L. Barreto, A. Makihira, and K. Riahi, The hydrogen economy in the 21st century: a sustainable development scenario, International Journal of Hydrogen Energy, vol.28, issue.3, pp.267-284, 2003.
DOI : 10.1016/S0360-3199(02)00074-5

P. Westermann, B. Jorgensen, L. Lange, B. K. Ahring, and C. H. Christensen, Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery, International Journal of Hydrogen Energy, vol.32, issue.17, pp.4135-4141, 2007.
DOI : 10.1016/j.ijhydene.2007.06.018

D. Klass, Biomass for Renewabel Energy, Fuels and Chemicals

L. Luo, E. Van-der-voet, and G. Huppes, Biorefining of lignocellulosic feedstock ??? Technical, economic and environmental considerations, Bioresource Technology, vol.101, issue.13, pp.5023-5032, 2010.
DOI : 10.1016/j.biortech.2009.12.109

D. Das and T. N. Veziroglu, Hydrogen production by biological processes: a survey of literature, International Journal of Hydrogen Energy, vol.26, issue.1, pp.13-28, 2001.
DOI : 10.1016/S0360-3199(00)00058-6

J. Woodward, M. Orr, K. Cordray, and E. Greenbaum, Enzymatic production of biohydrogen, Nature, vol.405, issue.6790, pp.1014-1015, 2000.
DOI : 10.1038/35016633

J. R. Benemann, Feasibility analysis of photobiological hydrogen production, International Journal of Hydrogen Energy, vol.22, issue.10-11, pp.979-987, 1997.
DOI : 10.1016/S0360-3199(96)00189-9

D. B. Levin, L. Pitt, and M. Love, Biohydrogen production: prospects and limitations to practical application, International Journal of Hydrogen Energy, vol.29, issue.2, pp.173-185, 2004.
DOI : 10.1016/S0360-3199(03)00094-6

C. Lee, P. Chen, C. Wang, and Y. Tung, Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent, International Journal of Hydrogen Energy, vol.27, issue.11-12, pp.1309-1313, 2002.
DOI : 10.1016/S0360-3199(02)00102-7

H. Koku, I. Eroglua, U. Gunduz, M. Yucel, and L. Turkerc, Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides, International Journal of Hydrogen Energy, vol.27, issue.11-12, pp.1315-1329, 2002.
DOI : 10.1016/S0360-3199(02)00127-1

J. Obeid, J. Magnin, J. Flaus, O. Adrot, J. C. Willison et al., Modelling of hydrogen production in batch cultures of the photosynthetic bacterium Rhodobacter capsulatus, International Journal of Hydrogen Energy, vol.34, issue.1, pp.180-185, 2009.
DOI : 10.1016/j.ijhydene.2008.09.081

URL : https://hal.archives-ouvertes.fr/cea-00387538

T. Katsuda, T. Arimoto, K. Igarashi, M. Azuma, J. Kato et al., Light intensity distribution in the externally illuminated cylindrical photo-bioreactor and its application to hydrogen production by Rhodobacter capsulatus, Biochemical Engineering Journal, vol.5, issue.2, pp.157-164, 2000.
DOI : 10.1016/S1369-703X(00)00054-1

E. Nakada, Y. Asada, T. Arai, and J. Miyake, Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production, Journal of Fermentation and Bioengineering, vol.80, issue.1, pp.53-57, 1995.
DOI : 10.1016/0922-338X(95)98176-L

X. Shi and H. Yu, Optimization of volatile fatty acid compositions for hydrogen production byRhodopseudomonas capsulata, Journal of Chemical Technology & Biotechnology, vol.17, issue.10, pp.1198-1203, 2005.
DOI : 10.1002/jctb.1318

M. J. Barbosa, J. M. Rocha, J. Tramper, and R. H. Wijffels, Acetate as a carbon source for hydrogen production by photosynthetic bacteria, Journal of Biotechnology, vol.85, issue.1, pp.25-33, 2001.
DOI : 10.1016/S0168-1656(00)00368-0

H. Su, J. Cheng, J. Zhou, W. Song, and K. Cen, Improving hydrogen production from cassava starch by combination of dark and photo fermentation, International Journal of Hydrogen Energy, vol.34, issue.4, pp.1780-1786, 2009.
DOI : 10.1016/j.ijhydene.2008.12.045

H. H. Fang, H. Zhu, and T. Zhang, Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides, International Journal of Hydrogen Energy, vol.31, issue.15, pp.31-2223, 2006.
DOI : 10.1016/j.ijhydene.2006.03.005

H. Chin, Z. Chen, and C. P. Chou, Fedbatch Operation Using Clostridium acetobutylicum Suspension Culture as Biocatalyst for Enhancing Hydrogen Production, Biotechnology Progress, vol.19, issue.2, pp.383-388, 2003.
DOI : 10.1021/bp0200604

C. C. Chen, C. Lin, and M. Lin, Acid-base enrichment enhances anaerobic hydrogen production process, Applied Microbiol Biotechnology, vol.58, pp.224-228, 2002.

