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I. BREF RÉSUMÉ EN FRANÇAIS

Le sujet de cette thèse porte sur les calculs numériques de deux observables quantiques influents à l’échelle sub-

micrométrique : le premier étant la force de Casimir et le second étant le transfert thermique radiatif. En champ

proche, ces deux grandeurs physiques sont à l’origine de nombreuses applications potentielles dans le domaine de la

nano-ingénierie.

Elles sont théoriquement et expérimentalement bien évaluées dans le cas de géométries simples, comme des cavités

de Fabry-Pérot formées par deux miroirs plans parallèles. Mais dans le cas des géométries complexes invariablement

rencontrées dans les applications nanotechnologiques réelles, les modes électromagnétiques sur lesquels elles sont

construites sont assujettis à des processus de diffractions, rendant leur évaluation considérablement plus complexe.

Ceci est le cas par exemple des NEMS ou MEMS, dont l’architecture est souvent non-triviale et hautement

dépendante de la force de Casimir et du flux thermique, avec par exemple le problème de malfonctionnement courant dû

à l’adhérence des sous-composants de ces systèmes venant de ces forces ou flux. Dans cette thèse, je m’intéresse princi-

palement à des profils périodiques de forme corruguée —c’est-à-dire en forme de créneaux— qui posent d’importantes

contraintes sur la simplicité de calcul de ces observables.

Après une revue fondamentale et théorique jetant les bases mathématiques d’une méthode exacte d’évaluation de

la force de Casimir et du flux thermique en champ proche centrée sur la théorie de diffusion, la seconde et principale

partie de ma thèse consiste en une présentation des estimations numériques de ces grandeurs pour des profils corrugués

de paramètres géométriques et de matériaux diverses. En particulier, j’obtiens les tous premiers résultats exacts de

la force de Casimir hors-équilibre-thermique et du flux thermique radiatif entre des surfaces corruguées. Je conclus

par une proposition de conception d’un modulateur thermique pour nanosystèmes basée sur mes résultats.
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II. SHORT SUMMARY IN ENGLISH

The subject of this thesis is about the numerical computations of two influent quantum observables at the nanoscale:

the Casimir force and the radiative heat transfer. In near field, these two physical quantities are at the origin of

numerous potential applications in the field of nano-engineering.

They are theoretically and experimentally well evaluated in the case of simple geometries such as Fabry-Pérot

cavities, which consist in two parallel plane mirrors separated by vacuum. But in the case of the more complex

geometries which are unavoidably encountered in practical nanotechnological applications, the electromagnetic modes

from which they are derived are subject to scattering processes which make their evaluation considerably more

complex.

This is for instance the case of NEMS and MEMS, whose general architecture is often non-trivial and highly

dependent on the Casimir force and radiative heat flux, with for example the often encountered problem of stiction

in these nano-devices. In this thesis I mainly focus on corrugated periodic profiles, which bring important constraints

on the simplicity of the computations associated with these observables.

After a fundamental review of the mathematical foundations of an exact method of computation of the Casimir

force and of the heat flux based on scattering theory, I present in the second part of this thesis the results of the

numerical calculations of these quantities for corrugated profiles of various geometrical parameters and for different

materials. In particular, I obtain the very first exact results of the out-of-thermal equilibrium Casimir force and of

the radiative heat flux between corrugated surfaces. I conclude with a proposal for the design of a thermal modulator

device for nanosystems based on my results.
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IV. INTRODUCTION

Shortly after the war, a young Dutchman named Hendrik Casimir was working at Philips Research Laboratories in

the Netherlands on the topic of colloidal solutions. These are viscous solutions, either gaseous or liquid, containing

micron-sized particles in suspension —such as clay mixed in water, milk, ink, and smoke. Theodor Overbeek, a

colleague of Casimir, realized that the theory that was used to describe the van der Waals forces between these

particles in colloids was in contradiction with observations. The van der Waals interaction between molecules was

simply considered as the sum of the attractive and repulsive forces between these molecules (or their subcomponents),

apart from the electrostatic contribution due to ions, and apart from the force arising from covalent bonds.

Overbeek asked Casimir to study this problem. Working together with Dirk Polder, and after some suggestions

by Niels Bohr, Casimir had the intuition that the van der Waals interaction between neutral molecules had to be

interpreted in terms of vacuum fluctuations. From then on, he shifted his focus from the study of this interaction in

the case of two particles to the case of two parallel plane mirrors. In 1948 he thus predicted the quantum mechanical

attraction between conducting plates now known as the Casimir force [1]. This force has since then been well studied

in its domain of validity by both experimental precision measurements [2–13] and theoretical calculations [14–40].

The Casimir force arises from a quantum mechanical understanding of vacuum [41, 42]. In the classical picture,

vacuum could be understood by a cubic box emptied of all its particles, and kept at zero temperature. However in

the quantum mechanical description, the electromagnetic fields present in vacuum are subject to vacuum fluctuations.

This is because quantum field theory requires all fields, and hence the electromagnetic fields present in vacuum, to be

uniformly quantized at every point in space. At each spatial point, these quantized fluctuations can be described by

a local harmonic quantum oscillator.

At any given moment, the energy of the fields present in vacuum varies around a constant mean value corresponding

to the vacuum expectation value of the energy, or vacuum energy. It is given by the quantization of a simple harmonic

oscillator requiring the lowest possible energy of that oscillator to be equal to half the energy of the photon:

E =
1

2
~ω

A consequence of this vacuum energy can be observed in different physical phenomena such as spontaneous emission,

the Lamb shift, and of course the Casimir effect and van der Waals interaction. It also has influence on the cosmological

constant and hence at the macroscale.

All electromagnetic fields have a specific spectrum made out of different ranges of wavelengths. In free space, the
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wavelengths of the spectra of the fields in vacuum all have the same equal importance. But in a cavity formed by

the two parallel planes mirrors that Casimir thought about, the field’s vacuum fluctuations are amplified at cavity

resonance, which is when the length of the cavity separating the two plates equals half of the field’s wavelengths

multiplied by an integer. Conversely, the field is suppressed at all the other wavelengths. This is due to multiple

interference processes inside the cavity.

�������

�������	��A

B

FIG. 1: Fabry-Pérot cavity formed by two parallel plates of area A separated by a distance L in vacuum.

Furthermore the vacuum energy associated with these extra- and intra-cavity fields brings a field radiation pressure,

which increases with the fields’ frequency. At cavity-resonance, the radiation pressure inside the cavity is larger than

the one outside and hence the mirrors are pushed apart. However out of cavity-resonance, the radiation pressure

inside the cavity is smaller than the one outside and the mirrors are pushed towards one another.

What leads to the Casimir force being in general attractive is that on average the attractive components outweigh

the repulsive ones. However in some specific cases (distinct temperatures for each mirror, distinct materials for each

mirrors with specific impedances, role of permeability), the Casimir force can be repulsive [43–51]. Notice that the

Casimir force can also exist if the vacuum gap is replaced by another medium [52, 53]. Between two plates of area A
separated by a distance L, it can be approximated by :

F ∼ A/L4

On FIG. 1, we show such a cavity (named a Fabry-Pérot cavity) formed by two parallel plates separated by vacuum.
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One can see from the equation above that the Casimir force is given by an inverse power law with the separation

distance between the plates. This is the reason why the Casimir force becomes large at very short distances, in general

below a few microns. At 100 nm, the Casimir force at zero temperature is approximatively equal to 1 N.m−2 for two

plates of silicon carbide SiC, and about 3 N.m−2 for two plates of gold Au. At 1µm, the Casimir force has decreased

to about 230 µN.m−2 and 900 µN.m−2 for these two cases, respectively.

This issue of extreme near-field dependence together with the proportionally large magnitude of the Casimir

force could have many practical nanotechnological applications [54–58]. But it also has several consequences at

the nanoscale, such as the problem of stiction in nanoelectromechanical systems (NEMS) and microelectromechanical

systems (MEMS), causing their malfunctioning [59]. For this reason, the accurate calculation and understanding of

the Casimir force is an ongoing challenge and topic of fundamental research.

FIG. 2: Large force electrostatic MEMS comb drive (left), and electrostatic actuator (right).

Another important physical observable which is distinct from the Casimir force [60, 61] but also affects nanosystems

in various ways is the radiative heat transfer between two bodies of different temperatures that are separated by a

gap of vacuum below a few microns. However contrary to the Casimir force, the radiative heat transfer plays a major

role at the macroscale as well—a perfect example being the heat conveyed to earth by sunlight.

The fluctuating electromagnetic field in the vacuum of the Fabry-Pérot cavity contains not only propagating but

evanescent modes, which enhance the radiative heat transfer at short separations. Furthermore, if the surface of the

body contains localized surface modes such as surface polaritons (dielectrics) or surface plasmons (for metals), the

heat flux is greatly enhanced. This makes the magnitude of the radiative heat transfer at the nanoscale subject to

a quantum contribution practically seen in the flux greatly exceeding the black body limit predicted by the classical

picture [62–81].

At 100 nm, the radiative heat transfer between two planes of silicon dioxide SiO2 at temperatures 290 K and 310

K is approximatively equal to 300 W.m−2.K−1, and about 70 W.m−2.K−1 for two planes of gold Au. At 1µm, the
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heat flux has decreased to about 13 W.m−2.K−1 and 0.2 W.m−2.K−1 for these same cases, respectively.

The real electromechanical systems encountered in nanoengineering are far from being as architecturally simple in

their design as the Fabry-Pérot cavity made out of the two planar surfaces shown in FIG. 1. As an example, one can

readily check the potential complexity of the geometrical structures of the MEMS displayed on FIG. 2.

Just as for the Casimir force equations, the heat flux equations between two parallel planes have a simple analytical

form and are well understood, but such a simple geometrical configuration is rarely seen in nanoengineering. It is

therefore crucial to establish a theoretical description with numerical computations of the Casimir force and heat flux

for nanostructured profiles describing real materials.

A basic type of nanostructured profile that we will study throughout this text is made out of periodic corrugations,

as shown on FIG. 3. The reflection of a mode at a planar surface follows the simple Snell–Descartes law of refraction,

but here the modes present in the cavity are diffracted at incidence according to a complex scattering from the

corrugations. Corrugated surfaces are a special case of the more general surface roughness considerations impacting

the magnitude of the Casimir force [82–84].

�

���������	A��B

FIG. 3: Fabry-Pérot cavity formed by two parallel corrugated gratings separated by a distance L in vacuum.

The outcome of the numerical calculations of both the Casimir force and the radiative heat transfer between such
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corrugated profiles lies in the determination of the scattering matrix associated with each profile. These scattering

matrices contain the sets of Fresnel-Stokes amplitudes for reflection and transmission of the modes at the media

interfaces. The two sets of parameters fully characterizing a given grating will be found in its associated scattering

matrix : those specifying its geometry, and those specifying the material it is made of. Therefore one can say that the

scattering matrix is used to define both a given nanostructured profile, and the way the cavity modes are diffracted

by it.

The backbone of the mathematical formalism that we will use to compute the scattering matrices associated with

corrugated surfaces is the Rigorous Coupled-Wave Analysis (RCWA) method from scattering theory [85]. The main

aim of section V will first be to lay down the foundations of quantum field theory and the thermodynamics used in

Casimir physics and nanoscale heat transfer, and in section VI we will derive the expressions of the Casimir force and

of the heat flux between corrugated surfaces in the framework of scattering theory.

The results of our numerical computations for the Casimir force between gratings with various geometrical param-

eters and materials are then presented in section VII —for corrugated profiles and several arbitrary periodic profiles.

In section VIII we will discuss the Casimir energy as a function of an overall non-zero temperature, and the Casimir

force when the two profiles have distinct non-zero temperatures. In section IX, we will conclude with a study of

radiative heat transfer between corrugated profiles, and propose a thermal modulator device for nanosystems based

on such a study.
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V. THEORY : QUANTUM FIELDS AND THE VACUUM STATE

A. Quantum theory and radiative heat transfer in the classical description

1. Quantization of light : Planck’s law, and Einstein’s generalization to photons

By the beginning of the 1900’s, what is now known as classical physics was facing challenging issues. One of these

issues concerned its understanding of thermal radiation, which is the electromagnetic radiation of an object due to

its temperature. This led to the study of a perfect thermal emitter called the black body. By definition, a black body

is an object perfectly absorbing all electromagnetic radiation at all frequencies —and thus ’black’, emitting only the

thermal part of its electromagnetic radiation. In this terminology, a real object, which will never perfectly absorb all

electromagnetic radiation, is called a grey body.

It was well-known to 19th century physicists that when a metal is heated to increasingly large temperatures, its

glow colour changes from red, to yellow, to blue, and eventually to white. The peak wavelength of a black body

thermal radiation was already known since 1893 as a direct consequence of the so-called Wien’s displacement law :

λmax = σw/T (1)

with σw = 2.897 × 10−3 m.K the Wien’s displacement constant, and T the absolute temperature of the black body.

Furthermore, its overall energy radiated per unit surface area was known since the 1880’s through the Stefan-Boltzmann

law :

W = ǫσT 4 (2)

with σ = 2π5kB
4

15c2h3 = 5.670× 10−8 J.s−1.m−2.K−4 being the Stefan-Boltzmann constant, kB = 1.381× 10−23 J.K−1 the

Boltzmann constant, h = 6.626×10−34 J.s the Planck constant, and c the speed of light in vacuum. The dimensionless

emissivity ǫ is equal to 1 for a black body, but again any real object has ǫ < 1.

A direct consequence of Wien’s displacement law was that the wavelength at which the thermal radiation of a

heated object is the strongest increases with its temperature. However, after shifting from the red, yellow, blue, and

white parts of the visible spectrum, and furthermore into the ultra-violet, the object increasingly continues to glow

in the visible spectrum. In other words, as the temperature increases, the object never becomes invisible but the

radiation of visible light increases continually.

Classical physics explained this peculiar phenomena by the Rayleigh–Jeans law, or alternatively by the Wien

approximation. But the former agreed with experiment for long wavelengths only, and the latter for short wavelengths
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FIG. 4: Comparison between Wien’s approximation, the Rayleigh–Jeans’s law, and Planck’s law, for a body at T = 0.008K.

only. In 1911, Paul Ehrenfest retrospectively called this unsolvable puzzle the ’ultraviolet catastrophe’ : it inferred to

the fact that at small wavelengths, objects with high temperatures will emit energy at an infinite rate.

However in 1900, Max Planck established a model [86] that faithfully took into account the full spectrum of thermal

radiation (FIG. 4), thereby involuntarily laying the first foundation of the quantum theory. He proposed to model

the thermal radiation as being in equilibrium by using a set of harmonic oscillators. He assumed that energy can

only be absorbed or emitted in small, discrete packets by means of these oscillators. By this simple mathematical

trick, he thus proposed that each of these individual harmonic oscillators should not give an arbitrary amount of

energy, but instead an integral number of units of energy —quanta of energy— where each should be proportional

to the oscillator’s own frequency. This proportionality is now known as the Planck constant h, already encountered

in equation (2). Thus in this model, the energy E of an harmonic oscillator of frequency ν (or angular frequency

ω = 2πν) is given by :

E = nhν = nℏω (3)

for n = 1, 2, 3, ... and ℏ = h/2π being the so-called reduced Planck constant. In this approach, Planck’s law leads to

the following spectral radiance of a black body, that is, the amount of radiative energy for a given frequency ω :

Iω(T ) =
ℏω3

4π3c2
1

e
ℏω

kBT − 1
(4)

Planck’s law is thus a distribution of thermodynamic equilibrium (like Bose–Einstein, Fermi–Dirac, or

Maxwell–Boltzmann distributions). One should notice the second term on the r.h.s, which is related to the so-

called partition function of the individual harmonic oscillators. This term contains the Boltzmann factor, which is a

factor determining the probability of an oscillator to be in a specific state out of the total many-states system which

is at thermodynamic equilibrium.
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Just as a material body is specified by a given temperature and energy distribution at thermal equilibrium (like

for example the Boltzmann distribution), the electromagnetic field may be considered as a photon ’gas’ of given

temperature and energy distribution at thermal equilibrium —in which case, it is explained by Planck’s law.

In 1905 Albert Einstein took a step further [87], adding to Planck’s concept of quanta of energy and applying it to

light. The issue of light being of a wave-like or a particle-like nature was a major question of Physics. By the early

1900’s, it was commonly accepted that light was more of a wave-like nature, partly because it was able to explain the

experimental results on the polarization of light, as well as the optical phenomena of refraction and diffraction. Yet

daringly, Einstein took on a more particle-like approach and proposed following Planck’s idea, that light’s energy was

divided into quanta of energies —today called photons :

E = hν (5)

Over time Einstein’s view came to be respected, partly due to its ability to accurately describe the photoelectric

effect —the fact that under high-frequency electromagnetic radiation, matter can emit electrons as a consequence of

energy absorption.

2. Laws of thermodynamics and Onsager’s reciprocal relations

By thermodynamics, one refers to the macroscopic description of energy as work or heat exchange between physical

systems. If for example a system is at thermodynamic equilibrium, it implies that over time no macroscopic change

can be detected in the system. As a tool to give a macroscopic description of the universe, thermodynamics implicitly

postulates that over an infinite amount of time, all systems confined within a fixed volume will eventually reach

thermodynamic equilibrium. It is basically constructed around three postulates :

• The first law of thermodynamics [88] states that any transformation or internal energy variation δU from one

equilibrium state to another is equal to the energy transfer exiting the system subtracted from the energy

transfer entering the system. This exchange of energy can appear as work W and as heat transfer Q :

δU = δQ− δW (6)

An illustration of this law is the conservation of energy under any transformation : energy can be exchanged

or transformed, but not created nor annihilated. It calls upon the concept of internal energy of a system, and
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can be extrapolated to the whole universe, saying that the sum of the energies represented by all the existing

particles within it should be a constant over time.

• The second law of thermodynamics [89] states that any thermodynamical transfer in a system is such that there

is a net increase in the global entropy ∆Sglobal, which is the sum of the entropy of the system ∆Ssys and the

entropy of the outside environment ∆Senv :

∆Sglobal = ∆Ssys +∆Senv > 0 (7)

Entropy can be seen as a way to express randomness or disorder, and the equation above implies that physical

transformations are irreversible —if they were reversible, no entropy would be created and ∆Sglobal would be

zero. As a consequence, an isolated system’s entropy will always increase or stay constant, since there is no heat

transfer with the outside environment. In practice, irreversibility is caused by many factors, among which the

inhomogeneity of diffusion processes (such as temperature and pressure), or dissipative phenomena (such as dry

or fluid friction processes), and chemical reactions.

• The third law of thermodynamics was established by Walther Nernst in 1904 [90] and states that the entropy of

a system tends to zero if possible, as the temperature of that system tends to zero. Notably, this limit to a zero

entropy can be expected for perfect crystals with a unique ground state. But degenerate states such as fermions

cannot display this zero entropy limit at zero temperature.

This is an important law because it provides a reference frame for the determination of absolute entropy. Since

it concerns perfect crystals, a consequence of the third law of thermodynamics is that it is impossible to cool

down a system to the absolute zero temperature. With the expansion of statistical physics, the third law is

now seen as a consequence of the definition of entropy from the statistical mechanics viewpoint, defined for

macroscopic systems composed of a given number Ω of microstates as :

S = kB log Ω (8)

One can link this law to the quantum mechanical principle of integer-spin particles being in the same quantum

state, which has become a recent topic of interest, with the study of the properties of Bose–Einstein condensates.

Over the years many other important results of thermodynamics and statistical mechanics have been raised more

or less successfully to the status of ‘law of thermodynamics’, but we shall especially retain what has sometimes been

called :
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• The zeroth law of thermodynamics, which states that two systems at equilibrium with a third system are at

equilibrium with each other. Hence thermal equilibrium between systems is an equivalence relation. According

to Max Planck, a consequence of this is that it provides the definition of temperature as a measurable quantity

—practically, by the approximation of the absolute zero through the study of gases at low temperatures.

• The fourth law of thermodynamics, generalized by the so-called Onsager reciprocal relations [91, 92], expresses

the equality of ratios of forces and flows for systems out of thermodynamical equilibrium, albeit for which there

still exist a certain notion of local equilibrium. More specifically, let us consider the internal energy density u

of a fluid system, which is related to the entropy density s and matter density ρ according to :

ds =
1

T
du− µ

T
dρ. (9)

where T is the temperature and µ a combination of chemical potential and pressure. Equation (9) comes from

(6), and is in this sense a derivation from the first law of thermodynamics. If written in terms of du, one can

identify Tds with the heat transfer within the system, and µdρ with the chemical and mechanical work. In the

case of non-fluid systems, this latter work term will be described by different variables, but for now the general

idea remains the same.

The energy density u and the matter density ρ are conserved so that their flows verify the following continuity

equations :

∂tu+∇ · Ju = 0 (10)

∂tρ+∇ · Jρ = 0 (11)

for t the local time-rate of change, and for Ju and Jρ the energy and matter density flows, respectively. These

are related to the notion of flux and force, respectively. The terms 1
T and − µ

T in equation (9) are the respective

conjugate variables of u and ρ, and are similar to potential energies. Therefore their gradients are seen as

thermodynamic forces, which bring flows associated with energy and matter densities.

In the absence of matter flows, the following is a consequence of Fourier’s law of heat conduction :

Ju = k∇ 1

T
(12)

In the absence of heat flows, the following is a consequence of Fick’s first law of diffusion :

Jρ = −D∇ µ

T
(13)
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field E along e2 at r2.

Current j along e2 at r2 causes 

field E along e1 at r1.

(Onsager)

FIG. 5: Equivalence shown by the Onsager reciprocity relations based on [93].

where k and D are related to the thermal conductivity and mass diffusivity, respectively. Therefore, when

both heat and matter flows are present, one can establish proportionality cross-term coefficients describing the

overlapping effects between the flows and forces Luρ and Lρu, and direct transport coefficients Luu and Lρρ

through the equations :

Ju = Luu ∇
1

T
− Luρ ∇

µ

T
(14)

Jρ = Lρu ∇
1

T
− Lρρ ∇

µ

T
(15)

These equations finally give the Onsager reciprocity relations :

Luρ = Lρu (16)

These are valid only when the flows and forces are linearly dependent so that the considered system is not

too far from equilibrium, and the concept of microscopic reversibility or local equilibrium takes effect. Hence

generally the Onsager theory is a macroscopic theory of linear coupling of irreversible events, such as thermal

conductivity and mass diffusivity. The general geometrical implications of the Onsager reciprocity relations are

shown in FIG. 5.
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3. Properties of radiative heat transfer

Even though classical thermodynamics comprise the study of energy of a system through both work and heat, we

will now restrain ourselves to the description of heat transfer, as defined by the transfer of energy in a system through

any other means than work —mechanical work, electrical work, chemical work, etc. There are different ways by which

heat may be transferred :

• Conduction or diffusion can produce heat transfer between systems in physical contact, such as for example

cold air cooling down the human body.

• Convection can cause heat transfer in fluids or viscous materials by means of collective molecular movements

within it. So convection is a consequence of the local variations of density within the fluid due to the variations

of temperature. A good example is the heating of water in a pot, where flows and movements from the bottom

to the surface of the water start to appear before boiling.

• Radiation can cause heat transfer to or from a system by emission or absorption of electromagnetic radiation.

The best example of radiative heat transfer is the heat felt on earth from the sun through sunlight. According

to the kinetic theory, heat in a macroscopic system can be understood as a constant random motion of the

microscopic particles constituting it. The greater the temperature, the greater the speed of the particles’

random motion. When approaching the absolute zero temperature, this thermal motion is expected to decrease

proportionally and to vanish at absolute zero.

This said, one can define thermal radiation more precisely as the electromagnetic radiation generated by the

thermal motion of the charged particles within the atoms —such as protons and electrons— composing the system.

This thermal energy is thus a collective mean kinetic energy of the charged particles of the body due to their own

individual oscillations, which generates coupled electric and magnetic fields, eventually producing photons [94]. These

photons are thus emitted and carry away a part of the body’s energy as thermal electromagnetic radiation. Therefore

all matter with a non-zero temperature emits a given amount of thermal radiation.

As we saw in section VA1, this thermal emission may be in the form of visible light, such as for the tungsten wire

of a light bulb, or not, such as the infrared radiation emitted by hot-blooded animals, or microwave radiation such

as the cosmic microwave background radiation. For a given body, the rate of electromagnetic radiation emitted at

a given frequency is proportional to its level of electromagnetic absorption from the source. Therefore a given body

which would absorb a larger amount of frequencies in the UV regime will radiate thermally more in the UV also. As

a matter of fact this important property of thermal radiation does not only concern the frequency and hence color
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FIG. 6: Radiance as a function of wavelength for different temperatures at 3500K in black, 4000K in cyan, 4500 in blue,
5000K in green, and 5500K in red, as an illustration of radiative heat transfer. The wavelength associated with the intensity
maximum decrease with larger temperatures. The thermal emission contains a factor 1/λ2 numbering the Fourier modes of
wavelength λ, and another dimensional regularization factor to convert frequencies to wavelengths.

of the electromagnetic wave involved, but also its polarization, direction, and even coherence. It is thus possible to

obtain in laboratory conditions a thermal radiation of selected polarization, coherence, direction, etc.

As a reminder, if the system is considered a black body, one can study its most probable wavelength of thermal

radiation through Wien’s displacement law (1), its intensity through the Stefan-Boltzmann law (2), and its radiation

spectrum through Planck’s law (4). This is represented in FIG. 6, which shows the thermal emission intensity of the

black body as a function of the wavelength at temperatures T = 3500 K, 4000 K, 4500 K, 5000 K, and 5500 K, and

where one can see that the wavelength associated with the intensity maximum decrease with larger temperatures.

If a random body receives a thermal radiation from another one and thereby emits back only specific frequencies and

is transparent to the others, only these emitted frequencies will add to its thermal equilibrium. But in the specific case

of a black body, which will absorb by definition all incoming electromagnetic radiations, all the different frequencies

will add to its thermal equilibrium.

The energy radiated by a given body divided by the energy radiated by a black body at the same temperature

defines this body’s emissivity ǫ(ν) at a given frequency ν. A black body has an emissivity ǫ = 1. The emissivity of a

given material thus decreases with increasing reflectivity : for example polished silver has an emissivity of 0, 02.

Absorptivity, reflectivity, and emissivity of all systems depend on the radiation frequency ν and are comprised

between 0 and 1. The ratio of the radiation Ireflected(ν) reflected by a body over its incident radiation I(ν) is its
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spectral reflectivity :

r(ν) =
Ireflected(ν)

I(ν)
(17)

One can also define the spectral transmissivity t(ν) as the ratio of intensity of the radiation coming out of the body

for a particular frequency Itransmitted(ν) by the intensity of the incident radiation :

t(ν) =
Itransmitted(ν)

I(ν)
(18)

Then one can define the spectral absorptivity a(ν) as the ratio of the light intensity at a given frequency after having

been absorbed by the body Iabsorbed(ν), over the intensity I(ν) before being absorbed :

a(ν) =
Iabsorbed(ν)

I(ν)
(19)

In addition the properties of thermal radiation of a given object depend on its surface characteristics —such as its

absorptivity, emissivity, or temperature— and we will have, as a consequence of the first law of thermodynamics :

a(ν) + t(ν) + r(ν) = 1 (20)

For completely opaque surfaces, we will have t(ν) = 0 and hence a(ν) + r(ν) = 1.

It is possible to define the spectral absorptivity, reflectivity, and transmissivity in terms of a given solid angle and

hence chosen direction [95]. The definitions above are for total hemispherical properties, since I(ν) represents the

spectral light intensity coming from all directions over the hemispherical space, and as thus equations (17), (18), and

(19) represent the average absorptivity, reflectivity, and transmissivity in all directions.

An important property is that the spectral absorption a(ν) is equal to the emissivity ǫ(ν). This is known as as

Kirchhoff’s law of thermal radiation [96] :

a(ν) = ǫ(ν) (21)

We are now in a position to define the radiative heat transfer Wa→b between two grey body surfaces a and b of

respective temperatures Ta and Tb, as the radiation from a arriving at b, minus the radiation leaving b. Furthermore

we consider these two surfaces to be diffuse and opaque, with respective surface areas Aa and Ab, and to form an

enclosure so that the net rate of radiative heat transfer ∂Wa→b/∂t from a to b is equal to the net rate ∂Wa/∂t from

a, and to the net rate −∂Wb/∂t to b.

∂Wa→b

∂t
=

σ(T 4
a − T 4

b )
1− ǫa
Aaǫa

+
1

AaFa→b
+

1− ǫb
Abǫb

=
∂Wa

∂t
= −∂Wb

∂t
(22)
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One should notice that the numerator in equation (22) corresponds to the Stefan-Boltzmann law as the overall

energy radiated per unit surface area from equation (2). The denominator is composed of three terms, each respectively

corresponding to the radiation emitted by a, transmitted from a to b, and received by b.

Fa→b is the view factor, which is a coefficient describing the proportion of the radiative flux leaving a and arriving

at b, and with the property that the sum of all view factors from a given surface is equal to 1. The view factor is

subject to the reciprocity theorem :

AaFa→b = AbFb→a (23)

The view factor is dependent on the geometry of the two bodies, so that in the case of two infinitely large identical

parallel plates a and b—forming a Fabry-Pérot cavity, as we will see later when studying the Casimir effect—, we have

Fa→b = 1 and Aa = Ab = A. Applying these to equation (22), we find the following important result for radiative

heat transfer in the classical description [95] :

Ẇa→b =
∂Wa→b

∂t
=
Aǫaǫbσ(T

4
a − T 4

b )

ǫa + ǫb − ǫaǫb
(24)

4. Thermal radiation through a medium

One can take a step further and set a plane thermal shield or coating s, at equal distance in between the two flat

planes of the example above in order to attenuate the radiative heat transfer, as shown in FIG. 7. This configuration

is often met in aerospace and cryogenic technologies, and will also be encountered in our discussion on near-field

radiative heat transfer. We thus define the emissivity of the shield facing plane a as ǫsa, and the emissivity of the

shield facing plane b as ǫsb. We set Aa = Ab = As = A, and since Fa→s = Fb→s = 1 we can write :

Ẇa→s→b =
Aσ(T 4

a − T 4
b )

(
1− ǫa
Aaǫa

+
1

AaFa→b
+

1− ǫsa
Asǫsa

) + (
1− ǫb
Abǫb

+
1

AsFs→b
+

1− ǫsb
Asǫsb

)
=

Aσ(T 4
a − T 4

b )

(
1

ǫa
+

1

ǫb
− 1) + (

1

ǫsa
+

1

ǫsb
− 1)

(25)

where the second term in the denominator of the r.h.s equality describes the attenuation of the radiative heat transfer

between the planes a and b induced by the thermal shield s set in between. The different terms in the denominator

correspond to the different spatial segments along the radiation’s path, as seen in FIG. 7.
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FIG. 7: Radiative heat transfer rate between two parallel planes a and b separated by a thermal shielding plate s. The different
terms in the denominator of equation (25) are outlined along the thermal radiation’s path between the two planes.

Equation (25) above can intuitively be generalized to an arbitrary number n of shields s1, s2, ..., sn, of respective

emissivities ǫs1a, ǫs2a, ..., ǫsna and ǫs1b, ǫs2b, ..., ǫsnb such that :

Ẇa→s1→...→sn→b =
Aσ(T 4

a − T 4
b )

(
1

ǫa
+

1

ǫb
− 1) + (

1

ǫs1a
+

1

ǫs1b
− 1) + ...+ (

1

ǫsna
+

1

ǫsnb
− 1)

(26)

In the case where all the emissivities are equal to ǫ, this reduces to Ẇa→b/(n+1), where Ẇa→b is the heat transfer

rate without shield, given by equation (24). This means that when all emissivities are equal, one shield will reduce

the rate of radiative heat transfer by a factor two, and 9 shields will reduce it by a factor 10.

Notice also that this computation can be performed for other geometries than parallel planes, provided the view

factor is changed accordingly in order to correctly describe the desired configuration.

Now let’s consider a different case, where we have a medium of thickness L subject to a radiative heat transfer

with an incident radiation of spectral intensity I(ν, x = 0) on the medium, as seen in FIG. 8. This radiation intensity

will decrease, by effect of dissipation through the medium, over its length L. If we now consider the medium to be

built up of an infinite number of layers, each of thickness dx for an x-axis defined as parallel to the propagation of



30

���� ���������

����� �����

���

�

FIG. 8: Dissipation of radiative heat transfer through a medium of thickness L.

the radiation, we can derive the so-called Beer’s law :

dI(ν, x)

dx
= −κνI(ν, x) (27)

where the proportionality factor κν is called the medium’s spectral absorption coefficient, with units in m−1. It is

important to notice that this proportionality factor gives a measure of the dissipation, and will be encountered again

in a different form in our later discussion based on scattering theory.

Beer’s law basically says that the radiation intensity will decay exponentially as the thermal radiation travels within

the medium along the x-axis. This is readily seen by integrating from 0 to L each term of equation (27) after a variable

separation, so that based on the assumption that the medium has an isotropic absorptivity, we obtain :

I(ν, L)

I(ν, 0)
= e−κνL = t(ν) (28)

Now this ratio of the spectral intensity leaving a given medium over the incident spectral intensity is none other

that the transmissivity t(ν) from equation (18), albeit now for a dissipative medium of spectral absorption coefficient

κν . For a non-reflective body, r(ν) = 0 and one can thus re-derive the Kirchoff’s law of equation (20) as :

a(ν) = ǫ(ν) = 1− t(ν) = 1− e−κνL (29)

One can insert the result above in equations (24) or (26) for instance and recover the net rate of radiative heat transfer

for dissipative materials of a given thickness. Another consequence is that an optically thick surface, with a large

κνL, will approach the black body description for a given frequency, and hence for a given specific temperature.
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5. Conclusion

We have seen how a simple mathematical trick used by Max Planck in 1900 to explain the black body radiation led

to the discovery of quanta of energy, soon generalized by Einstein to photons in 1905.

