. Cross, . And, . Likelihood, . Misspecified, . Of et al., Correlation model Enforced hyper-parameters MSE PVA exponential [1, 1, 1] 2.01 M L : 0, CHAPTER

E. Modeled, . By, . Model, ]. P. Process-bibliographyabr97, and . Abrahamsen, A review of Gaussian random elds and correlation functions, 1997.

M. Abt, Estimating the Prediction Mean Squared Error in Gaussian Stochastic Processes with Exponential Correlation Structure, Scandinavian Journal of Statistics, vol.26, issue.4, p.563578, 1999.
DOI : 10.1111/1467-9469.00168

I. Andrianakis and P. G. Challenor, The eect of the nugget on Gaussian process emulators of computer models, Computational Statistics and Data Analysis, vol.56, p.42154228, 2012.

M. Anitescu, J. Chen, and L. Wang, A Matrix-free Approach for Solving the Parametric Gaussian Process Maximum Likelihood Problem, SIAM Journal on Scientific Computing, vol.34, issue.1, pp.240-262, 2012.
DOI : 10.1137/110831143

]. R. Adl81 and . Adler, The Geometry of Random Fields, 1981.

]. R. Adl90 and . Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes, 1990.

E. Anderes, On the consistent separation of scale and variance for Gaussian random elds. The Annals of Statistics, p.870893, 2010.

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, American Journal of Physics, vol.34, issue.2, 1965.
DOI : 10.1119/1.1972842

J. P. Aubin and F. Bachoc, Applied Functional Analysis Asymptotic analysis of the role of the spatial sampling for hyperparameter estimation of Gaussian processes, 2000.

F. Bachoc, Cross validation and maximum likelihood estimations of hyperparameters of Gaussian processes with model mispecication, Computational Statistics and Data Analysis, vol.66, p.5569, 2013.

]. P. Bibliography-[-bar10 and . Barbillon, Méthodes d'interpolation à noyaux pour l'approximation de fonctions type boîte noire coûteuses, 2010.

. F. Bbgm, G. Bachoc, J. Bois, J. Garnier, and . Martinez, Calibration and improved prediction of computer models by universal Kriging. Nuclear Science and Engineering

J. Lin and . Tu, A framework for validation of computer models, Technometrics, vol.49, issue.2, p.138154, 2007.

J. [. Benassi, E. Bect, and . Vazquez, Robust Gaussian Process-Based Global Optimization Using a Fully Bayesian Expected Improvement Criterion, LION5, online proceedings, 2011.
DOI : 10.1002/qre.945

URL : https://hal.archives-ouvertes.fr/hal-00607816

D. Blackwell and L. E. Dubins, Merging of Opinions with Increasing Information, The Annals of Mathematical Statistics, vol.33, issue.3, p.882886, 1962.
DOI : 10.1214/aoms/1177704456

G. Box and N. Draper, Empirical Model Building and Response Surfaces, Series in Probability and Mathematical Statistics, 1987.

]. R. Bet09 and . Bettinger, Inversion d'un système par Krigeage Application à la synthèse de catalyseurs à haut débits, 2009.

. Bect, . Ginsbourger, . Li, E. Picheny, and . Vazquez, Sequential design of computer experiments for the estimation of a probability of failure, Statistics and Computing, vol.34, issue.4, p.773793, 2012.
DOI : 10.1007/s11222-011-9241-4

URL : https://hal.archives-ouvertes.fr/hal-00689580

]. P. Bil12 and . Billingsley, Probability and measure

T. [. Bastos and . Hagan, Diagnostics for Gaussian Process Emulators, Technometrics, vol.51, issue.4
DOI : 10.1198/TECH.2009.08019

]. D. Cac03 and . Cacuci, Sensitivity and uncertainty analysis, Theory. Chapman & Hall/CRC, 2003.