G. Wang, Y. Mu, and H. Yu, Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater, Biochemical Engineering Journal, vol.23, issue.2, pp.175-184, 2005.
DOI : 10.1016/j.bej.2005.01.002

X. Wang, P. Monis, C. Saint, and B. Jin, Biochemical kinetics of fermentative hydrogen production by Clostridium butyricum W5, International Journal of Hydrogen Energy, vol.34, issue.2, pp.791-798, 2009.
DOI : 10.1016/j.ijhydene.2008.11.023

H. Zhang, M. A. Bruns, and B. E. Logan, Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor, Water Research, vol.40, issue.4, pp.728-734, 2006.
DOI : 10.1016/j.watres.2005.11.041

C. Collet, N. Adler, J. Schwitzguebel, and P. P. Eringer, Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose, International Journal of Hydrogen Energy, vol.29, issue.14, pp.1479-1485, 2004.
DOI : 10.1016/j.ijhydene.2004.02.009

H. H. Fang and H. Liu, Effect of pH on hydrogen production from glucose by a mixed culture, Bioresource Technology, vol.82, issue.1, pp.87-93, 2002.
DOI : 10.1016/S0960-8524(01)00110-9

T. Zhang, H. Liu, and H. H. Fang, Biohydrogen production from starch in wastewater under thermophilic condition, Journal of Environmental Management, vol.69, issue.2, pp.149-156, 2003.
DOI : 10.1016/S0301-4797(03)00141-5

S. Tanisho and Y. Ishiwata, Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks, International Journal of Hydrogen Energy, vol.20, issue.7, pp.541-545, 1995.
DOI : 10.1016/0360-3199(94)00101-5

H. Yokoyama, H. Ohmori, M. Waki, A. Ogino, and Y. Tanaka, Continuous hydrogen production from glucose by using extreme thermophilic anaerobic microflora, Journal of Bioscience and Bioengineering, vol.107, issue.1, pp.64-66, 2009.
DOI : 10.1016/j.jbiosc.2008.09.010

X. Zheng and H. Yu, Roles of pH in Biologic Production of Hydrogen and Volatile Fatty Acids From Glucose by Enriched Anaerobic Cultures, Applied Biochemistry and Biotechnology, vol.112, issue.2, pp.79-90, 2004.
DOI : 10.1385/ABAB:112:2:79

L. Dong, Y. Zhenhong, S. Yongming, K. Xiaoying, and Z. Yu, Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation, International Journal of Hydrogen Energy, vol.34, issue.2, pp.812-820, 2009.
DOI : 10.1016/j.ijhydene.2008.11.031

J. Lay, K. Fan, C. James-chang, and . Ku, Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge, International Journal of Hydrogen Energy, vol.28, issue.12, pp.1361-1367, 2003.
DOI : 10.1016/S0360-3199(03)00027-2

B. F. Belokopytov, K. S. Laurinavichius, T. V. Laurinavichene, M. L. Ghirardi, M. Seibert et al., Towards the integration of dark- and photo-fermentative waste treatment. 2. Optimization of starch-dependent fermentative hydrogen production, International Journal of Hydrogen Energy, vol.34, issue.8, pp.3324-3332, 2009.
DOI : 10.1016/j.ijhydene.2009.02.042

B. Uyar, I. Eroglu, M. Yucel, and U. Gunduz, Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents, International Journal of Hydrogen Energy, vol.34, issue.10, pp.4517-4523, 2009.
DOI : 10.1016/j.ijhydene.2008.07.057

H. Argun, F. Kargi, and I. K. Kapdan, Hydrogen production by combined dark and light fermentation of ground wheat solution, International Journal of Hydrogen Energy, vol.34, issue.10, pp.4305-4311, 2009.
DOI : 10.1016/j.ijhydene.2009.03.033

L. Lu, N. Ren, D. Xing, and B. E. Logan, Hydrogen production with effluent from an ethanol???H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell, Biosensors and Bioelectronics, vol.24, issue.10, pp.3055-3060, 2009.
DOI : 10.1016/j.bios.2009.03.024

B. Liu, N. Ren, J. Tang, J. Ding, W. Liu et al., Bio-hydrogen production by mixed culture of photo- and dark-fermentation bacteria, International Journal of Hydrogen Energy, vol.35, issue.7, pp.2858-2862, 2010.
DOI : 10.1016/j.ijhydene.2009.05.005

B. Xiao and J. Liu, Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation, Journal of Hazardous Materials, vol.168, issue.1, pp.163-167, 2009.
DOI : 10.1016/j.jhazmat.2009.02.008

S. Wu, C. Lin, and J. Chang, Hydrogen Production with Immobilized Sewage Sludge in Three-Phase Fluidized-Bed Bioreactors, Biotechnology Progress, vol.19, issue.3, pp.828-832, 2003.
DOI : 10.1021/bp0201354

H. Argun, F. Kargi, and I. K. Kapdan, Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation, International Journal of Hydrogen Energy, vol.34, issue.5, pp.2195-2200, 2009.
DOI : 10.1016/j.ijhydene.2008.12.066

J. Wang and W. Wan, Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge, International Journal of Hydrogen Energy, vol.33, issue.12, pp.2934-2941, 2008.
DOI : 10.1016/j.ijhydene.2008.03.048

S. Oh, S. V. Ginkel, and B. E. Logan, The Relative Effectiveness of pH Control and Heat Treatment for Enhancing Biohydrogen Gas Production, Environmental Science & Technology, vol.37, issue.22, pp.5186-5190, 2003.
DOI : 10.1021/es034291y

B. Hu and S. Chen, Pretreatment of methanogenic granules for immobilized hydrogen fermentation, International Journal of Hydrogen Energy, vol.32, issue.15, pp.3266-3273, 2007.
DOI : 10.1016/j.ijhydene.2007.03.005

B. E. Logan, S. Oh, I. S. Kim, and S. V. , Biological Hydrogen Production Measured in Batch Anaerobic Respirometers, Environmental Science & Technology, vol.36, issue.11, pp.2530-2535, 2002.
DOI : 10.1021/es015783i

P. Iyer, M. A. Bruns, H. Zhang, S. V. Ginkel, and B. E. Logan, H2-Producing bacterial communities from a heat-treated soil inoculum, Applied Microbiology and Biotechnology, vol.4, issue.2, pp.166-173, 2004.
DOI : 10.1007/s00253-004-1666-7