We have seen how the core foundations of thermodynamics rely on the works of Clausius in 1850, Carnot in 1824,

and Nernst in 1904, establishing the fundamental first, second, and third laws of thermodynamics. The first law of

thermodynamics, calling on the fundamental concept of internal energy, led to the famous conclusion that all energy

is exchanged or transformed, never created nor annihilated. The second law of thermodynamics implies the increase

of global entropy for any thermodynamical transfer in a system, and thereby bringing about the famous result of the

universe’s irreversible nature. The third law of thermodynamics finally framed the notion of absolute entropy and

absolute temperature as normally unreachable. In the case when a system out of thermal equilibrium is yet not too far

from equilibrium, we also discussed the important result of Onsager’s reciprocal relations of equality between ratios of

flows and forces.

Then we described the main mechanicsm of general heat transfer apart from mechanical work as being through

conduction, convection, and radiation, and went on to discuss the properties of radiative heat transfer. Radiative heat

transfer happens through a wide range of frequencies, described in the ideal black body picture by Planck’s law (4).

There is a peak in the black body radiation at high frequencies, described by Wien’s displacement law (1). The total

radiative intensity increases sharply with temperature, and in the case of a black body, it rises as the fourth power of

the absolute temperature, as expressed by the Stefan–Boltzmann law from equation (2).

Finally we have described how the properties of the thermal radiation emitted by a given body —such as its frequency,

polarization, direction, coherence— are directly related to those absorbed by that same body, and how by Kirchoff’s

law of equation (21), absorptivity and emissivity are equal. We eventually derived the net rate of radiative heat heat

transfer between two arbitrary grey bodies in equation (22), between two planes in equation (24), and between two

planes separated by a given number of thermal shields in equation (26), The expression of spectral emissivity through

a dissipative medium of specific thickness has also been given in equation (29).
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B. Quantum fields and electrodynamics

1. From quantum particles to relativistic fields

In 1925, Werner Heisenberg, Max Born, and Pascual Jordan developed the first field theory by deriving the internal

degrees of freedom of a given field as an infinite set of harmonic oscillators, with their own individual canonical

quantization. This was a free field theory in the sense that no charges nor current were assumed in it. Then by

1927, Paul Dirac was trying to construct a quantum mechanical description of the electromagnetic field. This led to

a quantum theory of fields.

The first important aspect of the early quantum field theory developed by Dirac as applied to electromagnetism,

was that it could encompass quantum processes in which the total number of particle changes —for instance as in

the case of an atom emitting a photon, with the atom’s electron losing a quantum of energy. The second important

feature was that a consistent quantum field theory had to be relativistic.

The mathematical formalism of quantum mechanics implies operators acting on a Hilbert space which represent

observables, i.e real physical quantities, and where the eigenspace contains the probable states of the quantum system.

In this picture, the observables and their associated physical quantities are linked to the system’s degrees of freedom

—for example the observables of a quantum system’s motion are its position and momentum, the three-dimensional

coordinates of which represent its degrees of freedom. The set of all degrees of freedom of a given quantum system

defines the phase space.

The formal definition of a quantum field is a quantum system possessing a large or even infinite number of degrees

of freedom. In general these are denoted by a discrete index. In the classical picture, a field was described by a set of

degrees of freedom for each set of spatial coordinates —such as the electric field taking on specific values as a function

of position in space. But in the quantum definition, the field as a whole is now described as quantum system whose

observables form an infinite set of degrees of freedom, because of the continuity of the fields’ spatial set of coordinates.

The fundamental quantity of classical mechanics is the action S, which is the time integral of the Lagrangian

L, itself locally described as the spatial integral of the Lagrangian density L as a function of fields ψ(x) and their

derivatives ∂µψ(x) such that :

S =

∫
Ldt =

∫
d4xL(ψ, ∂µψ) (30)

We are in the Minkowski space-time metric with diagonal elements of its tensor (+1,−1,−1,−1), and this is for

coordinates µ running over 0, 1, 2, 3 (or t, x, y, z), and hence such that xµ = (x0, x1, x2, x3) has partial derivatives
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∂µ = ∂/∂xµ. We will now work in natural units ℏ = c = 1. According to the principle of least action, a quantum

system evolves from one configuration to the another in a given time interval along the path in configuration space

for which the action is a usually a minimum. By configuration space, we understand the set of all possible space-time

positions that the quantum system can potentially have. This leads to the Euler-Lagrange equation of motion for

each and every field within the Lagrangian density L :

∂µ

(
∂L

∂(∂µψ)

)
=
∂L
∂ψ

(31)

All these expressions are Lorentz-invariant, and have thus been used in a straightforward way to formulate a field

theory abiding by the laws of special relativity. However, staying close to a more systematic quantum formulation for

now, one can derive the Hamiltonian H and its density H as :

H =

∫ (
∂L

∂ψ̇(x)
ψ̇(x)− L

)
d3x =

∫
d3xH (32)

where the integrand gives the expression of the Hamiltonian density H.

From this early field theory formalism, two important equations were derived. The first is the Klein-Gordon

equation, which accounts for special relativistic effects of spinless particles but still considers fields in the classical

sense, so that it cannot be fully considered a type of Schrödinger equation :

(∂µ∂
µ +m2)ψ = (�+m2)ψ = 0 (33)

where we have defined the massm, and the Lapalacian in Minkowski space � = ∂µ∂
µ as the product of the covariant

and contravariant derivatives.

The second is the Dirac equation, which is a special relativistic quantum equation describing half-spin particles

through fields :

(iγµ∂µ −m)ψ(x) = 0 (34)

For a Weyl or chiral representation built on identity matrices I2 of dimension 2 :

γ0 =

(
0 I2
I2 0

)
, γi =

(
0 σi

−σi 0

)
, (35)

with i = 1, 2, 3 and Pauli matrices :

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (36)
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Therefore the Lorentz-invariant Dirac-Lagrangian associated to it [97] is given by :

LD = ψ(iγµ∂µ −m)ψ (37)

For the adjoint spinor ψ ≡ ψ†γ0, with ψ† the Hermitian-conjugate associated to ψ. Then one can show that ψγµψ

is a 4-vector, and use the Euler-Lagrange equation of motion (31) for ψ† to recover Dirac equation (34) for ψ, and

likewise for ψ to recover the Hermitian-conjugate form of Dirac equation for ψ :

−i∂µψγµ −mψ = 0 (38)

Now our original intent was to derive a quantum theory of relativistic fields. In order to do this we must place

certain conditions on the fields ψ themselves so that they obey the laws of quantum mechanics. Let’s first consider

the free Dirac field Lagrangian :

L = ψ(i∂/−m)ψ = ψ(iγµ∂µ −m)ψ (39)

with a Dirac Hamiltonian density :

HD = −iγ0γi.▽+mγ0 (40)

Then let us(p)eip.x be the eigenfunctions of HD with eigenvalues Ep, and likewise vs(p)e−ip.x the eigenfunctions

of HD with eigenvalues −Ep, both forming a complete set of eigenfunctions such that for any given p there are two

eigenvectors u and two eigenvectors v corresponding to the four-dimensional square matrix HD. Then one can define

the fields for spin polarization s such that :

ψ(x) =

∫
d3p

8π3
√
2Ep

∑

s

(
aspu

s(p)e−ip.x + bs†p v
s(p)eip.x

)
(41)

ψ(x) =

∫
d3p

8π3
√
2Ep

∑

s

(
bspv

s(p)e−ip.x + as†p u
s(p)eip.x

)
(42)

where asp and bsp, which respectively increase and lower the energy of a state, are called the creation and annihilation

operators. Therefore one can quantize the fields ψ(x) and ψ(x) above by requiring these operators to obey the following

anticommutation laws :

{arpas†q } = {brpbs†q } = 8π3δ(3)(p− q)δrs (43)
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where all the other anticommutators vanish. We used the notation δ(3) for the Dirac delta function in three dimen-

sions, and δrs as the Kronecker symbol. Now we are in a measure to obtain a fully quantized picture, having performed

the so-called second quantization by writing the equal-time anticommutation relations for the fields themselves :

{ψa(x), ψ
†
b(y)} = δ(3)(x− y)δab (44)

{ψa(x), ψb(y)} = {ψ†
a(x), ψ

†
b(y)} = 0 (45)

with a vacuum state |0〉 defined in such a way that asp |0〉 = bsp |0〉 = 0 and a Hamiltonian given by :

H =

∫
d3p

8π3

∑

s

Ep

(
as†p a

s
p + bs†p b

s
p

)
(46)

As we saw with the free Klein-Gordon field, the classical equations of motion of a field are identical to the equation

of the wave-equation describing its quanta. Therefore, historically this process is called second quantization, as a

reference to the fact that quantizing fields may seem like quantizing a theory which is already quantized.

The Dirac equation (34) is fundamental to the quantum theory of fields. As we saw, it is Lorentz-invariant and

hence special relativistic, and also fully quantized through the anticommutation expressions (45) above.

As both as†p and bs†p create particles of energy Ep and momentum p, we refer to them respectively as fermions and

antifermions. Historically this is important, as the Dirac equation in the quantized field description above was the

first prediction of the existence of antimatter. One can predict the half-spin value of the particle fields in the Dirac

equation using the Noether’s theorem, which we will now see. A given solution to the Dirac equation is also a solution

to the Klein–Gordon equation, albeit the converse is not true.

2. Noether’s theorem and the stress-energy tensor

The Lagrangian of equation (30) under any symmetry that is continuous will give rise to a conserved current jµ(x)

such that the equations of motion give :

∂µj
µ(x) =

∂j0

∂t
+ ▽ · j = 0 (47)

This is called the Noether’s theorem and implies in turn a local conservation of charge Q such that :

Q =

∫

R3

d3xj0 (48)
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By saying that the charge conservation is a local property, one says that by taking a given volume V as a subset of

R
3, it is possible to show after integration that any charge leaving the volume V implies a flow of the current j out

of the volume. This is a general property of local conservation of charge that applies to any local field theory [97].

To really understand this property of local charge conservation, let’s consider an infinitesimal continuous transfor-

mation of the field ψ :

ψ(x) → ψ′(x) = ψ(x) + ǫ∆ψ(x) (49)

for an infinitesimal parameter ǫ and a given deformation of the field ∆ψ(x). Of course such a transformation

is symmetric if it leaves the equation of motion (31) invariant. This implies that the action is invariant to this

transformation, and hence also the Lagrangian, up to a 4-divergence J µ :

L(x) → L(x) + ǫ∂µJ µ(x) (50)

We can use this together with equation (31) in order to compute ∆L and obtain Noether’s theorem from equation

(47), with jµ(x) now given by :

jµ(x) =
∂L

∂(∂µψ)
∆ψ − J µ (51)

This said, let’s take an important application example of Noether’s theorem, which we will see is at the foundation

of the equation describing the Casimir force as a pressure and of the near-field radiative heat transfer as a flux. First

let’s recall the fact that conservation of momentum and energy comes in classical mechanics from the invariance

properties of spatial and time translations respectively. Now in field theory, let’s consider the respective infinitesimal

translation of the fields and Lagrangian such that :

xµ → xµ − ǫµ ⇒ ψ(x) → ψ(x+ ǫ) = ψ(x) + ǫµ∂µψ(x) (52)

(53)

and

L → L+ ǫµ∂µL = L+ ǫν∂µ(δ
µ
νL) (54)

Now if compare equation (50) with (54) above, we can readily check that J µ does not vanish and by applying

Noether’s theorem (47), we eventually find four separately conserved currents called the stress-energy tensor or

energy-momentum tensor of the field ψ :

Tµ
ν ≡ ∂L

∂(∂µψ)
∂νψ − Lδµν = (jµν ) (55)
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Hence the stress-energy tensor satisfies the conservation law δµT
µ
ν . From this is derived another quantity that will

be crucial to our future mathematical construction of the Casimir force as a pressure : the conserved charge in this

regime associated with time translation is no other than the Hamiltonian, and its related Hamiltonian density gives

the zeroth components of the stress-energy tensor T 00 through the total energy E of the field configuration :

E =

∫
T 00d3x (56)

Also, the total momentum of the field configuration is given by the conserved charges under spatial translation :

P i =

∫
T 0id3x = −

∫
π∂iψd

3x (57)

Together, equations (56) and (57) are the four conserved quantities mentioned above that fully define the stress-

energy tensor.

3. Green’s functions and field interactions

When working with quantum fields, we often use a type of functions drawn from many-body theory called Green’s

functions, which can give us an idea of the way quantum field operators are related to one another. For this reason,

Green’s functions are also often called correlators or correlation functions. Most notably, they give us in quantum

field theory the possibility to estimate the correlation between the annihilation and creation operators of equation

(43).

Green’s functions used in field theory are originally related to those used in mathematics, which are used to solve

inhomogeneous differential equations —albeit technically only the two-points Green’s functions from physics are

related to the latter.

Following [98], let’s consider a given differential equation applied to a function F with variable z, with boundary

conditions such as :

L̂(z)F (z) = S(z) for L̂(z) ≡ An
dn

dzn
+An−1

dn−1

dzn−1
+ . . .+A0 (58)

for a source term S(z). We can then define a Green’s function G(z, z′) for that differential equation by replacing

the source term by δ(z − z′), so that :

L̂(z)G(z, z′) = δ(z − z′) (59)
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If we can solve this equation for that Green’s function, then we can derive the solution of equation (58) from :

f(z) =

∫
dz′G(z, z′)S(z′) (60)

This can be seen by putting equations (58) and (59) together :

L̂(z)f(z) =

∫
dz′L̂(z)G(z, z′)S(z′) =

∫
dz′δ(z − z′)S(z′) = S(z) (61)

We can then solve equation (59) for a Green’s function G(z − z′) by making a Fourier transformation :

L(ik)G̃(k) = 1 (62)

which has the solution :

G̃(k) =
1

L(ik)
(63)

However this is only a particular solution of (59), and the boundary conditions must be satisfied either by adding

to equation (63) a solution of the homogeneous equation, or by integrating around the poles in the Fourier transform

G̃(k) of G(z − z′). By inverting the Fourier transform, we obtain from equation (63) :

G(z − z′) =

∫
dk

2π

eik(z−z′)

L(ik)
(64)

For the operator L̂(z) defined in equation (58), L(ik) is a polynomial of nth order and the integrand in equation

(64) contains n poles in the complex plane. Therefore we must use contour integration to evaluate this integral.

As a first example, we can apply this to the solution of Poisson’s equation ▽2φ(x) = −ρ(x)/ǫ0 for x = (x, y, z) so

that the Green’s function associated with the unit charge density at x′ = (x′, y′, z′) is given by :

▽2G(x,x′) = −δ(x− x′)/ǫ0 (65)

We look for a solutionG(x−x′) by operating a Fourier transform, which can eventually be writtenG(x) = (4πrǫ0)
−1.

Therefore we find :

φ(x) =
1

4πrǫ0

∫
d3x′ ρ(x′)

|x− x′| (66)

As a second example, we can apply our formalism to the solution of d’Alembert’s equation 1
c2

∂2φ
∂t2 − ▽2φ = 0, so

that the Green’s function associated with the wave-equation for electromagnetic fields in vacuum is given by :



39

(
1

c2
∂2

∂t2
−▽2

)
G(t− t′,x− x′) = µ0δ(t− t′)δ3(x− x′) (67)

We look for a solution G(t,x) by operating a Fourier transform, finding its solution, and inverting the Fourier

transform, so that we eventually obtain G(x = (4πrǫ0)
−1. After some algebra [98, 99], we find :

G(t,x) = −µ0

∫
dωd3ke−i(ωt−k·x)

(2π)4(ω2/c2 − |k|2) (68)

One can see that the integrand of this equation has two poles at ω = ±kc, if we write :

1

ω2/c2 − |k|2 =
c

2k

(
1

ω − ck
− 1

ω + ck

)
(69)

This can be overcome by a contour integration if we add an infinitesimal imaginary part +iθ to ω (we will see

in section VIA5 that this amounts to imposing the analyticity condition of causality). Now the step function

H(t) = [1 for t > 0, 0 for t < 0] having a definite Fourier representation, we can find :

∫

R

dω

2π

e−iωt

ω ± kc+ iθ
= −iH(t)e±ikct (70)

Now we can substitute equations (69-70) into equation (68), so that we eventually obtain the so-called retarded

Green’s function :

Gr(t,x) =
µ0δ(t− r/c)

4rπ
(71)

Likewise, we can obtain the advanced Green’s function by replacing ω with ω − iθ :

Ga(t,x) =
µ0δ(t+ r/c)

4rπ
(72)

The Green’s function G(t−t′,x− x′) describes the field at (t,x) associated with the source at (t′,x′). The δ-function

in equation (71) implies that t′ is equal to the so-called retarded time tr :

tr ≡ t− |x− x′|
c

(73)
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This means that the field at (t,x) comes from the source at (t′,x′) where time t′ is earlier than time t through

the light propagation time from x to x′. One can also apply this reasoning in a similar way to the advanced Green’s

function from equation (72).

Now we can describe the electromagnetic field using the temporal gauge, which is by setting φ = 0 so that there

is no scalar field. In the temporal gauge, the electric and magnetic vectors E and B can be described by the single

vector A. Then we can write a convenient reformulation of Maxwell’s equations and write the wave equation such as

:

ω2

c2
A(ω,k) + k× [k×A(ω,k)] = −µ0J(ω,k) (74)

for E(ω,k) = iωA(ω,k). Of course, it is not always convenient to use the temporal gauge, such as for example in the

case of static uniform fields. The Green’s function corresponding to the equation (74) above differs from the Green’s

functions associated with the Poisson and d’Alembert equations in the sense that it is here a tensor G̃ij(ω,k), and

equation (74) must be re-written in tensorial form :

[(
ω2

c2
− |k|2

)
δij + kikj

]
G̃jm(ω,k) = −µ0δim (75)

Eventually one can find :

G̃ij(ω,k) = − µ0

ω2/c2 − |k|2
(
δij −

c2kikj
ω2

)
(76)

Notice also that one can obtain the associated Green’s function Gij(t,x) also through an inverse Fourier transform,

but that it comes in an operator form instead of a function, and is rarely used. Now that the Green’s function is

obtained, we can solve equation (74) by separating the longitudinal and transverse parts, which are respectively given

by :

k ·A(ω,k) = −µ0c
2

ω2
k · J(ω,k) (77)

k×A(ω,k) = − µ0

ω2/c2 − |k|2k× J(ω,k) (78)

Notice the singularities for ω2/c2 − |k|2 = 0, which exist only for the transverse part of the field. The physical

explanation for this is through emission of electromagnetic radiation : electromagnetic waves are transverse k ·A = 0,

and obey the dispersion relation ω2 = |k|2c2, so that they correspond to the singularities of equation (78). The

longitudinal part however plays no role in the emission of radiation and hence has no singularity at ω2/c2 − |k|2 = 0.
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Let’s take as an example often used in radiative heat transfer the case of real-time dyadic or two-point Green

functions with n = 1, which can be written in terms of the retarded GR and advanced GA Green functions, respectively

:

GR(xt|x′t′) = i〈[ψ(x, t), ψ(x′, t′)]〉θ(t− t′) (79)

GA(xt|x′t′) = −i〈[ψ(x, t), ψ(x′, t′)]〉θ(t′ − t) (80)

where θ is the Theta function. This will be used as an application to our derivation of the near-field radiative heat

transfer between nanogratings in section VIC 2.

We now define the time-ordered function in real time :

GT (xt|x′t′) =

∫

k

dk

∫
dω

2π
GT(k, ω)e

ik·(x−x′)−iω(t−t′) (81)

Then the retarded and advanced Green functions can be related to the time-ordered Green function above, with

wave-vector k and frequency ω by :

GT (k, ω) = [1 + χn(ω)]GR(k, ω)− χn(ω)GA(k, ω) (82)

where n(x) = 1/(e−βx − χ) is the Bose-Einstein or Fermi-Dirac distribution function, knowing that χ = 1 for bosons

and χ = −1 for fermions, and where β = µ−ǫ
kBT for a particle chemical potential µ and energy ǫ. One should note

that in the framework of radiative heat transfer, “particles” in these equations can be replaced with plates or any

thermodynamical systems.

4. QED equation of motion and quantization

As we saw in the previous sections, quantum electrodynamics (QED) arose from Dirac’s description of radiation

and matter interaction through a correct formulation of relativistic quantum fields representing on one side the

electromagnetic field as a set of harmonic oscillators, and on the other side the particles through the creation and

annihilation operators [100].

The success of this theory was such that for a while Dirac’s theory was believed to describe about any type of

interaction between an electromagnetic field and charged particles. Nevertheless by the mid-forties, Willis Lamb
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observed what is now known as the Lamb shift : a small energy difference between the two energy levels 2s1/2 and

2p1/2 of the Hydrogen atom, which Dirac’s theory was not able to predict, since in its basic computations, quantum

electrodynamics relied on a perturbative approach to determine the amplitudes, and the perturbation was correct up

to the first order only.

But in 1947, Hans Bethe had an intuition, now called renormalization, which eventually allowed the perturbative

approach related to quantum electrodynamics to be consistent up to any order of perturbation by reframing the

infinite integrals appearing in the perturbation theory. This was later completed and optimized by Freeman Dyson,

Sin-Itiro Tomonaga, Julian Schwinger, and especially Richard Feynman. For more information on the subject of

renormalization, which was successfully applied to other field theories describing interactions others than electromag-

netism —most notably the strong and weak interactions, as well as the electroweak interaction— we refer the reader

to [97].

As for now, we can consider the electromagnetic field interacting with a half-spin charged particle as the real part

of the following Lagrangian, known as the QED Lagrangian [101] :

LQED = ψ(iγµDµ −m)ψ − 1

4
FµνF

µν = iψγµ∂µψ − eψγµ(A
µ +Bµ)ψ −mψψ − 1

4
FµνF

µν (83)

for Dµ ≡ ∂µ + ieAµ + ieBµ being the gauge covariant derivative associated with the coupling constant or electric

charge of the particles e, Aµ the covariant four-potential of the electromagnetic field generated by the electron itself,

and Bµ the field generated by the external source. Also, we have denoted Fµν = ∂µAν − ∂νAµ and Fµν the covariant

and contravariant components of the electromagnetic field tensor, respectively. In an inertial frame, these are given

in natural units for two electric and magnetic fields E and H by :

Fµν =




0 Ex Ey Ez

−Ex 0 −Hz Hy

−Ey Hz 0 −Hx

−Ez −Hy Hx 0


 Fµν =




0 −Ex −Ey −Ez

Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0


 (84)

Replacing expression (83) in the Euler-Lagrange equation for the field (31), one can thus recover the field equations

of motions :

iγµ∂µψ −mψ = eγµ(A
µ +Bµ)ψ (85)

where the l.h.s of the equation corresponds to Dirac’s equation (34), and the r.h.s describes the interaction with

the electromagnetic field.
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Now if we apply in a similar way the Euler-Lagrange equation to the quantum electrodynamic Lagrangian (83),

but this time as applied to the four-potential Aµ of the field, we can obtain :

∂νF
νµ = eψγµψ (86)

This said, we are now in a position to derive our quantum field theory to the electromagnetic field in free space,

based on our quantum field theory formalism in a step-by-step approach. With these notations, Maxwell’s equations

can be written in tensorial form :

µ0J µ = ∂νF
µν (87)

∂ξFµν + ∂νFξµ + ∂µFνξ = 0 (88)

Shifting from a natural units system to SI units, these Maxwell’s equations can be written in the classical description

of the field as the following :

∇×E = −∂B
∂t

(Faraday’s law for magnetism) (89)

∇×H =
∂D

∂t
(Ampère’s circuital law) (90)

∇ ·D = 0 (Gauss’s law) (91)

∇ ·B = 0 (Gauss’s law for magnetism) (92)

for electric and magnetic field vectors E and H respectively, and displacement and inductive vectors D and B

respectively. For the free space permittivity ǫ0 and permeability µ0 such that ǫ0µ0 = 1/c2, we have :

D = ǫ0E (93)

B = µ0H (94)

Here, equations (90, 91) are equivalent to the tensorial equation (87), and equations (89, 92) are equivalent to the

tensorial equation (88). One can then find through the elementary expressions above :

∇2E− 1

c2
∂2E

∂t2
= 0 (95)
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Following [102], we now consider the field confined within a cavity of length L, and with E being linearly polarized

in the x-direction. We can write the electric and non-vanishing magnetic fields as the sums of j = 1, 2, 3... normal

modes of amplitude qj within the cavity of eigenfrequency νj = jπc/L such that for kj = jπ/L we have :

Ex(z, t) =
∑

j

Ajqj(t)sin(kjz) (96)

Hy =
∑

j

Aj
q̇jǫ0
kj

cos(kjz) (97)

for a cavity volume V defined as the product of its length L and transverse area A, so that we can define :

Aj =

√
2mjν2j
ǫ0V

(98)

where the elements mj have been included so as to show the analogy between this dynamical problem of single modes

and the case of harmonic oscillators of mass mj . One can then define the classical Hamiltonian of this field as :

H =
1

2

∫

V

dτ
(
ǫ0E

2
x + µ0H

2
y

)
=

1

2

∑

j

(
mjν

2
j q

2
j +

p2j
mj

)
(99)

where one can also write the canonical momentum of the jth mode as pj = mj q̇j . In other words, each mode of the

radiation field is the same dynamical equivalent to a mechanical harmonic oscillator, with the sum of all of the modes’

independent energies being expressed as the Hamiltonian above.

Now we can quantize this field by recognizing that the position qj and momentum operators pj obey the following

commutation relations :

[qj , pj′ ] = iℏδjj′ (100)

[qj , qj′ ] = [pj , pj′ ] = 0 (101)

We can switch to aj and bj , the annihilation and creation operators respectively, by setting :

aj = eiνjt
1√

2mjℏνj
(mjνjqj + ipj) (102)

bj = e−iνjt
1√

2mjℏνj
(mjνjqj − ipj) (103)
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so that the Hamiltonian becomes simply :

H = ℏ

∑

j

νj

(
bjaj +

1

2

)
(104)

and the commutation relations between the annihilation and creation operators follow from the commutation

relations (100) and (101) :

[aj , bj′ ] = δjj′ (105)

[aj , aj′ ] = [bj , bj′ ] = 0 (106)

so that we can rewrite the electric and magnetic fields such as :

Ex(z, t) =
∑

j

Ej
(
aje

−iνjt + bje
iνjt
)
sin kjz (107)

Hy(z, t) = −iǫ0c
∑

j

Ej
(
aje

−iνjt − bje
iνjt
)
cos kjz (108)

for Ej =
√
ℏνj/ǫ0V . Thus we have quantized the electromagnetic field within a finite one-dimensional cavity of

volume V . Nevertheless a full theory in free space still needs to be derived. For this, let’s consider that the field is

within a cubic cavity of very large (but finite) side L. We will switch from standing-wave to running-wave solutions,

and impose period boundary conditions such that :

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

(109)

for nx, ny, nz being integers, so that the set nx, ny, nz fully defines a given electromagnetic mode by its wave-vector

k = kx, ky, kz with the condition imposed by Gauss’s law (91), that this wave-vector is perpendicular to the unit

polarization vector ǫk, so that the fields are purely transverse :

k · ǫk = 0 (110)

This implies that for each wave vector k there are two independent directions of polarization for ǫk. We shall denote

these two polarizations φ by s and p, respectively called transverse electric (or TE) and transverse magnetic (or TM).

In the free space case, one can also expect the summation to occur over these modes, defined by their respective

wave-vectors, within the large but finite cubic cavity of side L. Therefore this summation over modes also has to
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contain a summation over the possible polarizations. One can then switch from a discrete summation over these

modes to a continuous distribution by integrating :

∑

k

−→
∑

φ=s,p

L3

8π3

∫
d3k = 2 · L

3

8π3

∫
d3k (111)

Then we can write the quantized electric and magnetic fields E(r, t) = E(−)(r, t) + E(+)(r, t) and H(r, t) =

H(−)(r, t) +H(+)(r, t) such that :

E(r, t) =



∑

φ=s,p

∑

k

ǫk(φ)Ekak(φ)e−iνkt+ik·r


+



∑

φ=s,p

∑

k

ǫk(φ)Ekbk(φ)e+iνkt−ik·r


 (112)

H(r, t) =



∑

φ=s,p

∑

k

k× ǫk(φ)

µ0νk
Ekak(φ)e−iνkt+ik·r


+



∑

φ=s,p

∑

k

k× ǫk(φ)

µ0νk
Ekbk(φ)e+iνkt−ik·r


 (113)

where we have used the annihilation and creation operators ak and bk respectively, which satisfy the commutation

relation [ak, bk] = 1. Also, we have used Ek =
√

ℏνk/2ǫ0V .

Notice that by writing the expressions of the electric and magnetic fields in two parts, we conveniently have

E(−)(r, t) and H(−)(r, t) containing only annihilation operators, and their respective Hermitian conjugates E(+)(r, t)

and H(+)(r, t) containing only creation operators. These respectively represent the positive and negative frequency

parts of the given field operator E or H.

Nevertheless, equations above are complete only provided we supply a sum on the polarizations s and p, because

certain components of the electric and magnetic fields do not commute and thus cannot be measured at the same

time. To show this, we give the commutation relations for indices i, j, k ∈ {x, y, z} based on [102] :

[Ei(x, t), Hj(x
′, t)] = −iℏc2 ∂

∂k
δ(3)(x− x′) (114)

[Ei(x, t), Hi(x
′, t)] = 0 (115)

What can be understood from these is that the perpendicular components of E and H cannot be measured at the

same time, whereas the parallel components can.
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5. The vacuum state, zero-point energy, and vacuum fluctuations

Let’s now consider a single mode of frequency ν with annihilation and creation operators a and b, respectively. We

will now study a given energy eigenstate |n〉 corresponding to an energy of eigenvalue En given by equation (104) :

H|n〉 = ℏν

(
ba+

1

2

)
|n〉 = En|n〉 (116)

Our goal [103] is to successively apply the annihilation operator a to that eigenstate |n〉 by virtue of equation (105),

and arrive to the quantum definition of the vacuum state |0〉. We get :

Ha|n〉 = (En − ℏν) a|n〉 (117)

Then for a given normalization constant αn determined by 〈n− 1|n− 1〉 = 1, the state

|n− 1〉 = a

αn
|n〉 (118)

is an energy eigenstate as well, with lowered energy eigenvalue En−1 = En − ℏν. We are now in a position to

determine our lowest state energy E0 and thus the quantum vacuum state by repeating this simple procedure n times,

each time lowering the energy eigenvalue by ℏν. We thus find :

Ha|0〉 = (E0 − ℏν) a|0〉 (119)

Since energies below E0 cannot exist for the oscillator, (E0 − ℏν) cannot exist, and we postulate the existence of

the vacuum state already encountered in the free field theory [104, 104, 105] of section VB1 :

a|0〉 = 0 (120)

Plugging this back into the Hamiltonian, we get the zero-point energy, or vacuum energy E0 :

H|0〉 = 1

2
ℏν|0〉 = E0|0〉 =⇒ E0 =

1

2
ℏν (121)

and therefore we find the following very important result, which correspond to the presence of n quanta of energy

ℏν (or photons) :

En =

(
n+

1

2

)
ℏν (122)
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Now from equation (116) we can find ba|n〉 = n|n〉 so that |n〉 is also an eigenstate of the so-called particle number

operator, which is used to count the number of particles :

n = ba (123)

This now allows us to determine the normalization constant αn :

〈n− 1|n− 1〉 = n

|αn|2
= 1 =⇒ αn =

√
n (124)

Hence we can eventually find for a (and similarly for b) :

a|n〉 = √
n|n− 1〉 (125)

b|n〉 =
√
n+ 1|n+ 1〉 (126)

The latter equation can be repeated to give the Fock states, or photon number states :

|n〉 = bn√
n!
|0〉 (127)

which form a complete set
∑∞

n=0 |n〉〈n| = 1.

Equations (122) and (127) are two important results of QED. They predict, as we already saw in Section VA that

energy eigenvalues are discrete, in contradiction with the classical description of electromagnetism, where energy can

take on any real value. Of importance to the formulation of the Casimir energy, they predict a residual energy of

ℏν/2 corresponding to E0, called the zero-point energy or vacuum energy. In other words, the vacuum itself has a

non-zero energy, as shown in FIG. 9.

Now if we consider the electric field operator from equation (112), but this time applied to a linearly polarized

single-mode, we can show that the expectation value and hence variance are respectively given by :

〈n|E|n〉 = 0 (128)

〈n|E2|n〉 = 2|E|2
(
n+

1

2

)
(129)

This is an important property of the number state |n〉, because it means that there are fluctuations in the field around

its zero mean 〈n|E|n〉, including for the vacuum state |0〉.
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FIG. 9: Energy levels of the quantum harmonic oscillators describing the electromagnetic field, where each annihilation operator
a lowers the energy by a quantum of energy ℏν (by repetition, all the way to the zero-point energy, which is the non-zero vacuum
energy), and where each creation operator b increases the energy by a quantum of energy ℏν. For this reason the annihilation
and creation operators are collectively called the ladder operators

Another way to express it, is that the particle number operator n from equation (123) does not in general commute

with the Hamiltonian of the system, and therefore following the general quantum description, the number of particles

in a given spatial volume have fluctuations.

We conclude by generalizing our former single-mode field study to multi-mode fields, by rewriting our Hamiltonian

of equation (104) such that :

H =
∑

k

Hk =
∑

k

ℏνk

(
bkak +

1

2

)
(130)

with an energy eigenstate |nk〉 associated to that Hamiltonian :

Hk|nk〉 = ℏνk

(
nk +

1

2

)
|nk〉 (131)
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Therefore, the general eigenstate of the Hamiltonian Hk from equation (130) can have in its first mode nk;1

photons, in its second mode nk;2 photons, in its third mode nk;3 photons, etc... and can therefore be written as

|{nk}〉 ≡ |nk;1, nk;2, nk;3, ...〉.

