettant l’extraction automatique ou semi-automatique de connaissance depuis ces grands ensembles de données. Ainsi, on peut par exemple diagnostiquer des pannes ou des marches anormales (Wang et al., 1997) (sous réserve d’une connaissance des influences des paramètres sur les résultats, mais sans les quantifier).

Un des objectifs de ces méthodes est d’extraire un modèle prédictif de ces données, ou d’utiliser les connaissances dont on dispose sur sa structure pour analyser les résultats. Ceci dépasse largement le cadre de ce chapitre, mais représente un intérêt certain pour l’industrie, et peut servir de base au développement de modèles de connaissances en permettant de déduire des résultats les influences des différents paramètres et variables d’action. Par exemple, Ma et Wang (2009) ont appliqué une technique de data mining à des données issues d’une trentaine de capteurs implantés sur une station de traitement des eaux usées, mesurées quotidiennement pendant plus d’un an et demi. Le modèle représente correctement le comportement de la station, sans ajout de connaissance sur les phénomènes. Les auteurs précisent que ces ajouts sont cependant possibles.

Aucun travail n’a encore été réalisé sur ce sujet, mais il est clair qu’il s’agit d’un aspect important de l’étude de procédés, qui se situe en amont des modélisations classiques et permettrait de fournir un appui supplémentaire à nos partenaires industriels. Il me semble donc essentiel de développer l’analyse statistique des grands ensembles de données au sein d’un axe de recherche dédié à la modélisation des procédés, ce d’autant plus qu’à notre connaissance, aucune équipe française ne travaille explicitement dessus. Il serait particulièrement intéressant de pouvoir inclure dans ces analyses les connaissances issues de l’étude phénoménologique des procédés, ce qui n’est pas forcément possible ou facile selon les techniques statistiques utilisées.

3.6 Conclusion

Le développement d’un modèle où interviennent des paramètres inconnus est confronté à la difficulté de détermination de ces paramètres. Si les méthodes usuellement utilisées au laboratoire ou en milieu industriel conduisent en général à des résultats, la qualité de ceux-ci (et donc le caractère extrapolable du modèle) n’est pas obligatoirement connue. La présentation succincte des méthodes de quantification de l’identifiabilité et des incertitudes faite dans ce chapitre montre l’intérêt d’effectuer cette analyse de façon systématique.

Par ailleurs, l’usage de méthodes d’optimisation locales ne permet pas d’assurer avec certitude que le jeu de paramètres trouvé est celui conduisant à la meilleure adéquation entre modèle et expérience. On peut alors utiliser des techniques d’optimisation globale, dont un aperçu sera donné dans le chapitre suivant.

Enfin, l’extraction de données (data mining) est une activité qui dépasse notablement la seule identification paramétrique, mais dont l’intérêt est certain et que j’espère pouvoir développer dans un futur proche.
Chapitre 4

Optimisation des procédés

4.1 Introduction

On a vu au chapitre précédent la nécessité de disposer d'outils d’optimisation performants pour identifier les paramètres des modèles. Il est également nécessaire, une fois ces modèles connus, identifiés et validés, de pouvoir dimensionner et opérer les procédés qu’ils décrivent de façon optimale. Je me suis donc intéressé aux méthodes et techniques d’optimisation.

Dans ce chapitre, je présenterai deux aspects de l’optimisation que j’ai eu l’occasion d’aborder au travers de travaux de courte durée.

4.2 Optimisation dynamique

4.2.1 Position du problème

Pour un procédé donné, on suppose que l’on dispose d’un modèle dynamique dans l’espace d’état, décrit par un jeu d’équations différentielles ou algébro-différentielles de la forme :

\[\dot{x} = f(x, u, p, t) \] (4.1)

L’objectif de l’optimisation dynamique est de trouver un profil de la variable de commande \(u \) et/ou un jeu de paramètres \(p \) qui minimise un critère \(J_0 \), ce que l’on peut écrire (Bryson, 1999) :

\[
\min_{u, p} J_0 = \left\{ G_0(x(t_f), p, t_f) + \int_{t_0}^{t_f} F_0(x, u, p, t) \, dt \right\}
\] (4.2)

En général, la recherche d’un jeu de paramètres ou d’un vecteur de commande optimaux n’est pas libre, et est soumis à un certain nombre de contraintes. Ces contraintes peuvent concerner les états ou les commandes, être valides sur tout le domaine temporel ou seulement à certains temps, et être des contraintes d’égalité ou d’inégalité. Dans tous les cas, on peut les représenter sous une forme analogue à celle du critère d’optimisation, et on obtient donc les équations (4.3b) et (4.3c) :

59
\[x(0) = x_0(p) \quad (4.3a) \]
\[J_i(x,u,p,t) = 0 \quad \forall i \in \{1..m_e\} \quad (4.3b) \]
\[J_i(x,u,p,t) \geq 0 \quad \forall i \in \{m_e + 1..m\} \quad (4.3c) \]
\[x_L \leq x \leq x_U \quad (4.3d) \]
\[u_L \leq u \leq u_U \quad (4.3e) \]
\[p_L \leq p \leq p_U \quad (4.3f) \]

On notera donc le critère et les contraintes \(J_i \), avec \(i = 0 \) pour le critère et \(i = 1,\ldots,m \) pour les contraintes.

Le modèle (4.1) constitue également une contrainte, indissociable du problème d’optimisation. Cette dernière est agrégée aux critères \(J_i \) notés alors \(\bar{J}_i \) par :

\[\bar{J}_i = \begin{cases} G_i + \int_{t_0}^{t_f} F_i + \lambda^T_i (f - \dot{x}) \end{cases} \quad (4.4) \]

Le vecteur \(\lambda_i(t,x,p) \) est appelé vecteur adjoint associé au critère \(J_i \).

On définit ainsi le Hamitonien \(H \) pour la fonction objectif (4.2) et chaque contrainte (4.3b)–(4.3c) par :

\[H_i = \lambda^T_i f + F_i \quad (4.5) \]

ce qui permet de reformuler l’équation (4.4) en :

\[\bar{J}_i = \begin{cases} G_i + \int_{t_0}^{t_f} H_i - \lambda^T_i \dot{x} \end{cases} \quad (4.6) \]

4.2.2 Conditions d’optimalité

Elles sont déterminées en annulant les variations \(\delta \bar{J}_i \) des \(\bar{J}_i \) (avec \(i \in \{0,1,\ldots,m\} \)), qui s’écrit après quelques remaniements :

\[\delta \bar{J}_i = \left[\frac{\partial G_i}{\partial x} \right]_{t_f} - \lambda^T(t_f) \delta x(t_f) + \left[H_i(t_f) + \frac{\partial G_i}{\partial t_f} \right] \delta t_f + \int_{t_0}^{t_f} \left(\lambda^T_i + \frac{\partial H_i}{\partial x} \right) \delta x dt \]

\[\left[\frac{\partial G_i}{\partial u} + \int_{t_0}^{t_f} \frac{\partial H_i}{\partial u} dt \right] \delta u + \left[\frac{\partial G_i}{\partial p} + \lambda^T(t_0) \frac{\partial x_0}{\partial p} + \int_{t_0}^{t_f} \frac{\partial H_i}{\partial p} dt \right] \delta p \]

(4.7)

Le vecteur adjoint est choisi de sorte que les termes contenant \(\delta x \) s’annulent, et on obtient donc le système adjoint :

\[\dot{\lambda}_i = - \frac{\partial H_i}{\partial x} \quad (4.8) \]

et les conditions de transversalité :

\[\lambda_i(t_f) = \frac{\partial G_i}{\partial x} \bigg|_{t_f} \quad (4.9) \]
4.2. Optimisation dynamique

Il reste à intégrer (4.8), pour lequel on ne dispose que de conditions terminales (4.9), simultanément avec le modèle (4.1). On est donc en présence d’un problème aux limites partagées (Two Point Boundary Value Problem ou TPBVP), dont nous évoquerons la méthode de résolution plus loin.

La condition nécessaire d’optimalité du vecteur de commande est alors que :

\[\frac{\partial H}{\partial u} = 0 \]

(4.10)

Pour les paramètres, la condition nécessaire d’optimalité est :

\[\frac{\partial G}{\partial p} + \int_{t_0}^{t_f} \frac{\partial H}{\partial p} dt = 0 \]

(4.11)

La formulation du problème d’optimisation peut être plus complexe si l’on considère des discontinuités à des temps de commutation connus, soit dans la forme du système dynamique \(f \), soit dans les états \(x \). Le principe de résolution reste cependant identique.

Pour résoudre le TPBVP, il existe de nombreuses méthodes. On s’intéressera ici à une des plus répandues, la méthode de paramétrisation du vecteur de commande, ou CVP.

4.2.3 Méthode CVP

Une méthode possible pour calculer le profil \(u(t) \) satisfaisant la condition d’optimalité (4.10) est d’approcher le vecteur de commande sur des intervalles de temps \(\Delta t_j \) par des fonctions dépendantes de paramètres notés \(\tilde{u} \), tout en considérant les états \(x \) comme continus. C’est le principe de la méthode de Paramétrisation du Vecteur de Commande (Control Vector Parametrization, ou CVP). En pratique, on considère souvent un vecteur de commande continu par morceaux (les valeurs des paramètres étant alors les valeurs de la commande sur chaque intervalle), ou linéaire par morceaux. Il peut cependant être intéressant d’utiliser des interpolations d’ordre plus élevé afin de décrire le vecteur de commande plus précisément sans avoir à augmenter le nombre d’intervalles de temps. On peut également considérer la durée de chaque intervalle comme une variable d’optimisation, et affiner ainsi le profil de commande sans modifier le nombre d’intervalles.

La variation du critère est alors déduite de (4.7) et s’écrit :

\[\delta J_i = \left[H_i(t_P) + \frac{\partial G_i}{\partial t_P} \right] \delta t_P + \sum_{j=1}^{P-1} \left[H_i(t_j^-) - H_i(t_j^+) + \frac{\partial G_i}{\partial t_j} \right] \delta t_j + \sum_{j=1}^{P} \left[\frac{\partial G_i}{\partial u} \sum_{j=1}^{t_j^-} \frac{\partial H_i}{\partial u} dt \right] \delta u_j + \left[\frac{\partial G_i}{\partial p} + \lambda(t_0) \frac{\partial x_0}{\partial p} + \int_{t_0}^{t_f} \frac{\partial H_i}{\partial p} dt \right] \delta p \]

(4.12)

La résolution du problème est alors possible par le biais d’un code d’optimisation non linéaire classique. La discrétisation du vecteur de commande engendre la sous-optimalité de la solution trouvée, mais en pratique, on n’observe que peu de différence entre les résultats de la méthode CVP et ceux de méthodes continues.

Cette méthode est dite faisable, la valeur du critère s’améliorant à chaque itération.

Le temps de calcul est essentiellement dû à l’intégration du modèle et du système adjoint (qui peut monopoliser jusqu’à 95% du temps de calcul d’après Chachuat (2001)). Il existe d’autres méthodes, soit de paramétrisation conjointe des états et de la commande, soit d’intégration d’un
profil continu de commande. Elles présentent toutes différents avantages et inconvénients, et n’ont pas été utilisées ici.

4.2.4 Logiciel DYNO

DYNO est un code fortran d’optimisation dynamique basé sur la méthode CVP, réalisé par M. Fikar, en collaboration avec le LSGC.

Le TPBVP composé du modèle et du système adjoint est résolu de la façon suivante :
- on intègre vers les temps croissants le modèle (4.1), dont on connaît les conditions initiales, et on conserve les valeurs de x à des temps donnés ;
- on intègre ensuite à rebours le système adjoint (4.8), les valeurs de x nécessaires à ce calcul étant obtenues par interpolation des valeurs stockées précédemment.

La minimisation est effectuée à l’aide d’une méthode de programmation quadratique successive (SQP). Ce type de méthode consiste à approximer le critère par une fonction quadratique (et nécessite donc le calcul de sa matrice Hessienne par rapport à u et/ou p), et les contraintes par une fonction linéaire (requérant donc son gradient). La matrice Hessienne elle-même est approchée en utilisant la méthode BFGS. Les gradients requis par cette méthode peuvent être obtenus de différentes façons, mais DYNO utilise la méthode de l’adjoint, performante dans le cas de systèmes possédant de nombreux états (ce qui est souvent le cas en génie des procédés).

Les expressions des gradients sont immédiatement déduites de (4.12), soit pour les gradients par rapport à u et p :

\[
\nabla_{u_j} J = \frac{\partial G_i}{\partial u^T} + \int_{t_j}^{t_{j-1}} \frac{\partial H_i}{\partial u} dt \tag{4.13}
\]

\[
\nabla_{p} J = \frac{\partial G_i}{\partial p^T} + \lambda^T (t_0^+) \frac{\partial x_0}{\partial p} + \int_{t_0}^{t_f} \frac{\partial H_i}{\partial p} dt \tag{4.14}
\]

Le calcul des termes intégraux dans les équations (4.13)–(4.14) peut se faire simplement en intégrant \(\frac{\partial H_i}{\partial u} \) et \(\frac{\partial H_i}{\partial p} \) lors de l’intégration à rebours du système adjoint. Cette intégration est réalisée dans DYNO soit par la routine DASSL, soit par VODE (deux codes fortran libres permettant d’intégrer des systèmes différentiels — VODE — ou algébro-différentiels — DASSL) .

L’utilisation de la SQP nécessite donc dans le cas général de connaître et fournir au code les gradients de \(F, G \) et \(f \) par rapport à u, x et p (ainsi que \(\frac{\partial G_i}{\partial t} \) et \(\frac{\partial x_0}{\partial p} \)). Le logiciel peut utiliser les codes NLPQL (Schittkowski, 1986) ou SLSQP\(^3\) comme solveur SQP.

Dans le cadre d’un PHC Stefanik (Solvaquie), j’ai réalisé l’intégration de DYNO en tant que fonction Matlab. L’objectif était de faciliter son utilisation pour un usage industriel ou pédagogique, et constituait pour moi un premier contact avec les méthodes et techniques d’optimisation dynamique. Ce travail avait fait l’objet de la communication CS 4.

Techniquement, on a conservé le cœur de DYNO en tant que code fortran, appelable depuis un programme Matlab. L’inconvénient majeur de DYNO était que chaque modification du problème (que ce soit le critère, les contraintes ou le modèle) nécessitait une recompilation : ceci pouvait poser problème en milieu industriel, où les compilateurs ne sont pas nécessairement accessibles. On a donc externalisé tous les éléments dépendants du modèle, qui sont maintenant sous forme

3. Code libre inclus dans le package TOMS, disponible par exemple sur www.netlib.org
4.2. Optimisation dynamique

de fonctions Matlab. Ainsi, tous les éléments relatifs au problème sont accessibles facilement et modifiables sans nécessiter de recompilation (voir figure 4.1).

Un point intéressant a été soulevé lors de la mise en service de l’implantation Matlab de DYNO. En effet, afin de valider le code modifié, j’ai procédé à des essais sur les problèmes tests proposés par Fikar et Latifi (2002). Les solutions à des problèmes simples étaient effectivement identiques, mais des problèmes plus complexes conduisaient à des résultats extrêmement différents en termes de vecteur de commande u.

Exemple

On considère le système :

\[
\begin{align*}
\dot{x}_1 &= x_2 & (4.15) \\
\dot{x}_2 &= -x_2 + u_1 + tu_2 & (4.16)
\end{align*}
\]

avec $x_1(0) = 0$ et $x_2(0) = -1$.

Le critère à minimiser est :

\[
J_0 = \int_0^1 \left(x_1^2 + x_2^2 + 0,005(u_1 + tu_2) \right)
\]

soumis à :

\[
x_2 - 8(t - 0,5)^2 + 0,5 \leq 0
\]

Fikar et Latifi (2002) donnent $J_0^* = 0,1719$, avec une discrétisation de l’intervalle de temps en 10 éléments de tailles variables, alors que l’on trouve $J_0^* = 0,3949$ si l’on utilise les mêmes valeurs initiales avec le code intégré à Matlab. Par contre, une initialisation des profils de u et t_i proche des valeurs fournies par Fikar et Latifi conduit à $J_0^* = 0,1773$, pour un profil peu différent.

Comme on peut le voir sur les figures 4.2(a) et 4.2(b), les trajectoires optimales sont proches. Le seul changement structurel (hors l’inclusion dans Matlab) était un changement de compilateur fortran.
Chapitre 4. Optimisation des procédés

Figure 4.2 – Comparaison des trajectoires et commande optimales pour les deux codes

Le problème semble donc présenter plusieurs optima locaux (on peut incriminer le grand nombre de variables de commande par rapport aux contraintes du problème), ainsi qu’une grande sensibilité aux conditions initiales et aux erreurs d’arrondis. Un tel comportement est répertorié de longue date, par exemple par Luus et Cormack (1972). Il pose cependant le problème de la qualité des solutions trouvées.

Il est prévu de poursuivre le travail d’intégration de DYNO avec en particulier un essai d’utilisation de systèmes de calcul symboliques pour le calcul des gradients (le package de calcul symbolique de Matlab) ; un des objectifs serait d’en simplifier l’usage afin de permettre son utilisation à la fois en milieu industriel, mais aussi en enseignement des bases de l’optimisation dynamique. À plus long terme, l’utilisation de méthodes d’optimisation globale, telles que présentées dans le chapitre suivant, serait sans doute souhaitable.