Y. Fan, C. Li, J. Lay, H. Hou, and G. Zhang, Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost, Bioresource Technology, vol.91, issue.2, pp.189-193, 2004.
DOI : 10.1016/S0960-8524(03)00175-5

H. Zhu and M. Béland, Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge, International Journal of Hydrogen Energy, vol.31, issue.14, pp.1980-1988, 2006.
DOI : 10.1016/j.ijhydene.2006.01.019

Y. Mu, H. Yu, and G. Wang, Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge, Enzyme and Microbial Technology, vol.40, issue.4, pp.947-953, 2007.
DOI : 10.1016/j.enzmictec.2006.07.033

Y. Zhang, G. Liu, and J. Shen, Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations, International Journal of Hydrogen Energy, vol.30, issue.8, pp.855-860, 2005.
DOI : 10.1016/j.ijhydene.2004.05.009

C. Y. Lin and C. H. Lay, A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora, International Journal of Hydrogen Energy, vol.30, issue.3, pp.285-292, 2005.
DOI : 10.1016/j.ijhydene.2004.03.002

F. Chang and C. Lin, Biohydrogen production using an up-flow anaerobic sludge blanket reactor, International Journal of Hydrogen Energy, vol.29, issue.1, pp.33-39, 2004.
DOI : 10.1016/S0360-3199(03)00082-X

C. Y. Lin and C. H. Lay, Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora, International Journal of Hydrogen Energy, vol.29, issue.1, pp.41-45, 2004.
DOI : 10.1016/S0360-3199(03)00083-1

C. Y. Lin and C. H. Lay, Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora, International Journal of Hydrogen Energy, vol.29, issue.3, pp.275-281, 2004.
DOI : 10.1016/j.ijhydene.2003.07.002

C. Lin and C. Chou, Anaerobic Hydrogen Production from Sucrose Using an Acid-Enriched Sewage Sludge Microflora, Engineering in Life Sciences, vol.4, issue.1, pp.66-70, 2004.
DOI : 10.1002/elsc.200400009

C. Lin, C. Lee, I. Tseng, and I. Shiao, Biohydrogen production from sucrose using base-enriched anaerobic mixed microflora, Process Biochemistry, vol.41, issue.4, pp.915-919, 2006.
DOI : 10.1016/j.procbio.2005.10.010

T. Liang, S. Cheng, and K. Wu, Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane, International Journal of Hydrogen Energy, vol.27, issue.11-12, pp.11-12, 2002.
DOI : 10.1016/S0360-3199(02)00099-X

M. Morimotoa, M. Atsuko, A. Atif, M. Ngan, A. Fakhrul-razib et al., Biological production of hydrogen from glucose by natural anaerobic microflora, International Journal of Hydrogen Energy, vol.29, issue.7, pp.709-714, 2004.
DOI : 10.1016/j.ijhydene.2003.09.009

M. Ferchichi, E. Crabbe, G. Gil, W. Hintz, and A. Almadidy, Influence of initial pH on hydrogen production from cheese whey, Journal of Biotechnology, vol.120, issue.4, pp.402-409, 2005.
DOI : 10.1016/j.jbiotec.2005.05.017

W. Chen, S. Sung, and S. Chen, Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects, International Journal of Hydrogen Energy, vol.34, issue.1, pp.227-234, 2009.
DOI : 10.1016/j.ijhydene.2008.09.061

J. Wang and W. Wan, Kinetic models for fermentative hydrogen production: A review, International Journal of Hydrogen Energy, vol.34, issue.8, pp.3313-3323, 2009.
DOI : 10.1016/j.ijhydene.2009.02.031

J. Lay, Modeling and optimization of anaerobic digested sludge converting starch to hydrogen, Biotechnology and Bioengineering, vol.34, issue.3, pp.269-278, 2000.
DOI : 10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T

Y. Mu, X. Zheng, H. Yu, and R. Zhu, Biological hydrogen production by anaerobic sludge at various temperatures, International Journal of Hydrogen Energy, vol.31, issue.6, pp.31-780, 2006.
DOI : 10.1016/j.ijhydene.2005.06.016

H. N. Gavala, I. V. Skiadas, and B. K. Ahring, Biological hydrogen production in suspended and attached growth anaerobic reactor systems, International Journal of Hydrogen Energy, vol.31, issue.9, pp.1164-1175, 2006.
DOI : 10.1016/j.ijhydene.2005.09.009

V. Gadhamshetty, D. C. Johnson, N. Nirmalakhandan, G. B. Smith, and . Deng, Feasibility of biohydrogen production at low temperatures in unbuffered reactors, International Journal of Hydrogen Energy, vol.34, issue.3, pp.1233-1243, 2009.
DOI : 10.1016/j.ijhydene.2008.10.037

S. V. Mohan, V. L. Babu, and P. Sarma, Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate, Enzyme and Microbial Technology, vol.41, issue.4, pp.506-515, 2007.
DOI : 10.1016/j.enzmictec.2007.04.007

N. Venetsaneas, G. Antonopoulou, K. Stamatelatou, M. Kornaros, and G. Lyberatos, Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches, Bioresource Technology, vol.100, issue.15, pp.3713-3717, 2009.
DOI : 10.1016/j.biortech.2009.01.025

K. Lee, J. Wu, Y. Lo, Y. Lo, P. Lin et al., Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor, Biotechnology and Bioengineering, vol.88, issue.5, pp.648-657, 2004.
DOI : 10.1002/bit.20174