6. Conclusion

So we have seen how, based on Dirac’s attempt to describe the electromagnetic field in a quantum formalism and

his subsequent derivation of the Dirac equation (34), we found that these fields were Lorentz-invariant, and could be

quantized by the process of second-quantization. We saw how this was done through the introduction of annihilation

and creation operators and their associated anti-commutation relations (43), so that we could likewise require the fields

to also obey the anti-commutation relations (45) and (46). We also saw the important consequence in the apparition

of these operators as their prediction through Dirac’s equation of antimatter.

Based on the principle of least action, we derived Noether’s theorem in equation (47) which gave the separate

conservation law of four currents : one as energy in equation (56), and three as momenta in equation (57). These

four currents gave the formal definition of the stress-energy tensor in equation (55), which is at the foundation of the

derivation of the Casimir energy and of the near-field heat transfer.

We continued with the definition of Green’s functions to describe the correlation between two points of a given field

in space, and we then derived the full theory of QED by considering modes as harmonic oscillators. Using second

quantization onto QED, we derived the annihilation and creation operators commutation relations (105) and (106) for

these modes, found the expression of the particle number operator in equation (123), and the Fock states in equation

(127). Most importantly, we saw the QED prediction of a non-zero energy for the vacuum state in equation (121).

Form this, we also derived a zero expectation value and non-zero variance of the vacuum state, thereby establishing

the existence of vacuum fluctuations in equations (128) and (129).
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VI. THEORY : SCATTERING THEORY APPLIED TO CASIMIR AND NEAR-FIELD HEAT
TRANSFER

A. Casimir effect in the plane-plane geometries

1. Complex permittivity and fitting models

From now on we will consider the magnetic permeability to be equal to its vacuum value (µ = 1). Each medium is

characterized by an index of refraction n(ω) or by a permittivity ǫ(ω) = n2(ω), which are both frequency-dependent.

Unlike vacuum, the optical response of usual materials depends on the wave frequency, due to the fact that the

polarization of those materials does not respond instantaneously to the incident wave. Therefore there is a principle

of causality, appearing mathematically in the form of a phase difference. This is why permittivity rigorously must be

treated as a complex function of frequency :

ǫ(ω) = ǫ′(ω) + iǫ′′(ω) (132)

where the real part ǫ′(ω) indicates how well the material can polarize, and where the imaginary part ǫ′′(ω) corresponds

to the dissipation within the material. In general, the complex permittivity is a complicated function of ω, since it is

a superposition of multiple dispersion phenomena occurring at different frequencies.

As a general rule, most of the materials we will be interested in can be divided into two groups : metals which are

conductors, and dielectrics (or polar materials) which are insulators.

Metals are also good conductors of heat and are malleable at the nano-scale, which is why they are often used in

precision measurements of the Casimir force. They furthermore are very reflective, therefore a tiny slab of metal such

as gold or silver is enough to stop most of the modes, which form these quantities. We show in FIG. 10 the complex

permittivity of gold as function of wavelength.

Dielectrics can be polarized by applying an electric field, so that the electric charges shift from their usual position

at equilibrium, instead of flowing throughout the dielectric itself like for conductivity in metals. This causes the

phenomenon of dielectric polarization, where positive charges shift towards the electric field and negative charges in

the opposite direction, so that there appears an internal electric field altering the first field within the material itself.

In contrast, at the interface between a metal and a dielectric such as air, coherent electron oscillations are found

which are called surface plasmons. These surface plasmons play an important role in the value of the Casimir

force [29, 106–110] and radiative heat transfer, as they can couple to polaritons, which are quasiparticles coming from
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the coupling of the modes with an electric or magnetic dipole-carrying excitation. In certain regimes, the permittivity

function of metals will thus display certain resonant frequencies known as surface plasmon-polaritons. Likewise, some

dielectrics have the property of displaying exciton-polaritons or phonon-polaritons. We will see this in more detail at

the end of this chapter.

The permittivity function of metals and dielectrics can be obtained in two ways : either by tables of optical data

such as [111, 112], where the permittivity is given for different frequencies, or by analytical expressions coming from

solid state models such as the Drude and plasma models for conducting materials (like metals, semiconductors, and

doped surfaces), the Drude-Lorentz model for certain dielectrics, or the Sellmeier equation for transparent materials.

For precision measurements, having an exact model for the optical properties of the material is crucial [113, 114].

The most general way [115] to model the permittivity function ǫ(ω) is by the expression :

ǫ(ω) = 1−
∑

n

αn

ω2 − ω2
n + iγnω

(133)

which describes n damped harmonic oscillators, and is based on the Lorentz atom model. Each damped oscillator is

defined by the triplet (αn, ωn, γn), where αn is the coefficient associated with the chosen model (plasma frequency

for Drude, Sellmeier coefficient for silica...), ωn stands for the resonance frequency of the given oscillator, and γn is

the associated damping constant. This damping constant measures the material’s dissipation. In order to describe a

given material, the first step is thus to determine its number of resonance frequencies and therefore fix the index n.

The model defined in equation (133) has the following two limits at high and low frequencies :

lim
ω→∞

ǫ(ω) = 1 and lim
ω→0

ǫ(ω) = 1 +
∑

n

αn

ω2
n

> 1 (134)

which correspond to the material’s transparency at high frequencies, and the reaching of the so-called static permittivity

at ultra-low frequencies.

Based on equation (133) we will now derive in real frequencies the expressions of the Drude and plasma models

(n = 0) describing conductors, of the Drude-Lorentz model (n = 1) describing materials having one resonance

frequency, and of the Sellmeier model (n = 2) describing transparent materials having two resonance frequencies.

The Drude model is then derived from equation (133) by considering only one oscillator (n = 0), and by letting the

resonance frequency ω0 → 0. This gives :

ǫ(ω) = 1− α0

ω2 + iγ0ω
= 1− ω2

p

ω(ω + iγ)
(135)



53

10 20 30 40
Λ HΜ mL

-30 000

-20 000

-10 000

10 000

20 000

Ε

FIG. 10: Complex permittivity function of gold according to the Drude model from equation (135) and FIG. 11, with real part
in blue and imaginary part in dashed red.

Metal ωp γ
Gold 9.000 eV 35.000 meV
Copper 9.091 eV 30.000 meV
Aluminum 11.500 eV 50.000 meV
Tungsten 5.990 eV 53.773 meV

FIG. 11: Parameters ωp and γ for the Drude (and hence plasma) model of equation (135), for different metals. These values
come from [26] for gold, copper, and aluminum, and from [116] for tungsten.

where ω2
p ≡ α0 is the characteristic frequency of plasma waves in the given conducting material, which is the frequency

of the oscillation of the electric charges in the conductor. The parameter γ ≡ γ0 defines the waves’ dissipation inside

the material.

A difference between metals and dielectrics arises from the static permittivity limω→0 ǫ(ω) of equation (134), which

is infinite for metals and finite for dielectrics.

The plasma model is similar to the Drude model except that the dissipation γ now tends to zero. We give in FIG. 11

the parameters ωp and γ for different metals, and show also the real and imaginary part of the complex permittivity

function of gold in FIG.10.

More interesting classes of materials are semiconductors subject to doping, which is the intentional infiltration of

impurities into a pure semiconductor so as to shift it from the state of electric isolator to conductor. Before doping,

the material is referred to as intrinsic, and as it becomes doped it is referred to as extrinsic. Eventually, the doping

can be increased to the point of the material behaving more like a conductor than a semiconductor, in which case it

is called degenerate.
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FIG. 12: Complex permittivity functions of SiO2 on the left (according to the optical data found in [111]), and of SiC on the
right (according to equation (140)), with real part in blue and imaginary part in red. Notice the presence of two resonances
for SiO2 at λ = 8.75µm and 21µm and one for SiC at λ = 10.5µm, due to surface phonon-polaritons.

Intrinsic silicon Si, has one resonance frequency around λ = 0.3µm, it is described by a Drude-Lorentz model, which

is a Sellmeier model (141) with only one oscillator. In its general form, it is derived from equation (133) such that :

ǫ(ω) = 1− α0

ω2 + ω2
0

(136)

Intrinsic silicon is modeled by :

ǫIntSi(ω) = ǫ∞ +
(ǫ0 − ǫ∞)ω2

0

ω2 + ω2
0

(137)

where the cut-off frequency is ω0 = 4.345 eV, with asymptotic values ǫ∞ = 1.035, and ǫ0 = 11.87.

Doped silicon is described by equation (133) with two oscillators : the first one describing the dielectric aspect of

the silicon, and the second one describing the metallic aspect at low frequencies due to doping. It is then a sum of

the former equation (137) with the Drude model’s second term from equation (135) :

ǫ(ω) = 1− α0

ω2 − ω2
0

− α1

ω2 + iγ1ω
(138)

We obtain :

ǫExtSi(ω) = ǫIntSi(ω) +
ω2
p

ω(ω + iγ)
(139)

where now the parameters ωp and γ depend on the doping itself, which is a measure of the density of charge carriers [27,

117].

Notice that we may want to take into account the dissipation of dielectrics by considering several oscillators, and as

for the case of doped silicon, add a metallic part to the expression [118]. In this case, we can use the general formula

(133) for permittivity. This is the case of certain materials such as Al2O3 and VO2 [68].
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We also give the Drude-Lorentz model describing SiC [65], whose permittivity shown in FIG.12 displays a resonance

frequency at around 0.3µm :

ǫ(ω) = ǫ∞
ω2
l − ω2 − iγω

ω2
t − ω2 − iγω

(140)

with ǫ∞ = 6.7, ωl = 182.7 · 1012s−1, ωt = 149.5 · 1012s−1, and γ = 0.9 · 1012s−1.

Finally the Sellmeier model, which describes transparent materials such as SiO2 silicon dioxide, is derived from

equation (133) by assuming that the dissipations γn are negligible in comparison with the resonance frequencies ωn.

This gives :

ǫ(ω) = 1−
∑

n

αn

ω2 − ω2
n

(141)

For fused silica SiO2, whose permittivity function is shown in in FIG. 12, this can be expressed as a function of the

wavelength λ, such that :

ǫ(λ) ≃ 1 +
a1λ

2

λ2 − b1
+

a2λ
2

λ2 − b2
+

a3λ
2

λ2 − b3
(142)

where an ≡ αn/ω
2
n and bn ≡ c2/ω2

n are the Sellmeier coefficients, which are determined experimentally [119] :

a1 = 0.696, a2 = 0.408, a3 = 0.897, b1 = 4.679 · 10−3µm2, b2 = 1.351 · 10−2µm2, b3 = 97.934µm2.

The first two terms in a1 and a2 correspond to the resonance frequencies of silicon dioxide SiO2 at 8.75µm and

21µm, and the third term in a3 is a convergence term so that ǫ(λ) → 1 at high frequencies.

2. Fresnel-Stokes amplitudes and S-matrices

We consider two distinct media of refraction indices n0 and n1, as illustrated in FIG. 13. The Snell-Descartes law

comes from the conservation of frequency ω and transverse wave-vector kz, giving the angles of reflection θ0 and θ1

by :

n0 sin θ0 = n1 sin θ1 =
c|k|
ω

(143)

where we have considered the incident wave to be in the xz plane, so that the azimuthal angle is zero, with kx = |k|
and ky = 0.
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FIG. 13: Interface between two media of refraction indices n0 and n1, where the two angles θ0 and θ1 are related through
Snell-Descartes law of equation (143).

Now we know that the longitudinal wave-vector κ changes according to the index of the medium in which the mode

travels. For the two media 0 (which in our notation will denote vacuum) and 1 respectively, we hence have :

κ0 =

√
ǫ0
ξ2

c2
+ k2 and κ1 =

√
ǫ1
ξ2

c2
+ k2 (144)

These determine the amplitudes of the scattering at interface, which are called the Fresnel-Stokes amplitudes, and

which depend on the polarization TE or TM. The Fresnel-Stokes amplitudes come from the equations of continuity

of the transverse field components at the interface, and from the properties of the plane waves in both media. The

scattering amplitudes r01 and t01 are the reflection and transmission coefficients, sometimes called Fresnel coefficients,

describing the scattering at the interface of a given incident wave ǫin0 coming from medium 0. A part of that wave is

transmitted in the medium 1 as ǫtr1 , and a part is reflected back in medium 0 as ǫref0 , as shown in FIG. 13.

Since this depends on the given polarization TE or TM of the wave, we give these Fresnel coefficients as the

refraction amplitudes r01 and t01 of a wave coming from medium 0 onto medium 1, and conversely as the reciprocal

amplitudes r01 and t01 of a wave coming from medium 1 onto medium 0 for both polarizations, as shown in FIG. 14 :

rTE
01 =

1− zTE
01

1 + zTE
01

and tTE
01 = 1 + rTE

01 = (1− rTE
01 )

n0 cos θ0
n1 cos θ1

, for zTE
01 ≡ 1− rTE

01

1 + rTE
01

=
n1 cos θ1
n0 cos θ0

=
κ1
κ0

(145)

rTM
01 =

1− zTM
01

1 + zTM
01

and tTM
01 = (1 + rTM

01 )
cos θ0
cos θ1

= (1− rTM
01 )

n0

n1
, for zTM

01 ≡ 1− rTM
01

1 + rTM
01

=
n1 cos θ0
n0 cos θ1

=
ǫ1κ0
ǫ0κ1

(146)

rTE
01 = −rTE

01 and t
TE
01 = 1 + rTE

01 = (1− rTE
01 )

n1 cos θ1
n0 cos θ0

, for zTE
01 = 1/zTE

01 (147)

rTM
01 = −rTM

01 and t
TM
01 = (1 + rTM

01 )
cos θ1
cos θ0

= (1− rTM
01 )

n1
n0
, for zTM

01 = 1/zTM
01 (148)
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FIG. 14: Refraction scatterings of a TE-polarized mode (A) and of a TM-polarized mode (B), and reciprocal scatterings
of a TE-polarized mode (C) and of a TM-polarized mode (D). The reflection and transmission coefficients of these four are
respectively given by equations (145), (146), (147), and (148).

We denote the fields propagating away from the interface as |ǫout〉, and towards the interface as |ǫin〉, as shown in

FIG. 15. For a chosen polarization, these coefficients of reflections r and r, and coefficients of transmission t and t

can be written together in a so-called scattering matrix, or S-matrix, of the form :

Sin/out =

(
r = c/a t = (ad− bc)/a
t = 1/a r = −b/a

)
(149)

where the coefficients a, b, c, and d, will be explained shortly. This S-matrix links the fields |ǫin〉 =

(
ǫin0
ǫin1

)
and

|ǫout〉 =
(
ǫout0

ǫout1

)
such that :

|ǫout〉 = S |ǫin〉 (150)
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FIG. 15: Notations of the different fields propagating in and out of the interface according to the index of the material in
which they travel. If we want to put the emphasis on the material in which the mode travels (as is done in the derivation of
the Casimir energy between nanogratings), it is more convenient to use a S-matrix formalism according to equation (149). But
if we want to put the emphasis on the direction of the propagation of the mode (as in the case of slabs, or coated materials),
it is more convenient to use a T-matrix formalism according to equation (151).

However, instead of the direction of propagation with respect to the interface, it is often more convenient in

numerical computations to identify the fields by the medium in which they travel : |ǫ0〉 for those in medium 0, and

|ǫ1〉 for those in medium 1. Then we can define the so-called transmission matrix, or T-matrix, of the form :

T0/1 =

(
a = 1/t b = −r/t
c = r/t d = (tt− rr)/t

)
(151)

This T-matrix links the fields |ǫ0〉 =
(
ǫin0
ǫout0

)
and |ǫ1〉 =

(
ǫout1

ǫin1

)
such that :

|ǫ0〉 = T0/1 |ǫ1〉 (152)

Clearly, the S- and T-matrices are related to one another. An important property is that the S-matrix is symmetrical

if and only if the T-matrix has a unit determinant. The T-matrix is useful when one studies the propagation of modes

through optical networks : slabs, coatings, layered materials, etc... In this latter case, it is possible to link the incoming

fields from a medium A through B to another C by joining them through a T-matrix TAC = TAB · TBC such that :

|ǫA〉 = TAB |ǫB〉 and |ǫB〉 = TBC |ǫC〉 =⇒ |ǫA〉 = TAC |ǫC〉 = TAB · TBC |ǫC〉 (153)

These results allow us to consider the case of a slab in vacuum. The slab is built by stacking a vacuum-matter interface

(01 in our notation), a propagation over a length L inside matter 1, and again a matter-vacuum interface (10), as

shown on FIG. 16. Then we can write the T-matrix of the slab such as :



59

������ ������

���	A

 L

��BBCD

EF EF��E�

FIG. 16: Slab built by stacking a vacuum-matter interface, a propagation over a length ℓ inside matter, and again a matter-
vacuum interface.

T slab = T int
01 · T prop

1 · T int
10 =

(
sinh(α+β)

sinh β
sinhα
sinh β

− sinhα
sinh β

sinh(β−α)
sinh β

)
(154)

where we have for −e−β ≡ rint01 = −rint01 , and ǫ0 = 1 :

T int
01 =

√
κ1
κ0

1√
2 sinhβ

·
(

eβ/2 −e−β/2

−e−β/2 eβ/2

)
and T prop

1 =

(
eκ1L 0
0 e−κ1L

)
(155)

From these we can recover the scattering amplitudes through the S-matrix, and see that these correspond to the

amplitudes of a Fabry-Pérot cavity, or Fabry-Pérot resonator, where the mirrors correspond to the interfaces and the

cavity itself is “filled” by the medium.

Now we have considered so far only the scattering of ordinary propagative waves only in both media. But one can

also encounter waves coming from the more refractive medium into the less refractive one, with an incident angle

larger than the limit angle : n1 > n0, n1 sin θ1 > n0, and sin θ0 > 1.

This is the case of totally reflected and evanescent waves, which can be understood from our calculations above

if we use the physical domain of complex frequencies Re ξ, with the branch of the square root chosen such that Re

κ > 0.

Now the Fresnel-Stokes previously computed above are for classical fields only. In the case of a lossless slab, we can

show [120] that :

|r|2 + |t|2 = 1 and rt∗ + tr∗ = 0 (156)

These two unitary relations imply that |r| < 1, and that the S-matrices are unitary 2× 2 matrices :
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S†S =

(
|r|2 + |t|2 rt∗ + tr∗

rt∗ + tr∗ |r|2 + |t|2
)

= I (157)

For a lossless slab, the eigenvalues r± t of the matrix S have a unit modulus. But for a lossy slab these eigenvalues

have a modulus smaller than unity. This means that additional fluctuations must be taken into account.

3. Quantization and Airy function

So in order to fully describe optical networks, one must take into account the additional fluctuations which are

associated with the noise lines coming from absorption. Mathematically, we will see that these appear in the form of

a perturbation added to the S-matrix. Physically, we will now consider the contributions coming from the evanescent

waves to the scattering. Evanescent waves are formed at an interface of two media with different permittivities. They

are near-field standing waves that exponentially decay in intensity with regards to the distance from the interface

where they were formed, as shown in FIG. 17 —they are usually most intense within a range of one third of a

wavelength from the surface. By opposition to the evanescent waves, the equations we have given in the previous

section concern propagative waves, which are the waves freely propagating (for example within the vacuum) and not

subject to exponential decay in intensity with distance.

Now this full description which involves additional fluctuations is described by the case of lossy mirrors such as

those forming a Fabry-Pérot cavity as shown on FIG. 18, where the S-matrix computed for the classical fields is no

longer unitary as in equation (157). In this case, it is the restriction to the modes of interest contained in a larger

S-matrix which is unitary.

Let’s define the indices m ≡ (ω,k, p) for a given polarization p = TE, TM = s, p, and φ = ± the rightward/leftward

direction of propagation. We have already seen in section V the anticommutation relations (43) of the annihilation and

creation operators aφm and bφm, or field amplitudes corresponding to the normalized positive and negative frequency

components. We saw in equations (41) and (42) that these operators could be used to define the electric and magnetic

fields.

We now rewrite them by setting aφ in
m and aφ out

m as defining the input fields coming to the mirror and the output

fields going away from the mirror, respectively —and similarly for bφ in
m and bφ out

m . In the case of amplitudes aφm and

bφm corresponding to positive and negative frequency components (that are hence normalized so that they correspond

to the definition of annihilation and creation operators), these canonical relations are then written :
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FIG. 17: Comparison at a given interface between a refracted incident wave and an evanescent wave. The exponential decay in
intensity of the evanescent wave with the distance from the interface is clearly shown, being roughly delimited by the evanescent
zone.

[aφ
′ in

m′ , bφ in
m ] = δmm′ δφφ′ = 8π3 δ(2)(k− k′) δ(kz − k′z) δpp′ δφφ′ (158)

[aφ
′ in

m′ , aφ in
m ] = [bφ

′ in
m′ , bφ in

m ] = 0 (159)

for the input fields, and similarly for the output fields. The unitarity of scattering implies that the output fields

have the same commutators as the input ones. This is true for optical networks, but not in the specific case of a

Fabry-Pérot cavity.

In the case of lossless mirrors, the output fields can be obtained from the input ones by using the classical equations

(156). But in the case of lossy mirrors, one must add additional fluctuations F1 and F2 at the interface 01 such that :

(
eout0

eout1

)
= S

(
ein0
ein1

)
+

(
F1

F2

)
(160)

These additional fluctuations F1 and F2 also depend on m, and are a superposition of all the modes that are coupled

to the main modes eφm by the microscopic couplings causing the absorption. As already said, we can define these

fluctuations by writing the unitary property for a large S-matrix that would take all the modes into account [29, 120].

Let’s write therefore :

(
F1

F2

)
= S′

(
f1
f2

)
=

(
r′ t

′

t′ r′

)(
f1
f2

)
(161)
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where

(
f1
f2

)
represents the noise modes, and S′ is the noise matrix, whose elements are the noise amplitudes. Then

we can use the optical theorem to show that the norm matrix S′S′† obeys the unitary condition on the whole scattering

process :

SS† + S′S′† = I (162)

The noise modes have similar canonical commutators to the input fields of the main modes, being in fact a linear

superposition of the true input vacuum fields coupled to the main modes. Nevertheless if we fully develop the matrix

elements of equation (162), we can see that they do not fully determine the noise amplitudes, but only describe the

statistical characteristics of the additional fluctuations. This is due to the definition of the canonical noise modes f1

and f2.

As a side note, it is also noteworthy that the S-matrix of an absorbing slab has a particularly symmetrical form

r = r and that the noise matrix S′ may thus be written in the same form r′ = r′.

The S-matrix scattering formalism above can be derived for T-matrices as well :

|e0〉 = T |e1〉+ |G〉, for |G〉 =M |F 〉 =
(

0 −a
1 −c

)
|F 〉 (163)

where G1 and G2 are additional fluctuations appearing as linear superpositions of F1 and F2. These expressions

allow us to study the case of the modes scattering in the Fabry-Pérot cavity as shown in FIG. 18, where unitarity of

the scattering is no longer valid, so that the input and output fields do not have the same anticommutators.

We can write in the classical case the transfer equation for the whole cavity :

|eL〉 = T1TLT2|eR〉+ |G1〉+ T1TL|G2〉 (164)

for a matrix TL of propagation within the cavity given by :

TL =

(
eκ0L 0
0 e−κ0L

)
(165)

We now consider the Fabry-Pérot cavity as a composition of two networks : A, containing mirror 1 and propagation

of the modes over length LA, and B, containing the propagation of the modes over length LB and mirror 2. Then we

can write our result (164) over the distance L = LA + LB within the cavity C such that :

|eL〉 = T1TLA
|eC〉+ |G1〉 with TA = T1TLA

and |GA〉 = |G1〉 (166)

|eC〉 = TLB
T2|eC〉+ TLB

|G2〉 with TB = TLB
T2 and |GB〉 = TLB

|G2〉 (167)
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FIG. 18: Representation of a Fabry-Pérot cavity, where the fields at the left and at the right side of the cavity C are denoted
by L and R respectively, and where the fields at the interface of the left-hand and right-hand mirrors inside of the cavity are
denoted by C1 and C2, respectively.

In terms of the scattering amplitudes, these relations can be written as :

rA = r1 and rB = r2e
−2κ0LB (168)

rA = r1e
−2κ0LA and rB = r2 (169)

tA = t1e
−κ0LA and tB = e−κ0LB t2 (170)

This allows us to evaluate G, which is an indicator of the anticommutation of the input and output fields [29, 120]

based on equation (162) :

G = I +
1

D

(
rArB rA
rB rArB

)
+

1

D∗

(
rArB rA
rB rArB

)†

(171)

with :

D = 1− rArB = 1− r1r2e
−2κ0L (172)

Then the diagonal elements of G coincide with the so-called Airy function :

g = 1 + f + f∗ =
1− |1−D|2

|D|2 and f =
1−D
D (173)

which means that the commutators of the fields inside the cavity are not the same as those of the free fields. They

correspond to a modified spectral density, which is the spectral density of the free fields multiplied by the Airy
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function g. This is an important result, because the Casimir force is derived from a difference between the total

pressure generated by the modes outside and inside of the cavity, as we will see in the following.

4. Derivation of the Casimir force between two planes

We derived through Noether’s theorem the equation of the stress-energy tensor (55) in section VB2. We now give

an illustration of the physical meaning of its components in FIG. 19. The portion of the stress-energy tensor due to

the electromagnetic field is the electromagnetic stress–energy tensor, which is a function of the electromagnetic field

tensor Fµν that we saw in equation (84) of section VB4. It is given in SI units by :

Tµν =
1

µ0
[FµαF ν

α − 1

4
ηµνFαβF

αβ ] =




1
2 (ǫ0E

2 + 1
µ0
H2) Sx/c Sy/c Sz/c

Sx/c −σxx −σxy −σxz
Sy/c −σyx −σyy −σyz
Sz/c −σzx −σzy −σzz


 (174)

where ηµν is the Minkowski metric tensor, which is a diagonal matrix with diagonal elements (−1, 1, 1, 1). Here the

matrix elements Si are the components of the Poynting vector [121], which represents the electromagnetic field’s

directional energy flux density, or its rate of energy transfer per unit area in W.m−2 :

S =
1

µ0
E×H (175)

The matrix elements σij are the components of the so-called Maxwell stress-tensor :

σij = ǫ0EiEj +
1

µ0
HiHj −

1

2

(
ǫ0E

2 +
1

µ0
H2

)
δij (176)

where δij is Kronecker’s delta. The elements σxx, σyy, and σzz of the electromagnetic stress-energy tensor which form

the diagonal elements of the Maxwell stress-tensor are hence akin to a pressure.

The elements ij of the Maxwell stress tensor represent the flux per unit of time of momentum which is parallel to

the ith axis crossing a surface normal to the jth axis, in the negative direction. Alternatively, they also represent

the force per area which is parallel to the ith axis, and experienced by a surface normal to the jth axis. So they are

related to a negative pressure.

A given area in the electromagnetic field also experiences a force in a direction that is not normal to that area.

Unlike forces coming from the pressure of an ideal gas, this gives rise to a shear or viscosity, which is represented by

the non-diagonal elements of the Maxwell stress tensor.
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FIG. 19: Components of the general stress-energy tensor, with their physical meaning. The diagonal elements T11, T22, and
T33 give the pressure responsible for the Casimir force. The shear stress is akin to viscosity.

In order to calculate the Casimir effect between two plates let us now assume a Fabry-Pérot cavity composed of

perfectly plane mirrors. The index m ≡ (ω,k, p) is preserved throughout the whole scattering process. The vacuum

impedance in place of the electromagnetic constants in vacuum, is defined as Z0 = µ0c = 1/ǫ0c. Then the component

T00 ≡ σii of the Maxwell stress tensor gives the energy density per unit volume as a quadratic form of the free electric

and magnetic fields :

T00 =
1

2cZ0

(
E2

x + E2
y + E2

z + c2H2
x + c2H2

y + c2H2
z

)
=

1

2cZ0

(
ETE+ c2HTH

)
(177)

Based on equation (113) of the quantized free fields written as a linear superposition of the modes, we can find the

quantum average of the energy density in vacuum state [120], such as :

〈T00〉vac =
∑

mφ

ℏω 〈aφm · bφm〉vac (178)

In a thermal equilibrium state and at non-zero temperature T , the following anticommutator of the operators is :

〈aφm · bφm〉vac ≡
〈aφmbφm + bφma

φ
m〉vac

2
=

1

2
+

1

e
ℏω

kBT − 1
(179)

In the case of vacuum at zero temperature, it reduces to 1
2 . We therefore recover the mean energy density in vacuum

as the ℏω/2 sum over the modes :

〈T00〉vac =
∑

mφ

ℏω

2
(180)

which is an infinite quantity reflecting the vacuum energy catastrophe, which fortunately does not influence our

derivation of the Casimir energy [122].

We can now evaluate the Tzz component of the Maxwell stress tensor, which gives the pressure on the plane mirrors

forming our Fabry-Pérot cavity and parallel to the xy-plane :
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Tzz =
1

2Z0

(
E2

x + E2
y − E2

z + c2H2
x + c2H2

y − c2H2
z

)
=

1

2Z0

(
ETΠE+ c2HTΠH

)
(181)

for Π a given diagonal matrix with diagonal elements (+1,+1,−1). From this, we can similarly derive its quantum

average :

〈Tzz〉vac =
∑

mφ

ℏωm cos2 θm 〈aφm · bφm〉vac (182)

where cos2 θm is a projection factor arising from the polarization vectors with associated incidence angle θ in the

xz-plane (equation 2-21 in [120]). Expression (182) represents the radiation pressure compared to that of energy

density. As for equation (180), it is also infinite but this will not affect our derivation of the Casimir pressure in the

Fabry-Pérot cavity.

By developing the sum over φ, we can then find the pressure endured by a given mirror, which is equal to the sum

of the radiation pressure given by the contributions of the four following fields that are coupled in the scattering :

〈P 〉vac =
∑

m

ℏωm cos2 θm 〈ainm L · binm L + aoutm L · boutm L − aoutm R · boutm R − ainm R · binm R〉vac (183)

We have already seen that for a given single mirror, the commutators are the same for the input and output fields

even in the case of dissipation. Together with equation (179), we can then find :

〈aφm · bφm〉vac =
1

2

[
aφmb

φ
m

]
=

1

2
(184)

〈ainm L · binm L − ainm R · binm R〉vac = 〈aoutm L · boutm L − aoutm R · boutm R〉vac = 0 (185)

This implies that the radiation pressure is always zero for a single mirror, due to the equal roles played on both

sides of the mirror, so that no mean force appears. Nevertheless, in the case of the two mirrors of the Fabry-Pérot

cavity, we must calculate :

〈P1〉vac =
∑

m

ℏωm cos2 θm 〈ainm L · binm L + aoutm L · boutm L − aL→R
m C · bL→R

m C − aR→L
m C · bR→L

m C 〉vac (186)

〈P2〉vac =
∑

m

ℏωm cos2 θm 〈aL→R
m C · bL→R

m C + aR→L
m C · bR→L

m C − aoutm R · boutm R − ainm R · binm R〉vac (187)
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Whereas the anticommutators are the same for the input and output fields, they are related to the commutators

multiplied by the Airy function from equation (184), for the fields within the cavity :

〈aφm C · bφm C〉vac =
1

2

[
aφm C , bφm C

]
=

1

2
gm (188)

Equations (184) and (188) allow us to simplify the expressions of the radiation pressure on both mirrors :

〈P1〉vac =
∑

m

ℏωm cos2 θm (1− gm) (189)

〈P2〉vac =
∑

m

ℏωm cos2 θm (gm − 1) = −〈P1〉vac (190)

Notice that these two pressures have opposite values. This is a consequence of the translational invariance of

vacuum : the global force of the vacuum suffered by the cavity is zero.

Now we are in a position to give the Casimir force acting on mirror 1 of surface A, with the assumption that

A≫ L2 :

F ≡ A〈P1〉vac = A
∑

m

ℏωm cos2 θm (1− gm) (191)

This force has a positive sign, and is hence attractive.

Based on equation (111), we can write the summation symbol as :

∑

m

ωm cos2 θm . . . 7−→
∑

p

∫
d2k

4π2

∫
dω

2π
kz . . . (192)

and therefore re-write the Casimir force as :

F = Aℏ
∑

p

∫
d2k

4π2

∫
dω

2π
kz [1− gpk(ω)] (193)

5. Analyticity conditions of the cavity function : causality, passivity, stability

We now have to define the correct integration boundaries and study the analytical properties of the functions. The

domain of integration for the frequency should of course include the propagative waves, which are the waves such that
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ω > c|k|. However the full description of the radiation pressure should also take into account the evanescent waves,

which have ω 6 c|k|. This contribution of the evanescent sector is made by an analytical continuation over the whole

axis of real frequencies of the propagative waves.

In order to perform this analytical continuation, we choose a function having well defined analyticity properties :

causality, stability, and passivity. The Airy function gpk(ω) does not have the property of causality, but it can be

written as a sum of a retarded and an advanced part :

gpk(ω) = 1 + fpk(ω) + fpk(ω)
∗ (194)

for fpk(ω) =
ρpk(ω)

1− ρpk(ω)
(195)

and ρpk(ω) = rpk,1(ω)r
p
k,2(ω)e

−2κ0L (196)

where the function ρpk(ω) is given as the product of the reflection amplitudes rpk,1(ω) and r
p
k,2(ω) associated with each

mirror, and the propagation phaseshift e−2κ0L = e−κ0Le−κ0L associated with the two-fold propagation of the modes

from one mirror to the other through the cavity of length L. Partly because of causality, the cavity function fpk(ω) is

now an analytical function.

A way to understand the physical meaning of ρpk(ω) in the scattering approach is to say that it describes the

reflection of the modes at the first mirror through rpk,1(ω), then the propagation of these modes over the cavity length

by a factor e−κ0L, and finally reaching the second mirror, these modes are reflected with a reflection coefficient rpk,2(ω)

and propagate back to the first mirror along e−κ0L. The cavity function fpk(ω) can thus be seen as an open loop

function.

The order of the product of these factors is not important in the plane-plane configuration, since all quantities are

scalar, but in non-planar geometries, the diffraction process will be described by S-matrices instead of simple reflection

coefficients, and the order of matrix multiplication will be important.