4.2.5 Conclusion

Dans le domaine de l’optimisation, et en particulier de l’optimisation dynamique, il existe un nombre important de techniques, qui doivent être choisies pour s’adapter au mieux au problème posé. Il est possible par exemple d’utiliser des méthodes stochastiques (tels les algorithmes génétiques), dont la convergence n’est assurée que pour un nombre infini d’itérations, pour initialiser une méthode déterministe telle que celle employée, comme nous l’avons vu dans la thèse de S. Quiniou, ou par exemple dans les travaux de Pommier et al. (2008). Par ailleurs le problème peut requérir des aménagements spécifiques, comme par exemple le fonctionnement en état stationnaire cyclique pour les procédés PSA – voir à ce sujet la thèse de Ayoub (2010)–, afin d’être traité par ces méthodes.

Dans la plupart des situations réelles ayant recours à l’optimisation dynamique, on sera en présence d’optima locaux. Si l’on souhaite déterminer de façon certaine la trajectoire ou le jeu de paramètres optimaux, au sens strict, il paraît donc évident que les techniques présentées précédemment sont insuffisantes. Il faut donc se tourner vers des méthodes d’optimisation globale. La section suivante présente une première approche de ce type d’optimisation, avec une application statique classique.
4.3 Optimisation globale

4.3.1 Généralités

L’optimisation en génie des procédés est confrontée quasi systématiquement à des problèmes non convexes. Ceci se traduit par l’existence de plusieurs optima locaux, et interdit d’assurer avec certitude que le point optimal (ou la trajectoire, dans le cas dynamique) trouvé correspond au meilleur choix possible. Les solutions trouvées par les classiques méthodes de gradient dépendent dans ce cas des initialisations de la méthode, et si l’on peut augmenter la confiance dans les résultats en multipliant les points initiaux, aucune certitude mathématique n’existe quant au caractère global de l’optimum trouvé.

L’application de l’optimisation globale à des problèmes dynamiques, si elle est parfaitement possible et envisagée dans le cadre des travaux menés au laboratoire, n’a pas été effectuée. Cependant, un premier travail dans ce domaine m’a permis de me familiariser avec certaines méthodes.

4.3.2 Méthode de résolution

Nous ne nous intéressons ici qu’aux méthodes déterministes, qui peuvent être plus longues à converger que les méthodes stochastiques, mais qui permettent de fournir avec certitude l’optimum global.

Elles sont basées sur le découpage du domaine de recherche en sous-ensembles, dont on peut éliminer certains en montrant que la solution ne peut être à l’intérieur. Ces méthodes sont donc appelées méthodes de séparation-évaluation (Branch and Bound).

Différentes variantes de ces méthodes existent, et on a utilisé ici la méthode α-Branch and Bound (α-BB). La méthode α-BB nécessite de construire un sous-estimateur convexe g de la fonction f sur le domaine de recherche $X \in \mathbb{R}^n$; on cherche pour cela un paramètre α tel que :

$$g''(x) = f''(x) + \alpha > 0 \quad \forall x \in X \quad (4.19)$$

Le seul minimum de g, facilement déterminable par une classique méthode de gradients, constitue alors une borne inférieure du minimum global de f. Une borne supérieure de ce minimum est donnée par la valeur d’un minimum local de f. Le processus d’optimisation consiste alors à diviser l’intervalle de recherche et à appliquer le processus ci-dessus sur chacun de ces intervalles, jusqu’à ce que l’écart entre borne supérieure et borne inférieure soit nul. Au cours de ce processus, on peut écarte les intervalles pour lesquels la borne inférieure est supérieure à la plus petite borne supérieure de l’ensemble des intervalles. La convergence de la méthode est obtenue lorsque les bornes supérieures et inférieures de l’optimum sont égales (à un ϵ près). Les bornes inférieures doivent donc former une séquence non décroissante (Adjiman et al., 1996), et les bornes supérieures une séquence non croissante.

La détermination du paramètre α est très importante ; s’il doit satisfaire la condition (4.19), il doit aussi être le plus petit possible afin d’éviter des temps de calcul trop importants.

Suivant Adjiman et al. (1996), on peut décomposer le modèle f en une somme de différentes fonctions pour lesquelles des méthodes spécifiques et efficaces de détermination des sous-estimateurs convexes existent.

$$f(x) = L(x) + Q(x) + \sum b_i x_{i,1} x_{i,2} + \sum U_i(x_i) + \sum N_i(x) \quad (4.20)$$
Pour le \(i\)-ème terme bilinéaire, où \(x_{i,1}\) et \(x_{i,2}\) représentent deux éléments de \(\mathbf{x}\) et \(x_i^L\) et \(x_i^U\) les bornes de l’intervalle de variation de \(x_i\), on peut construire une enveloppe convexe \(E_B\) par :

\[
E_B = \sum_{i} b_i w_i
\]

avec :

\[
w_i \geq \max \left(x_{i,1}^L + x_{i,2}^L + x_{i,2}^L + x_{i,1}^L + x_{i,1}^L + x_{i,1}^L \right)
\]

Les termes non convexes univariants peuvent être sous-estimés par linéarisation sur l’intervalle \([x_i^L, x_i^U]\) :

\[
E_U = U_i(x_i^L) + \frac{U(x_i^U) - U(x_i^L)}{x_i^U - x_i^L}(x - x_i^L)q
\]

Ceci permet d’accélérer le traitement du problème, mais on reste confronté à la nécessité de déterminer le sous-estimateur convexe d’une fonction non-convexe quelconque (correspondant au mieux aux termes non convexes généraux \(N_i\) de la formulation (4.20)). Cela suppose également de connaître explicitement le modèle \(f\), ce qui est souvent, mais pas systématiquement, le cas dans nos disciplines, où il peut être par exemple issu d’un calcul effectué par un logiciel tiers, et donc être une « boîte noire ».

Le sous estimateur convexe \(E_N\) de \(N_i\) est fourni par :

\[
E_N = N_i + \sum_{j=1}^{n} \alpha_{ij} \left(x_j - x_j^L \right) \left(x_j - x_j^U \right)
\]

avec

\[
\begin{align*}
\alpha_{ij} & \geq \max \left[0, -\frac{1}{2} \min_{k,x} \lambda_{j,k}(x) \right] \text{ si } N_j \text{ est fonction de } x_i \\
\alpha_{ij} & = 0 \text{ sinon}
\end{align*}
\]

où les \(\lambda_{j,k}\) sont les valeurs propres de la matrice Hessienne \(H_{N_j}\) de \(N_j\). La plus petite valeur propre \(\lambda_{\text{min}}\) de \(N_j\) peut être déterminée en utilisant l’arithmetic d’intervalles.

On calcule pour cela le polynôme caractéristique \(P_N(x,\lambda) = \det (H_{N_j} - \lambda I) = \sum_{j=0}^{n-1} a_j(x)\lambda^j\), que l’on peut facilement transformer en une famille de polynômes d’intervalles, c’est à dire que les coefficients \(a_j\) ne sont plus des scalaires, mais des intervalles \([a_j^L; a_j^U]\). Il suffit alors de calculer les racines de quatre polynômes (dits de Kharitonov) :

\[
\begin{align*}
K_1(\lambda) & = a_0^L + a_1^L \lambda + a_2^L \lambda^2 + a_3^L \lambda^3 + a_4^L \lambda^4 + a_5^L \lambda^5 + a_6^L \lambda^6 + \ldots \\
K_2(\lambda) & = a_0^U + a_1^U \lambda + a_2^U \lambda^2 + a_3^U \lambda^3 + a_4^U \lambda^4 + a_5^U \lambda^5 + a_6^U \lambda^6 + \ldots \\
K_3(\lambda) & = a_0^L + a_1^L \lambda + a_2^L \lambda^2 + a_3^L \lambda^3 + a_4^L \lambda^4 + a_5^L \lambda^5 + a_6^L \lambda^6 + \ldots \\
K_4(\lambda) & = a_0^U + a_1^U \lambda + a_2^U \lambda^2 + a_3^U \lambda^3 + a_4^U \lambda^4 + a_5^U \lambda^5 + a_6^U \lambda^6 + \ldots
\end{align*}
\]

La plus petite de ces racines constitue la borne inférieure de \(\lambda_{\text{min}}\).
4.3. Optimisation globale

4.3.3 Application au calcul de flash

Afin de montrer l’intérêt industriel de l’optimisation globale, nous avons voulu montrer l’impact de son utilisation sur une séparation liquide-liquide (L/L). Nous avons donc essayé d’implanter cette méthode dans un calcul de flash L/L utilisé par le logiciel Pro/II. C’était cette utilisation dans un code industriel qui était recherchée, plus que la qualité du calcul.

Les travaux présentés ici sont issus du DEA de Le Moullec (2005), poursuivis dans le cadre d’un projet de fin d’études de l’ENSIC (Julien Eyraud, 2007).

Formulation du problème

La variation de l’énergie de Gibbs lors du mélange de \(n_c \) composés, ou énergie libre de mélange, s’écrit :

\[
\frac{\Delta G}{RT} = \frac{G^M}{RT} = \frac{G^E}{RT} + \sum_{i=1}^{n_c} n_i \ln x_i \tag{4.30}
\]

où \(G^E \) est l’énergie d’excès du mélange, fournie par un modèle thermodynamique. Avec un modèle de coefficient d’activité, on a :

\[
\frac{G^E}{RT} = \sum_{i=1}^{n_c} x_i \ln \gamma_i \tag{4.31}
\]

où \(\gamma \) est le coefficient d’activité.

On a utilisé pour cette étude celui donné par le modèle NRTL à 3 paramètres :

\[
\ln \gamma_i = \frac{\sum_{j=1}^{m} \tau_{ji} G_{ji} x_j}{\sum_{l=1}^{m} G_{li} x_l} + \sum_{j=1}^{m} x_j G_{ij} \left(\frac{\tau_{ij} - \sum_{r=1}^{m} \tau_{rj} G_{rj} x_r}{\sum_{l=1}^{m} G_{lj} x_l} \right) \tag{4.32}
\]

avec \(G_{ij} = \exp \alpha \tau_{ij} \).

L’équilibre stable est atteint lorsque la distance (algébrique) entre la courbe de \(G^M \) et son plan tangent aux points d’équilibre considérés est positive ou nulle (Michelsen et Mollerup, 2004), ce qui correspond géométriquement à une courbe située intégralement au dessus du plan tangent.

Dans le cas d’un mélange à \(n_c \) constituants, de fractions molaires \(x = (x_1,...,x_{n_c}) \), l’équation du plan tangent s’écrit :

\[
P(x) = \frac{G^M(x_{eq})}{RT} + \sum_{i=1}^{n_c} \frac{\partial G^M(x)}{\partial x_i} \frac{RT}{RT} (x_i - x_{i,eq}) \tag{4.33}
\]

Ainsi, onramène le problème à la recherche du minimum de la distance algébrique entre la courbe d’équilibre et le plan tangent. L’utilisation de ce critère permet de considérer tous les équilibres possibles (dans l’exemple qui suit, un équilibre monophasique ou liquide/liquide), sans qu’il soit besoin de calculer chaque cas individuellement.

Dans le cas d’un binaire, on a construit par itération la bitangente à la courbe selon l’algorithme présenté sur la figure 4.3. Inapplicable pour des dimensions supérieures, ce calcul a malgré tout permis d’obtenir des résultats intéressants.

Notons qu’il aurait été plus simple de minimiser directement la distance algébrique à la tangente, ce qui a ensuite été réalisé dans le projet de fin d’études de J. Eyraud pour des équilibres multiconstituants, mais n’a pu être implanté dans un logiciel de simulation commercial.
Figure 4.3 – Séquence de construction de la bitangente pour un binaire

Résultats et conclusions

Les résultats présentés ici (DEA de Y. Le Moullec) ont été obtenus pour un mélange eau (1)/acétate de n-butyle(2), le problème étant donc ramené à la recherche de l’équilibre stable d’un mélange binaire, et devenant donc monovariable. Ce problème a déjà été traité, par exemple par Floudas (1999).

Pour ce mélange, le modèle NRTL (4.32) a pour coefficients (avec \(m = 2\)) : \(\tau_{12} = 4,69071\), \(\tau_{21} = 3,00498\) et \(\alpha = 0,39196\).

Le détail d’un calcul avec une composition initiale \(x = 0,5\) est donné sur la figure 4.4.

Le calcul de l’équilibre a été implanté dans Pro/II via une UAS (User Added Subroutine), l’opération unitaire résultante tient donc lieu de flash liquide/liquide. Deux cascades de 4 flashes ont été comparées, l’une utilisant l’opération unitaire définie par Pro/II, l’autre notre UAS ; l’alimentation de chaque flash correspond à la sortie en phase légère du flash précédent.

Les résultats sont présentés sur le tableau 4.1 : les débits sont donnés en débits relatifs par rapport au débit d’alimentation, la composition est celle en acétate de n-butyle.

Le calcul a été mené en utilisant les coefficients du modèle NRTL fournis par Heidemann et Mandhane (1973). Or, ces valeurs ont elles-même été obtenues par régression du modèle via une méthode d’optimisation locale. Dans le cas général, il est donc possible que le jeu des paramètres disponibles soit erroné. L’utilisation de méthodes d’optimisation globale non seulement pour le calcul des équilibres mais aussi pour la détermination des coefficients des modèles semble donc être une perspective importante en simulation des procédés. Les logiciels commerciaux classiques peuvent, comme on l’a montré, être modifiés pour utiliser ces méthodes. Cependant, pour l’utilisateur final, il n’est en général (et c’est certain dans le cas de Pro/II) pas possible d’intervenir sur la méthode de résolution même, ni de changer facilement le modèle.
thermodynamique (qui est défini directement dans l’UAS) ce qui oblige à recoder entièrement l’opération unitaire concernée. Nous ne l’avons fait que dans le but de démontrer l’importance de l’implantation de ce type de méthodes dans les codes commerciaux, mais il est certain que ces modifications ne peuvent être faites qu’en collaboration avec les éditeurs de logiciels.

4.3.4 Applicabilité à l’optimisation dynamique

Il est possible d’utiliser les méthodes globales pour la détermination du profil (du vecteur \tilde{u}) lors de l’application de la méthode CVP, comme l’on fait Esposito et Floudas (2000) ; la solution serait alors sous-optimale du fait de la discrétisation du vecteur de commande, mais correspondrait au minimum global pour le problème paramétré. Papamichail et Adjiman (2002) ont par exemple présenté une application des méthodes α-BB aux systèmes dynamiques, et l’illustrent sur un cas de contrôle optimal simple et deux exemples de détermination de constantes cinétiques à partir de données expérimentales. Les temps de calcul (en 2002) sont de l’ordre de quelques heures (avec un choix approprié de stratégie de séparation) pour 20 points expérimentaux, deux états et trois paramètres. Il est donc difficile d’envisager des applications à des cas industriels de grande dimension, du moins de façon routinière.

4.3.5 Conclusion

Les travaux d’optimisation globale présentés sont très nettement préliminaires. Les résultats obtenus montrent l’intérêt de ces études, tant d’un point de vue académique qu’industriel.

La difficulté de la mise en application d’une méthode globale réside à la fois dans les temps de calculs et dans la nécessité de connaître a priori la forme des fonctions et modèles utilisés.
Chapitre 4. Optimisation des procédés

Tout comme pour l’optimisation dynamique, le développement d’outils incluant ces méthodes et permettant leur utilisation de façon transparente me paraît nécessaire : l’application à des procédés complets est cependant encore difficile, pour les raisons évoquées plus haut.

4.4 Conclusion

Ce chapitre a présenté les travaux introductifs menés dans le domaine de l’optimisation de procédés, en présentant quelques possibilités en matière de dimensionnement et de maîtrise du fonctionnement.

Si des progrès sont possibles du point de vue théorique, le développement de ces méthodes doit également tenir compte d’impératifs industriels, en matière de facilité d’utilisation (passant par l’intégration dans les logiciels de simulation usuels, ou le développement d’interfaces « user friendly ») et de minimisation des temps de calcul. Nous devons donc choisir et implanter ces méthodes au sein d’outils utilisables en milieu industriel. Ma contribution a d’ailleurs pour le moment été plus technique que théorique.

L’optimisation globale n’a été abordée que très superficiellement, mais suffisamment pour être convaincu de la nécessité de son utilisation, lorsqu’elle est possible : la certitude de l’obtention d’une solution optimale permet d’améliorer le processus de décision. Les applications sont nombreuses et, au sein d’un laboratoire de génie des procédés, les collaborations peuvent donc être multiples et fructueuses (thermodynamique et cinétique chimique sont des applications immédiates de ces méthodes). L’utilisation routinière de ces méthodes est malgré tout encore délicate, du fait des temps de calcul importants et de la possible difficulté d’établissement d’un modèle sous forme canonique.

Hors l’identification paramétrique, l’optimisation constitue la dernière étape du processus d’étude des procédés : optimiser suppose de disposer de modèles les plus représentatifs possibles du procédé et de données fiables.

L’obtention de ces éléments pour les procédés étudiés faisait l’objet des trois premiers chapitres de ce mémoire.
Conclusion et perspectives

Conclusion

J’ai souhaité dans ce mémoire retracer plus ou moins succinctement les travaux menés depuis 1996, tout d’abord axés sur un objet particulier – les réacteurs à lit fixe –, puis sur des aspects plus méthodologiques. Le caractère industriel de la plupart de ces travaux est inhérent à notre discipline, mais j’ai également essayé de conserver à certaines études un caractère plus fondamental, comme la modélisation locale des milieux poreux.

Situé le plus en amont, ce travail est loin d’être achevé, puisque nous n’avons pas effectué le changement d’échelle qui permettrait d’utiliser les résultats locaux au sein de modèles macroscopiques, et que les modèles ne représentent la réalité que dans certaines conditions. Cependant, les validations effectuées ont montré un accord satisfaisant aux bas nombres de Reynolds, et une extension à des vitesses plus élevées est envisageable. Ce type d’étude devrait donc permettre de proposer dans certains cas des modèles macroscopiques prédicifs.