C. Lin and C. Cheng, Fermentative hydrogen production from xylose using anaerobic mixed microflora, International Journal of Hydrogen Energy, vol.31, issue.7, pp.832-840, 2006.
DOI : 10.1016/j.ijhydene.2005.08.010

H. Koku, I. Eroglua, U. Gunduzb, M. Yucel, and L. Turkerc, Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001, International Journal of Hydrogen Energy, vol.28, issue.4, pp.381-388, 2003.
DOI : 10.1016/S0360-3199(02)00080-0

F. Kargi and M. Y. Pamukoglu, Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation, International Journal of Hydrogen Energy, vol.34, issue.7, pp.2940-2946, 2009.
DOI : 10.1016/j.ijhydene.2008.12.101

L. Shen, D. M. Bagley, and S. N. Liss, Effect of organic loading rate on fermentative hydrogen production from continuous stirred tank and membrane bioreactors, International Journal of Hydrogen Energy, vol.34, issue.9, pp.3689-3696, 2009.
DOI : 10.1016/j.ijhydene.2009.03.006

Y. Lu, Q. Lai, C. Zhang, H. Zhao, K. Ma et al., Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process, Bioresource Technology, vol.100, issue.12, pp.2889-2895, 2009.
DOI : 10.1016/j.biortech.2009.01.023

J. Miyake and S. Kawamura, Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides, International Journal of Hydrogen Energy, vol.12, issue.3, pp.147-149, 1987.
DOI : 10.1016/0360-3199(87)90146-7

V. L. Babu, S. V. Mohan, and P. Sarma, Influence of reactor configuration on fermentative hydrogen production during wastewater treatment, International Journal of Hydrogen Energy, vol.34, issue.8, pp.3305-3312, 2009.
DOI : 10.1016/j.ijhydene.2009.02.011

E. L. De-amorim, A. R. Barros, M. H. Damianovic, and E. L. Silva, Anaerobic fludized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose, International Journal of Hydrogen Energy, vol.34, pp.783-790, 2009.

S. Oh, P. Iyer, M. A. Bruns, and B. E. Logan, Biological hydrogen production using a membrane bioreactor, Biotechnology and Bioengineering, vol.35, issue.1, pp.119-127, 2004.
DOI : 10.1002/bit.20127

F. Zaza, C. Paoletti, R. Lopresti, E. Simonetti, and M. Pasquali, Studies on sulfur poisoning and development of advanced anodic materials for waste-to-energy fuel cells applications, Journal of Power Sources, vol.195, issue.13, pp.4043-4050, 2010.
DOI : 10.1016/j.jpowsour.2010.01.034

W. Yan, H. Chu, M. Lu, F. Weng, G. Jung et al., Degradation of proton exchange membrane fuel cells due to CO and CO2 poisoning, Journal of Power Sources, vol.188, issue.1, pp.141-147, 2009.
DOI : 10.1016/j.jpowsour.2008.11.107

F. De-bruijn, D. Papageorgopoulos, E. Sitters, and G. Janssen, The influence of carbon dioxide on PEM fuel cell anodes, Journal of Power Sources, vol.110, issue.1, pp.117-124, 2002.
DOI : 10.1016/S0378-7753(02)00227-6

A. Kohl and R. Nielson, Gas Purification, 1997.

J. M. Orozco and G. Webb, The adsorption and hydrogenation of benzene and toluene on alumina- and silica- supported palladium and platinum catalysts, Applied Catalysis, vol.6, issue.1, pp.67-84, 1983.
DOI : 10.1016/0166-9834(83)80189-4

R. Szymanski, H. Charcosset, P. Gallezot, J. Massardier, and L. Tournayan, Characterization of platinum-zirconium alloys by competitive hydrogenation of toluene and benzene, Journal of Catalysis, vol.97, issue.2, pp.366-373, 1986.
DOI : 10.1016/0021-9517(86)90008-4

J. L. Rousset, L. Stievano, F. J. Aires, C. Geantet, A. J. Renouprez et al., Hydrogenation of Toluene over ??-Al2O3-Supported Pt, Pd, and Pd???Pt Model Catalysts Obtained by Laser Vaporization of Bulk Metals, Journal of Catalysis, vol.197, issue.2, pp.335-343, 2001.
DOI : 10.1006/jcat.2000.3083

J. Wang, L. Huang, and Q. Li, Influence of different diluents in Pt/Al2O3 catalyst on the hydrogenation of benzene, toluene and o-xylene, Applied Catalysis A: General, vol.175, issue.1-2, pp.191-199, 1998.
DOI : 10.1016/S0926-860X(98)00216-6

A. A. Ali, L. I. Ali, S. Aboul-fotouh, and A. K. , Hydrogenation of aromatics on modified platinum???alumina catalysts, Applied Catalysis A: General, vol.170, issue.2, pp.285-296, 1998.
DOI : 10.1016/S0926-860X(98)00058-1

D. Klvana, J. Chaouki, D. Kusohorsky, and C. Chavarie, Catalytic storage of hydrogen: Hydrogenation of toluene over a nickel/silica aerogel catalyst in integral flow conditions, Applied Catalysis, vol.42, issue.1, pp.42-121, 1988.
DOI : 10.1016/S0166-9834(00)80080-9

T. Kaufmann, A. Kaldor, G. Stuntz, M. Kerby, and L. , Catalysis science and technology for cleaner transportation fuels, Catalysis Today, vol.62, issue.1, pp.77-90, 2000.
DOI : 10.1016/S0920-5861(00)00410-7

C. N. Satterfield, Heterogenous catalysis in Practice, 1980.

G. C. Bond, Metal-Catalysed Reactions of hydrocarbons, 2005.

M. Saeys, M. Reyniers, J. W. Thybaut, M. Neurock, and G. B. Marin, First-principles based kinetic model for the hydrogenation of toluene, Journal of Catalysis, vol.236, issue.1, pp.129-138, 2005.
DOI : 10.1016/j.jcat.2005.09.019

S. D. Lin and M. A. Vannice, Hydrogenation of Aromatic Hydrocarbons over Supported Pt Catalysts .II. Toluene Hydrogenation, Journal of Catalysis, vol.143, issue.2, pp.554-562, 1993.
DOI : 10.1006/jcat.1993.1298

M. V. Rahaman and M. A. Vannice, The hydrogenation of toluene and o-, m-, and pxylene over palladium II. Reaction model, Journal of Catalysis, vol.127, pp.267-275, 1991.