We now rewrite expression of the Casimir force (193) by including the cavity function fpk(ω), and decompose it into

a sum of two conjugated parts :

F = F + F∗, for F = −Aℏ
∑

p

∫
d2k

4π2

∫
dω

2π
kzf

p
k(ω) (197)

Each part F and F∗ has well defined analyticity properties.
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Coming from the additional fluctuations arising from the noise lines, evanescent waves are present by necessity in

the vicinity of a dispersive medium. Ordinary propagative waves correspond to real frequencies ω and real wave-vector

kz (or imaginary values for ξ and κ), whereas evanescent waves correspond to imaginary wave-vector kz (or real values

for ξ and κ).

The causal response function must obey the analyticity properties of causality, passivity, and stability in the physical

domain of the complex frequency plane, according to equation (211). Causality is determined if we determine the

conditions of extinction for waves propagating in a dissipative medium, and for evanescent waves confined to the

vicinity of an interface between two media. We can find the properties of evanescent waves simply by extending the

scattering amplitudes from propagative to evanescent waves. Let’s consider for example the set of equations (145-148),

with transmission coefficients t01 =
[
κ0

κ1
(1− r201)

] 1
2

= t01
κ0

κ1
.

Then for evanescent waves coming from a non-absorbing medium ǫ1 ∈ R, the quantity κ1 is imaginary, and so κ0

is real. Therefore zTE
01 is imaginary, which implies that r01, r01 ∈ C has a unit modulus, and hence that they are pure

phases. The fields coming from within the medium is therefore totally reflected.

But since the transmission amplitudes t01 and t01 do not vanish, the fields coming from within the medium at an

incident angle larger than the limit angle feed the evanescent field in vacuum. So we see that the unitary condition

|r|2 + |t|2 6 1 does not apply, and the energy condition is complex to write for evanescent waves.

The condition of stability is established by considering TE evanescent waves, for which we have a condition on the

modulus of the reflection amplitude |rTE
01 | 6 1. In section VIA6 we will study Wick’s rotation and how to properly

switch from real frequencies ω to imaginary frequencies ω → iξ, with Reξ > 0. But for now, it can be shown [123] that

this property of stability is not only true for propagative waves or imaginary frequencies, but for the entire physical

domain of the complex plane also. Eventually we can show that :

Re ξ > 0 =⇒ |rTE
k (iξ)| 6 1 =⇒ |ρTE

k (iξ)| 6 1 (198)

This implies that the closed loop cavity function fpk(iξ), which is built on the closed loop function ρpk(iξ), is analytic

with no pole in the domain Re ξ > 0. Here we define by pole the type of complex singularity behaving like ξ−n when

ξ = 0, for a given integer n.

This means that we are considering a closed loop function in a situation where the open loop function’s gain is

smaller than one, so that the closed loop function cannot reach the oscillation threshold.

The last inequality from equation (198) expresses the desired property of stability, which is obeyed by the fluctuations

of vacuum scattered by the Fabry-Perot cavity : neither the mirrors nor the fields in the cavity can sustain any potential

oscillation [124], which would otherwise be generated by a pole in the physical domain Re ξ > 0.
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Finally, this same equation (198) also implies a property of passivity [124], since the poles of the cavity function

fpk(iξ) are given by the equation ρTE
k (iξ) = 1, which depends on the modulus and phase of ρTE

k (iξ).

Indeed, if the phase of ρTE
k (iξ) is such that it prevents the oscillation from reaching its threshold, then the stable

closed loops can be formed out of open loop amplitudes lager than the unit modulus.

Therefore, by recalling equations (194-195), we can specify the property of passivity by the inequality :

Re ξ > 0 =⇒ gpk(ω) > 0 (199)

The Airy function gpk(ω), which is a spectral density defined on the propagative sector, hence remains positive over

the whole physical domain of the complex frequency plane. If the condition of passivity was not met, then this Airy

function would be positive only in the propagative sector, but not in the evanescent one.

So we have derived the necessary analyticity conditions : the property of causality is formulated by equations

(194-196), the property of stability by equation (198), and the property of passivity by equation (199).

Now in the case of TM modes, the property of stability holds but passivity is not always respected. In order to

show this let’s consider a metallic bulk, which is an infinitely thick mirror, described by a plasma model with plasma

frequency ωp. It is described by the amplitudes given in equations (146) and (148), with ǫ0 = 1 for vacuum, and

ǫ1 = 1− ω2
p

ω2 .

The violation of passivity happens in the divergence of |rTM
01 |, which corresponds to a pole that is attained for the

surface plasmon resonance condition :

zTM
01 = −1 and ǫ1κ0 + κ1 = 0 (200)

As we see in section VIA9, surface plasmons are collective oscillations of electrons propagating on the interface

between the vacuum and a conductive material. If we couple expression (200) with the Brewster angle for a vanishing

reflection amplitude such that zTM
01 = +1, we can then write the two expressions (zTM

01 )2 = +1 such as :

ǫξ2 + c2k2 = ǫ2
(
ξ2 + c2k2

)
(201)

with ǫ1 = ǫ 6= 1. This can also be written for the plasma frequency ωp :

ω4 − ω2
(
ω2
p + 2c2k2

)
+ ω2

pc
2k2 = 0 (202)

Then the solution of the equation above with larger frequency corresponds to the propagative waves having a

Brewster angle ωB , and the solution with smaller frequency corresponds to the evanescent waves having plasmon



71

resonance frequency ωS :

ω2
B =

1

2

(
ω2
p + 2c2k2 +

√
ω4
p + 4c4k4

)
(203)

ω2
S =

1

2

(
ω2
p + 2c2k2 −

√
ω4
p + 4c4k4

)
(204)

The latter can also be written as the surface plasmon frequency, describing the well-known dispersion relation for

surface plasmons :

ω2
S =

ω2
p

2
for ω2

p ≪ c2k2 (205)

In this limit, we have κ0, κ1 ∼ |k|. This implies :

rTM
01 ≃ 1− ǫ1

1 + ǫ1
≃ ω2

p

2ω2 − ω2
p

≃ ω2
S

ω2 − ω2
S

=⇒ ρTM =

(
ω2
S

ω2 − ω2
S

)2

e−2κ0L (206)

The function ρTM is an open loop function. This means that the closed loop cavity function fTM diverges for

ρTM = 1. Solving, we find :

ωS± = ωS

√
1± e−κ0L (207)

The frequencies ωS± are the perturbed plasmon frequencies that are the poles of the closed loop cavity function

fTM, lying outside the physical domain Im ω < 0. It means that the surface plasmons corresponding to the two mirrors

are coupled by evanescent waves through the cavity, and are thus displaced from their usual plasmon frequency ωS

to perturbed frequencies ωS±.

Notice that we considered here a plasma model, and therefore no dissipation. It is possible to derive the same

results in the dissipative case by using a Drude model for metals [120].

6. The Casimir force over imaginary frequencies and Cauchy’s theorem

As we have now established the analyticity properties of the open and closed loop functions, we may now derive the

expression of the Casimir force (197) over imaginary frequencies ξ ≡ −iω. This will be a mathematically equivalent

expression, but much better suited to numerical evaluation. In order to do this, we use the Cauchy theorem from

complex analysis over the complex plane, as shown on FIG. 20.
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FIG. 20: Complex plane for which the expression of the Casimir force over real frequencies ω is switched to imaginary frequencies
ξ. The quantities Ceva and Cpro correspond to the real evanescent and propagative waves, respectively. Then Cim represents
imaginary frequencies, and Cinf represents the quarter circle with radius going to infinity.

We can define the contour integration C such as :

C = Ceva + Cpro + Cinf + Cim (208)

Assuming transparency of materials for ω → ∞, the contribution of Cinf vanishes. Since Cauchy’s theorem estab-

lishes :

∫
d2k

4π2

∫

C

dzfpk(z) = 0 (209)

we deduce that the integrals over Ceva + Cpro and Cim are equal. Therefore we can write the Casimir force F as an

integral expression over the real axis [0,∞[ to an integral over the imaginary axis [0, i∞[ :

F = F + F∗ for F = −A
∑

p

∫
d2k

4π2

∫ i∞

0

dω

2π
ℏiκfpk(ω) (210)

Mathematically, the principle of causality implies that ǫ(ω) is a function of ω in the upper-half of the complex

frequency plane Im ω > 0. Therefore we will often use imaginary frequencies ξ, as opposed to the real frequencies

denoted by ω, by performing a Wick’s rotation such that :

ω ≡ iξ for Re ξ > 0 (211)
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Then the frequency is related to the wave vector by :

ǫ
ω2

c2
= k2x + k2y + k2z = k2 + k2z (212)

So if we desire to switch to imaginary frequencies and then express kz accordingly, we must be very cautious [120]

in the way we chose the sign of the square root :

kz = ±
√
ǫ
ω2

c2
− k2 (213)

Indeed, kz contains like ǫ an imaginary part, which means that the dephasing factor exp (ikzz) which, as we will see,

appears during the wave propagation in a given medium must include an extinction factor in the form of a decreasing

exponential. This is done by selecting a specific root depending on the direction of propagation of the wave φ = ±1 :

kz ≡ iφκ, with Re κ > 0 (214)

where from now on, we define :

κ =

√
ǫ
ξ2

c2
+ k2 (215)

Notice that the sign of kz is changed under reflection with a medium, whereas the sign of κ does not. The wave’s

angle of incidence θ is thus written :

cos θ = φ
cκ

nξ
(216)

If we write F in terms of complex frequencies ξ = −iω (with Re ξ > 0 as usual), we find that F = F∗, so that the

expression of the Casimir force over imaginary frequencies simplifies to :

F = 2F = 2A
∑

p

∫
d2k

4π2

∫ ∞

0

dξ

2π
ℏκfpk(iξ) (217)

for k = k⊥ = (kx, kz). This expression is equivalent to equation (197). The property of causality is ensured by the

restriction to the first quadrant of the complex plane for frequencies Re ω > 0 and Im ω > 0.

Furthermore, when using imaginary frequencies we must change accordingly the permittivity function describing

the material. One can derive equation (133) above for purely imaginary frequencies by the Kramers-Kronig relations,
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FIG. 21: Casimir force between two plates of gold (yellow curve) and two plates of intrinsic silicon (blue curve) forming a
Fabry-Pérot cavity, as a function of their separation distance L. Notice that the force is in N.m−2 = pN.µm−2.
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FIG. 22: Absolute value of the Casimir energy between two plates of gold (yellow curve) and two plates of intrinsic silicon
(blue curve) forming a Fabry-Pérot cavity, as a function of their separation distance L.

which relate the real and imaginary parts to one another [125] by :

ǫ(iω) = 1 +
2

π

∫ ∞

0

Ωǫ′′(Ω)

Ω2 + ω2
dΩ (218)

These relations imply causality, by performing the Wick rotation above in the complex frequency plane. Once

expressed as a function of imaginary frequencies, the resonance frequencies do not appear in the plot of the permittivity.
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Finally, we can choose the convention for the Casimir energy E to be negative and hence attractive :

E = −
∫

L

F (l)dl (219)

so as to find the expression of the Casimir energy over real and imaginary frequencies, respectively :

ER = −A
∑

p

∫
d2k

4π2

∫ ∞

0

dω

2π

iℏ

2
log

1− ρpk(ω)

1− ρpk(ω)
∗

(220)

EC = A
∑

p

∫
d2k

4π2

∫ ∞

0

dξ

2π
ℏ log [1− ρpk(iξ)] (221)

We present in FIG. 21 the Casimir force as a function of separation distance between two plates of gold, and

two plates of intrinsic silicon. In FIG. 22 we also show the absolute value of the Casimir energy as a function of

separation distance for these same plates. One can see the strong increase of both Casimir force and energy with

shorter distances.

One can see through these plots that both the Casimir energy and force are much larger for gold than intrinsic

silicon. We will see in the rest of this text that they are in general much larger for dielectrics than metals.

7. Matsubara frequencies and Casimir for non-zero temperatures

Had we not placed ourselves under the assumption of zero temperature, an extra factor equal to the r.h.s of

equation (179) would appear in the integrand of equation (197). This integrand would then have poles at Matsubara

frequencies [126, 127], which are given for an integer n by :

ξn = n
2πkBT

ℏ
(222)

In regards to the causality of the cavity function fpk(ω), this implies that the physical domain of the complex plane

is restricted to the first quadrant (Re ξ > 0 and Im ξ > 0), as shown on FIG. 20.

Indeed, the contribution of a non-zero temperature is taken into account by considering the field’s thermal fluctu-

ations [128], which are added to the zero temperature Casimir force. As already said in section VIA4, for non-zero

temperatures the pressure suffered by each mirror from equation (183) :
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〈P 〉vac =
∑

m

ℏωm cos2 θm 〈ainm L · binm L + aoutm L · boutm L − aoutm R · boutm R − ainm R · binm R〉vac (223)

must be multiplied by a factor N which comes from the r.h.s of the anticommutator seen in equation (179) :

〈aφm · bφm〉vac ≡
〈aφmbφm + bφma

φ
m〉vac

2
=

1

2
+

1

e
ℏω

kBT − 1
(224)

which, in the case of vacuum at zero temperature, reduces to 1
2 . In order to switch to the case of non-zero temperatures,

one must consider the vacuum energy as multiplied by this factor N such that :

1

2
ℏω 7−→ 1

2
ℏω · N for N ≡ 1 + 2nω = 1 + 2

1

e
ℏω

kBT − 1
= coth

ℏω

2kBT
(225)

where the function nω is the energy of the mean number of photons per mode given by Planck’s law (4). This factor

N appears in the integrand of the Casimir force, and when we switch from real to imaginary frequencies, it accounts

for regularly spaced poles on the imaginary axis, which are in effect the Matsubara frequencies given in equation

(222).

When calculating the force, these poles must be avoided by careful contours in the integration. The zero temperature

limit is recovered [129] when :

ωT =
2πkBT

ℏ
→ 0 (226)

This implies that the thermal contribution to the zero-temperature Casimir force stays negligible for wavelengths

λ smaller than the thermal wavelength λT :

λT = ℏcβ = ℏc
1

kBT
=

2πc

ωT
(227)

At ambient temperature T = 300K, this wavelength is equal to ∼ 7µm. So for distances beyond this value of λT /2,

the thermal contributions to the zero temperature Casimir force become important.

Now since for non-zero temperatures, the pressure suffered by each mirror given in equation (183) must be multiplied

by N , we can derive the Casimir force in a straight-forward way by multiplying its integrand in equation (197) by

this same factor N :

F = Aℏ
∑

p

∫
d2k

4π2

∫ ∞

0

dω

2π
kz coth

ℏω

2kBT
[−fpk(ω)− fpk(ω)

∗] (228)
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Then if we expand the function coth appearing in N as a series of exponentials depending on the thermal frequency

ωT , we get :

N = 1 + 2nω = coth
ℏω

2kBT
= coth

πω

ωT
≃ 1 + 2

∞∑

n=1

exp

[
−2nπ(ω + η)

ωT

]
(229)

where the factor η ∈ R
∗
+ is to ensure uniform convergence and proper analyticity properties [129] such that η → 0.

Nevertheless, since by definition η is strictly positive, the frequency ω = 0 is now part of the convergence domain of

the series.
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FIG. 23: Complex plane for which the expression of the Casimir force over real frequencies ω at non zero temperature is switched
to imaginary frequencies ξ. The quantities Ceva and Cpro correspond to the real evanescent and propagative waves, respectively,
Cim represents imaginary frequencies, and Cinf represents the quarter circle with radius going to infinity. The major difference
with FIG. 20 is the convergence factor η → 0 appearing in the series of exponential (229) so that the imaginary frequencies are
not on the pure imaginary axis but on z = iξ + η. Also notice the equidistant poles of the Matsubara frequencies along Im ω,
including the one at ω = 0.

Now following the traditional Lifshitz notation [130], we take :

′∑

n

φ(n) ≡ 1

2
φ(0) +

∞∑

n=1

φ(n) =
1

2

+∞∑

n=−∞

φ(|n|) (230)

so that we obtain an expression of the Casimir force :

F = lim
n→0+

ℏA

π

′∑

n

∑

p

∫
d2k

4π2

∫ ∞

0

dω exp

[
−2nπ(ω + η)

ωT

]
kz [−fpk(ω)− fpk(ω)

∗] (231)

On FIG. 24, we can see the Casimir energy as a function of separation distance L between two planes of intrinsic

silicon Si, and between two planes of gold, at T = 0 K and at T = 300 K. One can see that a larger temperature
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increases the Casimir energy. beyond 6µm, the Casimir energy associated with the dielectric profiles at T = 300 K is

even larger than for the metallic profiles at T = 0 K.
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FIG. 24: Casimir energy as a function of separation distance L between two planes of intrinsic silicon Si (blue curve) and
between two planes of gold Au (yellow curve), at zero temperature (respective solid curves) and at T = 300 K (respective
dashed curves).

With the same conditions for analyticity than for case with zero temperature, we restrict ourselves to the first

quadrant of the complex frequency plane Re (ω) = −Im (ξ) > 0 and Im (ω) = Re (ξ) > 0. This is for the cavity

function fpk(iξ). In the case of the advanced function fpk(iξ)
∗ appearing in equation (231), the contour must be found

in Re (ω) = −Im (ξ) < 0 and Im (ω) = Re (ξ) > 0.

Wanting to switch to imaginary frequencies, we use the Cauchy theorem. But the convergence factor η implies that

the part corresponding to Cim from equation (208) is not the imaginary axis anymore but the axis z = iξ + η, as

shown on FIG. 23.

The function coth πz
ωT

which now is included in the expression of the Casimir force has poles on the imaginary axis.

These are Matsubara frequencies (222), now rewritten as a function of the thermal frequency such that :

zn = inωT (232)

We can therefore eventually write :

F = lim
n→0+

ℏA

π

′∑

n

∑

p

∫
d2k

4π2

∫ ∞

0

dξe
− 2nπη

ωT κ
[
e
− 2inπω

ωT fpk(iξ + η) + e
2inπω
ωT fpk(iξ − η)

]
(233)
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When fpk(iξ) does not contain poles on the imaginary frequency axis, one can set η = 0 in the functions fpk(iξ + η)

and fpk(iξ − η). Often [129], the response functions can be ill-defined around ω = 0.

8. Derjaguin’s Proximity Approximation

The Proximity Approximation (PA), sometimes called Proximity Force Approximation (PFA), was originally devel-

oped [131] as a model to colloidal solutions, and later applied to nuclear physics [132] and Casimir physics [133, 134]

as a planar approximation to non-planar geometries.
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FIG. 25: Approximation of the arbitrary surfaces of two objects (here two spheres) in the Derjaguin Proximity Approximation.
Notice that the unit cells locally approximating the arbitrary surfaces are taken as parallel to those of the opposite object.

It gives the general force of interaction F between two objects of arbitrary shapes, separated by a distance L which

should not change too abruptly as one locally considers the surfaces of the objects. The PA takes the shape of the

objects as a mosaic of small planar surfaces that are parallel to those of the other object, as shown in FIG. 25.

In this case, one can decompose the force F as a sum of local forces such that :

F =

∫
d2r

Fp-p

A
(L(r)) + · · · (234)
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where Fp-p/A is the force per unit area of the two parallel planar cells locally modeling the surface, and separated by

the specific distance L(r). In our case the Casimir force Fp-p/A is easy to compute, the integral being replaced by a

simple sum over all the different parallel unit cells.

9. Polariton coupling with surface-quasiparticles

So we saw that the Casimir energy is derived from the scattering matrices describing the mirrors. These S-matrices

in turn depend on two factors : the mirrors’ geometry and the permittivity of the mirrors’ materials. In practice, the

permittivity functions describing these materials can be non-trivial due to surface-plasmons (in the case of conductive

materials), and phonons (in the case of dielectrics). These in turn can also be coupled to polaritons, which are

quasiparticles arising from the strong coupling of electromagnetic waves and electric or magnetic dipole-carrying

excitations.

By quasiparticles we understand collective excitations that occur in a complex system, which behaves as if it

contained weakly interacting particles. In FIG. 26, we show a list of quasiparticles with their associated definitions.

One of the most common quasiparticles in solid state physics are phonons, which are collective excitations in a

periodic and elastic array of atoms or molecules within a material. These are a quantized excitation states of the

modes of vibrations of elastic and interacting groups of particles. Phonons account for important characteristics of

certain materials, such as their electrical conductivities, or thermal and acoustical properties.

More precisely, phonons describe a type of vibrational motions in which a lattice uniformly oscillates at the same

frequency. It appears through Fourier analysis, that these lattice oscillations can in turn be seen as superpositions

of elementary oscillations themselves. These are seen classically as waves, but display a particle-like nature when

quantized.

Let’s consider a series of two alternating ions (or atoms) of respective mass m1 and m2, separated by a length a,

and connected by springs of spring constant K. Then for the vibration wave-vector k = 2π/λ, we have two modes of

vibration as shown on FIG. 27 :

ω2
±(ω) = K

(
1

m1
+

1

m2

)
±K

√(
1

m1
+

1

m2

)2

− 4 sin2(ka/2)

m1m2
(235)

These are the dispersion relations, which are the relations between frequency ω and wave-vector k(ω). In the case

of the plus sign, we deal with an optical mode, and in the case of the minus sign, we deal with an acoustic mode,
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Quasiparticle Definition

Polariton Coupling of a photon with other quasiparticles
Plasmon Quantum of high frequency oscillations of the electron density in con-

ductive materials
Phonon Quantum of a collective excitation in a periodic and elastic lattice of

atoms in condensed matter
Exciton Bound state found in electric insulators of an electron and hole that are

attracted to each other by the electrostatic Coulomb force
Polaron Fermionic quasiparticle composed of a charge and its accompanying po-

larization field (should not be confused with polariton, which is a bosonic
quasiparticle)

Bipolaron Bound pair of two polarons
Hole Absence of electron in a valence band
Holon/chargon Quasiparticle created by electron spin-charge separation
Fracton Quantum of a collective excitation that has a fractal nature on a sub-

strate
Magnon Coherent excitation of electron spins in a material
Majorana fermion Quasiparticle that is equal to its own antiparticle, appearing as a midgap

state in some superconductors
Phason Vibrational modes in a quasicrystal associated with atomic reconfigura-

tion
Soliton Self-amplifying independent excitation wave
Spinon Quasiparticle which, along with holons, is created from electron spin-

charge separation

FIG. 26: List of some quasiparticles that are often encountered in condensed matter physics. These may substantially change
the value of the Casimir energy or of the radiative heat transfer, depending on the chosen material of the plates, through its
associated permittivity function.

as shown in FIG. 27. From a geometrical perspective, the optical modes are characterized by the two ions or atoms

moving against each other, and the acoustic modes are characterized by the two ions or atoms moving together.

Based on equation (235), one can determine the speed of propagation of an acoustic phonon, which is the speed of

sound in that given material, as the slope of the acoustic dispersion relation ∂ω(k)/∂k.

FIG. 27: Dispersion relation for phonons described through one-dimensional series of two alternating ions or atoms, as shown
in equation (235). The boundaries at −π/a and π/a are those of the first Brillouin zone[135].
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In conductive materials such as metals, there exists high frequency oscillations of the electron density which are

called plasma oscillations. These are practically described as a perturbation in the dielectric function of a free electron

gas. The quantization of these plasma oscillations lead to quasiparticles called plasmons. So a plasmon is a quantum

of plasma oscillation, just as phonons are quanta of mechanical vibrations, and photons are quanta of light (albeit

photons are real particles, not quasiparticles).

Surface plasmons are guided waves trapped at the interface between a dielectric and a metal. They are created

by the collective reactions of free electrons in a metal to electromagnetic perturbations. These perturbations can

come from incident high energy electrons, or by electromagnetic radiation. For this reason, surface plasmons are both

displaying the characteristics of electromagnetic waves and of surface charges, as shown in FIG. 28.
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FIG. 28: Electric field lines and distributions of charges for a surface-plasmon located on the interface between a metal and a
dielectric.

Each surface-plasmon has an evanescent field that is perpendicular to the surface [136, 137], and which decays

exponentially on each side of the interface, both in the metal and in the dielectric. Nevertheless, it is noteworthy

that the depth of the field’s penetration within the metal is considerably smaller than for the dielectric due to the

screening effect of the free charges.

It is noteworthy that surface-plasmons have a lower energy than plasmons present within the material bulk, since

these quantize the oscillations of the electrons around positive ions present within the metal. If surface-plasmons

couple with a photon, the produced excitation is called a surface-plasmon polariton. Surface-plasmon polaritons
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propagate along the surface of a metal until their associated energy is lost either by dissipation or by radiation in

free-space.

When surface-plasmons are created by incident high-energy electrons impacting the metal, the energy from the

scattering of the electrons is transferred into the material, and the component of the scattering vector parallel to the

surface brings about the formation of a surface plasmon. However the evanescent nature of surface-plasmons implies

that the momenta of incident light and of surface-plasmons do not match. One can then artificially couple photons with

surface-plasmons so as to create surface-plasmon polaritons, by using a grating coupler to match the respective photon

and the surface-plasmon wave-vectors. This is done by increasing the parallel wave-vector component proportionally

to the grating period, as shown in FIG. 29. This process can also be viewed as a tool to detect surface defects and

rugosity, since the slightest corrugation or groove depth is enough to generate a surface-plasmon polariton.
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FIG. 29: Example of a sinusoidal grating coupler used to generate surface-plasmon polaritons by matching the wave-vectors
k of the incident photons in their parallel component kphoton

x with those of the surface-plasmons kSP
x , through an increase

proportional to the grating period d.

When the wave-vector or frequency of the incident photons matches the frequency of the electrons on the material’s

surface which naturally oscillate against the positive atoms’ nuclei, the surface-plasmons are described as resonant.

So surface-plasmon resonances are the resonant and collective oscillation of the valence electrons within the metal

bulk, which are excited by the incident photons. When surface-plasmon resonances are confined to nanostructures

below the micrometer range, we speak of localized surface-plasmon resonances.
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Finally, excitons are quasiparticles that can be seen as pairs of electron-hole bound by the Coulomb force (see FIG.

26). These exist in semiconductors, and in electric insulators such as dielectrics. In general, we can divide excitons

in two large groups : Mott-Wannier excitons whose radii are much larger than the material’s lattice constant, and

Frenkel excitons whose radii are much smaller and which appear for small values of the material’s dielectric constant.

Excitons are created when a semiconductor or dielectric absorbs a photon, thus exciting an electron from the valence

band into the conduction band. This produces a localized and positively-charged hole, to which the electron in the

conduction band is attracted by the Coulomb force. The produced exciton has a smaller energy than the unbound

electron and hole, due to the fact that this attraction has an energy balance at equilibrium.

One can also describe excitons as neutral polarization waves within the material. For semiconductors, the presence

of excitons appears as a peak of absorption at an energy smaller than the energy of the electronic band gap. The

difference between these two energies is the exciton’s binding energy, and the peak can be observed only when this

binding energy is small compared to the thermal energy.

Now that we have defined phonons, excitons, and surface-plasmons, we can study their coupling with polaritons,

which are bosonic quasiparticles arising from the strong coupling between a photon and an electric or magnetic

dipole-carrying excitation. In general, polaritons and their associated excitation depend on the frequency of the

photon involved :

• Phonon-polaritons result from the strong coupling of an infrared photon with an optical phonon.

• Exciton-polaritons result from the strong coupling of a visible photon with an exciton.

• Surface-plasmon-polaritons result from the strong coupling of surface-plasmons with photons of various frequen-

cies.

Polaritons manifest the principle of avoided crossing (or level repulsion), and hence display the crossing of the

dispersion of light with interacting resonances. This is important when we consider dielectrics such as silica glass

SiO2, which has resonances at λ = 8.75µm and λ = 21µm, or SiC [138], which has a resonance at λ = 10.5µm, as

shown in FIG. 12.

10. Conclusion
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Since we have seen that the Casimir force is derived from the Fresnel-Stokes amplitudes, the first step in order

to compute it is to obtain an accurate permittivity function describing the mirrors’s materials. We have seen how

the complex permittivity of a given material could be obtained either from tables of optical constants available in

literature [111, 112], or from specific models. These models can all be derived from equation (133), depending on the

material’s dissipation and number of oscillators or resonance frequencies. The one-oscillator Drude and plasma models

are used to describe metals, the one-oscillator Drude-Lorentz model is used to describe materials such as intrinsic Si

or SiC, and the two-oscillators Sellmeier model is used to describe transparent dielectrics such as SiO2 glass.

After a careful choice of the transverse wave vector in equation (215), we went on to define the Fresnel-Stokes

amplitudes for reflection and transmission coefficients of TE- and TM-polarized waves in equation (145-148). These

results were generalized through S-matrices and T -matrices in equations (149) and (151) for plane mirrors. Then

based on a violation of the unitary property of the S-matrix in equation (162), we derived a scattering formalism for the

quantum description of the fields within the Fabry-Pérot cavity. This was done by taking into account the additional

fluctuations associated with the noise lines coming from the absorption, and related to the contribution of evanescent

waves. To measure this anticommutation of the fields, we defined the Airy function in equation (173), which showed

that the fields commutators inside the cavity were not the same than those of the input and output fields.

We then established the Casimir force in equation (197) as a summation over all the modes, both evanescent and

propagative, contributing to the pressure from vacuum outside of the Fabry-Pérot cavity being greater than the pressure

inside, hence giving rise to an attractive force between the two plates. We saw how this pressure given in equation

(186-187) was derived from the quantum average of the Tzz Maxwell stress tensor in equation (182), with commutators

of the input and output fields within the cavity multiplied by the Airy function.

In order to find correct integration boundaries for these modes, and especially in order to perform an analytical

continuation over the frequencies of propagative waves (ω > c|k|) to those of evanescent waves (ω 6 c|k|), we had

then to substitute our Airy function by a function having well-defined analyticity properties : the property of causality

was formulated by equations (194-196), the property of stability by equation (198), and the property of passivity by

equation (199).

Finally we generalized the Casimir force to imaginary frequencies through the Cauchy theorem in equation (217),

and integrated to derive the Casimir energy in equations (220-221). All this formalism having been performed for

zero temperatures only, we derived in equation (231) the expression of the Casimir force for non-zero temperatures,

as a function of Matsubara frequencies. This is because the zero-point energy for non-zero temperatures is multiplied

by a factor (225) given by the mean number of photons per mode, according to Planck’s law (4). Then we spoke of

Derjaguin’s Proximity Approximation, and of its domain of validity for non-planar surfaces. Finally, we concluded

by a brief review of phonons, surface-plasmons, excitons, and their respective coupling with polaritons.



86

B. Casimir effect in non-planar geometries

1. The RCWA method and associated reflection matrix for gratings

In the previous section we have introduced the expression of the Casimir force between planar surfaces. The

expression of the force is derived from the quantum vacuum fluctuations which are at the origin of vacuum radiation

pressure. This pressure is expressed via the Maxwell stress tensor acting on the plates forming the Fabry-Pérot cavity.

In this formalism, the vacuum pressure was fully described by the Fresnel stokes amplitudes contained within

the cavity’s Airy function. This Airy function, and its associated open loop function fpk(ω) displaying well-defined

analyticity properties, could be written as a scalar function. Indeed the Casimir force acting on the plane mirrors

originates in simple specular reflection, which leaves polarizations and transverse wavevectors invariant.

From now on we will consider infinitely long, one-dimensional periodic gratings separated by a vacuum slit, as shown

on FIG. 30. One-dimensional implies the grating to be periodic in the x-direction and constant in the y-direction.

Their temperature is assumed to be zero. Furthermore we consider the gratings’ support to be bulks of infinite

thickness along the z−axis.

The geometrical parameters are the corrugation period d, the filling factor p, the groove depth a, the gap d1, the

gratings’ distance of separation L, and the lateral displacement δ along the x-axis.

As already mentioned, corrugated profiles are of importance to nanotechnological applications [54]. This especially

concerns nanoelectromechanical systems (NEMS) and microelectromechanical systems (MEMS) design (see FIG. 2),

as these devices are often subject to the problem of stiction [59, 139, 140] due to the Casimir force.

In the case of gratings, the expression of the Casimir force becomes more complex due to the fact that the scattering

of the electromagnetic field on the grating is non specular, meaning the reflection process couples different polarizations

and transverse wavevectors. From diffraction theory it is known that above and below the grooves, the solution for

the electromagnetic field is given by a Rayleigh expansion.

This leads to a number of coupled modes equal to 2N +1, which is the number of coefficients present in a Rayleigh

expansion for an incident monochromatic wave, as the longitudinal field components above the grating are written

as such an expansion. Following the procedure outlined in [28], we now derive the S-matrix associated with those

gratings according to the Rigorous Coupled-Wave Analysis (RCWA) method described in [85].
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FIG. 30: Main geometrical parameters of corrugated plates forming a Fabry-Pérot cavity : we denote by d the corrugation
period, p the filling factor (often expressed as a percentage of the period), a the groove depth, d1 the space between corrugation
ridges, L the separation distance of closest approach, δ the lateral translation along the x−axis of the plates before one another.
Note that the plates are extended to infinity in both the x− and y−direction.

Using the t− and y−invariance of the problem, we can consider the electric and magnetic fields only along the x

and z directions :

Ei(x, y, z, t) = Ei(x, z)e
i(kyy−ωt) (236)

Hi(x, y, z, t) = Hi(x, z)e
i(kyy−ωt) (237)

The mathematical advantage of considering infinite periodic nanogratings is that we can restrain ourselves in our

derivation of the Casimir energy to only one given period as the first Brillouin zone. Therefore we consider the wave

vector as confined to 0 < kx < 2π/d. We now need to find the longitudinal components outside the corrugated region

(z > a), and inside the transmitted region (z 6 0).

z > a :

Ey(x, z) = I(e)p ei(αpx−β(1)
p z) +

+∞∑

n=−∞

R(e)
np e

i(αnx+β(1)
n z) (238)

Hy(x, z) = I(h)p ei(αpx−β(1)
p z) +

+∞∑

n=−∞

R(h)
np e

i(αnx+β(1)
n z) (239)
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FIG. 31: Process of mode diffraction on (not to scale) gratings. After fixing an order of diffraction N so that both p, n ∈
[−N, ...,−2,−1, 0,+1,+2, ...,+N ], we consider for each incident mode p its associated n diffracted modes on the grating. Each

n diffracted mode is generated along a specific orientation given by its lateral component k
(n)
x = 2πn/d belonging to the

associated Brillouin zone, and by its amplitude being fixed at |k| = ω/c. This amplitude appears as the radius of the dashed
circle within each diffracted mode has an amplitude |k| < ω/c, and is thus propagative. When the diffracted modes exceed
this limit |k| > ω/c, they belong to the evanescent sector. This is illustrated by the dashed mode, corresponding to n = (−3).
Notice that a specular reflection may appear when the incident mode has an angle of incidence equal to the Bragg angle, in
which case the first diffracted mode n = (0) comes back in the same direction than the incident mode. The Casimir energy in
equation (296) is derived from an integration over all the modes components kx, kz, ω, within each Brillouin zone kx ∈ [0, 2π/d].