Au cœur de mes activités, la modélisation et la simulation de procédés à des échelles macroscopiques ne découlent pas pour l’instant de ces approches locales, même s’il s’agit clairement là d’un objectif à atteindre. Ces travaux étaient de nature plus industrielle, ce qui explique en partie la disparité des objets étudiés. La modélisation dynamique en particulier est en plein essor dans les entreprises, mais ne peut encore y être menée de façon routinière : ainsi que je l’exposais dans l’introduction de ce document, il revient donc naturellement aux laboratoires de génie des procédés de mener ces études et d’assurer leur transfert dans les meilleures conditions. Dans le cas des simulations d’écoulement en lit fixe, effectuées dans un cadre plus académique, il semble que, même si les résultats obtenus sont cohérents, des améliorations notables peuvent être apportées, en particulier dans le domaine des interactions gaz-liquide. Ceci se fera grâce à des approches locales phénoménologiques et à des interactions fortes et permanentes avec les approches expérimentales.

Ainsi, la construction de modèles mathématiques est indissociable de la métrologie, à la fois pour la validation des résultats numériques des modèles phénoménologiques, pour l’identification des paramètres des modèles plus globaux et enfin pour générer des pistes pour les recherches futures.

Les mesures à l’échelle locale par micro-électrodes ont ainsi permis de valider les modèles numériques dans un certain domaine. Les méthodes polarographiques constituent un moyen de mesure non intrusif performant, même s’il est limité à l’écoulement au voisinage de la proche paroi. Il a été possible de coupler l’analyse temporelle des signaux obtenus à un modèle de renouvellement de surface pour obtenir une valeur théorique du gradient local de vitesse, validée par l’expérience aux forts débits. Ceci montre l’intérêt d’utiliser des méthodes de traitement du signal, classiques ou non, afin d’exploiter au maximum des données expérimentales parfois peu nombreuses.

Concernant l’identification paramétrique de modèles plus empiriques, j’ai commencé récem-
ment à m’intéresser à l’analyse d’estimabilité. Une méthodologie d’analyse des modèles a pu être dégagée, et sera désormais appliquée le plus systématiquement possible. Il est également clair que cette démarche doit s’accompagner de la mise en œuvre de techniques d’optimisation globales, permettant d’assurer avec certitude la meilleure qualité possible de résultat.

Enfin, le développement de la technique de mesure par tomographie à fîls a permis d’obtenir des résultats intéressants sur la distribution de fluides en trickle-beds, remettant en question par exemple la performance supérieure des garnissages denses dans ce domaine. Si la mise au point de la méthode a été délicate, son usage est relativement aisé, et permet également de valider ou de caler des modèles d’écoulement gaz-liquide en lit fixe.

En aval de ces activités, je me suis intéressé aux techniques d’optimisation dynamiques et globales. J’ai eu l’occasion de mettre en application l’une et l’autre, et d’en apprécier les enjeux. Ceci m’a conforté dans l’idée que l’optimisation de procédés n’est certainement pas une étape purement routinière, comme on serait tenté de le croire. Il s’agit au contraire d’un aspect essentiel de notre science, qui complète le processus de conception de procédés et génère un domaine de recherche spécifique très dynamique.

Perspectives

Dans la lignée de l’existant, je souhaite maintenir dans le futur l’équilibre délicat entre approfondissement conceptuel et transfert industriel.

À très court terme, un travail sur le dimensionnement optimal d’installations de production d’acide acrylique (thèse de Minghai Lei) débutera en décembre 2010 ; j’aurai ainsi l’occasion au sein d’une même étude de parcourir la chaîne de conception de procédés depuis la modélisation et l’analyse de données jusqu’à l’optimisation.

Plus globalement, je compte maintenir mon implication dans le développement de modèles à vocation industrielle, en particulier les simulations dynamiques de procédés au sens large, et des écoulements et transferts en particulier. Il ne s’agit pas uniquement de financer par ce biais des études moins « utiles », mais également de conserver à notre discipline son fort ancrage dans le monde de l’entreprise. Un des systèmes abordés pourrait être les réacteurs agités autoaspirants, en reprenant les travaux par le biais de la simulation numérique des écoulements et le couplage avec des techniques d’optimisation, dans le but de dimensionner au mieux ce type d’opération.

Charpentier (2009) écrit que l’amélioration des modèles de procédés passe davantage par une meilleure compréhension de la physique que par un raffinement numérique excessif des codes de calcul. J’en conviens, mais il faut également introduire dans ces codes les éléments de mathématiques appliquées suffisants pour une simulation correcte des phénomènes. Les simulations locales (2.2) ou diphasiques (1.4.2) d’écoulements en milieu poreux me paraissent en cela très illustratives, puisque la résolution passe par une bonne maitrise des techniques numériques.

Il existe cependant des limites aux simulations, en particulier CFD, que peut effectuer un laboratoire non spécialisé ; il me semble important de prendre la mesure de ces lacunes, et de les compenser, soit en se dotant de systèmes et logiciels performants, avec en particulier un fort développement du calcul parallèle, soit en délocalisant cette activité sans en perdre la maîtrise : la vision « Génie des Procédés » est nécessaire au cours de l’élaboration des modèles et pour le dépouillement des résultats (sans parler de leur interprétation).

En parallèle, des études plus fondamentales sur les milieux poreux seront poursuivies, dans la continuité de celles présentées au chapitre 2. L’usage de techniques de vélocimétrie laser Doppler ou de Vélocimétrie par Imagerie de Particules (PIV) devrait nous fournir des informations et des validations complémentaires, et la simulation transitoire des écoulements nous permettre
une modélisation aux forts débits. L’intégration aux échelles supérieures de ces modèles devra cependant rester une priorité. Il paraît raisonnable de prévoir des simulations de même type pour le transfert de matière, des validations par voie électrochimique (par exemple) pouvant alors être effectuées. Le transfert thermique peut également être abordé, mais les mesures seront sans doute plus délicates, et des collaborations universitaires sont à développer (à Nancy, le LEMTA \(^4\) est un partenaire naturel).

Conjointement à leur développement, l’implantation de techniques de simulation et d’optimisation au sein de codes de calculs devra être menée, qu’il s’agisse de programmes isolés (comme DYNO), de greffons pour des codes généralistes de type Matlab, et surtout de modifications de logiciels professionnels (comme Pro/II ou Aspen…). Ceci nous permettra de mieux transférer les connaissances développées vers l’industrie, et ainsi d’améliorer les méthodes par la confrontation systématique au terrain.

À plus long terme, je compte développer une thématique de recherche sur l’analyse de grands ensembles de données, en collaboration avec nos partenaires industriels. Il n’existe pas à ma connaissance de recherche en France sur ce sujet dans le cadre du génie des procédés, bien que de nombreuses équipes en mènent dans des domaines très variés (finance, linguistique, robotique…). Ce serait donc une bonne occasion de développer des collaborations interdisciplinaires : universitaires tout d’abord pour apprendre à utiliser ou construire des outils adaptés aux besoins de notre discipline, puis industrielles afin d’extraire le maximum de connaissances des données à disposition. Une perspective lointaine pourrait être de coupler les simulations classiques de procédés à ces méthodes d’analyse afin de faciliter le dépouillement des données et d’en automatiser certains aspects, facilitant en cela le transfert à l’industrie de ces applications.

\(^4\) Laboratoire d’Énergétique et de Mécanique Théorique et Appliquée
Conclusion et perspectives
Bibliographie

J. Charpentier. Among the trends for a modern chemical engineering, the third paradigm : the time and length multiscale approach as an efficient tool for process intensification and product design and engineering. Chemical Engineering Research and Design, 2009.

Annexe A

Activités d’encadrement

A.1 Thèses

<table>
<thead>
<tr>
<th>Dates</th>
<th>Nom</th>
<th>Titre et description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003–2006</td>
<td>Thibault DUMAS</td>
<td>Analyse expérimentale locale et simulation fine des réacteurs gaz/liquide à lit fixe, bourse MENRT, co-encadrée avec M.A. LATIFI</td>
</tr>
<tr>
<td>2004–2008</td>
<td>Juan David LLAMAS</td>
<td>Étude de la maldistribution dans les réacteurs à lit fixe à co-courant vers le bas de gaz et de liquide, bourse MENRT, co-encadrée avec G. WILD</td>
</tr>
<tr>
<td>2006–2009</td>
<td>Stéphane QUINIOU</td>
<td>Modélisation, simulation et analyse expérimentale du transport de matière et de chaleur dans les textiles, bourse BDI CNRS-Décathlon, co-encadrée avec M.A. LATIFI</td>
</tr>
</tbody>
</table>

A.2 Diplômes d’Études Approfondies et Masters Recherche

<table>
<thead>
<tr>
<th>Date</th>
<th>Nom</th>
<th>Titre</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Bruno LACOMBE</td>
<td>Simulation d’un écoulement réactif en milieu poreux - Application à la sécurité du stockage de solides divisés thermiquement instables</td>
</tr>
<tr>
<td>2002</td>
<td>Marie-Charlotte</td>
<td>Simulation d’un écoulement réactif en milieu poreux - Application à la sécurité du stockage de solides divisés thermiquement instables</td>
</tr>
<tr>
<td></td>
<td>GUILLOT DE SUIRAUT</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Reda BOUTOBA</td>
<td>Simulation du transfert de chaleur dans un réacteur à lit fixe et à écoulement monophasique de liquide : comparaison des modèles à une et deux températures</td>
</tr>
<tr>
<td>2005</td>
<td>Yann LE MOULLEC</td>
<td>Réalisation d’une UAS permettant le calcul d’un équilibre binaire par une méthode d’optimisation globale et comparaison au calcul de Pro/II</td>
</tr>
<tr>
<td>2005</td>
<td>David FICHET</td>
<td>Simulation spatio-temporelle d’un textile soumis à des transferts couplés de chaleur et matière</td>
</tr>
<tr>
<td>2006</td>
<td>Nicolas BUTIN</td>
<td>Modélisation et simulation dynamique d’un procédé de séparation liquide-liquide-gaz</td>
</tr>
</tbody>
</table>
A.3 Participation à des jurys

A.3.1 Jurys de thèse

<table>
<thead>
<tr>
<th>Date</th>
<th>Nom</th>
<th>Titre & Université</th>
</tr>
</thead>
<tbody>
<tr>
<td>26/05/2008</td>
<td>L. Raffaëly-Veslin</td>
<td>Étude physico-chimique et structurale de verres d’oxydes – Application aux verres archéologiques – Université Claude Bernard, Lyon</td>
</tr>
</tbody>
</table>

A.3.2 Jurys de DEA/master

<table>
<thead>
<tr>
<th>Date</th>
<th>Nom</th>
<th>Titre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>G. Vasquez</td>
<td>Étude des problèmes de mauvaise distribution du liquide dans les réacteurs à lit fixe à co-courant vers le bas de gaz et de liquide</td>
</tr>
<tr>
<td>2001</td>
<td>M. Sassi</td>
<td>Commande par matrice dynamique d’un lit mobile simulé</td>
</tr>
<tr>
<td>2001</td>
<td>O. Moreau</td>
<td>Modélisation thermodynamique et hydrodynamique d’une colonne à distiller multi-composants sous logiciel Matlab</td>
</tr>
<tr>
<td>2001</td>
<td>P. Bertolis</td>
<td>Modélisation de la ventilation d’un hangar industriel</td>
</tr>
<tr>
<td>2005</td>
<td>R. Privat</td>
<td>Simulation dynamique d’une colonne à distiller</td>
</tr>
<tr>
<td>2006</td>
<td>S. Ayoub</td>
<td>Synthèse optimale de procédés – Application aux réseaux d’échangeurs de chaleur et aux colonnes de distillation</td>
</tr>
</tbody>
</table>
Annexe B

Production scientifique

B.1 DEA et thèse de doctorat

« Modélisation et expérimentation des transferts de matière et de quantité de mouvement dans les réacteurs à lit fixe », thèse de doctorat de l’Institut National Polytechnique de Lorraine, encadrée par M.A. Latifi et N. Midoux, soutenue le 10 novembre 2000

B.2 Revues internationales à comité de lecture (12)

Annexe B. Production scientifique

B.3 Actes de congrès à comité de lecture (12)

CA1 « Modélisation des phénomènes de transport dans les réacteurs à lit fixe », F. Lesage, M.A. Latifi et N. Midoux, 1ère école de printemps francophone sur la modélisation et la commande de procédés, 10-12 mai 1999, Casablanca, Maroc

CA5 « Réacteurs Polyphasiques à lit fixe : Simulation et expérimentation », F. Soltana, F. Lesage et M.A. Latifi, 4ème Ecole de Printemps Francophone en Modélisation et Commande des Procédés, 06-08 mai 2002, Casablanca, Maroc

CA8 « Local flow direction measurements using tri-segmented microelectrodes in packed beds », Th. Dumas, F. Lesage, M.A. Latifi, ISCRE 19, 3-6 septembre 2006, Postdam/Berlin, Allemagne

B.4 Communications sans actes

CA12 « Dynamic modelling of a polypropylene plant », F. Lesage, P. Sere-Peyrigain, B. Descales et J.-R. Llinas, SFGP 2009, 14–16 octobre 2009, Marseille, France

B.4 Communications sans actes (8)

CS8 « Simulation à l’échelle locale d’un écoulement en milieu poreux », F. Lesage et M.A. Latifi, Rencontre du groupe Informatique et Procédés de la SFGP, 12 janvier 2010, Nancy [Communication orale]
Annexe B. Production scientifique
Annexe C

Activités d’enseignement

Tous mes enseignements sont effectués à l’Ecole Nationale Supérieure des Industries Chimiques.

Le tableau C.1 récapitule les heures effectuées.

Outre les tâches classiques d’enseignement (TD et TP) dévolues aux maîtres de conférences, je me suis investi, du point de vue de l’enseignement, dans deux domaines : l’informatique appliquée et la mécanique des fluides numérique. Depuis 2009, j’assure également le cours de commande de procédés du 4e semestre en langue française, l’enseignant responsable (J.P. CORRIOU l’assurant en langue anglaise)

C.1 Modification de l’enseignement d’informatique appliquée

En 2002, j’ai modifié l’enseignement pratique d’informatique. J’ai en particulier introduit des cours de base de Visual basic pour Applications (programmation de macro-commandes Excel), langage très utilisé dans le milieu industriel en général. L’enseignement de VBA est toujours dispensé, à raison de 16h de formation. J’ai également mis en place et assure une formation de 4 heures sur les logiciels libres et les systèmes ouverts, qui participe plus de la culture générale que de l’enseignement pratique, mais qui permet d’ouvrir des perspectives à nos étudiants.

Je suis également à l’origine de l’utilisation de la plate-forme de e-learning (basée sur Moodle) dont nous disposons à l’INPL, toujours dans le cadre de l’informatique appliquée. Outre la distribution de corrections et exercices complémentaires, nous avons pu mettre en place des procédures d’auto-évaluation des étudiants. Un travail reste cependant à faire sur l’optimisation de leur utilisation par nos élèves.

C.2 Mécanique des fluides numérique

J’ai mis en place en 2005 (en coécriture avec C. GENTRIC) le cours de mécanique des fluides numérique de l’école, effectué au 6e semestre du cursus d’ingénieur et à nos étudiants de master. Nous y dispensons les notions élémentaires sur les méthodes de volumes finis (schémas de discrétisation, résolution des problèmes d’écoulements, turbulence, problèmes numériques...), avec deux types de séances d’exercices :

– des résolutions numériques complètes de problèmes simples, avec pour objectif de mieux assimiler les éléments du cours ;
– des résolutions de problème par Fluent, afin de prendre en main le logiciel.
Depuis 2009, j’assure ce cours en collaboration avec E. SAATDJIAN ; nous avons revu le
déroulement de l’enseignement tout en conservant globalement le contenu : nous évaluons dé-
sormais nos étudiants sur la base d’un projet, mettant en application les recommandations de
la Commission du Titre d’Ingénieur. Nous conservons cependant la dualité entre le traitement
numérique programmé ex-nihilo et l’utilisation de logiciels commerciaux.

C.3 Autres enseignements

Je suis également chargé de travaux dirigés en :
– analyse numérique : résolution numérique de systèmes algébriques, ODE, PDE, intégration
numérique ;
– optimisation : méthodes analytiques et numériques classiques, programmation linéaire,
introduction à l’optimisation dynamique ;
– conception de procédés assistée par ordinateur (CPAO) : applications sous Pro/II ;
– commande de procédés : bases de modélisation dynamique, stabilité, commande linéaire
en temps continu, PID et exemples d’amélioration de systèmes de commande.

C.4 Encadrement d’étudiants

J’encadre, depuis ma prise de fonctions, entre 1 et 4 stagiaires par an, dans le cadre de leur
stage « ingénieur » de 4 à 6 mois en entreprise.

J’ai également supervisé 8 projets de fin d’étude (4 mois de recherche au laboratoire) de nos
étudiants de dernière année, sans compter les DEA/masters recherche (présentés page 83) .