M. A. Keane and P. M. Patterson, The Role of Hydrogen Partial Pressure in the Gas-Phase Hydrogenation of Aromatics over Supported Nickel, Industrial & Engineering Chemistry Research, vol.38, issue.4, pp.1295-1305, 1999.
DOI : 10.1021/ie980540t

M. A. Keane and P. M. Patterson, Compensation behaviour in the hydrogenation of benzene, toluene and o-xylene over Ni/SiO 2 determination of true activation energies, J. Chern. Soc., Faraday Trans, pp.92-1413, 1996.

J. Quartararo, S. Mignard, and S. Kasztelan, Trends for mono-aromatic compounds hydrogenation over sulfided Ni, Mo and NiMo hydrotreating catalysts, Catalysis Letters, pp.61-167, 1999.

F. Benseradj, F. Sadi, and M. Chater, ??tude de l'effet des additifs Fe, Co, Ni sur l'interaction Rh???tolu??ne sur Rh/Al2O3, Comptes Rendus Chimie, vol.7, issue.6-7, pp.669-677, 2004.
DOI : 10.1016/j.crci.2004.03.009

J. W. Thybaut, M. Saeys, and G. B. Marin, Hydrogenation kinetics of toluene on Pt/ZSM-22, Chemical Engineering Journal, vol.90, issue.1-2, pp.117-129, 2002.
DOI : 10.1016/S1385-8947(02)00073-6

M. A. Keane and G. Tavoularis, The role of spillover hydrogen initial gas phase catalytic aromatic hydroechlorination and hydrogenation over nickel/silica, React, Kinet.Catal.Lett, pp.78-89, 2003.

L. P. Lindfors, T. Salmi, and S. Smeds, Kinetics of toluene hydrogenation on Ni/Al2O3 catalyst, Chemical Engineering Science, vol.48, issue.22, pp.3813-3828, 1993.
DOI : 10.1016/0009-2509(93)80224-E

L. P. Lindfors and T. Salmi, Kinetics of toluene hydrogenation on a supported nickel catalyst, Industrial & Engineering Chemistry Research, vol.32, issue.1, pp.34-42, 1993.
DOI : 10.1021/ie00013a006

J. Chupin, N. Gnep, S. Lacombe, and M. Guisnet, Influence of the metal and of the support on the activity and stability of bifunctional catalysts for toluene hydrogenation, Applied Catalysis A: General, vol.206, issue.1, pp.43-56, 2001.
DOI : 10.1016/S0926-860X(00)00585-8

R. Slioor, J. Kanervo, T. Keskitalo, and A. Krause, Gas phase adsorption and desorption kinetics of toluene on Ni/??-Al2O3, Applied Catalysis A: General, vol.344, issue.1-2, pp.183-190, 2008.
DOI : 10.1016/j.apcata.2008.04.014

P. Castano, J. M. Arandes, B. Pawelec, J. L. Fierro, A. Gutierrez et al., Kinetic Model Discrimination for Toluene Hydrogenation over Noble-Metal-Supported Catalysts, Industrial & Engineering Chemistry Research, vol.46, issue.23, pp.46-7417, 2007.
DOI : 10.1021/ie070094m

N. Gaidai, R. Kazantsev, N. Nekrasov, Y. Shulga, and I. Ivleva, Kinetics of toluene hydrogenation over platinum-titana catalysts in conditions of strong metal-support interaction , React, Kinet.Catal.Lett, pp.75-55, 2002.

S. D. Lin and M. A. Vannice, Hydrogenation of Aromatic Hydrocarbons over Supported Pt Catalysts .III. Reaction Models for Metal Surfaces and Acidic Sites on Oxide Supports, Journal of Catalysis, vol.143, issue.2, pp.563-572, 1993.
DOI : 10.1006/jcat.1993.1299

M. V. Rahaman and M. A. Vannice, The hydrogenation of toluene and o-, m-, and p-xylene over palladium I. kinetic behavior and o-xylene isomerization, Journal of Catalysis, vol.127, pp.251-266, 1991.

C. H. Bartholomew, Mechanisms of catalyst deactivation, Applied Catalysis A: General, vol.212, issue.1-2, pp.17-60, 2001.
DOI : 10.1016/S0926-860X(00)00843-7

M. Huang, S. Kaliaguine, and S. Suppiah, Surface interaction between H2 and CO2 over silicalite-supported platinum, Applied Surface Science, vol.90, issue.4, pp.393-407, 1995.
DOI : 10.1016/0169-4332(95)00192-1

L. Chen, B. Chen, C. Zhou, J. Wu, R. C. Forrey et al., Cluster, The Journal of Physical Chemistry C, vol.112, issue.36, pp.13937-13942, 2008.
DOI : 10.1021/jp803504k

URL : https://hal.archives-ouvertes.fr/hal-01404490

S. Tsang, J. Claridge, and M. Green, Recent advances in the conversion of methane to synthesis gas, Catalysis Today, vol.23, issue.1, pp.3-15, 1995.
DOI : 10.1016/0920-5861(94)00080-L

A. Goguet, D. Tibiletti, F. Meunier, J. Breen, and R. Burch, Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/CeO 2 catalyst, J. Phys. Chem. B, vol.52, pp.20240-20246, 2004.