αp = kx +
2πp

d
and αn = kx +

2πn

d
(240)

β(1)2
p = ω2 − k2y − α2

p and β(1)2
n = ω2 − k2y − α2

n (241)

β(2)2
n = ω2ǫµ− k2z − α2

n (242)

where p is an integer. For each incident mode p we consider n ∈ {2N + 1} diffracted modes, where 2N + 1 is the

number of Rayleigh coefficients, as shown on FIG. 31. For n = 0, specular diffraction reflection is recovered. Below

the grating the field obeys the following expansion :

z 6 0 :

Ey(x, z) =

+∞∑

n=−∞

T (e)
np e

i(αnx−β(2)
n z) (243)
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Hy(x, z) =

+∞∑

n=−∞

T (h)
np e

i(αnx−β(2)
n z) (244)

Ip, Rnp, Tnp are the incidence, reflection, and transmission matrices respectively, all of dimension 2N + 1.

The sums are performed over all integers n. By symmetry, the other field components of the electric and magnetic

fields can each be expressed through the z-components of both fields. For example, we have :

Ex =
iky
κ2

∂xEy +
iω

κ2
∂zHy (245)

Hx =
iky
κ2

∂xHy +
iωǫ

κ2
∂zEy (246)

κ2 =
ǫω2

c2
− k2y (247)

We now need to calculate the reflection coefficients Rnp associated with these rectangular gratings. First, we must

rewrite the Maxwell equations inside the corrugated region 0 < z < a through a set of first-order differential equations

:

∂zF = MF (248)

for F⊤ = (Ey, Ex, Hy, Hx) and M a constant square matrix of dimension 8N + 4. The solution of the fields is then

of the form :

F(z) = eMzF(0) (249)

From now on, our strategy will be to write the fields inside the grating in this form, and match them by continuity

relations for each Ey, Hy, Ex, Hx, with our previous equations at boundary z = a for z > a, and at boundary z = 0

for z 6 0. Eventually we will find solutions written in terms of transmission matrices Tnp, which we will rewrite in

terms of the wanted reflection matrices Rnp through the continuity relations at z = a.

We start by writing the four continuity relations for z = 0, and the other four for z = a, and match them with the

solutions to Maxwell’s equation. The electromagnetic field inside the corrugation region 0 < z 6 a can be written as :

Ey =
∑

n

Sey
n (z)eiαnx (250)

Ex =
∑

n

Sex
n (z)eiαnx (251)
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Hy =
∑

n

Shy
n (z)eiαnx (252)

Hx =
∑

n

Shx
n (z)eiαnx (253)

We then find the quantities {Sey
n (0), Sex

n (0), S
hy
n (0), Shx

n (0)} by applying the following boundary conditions at z = 0

:

Continuity of Ey at z = 0 :

Sey
n (0) = T (e)

np (254)

Continuity of Ex at z = 0 :

Sex
n (0) = −αn

ky
κ2
T (e)
np +

ω

κ2
β(2)
n T (h)

np (255)

Continuity of Hy at z = 0 :

Shy
n (0) = T (h)

np (256)

Continuity of Hx at z = 0 :

Shx
n (0) = −αn

ky
κ2
T (h)
np − ǫω

κ2
β(2)
n T (e)

np (257)

Likewise, we can use equations (250-253) to find {Sey
n (a), Sex

n (a), S
hy
n (a), Shx

n (a)} by applying the boundary condi-

tions at z = a. The continuity of Ey at z = a can be written :

∑

n

Sey
n (z)eiαnx

∣∣∣∣
z=a

=

(
I(e)p ei(αpx−β(1)

p z) +
∑

n

R(e)
np e

i(αnx+β(1)
n z)

)∣∣∣∣∣
z=a

(258)

which implies that for n = p we have S
ey
p (a) = I

(e)
p e−iβ(1)

p a + R
(e)
pp e

iβ(1)
p a, and for n 6= p we have S

ey
n (a) = R

(e)
np eiβ

(1)
n a.

This can be done in a similar way for Sex
n (a), S

hy
n (a), and Shx

n (a), so that after some calculations we get for κ20 =

ω2/c2 − k2z :

Continuity of Ey at z = a :

R(e)
np = e−iβ(1)

n a
(
Sey
n (a)− δnpI

(e)
p e−iβ(1)

p a
)

(259)

Continuity of Ex at z = a :
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Sex
n (a) = −ky

κ20

(
αnR

(e)
np e

iβ(1)
n a + δnpαpI

(e)
p e−iβ(1)

p a
)
− ω

κ20

(
β(1)
n R(h)

np e
iβ(1)

n a − δnpβ
(1)
p I(h)p e−iβ(1)

p a
)

(260)

Continuity of Hy at z = a :

R(h)
np = e−iβ(1)

n a
(
Shy
n (a)− δnpI

(h)
p e−iβ(1)

p a
)

(261)

Continuity of Hx at z = a :

Shx
n (a) = −ky

κ20

(
αnR

(h)
np e

iβ(1)
n a + δnpαpI

(h)
p e−iβ(1)

p a
)
− ω

κ20

(
β(1)
n R(e)

np e
iβ(1)

n a − δnpβ
(1)
p I(e)p e−iβ(1)

p a
)

(262)

We now come back to Maxwell’s equations (248), and write the l.h.s as :

∂zEy = iωHx +
kz

ωǫ(x)
(∂xHy − ikyHx) (263)

∂zEx = ∂x

(
∂xHy − ikyHx

iωǫ(x)

)
− iωHy (264)

∂zHy =
i

ω

(
k2y − ǫω2

)
Ex − ky

ω
∂xEy (265)

∂zHx = iωǫ(x)Ey + ∂x

(
ikyEx − ∂xEy

iω

)
(266)

Indeed, since the dielectric function ǫ(x) is periodic for a grating with period d, it can be written as a Fourier series

:

ǫ(x) =

N∑

m=−N

εme
2πimx/d and

1

ǫ(x)
=

N∑

m=−N

ε̃me
2πimx/d (267)

We can now substitute equations (250-253) into equations (263-266) in order to determine ∂zS
ey
n , ∂zS

ex
n , ∂zS

hy
n , ∂zS

hx
n .

We first derive ∂zS
ey
n . We use the permittivity expressions (267) together with equations (252-253), and substitute

those in equation (263). This gives :

∑

n

∂zS
ey
n (z)eiαnx =

∑

n

iωShx
n (z)eiαnx +

ky
ω

∑

m

ε̃me
2πimx/d

(∑
n′iαn′S

hy

n′ (z)e
iαn′x − iky

∑
n′Shx

n′ (z)e
iαn′x

)
(268)
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Then we can take the series index n′ = n−m and compare it with the n-th coefficient of the sum. Proceeding in a

similar way for ∂zS
ex
n , ∂zS

hy
n , and ∂zS

hx
n , we find :

∂zS
ey
n = iωShx

n (z)− iky
ω

∑

m

ε̃m

(
kyS

hx

n−m − αn−mS
hy

n−m

)
(269)

∂zS
ex
n =

iαn

ω

∑

m

ε̃m

(
−kyShx

n−m + αn−mS
hy

n−m

)
− iωShy

n (270)

∂zS
hy
n =

ik2y
ω
Sex
n − iω

∑

m

εmS
ex
n−m − iky

ω
αnS

ey
n (271)

∂zS
hx
n =

iαn

ω
(kyS

ex
n − αnS

ey
n ) + iω

∑

m

εmS
ey
n−m (272)

These four expressions form together the vector ∂zF from the l.h.s of equation (248), which is of dimension 8N +4.

For a fixed n = m+ n′, it can be written as :

∂zF =




∂zS
(n,1)

∂zS
(n,2)

∂zS
(n,3)

∂zS
(n,4)

...




=




iωδn,n′S(n′,4)(z)− iky

ω ε̃n−n′

(
kyS

(n′,4) − αn′S(n′,3)
)

iαn

ω ε̃n−n′

(
−kyS(n′,4) + αn′S(n′,3)

)
− iωδn,n′S(n′,3)

ik2
y

ω δn, n′
(
kyS

(n′,2) − αn′S(n′,1)
)
− iωεn−n′S(n′,2)

iαn

ω δn, n′
(
kyS

(n′,2) − αn′S(n′,1)
)
+ iωεn−n′S(n′,1)




(273)

which is to be matched with the r.h.s of equation (248) :

MF =




M (n,1;n′,1) M (n,1;n′,2) M (n,1;n′,3) M (n,1;n′,4) M (n,1;n′+1,1) · · ·
M (n,2;n′,1) M (n,2;n′,2) M (n,2;n′,3) M (n,2;n′,4)

M (n,3;n′,1) M (n,3;n′,2) M (n,3;n′,3) M (n,3;n′,4)

M (n,4;n′,1) M (n,4;n′,2) M (n,4;n′,3) M (n,4;n′,4)

M (n+1,1;n′,1)

...
...

. . .







S(n′,1)

S(n′,2)

S(n′,3)

S(n′,4)

S(n′+1,1)

...




(274)

Here we have used the following notation : ey, ex, hy, hx are now denoted by the index j = 1, 2, 3, 4, respectively, so

that each element is now associated with l = (n, j).

We now see that our next logical step is to determine the matrix M. First off, each element i of the product MF

above can be obtained through the sum
∑

kMikFk, where the sum over the components of F is
∑

n′

∑4
j=1. For
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example we can calculate the first component of MF for a fixed n as :

(MF)
(n,1)

=
∑

n′

(
M (n,1;n′,1)S(n′,1)

+M (n,1;n′,2)S(n′,2)

+M (n,1;n′,3)S(n′,3)

+M (n,1;n′,4)S(n′,4)
)

(275)

Therefore by identification with the first element of ∂F/∂z in equation (273), we find :

M (n,1;n′,1) = 0 (276)

M (n,1;n′,2) = 0 (277)

M (n,1;n′,3) =
iky
ω
ε̃n−n′αn′ (278)

M (n,1;n′,4) = iωδn, n′ − ik2y
ω
ε̃n−n′ (279)

Proceeding likewise for the other elements, we eventually find the matrix M of dimension 8N + 4 :

M(n,n′) =




0 0
iky

ω ε̃n−n′αn′ iωδn,n′ − ik2
y

ω ε̃n−n′

0 0 i
ωαnαn′ ε̃n−n′ − iωδn,n′ − iky

ω αnε̃n−n′

− iky

ω αn′δn,n′ −iωε̃n−n′ +
ik2

y

ω δn,n′ 0 0

iωε̃n−n′ − iα2
n′

ω δn,n′
iky

ω αn′δn,n′ 0 0




(280)

It is convenient to label each row and column as 4(i−1)+ j, for i ∈ [1, ..., 2N ] and j ∈ [1, 2, 3, 4]. Now that we have

established M, we can find the solution F(z) to our differential equation (249), with F(0) now obtained through the

continuity conditions at z = 0 :

F(0) =




T
(e)
np

−αn
ky

κ2T
(e)
np + ω

κ2 β
(2)
n T

(h)
np

T
(h)
np

−αn
ky

κ2T
(h)
np − ωǫ

κ2 β
(2)
n T

(e)
np


 (281)

Our goal being to obtain the reflection matrices, let us now determine the continuity conditions at z = a through

equation (249) now written as :

F(a) = eMaF(0) (282)

The l.h.s has been obtained through the continuity conditions at z = a from equations (254-257), and the r.h.s by

identification with the matrix elements. These two are hence respectively given by :
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F(a) =




S
ey
n (a)
Sex
n (a)

S
hy
n (a)
Shx
n (a)


 (283)

and

Fnj(a) =
∑

n′,j′

(
eMa

)
n,j;n′,j′

Fn′,j′(0) (284)

At this point, we must take into account the two polarizations independently. For example, for electric waves

(Hy = 0) we take I
(h)
p = 0 and I

(e)
p = 1 so that F(a) becomes :

F(a) =




R
(e,e)
np eiβ

(1)
n a + δnpe

−iβ(1)
p a

−ky

κ2
0

(
αnR

(e,e)
np eiβ

(1)
n a + δnpαpe

−iβ(1)
p a
)
− ω

κ2
0
β
(1)
n R

(h,e)
np eiβ

(1)
n a

R
(h,e)
np eiβ

(1)
n a

−ky

κ2
0
αnR

(h,e)
np eiβ

(1)
n a + ω

κ2
0

(
β
(1)
n R

(e,e)
np eiβ

(1)
n a − δnpβ

(1)
p e−iβ(1)

p a
)




(285)

Notice that we changed our notation of the reflection matrices Rnp, so that they now have two indices in their super-

script. The first index refers to the polarization of the reflected field (which for a diffraction process on nanogratings

can either be e or h), and the second index refers to the incident field (e in our above equation).

We now enter into the final step of our calculations to determine the reflection matrices, which we do by rewriting

the vectors F(0) and F(a) such as :

F(a) = TX + Z and F(0) = SX for X =




Re
np

Rh
np

T e
np

Th
np
...




(286)

Hence the solutions can conveniently be expressed asX =
(
eMaS − T

)
Z. The vector Z, which is variable-independent,

contains the polarization of incident waves. Therefore it characterizes the two different solutions for e−waves and

h−waves, respectively :

X
(
I(e)p = 1, I(h)p = 0

)
=



R

(e,e)
np

R
(h,e)
np

...


 and X

(
I(h)p = 1, I(e)p = 0

)
=



R

(e,h)
np

R
(h,h)
np

...


 (287)

As already said, because the fields Ey and Hz are not decoupled for ky 6= 0, we obtain our final solution :
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R1(ω) =

(
R

(e,e)
np = R

(e)
n1q1(I

(e)
p = δpq1 , I

(h)
p = 0) R

(e,h)
np = R

(e)
n2q2(I

(e)
p = 0, I

(h)
p = δpq2)

R
(h,e)
np = R

(e)
n3q3(I

(e)
p = δpq3 , I

(h)
p = 0) R

(h,h)
np = R

(e)
n4q4(I

(e)
p = 0, I

(h)
p = δpq4)

)
(288)

This is the reflection matrix R1down for the reflection of a downward wave from the lower grating along the z−axis.

We can likewise determine the reflection matrix R2up for the reflection of an upward wave from the upper grating, by

performing a change of variable z = −z′ + L in equations (238-239).

Notice that we can laterally displace the two gratings with respect to another along the x−axis. This is specified

by the parameter δ, as shown in FIG. 30, and practically done by another similar change of variable x = x′ − δ, with

δ smaller than the corrugation period d. Then the upper grating will be laterally shifted by δ = ∆x. This allows us

to probe the lateral Casimir force, which comes from the periodic variations of the normal Casimir force when the

two gratings are laterally shifted with respect to one another. This lateral force is also at the origin of a torque so

that the gratings are rotated parallely around the z-axis.

Applied to radiative heat transfer, which is calculated from a scattering formalism also, this lateral shift of the two

gratings with δ will allow us to modulate the flux with δ, and eventually specify a thermal modulator for nanosystems

in section IXC.

2. The Casimir energy for periodic gratings

In order to obtain the Casimir energy, we will first need to determine the eigenfrequencies of all stationary solutions

of the generalized diffraction problem of all the subsequent diffraction processes on the two gratings. For this we use

Cauchy’s argument principle :

1

2iπ

∮
ψ(ω)

d

dω
ln f(ω)dω =

∑
ψ(ω0)−

∑
ψ(ω∞) (289)

where ω0 are zeros, ω∞ are poles of f(ω) within the contour of integration, and degenerate eigenvalues are summed

according to their multiplicities. In the case of the Casimir energy, we have ψ(ω) = ℏω/2, and the equation of

eigenfrequencies for the associated problem from classical electrodynamics is f(ω) = 0. Let us first stretch the

procedure for the simple case of a planar Fabry-Pérot cavity. In this case, this equation writes in the following way

for TE-modes :

f(ω) = 1− r1TE(ω)r1TEup(ω) = 0 (290)
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FIG. 32: Absolute value of the Casimir energy between two corrugated plates of gold (dashed yellow curve) and two corrugated
plates of intrinsic silicon (dashed blue curve), as a function of their separation distance L. This is compared with the respective
plane-plane results from FIG. 22 for these two materials (solid yellow curve for gold, and solid blue curve for intrinsic silicon).
The gratings have a period d = 100nm, groove depth a = 50nm, and filling factor p = 50%.

The two reflection coefficients correspond respectively to a downward plane wave reflecting on the lower grating, and

to an upward plane wave reflecting on the upper grating.

If we now denote r2TE(ω) the reflection coefficient of a downward TE-mode reflected on the upper plate now located

at z < 0, we can use Maxwell’s equations to find r2TEup(ω) = r2TE(ω)exp(2ikzL). Writing the associated relations

for the TM-modes together with equation (289-290), we can use the argument principle and recover Lifshitz formula.

Coming back to the gratings configuration, for an eigenvector Ψi describing a given normal mode of frequency ωi,

we can then use the equation for normal modes :

R1(ωi)R2up(ωi)Ψi = Ψi (291)

Then through this expression, we obtain instead of equation (290) the following condition for eigenfrequencies :

det[I −R1(ω)R2up(ω)] = 0 (292)

In the case where the two gratings are aligned with respect to one another (δ = 0), we can define a matrix equivalent

of the factor of propagation within the cavity e−κ0L from the plane-plane case :

K(iω) =

(
G 0
0 G

)
(293)
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G = diag
[
exp

(
−L
√
ω2 + k2y + [kx + (2mπ/d)]2

)]
and m = −N, . . . ,+N (294)

Then we can write :

R2up(iω) = K(iω)R2(iω)K(iω) (295)
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FIG. 33: Convergence with diffraction order N of the value of the integrand of the Casimir energy from equation (296). This is
for gratings of intrinsic silicon with period d = 400nm, groove depth a = 100nm, filling factor p = 50%, and separation distance
L = 200nm. We took here a specific mode with kx = kz = 0 and λ = 2.51µm, which hence lies in the propagative sector.

The solution of equation (292) for each kx and ky gives the possible eigenfrequencies ωi of the solutions of Maxwell’s

equations. These in turn must be replaced within the definition of the Casimir energy E =
∑

i ℏωi/2. One must

ensure that these solutions vanish when z goes to infinity.

Eventually, we can sum over these eigenfrequencies by using the argument principle from equation (289). We then

obtain the expression of the Casimir energy between two parallel gratings for the first Brillouin zone, of width equal

to 2πd :

E =
ℏcd

8π3

∫ ∞

0

dω

∫

R

dky

∫ 2π/d

0

dkx ln det[I −R1(iω)K(iω)R2(iω)K(iω)] (296)

Note that since for a given invertible matrix A, we have the following property [141] :

∂

∂z
(ln detA) = Tr

(
A′A−1

)
= Tr

(
A−1A′

)
(297)

we can also write the expression of the Casimir force from equation (296) above as a trace of the associated integrand.
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In FIG. 32, we show the absolute value of the Casimir energy as a function of separation distance between two

corrugated plates of gold, and two corrugated plates of intrinsic silicon. We also compare it with the plane-plane

cases for these two materials. One can see the strong increase with shorter distances for both plane and non-plane

geometries, and especially at fixed distance, the greater Casimir energy for the plane-plane case than for the grating-

grating case. Notice also the greater energy associated with gold plates, compared to intrinsic silicon plates. This

is a general characteristic of metals compared to dielectrics, which have a smaller skin depth so that they are highly

reflective, especially at small frequencies.

The order of diffraction N will determine the span of the parameter m in equation (293) and hence the dimension

of the matrices K and R, since these are of dimension 4N + 2. When performing numerical computations of the

Casimir energy, the results of which will be presented in section VII, it is crucial to first ensure its convergence with

diffraction order and hence to wisely choose N . We show in FIG. 33 the results of such a convergence in N for gratings

of intrinsic silicon.

Also, each diffracted mode is integrated over its wavevector and frequency components within the first Brillouin zone,

so that there is no overlap in the integration from one mode to another. Since the Casimir energy is fundamentally

a near-field energy, it is by far the normal modes n = (0) that have the largest contribution to the total value of the

energy (this can be seen by how close the scattering results are to the Proximity Approximation). Nevertheless there

is also an important contribution coming from the lateral modes, which are the modes with larger kx components.

As shown on FIG. 34, these appear for instance when we subtract the total mode contribution associated with non-

shifted gratings (where the contribution of the normal modes is maximum due to the near-field contribution of the

corrugation tops) to the one associated with gratings that are shifted by half a period. This is practically done by

subtracting the integrand of equation (296) at δ = 0 and at δ = d/2.

3. The Casimir energy for arbitrary periodic gratings

We may now generalize the scattering formalism between rectangular gratings to gratings of arbitrary periodic

profiles. This can be achieved by modeling the arbitrary profiles as stacks of K horizontal rectangular slices. The

difference in the analytical expression of the Casimir energy then appears in the distance between the grating ridges

d1, which will now depend on y, such as shown on FIG. 35.
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FIG. 34: Difference of the integrand of equation (296) at δ = 0 and at δ = d/2, showing the contribution of the lateral modes
when the gratings are shifted by half a period. The components of the modes have been summed over a grid of values of kz
for each value of ω and kx. The components kx are here presented within half a Brillouin zone [0, π/d], and the components ky
are of course set to zero by grating symmetry. This is for gratings of intrinsic silicon Si with period d = 500 nm, filling factor
p = 50%, corrugation depth a = 500 nm, and separated by a distance L = 25 nm.
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FIG. 35: Arbitrary gratings geometry and parameters in the approximation of vertical stacks of rectangular slices (here for
K = 4).

For each slice (i), the spacing between the corrugation ridges is d
(i)
1 , and the scattering formalism for rectangular

corrugations can be applied. More specifically, a differential equation akin to equation (248) :

∂yF = M(i)F (298)

can be solved within each slice (i) to relate the fields at boundary y = i a
K and y = (i+ 1) a

K .
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FIG. 36: Dependence of the Casimir energy to the number of slices K for the case of sawtooth gratings, with L = 100 nm,
d = 400 nm, a = 50 nm, and d1(y) = 4y + 200.

In a similar way to the case K = 1 above, the field at y = a is thus related to the field at y = 0 via the relation :

F(a) =

[
1∏

i=K

eM
(i) a

K

]
F(0) (299)

where the product
∏

runs from i = K to i = 1, in that order. The greater the number of slices K, the greater the

fitting of the gratings’ shape will be, and thus the accuracy of the overall model. This convergence in K is shown

in Fig. 36 for given profiles shaped as sawteeth (see section VII E), with a separation distance L = 100 nm, grating

period d = 400 nm, corrugation depth a = 50 nm, and distance between ridges d1(y) = 4y + 200.

Hence a correct parametrization of the quantity d1 as a function of y allows one to generate arbitrary symmetric

profiles for the corrugations.

It is sometimes also useful to compare the results of the scattering theory for arbitrary periodic gratings with

predictions from Derjaguin’s Proximity Approximation [131].

As explained in section VIA8, the Proximity Approximation comes from the weighted sum of the planar normal

contributions EPP(L) depending on the local separation distances L within each period, and hence on the lateral

displacement δ between the gratings. If we express the shapes of the arbitrary periodic gratings in an analytical form

such as y = f(x, δ) for the lower grating and y = L+2a− f(x, δ = 0) for the upper grating in the xy-plane shown on

Fig. 35, we can define the function h(x, δ) = L+2a− f(x, δ = 0)− f(x, δ) expressing the local distance of separation

between the two profiles, as a function of x and δ.

Dividing the period d in a number η → ∞ of intervals of individual widths d/η → 0, we obtain a general expression
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of the Casimir energy in the Proximity Approximation for arbitrary gratings as a function of the lateral shift δ :

EPFA(L, δ) =
1

d

∫ d

0

EPP (h(x, δ)) dx =
1

η

η∑

i=1

EPP

(
L = h

(
x = i

d

η
, δ

))
(300)

When compared to the scattering results outlined in the previous section, equation (300) above will allow us to

explore the contribution of the lateral modes compared to the normal modes. We will see this in more details in

section VII.

C. Out-of-thermal equilibrium phenomena

1. The Casimir energy for periodic gratings

In the previous section we have derived the Casimir energy for corrugated plates at zero temperature. Earlier in

section VIA7, we have also considered the Casimir energy at thermal equilibrium, where the two mirrors have the

same non-zero temperature, which was given as a sum over the Matsubara frequencies. We now consider two gratings

out-of-thermal equilibrium, each with a different temperature, with the aim to obtain an expression of the Casimir

force. There exists more than eleven different ways to derive the expression of the Casimir force [142–144]. However

we will here focus on the derivation of the Casimir force through the exact method of scattering theory. We can hence

use our earlier scattering results of the reflection and transmission matrices developed for gratings. We will consider

the general case as applied to gratings but this formalism can be applied to the simpler case of planar surfaces by

considering the scattering matrices as scalars.

Based on [61, 145], we consider a Fabry-Pérot cavity made of two bulks of infinite surface and width along the

z−axis. Our aim is to determine the correlators of the field inside the cavity, based on Rytov’s theory [146]. Because

the field fluctuations have a local polarization, the two mirrors radiate independently from each other. This means that

when stationary, each mirror’s radiation is the same as if it were placed in thermal equilibrium with its environment,

the other mirror being absent.

This allows us to obtain the expression of the cavity field firstly by deriving the radiation of one plate at thermal

equilibrium with its environment, and then secondly by considering these scattered independent contributions. We use
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the same geometrical parameters and spatial coordinates than in FIG. 30. We will work with real positive frequencies

ω, and consider the electric field E(t, r) only, the magnetic field H(t, r) being obtained through Maxwell’s equations.

In the cavity, E(t, r) can be expressed as a sum of plane-wave contributions of amplitudes b :

E
(±)
α,k⊥

(t, r) = 2Re
[
b
(±)
α,k⊥

E(±)
α,k⊥

(ω, r)e−iωt
]

(301)

for

E(±)
α,k⊥

(ω, r) ≡ e
(±)
α,k⊥

(ω)eik
(±)·r (302)

We identify here (+) and (−) with the direction of propagation of the modes along the z−axis in the positive

and negative directions, respectively, and α = s, p with the TE and TM polarizations, respectively. We have k(±) =

k⊥ ± kz ẑ with again an important condition on kz :

kz =
√
ω2/c2 − k2⊥ for − π

2
< arg kz 6 +

π

2
(303)

Notice that the restriction is done so that in the case where kz is a pure imaginary number, the negative part of

the imaginary axis is excluded. This said, we set :

e
(±)
s,k⊥

(ω) = ẑ× k̂⊥ (304)

e
(±)
p,k⊥

(ω) =
c

ω
k(±) × e

(±)
s,k⊥

(305)

As usual, for real kz and k⊥ < ω/c we have propagative waves, and for imaginary kz and k⊥ > ω/c we have

evanescent waves.

We will also use a roman index i to denote both the position r and the ith component of a vector, and a greek

index ρ to denote both the wave vector k⊥ and the polarization α. So for example E(±)
α,k⊥

(ω, r) ⇔ E(±)
iρ (ω).

Because of the periodicity of the corrugations, we can defined k⊥ through two integers nx and ny such as kx =

2πnx/Lx and ky = 2πny/Ly, where Lx and Ly are the lateral lengths of the plates, each plate having an area

A = LxLy. Then we define the following notations for a given kernel Xα,k⊥;α′,k′
⊥(ω) = Xρ,ρ′(ω) :

∑

ω

≡
∫
dω

2π
and

∑

ρ

≡ 1

A
∑

nx,ny

∑

ρ

(306)

δω,ω′ ≡ 2πδ(ω − ω′) and δρ,ρ′ ≡ Aδnx,n′
x
δny,n′

y
δρ,ρ′ (307)
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TrρX =
∑

ρ

Xρ;ρ′ ≡ 1

A
∑

nx,ny

∑

α

Xα,k⊥;α′,k′
⊥ (308)

Then we can derive the expression of the field radiated by a single grating at thermal equilibrium with its environ-

ment, and in the absence of the second grating. Let’s denote our two plates by index A = (1), (2), and EA
i (ω) the

time Fourier transform of the field radiated by plate A.

The total radiation field Eeq,A
i (ω) existing inside of the cavity when each plate is individually considered as in

equilibrium with the environment at temperature TA is equal to the sum of each plate’s individual radiation EA
i (ω), of

the environment radiation (which includes both the fluctuations of vacuum as well as the Stefan-Boltzmann radiation)

suffered by each plate from the cavity Eenv,A
i (ω), and of the ensuing scattered radiation Escat,A

i (ω) :

Eeq,A
i (ω) = EA

i (ω) + Eenv,A
i (ω) + Escat,A

i (ω) (309)

We can expand these three fields as :

EA
i (ω) =

∑

ρ

E(±)
iρ (ω)bAρ (ω) (310)

Eenv,A
i (ω) =

∑

ρ

E(∓)
iρ (ω)benvρ (ω) (311)

Escat,A
i (ω) =

∑

ρ,ρ′

E(±)
iρ (ω)SA

ρ,ρ′(ω)benvρ′ (ω) (312)

The upper sign in the superscript of E corresponds to plate (1), and the lower sign to plate (2). The S-matrix of

plate A for the field coming onto it from the cavity is given by SA
ρ,ρ′ . In general, SA

ρ,ρ′ depends on the position xA of

some fixed reference point ΩA selected on plate A. Then for S̃A
ρ,ρ′ the S-matrix of plate A related to the coordinate

system with origin at ΩA, we have :

SA
ρ,ρ′ = e−ik(±)·xA

S̃A
ρ,ρ′eik

′(∓)·xA

(313)

Now we can expand the indices and the ± amplitudes of the total equilibrium field for γ, γ′ = ±, such as :

beq,Aα,− (k⊥, ω) = benv,Aα (k⊥, ω) (314)

beq,Aα,+ (k⊥, ω) = bscat,Aα (k⊥, ω) + brad,Aα (k⊥, ω) (315)
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where benv,Aα,γ (k⊥, ω) represents the environment radiation suffered by A, bscat,Aα (k⊥, ω) the corresponding scattered

radiation, and brad,Aα (k⊥, ω) is the field radiated by A. In the general case, these three radiations have positive and

negative contributions, but here we deal with one infinite body so that they simplify to the form expressed in equations

(314-315).

In an equilibrium situation, it is usually of no interest to calculate the individual contributions to beq,Aα,γ (k⊥, ω), but

here we consider such an equilibrium situation for the sake of obtaining the radiated contribution brad,Aα (k⊥, ω).

From equations (314-315), we see that :

∑

γ,γ′

〈beq,Aα,γ (k⊥, ω)b
eq,A †
α,γ′ (k⊥, ω

′)〉 = 〈brad,Aα (k⊥, ω)b
rad,A †
α (k⊥, ω

′)〉+ 8 terms (316)

where the “8 terms” represent all the other possible correlations involving the r.h.s of equations (314-315). If we

assume that the environment is not coupled to the field radiated by the body, we then have :

〈benv,Aα (k⊥, ω)b
rad,A †
α′ (k′

⊥, ω
′)〉 = 〈bscat,Aα (k⊥, ω)b

rad,A †
α′ (k′

⊥, ω
′)〉 = 0 (317)

and so, by isolating the radiative part and using the previous equation we can rewrite equation (316) such as :

〈brad,Aα (k⊥, ω)b
rad,A †
α (k⊥, ω

′)〉 = 〈beq,Aα,γ (k⊥, ω)b
eq,A †
α,γ′ (k⊥, ω

′)〉

−〈benv,Aα (k⊥, ω)b
env,A †
α (k⊥, ω

′)〉

−〈bscat,Aα (k⊥, ω)b
scat,A †
α (k⊥, ω

′)〉

−〈benv,Aα (k⊥, ω)b
scat,A †
α (k⊥, ω

′) + c.c.〉 (318)

where from now on we implicitly use the summation in γ, γ′. Now we can define the amplitudes b
(env)
α (ω) of the

environment radiation by the well-known correlators given by the second term of equation (318) above, which is just

the free-field result :

〈benvρ (ω)benv∗ρ′ (ω′)〉 = 2πω

c2
F (ω, TA)Re

(
1

kz

)
δωω′δρρ′ (319)

for

F (ω, T ) =
ℏω

2
coth

(
ℏω

2kBT

)
(320)
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Then by defining the projection operators :

Πpw
α,α′(k⊥,k

′
⊥) =

1 + sα
2

δk⊥,k′
⊥
δα,α′ (321)

Πew
α,α′(k⊥,k

′
⊥) = i

1− sα
2

δk⊥,k′
⊥
δα,α′ (322)

where sα = sgn[k2z ] = sgn[ω2/c2 − k2
⊥], we can expand again and rewrite equation (319) such as :

〈benv,Aα (k⊥, ω)b
env,A †
α′ (k′

⊥, ω
′)〉 = 2πω

c2kz
F (ω, T )δ(ω − ω′)Πpw

α,α′(k⊥,k
′
⊥). (323)

The correlations involving the scattered field can be written in terms of the scattering matrix SA associated with

the medium :

〈bscat,Aα (k⊥, ω)b
env,A †
α′ (k′

⊥, ω
′)〉 = 2πω

c2
F (ω, TA)δ(ω − ω′)

∑

k′′
⊥,α′′

Sα,α′′

A (k⊥,k
′′
⊥, ω)

1

k′′z
Πpw

α′′,α′(k
′′
⊥,k

′
⊥) (324)

〈bscat,Aα (k⊥, ω)b
scat,A †
α (k′

⊥, ω
′)〉 = 2πω

c2
F (ω, TA)δ(ω − ω′) (325)

×
∑

k′′
⊥,α′′

∑

k′′′
⊥ ,α′′′

Sα,α′

A (k⊥,k
′′
⊥)

1

k′′z
Πpw

α,α′(k
′′
⊥,k

′′′
⊥ )(S†

A)
α′′′,α′

(k′′′
⊥ ,k

′
⊥)

where we define SA through the relation :

bscat,Aα (k⊥, ω) =
∑

k′
⊥,α′

Sα,α′

A (k⊥,k
′
⊥, ω)b

env,A
α′ (k′

⊥, ω) (326)

We must now find the first term on the r.h.s of equation (318).