Je suis enfin membre d’un groupe d’encadrement de projet de conception ; réalisé par un
groupe d’étudiants, chaque projet consiste à dimensionner d’une installation industrielle. J’ai
systématiquement proposé des sujets ayant trait à des installations industrielles existantes, et
pour lesquelles les partenaires pouvaient être facilement joints : unité de fabrication de PVDF
(Solvay), de fluorure de vinylidène (Arkema), de polyéthylène (Ineos).

\begin{table}
\centering
\begin{tabular}{cccc}
\hline
Semestre & Nature & Intitulé & Heures \\
\hline
1 & TD & Informatique appliquée & 54 \\
1 & Projet & Informatique appliquée & 12 \\
1 & TP & Informatique appliquée & 32 \\
1 & TD & Mathématiques appliquées & 13,5 \\
3 & TD & Optimisation & 12 \\
3 & TD & CPAO & 12 \\
3 & 4 & Projet & Conception de procédés & 15 \\
4 & TD & Commande de procédés & 12 \\
4 & TD & CPAO & 20 \\
6 & Cours & Mécanique des fluides numériques & 4,5 \\
6 & Projet & Mécanique des fluides numérique & 12 \\
\hline
Total (eq. TD) & & & 191 \\
\end{tabular}
\caption{Récapitulatif des heures d’enseignement en présentiel (2008–2009)}
\end{table}
Annexe D

Activités de valorisation et transfert
– Activités administratives

On trouvera ici le détail des activités en liaison avec des partenaires industriels, qu’il s’agisse de contrats ou de collaborations plus universitaires (thèses ou masters).

D.1 Contrat CEA

Le CEA souhaitait pouvoir prédire finement la corrosion de fûts de stockage entreposés à l’extérieur, en fonction (entre autres) des scénarios climatiques. Un modèle et un code de calcul avaient été développés par M. Baklouti et N. Midoux ; suite au départ de M. Baklouti, j’ai repris le développement du code, et me suis occupé de son déploiement au CEA, ceci comprenant le développement d’outils de traitement amont et aval, le débogage du code, et la rédaction de notices.

D.2 Contrat SAIPPEM

L’objectif était de développer un modèle dynamique de séparateur gravitaire eau/huile, et de comparer ses performances en terme de rejet de perturbation (en boucle ouverte, puis éventuellement avec une régulation) à celles d’un séparateur cyclone, dont la modélisation était effectuée, sous ma supervision et celle de J.P. Corriou, par un étudiant de master (N. Butin). Nous avons ainsi pu fournir des modèles théoriques, ainsi qu’un ensemble de codes et un rapport Matlab/Simulink pour chaque type de séparateur.

D.3 Contrat et collaboration DECATHLON

Il s’agissait de proposer un modèle dynamique phénoménologique de transfert dans un vêtement, en interaction avec le porteur et l’environnement. Réalisé en collaboration avec M.A. Latifi, les différents contrats (4 contrats, effectués entre 2003 et 2009) ont eu pour but : le développement du modèle lui-même, son application au cas d’un plongeur (avec une étude de sensibilité des paramètres du modèle), et enfin l’extension au cas bidimensionnel, permettant de gérer l’étalonnage de liquide dans le tissu.

Un code de calcul nommé ACTIF a été développé (sous Matlab) et constamment amélioré, avec en particulier l’inclusion du solveur en éléments finis Comsol Multiphysics. Ces contrats
ont été la base de notre collaboration, qui s’est complétée d’une thèse BDI (S. QUINIOU).

D.4 Collaboration TOTAL

Cette collaboration, autour de la thèse (financement ministériel) de J.-D. LLAMAS, portait sur la quantification de la maldistribution de fluides dans un réacteur à lit fixe à co-courant vers le bas. Elle faisait suite aux financements des thèses de C. MARCANDELLI et C. PÉRAT par la société ELF. Notre partenaire a en particulier fourni les catalyseurs industriels et les extrudés utilisés au cours des expériences, ainsi qu’un financement de 20 k€/an. Nous avons ainsi pu donner au travail de thèse une forte connotation industrielle, au travers des nombreux échanges avec l’équipe « Raffinage/ Génie des procédés » du centre de recherche TOTAL de Gonfreville.

D.5 Délégation INEOS

J’ai passé 6 mois (décembre 2007–mai 2008) au Centre de Technologie de Lavéra, centre de recherche de la société INEOS. J’y ai développé un modèle dynamique de réacteur de polymérisation, incluant des modèles spécifiques pour la production de polypropylène. J’ai ainsi pu me former à l’utilisation d’un outil de simulation dynamique commercial (Aspen Custom Modeler) et appliquer des méthodologies de recherche à un cas industriel. La collaboration se poursuit, un stage a déjà été effectué dans la continuité, et un financement de thèse est envisagé pour fin 2010.

<table>
<thead>
<tr>
<th>Date</th>
<th>Durée (mois)</th>
<th>Intitulé</th>
<th>Partenaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>5</td>
<td>Finalisation & interfaçage du code de calcul de corrosion atmosphérique CATENA</td>
<td>CEA</td>
</tr>
<tr>
<td>2006</td>
<td>9</td>
<td>Modélisation dynamique de séparateurs eau/huile</td>
<td>SAIPEM</td>
</tr>
<tr>
<td>2004–2009</td>
<td>24 (total)</td>
<td>Modélisation des transferts couplés corps–vêtement-environnement (plusieurs contrats)</td>
<td>DECATHLON</td>
</tr>
<tr>
<td>2005–2008</td>
<td>36</td>
<td>Quantification de la maldistribution de fluides en trickle-beds (thèse)</td>
<td>TOTAL</td>
</tr>
<tr>
<td>2007–2008</td>
<td>6</td>
<td>Modélisation dynamique d’un réacteur de production de polypropylène</td>
<td>INEOS</td>
</tr>
</tbody>
</table>

| TABLE D.1 – Récapitulatif des contrats & collaborations industrielles

D.6 Activités administratives

Je suis actuellement chargé de la liaison entre l’école et le Centre de Ressources en Informatique de l’INPL, et anime le Groupe des Utilisateurs de l’Informatique du Site ENSIC (décharge administrative de 25 HETD).
Quatre publications choisies
Momentum transfer in a fixed-bed reactor described by the surface renewal model
Momentum transfer in a fixed-bed reactor described by the surface renewal model

F. Lesage, N. Midoux, M. A. Latifi*

Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, 1 rue Grandville, Nancy 54001, Cedex, France

Received 8 October 2001; received in revised form 14 August 2002; accepted 15 August 2002

Abstract

This paper presents experimental measurements and theoretical predictions of the velocity gradient in a fixed-bed reactor with single phase liquid flow. The local measurements are carried out by means of microelectrodes embedded in the packing of the bed, whereas the corresponding predictions are based on the surface renewal model. The fluid elements age distributions, needed in the surface renewal model, were determined using the variable-interval time-averaging (VITA) method. The parameters of VITA method, i.e. local interval time-averaging length a and threshold level k, were optimally selected and are equal to $3T_C$ (T_C is the integral time deduced from auto-correlation functions) and 0.9, respectively. It was shown that the surface renewal model is appropriate for predictions at high liquid flow rates, corresponding to a flow that behaves like a turbulent flow. Moreover, it was shown that with only one velocity gradient signal measurement, both experimental and theoretical values are obtained for a specified flow rate. The average value of the signal provides the experimental measurement, whereas its fluctuating part yields the corresponding theoretical prediction.

© 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Fixed beds; Single phase liquid flow; Velocity gradient; Microelectrodes; VITA method; Surface renewal model

1. Introduction

It is commonly admitted that phenomena involved in fixed-bed reactors are complex and still challenging. In order to better understand and predict these phenomena, both experimental and simulation aspects must be addressed. The final objective is to be able to correctly design, scale-up and master these reactors.

In this work, experimental measurements and theoretical predictions of momentum transfer are considered. More specifically, local measurement of the velocity gradient in the bulk of the packing and its prediction by means of the surface renewal model are studied.

The surface renewal concept is frequently used for quantitative prediction of the transfer rates of momentum, heat and mass in turbulent pipe flow. The concept assumes that the tube wall is covered by a mosaic of fluid elements of random ages and laminar flow with unsteady profiles of axial velocity, temperature or concentration.

One of the methods used to determine the age distribution and consequently the mean age of the fluid elements is the variable-interval time averaging (VITA) method. Basically, it allows to measure the time between two events which are assumed to correspond to fluid elements renewal, hence leading to their residence time (age) at the wall (Blackwelder & Kaplan, 1976; Johansson & Alfredsson, 1982).

The VITA method is known in the fluid mechanics community and has already been used in turbulent pipe flows. In fixed-bed reactors however, and to our knowledge, the method has never been used despite the increasing variety of local measurements carried out in porous media.

In the present paper, the extension of the surface renewal concept combined with the VITA method to fixed-bed reactors is presented. The objective is to predict the experimental measurements of the velocity gradient carried out in the bulk of the packing of a fixed bed with single phase liquid flow. This prediction necessitates the determination of optimal parameters of VITA method.

Of course the ultimate objective is to build appropriate analogies between momentum, heat and mass transfers based on local measurements in complex media like fixed-bed reactors.
2. Experimental details

The reactor studied here is a packed-bed reactor with single phase liquid flow (Fig. 1). It is constituted by a glass column with an inside diameter of 5.67 cm packed with 5 mm glass spheres. The packing height is 1.6 m and the overall porosity is 0.39.

The liquid phase (electrolyte) is made up of a mixture of 10 mol m$^{-3}$ of hexacyanoferrate II ions and 1 mol m$^{-3}$ of hexacyanoferrate III ions in a 500 mol m$^{-3}$ aqueous caustic soda solution. The specific gravity, the dynamic viscosity and the diffusion coefficient (of hexacyanoferrate III ions) are 1019 kg m$^{-3}$, 0.9 × 10$^{-3}$ Pa s and 7.24 × 10$^{-10}$ m2 s$^{-1}$, respectively.

Electrolyte is fed to the column by means of a centrifugal pump and the flow rate is measured with rotameters. At the outlet of the column, the liquid flows back to a storage tank where the temperature is maintained at 30°C (Naderifar, 1995; Lesage, 2000).

The method used for the experimental measurements is the electrochemical technique. It is based on the measurement of the limiting current obtained by electrochemical reduction of hexacyanoferrate III ions on a microelectrode flush mounted at a non-conducting wall (Storck & Coeuret, 1984; Latié, Midoux, Storck, & Gence, 1989).

The cathode is the most important electrode. Its details are given in Fig. 2. It is constituted by a very thin Teflon layer platinum wire of 250 μm which is isolated a second time using Epoxy resin and coated by means of a shrink. The resulting wire is inserted in a trail of polypropylene spheres of the same diameter as the packing. The objective is to mimic the porous medium structure in order to minimise the flow perturbations, thus ensuring the non-intrusive character of the method of measurement. The active surface is the end of the wire which flushes the surface of a Teflon sphere. The other end of the wire is used to supply the current.

Four probes like in Fig. 2 are mounted in tetrahedral form, thus constituting a pore of the fixed-bed. A photograph of the assembled probes (measurement system) before their introduction into the column is shown on Fig. 3. One can clearly distinguish the four white particles (Teflon spheres), the series of dark particles (polypropylene spheres), the end of the platinum wire which is used to supply the current, and the shrink used for electrical isolation.

The measurement system is then inserted in the porous medium (Fig. 4). The main feature of this measurement system is its ability of providing four simultaneous local measurements within the same pore.

It is worth noticing that this measurement system does not allow the determination of global fluid-to-particle exchanges which is not the purpose here. However, the global exchange measurements may be achieved by inserting the platinum wire in several points of a particle and then compute the global values from local measured quantities.

The anode is made out of platinum-plated nickel tube with a length of 9 cm and the same diameter as the column. It is placed downstream of the measurement system.

The time-averaged local velocity gradient is deduced from the measured limiting current using the following...
3. Theoretical background

3.1. Surface renewal model

In this paper, the surface renewal model initially proposed by Danckwerts (1951) for gas–liquid interfaces is used to describe the transfer between the liquid phase and the solid interface. For a fully developed turbulent flow, the model assumes that the tube wall is covered by a mosaic of fluid elements of random ages and laminar flow with unsteady profiles of axial velocity, temperature or concentration. Some fluid elements intermittently move from the bulk of the fluid towards the solid/liquid interface, where they replace older fluid elements. During their residence time \(\theta \) at the interface, momentum, heat and mass are exchanged between the fluid element and the interface. Considering a residence time distribution of the fluid elements \(\varphi(\theta) \), the time averaged of a local physical quantity \(F(y, t) \) is given by

\[
\bar{F}(y) = \frac{\int_0^\infty \theta (1/\theta) \int_0^\infty F(y, t) \varphi(\theta) d\theta}{\int_0^\infty \theta \varphi(\theta) d\theta}.
\]

If a fluid element has a time-independent probability to be renewed during a small time interval \(d\theta \), one can assume an exponential distribution of the fluid elements ages (Danckwerts, 1951; Fortuin & Klijn, 1982), as

\[
\varphi(\theta) = \frac{1}{\theta_0} e^{-\theta/\theta_0},
\]

where \(\theta_0 \) is a characteristic value of the ages. It is noteworthy that \(\theta_0 \) is the first-order moment of Eq. (4) which represents the mean age of fluid elements. The shape of Eq. (4) will be verified later using experimental measurements.

The combination of Eqs. (3) and (4) leads to a simple expression for \(\bar{F}(y) \) (Fortuin, Musschenga, & Hamersma, 1992):

\[
\bar{F}(y) = \frac{1}{\theta_0} \int_0^\infty F(t, y) e^{-t/\theta_0} dt.
\]

Since in this paper only momentum transfer is studied, by substituting the variable \(F \) by the velocity \(u \), the time-averaged momentum rate transferred at the wall is the time-averaged wall shear stress and can then be expressed as

\[
\bar{\tau}_w = \mu \left(\frac{\partial \bar{u}(y)}{\partial y} \right)_{y=0} = \mu \frac{1}{\theta_0} \int_0^\infty \left(\frac{1}{\theta_0} \int_0^\infty u(t, y) e^{-t/\theta_0} dt \right)_{y=0}.
\]

\[
\bar{\tau}_w = \frac{1}{\theta_0} \int_0^\infty \tau_w(t) e^{-t/\theta_0} dt.
\]

If the local instantaneous velocity \(u(t, y) \) and the characteristic time \(\theta_0 \) are known, then the computation of theoretical wall shear stress is straightforward.

As presented above, \(\theta_0 \) can be derived easily from Eq. (4) only once the distribution \(\varphi(\theta) \) is determined. On the other hand, the local instantaneous velocity \(u(t, y) \) is deduced from the solution of an unsteady-state momentum balance equation. Thus, if we consider that an element of fluid coming to the solid wall loses momentum by viscous interaction with that wall, the velocity profile in the element is given by the solution of the following reduced equation of motion:

\[
\frac{\partial \bar{u}}{\partial t} + \frac{\partial \bar{u}^2}{\partial y} = \nu \frac{\partial^2 \bar{u}}{\partial y^2}
\]

subject to the following initial and boundary conditions:

\[
t = 0, \quad y \geq 0, \quad u = u_b,
\]

\[
t > 0, \quad y = 0, \quad u = 0,
\]

\[
t > 0, \quad y = \infty, \quad u = u_b,
\]

where \(u_b \) is the velocity in the bulk of the flow (far away from the interface).

The solution of Eqs. (7) and (8) is

\[
u(t, y) = u_b \operatorname{erf} \left(\frac{y}{2 \sqrt{vt}} \right).
\]

The corresponding instantaneous liquid-to-wall momentum rate is

\[
\tau_w(t) = \mu \left(\frac{\partial \bar{u}}{\partial y} \right)_{y=0} = \frac{\mu u_b}{\sqrt{\pi vt}}.
\]
The combination of Eqs. (6) and (10) leads to the theoretical velocity gradient, given by

\[\tilde{S}_{th} = \frac{\tilde{w}}{\mu} = \frac{u_b}{\sqrt{t_0}} \]

(11)

On the other hand, since the bulk velocity cannot be expressed easily, we propose to use the interstitial velocity \(u_i = u_0 / \varepsilon \) instead of \(u_b \). Of course \(u_i \) is an average value of the local interstitial velocity since within a pore the velocity is not uniform in addition to liquid flow recirculations that may be involved mainly at high flow rates (Latifi & Storck, 1991).

The resulting theoretical velocity gradient that will be used for comparison with experimental measurements is

\[\tilde{S}_{th} = \frac{u_i}{\sqrt{t_0}} \]

(12)

In this paper, the porosity is assumed to be constant and uniform within the bed meaning that apart a scaling factor the results are the same. It is noteworthy that the only important result here is the proportionality between theoretical and experimental values of the velocity gradient. On the other hand, the characteristic value of ages \(t_0 \) determined from the current fluctuations \(\epsilon (t) \) is assumed to be the same for the velocity gradient fluctuations \(\xi (t) \).

Since \(u_i \) is an operating variable that is known, the only unknown is the average age fluid elements age \(t_0 \). Its determination through the renewal time distribution is the issue of the next section.

4. VITA method

The VITA method was developed by Blackwelder and Kaplan (1976) to analyse the wall structure of the turbulent boundary layer in the University of Southern California Low Turbulence Wind Tunnel. Six years later, Johansson and Alfredsson (1982) used the method for almost the same purpose but in a turbulent channel flow. In Chemical Engineering, Fortuin & Klijn (1982); Fortuin et al. (1992) used the VITA method mainly to describe the momentum transfer in a turbulent pipe flow by the surface renewal model.

Basically, VITA method allows to measure the time between two ‘events’ which are assumed to correspond to fluid elements renewals, hence leading to their residence time (age) at the wall. It then consists in moving an interval of length \(a \) on a time series \(x(t) \) of velocity (or velocity gradient), temperature or concentration measured over a period \(T \) (\(a \ll T \)).