R. Dagle, A. Platon, D. Palo, A. Datye, J. Vohs et al., PdZnAl catalysts for the reactions of water-gas-shift, methanol steam reforming, and reverse-water-gas-shift, Applied Catalysis A: General, vol.342, issue.1-2, pp.63-68, 2008.
DOI : 10.1016/j.apcata.2008.03.005

G. Roberts, P. Chin, X. Sun, and J. J. Spivey, Preferential oxidation of carbon monoxide with Pt/Fe monolithic catalysts: interactions between external transport and the reverse water-gas-shift reaction, Applied Catalysis B: Environmental, vol.46, issue.3, pp.601-611, 2003.
DOI : 10.1016/j.apcatb.2003.07.002

G. Papoian, J. K. Noskov, and R. J. Hoffmann, A comparative theoretical study of the hydrogen, methyl, and ethyl chemisorption on the Pt(111) surface, Am, Chem. Soc, pp.122-4129, 2000.

D. Godbey and G. A. Somorjai, The adsorption and desorption of hydrogen and carbon monoxide on bimetallic Re-Pt (111) surfaces, Surface Science, pp.301-318, 1988.

B. Pennemann, K. Oster, and K. Wandelt, Hydrogen adsorption on Pt(100) at low temperatures: work function and thermal desorption data, Surface Science, vol.249, issue.1-3, pp.35-43, 1991.
DOI : 10.1016/0039-6028(91)90831-C

S. E. Mason, I. Grinberg, and A. M. Rappe, Adsorbateâ??adsorbate interactions and chemisorption at different coverages studied by accurate ab initio calculations: Co on transition metal surfaces, J. Phys. Chem. B, vol.112, pp.3816-3822, 2006.

M. Burgener, D. Ferri, J. Grunwaldt, T. Mallat, and A. Baiker, Supercritical Carbon Dioxide:?? An Inert Solvent for Catalytic Hydrogenation?, The Journal of Physical Chemistry B, vol.109, issue.35, pp.16794-16800, 2005.
DOI : 10.1021/jp0521353

B. J. Minder, T. Malla, K. Pickel, K. Steiner, and A. Baiker, Enantioselective hydrogenation of ethyl pyruvate in supercritical fluids, Catalysis Letters, vol.245, issue.1-2, p.34, 1995.
DOI : 10.1007/BF00808315

D. Xu, R. G. Carbonell, D. J. Kiserow, and G. W. Roberts, Hydrogenation of polystyrene in CO 2 -expanded solvents: Catalyst poisoning, Ind. Eng. Chem. Res, pp.44-6164, 2005.

T. Gu, W. K. Lee, and J. V. Zee, Quantifying the ???reverse water gas shift??? reaction inside a PEM fuel cell, Applied Catalysis B: Environmental, vol.56, issue.1-2, p.43, 2005.
DOI : 10.1016/j.apcatb.2004.08.016

B. M. Bhanage, Y. Ikushima, M. Shirai, and M. Arai, The selective formation of unsaturated alcohols by hydrogenation of ?,?-unsaturated aldehydes in supercritical carbon dioxide using unpromoted Pt, Catalysis Letters, pp.62-175, 1999.

F. Zhao, S. Fujita, J. Sun, Y. Ikushima, and M. Arai, Hydrogenation of nitro compounds with supported platinum catalyst in supercritical carbon dioxide, Catalysis Today, vol.98, issue.4, pp.98-523, 2004.
DOI : 10.1016/j.cattod.2004.09.007

F. Zhao, Y. Ikushima, and M. Arai, Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide: effects of pressure, solvent, and metal particle size, Journal of Catalysis, vol.224, issue.2, pp.479-483, 2004.
DOI : 10.1016/j.jcat.2004.01.003

D. Ferri, T. Burgi, and A. Baiker, Probing boundary sites on a Pt/Al2O3 model catalyst by CO2 hydrogenation and in situ ATR-IR spectroscopy of catalytic solid???liquid interfaces, Physical Chemistry Chemical Physics, vol.4, issue.12, pp.2667-2672, 2002.
DOI : 10.1039/b111498k

A. Maméde, J. Giraudon, A. Lófberg, L. Leclercq, and G. Leclercq, Hydrogenation of toluene over ??-Mo2C in the presence of thiophene, Applied Catalysis A: General, vol.227, issue.1-2, pp.73-82, 2002.
DOI : 10.1016/S0926-860X(01)00923-1

R. I. Slioor, J. M. Kanervo, and A. O. Krause, Temperature Programmed Hydrogenation of Toluene, Catalysis Letters, vol.90, issue.1, pp.24-32, 2008.
DOI : 10.1007/s10562-007-9315-2

D. Hoge, M. Tueshaus, and A. M. Shaw, Island formation during CO/H coadsorption on Pt{111} studied by IR reflection-absorption spectroscopy, Surface Science, vol.207, issue.1, p.935, 1988.
DOI : 10.1016/0039-6028(88)90240-3

W. Rachmady and M. A. Vannice, Acetic acid hydrogenation over supported platinum catalysts, Journal of Catalysis, vol.192, issue.2, pp.322-334, 2000.
DOI : 10.1006/jcat.2000.2863

Y. Akutsu, D. Lee, Y. Li, and T. Noike, Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora, International Journal of Hydrogen Energy, vol.34, issue.13, pp.5365-5372, 2009.
DOI : 10.1016/j.ijhydene.2009.04.052