First, we can notice that the amplitudes E(r, ω) obey the fluctuation-dissipation theorem, so that we have the

following relations :

〈Eα(r, ω)E†
α′(r

′, ω′)〉 = 2

ω
F (ω, TA)δ(ω − ω′)ImG(r, r′, ω) (327)

where G(r, r′, ω) is the Green function in the cavity associated with the interface with plate A. By expanding both

sides in their transverse Fourier components, we obtain :
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〈beq,Aj (k⊥, ω)b
eq,A †
j (k′

⊥, ω)〉 =
2

ω
F (ω, TA)δ(ω − ω′)ImG(k⊥,k

′
⊥, ω) (328)

The Green function can then be given in terms of the scattering matrix in the following way. First let’s recall that

in the absence of any radiated field from the plate, we have by using equation (326) :

bA = benv,A + bscat,A = benv,A + SAb
env,A (329)

where we did not write the arguments in ω for sake of simplicity. Then by comparing this expression to the iterative

solution of the Lipmann-Schwinger equation :

bA = benv,A −G0TAb
env,A (330)

for TA the so-called T-operator [147] associated with plate A, we see that SA = −G0(ω)TA. Therefore :

G = G0 −G0TAG
0 = G0 + SAG

0 = G0 +GA (331)

where in the last equation we defined Gscat. The retarded Fourier-transformed Green function in free-space is then

written :

G0(k⊥,k
′
⊥, ω) =

2πiω2

c2
1

k′z
δk⊥,k′

⊥
δα,α′ (332)

where from now on kz =
√
ω2/c2 − k2

⊥, so that kz is no longer defined by equation (303)). From equation (331),

we then obtain the retarded dyadic Green function associated with mirror A, from equation (79) :

GA(k⊥,k
′
⊥, ω) =

2πiω2

c2

∑

k′′
⊥,α′′

Sα,α′′

A (k⊥,k
′′
⊥)δk′′

⊥,k′
⊥
δα′′,α′

1

k′z
(333)

We can expand the indices and rewrite equation (327) as :

〈Eeq,A
i (ω)Eeq,A∗

i′ (ω′)〉 = 2

ω
F (ω, TA)δωω′ImGA

ii′(ω) (334)

The dyadic retarded Green function GA
ii′(ω) can then be written in terms of SA

ρρ′ for each mirror’s interface with

the cavity, as a function of the retarded Green function in free space G0
ii′(ω) :
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GA
ii′(ω) = G

(0)
ii′ (ω) +

2iπω2

c2

∑

ρ,ρ′

E(±)
iρ SA

ρρ′E(∓)
J(i′)ρ′

1

k′z
(335)

for

G0
ii′(ω) =

2iπω2

c2

∑

ρ

1

kz

[
θ(z − z′)E(+)

iρ E(+)
J(i′)ρ + θ(z′ − z)E(−)

iρ E(−)
J(i′)ρ

]
(336)

where θ(z) ≡ [θ(z) = 1 for z > 0, θ(z) = 0 for z < 0] is the Heaviside function, and J is the inversion operator :

J(i) ≡ J(i, r) = (i,−r) (337)

J(ρ) ≡ J(α,k⊥) = (α,−k⊥) (338)

J((±)) ≡ (∓) (339)

Then we can define :

sα ≡ sgn(ω2/c2 − k2⊥) (340)

so that we have :

E(±)∗
iρ = E(±)

J(i)ρ

1 + sα
2

+ E(∓)
J(i)ρ

1− sα
2

(341)

E(±)
J(i)J(ρ) = (−1)P (α)E(∓)

iρ (342)

with P (α) = 1 for TE modes, and 0 for TM modes. Then microscopic reversibility implies that GA
ii′(ω) = GA

i′i(ω),

and together with equation (335) gives the Onsager’s reciprocity relations, which we already saw in equation (16) of

Section VA2, for any S-matrix :

SA
ρρ′ =

k′z
kz

(−1)P (α)+P (α′)SA
J(ρ′)J(ρ) (343)

Then we can replace the expression of Eeq,A
i (ω) given in equations (309-312) into the l.h.s of equation (334), and

replace the expression of GA
ii′(ω) given in equation (335) into the r.h.s of equation (334). Then using equations (319)

and (341-343), we can find the non-vanishing correlators of bAρ (ω).

In order to do so, the expressions (332-333) may be rewritten with the help of the following projections operators :

[
1

kz
Πpw

α,α′(k⊥,k
′
⊥)

]†
=

1

kz
Πpw

α,α′(k⊥,k
′
⊥) (344)
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[
1

kz
Πew

α,α′(k⊥,k
′
⊥)

]†
= − 1

kz
Πew

α,α′(k⊥,k
′
⊥) (345)

and by defining Σ
pw/ew
−1 through the relations :

[
Σ

pw/ew
−1 (k⊥,k

′
⊥)
]

α,α′
=

1

kz
Π

pw/ew
α,α′ (k⊥,k

′
⊥) (346)

we then can write our dyadic Green functions :

ImG0(k⊥,k
′
⊥, ω) =

2πω2

c2
Re
[
Σpw

α,α′(k⊥,k
′
⊥) + Σew

α,α′(k⊥,k
′
⊥)
]
=

2πω2

c2
Σpw

α,α′(k⊥,k
′
⊥) (347)

ImGA(k⊥,k
′
⊥, ω) =

2πω2

c2
Re

∑

k′′
⊥,α′′

Sα,α′′

A (k⊥,k
′′
⊥)
[
Σpw

α′′,α′(k
′′
⊥,k

′
⊥) + Σew

α′′,α′(k′′
⊥,k

′
⊥)
]

(348)

=
2πω2

c2

∑

k′′
⊥,α′′

1

2

{
Sα,α′′

A (k⊥,k
′′
⊥)Σ

pw
α′′,α′(k

′′
⊥,k

′
⊥) + Σpw

α′′,α′
†
(k′′

⊥,k
′
⊥)S

α,α′′

A

†
(k⊥,k

′′
⊥) + (pw ↔ ew)

}

where we used the fact that the first term in equation (347) is real, and the second term is purely imaginary. Finally,

we can replace directly equations (347) and (348) into equation (328), so that we get :

〈beq,Aα (k⊥, ω)b
eq,A †
α′ (k′

⊥, ω
′)〉= 2

2πω

c2
F (ω, TA)δ(ω − ω′)

{
1

kz
Πpw

α,α′(k⊥,k
′
⊥) +

1

2

∑

k′′
⊥,α′′

Sα,α′′

A (k⊥,k
′′
⊥, ω)

[
1

k′′z
Πpw

α′′,α′(k
′′
⊥,k

′
⊥) +

1

k′′z
Πew

α′′,α′(k′′
⊥,k

′
⊥)

]
+ h.c.

}
, (349)

A direct substitution of equations (324-325), (327) and (349) into equation (318) finally gives :

〈brad,Aα (k⊥, ω)b
rad,A †
α′ (k′

⊥, ω
′)〉= 2πω

c2
F (ω, TA)δ(ω − ω′)

{
1

kz
Πpw

α,α′(k⊥,k
′
⊥)

+
∑

k′′
⊥,α′′

[
Sα,α′′

A (k⊥,k
′′
⊥, ω)

1

k′′z
Πew

α′′,α′(k′′
⊥,k

′
⊥)−

1

k′′z
Πew

α′′,α′(k′′
⊥,k

′
⊥)S

A †
α,α′′(k⊥,k

′′
⊥, ω)

−
∑

k′′′
⊥ ,α′′′

SA
α,α′′(k⊥,k

′′
⊥, ω)

1

k′′z
Πpw

α′′,α′′′(k
′′
⊥,k

′′′
⊥ )(S†

A)
α′′′,α′

(k′′′
⊥ ,k

′
⊥, ω)






 (350)

By contracting the indices using the product of operators, we can hence rewrite equation (350) as :
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〈brad,Aα (k⊥, ω)b
rad,A †
α′ (k′

⊥, ω
′)〉 = 2πω

c2
F (ω, TA)δ(ω − ω′)

[
Σ

pw
−1 − SAΣ

pw
−1S

†
A + SAΣ

ew
−1 −Σew

−1S
†
A

]

k⊥,k′
⊥,α,α′

(351)

Now that we obtained the correlation function for one plate, we can proceed to the two-plates calculation.

This expression of the non-vanishing correlators of bAρ (ω) can also be rewritten :

〈bA(ω)bB†(ω′)〉 = δAB
2πω

c2
F (ω, TA)δωω′ ×

(
Σpw

−1 − SAΣpw
−1S

A† + SAΣew
−1 − Σew

−1S
A†
)

(352)

for bA(ω) the column vector made out of the amplitudes bAρ (ω). Now let’s rewrite the projectors on the propagative

and evanescent sectors from equations (344-345), respectively as :

Σpw
n = knzΠ

pw for Πpw
ρρ′ = δρρ′

1 + sα
2

(353)

Σew
n = knzΠ

ew for Πew
ρρ′ = δρρ′

1− sα
2

(354)

The non-vanishing correlators of the amplitudes bAρ (ω) are a generalization of Kirchoff’s law that we saw in equation

(309) to non-planar geometries. One can say that the flux coming from plate A is fully defined by the associated

scattering matrix SA.

This said, we are in a position to now derive the field within the cavity, as a superposition of waves :

Eiρ(ω) = b(+)
ρ (ω)E(+)

iρ (ω) + b(−)
ρ (ω)E(−)

iρ (ω) (355)

Now the field within the cavity arises from the scattering coming from each of the two plates’ emitted radiation,

and the amplitudes b(±)(ω) are thus defined by :

b(+) = b(1) + S(1)b(−) = U(12)b(1) + S(1)U(21)b(2) (356)

b(−) = b(2) + S(2)b(+) = U(21)b(2) + S(2)U(12)b(1) (357)

For

UAB =
(
1− SASB

)−1
(358)
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This operational form can also be expanded in indices and written :

bα,+(k⊥, ω) = brad,Aα (k⊥, ω) +
∑

k′
⊥,α′

Sα,α′

A (k⊥,k
′
⊥)bα′,−(k

′
⊥, ω) (359)

bα,−(k⊥, ω) = brad,Bα (k⊥, ω) +
∑

k′
⊥,α′

Sα,α′

B (k⊥,k
′
⊥)bα′,+(k

′
⊥, ω), (360)

Since 〈bAbA †〉 and 〈bBbB †〉 are given by equation (351), and if we assume that the radiation coming from the two

different bodies is uncorrelated, so that 〈bAbB †〉 = 〈bBbA †〉 = 0, we can then calculate 〈bγb†γ′〉. After some algebra,

we get :

〈b+(ω)b†+(ω′)〉= 2πω

c2
δ(ω − ω′)

{
F (ω, TA)UAB

[
Σ

pw
−1 − SAΣ

pw
−1S

†
A + SAΣ

ew
−1 −Σew

−1S
†
A

]
U

†
AB

+F (ω, TB)SAUBA

[
Σ

pw
−1 − SBΣ

pw
−1S

†
B + SBΣ

ew
−1 −Σew

−1S
†
B

]
U

†
BAS

†
A

}
(361)

〈b+(ω)b†−(ω′)〉= 2πω

c2
δ(ω − ω′)

{
F (ω, TA)UAB

[
Σ

pw
−1 − SAΣ

pw
−1S

†
A + SAΣ

ew
−1 −Σew

−1S
†
A

]
U

†
ABS

†
B

+F (ω, TB)SAUBA

[
Σ

pw
−1 − SBΣ

pw
−1S

†
B + SBΣ

ew
−1 −Σew

−1S
†
B

]
U

†
BA

}
(362)

〈b−(ω)b†+(ω′)〉= 2πω

c2
δ(ω − ω′)

{
F (ω, TA)SBUAB

[
Σ

pw
−1 − SAΣ

pw
−1S

†
A + SAΣ

ew
−1 −Σew

−1S
†
A

]
U

†
AB

+F (ω, TB)UAB

[
Σ

pw
−1 − SBΣ

pw
−1S

†
B + SBΣ

ew
−1 −Σew

−1S
†
B

]
U

†
BAS

†
A

}
(363)

〈b−(ω)b†−(ω′)〉= 2πω

c2
δ(ω − ω′)

{
F (ω, TA)SBUAB

[
Σ

pw
−1 − SAΣ

pw
−1S

†
A + SAΣ

ew
−1 −Σew

−1S
†
A

]
U

†
ABS

†
B

+F (ω, TB)UBA

[
Σ

pw
−1 − SBΣ

pw
−1S

†
B + SBΣ

ew
−1 −Σew

−1S
†
B

]
U

†
BA

}
(364)

It is then straightforward to derive 〈bradα,γ(k⊥, ω)b
rad, †
α,γ′ (k′

⊥, ω
′)〉. The two equations (356-357) along with equation

(352) fully define the field within the cavity, which is given by the matrix C(KK′) of the non-vanishing correlators :

〈b(K)(ω)b(K
′)†(ω′)〉 = δωω′C(KK′) (365)
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where C(KK′) can be written in terms of the S-matrices S(1) and S(2) by using equations (356-357) together with

equation (352).

We can now determine the average of any observables constructed from the field within the cavity. We will here be

interested in the vacuum pressure so as to estimate the Casimir force out-of-thermal equilibrium, but we will see that

we can also use this same formalism to determine other observables such as the flux, and hence obtain the radiative

heat transfer between the plates. These observables are symmetric bilinears of the electric field, and of the form :

χ ≡
∑

ij

∫
d2r⊥

∫
d2r′⊥Ei(t, r)χij(r, r

′)Ej(t, r
′) (366)

for χij(r, r
′) = χji(r

′, r). Now if we define the following matrix :

χ
(KK′)
ρ,ρ′ =

∑

ij

∫
d2r⊥

∫
d2r′⊥E(K)∗

iρ (ω, r)χij(r, r
′)E(K′)

jρ′ (ω, r′) (367)

we can obtain the statistical average of χ :

〈χ〉 = 2
∑

ω>0

∑

K,K′

Trρ

[
C(KK′)χ(K′K)

]
(368)

Let’s now compute the Casimir force by considering the xy−integral of the zz components of the Maxwell stress

tensor Tij . We can find :

χ(KK′) [Tzz] =
c2k2z
4πω2

(
δKK′Πpw + δKJ(K′)Π

ew
)

(369)

Substituting this in equation (368), we obtain the unrenormalized expression of the Casimir force out-of-thermal

equilibrium F
(0neq)
z :

F (0neq)
z =

∑

ω>0

1

ω

[
F (ω, T1)J(S

(1),S(2)) + F (ω, T2)J(S
(2),S(1))

]
(370)

for :

J(SA,SB) = Trρ( UAB
(
Σ

pw
−1 − SAΣ

pw
−1S

A† + SAΣew
−1 −Σew

−1S
A†
)

(371)

· UAB†
(
Σ

pw
2 + SB†Σ

pw
2 SB + SB†Σew

2 +Σew
2 SB

)
) (372)

Now we can add and subtract
(
F (ω, T1)J(S

(2),S(1)) + F (ω, T2)J(S
(1),S(2))

)
/2 from the expression inside of the

square brackets of equation (370). Then we can find :
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F (0neq)
z (T1, T2) =

1

2
F (0eq)
z (T1) +

1

2
F (0eq)
z (T2) +

1

2
∆F (neq)

z (T1, T2) (373)

Here we have used the following expressions :

F (0eq)
z =

∑

ω>0

1

ω
F (ω, T )

[
J(S(1),S(2) + J(S(2),S(1))

]
(374)

∆F (neq)
z (T1, T2) =

∑

ω>0

1

ω
(F (ω, T1)− F (ω, T2))

[
J(S(1),S(2))− J(S(2),S(1))

]
(375)

= ℏ

∑

ω>0

[n(ω, T1)− n(ω, T2)]
[
J(S(1),S(2))− J(S(2),S(1))

]
(376)

for

F (ω, T ) = ℏω

[
1

2
+ n(ω, T )

]
with n(ω, T ) =

[
exp

(
ℏω

kBT

)
− 1

]−1

(377)

where we have already defined the function F (ω, T ) in equation (320) and n(ω, T ) earlier in equation (225). If we

then replace equation (372) in the r.h.s of equation (374), find after some algebra :

F (0eq)
z (T ) = R(0)(T ) + F (eq)

z (T ) for R(0)(T ) = 2
∑

ω>0

F (ω, T )

ω
Trρ [kzΠ

pw] (378)

Now the divergent quantity R(0) contains a temperature-dependent contribution giving rise to a pressure which is

independent of the distance of separation. This pressure depends on the environment outside of the cavity, but not

on the geometry nor on the permittivity of the gratings materials [71]. Since R(0) neither depends on the materials’

permittivity, nor on the separation distance, we can neglect it.

Concerning the second term in equation (378) corresponding to the renormalized part, we can write it as :

F (eq)
z (T ) = 2Re

∑

ω>0

F (ω, T )

ω
Trρ

[
kz

(
U(12)S(1)S(2) +U(21)S(2)S(1)

)]
(379)

Based on equation (313) and using F
(eq)
z = ∂F (a, T )/∂a, we can readily check that F

(eq)
z (T ) has an associated free

energy :

F (a, T ) = 2Im
∑

ω>0

F (ω, T )

ω
Trρ log

[
1− S(1)S(2)

]
(380)
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This is none other that the scattering expression of the Casimir force at thermal equilibrium which was hinted in

equations (233) and (296), and is well documented in literature [28, 29, 148]. Notice however that it is here expressed

in terms of real frequencies.

Putting all these results together in equation (373), we finally obtain the now normalized scattering expression of

the Casimir force out-of-thermal equilibrium :

F (neq)
z (T1, T2) =

1

2
F (eq)
z (T1) +

1

2
F (eq)
z (T2) +

1

2
∆F (neq)

z (T1, T2) (381)

Notice again that this expression is for real frequencies only. This matters greatly in the numerical computation

of the force, because the associated integrand in equation (379) oscillates and is difficult to integrate. One could

use again a contour integration and Cauchy’s theorem, but the cavity integrand should again obey the analyticity

properties explained earlier in section VIA5, which is far from trivial.

Notice also the important property of ∆F
(neq)
z (T1, T2), already seen in equation (376), that it vanishes for two mirrors

having the same S-matrices. This implies that two gratings made out of the same materials and same geometries will

have a zero non-equilibrium force contribution, but that two gratings made out of the same material with different

corrugation depths for example will not. Of course, in the case T1 = T2, this contribution vanishes [61, 71].

In the general case where the two equilibrium F
(eq)
z (T ) and non-equilibrium ∆F

(neq)
z (T1, T2) terms of the total

Casimir force are computed separately, one should also be careful with the order in which the two plates are labeled

A = 1, 2.

We can replace in equation (381) the scattering matrices between gratings that we have already derived in section

VIB 1 through the RCWA method, and thus calculate the out-of-thermal equilibrium Casimir force between gratings,

or we can set these S-matrices as diagonal matrices formed by the scalar Fresnel-Stokes amplitudes and hence obtain

that same force for the plane-plane case.
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2. Near-field radiative heat transfer for periodic gratings

Based on [61, 145], we now build on our earlier formalism developed in Section VIB 3, where we derived the

correlation function 〈bradα,γ(k⊥, ω)b
rad, †
α,γ′ (k′

⊥, ω
′)〉 through equations (361-364). By obtaining the statistical average of

any observables constructed out of the intracavity field in equation (368), and applying it to the Maxwell stress tensor

Tij , we could then derive the expression of the Casimir force out-of-thermal equilibrium within the cavity.

We now use a similar approach. Still considering the radiative heat transfer between two infinite corrugated plates

A = (1), (2), and using the same geometrical parameters and spatial coordinates than in FIG. 30, we assume these

plates to be parallel to one another and kept at respective temperatures T1, T2. The general expression for the heat

flux can be written [149] :

HF(T1, T2) =
c

4π

∫

A

dA · 〈E×H〉 (382)

where we assume the average to be at thermal equilibrium. The fact that we did not write equation (382) in a

symmetric form and that E and H in general do not commute does not change our problem for now. We can then

write the electric field E in the frequency domain :

E(r, t) =

∫ ∞

0

dω
[
Ẽ(r, ω)e−iωt + Ẽ†(r, ω)eiωt

]
(383)

Using Faraday’s law from equation (89), we can rewrite H in terms of E :

HF(T1, T2) =
ic

4π

∫

A

dA ·
∫
dω
dω′

ω′
{〈−Ẽ × (∇× Ẽ ′)e−i(ω+ω′)t + Ẽ × (∇× Ẽ ′†)e−i(ω−ω′)t〉 − c.c.} (384)

Now for j, j′ = 1, 2, 3 we have :

〈Ẽj(ω)Ẽj′(ω′)〉 ∼ 〈Ẽ†
j (ω)Ẽ†

j′(ω
′)〉 = 0 (385)

〈Ẽj(ω)Ẽ†
j′(ω

′)〉 ∼ 〈Ẽ†
j (ω)Ẽj′(ω′)〉 ∼ δ(ω − ω′) (386)

Taking now the surface A as an xy−plane separating the two plates, we can write :

HF(T1, T2, a) =
ic2

4πω

∫
dr⊥

∫
dω

ω
{〈Ẽj∂z Ẽ†

j − Ẽj∂j Ẽ†
z 〉 − c.c.}. (387)
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We will now show that the contribution coming from the second term vanishes. We have :

ic2

4πω

∫
dr⊥

∫
dω

ω
〈Ẽj∂j Ẽ†

z 〉=
1

4π

∑

j,γγ′




∑

k⊥,k′
⊥<ω≥0

c2

ω
kγ

′

j

∫
dr⊥〈bj,γ(k⊥, ω)b

†
j,γ′(k

′
⊥, ω)〉ei(k⊥−k′

⊥)·r⊥+i(γkz−γ′k′
z)z + c.c.

+
∑

k⊥>ω≥0

∑

k′
⊥>ω≥0

c2

ω
k̃γ

′

j

∫
dr⊥〈bj,γ(k⊥, ω)b

†
j,γ′(k

′
⊥, ω)〉ei(k⊥−k′

⊥)·r⊥−(γkz+γ′k′
z)z + c.c.

+
∑

k⊥>ω≥0

∑

k′
⊥<ω′≥0

...+
∑

k⊥<ω≥0

∑

k′
⊥>ω′≥0

...


 (388)

ic2

4πω

∫
dr⊥

∫
dω

ω
〈Ẽj∂j Ẽ†

z 〉 =
1

4π

∑

j,γγ′



∑

k⊥<ω≥0

∑

k′
⊥<ω′≥0

c2

ω
kγ

′

j δk⊥,k′
⊥
〈bj,γ(k⊥, ω)b

†
j,γ′(k

′
⊥, ω)〉ei(γkz−γ′k′

z)z + c.c.

+
∑

k⊥>ω≥0

∑

k′
⊥>ω≥0

c2

ω
k̃γ

′

j δk⊥,k′
⊥
〈bj,γ(k⊥, ω)b

†
j′(k

′
⊥, ω)〉e−(γkz+γ′k′

z)z + c.c.


 (389)

ic2

4πω

∫
dr⊥

∫
dω

ω
〈Ẽj∂j Ẽ†

z 〉 =
1

4π

∑

j,γγ′



∑

k⊥<ω≥0

c2kγ
′

j

ω
〈bj,γ(k⊥, ω)b

†
j,γ′(k⊥, ω)〉ei(γ−γ)kzz + c.c.

+
∑

k⊥>ω≥0

c2k̃γ
′

j

ω
〈bj,γ(k⊥, ω)b

†
j,γ′(k⊥, ω)〉e−(γ+γ′)kzz + c.c.


 (390)

where :

kγx,y = k⊥ and kγz = γkz (391)

But the Gauss law in vacuum from equation (91) gives :

∇ ·E(r, t) =
∑

ω,k⊥,γ

kγj bj,γ(k⊥, ω)e
ik⊥·r⊥+iγkzz−iωt = 0 (392)

and has to hold for any r within the cavity. Therefore :

kγj bj,γ(k⊥, ω) = 0 (393)

from which we find that equation (390) vanishes. Therefore we can write equation (387) as :

HF(T1, T2, a) =
ic2

4πω

∫
dr⊥

∫
dω

ω
{〈Ẽj∂z Ẽ†

j − c.c.} (394)
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Notice that we can write this decomposition as a sum only if the surfaces are transversally periodic, as depicted in

FIG. 30. For non-periodic gratings, we have to replace the sums by integrals.

Hence expanding the field in its transverse Fourier components, we can write :

Ẽj(r, ω) =
∑

k⊥

bj,±(k⊥, ω)e
ik⊥·r⊥±ikzz =

∑

k⊥<ω

bj,±(k⊥, ω)e
ik⊥·r⊥±ikzz +

∑

k⊥>ω

bj,±(k⊥, ω)e
ik⊥·r⊥∓kzz

where the summation over ± is implicit. We can separate propagative and evanescent modes :

kz =





√
−k2

⊥ + ω2/c2 for k⊥ < ω/c

√
+k2

⊥ − ω2/c2 for k⊥ > ω/c

(395)

By substituting equation (395) into equation (383), and then into equation (387), we have :

HF(T1, T2, a) =
1

4π

∑

j,γγ′




∑

k⊥,k′
⊥<ω≥0

c2

ω
γ′k′z

∫
dr⊥〈bj,γ(k⊥, ω)b

†
j,γ′(k

′
⊥, ω)〉ei(k⊥−k′

⊥)·r⊥+i(γkz−γ′k′
z)z + c.c.

−
∑

k⊥>ω≥0

∑

k′
⊥>ω≥0

i
c2

ω
γ′k′z

∫
dr⊥〈bj,γ(k⊥, ω)b

†
j,γ′(k

′
⊥, ω)〉ei(k⊥−k′

⊥)·r⊥−(γkz+γ′k′
z)z + c.c.

+
∑

k⊥>ω≥0

∑

k′
⊥<ω′≥0

...+
∑

k⊥<ω≥0

∑

k′
⊥>ω′≥0

...




=
1

4π

∑

j,γγ′



∑

k⊥<ω≥0

∑

k′
⊥<ω′≥0

c2

ω
γ′k′zδk⊥,k′

⊥
〈bj,γ(k⊥, ω)b

†
j,γ′(k

′
⊥, ω)〉ei(γkz−γ′k′

z)z + c.c.

−
∑

k⊥>ω≥0

∑

k′
⊥>ω≥0

i
c2

ω
γ′k′zδk⊥,k′

⊥
〈bj,γ(k⊥, ω)b

†
j′(k

′
⊥, ω)〉e−(γkz+γ′k′

z)z + c.c.




=
1

4π

∑

j,γγ′



∑

k⊥<ω≥0

c2γ′k′z
ω

〈bj,γ(k⊥, ω)b
†
j,γ′(k⊥, ω)〉ei(γ−γ)kzz + c.c.

−
∑

k⊥>ω≥0

i
γ′c2k′z
ω

〈bj,γ(k⊥, ω)b
†
j,γ′(k⊥, ω)〉e−(γ+γ′)kzz + c.c.


 (396)

where γ, γ′ = ±. Now we know that :

〈bj,γ(k⊥, ω)b
†
j′,γ′(k⊥, ω)〉 ∼ 〈b†j,γ(k⊥, ω)bj′,γ′(k⊥, ω)〉 (397)
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where by “∼ ”, we mean that the difference of the two quantities above are (the zero-point contribution) does not

contribute to the heat flux.

Then by explicitly calculating the sums in γ, γ′ in equation (396), we see that only the γ = γ′ terms survive in the

propagative sector, and that only the γ 6= γ′ terms survive in the evanescent sector. Therefore equation (396) can be

written :

HF(T1, T2, a) =
2c2

4π



∑

k⊥<ω≥0

γ′kz
ω

δγ,γ′〈bj,γ(k⊥, ω)b
†
j,γ′(k⊥, ω)〉+

∑

k⊥>ω≥0

γ′kz
iω

δγ,−γ′〈bj,γ(k⊥, ω)b
†
j,γ′(k⊥, ω)〉


(398)

where we used Einstein’s summation convention for the Cartesian indices, and implicitly summed over γ, γ′ also.

Then if we denote the s, p polarization by indices α = 1, 2, and still use Einstein’s summation convention, we can

also write equation (398) in the polarization basis :

HF(T1, T2, a) =
2c2

4π



∑

k⊥<ω≥0

γ′kz
ω

δγ,γ′〈bα,γ(k⊥, ω)b
†
α,γ′(k⊥, ω)〉+

∑

k⊥>ω≥0

γ′kz
iω

δγ,−γ′〈bα,γ(k⊥, ω)b
†
α,γ′(k⊥, ω)〉


(399)

In principle, we should replace the total out-of-equilibrium electric field in the previous expression (399), but since

in practice we evaluate this equation within an equilibrium framework, we can divide the field in a part due to the

body radiation, and a part due to the environment and scattering radiations :

bα,γ(k⊥, ω) = bradα,γ(k⊥, ω) + bt−e
α,γ (k⊥, ω) (400)

And since the second part does not contribute to the the heat flux, we finally obtain :

HF(T1, T2, a) =
2c2

4π



∑

k⊥<ω≥0

γ′kz
ω

δγ,γ′〈bradα,γ(k⊥, ω)b
rad,†
α,γ′ (k⊥, ω)〉+

∑

k⊥>ω≥0

γ′kz
iω

δγ,−γ′〈bradα,γ(k⊥, ω)b
rad,†
α,γ′ (k⊥, ω)〉


(401)

Whereas the expression of the Casimir force was based on the statistical average of the xy−integral of the zz

components of the Maxwell stress-tensor Tij through equation (369), the radiative heat transfer is given by the

statistical average of the xy−integral of the z components of the Poynting vector Pi within the cavity. So we can

rewrite equation (401) by using the statistical average of χ derived in equation (368), and determine the power of

radiative heat transfer W between the plates. If we write :

χ(KK′) [Pz] =
c2kz
4πω

(−1)K
(
δKK′Πpw + δKJ(K′)Π

ew
)

(402)
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and replace this expression in equation (368), we find :

W =
∑

ω>0

[
F (ω, T1)H(S(1), S(2))− F (ω, T2)H(S(2), S(1))

]
(403)

for

H(SA, SB) ≡ Trα[ UAB
(
Σpw

−1 − SAΣpw
−1S

A† + SAΣew
−1 − Σew

−1S
A†
)

(404)

· UAB†
(
Σpw

1 − SB†Σpw
1 SB + SB†Σew

1 − Σew
1 SB

)
] (405)

After some lengthy algebra, one can verify the symmetry :

H(S(1), S(2)) = H(S(2), S(1)) (406)

Therefore we can rewrite equation (403) for the radiative heat transfer between the plates :

W = ℏ

∑

ω>0

ω [n(ω, T1)− n(ω, T2)]H(S(1), S(2)) (407)

where the operator F (ω, T ) is given in equation (320), UAB in equation (358), and the projection operators Σ
pw/ew
1

and Σ
pw/ew
−1 in equations (353-354).

Often we would rather work with the radiative heat transfer coefficient, which is the radiative heat transfer divided

by the temperature gradient :

h =
W

|T1 − T2|
(408)

This is again an exact formula, which is written through the symmetric operator H(S(1), S(2)) in the form of

S-matrices from scattering theory, describing the geometrical properties of the two plates as well as the materials’

properties. So we can replace in equation (407) the scattering matrices between gratings that we have already derived

in section VIB 1 through the RCWA method, and thus calculate the radiative heat transfer W between gratings, or

we can set these S-matrices as diagonal matrices formed by the scalar Fresnel-Stokes amplitudes and hence obtain

that same heat transfer for the plane-plane case.

Notice also that it is written for real frequencies. This matters greatly in the numerical computation of the force,

because the associated integrand from equation (405) oscillates and is difficult to integrate over the modes components
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FIG. 37: Heat transfer coefficients between two flat mirrors of SiO2 (blue curve) and of gold (yellow curve), for separation
distances ranging from L = 10nm to L = 1000nm. The permittivity of SiO2 comes from optical data in [111], and gold from
the Drude model in [70, 114]. The black body limit appears in dashed orange.

kx, kz, and ω. One could use again a contour integration and Cauchy’s theorem, but the cavity integrand should

again obey the analyticity properties explained earlier in section VIA5, which is not trivial.

In FIG. 37 we show the radiative heat transfer coefficients for planes of different materials, as a function of the

separation distance. We also show the black body limit from Stefan-Boltzmann’s law in σT 4 from equation (2), now

written between the two plates :

W = ǫσ
(
T 4
1 − T 4

2

)
(409)

for ǫ the emissivities of the plates. Now this is correct only for a material with emissivity ǫ facing another material

with emissivity 1. For two materials with emissivity ǫ, we find ǫ/(2 − ǫ) due to multiple reflections. Furthermore,

the integrated form yielding the T 4 dependence is only valid for non-dispersive materials, which is not the case for

gratings.
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VII. NUMERICAL EVALUATION : CASIMIR FOR ZERO TEMPERATURES

A. Casimir energy between planar surfaces

We start our study of the Casimir effect with the simplest case of two planar surfaces. In FIG. 38 and 39 we

show the variation of the Casimir energy and the Casimir force respectively, as functions of the separation distance

L between the plates, in the range L = 50 nm to 10µm. This is done for several dielectrics (intrinsic silicon Si and

silicon carbide SiC) and several metals (gold Au, aluminum Al, copper Cu, and tungsten W).