At each time \(t \), the root mean square (RMS) of \(x(t) \) over the interval \([t - a/2, t + a/2]\), given by

\[x_{\text{RMS}}^2(t;a) = \frac{1}{a} \int_{t-a/2}^{t+a/2} x^2(\tau) \, d\tau \]

(13)

is computed and compared to the RMS \(\sigma_x^2 \) of \(x(t) \) over \(T \). The renewal of the fluid elements is supposed to take place when \(x_{\text{RMS}}^2 > k\sigma_x^2 \), where \(k \) is a threshold level that will be discussed later. It is evident that the quality of the results depends strongly on the choice of parameters \(a \) and \(k \). Furthermore, a detection function is defined as

\[D(t) = \begin{cases} 1 & \text{for } x_{\text{RMS}}^2 > k\sigma_x^2, \\ 0 & \text{elsewhere}. \end{cases} \]

(14)

The averaging time \(a \) should be of the same order of magnitude as the time scale of the phenomenon under consideration. It has to be large enough to locate the whole event but small enough to avoid covering more than one event at a time.

For the threshold \(k \), the values found in literature (Johansson & Alfredsson, 1982) vary from 0.2 to 1.6, and no criterion that allows to select the optimal value is available.

For the purpose of determination of renewal times, we will consider the time between two events (Fig. 5) which is assumed to be the age of the fluid elements. In this study,
5. Results and discussion

5.1. Position of probes with respect to flow direction

Fig. 6 presents the location of different probes with respect to flow direction. The values of the velocity gradients provided by probe 1 are expected to be lower than those provided by probes 2–4. This expectation is confirmed by the experimental results obtained on probes 1, 2 and 4 and presented in Fig. 7. Probe 1 is less exposed to the main flow compared to probes 2 and 4 which provide almost the same velocity gradient values.

5.2. Choice of VITA parameters

The values of VITA parameters, i.e. \(a\) and \(k\), were optimised as follows

(i) Local interval time-averaging length \(a\)

For each liquid flow rate, and for an arbitrary value of \(k\) which lies between 0.5 and 1.6, many values of \(a\) (proportional to the integral time \(T_c\) of signals \(i(t)\)) were tested. The integral coherence time is defined as

\[
T_c = \int_0^{\tau_c} C_\alpha(\tau) \, d\tau, \quad (15)
\]

where \(C_\alpha(\tau)\) is the auto-correlation function of signal \(i(t)\), and \(\tau_c\) the first positive value verifying \(C_\alpha(\tau_c) = 0\). \(T_c\) represents the average duration of coherent fluid elements and is of the same order of magnitude as the duration of events on the electrode, i.e. the incoming and leaving of a fluid element. The use of \(T_c\) in the determination of \(a\) makes the VITA method more general since one of its major parameters, i.e. \(a\), is adapted to the signal to be analysed. The value of \(a\) which leads to the best (in the sense of least squares) exponential distribution of fluid elements ages was chosen. The value of \(3T_C\) was found to be optimal (Lesage, 2000). This value is large compared to the time spent by a fluid element at the fluid/solid interface, i.e. time between incoming and leaving, and small compared to the surface renewal duration thus ensuring that no more than one event is involved in the interval \([t_a; t_a + a/2]\) (Fig. 5).

(ii) Threshold level \(k\)

Once \(a\) is fixed, the parameter \(k\) was chosen with respect to the sum of squared differences between theoretical and experimental values of the velocity gradient provided by probe 1. \(k\) takes different values between 0.85 and 1.0 when the flow rate varies. In this paper, the average value of 0.9 was found to be very satisfactory for all flow rates (Fig. 9).

5.3. Comparison of theoretical and experimental values of \(S\)

Using the optimal values of VITA parameters \(a\) and \(k\), both theoretical and experimental values of the velocity gradient are computed from Eqs. (12) and (1), respectively.
Fig. 8. Experimental age distribution function (determination of parameter a).

Fig. 9. Comparison between experimental and theoretical values of the velocity gradient (probe 1) (determination of parameter k).

Fig. 10. Validation of optimal values of parameters a and k by comparing experimental and theoretical values of the velocity gradient (probe 2).
The results obtained with probe 2 for liquid flow rates over 60 kg m\(^{-2}\) s\(^{-1}\) are presented in Fig. 10. These results are similar to those obtained with probe 4 since the positions of probes 2 and 4 in the pore are almost identical regarding the flow direction (Fig. 5). It is important to note that these figures exhibit a linear behaviour, mainly for high values of wall shear stress. This is an expected result since a turbulent flow is one of the assumptions of the surface renewal theory. Moreover, the flow rate of 60 kg m\(^{-2}\) s\(^{-1}\) corresponds to the lower limit of fully developed turbulent flow, i.e. \(\text{Re}_p \approx 350\) (Latifi et al., 1989; Seguin, Montillet, Comiti, & Huet, 1998).

5.4. Concluding remarks

Additional experimental measurements obtained with different microelectrodes were analysed using the determined values of parameters \(a\) and \(k\). The results confirm that \(a = 3T_C\) and \(k = 0.9\) are the optimal values that should be used when dealing with surface renewal model in fixed-bed reactors.

The optimal value of the local interval time-averaging length \(a\) naturally depends on the flow rate through the integral time \(T_C\) derived from auto-correlation functions. It is easily understandable since the renewal time globally decreases with the increase of the flow rate. The threshold level \(k\), is however, taken as constant in this work. Its eventual variations with the flow rate will be considered in further research works.

Finally, it is very important to note that both experimental and theoretical values of the velocity gradient are deduced from the same signal obtained for each flow rate and at each microelectrode. Thus, for a given fluctuating velocity gradient signal, the mean value provides the average experimental measurement, whereas the fluctuations yields the corresponding theoretical value.

6. Conclusions

In this work, both experimental measurements and theoretical predictions of the velocity gradient in a fixed-bed reactor are considered. Microelectrodes inserted in the packing of a fixed-bed are used for measurements, whereas the surface renewal model is used for predictions.

One of the originalities of this work is the quality and quantity of information extracted from the fluctuating velocity gradient signals obtained from microelectrodes. More specifically, with only one signal measurement obtained at a specified flow rate, we get both experimental and theoretical values from the average and fluctuating parts, respectively.

The fluctuating part was analysed in terms of age distribution functions using the very promising VITA method. The latter has two important parameters, i.e. local interval time-averaging length \(a\) and threshold level \(k\), which were optimally selected.

The resulting age distributions exhibit an exponential function behaviour, hence allowing the use of surface renewal model equations. Moreover, we showed that the surface renewal model is more suitable for high liquid flow rates, corresponding to a turbulent-like flow.

Finally, the use of the same approach for the determination of heat and mass transfer coefficients would result in more efficient analogies in fixed-bed reactors.

Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>local interval time-averaging length, s</td>
</tr>
<tr>
<td>(A_e)</td>
<td>microelectrode surface area, m(^2)</td>
</tr>
<tr>
<td>(C_0)</td>
<td>electrolyte bulk concentration, mol m(^{-3})</td>
</tr>
<tr>
<td>(C_{ui})</td>
<td>auto-correlation function of signal (I(t)), A(^2)</td>
</tr>
<tr>
<td>(d_e)</td>
<td>microelectrode diameter, m</td>
</tr>
<tr>
<td>(d_p)</td>
<td>particle diameter, m</td>
</tr>
<tr>
<td>(D)</td>
<td>molecular diffusion coefficient of hexacyanoferrate III ions, m(^2) s(^{-1})</td>
</tr>
<tr>
<td>(D(t))</td>
<td>detection function</td>
</tr>
<tr>
<td>(F)</td>
<td>Faraday constant, 96500 C/equivalent</td>
</tr>
<tr>
<td>(I)</td>
<td>(= I + i(t)), limiting current, A</td>
</tr>
<tr>
<td>(\bar{I})</td>
<td>time-averaged value of (I), A</td>
</tr>
<tr>
<td>(i(t))</td>
<td>fluctuations of (I), A</td>
</tr>
<tr>
<td>(k)</td>
<td>threshold level</td>
</tr>
<tr>
<td>(\text{Re}_p)</td>
<td>particle Reynolds number</td>
</tr>
<tr>
<td>(\bar{S})</td>
<td>time-averaged value of (S), s(^{-1})</td>
</tr>
<tr>
<td>(s(t))</td>
<td>fluctuations of (S), s(^{-1})</td>
</tr>
<tr>
<td>(t)</td>
<td>fluid element age, s</td>
</tr>
<tr>
<td>(T_c)</td>
<td>integral coherence time, s</td>
</tr>
<tr>
<td>(u_0)</td>
<td>superficial velocity, m s(^{-1})</td>
</tr>
<tr>
<td>(u_b)</td>
<td>velocity in the bulk of a pore, m s(^{-1})</td>
</tr>
<tr>
<td>(x_{\text{RMS}}^2)</td>
<td>local RMS of signal</td>
</tr>
<tr>
<td>(y)</td>
<td>distance to the solid boundary, m</td>
</tr>
</tbody>
</table>

Greek letters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)</td>
<td>bed porosity</td>
</tr>
<tr>
<td>(\mu)</td>
<td>dynamic viscosity, Pa s</td>
</tr>
<tr>
<td>(\nu)</td>
<td>kinematic viscosity, m(^2) s(^{-1})</td>
</tr>
<tr>
<td>(\rho)</td>
<td>specific gravity kg m(^{-3})</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>global RMS of signal</td>
</tr>
<tr>
<td>(\tau_c)</td>
<td>coherence time, s</td>
</tr>
<tr>
<td>(\tau_w)</td>
<td>wall shear stress, Pa</td>
</tr>
<tr>
<td>(\theta)</td>
<td>fluid elements age, s</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{exp})</td>
<td>experimental value</td>
</tr>
<tr>
<td>(\text{th})</td>
<td>theoretical value</td>
</tr>
</tbody>
</table>
References

Momentum transfer in a fixed-bed reactor described by the surface renewal model
Some computational aspects in the simulation of hydrodynamics in a trickle-bed reactor
Some computational aspects in the simulation of hydrodynamics in a trickle-bed reactor

A. Souadnia, F. Soltana, F. Lesage, M.A. Latifi*

Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, 1 rue Grandville, 54001 Nancy Cedex, France

Received 26 September 2003; accepted 24 August 2004
Available online 24 November 2004

Abstract

In this paper, the general multimaterial formulation of Kashiwa and Rauenzahn [1] is used to derive an appropriate hydrodynamic model for a trickle-bed reactor operating under trickling flow conditions. Using some realistic assumptions, the resulting model consists of two equations in two unknowns, i.e., liquid volume fraction and pressure. Moreover, the equations exhibit elliptic (pressure) and hyperbolic (volume fraction) behaviours, which require the use of different numerical methods in order to correctly handle these different numerical behaviours. Thus, the finite volume method, the Crank–Nicholson scheme and the second order Godunov’s method combined with the solution of Riemann problem were implemented. The numerical results of pressure drops derived from the model solution are shown to be in good agreement with the values measured in the same operating conditions or previously published in the literature.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Trickle-bed reactor; Trickling flow regime; Hydrodynamics; CFD simulation

1. Introduction

The increasing widespread use of trickle-bed reactors in fields (e.g., bio-industry, electrochemical industry, remediation of underground water resources, . . .) other than the traditional chemical, petrochemical and petroleum industries shows the importance of these reactors in industry. Modelling and simulation of trickle-bed reactors is a powerful tool that can help to understand the problems encountered in their design, scale-up and mastering. However, among the issues to be addressed in this very challenging task, the following two problems are particularly important to be solved: (i) the determination of right closure relations for momentum, heat and mass transfer balance equations, and (ii) the use of appropriate numerical methods for simulation.

Closure equations consist, for example in momentum transfer, of quantitative representation of total drag forces per unit of bed volume exerted by the liquid and gas phases, the volume averaged viscous stress tensor and the pseudoturbulence stress tensor of gas and liquid phases. This information is mainly obtained from experimental measurements (global and local) of momentum, heat and mass transfer parameters in the main different flow regimes.

Numerical methods are used to solve the resulting equations with associated initial and boundary conditions. Moreover, they should be able to take into account different types of numerical behaviours that are exhibited by the equations.

In this paper, the simulation of hydrodynamics in a trickle-bed reactor operating under trickling flow conditions is considered. The hydrodynamic model is derived using the interesting approach of Kashiwa and Rauenzahn [1]. Then the numerical behaviour of the resulting model equations is analysed and some computational aspects are detailed in order to show how all the numerical problems encountered are correctly treated. Finally, additional results (to those presented in [2]) of pressure drops are obtained and compared to the experimental measurements determined in the same operating conditions or previously published in the literature.
2. Trickle-bed reactor model

The trickle-bed reactor model used here is based on the very attractive approach developed by Kashiwa and Rauenzahn [1]. It is based on the statistical method for non-equilibrium flow and consists in the development of averaged equations for the general multimaterial case. The resulting general equations are adapted to our problem through the following assumptions:

- A1. The flow is in steady-state. The accumulation term in the continuity equations is however maintained for computational reasons.
- A2. There is no source of mass and consequently no resulting momentum source.
- A2. Both fluids are incompressible.
- A3. The inertial, viscous and Reynolds terms are neglected compared to the drag force terms (momentum exchange terms).
- A4. The bed porosity is constant and uniform.
- A5. The acceleration by the non-equilibrium pressure is neglected.
- A6. The reactor is operating under trickling flow regime.
- A7. The capillary pressure is neglected.

The resulting model equations are given as follows:

- Continuity equations:
 \[
 \frac{\partial (\theta_m \rho_m)}{\partial t} + \nabla \cdot \theta_m \rho_m \mathbf{u}_m = 0, \quad m = G, L
 \] (1)

- Momentum equations (the system vertical axis is oriented downward):
 \[
 0 = -\theta_m \nabla p + \theta_m \rho_m \mathbf{g} + \mathbf{F}_m, \quad m = G, L
 \] (2)

where \(\theta_m \) is the volume fraction of the phase \(m \) in the reactor. The volume fractions of the phases satisfy the following constraint:

\[
\theta_G + \theta_L + \theta_S = 1 \quad \text{or} \quad \theta_L = 1 - \theta_S = \varepsilon \quad \text{or} \quad s_L + s_G = 1
\] (3)

where

\[
s_L = \frac{\theta_L}{1 - \theta_S} \quad \text{and} \quad s_G = \frac{\theta_G}{1 - \theta_S}
\] (4)

are the liquid and gas saturation, respectively.

\(\mathbf{F}_m \) is the total quantity of momentum exchanged by the phase \(m \). For the gas and liquid phases, \(\mathbf{F}_G \) and \(\mathbf{F}_L \) are, respectively, given by:

\[
\mathbf{F}_G = \mathbf{F}_{DG-S} + \mathbf{F}_{DG-L} \quad \text{and} \quad \mathbf{F}_L = \mathbf{F}_{DL-S} + \mathbf{F}_{DL-G}
\] (5)

where \(\mathbf{F}_{DG-S} \) and \(\mathbf{F}_{DL-S} \) are the total drag forces per unit of bed volume exerted by the gas and liquid phases, respectively. The term \(\mathbf{F}_{DL-G} \) characterises the gas/liquid inter-

actions, which depend on the flow regime in the reactor. In the trickling flow regime, this term vanishes.

In order to close momentum equations, the relations between \(\mathbf{F}_{DG-S} \) or \(\mathbf{F}_{DL-S} \) and the operating variables are needed. Here, the general term \(\mathbf{F}_{DG-S} \), which is a momentum flux may be modelled as the product of a momentum transfer coefficient and a driving force, as follows:

\[
\mathbf{F}_{DG(m-n)} = \theta_m \theta_n \mathbf{X}_{mn} (\mathbf{u}_m - \mathbf{u}_n), \quad m, n = G, L, S
\] (6)

where \(\mathbf{X}_{mn} \) is the momentum transfer coefficient between the phases \(m \) and \(n \). In the case of fluid/solid interactions, Eq. (6) reduces to \(\mathbf{F}_{DG(m-S)} = \theta_m \theta_S \mathbf{X}_{ms} \mathbf{u}_m, \quad m = G, L, \) and \(\mathbf{X}_{ms} \) is modelled by means of the correlations of Saez and Carbonell [3]:

\[
\mathbf{X}_{ms} = \frac{\theta_m \mu_m}{\theta_S k_{ms} \theta_m}, \quad m = G, L
\] (7)

where \(k_{ms} \) is the intrinsic permeability of the bed, given by:

\[
k_{ms} = \frac{A \mu_m \theta_S^2}{d_p^2 (1 - \theta_S)} + \frac{B \rho_m \theta_S}{d_p (1 - \theta_S)} \left| \mathbf{U}_m \right|^2, \quad m = G, L
\] (8)

\(k_{ms} \), \(l = G, L \), are the relative permeabilities of the gas and liquid phases, respectively. They are expressed as:

\[
k_{SL} = \left(\frac{\theta_L}{1 - \theta_S} - \theta_L^0 \right) \left(\frac{\theta_L}{1 - \theta_S} + \theta_L^0 \right)^{2.43} \quad \text{and} \quad k_{SG} = \left(\frac{\theta_G}{1 - \theta_S} \right)^{4.8}
\] (9)

where \(\theta_L^0 \) is the static (residual) liquid fraction defined by:

\[
\theta_L^0 = \frac{1}{20 + 0.9 E_o^s} \quad \text{and} \quad E_o^s = \frac{\rho_L g d_p^2 (1 - \theta_S)^2}{\sigma L \theta_S}
\] (10)

The momentum Eq. (2) reduces then to a general form of Darcy’s law [4], which provides both gas and liquid superficial velocities as:

\[
\mathbf{U}_m = -k_{ms} \left(\frac{k_{ms}}{\mu_m} \right) (\nabla p - \rho_m \mathbf{g}), \quad m = G, L
\] (11)

where \(\mathbf{U}_m \) is the superficial velocity (\(\mathbf{U}_m = \theta_m \mathbf{u}_m \)).