J. Chilès and P. Delner, Geostatistics : Modeling Spatial Uncertainty, 1999.
DOI : 10.1002/9781118136188

]. C. Cg13a, D. Chevalier, and . Ginsbourger, Fast computation of the multipoint expected improvement with applications in batch selection, Proceedings of the LION7 conference, 2013.

C. Chevalier and D. Ginsbourger, Corrected kriging update formulae for batch-sequential data assimilation In To be presented at IAMG Madrid 2013, Session 4: Data assimilation in Geosciences, BIBLIOGRAPHY [CL67] H. Cramér and M.R. Leadbetter. Stationary and Related Stochastic Processes - Sample Function Properties and Their Applications, 1967.

N. Cressie and S. Lahiri, The Asymptotic Distribution of REML Estimators, Journal of Multivariate Analysis, vol.45, issue.2, p.217233, 1993.
DOI : 10.1006/jmva.1993.1034

]. N. Cre93 and . Cressie, Statistics for Spatial Data, 1993.

E. J. Candes and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies? Information Theory, IEEE Transactions on, vol.52, issue.12, pp.5406-5425, 2006.
DOI : 10.1109/tit.2006.885507

URL : http://arxiv.org/abs/math/0410542

W. Daqing, Fixed Domain Asymptotics and Consistent Estimation for Gaussian Random Field Models in Spatial Statistics and Computer Experiments, 2010.

]. A. De-crécy, Determination of the uncertainties of the constitutive relationships in the cathare 2 code, Proceedings of the 4th ASME/JSME International Conference on Nuclear Engineering, 1996.

]. A. De-crécy, Determination of the uncertainties of the constitutive relationships of the cathare 2 code, M&C 2001 Salt Lake City, 2001.

]. C. Die97 and . Dietrich, Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix, SIAM J. SCI. COMPUT, vol.18, pp.1088-1107, 1997.

]. J. Doo53 and . Doob, Stochastic Processes, 1953.

E. De-rocquigny, N. Devictor, and S. Tarantola, Uncertainty in industrial practice, 2008.
DOI : 10.1002/9780470770733

]. O. Dub83 and . Dubrule, Cross validation of Kriging in a unique neighborhood, Mathematical Geology, vol.15, p.687699, 1983.

J. Du, H. Zhang, and V. S. Mandrekar, Fixed-domain asymptotic properties of tapered maximum likelihood estimators, The Annals of Statistics, vol.37, issue.6A, p.33303361, 2009.
DOI : 10.1214/08-AOS676

]. S. Fu12 and . Fu, Inversion probabiliste bayésienne en analyse d'incertitude, 2012.

M. [. Gerstner and . Griebel, Numerical integration using sparse grids. Numerical algorithms, p.209232, 1998.

[. Gratiet and J. Garnier, Regularity dependence of the rate of convergence of the learning curve for gaussian process regression, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00737342

G. H. Golub and C. F. Van-loan, Matrix computations, Johns Hopkins Studies in Mathematical Sciences, 1996.

]. R. Gra01 and . Gray, Toeplitz and circulant matrices: A review, 2001.

I. I. Gihman and A. V. Skorohod, The theory of stochastic processes, 1974.
DOI : 10.1007/978-3-642-61943-4

]. D. Har74 and . Harville, Bayesian inference for variant components using only error contrasts, Biometrika, vol.61, p.383385, 1974.

. Hga-+-10-]-e, F. Hourcade, G. Gaudier, D. Arnaud, K. Funtowiez et al., A supercomputing application for reactors core design and optimization, Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2010 (SNA + MC2010), 2010.

D. Higdon, M. Kennedy, J. C. Cavendish, J. A. Cafeo, and R. D. Ryne, Combining eld data and computer simulations for calibration and prediction, SIAM Journal on Scientic Computing, vol.26, p.448466, 2004.