C. Dinamarca and R. Bakke, Apparent hydrogen consumption in acid reactors: observations and implications, Water Science & Technology, vol.59, issue.7, pp.1441-1447, 2009.
DOI : 10.2166/wst.2009.135

S. Han and H. Shin, Biohydrogen production by anaerobic fermentation of food waste, International Journal of Hydrogen Energy, vol.29, issue.6, pp.569-577, 2004.
DOI : 10.1016/j.ijhydene.2003.09.001

Z. Wu and S. Yang, Extractive fermentation for butyric acid production from glucose byClostridium tyrobutyricum, Biotechnology and Bioengineering, vol.31, issue.1, pp.93-102, 2003.
DOI : 10.1002/bit.10542

D. J. Miller, Kirk-Othmer Encyclopedia of Chemical Technology, 1991.

R. Pestman, R. M. Koster, A. Van-duijne, J. A. Pieterse, and V. Ponec, Reactions of Carboxylic Acids on Oxides, Journal of Catalysis, vol.168, issue.2, pp.265-272, 1997.
DOI : 10.1006/jcat.1997.1624

R. Pestman, R. M. Koster, J. A. Pieterse, and V. Ponec, Reactions of Carboxylic Acids on Oxides, Journal of Catalysis, vol.168, issue.2, pp.255-264, 1997.
DOI : 10.1006/jcat.1997.1623

E. J. Grootendorst, R. Pestman, R. M. Koster, and V. Ponec, Selective Reduction of Acetic Acid to Acetaldehyde on Iron Oxides, Journal of Catalysis, vol.148, issue.1, pp.261-269, 1994.
DOI : 10.1006/jcat.1994.1207

W. Rachmady and M. A. Vannice, Acetic Acid Reduction to Acetaldehyde over Iron Catalysts, Journal of Catalysis, vol.208, issue.1, pp.158-169, 2002.
DOI : 10.1006/jcat.2002.3560

T. Yokoyama and N. Yamagata, Hydrogenation of carboxylic acids to the corresponding aldehydes, Applied Catalysis A: General, vol.221, issue.1-2, pp.227-239, 2001.
DOI : 10.1016/S0926-860X(01)00795-5

W. Rachmady and M. A. Vannice, Acetic Acid Reduction by H2 over Supported Pt Catalysts: A DRIFTS and TPD/TPR Study, Journal of Catalysis, vol.207, issue.2, pp.317-330, 2002.
DOI : 10.1006/jcat.2002.3556

A. Demirbass, Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterification and other methods: a survey, pp.2093-2109, 2003.

E. Karimi, A. Gomez, S. W. Kycia, and M. Schlaf, Thermal decomposition of acetic and formic acid catalyzed by red mud-implications for the potential use of red mud as a pyrolysis bio-oil upgrading catalyst, Energy Fuels, pp.24-2747, 2010.

R. Pestman, R. M. Koster, E. Boellaard, A. M. Van-der-kraan, and V. Ponec, Identification of the Active Sites in the Selective Hydrogenation of Acetic Acid to Acetaldehyde on Iron Oxide Catalysts, Journal of Catalysis, vol.174, issue.2, pp.142-152, 1998.
DOI : 10.1006/jcat.1998.1957

C. Nordhei, K. Mathisen, O. Safonova, W. V. Beek, and D. G. Nicholson, Decomposition of Carbon Dioxide at 500 ??C over Reduced Iron, Cobalt, Nickel, and Zinc Ferrites: A Combined XANES???XRD Study, The Journal of Physical Chemistry C, vol.113, issue.45, pp.19568-19577, 2009.
DOI : 10.1021/jp9049473

N. Calvar, A. Dominguez, and J. Tojo, Vapor???liquid equilibria for the quaternary reactive system ethyl acetate+ethanol+water+acetic acid and some of the constituent binary systems at 101.3kPa, Fluid Phase Equilibria, vol.235, issue.2, pp.215-222, 2005.
DOI : 10.1016/j.fluid.2005.07.010

B. Urbas, Recovery of acetic acid from a fermentation broth, US Patent, vol.4405, p.717

Y. K. Hong and W. H. Hong, Removal of acetic acid from aqueous solutions containing succinic acid and acetic acid by tri-n-octylamine, Separation and Purification Technology, vol.42, issue.2, pp.151-157, 2005.
DOI : 10.1016/j.seppur.2004.03.015

S. K. Lin, C. Du, A. C. Blaga, M. Camarut, C. Webb et al., Novel resin-based vacuum distillation-crystallisation method for recovery of succinic acid crystals from fermentation broths, Green Chemistry, vol.26, issue.4, pp.12-666, 2010.
DOI : 10.1039/b913021g

M. D. Barker and B. , The Synthesis of Butyric and Caproic Acids from Ethanol and Acetic Acid by Clostridium Kluyveri, Proceedings of the National Academy of Sciences, vol.31, issue.12, pp.373-381, 1945.
DOI : 10.1073/pnas.31.12.373

E. Model, . Vba, and . Attribute, VBA-ModuleType=VBAModule Sub Module1 Sub Macro1() ' Macro1 Macro % Macro recorded 2, 2009.