On the other hand, taking into account the volume constraint (3), the two continuity equations reduce to only one equation, e.g., the liquid volume fraction equation:

\[
\frac{\partial \theta_L}{\partial t} + \nabla \cdot \mathbf{U}_L = 0
\] (12)

The whole problem is fully determined by two variables only, i.e., \(\theta_L \) and \(\rho \). The corresponding equations are developed in the following section.

2.1. Equations reformulation

In the sequel, only the superficial velocity \(\mathbf{U}_m \) will be used. Thus, by adding the continuity Eq. (1) of each phase and
taking into account the volume constraint (3), we get:

$$\nabla \cdot (U_L + U_G) = 0 \tag{13}$$

Using Darcy’s laws (11) to replace the phase velocities in (13), we get the following pressure equation:

$$\nabla \cdot ((\alpha_L + \alpha_G) \nabla p) = \nabla \cdot [(\alpha_L \rho_L + \alpha_G \rho_G) g] \tag{14}$$

where

$$\alpha_L = k_L \left(\frac{k_L}{\mu_L} \right) \quad \text{and} \quad \alpha_G = k_G \left(\frac{k_G}{\mu_G} \right) \tag{15}$$

It is worth noticing that the pressure equation exhibits an elliptic behaviour since the pressure effects are instantaneously felt throughout the reactor. On the other hand, the continuity equations are typically hyperbolic with respect to volume fractions. The saturation fronts move at a finite speed.

The treatment of the different types of numerical behaviours needs different numerical methods. For this, elliptic and hyperbolic parts of the problem need to be split. To this end, the concept of total velocity is introduced [5]:

$$U_T = U_L + U_G \tag{16}$$

Using Eq. (13), we get:

$$\nabla \cdot (U_L + U_G) = \nabla \cdot U_T = 0 \tag{17}$$

The total velocity U_T is consequently divergence-free. Moreover, in incompressible problems with no capillary pressure, which is the case here, the use of total velocity splits the system (12) and (14) into elliptic and hyperbolic equations [5].

The use of Eq. (11) leads to:

$$U_T = -(\alpha_L + \alpha_G) \nabla p + (\alpha_L \rho_L + \alpha_G \rho_G) g \tag{18}$$

The liquid velocity in terms of total velocity is then derived as:

$$U_L = \frac{\alpha_L}{\alpha_L + \alpha_G} U_T + \frac{\alpha_G}{\alpha_L + \alpha_G} (\rho_L - \rho_G) g \tag{19}$$

Now, the substitution of Eq. (19) in the continuity equation for liquid (12) (S_L is easier to measure), allows to obtain:

$$\frac{\partial \theta_L}{\partial t} + \nabla \cdot \Psi(\theta_L, U_T) = 0 \tag{20}$$

where the flux Ψ is in this case equal to U_L.

The original model equations are thus reduced to two equations: elliptic pressure Eq. (14) and hyperbolic saturation Eq. (20).

2.2. Explicit expression of velocity

Using the general form of Darcy’s law, an implicit non-linearity problem appears in equations reformulation and introduces additional complications to solution computation. This is more illustrated by writing Eq. (11) as:

$$U_m = -\alpha_m(\theta_L, |U_m|) \nabla \hat{p}, \quad m = G, L \tag{21}$$

where $\nabla \hat{p} = \nabla p - \rho g$. The aforementioned problem becomes evident and is clearly shown since the velocity is involved in both sides of Eq. (21). An explicit expression of velocity is needed in order to solve the problem. For this, Eq. (8) may be rewritten as:

$$k_m = \frac{\mu_m}{Q_m + R_m |U_m|}, \quad m = G, L \tag{22}$$

where

$$Q_m = \frac{A \mu_m^2 \theta_S^2}{d_p^2 (1 - \theta_S)^3} \quad \text{and} \quad R_m = \frac{B \mu_m \rho_m \theta_S}{d_p (1 - \theta_S)^3} \tag{23}$$

The combination of Eqs. (15), (21) and (22) leads to:

$$\alpha_m (Q_m + \alpha_m R_m |\nabla \hat{p}|) = k_m, \quad m = G, L \tag{24}$$

This second order algebraic equation is solved for $1/\alpha_m$ (α_m being a positive variable) in order to avoid an undefined division whenever R_m or $\nabla \hat{p}$ vanish during the iteration process. The solution is then given by:

$$\alpha_m = \frac{2k_m}{Q_m (1 + \sqrt{1 + 4k_m^2/Q_m^2 (\nabla \hat{p})})}, \quad m = G, L \tag{25}$$

The velocity can now be computed explicitly in terms of liquid volume fraction (through k_m) and pressure gradient. The non-linearity problems remaining in θ_L and p equations are handled by linearising these equations using a fixed-point iteration method [2,6].

2.3. Boundary conditions

In this paper, only the one-dimensional model is considered. It takes into account the axial variations of pressure and liquid volume fraction. Lateral and azimuthal variations are, therefore, assumed to be uniform. The boundary conditions associated with partial differential Eqs. (14) and (20) are then defined as:

(i) **Packed bed inlet**: As we will see later, the computational technique used to solve the model equations is based on finite volume method. Thus, the pressure and liquid volume fraction at inlet conditions are determined by specifying the gas and liquid velocities [7,8] as:

- assuming that the liquid is uniformly distributed at the reactor inlet, the liquid flow rate at each cell is:

$$U_L^i \Omega^i = -\alpha_L^i \nabla \hat{p}^i \Omega^i, \quad i = 1, 2, \ldots, N \tag{26}$$

where N is the number of cells, Ω^i the cell cross-sectional area.

- on the other hand, the gas flow rate constraint is given by:

$$U_G \Omega = \sum_{i=1}^{N} \alpha_L^i \nabla \hat{p}^i \Omega^i \tag{27}$$
Relations (26) and (27) form a system of \((N + 1)\) equations in \((N + 1)\) unknowns. Here, the unknowns are chosen to be \(N\) liquid volume fractions, \(\theta_L^n\), and the pressure at the top, \(p\). They are determined by means of a Newton–Raphson method.

(ii) Packed bed outlet: The pressure is specified and is equal to the atmospheric pressure:

\[
p = p_{\text{atm}}
\]

(28)

For the volume fraction, the following condition is used:

\[
\frac{\partial \theta_L}{\partial z} = 0
\]

(29)

which is the usual outlet condition.

3. Computational method

Eqs. (14) and (20) combined with the boundary conditions (26)–(29) are discretised using the finite volume approach introduced by Pantankar [9]. Thus, in a cell (or control volume) and for the one-dimensional model, the saturation Eq. (20) is discretised using the Crank–Nicholson scheme, as:

\[
\frac{\theta_L^{n+1} - \theta_L^n}{\Delta t} + \frac{\Psi^{n+1/2} - \Psi^{n-1/2}}{\Delta z} = 0
\]

(30)

where \(\Psi^{n+1/2}\) is the flux at edge \((i + 1/2)\) at half time step \((n + 1/2)\).

Since the fluxes \(\Psi\) depend on liquid volume fraction and total velocity, the latter variables are computed at cell edges at half time steps. The computation algorithm, which allows to determine \(\Psi^{n+1/2}\) and consequently \(\theta_L^{n+1}\) from \(\theta_L^n\) defined in the centre of the cell is given by:

1. Compute \(p^n\), the pressure at current time, by solving Eq. (14). The total velocity \(U_T^n\) is then deduced using Eq. (18).
2. Extrapolation of liquid volume fraction \(\theta_L^n\) from cell centres at current time to cell edges at half time step \(\theta_{\text{edge}}^{n+1/2}\) using second order Godunov’s method [7,8]. The developments of this method are given below.
3. Computation of total velocity at half time step. This is achieved in two steps:
 (i) Prediction of the liquid volume fraction \(\theta_L^{n+1}\) at next time step by solving the following equation:

\[
\frac{\theta_L^{n+1, \text{predicted}} - \theta_L^n}{\Delta t} + \nabla \cdot \Psi(\theta_{\text{edge}}^{n+1/2}, U_T^n) = 0
\]

(31)

(ii) The predicted volume fraction is then used to compute \(p^{n+1}\) and subsequently \(U_T^{n+1/2}\). The total velocity at half time step \((n + 1/2)\) is estimated as:

\[
U_T^{n+1/2} = \frac{1}{2}(U_T^n + U_T^{n+1})
\]

(32)

4. Finally, the liquid volume fraction \(\theta_L^{n+1}\) at step \((n + 1)\) is deduced from the following equation:

\[
\frac{\theta_L^{n+1} - \theta_L^n}{\Delta t} + \nabla \cdot \Psi(\theta_{\text{edge}}^{n+1/2}, U_T^{n+1/2}) = 0
\]

(33)

4. Second order Godunov’s method

Basically, the objective of Godunov’s method is to compute edge-centred fluxes that can be differentiated to compute the flux term \(\Psi\) [7]. The fluxes are computed at cell-edges in two-steps. The first step is a Taylor series extrapolation of volume fractions from cell centres to cell edges at the half time step. Since each edge borders two cells, this extrapolation produces two edge volume fractions. The second step is to use the two extrapolated edge volume fractions to choose the correct flux at the cell edge (solving the Riemann problem).

Step 1. Taylor series extrapolation in space and time \((i + 1/2, n + 1/2)\):

\[
\theta_{i+1/2}^{n+1/2} \approx \theta^n + \Delta z \frac{\partial \theta}{\partial z} + \frac{\Delta t}{2} \frac{\partial \theta}{\partial t}
\]

\[
= \theta^n + \Delta z \frac{\partial \theta}{\partial z} - \frac{\Delta t}{2} \nabla \cdot \Psi(\theta, U_T^n)
\]

\[
= \theta^n + \frac{1}{2} \left(1 - \Delta t \frac{\partial \Psi}{\partial z} \Delta z \frac{\partial \theta}{\partial z} - \frac{\Delta t}{2} \frac{\partial \Psi}{\partial U_T} \frac{\partial U_T}{\partial z}\right)
\]

(34)

Note that the term \(\partial \Psi/\partial \theta\) represents the characteristic wave speed. Since the extrapolation is done from the centre \(i\) to the edge \(i + 1/2\), we only consider waves moving in that direction, which comes to eliminate waves that have a negative sign. In this case, the extrapolation becomes:

\[
\theta_{i+1/2}^{n+1/2} = \theta_i^n + \frac{1}{2} \left(1 - \Delta t \frac{\partial \Psi}{\partial z} \Delta z \frac{\partial \theta}{\partial z} - \frac{\Delta t}{2} \frac{\partial \Psi}{\partial U_T} \frac{\partial U_T}{\partial z}\right)
\]

(35)

Here, the derivative \(\partial \theta/\partial z\) is approximated by Van Leer slope [10] as:

\[
\frac{\partial \theta}{\partial z} \approx \frac{\Delta \theta_{\text{VL,M}}}{\Delta z}
\]

(36)

where \(\Delta \theta_{\text{VL,M}}\) is the modified second order Van Leer slope. The regular second order Van Leer slope \(\Delta \theta_{\text{VL}}\), which is geometrically limited to centred differences allows to avoid production of any new maxima or minima in the solution, and is given by:

\[
\Delta \theta_{\text{VL}} = \begin{cases}
\min(2(|\theta_i - \theta_{i+1}|, |\theta_{i+1} - \theta_{i-1}|, 2(\theta_{i+1} - \theta_i)) & \text{if} (\theta_{i+1} - \theta_{i})(\theta_i - \theta_{i-1}) > 0 \\
0 & \text{otherwise}
\end{cases}
\]

(37)
\(\Delta \theta^{VL,M}\) is obtained by multiplying \(\Delta \theta^{VL}\) by a smoothing function \(sf(\chi)\). The latter is chosen so that the slope vanishes in the neighbourhood of the volume fraction front and is expressed as:

\[
sf(\chi) = \begin{cases}
1, & \text{if } \chi < \chi^L \\
\chi^*, & \text{if } \chi^L < \chi < \chi^R \\
0, & \text{if } \chi > \chi^R
\end{cases}
\] (38)

where \(\chi^* = \frac{\chi - \chi^R}{\chi^L - \chi^R}\) (39)

\(\chi\) is a parameter characterising the presence or not of a volume fraction front. It is defined by:

\[
\chi = \frac{|\theta_{i+1} - \theta_{i-1}|}{\max(|\theta_{i+1} - \theta_{i-1}|, |\theta_{i+2} - \theta_{i-2}|, \delta)}
\] (40)

where \(\delta = 0.001\) is a tolerance.

According to Propp [7], the front of volume fraction is present in any region where \(\chi > \chi^R\) and that a smooth region corresponds to \(\chi < \chi^L\). In this work, the values of \(\chi^L = 0.65\) and \(\chi^R = 0.75\) are chosen as in [7].

To complete the calculation of \(\theta_{\text{edge}}\), we approximate \(\partial U_T/\partial \theta\) by a standard finite difference approximation:

\[
\partial U_T/\partial \theta \approx \frac{\Delta U_T}{\Delta \theta}
\] (41)

Step 2. Choice of the correct flux at cell edges by solving the Riemann problem:

The Riemann problem is given by the following initial problem:

\[
\frac{\partial \theta}{\partial t} + \frac{\partial \Psi(\theta)}{\partial z} = 0
\] (42)

with the initial conditions:

\[
\theta(z, 0) = \begin{cases}
\theta^L, & z < 0 \\
\theta^R, & z > 0
\end{cases}
\] (43)

The solution of this problem is central to Godunov’s method and depends on the properties of the flux function \(\Psi\). Thus, the convexity of the flux function as well as the presence of critical states are important. A critical state is defined as the volume fraction \(\theta^C\), such that:

\[
\frac{\partial \Psi(\theta^C)}{\partial \theta} = 0
\] (44)

If the flux function has no critical points, the extrema of the flux will be \(\theta^L\) and \(\theta^R\). In this case, the Riemann problem is simple to solve and the solution is given by [11]:

\[
\Psi_{\text{RP}}(\theta^L, \theta^R) = \begin{cases}
\min [\Psi(\theta^L), \Psi(\theta^R)], & \text{if } \theta^L < \theta^R \\
\max [\Psi(\theta^L), \Psi(\theta^R)], & \text{if } \theta^L > \theta^R
\end{cases}
\] (45)

When critical states exist, they make the Riemann problem more difficult to solve. In this case, the critical state is defined as:

\[
\min (\theta^L, \theta^R) < \theta^C < \max (\theta^L, \theta^R)
\] (46)

If we assume that there is at most one critical state in each grid cell, the solution to Riemann problem is given by:

\[
\Psi_{\text{RP}}(\theta^L, \theta^R) = \begin{cases}
\min [\Psi(\theta^L), \Psi(\theta^R), \Psi(\theta^C)], & \text{if } \theta^L < \theta^R \\
\max [\Psi(\theta^L), \Psi(\theta^R), \Psi(\theta^C)], & \text{if } \theta^L > \theta^R
\end{cases}
\] (47)

The numerical implementation of this algorithm needs the computation of critical states. This is achieved by solving Eq. (44) using a Newton method.
5. Computational results

The reactor studied here is a packed-bed reactor with co-currently downward gas (nitrogen) and liquid (aqueous caustic soda solutions with hexacyanoferrate II and III ions) flow. It is constituted by a glass column with an inside diameter of 5 cm packed with 5 mm glass spheres. The packing height is 1.6 m and the overall porosity is 0.39 [12–14].

The simulations were carried out for different values of gas and liquid flow rates. The initial liquid saturation in the reactor was assumed to be uniform and equal to 0.15. The number of cells used is equal to 100 and the integration time step is 0.001 s.

For example, for gas and liquid flow rates of \(G = 0.61 \, \text{kg/m}^2\text{s} \) and \(L = 8.06 \, \text{kg/m}^2\text{s} \), corresponding to the trickling flow regime, the liquid saturation and pressure profiles are determined after 8 and 25 s of simulation times and presented, respectively, in Figs. 1–4.

It can be seen that for the simulation time of 8 s, the liquid saturation (Fig. 1) presents an expected propagation front. The pressure profile (Fig. 2) exhibits a change in the slope at the same position in the reactor as the saturation front. These results show that all the numerical problems involved were correctly handled by means of the computational methods used. When the simulation time is beyond the liquid residence time in the reactor, i.e., 25 s, the saturation becomes uniform and equal to the specified value at the reactor inlet (Fig. 3). The corresponding pressure profile is, as expected, linear throughout the reactor (Fig. 4).

The numerical results of pressure drops are compared to those previously measured in the same operating conditions.
The comparison is shown in [2] for two different values of liquid kinematic viscosity ($\nu_L = 8.8 \times 10^{-7}$ m2/s and $\nu_L = 1.71 \times 10^{-6}$ m2/s). Here, additional results for two other values of $\nu_L (0.96 \times 10^{-6}$ and 1.14×10^{-6} m2/s) are presented in Figs. 5 and 6, respectively. The agreement is quite satisfactory especially between theoretical and experimental results. The slight difference with the literature correlations used [15,16] is mainly due to the presence of electrolytic species in the liquid phase. The resulting hydrodynamics is slightly different compared to gas/liquid flows with non-electrolytic liquid phases.

6. Conclusions

The objective of this paper is to give some computational aspects of the simulation of hydrodynamics in a trickle-bed reactor operating under trickling flow conditions. In a first step, we have shown how to derive, through some realistic assumptions, an appropriate model from the general multimaterial formulation of Kashiwa and Rauenzahn [1]. The resulting model equations are then closed by means of the correlations of Saez and Carbonell [3], which are based on the concept of relative permeabilities. In a second step, the equations were reformulated in terms of pressure and liquid volume fraction. The elliptic (pressure) and hyperbolic (volume fraction) behaviour of these equations require the implementation of different numerical methods. Thus, the finite volume method, the Crank–Nicholson scheme and the second order Godunov’s method combined with the solution of Riemann problem were used. These numerical methods have shown to be efficient and all numerical problems related to the solution were correctly handled. Moreover, it was shown that the pressure drop values derived from the model solution are in good agreement with those measured in the same operating conditions or found in the open literature.