V. [. Hascoët and . Pascual, Tapenade 2.1 user's guide, 2004.

R. [. Hastie, J. Tibshirani, and . Friedman, The elements of statistical learning, 2008.

B. Iooss, . Boussouf, and . Feuillard, Numerical studies of the metamodel tting and validation processes, International Journal of Advances in Systems and Measurements, vol.3, p.1121, 2010.

Y. [. Ibragimov and . Rozanov, Gaussian Random Processes, 1978.
DOI : 10.1007/978-1-4612-6275-6

Y. [. Jeannée, F. Desnoyers, B. Lamadie, and . Iooss, Geostatistical sampling optimization of contaminated premises. In DEM 2008 -Decommissionning Challenges: an industrial reality?, 2008.

M. [. Jones, W. J. Schonlau, and . Welch, Ecient global optimization of expensive black box functions, Journal of Global Optimization, vol.13, p.455492, 1998.

. Khf-+-06-]-t, K. M. Kawano, S. Hanson, P. Frankle, M. B. Talou et al., Evaluation and propagation of the 239 Pu ssion cross-section uncertainties using a

M. Carlo-technique, Bayesian calibration of computer models, Nuclear Science and Engineering Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.153, issue.63, p.17425464, 2001.

]. S. Kou03 and . Kou, On the eciency of selection criteria in spline regression. Probability Theory and Related Fields, p.153176, 2003.

M. [. Lockwood and . Anitescu, Gradient-Enhanced Universal Kriging for Uncertainty Propagation, Nuclear Science and Engineering, vol.170, issue.2, p.168195, 2012.
DOI : 10.13182/NSE10-86

]. S. Lah03 and . Lahiri, Central limit theorems for weighted sums of a spatial process under a class of stochastic and xed designs, Sankhyã: The Indian Journal of Statistics, vol.65, p.356388, 2003.

W. L. Loh and T. K. Lam, Estimating structured correlation matrices in smooth Gaussian random eld models. The Annals of Statistics, p.880904, 2000.

K. [. Lahiri and . Mukherjee, Asymptotic distributions of M-estimators in a spatial regression model under some xed and stochastic spatial sampling designs, Annals of the Institute of Statistical Mathematics, vol.56, p.225250, 2004.

W. L. Loh, Fixed domain asymptotics for a subclass of Matérn type Gaussian random elds. The Annals of Statistics, p.23442394, 2005.

A. [. Li and . Sudjianto, Analysis of Computer Experiments Using Penalized Likelihood in Gaussian Kriging Models, Technometrics, vol.47, issue.2, p.111120, 2005.
DOI : 10.1198/004017004000000671

G. Matheron, La Théorie des Variables Régionalisées et ses Applications Fasicule 5 in Les Cahiers du, 1970.

A. Marrel, B. Iooss, F. Van-dorpe, and E. Volkova, An ecient methodology for modeling complex computer codes with Gaussian processes, Computational Statistics and Data Analysis, vol.52, p.47314744, 2008.

]. T. Mit97 and . Mitchell, Machine Learning, 1997.

K. V. Mardia and R. J. Marshall, Maximum likelihood estimation of models for residual covariance in spatial regression, Biometrika, vol.71, issue.1, p.135146, 1984.
DOI : 10.1093/biomet/71.1.135

A. [. Martinez, N. Marrel, F. Gilardi, C. Bachoc, and D. /. Rt, Krigeage par processus gaussiens Librairie gpLib, pp.12-026

]. D. Mon05 and . Montgomery, Design and Analysis of Experiments, 2005.

M. D. Morris, Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, vol.1, issue.2, p.161174, 1991.
DOI : 10.2307/1266468

J. C. Melis, L. Roche, J. P. Piron, and J. Truert, Germinal -a computer code for predicting fuel pin behaviour, Journal of Nuclear Materials, vol.188, p.303307, 1992.

J. D. Martin and T. W. Simpson, On the use of Kriging models to approximate deterministic computer models, DETC'04 ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Salt Lake City, 2004.