The purpose of these two plots is mainly to show that as expected the Casimir energy variation with distance L

is proportional to a factor ∼ 1/L3, and that the Casimir force variation with distance L is proportional to a factor

∼ 1/L4. This is a powerful empirical result, because it allows one to compute fairly accurately the Casimir energy or

force at any distance if its value is known at one given separation distance L.

Another interest of these two plots is that one can use them to manually compute the Proximity Approximation to

Casimir energy or force between gratings.
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FIG. 38: Log-log dependence of the Casimir energy with the separation distance L, for two planes of different materials. Intrinsic
silicon appears in blue, and is described by the Drude-Lorentz model [27, 117, 150] given in equation (137). SiC appears in
purple, and is described by the Drude-Lorentz model [65] given in equation (140). Gold appears in yellow, aluminum in gray,
copper in dashed orange, and tungsten in black. These four metals are described by a Drude model [70] given by equation
(135) and FIG. 11.
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FIG. 39: Log-log dependence of the Casimir force with the separation distance L, for two planes of different materials. Intrinsic
silicon appears in blue, and is described by the Drude-Lorentz model [27, 117, 150] given in equation (137). SiC appears in
purple, and is described by the Drude-Lorentz model [65] given in equation (140). Gold appears in yellow, aluminum in gray,
copper in dashed orange, and tungsten in black. These four metals are described by a Drude model [70] given by equation
(135) and FIG. 11.

B. Casimir energy between corrugated gratings

We now present systematic computations of the Casimir energy for different configurations of grating geometries

and materials. We vary the geometrical parameters along separation distance L, corrugation period d, filling factor p,

and corrugation depth a. We probe different materials : dielectrics first, with intrinsic silicon (Si) and silicon carbide

(SiC), and then metals : gold (Au), aluminum (Al), copper (Cu), and tungsten (W).

The reason for exploring the Casimir energy through these parameters of grating geometry and materials, is that

these are the only two given parameters that define the scattering matrices associated with each mirror. In other

words, the S-matrix associated with each grating is fully specified through the geometry of the corrugations and the

materials involved. The results shown here are based on the scattering theory described in Section II.2.1, with the

Casimir energy expressed by equation (296).

For application purposes, we will compare these exact results with the Proximity Approximation. This is motivated

by the fact that if one wants to obtain exact results for gratings (such as those presented here below through a
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scattering formalism), both the computation time and complexity are very involving for practical applications : an

approximation method such as the Proximity Approximation is therefore a natural choice for experimentalists and

the industry, and its domain of validity is therefore an interesting question. However one should keep in mind that

the main focus and results we present here are the scattering results : as exact computations, they provide valuable

sets of data for both experimental and other theoretical approaches to compare.

1. Casimir energy between corrugated gratings as a function of the separation distance L

In FIG. 40-43, we show the Casimir energy as a function of separation distance L between gratings of Si, SiC, Au,

and W, each with period d = 200 nm, filling factor p = 50%, and groove depth a = 100 nm. The results for these

different materials are compared with one another in FIG. 44, and with Al and Cu.

So based on the results of FIG. 40-44, we can make the following remarks :

• There is a clear correlation in FIG. 44 between the energy values of the different dielectrics, and between the

energy values of the different metals. Most notably, the Casimir energies for gold and copper are almost equal.

• This convergence between the Casimir energies of metals increases with larger distances. This is seen especially

in FIG. 44 with the energies of gold and tungsten.

• The Proximity Approximation is in general a good approximation for metals in the whole distance range consid-

ered. For dielectrics, the Proximity Approximation gives the correct result only in the distance limit L > 300 nm.

At short distances, relevant for experiments and nanotechnological applications, the Proximity Approximation

overestimates the Casimir energy by up to ∼ 35%, as shown on FIG. 40 and 41.
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FIG. 40: Log-log dependence of the Casimir energy with the separation distance L, for two gratings of intrinsic silicon described
by the Drude-Lorentz model [27, 117, 150] given in equation (137). This is for a grating period d = 200 nm, filling factor p = 50%,
and groove depth a = 100 nm. These scattering results are compared with the Proximity Approximation (dashed line).
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FIG. 41: Log-log dependence of the Casimir energy with the separation distance L, for two gratings of SiC described by the
Drude-Lorentz model [65] given in equation (140). This is for a grating period d = 200 nm, filling factor p = 50%, and groove
depth a = 100 nm. These scattering results are compared with the Proximity Approximation (dashed line).
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FIG. 42: Log-log dependence of the Casimir energy with the separation distance L, for two gratings of gold described by a
Drude model [70] given by equation (135) and FIG. 11. This is for a grating period d = 200 nm, filling factor p = 50%, and
groove depth a = 100 nm. These scattering results are compared with the Proximity Approximation (dashed line).
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FIG. 43: Log-log dependence of the Casimir energy with the separation distance L, for two gratings of tungsten described by
a Drude model [116] given by equation (135) and FIG. 11. This is for a grating period d = 200 nm, filling factor p = 50%, and
groove depth a = 100 nm. These scattering results are compared with the Proximity Approximation (dashed line).
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FIG. 44: Log-log dependence of the Casimir energy with the separation distance L, for two gratings of different materials with
grating period d = 200 nm, filling factor p = 50%, and groove depth a = 100 nm. Intrinsic silicon appears in blue, and is
described by the Drude-Lorentz model [27, 117, 150] given in equation (137). SiC appears in purple, and is described by the
Drude-Lorentz model [65] given in equation (140). Gold appears in yellow, aluminum in gray, copper in dashed orange, and
tungsten in black. These four metals are described by a Drude model [70] given by equation (135) and FIG. 11.
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2. Casimir energy between corrugated gratings as a function of the grating period d

In FIG. 45-48, we show the Casimir energy as a function of the grating period d between gratings of Si, SiC, Au,

Al, Cu, and W, each with filling factor p = 50%, groove depth a = 100 nm, and at a separation distance L = 200 nm.

The results for these different materials are compared in FIG. 48.

Based on the results of FIG. 45-48, we can make the following remarks :

• The Casimir energy decreases abruptly when d varies from 0 to 500 nm, and then the slope varies softly for

greater periods.

• This variation of the Casimir energy for greater grating periods changes from dielectrics, where it is increasing,

to metals, where it is decreasing.

• Notice the constant values of the Proximity Approximation, due to its expression as the weighted sum of the

local planar contributions of the gratings : changing the period and keeping a constant filling factor does not

change the weight of each contribution, and hence not the total value of the Proximity Approximation.

• Therefore the Proximity Approximation is not accurate for dielectrics and for metals with period d < 500 nm

for the geometrical parameters given above. This due to the known domain of validity of the Proximity Ap-

proximation, when L≪ a, d. Conversely, in the range of periods beyond 500 nm, the Proximity Approximation

works well for metals. This is because the fundamental nature of the Proximity Approximation is that its

accuracy increases with shorter distances : it is a near-field approximation. So materials such as metals which

are more reflective than dielectrics will tend to magnify this near-field dependency (as seen on FIG. 44), and the

Proximity Approximation will in general tend to describe the Casimir energy associated to them better than

for dielectrics.

• As a side note, the RCWA formalism used here to compute the Casimir energy shows a sign of weakness in the

sense that it is accurate up to a convergence of diffraction order n only. This diffraction order is not sensitive

for gratings with a > d, but becomes predominant in the total value of the energy when a < d. This is due to

the fact that in these configurations, the modes with larger kx/kz ratios begin to contribute strongly.

• Nevertheless, we can gain confidence in the validity of our results by noticing that regardless of the material

chosen, the short end of the curve where d < a = 100 nm smoothly connects with the rest of the curve where

d > a = 100 nm.

• The modes that have a wavelengths above the grating period do not enter the corrugations trenches and therefore

the problem of diffraction is practically non-existent for the scattering of these modes. The Casimir energy, which

is derived as a sum over all the modes within each Brillouin zone, is hence well described by an effective media

approximation [151] for d→ ∞, and by a plane-plane case at d→ 0.
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FIG. 45: Casimir energy as a function of the grating period d, for two gratings of intrinsic silicon described by the Drude-
Lorentz model [27, 117, 150] given in equation (137). This is for a grating filling factor p = 50%, groove depth a = 100 nm, and
separation distance L = 200 nm. These scattering results are compared with the Proximity Approximation (dashed curve).
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FIG. 46: Casimir energy as a function of the grating period d, for two gratings of SiC described by the Drude-Lorentz model [65]
given in equation (140). This is for a grating filling factor p = 50%, groove depth a = 100 nm, and separation distance L = 200
nm. These scattering results are compared with the Proximity Approximation (dashed curve).
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FIG. 47: Log-log dependence of the Casimir energy with the grating period d, for two gratings of different metals with filling
factor p = 50%, groove depth a = 100 nm, and separation distance L = 200 nm. Gold appears in yellow, aluminum in gray,
copper in dashed orange, and tungsten in black. These four metals are described by a Drude model [70] given by equation
(135) and FIG. 11.
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FIG. 48: Log-log dependence of the Casimir energy with the grating period d, for two gratings of different materials with filling
factor p = 50%, groove depth a = 100 nm, and separation distance L = 200 nm. Intrinsic silicon appears in blue, and is
described by the Drude-Lorentz model [27, 117, 150] given in equation (137). SiC appears in purple, and is described by the
Drude-Lorentz model [65] given in equation (140). Gold appears in yellow, aluminum in gray, copper in dashed orange, and
tungsten in black. These four metals are described by a Drude model [70] given by equation (135) and FIG. 11.
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3. Casimir energy between corrugated gratings as a function of the filling factor p

In FIG. 49-54, we show the Casimir energy as a function of the grating filling factor p between gratings of Si, SiC,

Au, Al, Cu, and W, each with grating period d = 200 nm, groove depth a = 100 nm, and at a separation distance

L = 200 nm. The results for these different materials are compared in FIG. 55.

Based on this comparison, we can make the following remarks :

• At both extremities, p = 0% and p = 100%, we rejoin the case of two flat mirrors of separation distances

L + 2a = 400 nm and L = 200 nm, respectively. This is why the Proximity Approximation and the scattering

results are exactly the same at these points, regardless of the material.

• The main result here is that the variation of the filling factor p from 0 to 100% can be approximated, regardless

of the material involved, by a straight line joining these two extremities at p = 0% and p = 100%. This is a

useful result because these two points are basically computed from the trivial plane-plane case at the respective

separation distances L + 2a = 400 nm and L = 200 nm. Nevertheless, this is just a rule of thumb, as some

filling factors (such as p = 70% for Si, or p = 10% for metals) display a ∼ 20% mismatch between the Proximity

Approximation and the scattering results.

• Larger filling factors for dielectrics increase the difference in the values of the scattering and Proximity Approx-

imation results —albeit this is clearly less pronounced for the SiC.

• The Proximity Approximation always majors the scattering results of the dielectrics, and minors the scattering

results of the metals.
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FIG. 49: Casimir energy as a function of the grating filling factor p, for two gratings of intrinsic silicon described by the
Drude-Lorentz model [27, 117, 150] given in equation (137). This is for a grating period d = 200 nm, groove depth a = 100
nm, and separation distance L = 200 nm. These scattering results are compared with the Proximity Approximation (dashed
curve).
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FIG. 50: Casimir energy as a function of the grating filling factor p, for two gratings of SiC described by the Drude-Lorentz
model [65] given in equation (140). This is for a grating period d = 200 nm, groove depth a = 100 nm, and separation distance
L = 200 nm. These scattering results are compared with the Proximity Approximation (dashed curve).
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FIG. 51: Casimir energy as a function of the grating filling factor p, for two gratings of gold described by a Drude model [70]
given by equation (135) and FIG. 11. This is for a grating period d = 200 nm, groove depth a = 100 nm, and separation
distance L = 200 nm. These scattering results are compared with the Proximity Approximation (dashed curve).
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FIG. 52: Casimir energy as a function of the grating filling factor p, for two gratings of aluminum described by a Drude
model [152] given by equation (135) and FIG. 11. This is for a grating period d = 200 nm, groove depth a = 100 nm, and
separation distance L = 200 nm. These scattering results are compared with the Proximity Approximation (dashed curve).
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FIG. 53: Casimir energy as a function of the grating filling factor p, for two gratings of copper described by a Drude model [152]
given by equation (135) and FIG. 11. This is for a grating period d = 200 nm, groove depth a = 100 nm, and separation
distance L = 200 nm. These scattering results are compared with the Proximity Approximation (dashed curve).
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FIG. 54: Casimir energy as a function of the grating filling factor p, for two gratings of tungsten described by a Drude
model [116] given by equation (135) and FIG. 11. This is for a grating period d = 200 nm, groove depth a = 100 nm, and
separation distance L = 200 nm. These scattering results are compared with the Proximity Approximation (dashed curve).
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FIG. 55: Log-log dependence of the Casimir energy with the grating filling factor p, for two gratings of different materials with
period d = 200 nm, groove depth a = 100 nm, and separation distance L = 200 nm. Intrinsic silicon appears in blue, and is
described by the Drude-Lorentz model [27, 117, 150] given in equation (137). SiC appears in purple, and is described by the
Drude-Lorentz model [65] given in equation (140). Gold appears in yellow, aluminum in gray, copper in dashed orange, and
tungsten in black. These four metals are described by a Drude model [70] given by equation (135) and FIG. 11.



134

4. Casimir energy between corrugated gratings as a function of the corrugation depth a

In FIG. 56-57, we show the Casimir energy as a function of the grating groove depth a between gratings of Si, and

Au, each with grating period d = 200 nm, filling factor p = 50%, and at a separation distance L = 200 nm. The

results for these different materials are compared in FIG. 58 together with SiC, Al, Cu, and W.

By comparing the different figures we may make the following observations :

• There is a convergence of the Casimir energy values to a constant for deeper grooves. This is due to the fact that

the bottom of each groove becomes increasingly distant from the other grating with increasing groove depth a,

and hence contributes less in a measure following the 1/L3 law seen in FIG. 44.

• In the range of depths here considered, we observe an increasing divergence between the scattering and Proximity

Approximation values of the deeper grooves for dielectrics, but a an increasing convergence between the two for

metals. Nevertheless it may be logical for much deeper trenches to recover a convergence between scattering

and Proximity Approximation results, since most of the energy contribution should come from near-field by the

top of the corrugation ridges.

• At a = 0 nm, we recover the plane-plane values of separation distances L = 200 nm. This explains the accuracy

of the Proximity Approximation in the neighborhood of this point.

• Since the Proximity Approximation considers the normal modes only, its divergence from the scattering results

in the range 50 < a < 250 nm for metals is an indicator of the importance of the contribution of the lateral

modes in this region. Notice how this range of groove depths is correlated with the ratio a/d.
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FIG. 56: Casimir energy as a function of the grating groove depth a, for two gratings of intrinsic silicon described by the
Drude-Lorentz model [27, 117, 150] given in equation (137). This is for a grating period d = 200 nm, filling factor p = 50%, and
separation distance L = 200 nm. These scattering results are compared with the Proximity Approximation (dashed curve).
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FIG. 57: Casimir energy as a function of the grating groove depth a, for two gratings of gold described by a Drude model [70]
given by equation (135) and FIG. 11. This is for a grating period d = 200 nm, filling factor p = 50%, and separation distance
L = 200 nm. These scattering results are compared with the Proximity Approximation (dashed curve).
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FIG. 58: Dependence of the Casimir energy with the grating groove depth a, for two gratings of different materials with grating
period d = 200 nm, filling factor p = 50%, and separation distance L = 200 nm. Intrinsic silicon appears in blue, and is
described by the Drude-Lorentz model [27, 117, 150] given in equation (137). SiC appears in purple, and is described by the
Drude-Lorentz model [65] given in equation (140). Gold appears in yellow, aluminum in gray, copper in dashed orange, and
tungsten in black. These four metals are described by a Drude model [70] given by equation (135) and FIG. 11.
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5. Casimir energy between corrugated gratings as a function of the lateral displacement δ

In FIG. 59-60, we show the Casimir energy as a function of the lateral displacement δ/d between gratings of SiC,

and W, each with a grating period d = 200 nm, filling factor p = 50%, corrugation depth a = 100 nm, and at a

separation distance L = 200 nm. We interpolated with nearly perfect accuracy the results with a well-parametrized

sinusoid reflecting the periodic nature of the energy variation with lateral shift along the x−axis. On FIG. 61, we

compared these results together with profiles of Si, Au, Al, and Cu.

Based on the results of FIG. 59-61, we can make the following remarks :

• The variations of the Casimir energy with the shift δ are confined within an extremely narrow band. The width

of this band does not exceed ∼ 0.2% of the energy, regardless of the material considered. Nevertheless we could

expect the width of this band to increase for larger ratios of a/L.

• At this separation distance of L = 200 nm, the results are very well interpolated by a sinusoid. This is a useful

result because one can hence well approximate in this range the energy variation with lateral shift if only the

values at δ = 0 and δ = 50% are known.

• An important result concerning the Proximity Approximation here is that it does not well describe at all the

variations of energy with lateral shift δ. To show this, we display in FIG. 62 and 63 the Proximity Approximation

results compared to the scattering results for W and SiC, respectively. Not only is the variation with δ way out

of the scattering narrow band for the Proximity Approximation, but its value do not even cross that band in

the case of W. A reason for this mismatch is the importance played by the contribution of the lateral modes at

δ = 50%. These lateral modes are not taken into account by the Proximity Approximation.

It is a known fact that this variation of Casimir energy E(δ) with lateral shift over periodic grating gives rise to a

lateral Casimir force along the x−axis. We will study in section VIID the value of this lateral force for the results

calculated above, but can already expect the lateral Casimir force to be of very small magnitude in this regime of

geometrical parameters.
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FIG. 59: Casimir energy as a function of the lateral displacement δ/d, for two gratings of SiC described by the Drude-Lorentz
model [65] given in equation (140). This is for a grating period d = 200 nm, filling factor p = 50%, groove depth a = 100 nm,
and separation distance L = 200 nm.
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FIG. 60: Casimir energy as a function of the lateral displacement δ/d, for two gratings of tungsten described by a Drude
model [116] given by equation (135) and FIG. 11. This is for a grating period d = 200 nm, filling factor p = 50%, groove depth
a = 100 nm, and separation distance L = 200 nm.
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FIG. 61: Casimir energy as a function of the lateral displacement δ/d, for two gratings of different materials with grating
period d = 200 nm, filling factor p = 50%, groove depth a = 100 nm, and separation distance L = 200 nm. Intrinsic silicon
appears in blue, and is described by the Drude-Lorentz model [27, 117, 150] given in equation (137). SiC appears in purple,
and is described by the Drude-Lorentz model [65] given in equation (140). Gold appears in yellow, aluminum in gray, copper
in dashed orange, and tungsten in black. These four metals are described by a Drude model [70] given by equation (135) and
FIG. 11.
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FIG. 62: Casimir energy as a function of the lateral displacement δ/d, for two gratings of SiC described by the Drude-Lorentz
model [65] given in equation (140). This is for a grating period d = 200 nm, filling factor p = 50%, groove depth a = 100
nm, and separation distance L = 200 nm. These scattering results are compared with the Proximity Approximation (dashed
curve).
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FIG. 63: Casimir energy as a function of the lateral displacement δ/d, for two gratings of tungsten described by a Drude
model [116] given by equation (135) and FIG. 11. This is for a grating period d = 200 nm, filling factor p = 50%, groove depth
a = 100 nm, and separation distance L = 200 nm. These scattering results are compared with the Proximity Approximation
(dashed curve).
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C. Casimir force between corrugated gratings

In FIG. 64-65, we show the Casimir force as a function of separation distance L, period d, filling factor p, and

groove depth a. This is done for gratings of Si, SiC, Au, Al, Cu, and W, each with period d = 200 nm, filling factor

p = 50%, groove depth a = 100 nm, and separation distance L = 200 nm —unless of course these parameters are

explicit variables. The results for these different materials are compared with one another in these figures.

The qualitative changes in the Casimir force as a function of separation distance L, filling factor p, and groove depth

a nm are exactly the same as the Casimir energy. The most important results hence lay here in the quantitative

values of the Casimir force, which for these geometrical parameters L = d = 2p = 2a = 200 nm are of the order of a

fraction of a N/m2, regardless of the considered material (Si, SiC, Au, Al, Cu, and W).
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FIG. 64: Log-log dependence of the Casimir force with the separation distance L (left) and grating period d (right), for two
gratings of different materials with period d = 200 nm (for left-hand plot), filling factor p = 50%, groove depth a = 100 nm, and
separation distance L = 200 nm (for right-hand plot). Intrinsic silicon appears in blue, and is described by the Drude-Lorentz
model [27, 117, 150] given in equation (137). SiC appears in purple, and is described by the Drude-Lorentz model [65] given in
equation (140). Gold appears in yellow, aluminum in gray, copper in dashed orange, and tungsten in black. These four metals
are described by a Drude model [70] given by equation (135) and FIG. 11.
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FIG. 65: Dependence of the Casimir force with the groove depth a (right) and filling factor p (right), for two gratings of
different materials with grating period d = 200 nm, filling factor p = 50% (for left-hand plot), groove depth a = 100 nm (for
right-hand plot), and separation distance L = 200 nm. Intrinsic silicon appears in blue, and is described by the Drude-Lorentz
model [27, 117, 150] given in equation (137). SiC appears in purple, and is described by the Drude-Lorentz model [65] given in
equation (140). Gold appears in yellow, aluminum in gray, copper in dashed orange, and tungsten in black. These four metals
are described by a Drude model [70] given by equation (135) and FIG. 11.
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D. Lateral Casimir force between corrugated gratings

In section VIIB 5 we have seen the dependence of the Casimir energy E with lateral shift δ. We now compute the

Casimir force F as a function of this same lateral shift δ for SiC on FIG. 66, W on FIG. 67, and comparing different

materials on FIG. 68, in order to show the infinitesimal albeit continuous sinusoidal variation of the force with lateral

displacement.
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FIG. 66: Casimir force as a function of the lateral displacement δ/d, for two gratings of SiC described by the Drude-Lorentz
model [65] given in equation (140). This is for a grating period d = 200 nm, filling factor p = 50%, groove depth a = 100 nm,
and separation distance L = 200 nm.
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FIG. 67: Casimir force as a function of the lateral displacement δ/d, for two gratings of tungsten described by a Drude
model [116] given by equation (135) and FIG. 11. This is for a grating period d = 200 nm, filling factor p = 50%, groove depth
a = 100 nm, and separation distance L = 200 nm.
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FIG. 68: Dependence of the Casimir force with the lateral shift δ, for two gratings of different materials with grating period
d = 200 nm, filling factor p = 50%, groove depth a = 100 nm, and separation distance L = 200 nm. Intrinsic silicon appears
in blue, and is described by the Drude-Lorentz model [27, 117, 150] given in equation (137). SiC appears in purple, and is
described by the Drude-Lorentz model [65] given in equation (140). Gold appears in yellow, aluminum in gray, copper in dashed
orange, and tungsten in black. These four metals are described by a Drude model [70] given by equation (135) and FIG. 11.

The variation of the Casimir energy over periodic gratings gives rise to a lateral Casimir force [153] along the x−axis

given by :

E(lat)(δ) =
∂E(δ)

∂δ
(410)

Notice that since we derive E with respect to the x−axis, the units of the Casimir lateral force are in N.m−2 just

like the normal Casimir force.

In most experimental precision measurements of the Casimir force, the requirement of parallelism between the two

mirrors is circumvented by one of the two gratings being replaced by a large sphere of radius R compared to the

separation distance L. Certain experimental protocols even use a corrugated sphere in front of a corrugated plane in

order to measure the Casimir energy in the grating-grating configuration [154]. In this case, one can still compute the

lateral Casimir force between two corrugated planes through this corrugated sphere-corrugated plane geometry in the

following way : the force in the plane-sphere configuration FPS is derived from a Proximity Approximation approach

through the energy in the plane-plane geometry EPP :

FPS = 2πREPP (411)
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We then integrate this force over an infinitesimal length dL in order to recover the energy EPS in the plane-sphere

configuration :

EPS = 2πR

∫
EPP dL (412)

for which an approximation such as a trapezoidal integration method can be used for each value of L± ǫ, representing
dL with ǫ→ 0. Finally, we can recover the lateral force F

(lat)
PS in the plane-sphere geometry by deriving with respect

to the lateral displacement δ according to equation 410.

On FIG. 69, we compare the lateral Casimir force as a function of the lateral displacement δ for different gratings

of Si, SiC, Au, Al, Cu, and W :

• We recover a sinusoidal variation with lateral shift δ, as for the variation of the normal Casimir force or energy

with δ. However here the oscillations are centered around zero, and the lateral force switches sign every half-

period.

• The magnitude of the lateral Casimir force for dielectrics is much smaller (by a factor two for Si) than for metals.

• Whereas the values of the lateral Casimir force for the different metals are very close to each other, this is not

so for the dielectrics : the lateral force for Si is about ∼ 30% larger than for SiC.

• Even though the separation distance for the grating-corrugated sphere configuration is much smaller (L = 125

nm) than for the grating-grating case above (L = 200 nm), we see in FIG. 70 that the Casimir lateral force is

much smaller in the former —of the order of piconewtons per square meter. This is due to the chosen period

d = 400 nm, as was previously found in FIG. 48.

• We can observe a slight skewness of the curve due to the sphere geometry on FIG. 70, and this is confirmed by

experiment in the grating-corrugated sphere configuration [154].

On FIG. 70, we show the lateral Casimir force as a function of the lateral displacement δ/d, with grating period

d = 400 nm, filling factor p = 50%, groove depth a = 100 nm, and separation distance L = 125 nm. One of the two

gratings is not represented by a corrugated plate but by a corrugated sphere of radius R = 100µm according to the

formalism above.

Finally, we shall mention that the Casimir lateral force between gratings gives rise to a torque between the plates [155,

156].
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FIG. 69: Casimir lateral force as a function of the lateral displacement δ/d, for two gratings of different materials with grating
period d = 200 nm, filling factor p = 50%, groove depth a = 100 nm, and separation distance L = 200 nm. Intrinsic silicon
appears in blue, and is described by the Drude-Lorentz model [27, 117, 150] given in equation (137). SiC appears in purple,
and is described by the Drude-Lorentz model [65] given in equation (140). Gold appears in yellow, aluminum in gray, copper
in dashed orange, and tungsten in black. These four metals are described by a Drude model [70] given by equation (135) and
FIG. 11.
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FIG. 70: Lateral Casimir force as a function of the lateral displacement δ/d, for two gratings of intrinsic silicon with grating
period d = 400 nm, filling factor p = 50%, groove depth a = 100 nm, and separation distance L = 125 nm. One of the two
gratings is not represented by a corrugated plate but by a corrugated sphere of radius R = 100µm according to equations
(411-412). Intrinsic silicon is described by the Drude-Lorentz model [27, 117, 150] given in equation (137).
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E. Casimir energy between arbitrary periodic gratings

1. Casimir energy between periodic profiles shaped as sawteeth

Based on the scattering formalism developed in section VIB 3, where arbitrary periodic profiles are modeled as

stacks of slices, we now consider several types of arbitrary profiles and review the dependence of the Casimir energy

as a function of the two mirrors’ lateral shift δ. As for the rest of this section, the material chosen for our profiles is

intrinsic silicon Si, as described by the Drude-Lorentz model [27, 117, 150] given in equation (137).

We first consider gratings shaped as sawtooth of various shapes, the geometries and scale of which are represented

in FIG. 72 and 73. If we define dh as the distance between the corrugations at y = 0, and dl as the distance between

corrugations at y = a according to FIG. 71 (or FIG. 35), we can then parametrize sawtooth profiles by the function :

d1(y) =
dl − dh
a

y + dh (413)

where we keep dh fixed and keep dl = d. Now if we increase dl by constant steps, we can smoothly change from a

sawtooth profile to a rectangular corrugated profile —this is what is represented in FIG. 72.

On FIG. 74, we show the dependence of the Casimir energy wih the lateral shift δ for these profiles. The gratings

have a separation distance L = 100 nm, period d = 400 nm, corrugation depth a = 50 nm, length between grating

ridges at y = 0 given by dh = 200 nm, and a number of slices K = 20. The five profiles are parametrized by dl = 400

nm, dl = 350 nm, dl = 300 nm, dl = 250 nm, and dl = 200 nm, so that we indeed progressively shift dl from a

sawtooth grating at (dl = 400 nm) to a rectangular corrugated grating at (dl = 200 nm, shown in 3D on FIG. 75), by

constant steps of 50 nm :

• If we consider two rectangular gratings with given period and groove depth, then the Casimir energy for two

sawtooth gratings with same period and groove depth will be about half of the Casimir energy of the rectangular

gratings.

• Shifting from the sawtooth grating with dl = 400 nm to the rectangular grating with dl = 200 nm by four steps

of 50 nm causes the Casimir energy to increase by steps of 7, 8, 8.5, and 9 nJ/m2 for each of these four profiles

at δ = 0. In other words, the increment in Casimir energy is not constant. This is due to the dependence of the

Casimir energy in ∝ 1/L3 : the added surface in near-field increases the energy non-linearly.

• This non-linear increment in Casimir energy is magnified at δ = d/2 : the Casimir energy increases by steps of

4, 5, 6, and 8 nJ/m2 for each of these four profiles. This is due to the fact that at δ = d/2, the lateral modes
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with larger wave-vector components along the x−axis have a greater contribution than at δ = 0, and that this

contribution especially increases as the profiles are progressively shifted from sawtooth to rectangular.
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FIG. 71: Arbitrary gratings geometry and parameters in the approximation of vertical stacks of rectangular slices (here for
K = 4). Notice the important parameters of dh , which is the distance between the corrugation at y = 0, and dl which is the
distance between the corrugation at y = a.
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FIG. 72: Two-dimensional perspective on the sawtooth gratings used in FIG. 74, with same color code.
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FIG. 73: Three-dimensional perspective on the sawtooth gratings.
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FIG. 74: Casimir energy as a function of the lateral shift δ/d, for arbitrary periodic gratings of intrinsic silicon with separation
distance L = 100 nm, period d = 400 nm, corrugation depth a = 50 nm, and number of slices K = 20. Sawtooth grating with
d1 = 4y + 200 appear in black, with d1 = 3y + 200 in blue, with d1 = 2y + 200 in red, and with d1 = y + 200 in green. This is
compared with similar size rectangular corrugations d1 = 200 in orange.

2. Casimir energy between periodic profiles shaped as barbed wires

We now consider barbed wired profiles, as represented in FIG. 76 and 77. These profiles are generated by specifying

the length between corrugations d1(y) according to equation (413), but in such a way that dh > dl. In FIG. 78,

we show the dependence of the Casimir energy with the lateral shift δ for these barbed wire periodic profiles, with a

separation distance L = 20 nm, constant grating period d = 100 nm, corrugation depth a = 50 nm, and number of

slices K = 20.
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FIG. 75: Three-dimensional perspective (to scale) on the rectangular gratings used in FIG. 74.

We study four barbed wire profiles parametrized by d1 = −0.5y + 85, d1 = −0.5y + 65, d1 = −0.5y + 45, and

d1 = −0.5y+25. For all these d1(y), the grating period d is kept constant, so that these four barbed wire profiles just

differ in their respective width. This is thus a different case than the variation from sawtooth to rectangular gratings

in the previous section, where the width of the sawtooth was kept constant. Furthermore the first barbed wire profile

with d1 = −0.5y+85 is compared with a rectangular corrugated grating that includes it (d1 = dl = 85), and another

rectangular corrugated grating that is included in it (d1 = dh = 65).

• The Casimir energy of two barbed wire gratings on FIG. 78 with given period and groove depth is about three

times larger than the Casimir energy of two rectangular gratings that are included within the barbed wire profiles

(and hence parametrized by d1(y) = dh). However, the rectangular gratings that include the barbed wire profiles

(and are hence parametrized by d1(y) = dl) have about the same Casimir energy as the latter barbed wire

profiles. This is due to the fact that the surface in near-field for these latter rectangular gratings is the same as

the barbed wire profiles.

• At δ = 0, the Casimir energy increases by a constant step of about ∼ 1.4 nJ/m2 from grating to grating. This

is due to the fact that at a constant local separation distance, the exposed surface in near-field varies constantly

from grating to grating. To the contrary, at δ = d/2 the Casimir energy increases by non-constant steps of about

1.9, 2.2, and 2.1 nJ/m2 from grating to grating. So it means that the difference between these four profiles is

maximized when the gratings are laterally shifted. This is because at δ/p = 50%, the grating surface that is

most exposed in near-field is not only the top of the ridges (which is the case for δ/p = 0%) but also the lower

parts of the trenches, which are an area of highly non-trivial diffraction scatterings of the modes, at the local

neighborhood of the bottom of the barbed wire profiles especially.
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FIG. 76: Two-dimensional perspective on the barbed wire gratings used in FIG. 78, with same color code.
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FIG. 77: Three-dimensional perspective on barbed wire gratings.

3. Casimir energy between periodic profiles shaped as a sinusoid

We now consider sinusoidal profiles, as represented in FIG. 79 and 80. These profiles are generated by specifying

the length between corrugations d1(y) according to :

d1(y) =
d

π
arccos

(
1− 2y

a

)
(414)

In FIG. 81, we show the dependence of the Casimir energy with the lateral shift δ for these sinusoidal periodic

profiles, with a separation distance L = 100 nm, constant grating period d = 400 nm, corrugation depth a = 50

nm, and number of slices K = 20. These parameters together with equation (414) give a profile parametrized by

d1(y) = (400/π) arccos[1− (y/25)].