However, in order to extend the model to high interaction regimes (pulsing and dispersed flow regimes), further developments are needed. In the first step, a two-dimensional model, which takes into account lateral variations of variables, should be developed. Then, gas/liquid interactions and eventually porosity profiles should be considered and included in the model.

Appendix A. Nomenclature

- A: 150, coefficient of Ergun correlation
- B: 1.75, coefficient of Ergun correlation
- d_p: particle diameter (m)
- Eo: modified Eotvos number
- H: reactor height (m)
- k: permeability (m)
- k_r: relative permeability
- ν: kinematic viscosity (m2/s)
- ρ: specific gravity (kg/m3)
- σ: surface tension (N/m)
- θ: volume fraction
- ε: overall bed porosity
- μ: dynamic viscosity (Pa.s)
- ν: kinematic viscosity (m2/s)
- ρ: specific gravity (kg/m3)
- σ: surface tension (N/m)
- Φ_L: flow parameter
- Ω: reactor cross-sectional area (m2)

Greek letters

- δ: tolerance
- ε: overall bed porosity
- θ: volume fraction
- μ: dynamic viscosity (Pa.s)
- ν: kinematic viscosity (m2/s)
- ρ: specific gravity (kg/m3)
- σ: surface tension (N/m)
- Φ_L: flow parameter

Subscripts

- G: gas phase
- L: liquid phase
- LG: gas/liquid
- T: total

Superscript

- 0: static
- L: left
- n: current time step
- R: right

References

Some computational aspects in the simulation of hydrodynamics in a trickle-bed reactor
Local liquid saturation measurements inside a trickle bed reactor operating near the transition between pulsing and trickling flow
Local liquid saturation measurements inside a trickle bed reactor operating near the transition between pulsing and trickling flow

J.D. Llamasa, F. Lesagea,\,*, G. Wildb

aLaboratoire des Sciences du Génie Chimique, Nancy-Université, CNRS, 1, Rue Grandville, 54000 Nancy, France
bDépartement de Chimie Physique des Réactions, Nancy-Université, CNRS, 1, Rue Grandville, 54000 Nancy, France

Received 28 March 2007; received in revised form 15 July 2007; accepted 13 August 2007
Available online 24 August 2007

Abstract

A wire-mesh tomography device was used to study the liquid saturation at 78 points covering the cross-sectional area of a 0.30 m diameter trickle bed reactor. Measurements in the pulsing flow near the transition were done for glass beads and alumina cylinders using air and water as fluids. Local liquid saturation measurements allow identification of flow regime and pulse frequency for each of the 78 points considered. To the best of the authors’ knowledge this is the first time that such local measurements are done for the complete sectional area of a trickle bed reactor. Flow rate conditions at which different flow regimes coexist at the same horizontal plane of the column were identified. A remarkable influence of the initial liquid distribution on the observed flow regime was also observed.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Trickle-bed reactor; Multiphase flow; Porous media; Tomography

1. Introduction

Because of its advantages in terms of costs and performance, reactors in which a gas and a liquid flow cocurrently downward over a fixed bed of solid particles (referred as trickle beds) are widely used in industry. Depending on the throughputs of gas and liquid used, several flow regimes can exist in a trickle bed reactor as it has been described in numerous articles (see e.g. Saroha and Nigam, 1996). At low gas and liquid rates, trickling flow is observed. At larger liquid and gas flow rates, liquid and gas continuous zones traverse the column length alternatively. This flow regime (pulsing flow) is of great interest as it is characterized by an enhancement in overall mass and heat transfer, a decrease in axial dispersion, a complete wetting of the catalyst (at least in laboratory scale) and a regular renewal of the stagnant liquid zones. In industry, specially in the petrochemical field, trickle bed reactors often operate near the transition from trickling to pulsing flow.

Most studies in the pulsing flow regime have been made in small diameter columns. Under these conditions the pulses, limited by the diameter of the column, cover the whole column cross section. In larger columns, this may not happen and, at least near the transition, pulsing and trickling flow can coexist in the column: the consequences in terms of performance (zones of low mass transfer rates) or safety (risk of hot spot formation in trickle flow zones) are evident.

In the present study, a wire mesh tomography device similar to the one presented by Prasser et al. (1998) is used to estimate, for a given bed depth, local liquid saturation over the cross sectional area of a 0.3 m ID trickle bed reactor. With an acquisition frequency of 133 Hz for each point considered, the device is able to follow the evolution of liquid saturation with time, whether the column is operated in the trickling or pulsing flow regimes.

2. Experimental setup and procedures

Experiments were conducted in a fixed bed with a 0.3 m ID and 1.3 m height, at room temperature and pressure. Gas and liquid entered the reactor through four gas chimneys and a perforated plate (Fig. 1). Flow rates were controlled using rotameters. Water, which was used as the liquid phase, was pumped from a 0.5 m3 tank where it was kept at constant temperature..
Two kinds of solid were used: glass beads and porous alumina cylinders. The first ones were chosen because they are the traditional benchmark of trickle beds reactors studies, the second, because of their industrial interest, as it is the kind of particles used, for instance, in hydrodesulphurization reactors. Size, mean external porosity and superficial gas and liquid velocities are summarized in Table 1. Before each experiment, solid packing was prewetted by operating the reactor in the pulsing flow for several minutes.

While pressure drop is measured using two piezoresistive pressure transducers placed at the entrance and the exit of the reactor, a wire mesh tomography device placed 0.96 m below the liquid distributor is used to estimate the local liquid saturation values over the cross-sectional area of the fixed bed. Initially proposed by Johnson (1987) to measure water fractions in crude oil, wire mesh tomography uses two planes of parallel wires to detect the presence of a conductive fluid between them. If a current is applied to one of the wires of the first (transmitter) plane, it will not be measured on the second (receiver) plane, unless a conductive fluid makes the connection between them. If a current is applied to one of the wires of the first (transmitter) plane, it will not be measured on the second (receiver) plane, unless a conductive fluid makes the connection between them. Designed according to the work by Prasser et al. (1998) the wire mesh tomography sensor used for this study consists of two planes of 19 stainless steel wires resulting in 313 measurable crossing points (Fig. 2). For each of the crossing points, the local liquid saturation can be estimated as

\[\beta_{L}^{i} = \frac{C_{L}^{i}}{C_{\text{liquid filled column}}} = \frac{\varepsilon_{i}^{L}}{\varepsilon} = \frac{C_{i}}{C_{\text{liquid filled column}}}, \]

where \(C_{i} \) is the measured conductance for crossing point \(i \) and \(\beta_{L}^{i} \) is the local liquid saturation which is the ratio of the local liquid holdup \(\varepsilon_{i}^{L} \) to the bed porosity \(\varepsilon \). Detailed information about the present wire mesh tomography system, including its advantages and limitations will be presented in a forthcoming paper.

Unlike the one employed by Prasser et al. (1998) in bubble columns, the wire mesh tomography system used in this study was designed to obtain liquid distributions in steady state. The difference comes from the fact that, while the system designed by Prasser et al. (1998) uses one operational amplifier for each wire of the receiver plane, thus allowing simultaneous measurement of all wires, the system employed here uses only one amplifier (and a multiplexer circuit) for all the wires of the receiver plane. As a consequence, only one crossing point is measured at a given time and about 10 s are necessary to make a complete scan of the reactor, making successively one measure for each

<table>
<thead>
<tr>
<th>Solid type</th>
<th>Size and standard deviation (\sigma) (mm)</th>
<th>(\varepsilon)</th>
<th>Superficial gas velocity (m/s)</th>
<th>Superficial liquid velocity (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass beads</td>
<td>(d_{p} = 2)</td>
<td>0.39</td>
<td>0.21</td>
<td>0.37</td>
</tr>
<tr>
<td>Alumina cylinders</td>
<td>(d_{p} = 1.2) (\sigma = 0.16) (L = 4.3) (\sigma = 1.5) (\v_{\text{internal}} = 0.46)</td>
<td>0.47</td>
<td>0.24</td>
<td>0.33</td>
</tr>
</tbody>
</table>

by a heating element and a cooling coil. Air was used as the gas phase.

![Fig. 1. Distributor.](Image)

![Fig. 2. Wire mesh tomography sensor.](Image)
of the whole 313 crossing points. In order to study pulsing flow, the acquisition procedure is modified; for each crossing many measurements (i.e., 20,000) are made before passing to the next one. By doing so, the delays related to the multiplexer circuit operation are avoided and, while simultaneous measurements of all crossing points are not possible, acquisition frequencies of about 130 Hz can be reached for each crossing point. One of the major drawbacks of this type of operation is that the time necessary to complete a scan is quite long. Indeed, if 20,000 measurements are made for each crossing point, about 13 h are necessary to complete the scan of the 313 crossing points. In order to keep the duration of each experiment under reasonable limits, only 78 crossing points are considered when estimating the local liquid saturation over the entire cross-sectional area of the fixed bed.

Another limitation when using wire mesh tomography concerns the operation with porous particles. In fact, the wire mesh tomography system used here is not able to make any difference between a set of wet porous particles and liquid actually flowing through the bed. For this reason, when operating with porous particles, glass beads were introduced between the two planes of wires of the wire mesh tomography sensor in order to prevent wetted porous particles from making a permanent electrical connection between a transmitter and a receiver wire. The presence of the glass beads induces a slight local modification of the bed topology, but visual observation shows that such short heights of glass beads do not modify flow behaviour in the range of velocities investigated here.

3. Results

3.1. General trends

Typical liquid saturation values \(\beta_L \) measured with wire mesh tomography inside the reactor while operating in the pulsing flow regime are shown in Fig. 3. Strong, approximately periodic variations of the liquid saturation, which are characteristic for pulsing flow regime are observed. As shown by Blok and Drinkenburg (1982) the frequency of these variations is not perfectly stable, specially at liquid flow rates near the upper or lower limits of the pulsing flow regime. Moreover, double pulses as those reported by Blok and Drinkenburg (1982) and Tsochatzidis and Karabelas (1995) can also be evidenced.

3.2. Pulse frequency

In order to qualify the measuring technique when operating in the pulsing flow regime, pulse frequencies were measured for different liquid and gas superficial velocities using glass beads and alumina cylinders. Signals were obtained using wire mesh tomography at five different crossing points in the column. Ten thousand measurements corresponding to an acquisition time of 75 s were made for each of the five crossing points considered. The power spectra of the obtained signals were used to estimate the main frequency of the pulsation phenomena at each spatial location.

For glass beads the measured frequencies were in agreement with visual observation (through the wall of the reactor). As reported in literature (i.e., Christensen et al., 1986; Blok and Drinkenburg, 1982; Tsochatzidis and Karabelas, 1995; Boelhouwer et al., 2002), an increase in the pulse frequency was observed with both gas and liquid superficial velocity (Fig. 4). Blok and Drinkenburg (1982) and Rao and Drinkenburg (1983) explain this as follows: for a given gas flow rate, the excess liquid above a critical liquid flow rate (which is the liquid flow rate at the transition between trickling to pulse flow regime) is transported by the pulses. The more liquid in excess, the bigger the amount of pulses necessary to transport it. Similarly, for a given liquid flow rate, increasing gas flow rate decreases the mean liquid holdup, the depleted liquid being therefore transported by an increased number of pulses.

![Fig. 3. Signal obtained inside a fixed bed of glass beads operating in the pulsing flow regime at \(U_L = 0.0099 \text{ m/s} \) at \(U_G = 0.285 \text{ m/s} \).](image-url)
Tschebatzidis and Karabelas (1995) reported that above a liquid superficial velocity of 0.015 m/s, pulse frequency depends only on gas flow rate. This statement could not be confirmed with the present reactor. Indeed, as stated previously, for the largest liquid superficial velocities used here ($U_L > 0.0112$ m/s), pulse frequency becomes unstable and no information can be obtained from the power spectra of the signals. This kind of behavior can be interpreted as the beginning of bubble flow regime, where there is not any main frequency. However, the gas velocity could not be increased beyond 0.37 m/s because of technical and pressure drop considerations; at higher gas velocities, the statement of Tschebatzidis and Karabelas (1995) may become true.

For the same technical reasons, pulse frequencies measured for alumina cylinders were limited to a few points. The measured signals show that the transition from trickling to pulsing flow occurs at higher liquid and gas superficial velocities for cylinders than for spheres. This is probably due to the higher mean bed porosity when operating with cylinders (specially in case of socks loading, as used here) as bigger flow rates are necessary to obstruct the packing channels. Similar to the observations obtained for the glass beads, an increase in the pulse frequency was observed with both gas and liquid superficial velocities (Fig. 5).
3.3. Coexistence of different local flow regimes in trickle bed reactors

In order to decide whether or not there are pulses spanning only a part of the entire column cross-section, the evolution of local liquid saturation with time over 78 crossing points was estimated near the transition between trickling and pulsing flow regimes, using wire mesh tomography for both glass beads and alumina cylinders. Measurements at 130 Hz were done for more than 120 s for each of the 78 crossing points considered, yielding, for a given bed depth, an estimation of the flow cartography in the reactor.

The first step followed to identify the presence of a high interaction regime in the reactor was to calculate, for each crossing point, the variation factor (standard deviation divided by the mean value of the measurements) of the measured liquid saturation. Although a given variation factor is not an undeniable proof of the existence of a specific flow regime, it is reasonable to assume that a high variation factor is most likely related to a high interaction regime. Anyway, if the variation factor can give first insights about the flow regimes existing in the reactor, plotting the evolution of liquid saturation with time is the most certain way of identifying a flow regime. Finally, to complete the study, the power spectrum of each of the 78 crossing points was calculated in order to find out if a main frequency exists, which indicates the presence of regular pulsations.

For glass beads, experiments were carried out at $U_L = 0.0105 \text{ m/s}$ and $U_G = 0.197 \text{ m/s}$, i.e., in the transition zone between trickling and pulsing flow regimes. The results of this experiment show that, even with a “good” initial liquid distribution (using the perforated plate of Fig. 1), different flow regimes can coexist in the reactor. Indeed, when calculating the variation factor for each of the 78 crossing points considered, values between 3% (low interaction) and 14% (high interaction) were found, with lower values being concentrated in the right part near the periphery of the fixed bed (Fig. 6). When plotting liquid saturation values for crossing points having different variation factors, the coexistence of different flow regimes can be confirmed. Fig. 7 shows the signals obtained for crossing points A, B and C (as defined in Fig. 6) featuring variation factors of 7%, 5% and 9%, respectively. While at crossing point C a high interaction regime can be clearly observed, with large variations in liquid saturation, variations of β_L are negligible for points A and B, which certainly corresponds to trickling flow. Furthermore, such a systematic study for each of the 78 crossing points considered shows that about 20% of the reactor cross section at the studied bed depth is in
a low interaction flow regime. The remaining 80% are in high interaction regime, but further analysis (power spectra of the signals) does not allow the identification of any main frequency, that would imply the existence of a stable pulsing flow.

When looking for an explanation on why the central and left sides (for example, right and left correspond to the top view as shown in Fig. 8) of the reactor cross-section were in a high interaction regime while the right side near periphery was not, the first insights were obtained from the initial liquid distribution. Indeed, as shown in Fig. 8 where the perforated plate used for liquid distribution is divided in nine zones of the same surface area, the central zone of the reactor has, compared to the others, more inlets per m² of cross-section and is thus better irrigated. Concerning the left side of the reactor, only the topology of the packing can be the cause of the high interaction regime observed for this zone.

In order to verify the former statements, and to apprehend the influence of the initial liquid distribution on the flow regimes
observed in the reactor, the liquid distribution perforated plate was slightly modified by closing the two left inlets of the central zone (Fig. 9).

The change thus obtained at the same superficial gas and liquid velocities \(U_L = 0.0105 \text{ m/s} \) and \(U_G = 0.197 \text{ m/s} \) was striking; not only did all the variation factors of the obtained signals rise above 8.5%, but also the signal plots (e.g. Fig. 10) and the power spectrum analysis (e.g. Fig. 11) of the 78 crossing points showed that a regular pulsing flow with a pulse frequency of 0.75 Hz took place over the whole cross-section of the reactor.

It is important to note that for the given superficial liquid velocity \(U_L = 0.0105 \text{ m/s} \), when the original perforated plate is used for liquid distribution, it is necessary to increase the gas superficial velocity up to 0.213 m/s (an increase of 8%) to obtain regular pulsations in the column. The increase in gas superficial velocity causes pressure drop to increases from 22 000 to 24 000 Pa/m (increase of about 10%). However, when modifying the distributor, regular pulses and, thus, the advantages of this regime are obtained without any increase in gas superficial velocity \(U_G = 0.197 \text{ m/s} \) or pressure drop \((\Delta P/L = 22 000 \text{ Pa/m})\). The former observation is surprising as an increase in pressure drop would be expected as the pulsing flow regime develops over the column. Although a scientific explanation for this observation is not yet available, it is important to remember that before the modification, already 80% of the considered sectional area of the reactor was in a high interaction regime.

The same kind of measurements were made with alumina cylinders at \(U_L = 0.0114 \text{ m/s} \) and \(U_G = 0.245 \text{ m/s} \). Results were similar to those obtained with glass beads with high interaction zones and low interaction zones coexisting in the reactor. This time however, the high interaction zones were more to the center–front side of the reactor (Figs. 12 and 13) than to the center–left side of it (as it was when operating with glass beads); this confirms the influence of both the liquid distributor and the packing topology on the flow regimes.