H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, Series SIAM CBMS-NSF, 1992.
DOI : 10.1137/1.9781611970081

]. A. Nou09 and . Nouy, Recent developments in spectral stochastic methods for the numerical solution of stochastic partial dierential equations, Archives of Computational Methods in Engineering, vol.16, p.251285, 2009.

K. [. Novak and . Ritter, High dimensional integration of smooth functions over cubes, Numerische Mathematik, vol.75, issue.1, p.7997, 1996.
DOI : 10.1007/s002110050231

J. Nocedal and S. J. Wright, Numerical Optimization, 2006.
DOI : 10.1007/b98874

D. [. Petruzzi and F. Cacuci, Best-Estimate Model Calibration and Prediction Through Experimental Data Assimilation - II: Application to a Blowdown Benchmark Experiment, Nuclear Science and Engineering, vol.165, issue.1, p.45100, 2008.
DOI : 10.13182/NSE09-37C

L. Pronzato and W. G. Müller, Design of computer experiments: space filling and beyond, Statistics and Computing, vol.44, issue.1, p.681701, 2012.
DOI : 10.1007/s11222-011-9242-3

URL : https://hal.archives-ouvertes.fr/hal-00685876

S. [. Press, W. T. Teukolsky, B. P. Vetterling, and . Flannery, Numerical recipes: The art of Scientic computing, 2007.

A. [. Putter and . Young, On the eect of covariance function estimation on the accuracy of kriging predictors, Bernoulli, vol.7, issue.3, p.421438, 2001.

C. Robert and G. Casella, Monte Carlo statistical methods, 1999.

O. Roustant, D. Ginsbourger, and Y. Deville, Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization, Journal of Statistical Software, vol.51, issue.1, p.155, 2012.
DOI : 10.18637/jss.v051.i01

URL : https://hal.archives-ouvertes.fr/hal-00495766

]. B. Rip81 and . Ripley, Spatial Statistics, 1981.

C. Robert, The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation, 2001.
DOI : 10.1007/978-1-4757-4314-2

C. [. Rasmussen and . Williams, Gaussian Processes in Machine Learning, 2006.
DOI : 10.1162/089976602317250933

M. L. Stein, J. Chen, and M. Anitescu, Difference Filter Preconditioning for Large Covariance Matrices, SIAM Journal on Matrix Analysis and Applications, vol.33, issue.1, pp.52-72, 2012.
DOI : 10.1137/110834469

M. L. Stein, J. Chen, and M. Anitescu, Stochastic approximation of score functions for Gaussian processes, The Annals of Applied Statistics, vol.7, issue.2, p.11621191, 2013.
DOI : 10.1214/13-AOAS627

S. [. Sundararajan and . Keerthi, Predictive Approaches for Choosing Hyperparameters in Gaussian Processes, Neural Computation, vol.36, issue.1, p.11031118, 2001.
DOI : 10.2307/2286745

]. S. Smo63 and . Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet Math. Dokl, vol.4, p.240243, 1963.

B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization,Optimization, and Beyond, 2002.

M. L. Stein, Asymptotically ecient prediction of a random eld with a misspecied covariance function. The Annals of Statistics, p.5563, 1988.

M. L. Stein, Bounds on the eciency of linear predictions using an incorrect covariance function. The Annals of Statistics, p.11161138, 1990.

M. L. Stein, A comparison of generalized cross validation and modied maximum likelihood for estimating the parameters of a stochastic process, The Annals of Statistics, vol.18, p.11391157, 1990.

M. L. Stein, Uniform asymptotic optimality of linear predictions of a random eld using an incorrect second-order structure. The Annals of Statistics, p.850872, 1990.