. Range, Select ActiveCell.FormulaR1C1="kkh2, Cells, issue.2 2, pp.2-2

. Range, Select ActiveCell.FormulaR1C1="ct" Cells(3, 2)=ct k=0, p.45

. Range, Select ActiveCell.FormulaR1C1="k" Cells(4, 2)=k alpha=0

. Range, Select ActiveCell.FormulaR1C1="alpha" Cells(5, 2)=alpha beta=0 Range, Select ActiveCell.FormulaR1C1="beta" Cells(6, 2)=beta kktol=6, pp.8-15

. Range, Select ActiveCell.FormulaR1C1=

. Range, Select ActiveCellSelect ActiveCellSelect ActiveCellSelect ActiveCellSelect ActiveCellSelect ActiveCell.FormulaR1C1="nH2" RangeSelect ActiveCellSelect ActiveCell.FormulaR1C1="nN2" RangeSelect ActiveCell.FormulaR1C1="nMCH" RangeSelect ActiveCell.FormulaR1C1="nt" RangeSelect ActiveCell.FormulaR1C1="PH2" RangeSelect ActiveCell.FormulaR1C1="PTol" RangeSelect ActiveCell.FormulaR1C1="CÂ?" RangeSelect ActiveCell.FormulaR1C1="f(x) RangeSelect ActiveCell.FormulaR1C1="Time" RangeT2:T12").Select Selection.Merge ActiveCell.FormulaR1C1="CÂ?" RangeT2:T12").Select With Selection Cells, M1").Select ActiveCell.FormulaR1C1="PN2" Range("N1").Select ActiveCell.FormulaR1C1="PMCH" Range("O1").Select ActiveCell.FormulaR1C1="Pt" Range("P1").Select ActiveCell.FormulaR1C1="Gamma" Range10)·pt Cells(2,14)=Cells(2,9)/Cells(2,10)·pt Cells(2,15)=Cells(2,11)+Cells(2,12)+Cells(2,13)+Cells(2,14) Cells(2,21)=0 Cells(2,17)=Cells17))+kktol· Cells17)) · (ktol·Cells(2,12) ·thetao-kktol·Cells(2,17))/(ktol·Cells(2,12) ·thetao-kktol·Cells(2,17)+kh2·Cells(2,11) 0.5 ·thetao-kkh2 ·(ct-Cells(2,17))) theta1 = 3 · k · CellsCells(2, 17) + dt / 2 · fo)) + kktol · (Cells(2, 17) + dt / 2 · fo) + kkh2 · (ct -(Cells(2, 17) + dt / 2 · fo)) f1 = 3 · k · CellsCells(2, 17) + dt / 2 · fo)) · (ktol · Cells) + dt / 2 · fo)) / (ktol · Cells 12) · theta1 -kktol · (Cells(2, 17) + dt / 2 · fo) + kh2 · Cells, pp.2-3, 2002.

A. E. Model, ·. , and ·. Cells, 17) + dt / 2 · f1)) + kktol · (Cells(2, 17) + dt / 2 · f1) + kkh2 · (ct -(Cells(2, 17) + dt / 2 · f1)) f2 = 3 · k · Cells(2, 11) alpha · (ct -(Cells(2, 17) + dt / 2 · f1)) · (ktol · Cells, 12) · theta2 -kktol · (Cells(2, 17) + dt / 2 · f1)) / (ktol · Cells 12) · theta2 -kktol · (Cells(2, 17) + dt / 2 · f1) + kh2 · Cells(2, 11) 0.5 · theta2 -kkh2 · (ct -(Cells(2, 17) + dt / 2 · f1))) theta3 = 3 · k · CellsCells(2, 17) + dt · f2)) + kktol · (Cells, pp.11-17

A. E. Model and . Cells, · f1) + kh2 · Cells(n + 2, 11) 0.5 · theta2 -kkh2 · (ct (Cells(n + 2, 17) + dt / 2 · f1))) theta3 = 3 · k · Cells(n + 2, 11) alpha · (ct -(Cells(n + 2, 17) + dt · f2)) + kktol · (Cells(n + 2, 17) + dt · f2) + kkh2 · (ct -(Cells(n + 2, 17) + dt · f2)) f3 = 3 · k · Cells(n + 2, 11) alpha · (ct -(Cells(n + 2, 17) + dt · f2)) · (ktol · Cells, 12) · theta3 -kktol · (Cells(n + 2, 17) + dt · f2)) / (ktol · Cells(n + 2, 12) · theta3 -kktol · (Cells(n + 2, 17) + dt · f2) + kh2 · Cells(n + 2, 11) 0.5 · theta3 -kkh2 · (ct (Cells(n + 2, 17) + dt · f2)))

·. Cells, 11) 0.5 · thetao -kkh2 · (ct -Cells(n + 2, 17))) theta1 = 3 · k · Cells(n + 2, 11) alpha · (ct -(Cells(n + 2, 17) + dt / 2 · fo)) + kktol · (Cells(n + 2, 17) + dt / 2 · fo) + kkh2 · (ct -(Cells(n + 2, 17) + dt / 2 · fo)) f1 = 3 · k · Cells(n + 2, 11) alpha · (ct -(Cells(n + 2, 17) + dt / 2 · fo)) · (ktol · Cells(n + 2, 12) · theta1 -kktol · (Cells(n + 2, 17) + dt, ktol · Cells(n + 2, 12) · thetao -kktol · Cells(n + 2, 17) + kh2 · Cells))) theta2 = 3 · k · Cells)) + kktol · (Cells(n + 2, 17) + dt / 2 · f1) + kkh2 · (ct -(Cells(n + 2, 17) + dt / 2 · f1)) f2 = 3 · k · Cells(n + 2, 11) alpha · (ct -(Cells(n + 2, 17) + dt / 2 · f1)) · (ktol · Cells(n + 2, 12) · theta2 -kktol · (Cells(n + 2, 17) + dt / 2 · f1)) / (ktol · Cells(n + 2, 12) · theta2 -kktol · (Cells(n + 2, 17) + dt / 2 · f1) + kh2 · Cells(n + 2, 11) 0.5 · theta2 -kkh2 · (ct (Cells(n + 2, 17) + dt / 2 · f1)))