As for glass beads, the experiment was repeated, keeping the same superficial velocities \(U_L = 0.0114 \text{ m/s} \) and \(U_G = 0.245 \text{ m/s} \) but using a slightly modified perforated plate in order to improve liquid distribution (Fig. 14).

Once again, the improvement in liquid distribution leads to the existence of a high interaction regime occupying the whole cross-section of the column (as confirmed by the variation factors observed for each of the crossing points considered) and even if it is not of the same intensity for all the crossing points, a pulsing flow with a pulse frequency of 0.65 Hz is observed in the reactor (Fig. 15). As with glass beads, the slight improvement of the perforated plate allows pulses to occur at a lower gas superficial velocity and thus with a smaller pressure drop.

4. Conclusion

By using wire mesh tomography to estimate local liquid saturation in a trickle bed reactor, conditions were observed where different hydrodynamic flow regimes coexisted in the column. The distribution of the different flow regimes seems to be influenced mainly by packing topology and initial liquid distribution. Information given by the measuring technique allowed the improvement of the perforated plate used for liquid distribution. The slightly modified, nonsymmetrical liquid distributor, allowed, without any increase in pressure drop or flow rates, to go from a situation were about 20% of the reactor was in a low interaction regime to one where a regular pulsing flow was observed over the whole reactor cross-section. These
results show not only the intimate relation between initial liquid distribution and flow regime, but also the importance of studying hydrodynamics in “near the transition conditions” for average sized columns in order to upgrade the performances of the trickle bed reactors used for industrial applications. In these circumstances, wire mesh tomography appears to be a useful technique. Indeed, it allows not only studying liquid saturation variations over time but also give useful information to adapt the liquid distributor to the topology of the packing. Further work using this technique could also allow to get a better insight on the effect of different packing mechanisms on liquid distribution as well as the influence of different kind of distributors (i.e., multiport chimney).

Notation

- d_p particle diameter, mm
- F pulse frequency, Hz
- ΔP pressure drop, Pa
- L reactor length, m
- U_i superficial velocity of phase i, m/s
- V_L liquid volume, m3
- V_R reactor volume, m3

Greek letters

- β_L liquid saturation $= V_L/\epsilon V_R$
- ϵ mean bed external porosity
- σ standard deviation

Acknowledgment

The authors wish to thank “Total Raffinage” not only for financial support, but also for providing the catalyst support particles, and for numerous discussions.

References

Local liquid saturation measurements inside a trickle bed reactor operating near the transition between pulsing and
Modelling and measurements of the velocity gradient and local flow direction at the pore scale of a packed bed
Modelling and measurements of the velocity gradient and local flow direction at the pore scale of a packed bed

T. Dumas, F. Lesage*, M.A. Latifi

Laboratoire des Sciences du Génie Chimique, CNRS – ENSIC, B.P.451, 1 rue Grandville 54001, Nancy Cedex, France

ABSTRACT

In a packed bed with single phase liquid flow, velocity gradient and local flow direction are measured at the pore scale using tri-segmented microelectrodes flush mounted at the surface of a sphere equator area. The experimental measurements are compared to numerical predictions deduced from the solution of a 3D model based on continuity and momentum balance equations.

© 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Keywords: Packed bed; Single phase liquid flow; Tri-segmented microelectrodes; Local flow direction; Velocity gradient; CFD modelling

1. Introduction

The understanding of transport phenomena in packed beds requires accurate local measurements of momentum, heat and mass transfer along with strong and permanent interactions with fine CFD simulations.

In local measurements, the main problem is the flow perturbation by the measurement technique. Among the available measurement methods, very few allow non-intrusive local measurements in porous media. Electrochemical methods belong to the non-intrusive techniques and are suitable for hydrodynamic and mass transfer measurements at the wall.

In the previous studies, Latifi et al. (1989, 1992) used the technique of microelectrodes flush mounted on a non-conducting surface in order to carry out local hydrodynamic measurements at the wall of a fixed bed. Later, Seguin et al. (1997) extended the method to the packing using a single electrochemical probe for hydrodynamic measurements within a pore. Recently, Lesage et al. (2004) implemented a system of four microelectrodes within the packing of a fixed bed for the identification and measurement of liquid flow structures.

In fine CFD simulations, the problem is to determine appropriate closure equations and to identify the most suitable boundary conditions. However the increasing computational power of computers opens new perspectives in terms of modelling and simulation. For example, it becomes possible to predict the flow in a packed bed at the pore scale by solving directly the momentum, heat and mass transfer equations.

The packing effects are then taken into account through appropriate boundary conditions. The works of Logtenberg and Dixon (1998), Logtenberg et al. (1999), Nijemeisland and Dixon (2001), Dixon and Nijemeisland (2004) and Magnico (2003) showed the feasibility and efficiency of this type of approach.

In the present paper, the objective is to show some results obtained in modelling and experimental analysis of the flow at the pore scale in a packed bed with single phase liquid flow. The experimental results are obtained by means of a system of tri-segmented microelectrodes embedded in the packing of the bed. They mainly concern the local flow direction and velocity gradient. On the other hand a momentum transport model was developed based on the approach mentioned above and solved using the CFD software Fluent. The predicted results are compared to the experimental measurements.

2. Experimental measurements

The packed bed used in this study is a parallelepiped cell with 22.2 cm width, 58.1 cm length and 2.22 cm height (Fig. 1).

The liquid phase is made up of a mixture of 20 mol/m³ of hexacyanoferrate II ions and 20 mol/m³ of hexacyanoferrate III ions respectively in 1.5% mass aqueous potassium sulphate solution.

The measurement system consists of four tri-segmented microelectrodes placed on the inner wall of four spheres
Nomenclature

- d_p: packing sphere diameter (m)
- Re_p: particle Reynolds number
- S: velocity gradient (s^{-1})
- z: axial position in the reactor (m)
- μ: liquid dynamic viscosity (Pa s)
- ρ: liquid density ($kg m^{-3}$)
- η: electrode angular position related to fluid flow ($^\circ$)
- θ: local flow direction angle ($^\circ$)

The method used for the experimental measurement is the electrochemical technique. It is based on the measurement of the limiting current obtained by electrochemical reduction of hexacyanoferrate III ions. The cathode is constituted by the three segments of each platinum tri-segmented wire inserted in the wall of PMMA spheres (Fig. 3). The anode is made out of a platinum wire with a diameter of 1 mm and an active length of 5 cm (Dumas, 2006; Dumas et al., 2009).

The local velocity gradient at the electrode surface is deduced from the well-know relation of Lévêque (1928), and the local flow direction within the pore is determined as follows (Sobolik et al., 2007):

(i) The four tri-segmented microelectrodes are first calibrated in a well-known and established flow: for a specified value of θ angle (Fig. 4), the limiting currents of the three segments are measured. Fig. 5 presents the variations...
of ratios of the resulting currents and the total current versus θ.

(ii) The calibrated microelectrodes are then placed in the packed bed and we proceed the other way around of the calibration process. From the measured ratios of limiting currents, the local flow direction θ is deduced from Fig. 5.

3. Local flow modelling

The flow model developed here is a 3D model based on the classical equations of continuity and momentum transfer with associated initial and boundary conditions. As shown by various authors (Latifi et al., 1989; Seguin et al., 1997), flow regimes at particle Reynolds numbers ranging from 110 to 170 exhibit a laminar behaviour. Since all simulations presented in this paper were carried out at $Re_p = 100$, only a laminar flow was considered for modelling.

The geometry studied is a parallelepiped cell consisting of one-layer packing of 2.22 cm diameter glass spheres. 30 spheres are packed on the length, 10 on the width and 1 on the height of the cell. This geometry allowed us to carry out coherent experimental measurements.

Two types of meshing are considered for the studied geometry. The first type (global meshing) consists of a 3D meshing of the whole geometry. The main advantage of this meshing is that no condition on the flow is assumed. However, the computational time will be high due to the large number of meshing cells involved. The second type of meshing (local periodic meshing) is particularly interesting since it allows us to confine our study to the pore level by providing denser meshing. This interesting feature is obtained by assuming the periodicity of the flow velocity profile.

For both meshing types, the automatic generation fails at the spheres contact points, where the cells are highly skewed. We chose to reduce the sphere diameter by 1%, as suggested by Nijemeisland and Dixon (2001), who pointed out that a small variation in sphere diameter does not impact the results. Several simulations with various diameters were carried out for our model, with reduction values of 95% and 99%. No noticeable variations between the computed velocity gradients were observed between 95% and 99% reduction, and thus the latter value was chosen, since it is closer to unity.

Fig. 6 presents the global meshing carried out using 1 mm tetrahedrons. In addition, a refined meshing is associated to the walls of the spheres where the microelectrodes are embedded in order to finely describe the flow there. For comparison purposes, 1, 3 or 6 cells are used for meshing of the laminar sub-layer around the spheres with microelectrodes. The boundary conditions are a constant velocity at inlet, and a “one way” condition at outlet. The overall number of cells is around 1.3×10^6.

Fig. 7 shows the local periodic meshing generated with a non-constant meshing step size. The minimum and maximum values of the step size are 0.15 and 2 mm, respectively. The step size varies when a dimensional criterion is no longer respected. The criterion is the distance between two walls. This is achieved through the use of a size function available in the meshing software. The small distance between two neighbouring spheres is then finely meshed (see Fig. 8). This meshing results in 2.175×10^6 cells.

Table 1 presents the approximations and relaxation coefficients used to solve the model equations. It is important to...
notice that a 2nd order scheme is used for the approximation of Eq. (2). This 2nd order scheme allows the computation of accurate estimation not only of the flow velocity, but also of its first derivatives. The estimation of the velocity gradient is therefore greatly improved.

4. Results and discussion

The model equations are solved by means of the finite volume method (Patankar, 1980) implemented within the CFD software Fluent. However, prior to the computation of the
solution of our model equations, the following checkings are carried out in order to ensure reliability and accuracy of the predictions:

(i) Liquid flow around a sphere of 1 mm diameter in a pipe with 4 cm of diameter and 20 cm of length. The particle Reynolds number is varied between 250 and 1000 and the results are compared in terms of velocity gradient to the correlations of Schlichting (1979) and Le Clair et al. (1970). The drag force is also computed and compared to Brauer’s correlation (Midoux, 1993).

(ii) Turbulent flow of air in a fixed bed of spheres (Dixon and Nijemeisland, 2004) where the turbulence model used is the renormalization group (RNG) which belongs to the family of k-ε models (Yakhot and Orszag, 1986). In addition, the turbulence model is coupled to a wall function, available in Fluent, in order to correctly handle the solid surfaces where a non-slip condition is involved. Enhanced Wall Treatment has shown to be the most appropriate wall function and leads to better results when compared to standard and Non-equilibrium wall functions (Kim and Choudhury, 1995). The velocity profiles computed are in good agreement with those obtained by Dixon and Nijemeisland (2004).

All these results are presented in details in (Dumas, 2006).

4.1. Qualitative analysis

Fig. 9 presents the velocity field at \(y = 11.1 \) cm (half-height of the layer) obtained with the global meshing and for a particle Reynolds number of 100. The main flow direction is given by the direction of vector X. The velocity within a pore is about 5 mm/s whereas close to wall its value is over 10 mm/s.

The figure clearly shows the presence of wall effects which are characterised by higher flow velocities close to the wall compared to the rest of the geometry. Obviously these effects are not negligible in our case. On the other hand, it is interesting to notice a counter current fluid flow at the wall. This figure also shows that a periodic model can be used for large values of \(z \), e.g. in the indicated zone.

4.2. Stream lines within a pore

The hydrodynamic study will now be focused on the local flow within a pore constituted by the spheres that support the microelectrodes. On Fig. 9, the studied zone (dashed rectangle) is located between \(z = 88.8 \) mm and \(z = 111 \) mm.

Fig. 10 shows the stream lines within the studied zone where the main flow direction is given by the direction of vector X. Negative values of the velocity show the existence of flow recirculation within the pore. On the other hand, the flow in the direction of X can be divided in different zones.

(1) In the upstream of the main pore restriction (see (1) in Fig. 10), the fluid is split up in two parts:

(a) At the exit of the previous pores, the fluid is almost stagnant (see (a) in Fig. 10).

(b) At the centre of the pore, a jet-like zone flows toward the restriction (see (b) in Fig. 10). In this zone, the flow velocity reaches its maximum value (i.e. 5.8 mm/s).

(2) In the downstream of the restriction, the flow velocity decreases. A fluid recirculation is formed at the exit of the restriction; the flow takes the main direction once it enters the following restrictions (dashed rectangle (2) in Fig. 10).

The restriction behaves like a pipe contraction which accelerates the fluid for a constant flow rate. This behaviour is rather expected unlike the presence of a zone where the fluid flows in the opposite direction right after the downstream restriction. These recirculations are due to the constraints imposed to the fluid by the walls of the pores.

4.3. Local velocity gradient

Fig. 11 presents the variations of the velocity gradient, \(S \), with the angular position of the microelectrode with respect to the flow direction, \(\eta \), for a particle Reynolds number of 100. \(\eta \) is the rotation angle of the probe around the stainless steel tube axis (see Fig. 3b).

The experimental values are compared to simulation results obtained with the global meshing (1 and 6 cells are used for meshing of the laminar sub-layer around the spheres) and the local periodic meshing.

It can be seen that the global meshing results are quite lower than the experimental measurements, particularly at the pore restriction level. The number of cells used for the meshing of the laminar sub-layer does not bring any improvement to the simulation results. Therefore this meshing is not sufficiently fine for predictions of hydrodynamics within the pore. On the other hand, the local periodic meshing presents a good agreement with the measurements despite the major assumption of periodicity of the velocity profile.

The agreement between the experimental measurements and the model predictions is quite good except in the interval \(\eta \in [65^\circ,90^\circ] \) where noticeable differences appear. The discrepancy is due to the measurement method which is based on constant velocity gradient over the probe. Moreover in that interval the probe is oriented against the flow and the value of the velocity gradient is reduced and its variations are
increased. The Lévêque relation used is therefore no longer valid in the considered interval.

4.4. Local flow direction

Fig. 12 presents the variations with η of experimental measurements and model predictions of the local flow direction for a particle Reynolds number of 100. The figure presents a good agreement and shows that the flow direction is not constant and 3 average directions can be distinguished:

\(\theta \approx 0^\circ \). This direction corresponds to the main flow direction. It is the most frequently observed value.

\(\theta \approx 150^\circ \). This direction obtained at \(\eta = \pm 30^\circ \) is rarely observed and corresponds to a flow in the opposite direction to the main flow. Moreover the two positions \(\eta = \pm 30^\circ \) are located at the pore enlargements and seem to detect the development of flow recirculations.

\(\theta \approx 280^\circ \). This direction observed at \(\eta = \pm 90^\circ \) indicates the existence of a flow direction which is orthogonal to the reference direction of the probe (see Fig. 4).

5. Conclusions

Experimental measurements and model predictions of local velocity gradient and flow direction at the pore scale of a packed bed are studied in laminar flow regime. The measurements are carried out by means of a calibrated measurement system which consists of four tri-segmented microelectrodes placed on the wall of four spheres mounted in lozenge form. The predictions are computed using the finite volume method implemented within the software Fluent.

In order to ensure accuracy and reliability of the numerical solutions, two checking computations are carried out before hand. A liquid flow around a sphere placed in an empty pipe and a turbulent flow of air in a fixed bed of spheres. In the two cases, the results obtained are in quite good agreement with the literature results.

The local velocity gradient and flow direction are then computed and showed to be quite good when compared to their experimental measurements. It is interesting to notice that no closure equations, besides the periodic flow assumption, are needed to represent the flow with acceptable accuracy.

References

Modelling and measurements of the velocity gradient and local flow direction at the pore scale of a packed bed
Résumé

Ce document présente les recherches menées par l’auteur de 1996 à 2010. Elles concernent en particulier les écoulements et transferts de matière et de chaleur en milieu poreux, vus à la fois à l’échelle du procédé et à l’échelle des phénomènes. Pour chacune de ces échelles, des systèmes de mesure ainsi que des modèles et simulations numériques ont été développés conjointement. À l’échelle globale, on a en particulier pu étudier la distribution de la phase liquide dans les trickle beds. On a également proposé et validé un modèle de transfert de matière et de chaleur dans des tissus. À l’échelle locale, les simulations de l’écoulement liquide dans un milieu poreux parfaitement défini ont été confrontées avec succès à des mesures de gradients de vitesse et de direction de l’écoulement au niveau du garnissage obtenues grâce à un système de microélectrodes. Des études plus prospectives concernant le développement de méthodologies d’estimation paramétriques et l’optimisation dynamique et globale des procédés sont présentées dans une seconde partie. L’objectif est de pouvoir dimensionner et maîtriser le fonctionnement de procédés grâce à une méthode d’étude détaillée de procédés, depuis la construction de modèles, leur validation, l’obtention de résultats numériques et leur optimisation.

Mots-clés: Génie des procédés, modélisation, simulation, optimisation, CFD, mesures locales, milieux poreux

Abstract

This document details the author’s research activities realized between 1996 and 2010. They focus mostly on flow and heat and mass transfer in porous media, at both process and phenomena spatial scales. At process scale, liquid phase distribution in a trickle bed was particularly studied. A model for heat and mass transfer in fabrics was also proposed and validated. At local scale, liquid flow in a structured porous media was simulated. Results were successfully compared with experimental measurements of flow direction and velocity gradient using micro-electrodes. In a second part, more prospective studies related to parameter estimation and global and dynamic process optimisation are presented. The aim is to develop a methodology for the process scale-up and optimal control, from the building of mathematical models, experimental validation, numerical simulation and optimisation.

Keywords: Chemical engineering, modelling, simulation, optimisation, CFD, local measurements, porous media