M. L. Stein, Spline Smoothing with an Estimated Order Parameter, The Annals of Statistics, vol.21, issue.3, p.15221544, 1993.
DOI : 10.1214/aos/1176349270

M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, 1999.
DOI : 10.1007/978-1-4612-1494-6

]. T. Swe80 and . Sweeting, Uniform asymptotic normality of the maximum likelihood estimator. The Annals of Statistics, p.13751381, 1980.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and Analysis of Computer Experiments, Statistical Science, vol.4, issue.4, p.409423, 1989.
DOI : 10.1214/ss/1177012413

B. [. Santner, W. Williams, and . Notz, The Design and Analysis of Computer Experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

]. L. Tar07 and . Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Matematica Italiana, 2007.

B. Toumia, A. Bergeron, D. Gallo, E. Royer, and D. Caruge, Flica-4: a threedimensional two-phase ow computer code with advanced numerical methods for nuclear applications, Nuclear Engineering and Design, vol.200, p.139155, 2000.

]. E. Tyr96 and . Tyrtyshnikov, A unifying approach to some old and new theorems on distribution and clustering, Linear Algebra and its Applications, vol.232, p.143, 1996.

]. A. Van98, . Van, and . Vaart, Asymptotic Statistics, Cambridge Series in Statistical and Probabilistic Mathematics, 1998.

]. E. Vaz05 and . Vazquez, Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applications, 2005.

E. Vazquez and J. Bect, Pointwise consistency of the Kriging predictor with known mean and covariance functions In mODa 9 -Advances in Model-Oriented Design and Analysis. 14th, 2010.

]. A. Vec88 and . Vecchia, Estimation and model identication for continuous spatial processes, Journal of the Royal Statistical Society , Ser. B, vol.50, p.297312, 1988.

[. Veiga and A. Marrel, Gaussian process modeling with inequality constraints, Annales de la faculté des sciences de Toulouse, p.529555, 2012.
DOI : 10.5802/afst.1344

G. [. Viana, V. Venter, and . Balabanov, An algorithm for fast optimal Latin hypercube design of experiments, International Journal for Numerical Methods in Engineering, vol.49, issue.1, p.135156, 2010.
DOI : 10.1007/s00158-008-0338-0

G. Wahba, Spline Models for Observational Data, SIAM, 1990.
DOI : 10.1137/1.9781611970128

S. Wang, W. Chen, and K. Tsui, Bayesian Validation of Computer Models, Technometrics, vol.51, issue.4, p.439451, 2009.
DOI : 10.1198/TECH.2009.07011

]. H. Whi82 and . White, Maximum likelihood estimation of misspecied models, Econometrica, vol.50, issue.1, p.125, 1982.

C. [. Wu, Y. Lim, and . Xiao, Tail estimation of the spectral density for a stationary gaussian random eld, Journal of Multivariate Analysis, vol.116, p.7491, 2013.

]. Z. Yin91 and . Ying, Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process, Journal of Multivariate Analysis, vol.36, p.280296, 1991.

F. [. Yakowitz, . L. Szidarovszky-]-d, N. Zimmerman, and . Cressie, A comparison of Kriging with nonparametric regression methods Mean squared prediction error in the spatial linear model with estimated covariance parameters, Journal of Multivariate Analysis Ann. Inst. Statist. Math, vol.16, issue.44, p.21532743, 1985.

]. A. Zem65 and . Zemanian, Distribution Theory and Transform Analysis, 1965.

H. Zhang, Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics, Journal of the American Statistical Association, vol.99, issue.465, pp.250-261, 2004.
DOI : 10.1198/016214504000000241

H. Zhang and Y. Wang, Kriging and cross-validation for massive spatial data, Environmetrics, vol.23, issue.1, p.290304, 2010.
DOI : 10.1002/env.1023

H. Zhang and D. L. Zimmerman, Towards reconciling two asymptotic frameworks in spatial statistics, Biometrika, vol.92, issue.4, p.921936, 2005.
DOI : 10.1093/biomet/92.4.921

Z. Zhu and H. Zhang, Spatial sampling design under the inll asymptotic framework, Environmetrics, vol.17, p.323337, 2006.