• At δ = 0, the Casimir energy for these sinusoidal gratings is approximatively the same as the Casimir energy of

the sawtooth gratings parametrized by d1 = 2y+200 (red curve on FIG. 74). Notice that these two profiles have
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FIG. 78: Dependence of the Casimir energy with the lateral shift δ for two barbed wire periodic profiles of intrinsic silicon, with
a separation distance L = 20 nm, constant grating period d = 100 nm, corrugation depth a = 50 nm, and number of slices
K = 20. Barbed wire profiles with d1 = −0.5y + 85 appear in black, with d1 = −0.5y + 65 in blue, with d1 = −0.5y + 45 in red,
and with d1 = −0.5y + 25 in green. This is compared with two rectangular corrugated profiles with d1 = 85 nm (dashed black
curve), and with d1 = 60 nm (dashed gray curve). Notice that while we varied the spacing between the corrugations d1(y), the
grating period d was kept constant, so that these four barbed wire profiles just differ in their respective grating width.

same period d, groove depth a, and separation length L. At δ = d/2, the Casimir energy for these sinusoidal

gratings is exactly the same as the Casimir energy of the sawtooth gratings parametrized by d1 = y+200 (green

curve on FIG. 74).

• Compared to these two sawtooth gratings, and even more so compared with rectangular gratings, the variation

in Casimir energy between δ = 0 and δ = d/2 for sinusoidal gratings is much smaller.

�
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FIG. 79: Two-dimensional perspective on the sinusoidal gratings used in FIG. 81.
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FIG. 80: Three-dimensional perspective on sinusoidal gratings.

0 10 20 30 40 50

38

40

42

44

46

Lateral shift∆�d H%L

C
as

im
ir

E
ne

rg
yH

nJ
�m

²L

FIG. 81: Dependence of the Casimir energy with the lateral shift δ for two sinusoidal periodic profiles of intrinsic silicon, with
a separation distance L = 100 nm, constant grating period d = 400 nm, corrugation depth a = 50 nm, and number of slices
K = 20. The sinusoidal profiles are parametrized by equation (414), such that d1(y) = (400/π) arccos[1 − (y/25)].
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4. Casimir energy between periodic profiles shaped as ellipsoids

We now consider circular and ellipsoid profiles, as represented in FIG. 82 and 83. Ellipsoid profiles with a major

axis parallel to the x−axis are generated by specifying the length between corrugations d1(y) according to :

d1(y) = d− 2R

r

√
r2 − (y − Y )2 (415)

and ellipsoid profiles with a major axis perpendicular to the x−axis are generated by :

d1(y) = d− 2r

R

√
R2 − (y − Y )2 (416)

for R and r being the major and minor axes of the ellipse respectively, and Y being the value of y of the ellipse center.

Circular periodic profiles are also generated by any of these two expressions by setting R = r as the radius. Notice

from FIG. 83 that what we call “circular” periodic profiles look more like parallel tubes in the three-dimensional

picture.

In FIG. 84, we show the dependence of the Casimir energy with the lateral shift δ for two circular and ellipsoid

profiles, with a separation distance L = 100 nm, constant grating period d = 400 nm, corrugation depth a = 50

nm, and number of slices K = 15. These parameters together with equation (415) give a grating parametrized

by d1 = 400 − 4
√
50y − y2 for horizontal ellipsoid profiles (that have r = Y = 25 nm and R = 50 nm), and

d1 = 400− 2
√

50y − y2 for circular profiles (that have R = r = Y = 25 nm). Again, these two profiles are illustrated

in FIG. 82, to scale.

• The variation in Casimir energy between δ = 0 and δ = d/2 for the circular gratings is of the order of ∼ 12%,

and of ∼ 24% for the ellipsoid gratings. This is again due to the dependence of the Casimir energy in ∝ 1/L3,

so that the greater surface of the grating exposed in near-field (such as horizontal ellipsoid gratings compared

to circular gratings), the greater the variation when the gratings are laterally shifted.

• Both at δ = 0 and δ = d/2, the Casimir energy of the ellipsoid gratings is exactly the same as the Casimir

energy of the sawtooth gratings parametrized by d1 = 4y+200 (black curve on FIG. 74). Notice that these two

profiles have same period d, groove depth a, and separation length L, but not similar d1(y).
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FIG. 82: Two-dimensional perspective on the ellipsoid gratings (in dashed red) and circular gratings (in blue) used in FIG.
84, with same color code.
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FIG. 83: Three-dimensional perspective on circular gratings.

5. Casimir energy for different compared arbitrary profiles

In this section we will summarize and compare the different profiles. To this effect we will consider :

• The rectangular profiles of section VII E 1, parametrized by d1(y) = 200.

• The sinusoidal profiles of section VII E 3, parametrized by d1(y) = (400/π) arccos[1− (y/25)].

• The sawtooth profiles of section VII E 1, parametrized by d1(y) = 4y + 200.

• The circular profiles of section VII E 4, parametrized by d1(y) = 400− 2
√
50y − y2.

We show in FIG. 85 the dependence of the Casimir energy with the lateral shift δ for these four profiles. Furthermore

we compare the obtained scattering results with the Proximity Approximation.
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FIG. 84: Dependence of the Casimir energy with the lateral shift δ for two ellipsoid and circular periodic profiles of intrinsic
silicon, with a separation distance L = 100 nm, constant grating period d = 400 nm, corrugation depth a = 50 nm, and number
of slices K = 15. These two profiles are parametrized by equation (415), such that d1 = 400 − 2

√

50y − y2 for circles in blue

(with R = r = Y = 25 nm), and d1 = 400 − 4
√

50y − y2 for ellipses in dashed red (with r = Y = 25 nm and R = 50 nm).

• At same grating period d, groove depth a, and separation length L, the Casimir energy is always larger for

rectangular, sinusoidal, sawtooth, and circular profiles, in this order.

• At same grating period d, groove depth a, and separation length L, the rectangular and sinusoidal profiles share

narrower Casimir energy values, and likewise for sawtooth and circular profiles.

• An important result is that for non-rectangular corrugated gratings, the Proximity Approximation is rather

accurate at δ = d/2 and less when δ tends to 0. To the contrary, and as already seen in section VIIB 5, it is

almost always a poor approximation for rectangular profiles. In the case of arbitrary gratings, the Proximity

Approximation can be used in the neighborhood of δ = d/2.
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FIG. 85: Dependence of the Casimir energy with the lateral shift δ for four different arbitrary periodic profiles of intrinsic silicon,
all with separation distance L = 100 nm, grating period d = 400 nm, corrugation depth a = 50 nm. Rectangular profiles are
parametrized by d1 = 200 (solid green curve), sinusoidal profiles are parametrized by d1(y) = (400/π) arccos[1 − (y/25)] (solid
orange curve), sawtooth profiles are parametrized by d1 = 4y + 200 (solid black curve), and circular profiles are parametrized

by d1 = 400 − 2
√

50y − y2 (solid blue curve). These four scattering results are compared with the Proximity Approximation
results (respective dashed curves).
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VIII. NUMERICAL EVALUATION : CASIMIR FOR NON-ZERO TEMPERATURES

A. Casimir at thermal equilibrium

1. Casimir energy as a function of the separation distance for T = 0 K and T = 300 K

We now study the Casimir energy in the case of non-zero temperatures [21, 127, 157–159], based on the Casimir

force given in equation (233) and the thermal equilibrium formalism developed in section VIA7. Alternatively, we

could as well use the Casimir force from equation (381) and the non-equilibrium formalism developed in section VIC 1

(taken with equal grating temperatures T1 = T2). We will here systematically consider dielectric gratings (intrinsic

silicon Si) and metallic gratings (gold Au).

We first compare the Casimir energy as a function of separation distance L for two types of Fabry-Pérot cavities:

the first at zero temperature, and the second at 300 K. In FIG. 86 we show the results for two plates of intrinsic silicon

Si, and in FIG. 87 for two plates of gold. Then in FIG. 88 and 89, we perform the same calculations for gratings with

period d = 200 nm, filling factor p = 50%, and groove depth a = 100 nm.

Based on the results of FIG. 86-89, we can make the following remarks :

• Regardless of the chosen material, a non-zero temperature increases the value of the Casimir energy at long

separation distances.

• Whereas for Si, the Casimir energy increases with temperature at short separation distances also, this is not the

case for gold : below the range L = 3µm, the Casimir energy for zero temperatures is larger than for T = 300 K.

This is because the temperature contribution to the Casimir energy depends on the plasma wavelength, which

for gold is ∼ 137.8 nm (determined by λp = 2πc/ωp in the Drude model equation (135)).

• Switching from the plane-plane to the grating configuration can be seen as digging corrugation trenches. In this

sense, it is natural that the Casimir energy is larger for the planar case than for the grating case. This is seen

when comparing FIG. 86 with 88, and FIG. 87 with 89 : the grating geometry does not bring about surprisingly

new effects when non-zero temperatures are considered. In other words, a qualitative understanding of the effect

of non-zero temperatures on the Casimir energy can be obtained by simply considering the plane-plane case in

the range of the geometrical parameters that are here used. This property will also be seen in the next section.
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FIG. 86: Casimir energy as a function of the separation distance, for two planes of intrinsic silicon at temperature T = 0 K
(solid blue curve) and at T = 300 K (dashed red curve). The material is described by the Drude-Lorentz model [27, 117, 150]
given in equation (137).
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FIG. 87: Casimir energy as a function of the separation distance, for two planes of gold at temperature T = 0 K (solid blue
curve) and at T = 300 K (dashed red curve). The material is described by a Drude model [70] given by equation (135) and
FIG. 11.
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FIG. 88: Casimir energy as a function of the separation distance, for two gratings of intrinsic silicon at temperature T = 0 K
(solid blue curve) and at T = 300 K (dashed red curve). This is for a grating period d = 200 nm, filling factor p = 50%, and
groove depth a = 100 nm. The material is described by the Drude-Lorentz model [27, 117, 150] given in equation (137).
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FIG. 89: Casimir energy as a function of the separation distance, for two gratings of gold at temperature T = 0 K (solid blue
curve) and at T = 300 K (dashed red curve). This is for a grating period d = 200 nm, filling factor p = 50%, and groove depth
a = 100 nm. The material is described by a Drude model [70] given by equation (135) and FIG. 11.
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2. Casimir energy as a function of the temperature for L = 100 nm, 500 nm, 1µm, and 10µm

We now study the variation of the Casimir energy as a function of the temperature itself for several separation

distance L = 100 nm, 500 nm, 1µm, and 10µm, so as to fully grasp the relation between temperature T and separation

distance L. We systematically compare the plane-plane configuration with the grating geometry for each of these

results, and perform these computations first for intrinsic silicon Si (in FIG. 90-94) and then for gold Au (in FIG.

95-99). The gratings all have a period d = 200 nm, filling factor p = 50%, and groove depth a = 100 nm.

FIG. 90 shows the variation of the Casimir energy for two planes of Si at L = 100 nm, and FIG. 91 shows the same

for gratings. Then FIG. 92, 93, 94 show the variation of the Casimir energy for two planes and two gratings of Si at

L = 500 nm, L = 1µm, and L = 10µm, respectively.

FIG. 95 shows the variation of the Casimir energy for two planes of Au at L = 100 nm, and FIG. 96 shows the

same for gratings. Then FIG. 97, 98, 99 show the variation of the Casimir energy for two planes and two gratings of

Au at L = 500 nm, L = 1µm, and L = 10µm, respectively.

• At a close separation distance L = 100 nm, the gradual increase of temperature from 0 to 500 K has but a small

effect on the Casimir energy. This is true for both planes and gratings, and regardless of the material chosen

—albeit gold is less affected by this rule than intrinsic silicon. Conversely, at large distances L the contribution

of non-zero temperatures to the Casimir energy is large : we see in FIG. 94 and 99 that the Casimir energy at

T = 500 K is about five times larger than the energy at T = 0 K. This is due to the contribution of the thermal

wavelength modes λT /2 > 100 nm.

• Regardless of separation distance L, the Casimir energy increases with temperature T . But for gold the opposite

happens for L > 1000 nm and for temperatures above 300 K, as seen on FIG. 98. There is a temperature Tr at

which the Casimir energy shifts from decreasing to increasing with larger temperatures is Tr ∼ 425 K for gratings

and beyond Tr > 500 K for planes at L = 1000 nm, as seen on FIG. 98. And it is Tr ∼ 50 K for both planes

and gratings at L = 10µm, as seen on FIG. 99. Now following an effective medium approximation [151, 160],

we can consider the grating case as a plane-plane case with greater separation distance L, where L is majored

by the grating groove depth a. In this approach, the grating of FIG. 98 can be seen as a plane with separation

distance comprised between L = 200 nm and L+ 2a = 400 nm.

• From this and the last section, we can draw two conclusions : increasing the separation distance L implies

that the reversal temperature Tr becomes smaller, and likewise switching from a plane-plane configuration to

gratings implies that Tr becomes smaller proportionally with deeper corrugation trenches a.
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FIG. 90: Casimir energy as a function of the temperature T , for two planes of intrinsic silicon at a separation distance L = 100
nm. The material is described by the Drude-Lorentz model [27, 117, 150] given in equation (137).
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FIG. 91: Casimir energy as a function of the temperature T , for two gratings of intrinsic silicon at a separation distance L = 100
nm. This is for a grating period d = 200 nm, filling factor p = 50%, and groove depth a = 100 nm. The material is described
by the Drude-Lorentz model [27, 117, 150] given in equation (137).
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FIG. 92: Casimir energy as a function of the temperature T , for two planes (red solid curve) and two gratings (blue dashed
curve) of intrinsic silicon at a separation distance L = 500 nm. The gratings have a period d = 200 nm, filling factor p = 50%,
and groove depth a = 100 nm. The material is described by the Drude-Lorentz model [27, 117, 150] given in equation (137).
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FIG. 93: Casimir energy as a function of the temperature T , for two planes (red solid curve) and two gratings (blue dashed
curve) of intrinsic silicon at a separation distance L = 1000 nm. The gratings have a period d = 200 nm, filling factor p = 50%,
and groove depth a = 100 nm. The material is described by the Drude-Lorentz model [27, 117, 150] given in equation (137).
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FIG. 94: Casimir energy as a function of the temperature T , for two planes (red solid curve) and two gratings (blue dashed
curve) of intrinsic silicon at a separation distance L = 1µm. The gratings have a period d = 200 nm, filling factor p = 50%,
and groove depth a = 100 nm. The material is described by the Drude-Lorentz model [27, 117, 150] given in equation (137).
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FIG. 95: Casimir energy as a function of the temperature T , for two planes of gold at a separation distance L = 100 nm. The
material is described by a Drude model [70] given by equation (135) and FIG. 11.
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FIG. 96: Casimir energy as a function of the temperature T , for two gratings of gold at a separation distance L = 100 nm.
This is for a grating period d = 200 nm, filling factor p = 50%, and groove depth a = 100 nm. The material is described by a
Drude model [70] given by equation (135) and FIG. 11.
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FIG. 97: Casimir energy as a function of the temperature T , for two planes (red solid curve) and two gratings (blue dashed
curve) of gold at a separation distance L = 500 nm. The gratings have a period d = 200 nm, filling factor p = 50%, and groove
depth a = 100 nm. The material is described by a Drude model [70] given by equation (135) and FIG. 11.
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FIG. 98: Casimir energy as a function of the temperature T , for two planes (red solid curve) and two gratings (blue dashed
curve) of gold at a separation distance L = 1000 nm. The gratings have a period d = 200 nm, filling factor p = 50%, and
groove depth a = 100 nm. The material is described by a Drude model [70] given by equation (135) and FIG. 11.
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FIG. 99: Casimir energy as a function of the temperature T , for two planes (red solid curve) and two gratings (blue dashed
curve) of gold at a separation distance L = 1µm. The gratings have a period d = 200 nm, filling factor p = 50%, and groove
depth a = 100 nm. The material is described by a Drude model [70] given by equation (135) and FIG. 11.
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B. Casimir out-of-thermal equilibrium

1. Comparison between equilibrium and out-of-equilibrium situations

We now study the Casimir energy in the case where each plate has a different temperature T1 and T2, based on the

out-of-thermal equilibrium formalism developed in section VIC 1. It is known that at thermal equilibrium and at zero

temperatures, the Casimir force can be repulsive for certain Fabry-Pérot cavities formed by two different materials

of specific impedances [161]. But this is met for instance in the case of magnetic media, or when the gap between

the plates is filled by a medium other than vacuum. This situation can also happen in the case where the plates are

out-of-thermal equilibrium [162–165] for certain ranges of temperatures T1, T2. This is the case that will interest here,

knowing that it is possible to find regimes where the non-equilibrium contribution is large enough compared to the

equilibrium contribution that it changes the sign of the total Casimir force.

Based on equations (376), (379), and (381), and section VIC 1, this is explained by a negative non-equilibrium

contribution ∆F
(neq)
z (T1, T2) which counter-balances the equilibrium contribution (F

(eq)
z (T1) + F

(eq)
z (T2))/2, so that

the total Casimir force F
(neq)
z (T1, T2) switches sign. In the following, we study the variation of this non-equilibrium

part ∆F
(neq)
z (T1, T2) so as to probe the weight of its contribution to the total Casimir force compared to the equilibrium

part (F
(eq)
z (T1) + F

(eq)
z (T2))/2, and in which regimes of parameters it becomes negative.

The motivation for studying these two aspects lays in practical applications (such as tailoring the Casimir force, or

canceling its effect with a specific control of temperatures), and in experimental setups (where the difference between

an equilibrium and an out-of-equilibrium measurement protocol will depend on a sufficiently large non-equilibrium

contribution to the total force).

On FIG. 100 we show the non-equilibrium contribution ∆F
(neq)
z (T1, T2) as a function of the separation distance

L, for a Fabry-Pérot cavity formed by a plane of silicon dioxide SiO2 at temperature T1 = 250 K, and a plane of

silicon carbide SiC at temperature T2 = 350 K. We vary the distance from L = 10 nm to 1µm. On FIG. 101 we then

show the total Casimir force F
(neq)
z (T1, T2) together with the equilibrium contribution (F

(eq)
z (T1) + F

(eq)
z (T2))/2 as a

function of the separation distance L, for that same cavity.

Based on the results of FIG. 100-101, we can make the following remarks :

• Both the non-equilibrium and equilibrium contributions (and hence the total Casimir force) follow a power law,

proportional to 1/L3.

• The non-equilibrium part is smaller than the equilibrium part by about three orders of magnitudes, regardless

of the separation distance L in the range 10 nm to 1µm.
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FIG. 100: Non-equilibrium contribution to the Casimir force ∆F
(neq)
z (T1, T2) from equation (376) as a log-log function of the

separation distance L, for a Fabry-Pérot cavity formed by a plane of silicon dioxide SiO2 at temperature T1 = 250 K, and a
plane of silicon carbide SiC at temperature T2 = 350 K. The permittivity of SiO2 is extrapolated from optical data [111, 112]
and SiC is described by the Drude-Lorentz model [65] given in equation (140).
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FIG. 101: Log-log dependence on the separation distance L of the total Casimir force F
(neq)
z (T1, T2) from equation (381) (red

curve), which is formed as the sum of the equilibrium contribution (F
(eq)
z (T1) +F

(eq)
z (T2))/2 from equation (379) (blue dashed

curve) and of the non-equilibrium contribution ∆F
(neq)
z (T1, T2) from equation (376) seen on FIG. 100. This is for a Fabry-Pérot

cavity formed by a plane of silicon dioxide SiO2 at temperature T1 = 250 K, and a plane of silicon carbide SiC at temperature
T2 = 350 K. The permittivity of SiO2 is extrapolated from a Sellmeier model [119] given in equation (142) and SiC is described
by the Drude-Lorentz model [65] given in equation (140).
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Based on these results, we conclude that the non-equilibrium contribution is so small compared to the equilibrium

part, that practical applications and experimental measurements of the out-of-equilibrium Casimir force may be

challenging. However we explore further geometrical parameters than the separation distance L. In FIG. 102 and 103

we respectively show the non-equilibrium contribution ∆F
(neq)
z (T1, T2) and the equilibrium contribution (F

(eq)
z (T1) +

F
(eq)
z (T2))/2 together with the total Casimir force F

(neq)
z (T1, T2), as a function of the grating groove depth a. This is

done for gratings separated by a distance L = 100 nm, with period d = 500 nm, and filling factor p = 50%. The first

grating is made of silicon dioxide SiO2 and is at a temperature T1 = 250 K, and the second grating is made of silicon

carbide SiC and is at a temperature T2 = 350 K.

• The non-equilibrium part does not decrease continuously with larger corrugation depths a unlike the equilibrium

part. Over the range a = 50 nm to 1000 nm, it reaches a minimum at a = 300 nm.

• The non-equilibrium part is smaller than the equilibrium part by less than three orders of magnitudes, and this

is especially true for smaller values of a.

• We can expect the total Casimir force to converge with larger a’s beyond a groove depth of a ∼ 500 nm.
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FIG. 102: Non-equilibrium contribution to the Casimir force ∆F
(neq)
z (T1, T2) from equation (376) as a function of the grating

groove depth a. This is for a Fabry-Pérot cavity formed by a grating of silicon dioxide SiO2 at temperature T1 = 250 K,
and a grating of silicon carbide SiC at temperature T2 = 350 K. Both gratings are separated by a distance L = 100 nm, and
have the same grating period d = 500 nm and filling factor p = 50%. The permittivity of SiO2 is extrapolated from optical
data [111, 112] and SiC is described by the Drude-Lorentz model [65] given in equation (140).
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FIG. 103: Log-log dependence on the grating groove depth a of the total Casimir force F
(neq)
z (T1, T2) from equation (381)

(solid red curve), which is formed as the sum of the equilibrium contribution (F
(eq)
z (T1) + F

(eq)
z (T2))/2 from equation (379)

(blue dashed curve) and of the non-equilibrium contribution ∆F
(neq)
z (T1, T2) from equation (376) seen on FIG. 102. Thplot

corresponds to a Fabry-Pérot cavity formed by a grating of silicon dioxide SiO2 at temperature T1 = 250 K, and a grating of
silicon carbide SiC at temperature T2 = 350 K. Both gratings are separated by a distance L = 100 nm, and have the same
grating period d = 500 nm and filling factor p = 50%. The permittivity of SiO2 is extrapolated from a Sellmeier model [119]
given in equation (142) and SiC is described by the Drude-Lorentz model [65] given in equation (140).

2. Dependence on the temperature gradient and temperature average

From the former discussion we see that regardless of both the separation distance L in FIG. 100-101 for planes, and

the grating groove depth a in FIG. 102-103, the contribution of the non-equilibrium part to the total Casimir force

is very small. From now on, we study only the non-equilibrium contribution, in particular its dependence with both

temperatures T1, T2 and distance L.

In FIG. 104, we show the non-equilibrium contribution ∆F
(neq)
z (T1, T2) for two planes as a function of the temper-

ature gradient ∆T = T1 − T2 when the temperature average of the two plates 〈T 〉 = (T1 + T2)/2 is kept constant at

300 K. And in FIG. 105, we show the temperature average 〈T 〉 = (T1 + T2)/2 when the temperature gradient of the

two plates ∆T = T1 − T2 is kept constant at 100 K.

• We see that the non-equilibrium contribution increases linearly in ∝ ∆T when the average 〈T 〉 = 300 K is

kept constant. In the range of temperature gradient ∆T = 20 K to 520 K, we see that the non-equilibrium

contribution varies from about 500µN.m−2 to about 0.01 N.m−2.

• The non-equilibrium contribution converges beyond a temperature average of 〈T 〉 ∼ 900 K when the temperature

gradient ∆T = 100 K is kept constant. The fusion of silica being reached around T ∼ 2700 K, we kept the range
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bound by a maximum temperature of 〈T 〉 = 1200 K.

• Below 〈T 〉 ∼ 215 K, the non-equilibrium contribution is negative. This doesn’t necessarily mean that the whole

Casimir force becomes repulsive, but that there is a counter-balance of the equilibrium contribution by the

non-equilibrium part for certain regimes of temperatures T1 and T2. We explore this interplay between T1, T2

and repulsivity in the next section.
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FIG. 104: Non-equilibrium contribution to the Casimir force ∆F
(neq)
z (T1, T2) from equation (376) as a function of temperature

gradient ∆T = T1 − T2, when the temperature average of the two plates 〈T 〉 = (T1 + T2)/2 is kept constant at 300 K and at
a separation distance L = 100 nm. This is for a Fabry-Pérot cavity formed by a plane of silicon dioxide SiO2 at temperature
T1 = 300 − ∆T/2 K, and a plane of silicon carbide SiC at temperature T2 = 300 + ∆T/2 K. The permittivity of SiO2 is
extrapolated from optical data [111, 112] and SiC is described by the Drude-Lorentz model [65] given in equation (140).

3. Repulsivity and contribution of the non-equilibrium term

Finally we combine these results, and study the non-equilibrium contribution to the Casimir force ∆F
(neq)
z (T1, T2)

between two planes as a function of separation distance L for different temperature gradients (∆T = 200 K, 150

K, 100 K, and 50 K) when the temperature average is kept constant at 〈T 〉 = 350 K in FIG. 106, and for different

temperature averages (〈T 〉 = 350 K, 250 K, and 150 K) when the temperature gradient is kept constant at ∆T = 200

K in FIG. 107. In FIG. 108, we then show the non-equilibrium contribution as a percentage of the equilibrium

contribution at a separation distance L = 3000 nm for the different gradients and averages of temperatures used in

FIG. 106-107.
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FIG. 105: Non-equilibrium contribution to the Casimir force ∆F
(neq)
z (T1, T2) from equation (376) as a function of temperature

average 〈T 〉 = (T1 + T2)/2, when the temperature gradient of the two plates ∆T = T1 − T2 is kept constant at 100 K and at
a separation distance L = 100 nm. This is for a Fabry-Pérot cavity formed by a plane of silicon dioxide SiO2 at temperature
T1 = 〈T 〉 − 50 K, and a plane of silicon carbide SiC at temperature T2 = 〈T 〉 + 50 K. The permittivity of SiO2 is extrapolated
from optical data [111, 112] and SiC is described by the Drude-Lorentz model [65] given in equation (140).

• Whether the temperature average 〈T 〉 = 350 K is kept constant and we vary the temperature gradient ∆T = 200

K, 150 K, 100 K, and 50 K as in FIG. 106, or the temperature gradient ∆T = 200 K is kept constant and we

vary the temperature average 〈T 〉 = 350 K, 250 K, and 150 K as in FIG. 107, there exists a separation distance

Ls where all the profiles have the same non-equilibrium contribution. This lesser separation distance is equal

to Ls = 1275 nm and Ls = 1300 nm for these two figures, respectively.

• In the first case shown on FIG. 106, this separation distance Ls coincides with the shift from a positive to a

negative non-equilibrium contribution. It is beyond this separation distance Ls that the total Casimir force is

expected to be negative, due to the non-equilibrium contribution, and hence repulsive [162].

• At a constant temperature gradient ∆T = 200 K, it is possible to reach smaller values of Ls by decreasing

the temperature average 〈T 〉 : we find Ls = 1.270µm for 〈T 〉 = 350 K, Ls = 1.245µm for 〈T 〉 = 250 K, and

Ls = 1.170µm for 〈T 〉 = 150 K, as seen on FIG. 107.

• However even if Ls decreases when the temperature average is lowered, and hence the smallest distance at which

the total Casimir force is partly counter-balanced by its non-equilibrium contribution and potentially shifted

towards a repulsive regime, we see on FIG. 108 that the ratio of the non-equilibrium to the equilibrium part

decreases likewise.

• We thus found an optimal range of parameters of separation distance L = 3000 nm, temperature gradient

∆T = 200 K, and temperature average 〈T 〉 = 350, where the non-equilibrium contribution represents more than
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22% of the equilibrium contribution, and is thus large enough to be measured by experimental protocols.

These elements should also give future prospects of research with a further study of the tailoring of the Casimir

force via temperature control of the two plates. The problem of stiction [59, 139, 140] which impairs NEMS and

MEMS as well as other applications of nanotechnology could be explored with the variations of this non-equilibrium

contribution to cancel the whole Casimir force at certain temperatures [162].

A key understanding for this study is the domain of Ls, as the issue of stiction happens within ranges of L at which

the total Casimir force is strong, that is below the micrometer range. To the contrary of [162], we do not consider

here a third temperature T3 in the gap between the plates, and do not find a repulsive regime for planes of SiO2/SiC.

But as already said, we find a non-equilibrium contribution of more than 22% of the equilibrium contribution, which

is large enough for experimental interests.
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FIG. 106: Log-linear non-equilibrium contribution to the Casimir force ∆F
(neq)
z (T1, T2) from equation (376) as a function of

the separation distance L, when the temperature average 〈T 〉 = 350 K is kept constant and for different temperature gradients
: ∆T = 200 K (red curve), ∆T = 150 K (blue curve), ∆T = 100 K (green curve), and ∆T = 50 K (gray curve). This is
for a Fabry-Pérot cavity formed by a plane of silicon dioxide SiO2 at temperature T1 = 350 − ∆T/2 K, and a plane of silicon
carbide SiC at temperature T2 = 350 + ∆T/2 K. The permittivity of SiO2 is extrapolated from optical data [111, 112] and SiC
is described by the Drude-Lorentz model [65] given in equation (140).
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FIG. 107: Log-linear non-equilibrium contribution to the Casimir force ∆F
(neq)
z (T1, T2) from equation (376) as a function of

the separation distance L, when the temperature gradient ∆T = 200 K is kept constant and for different temperature averages
: 〈T 〉 = 350 K (red curve), 〈T 〉 = 250 K (purple dotted curve), and 〈T 〉 = 150 K (blue dashed curve). This is for a Fabry-Pérot
cavity formed by a plane of silicon dioxide SiO2 at temperature T1 = 〈T 〉 − 100 K, and a plane of silicon carbide SiC at
temperature T2 = 〈T 〉 + 100 K. The permittivity of SiO2 is extrapolated from optical data [111, 112] and SiC is described by
the Drude-Lorentz model [65] given in equation (140).

〈T〉 ∆T T1 T2 ∆F(neq)/F(eq)

350 200 450 250 22.12%
350 150 425 275 18.11%
350 100 400 300 10.78%
350 50 375 325 5.98%
350 200 450 250 22.12%
250 200 350 150 16.89%
150 200 250 50 11.50%

FIG. 108: Ratios of the non-equilibrium part to the equilibrium part for the different temperatures shown on FIG. 106 and
107 (with same color code) at the separation distance L = 3000 nm.
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IX. NUMERICAL EVALUATION : RADIATIVE HEAT TRANSFER IN NEAR-FIELD

A. Radiative heat transfer between planes

The studies of near-field heat transfer are in general of great interest to both NEMS and MEMS designs, since these

systems are naturally affected by the side-effects of heat exchange at the nanoscale. Other important applications

lie in the fields of nanotechnology, photonic crystals [66], metamaterials [67, 166], thermalphotovoltaics [69, 167],

multilayered structures [168], improved resolution in nano-structure imaging, and new nano-fabrication techniques.

We now use the results of the scattering formalism developed in section VIC 2, and perform numerical calculations

of the heat transfer coefficients h between two plates of silicon dioxide SiO2 at temperatures T1 and T2, as given

by equations (407) and (408). We already saw that radiative heat transfer for distances shorter than the average

thermal wavelength becomes much larger than the black body limit, which is understood as an effect arising from the

contribution of the evanescent waves.

In FIG. 109 we show the radiative heat transfer coefficient h as a function of the separation distance L, for two

planes of silicon dioxide SiO2 at temperatures T1 = 310 K and T2 = 290 K (these temperatures will be taken for T1

and T2 for the remainder of this section IX). We can see that beyond a distance L ∼ 3.7µm, the flux becomes smaller

than the black body limit, which is about ∼ 6.13 W.m2.K−1 for this temperature gradient ∆T = 20 K.

Furthermore, one can see from the slope of the curve that the variation of the heat flux h with distance can be

categorized in approximatively three domains of separation distances : A corresponding to the extreme near-field

below 200 nm, B corresponding to the near-field from 200 nm to 10µm, and C corresponding to the domain of

Stefan-Boltzmann’s law beyond 10µm.

Along those ranges, the strongest contributions physically come from the dipole-dipole interaction for domain A,

from surface phonon-polaritons for domain B, and from the classical radiative heat transfer for domain C. The surface

phonon-polaritons supported by silicon dioxide SiO2 thus enhance the heat flux. This is practically shown in the field

modulus map of FIG. 110 for two gratings of SiO2 at a separation distance L = 25nm, with period d = 1500nm, filling

factor p = 20%, and groove depth a = 500nm.

The contribution in the first domain A of FIG. 109 hence corresponds to the localized heat transfer seen in the

upper-left map of FIG. 110, whereas the main contribution in the second domain B corresponds to the delocalized

heat transfer mediated by the surface wave seen on the right maps of FIG. 110.
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FIG. 109: Radiative heat transfer coefficient as a function of the separation distance L, for two planes of silicon dioxide SiO2

at temperatures T1 = 310 K and T2 = 290 K (dashed purple curve), and compared with the black body limit (solid blue line).
One can divide the separation distance L in three domains A, B, and C, respectively corresponding to the extreme near-field
below 200 nm, to the near-field from 200 nm to 10µm, and to the domain of Stefan-Boltzmann’s law beyond 10µm. This can
be seen by a change of the slope of the curve along these three ranges. The permittivity of SiO2 is extrapolated from optical
data [111, 112].

FIG. 110: Field modulus map of a given source dipole placed in the middle of a corrugation and right under the surface. The
field is here represented only in the upper grating, so as to highlight where the absorption takes place. This is for gratings at
a separation distance L = 25nm. The two figures on the left display the profiles in the xz−plane (in green) when they are
aligned (δ = 0), and the two figures on the right when they are laterally displaced by half-a-period (δ = d/2), both for two
different wavelengths λ = 8.75µm (top) and 9.15µm (down).
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The intensity or square modulus of the electric field represented in FIG. 110 appears only in the upper grating so as

to highlight the place of absorption. Two different wavelengths λ = 8.75µm and λ = 9.15µm are considered, based on

the fact that SiO2 has two resonance frequencies at λ = 8.75µm and λ = 21µm, as was shown on FIG. 12 of section

VIA1.

In the case where δ/p = 0% and λ = 8.75µm, we see that the field is clearly both intense and confined. As 8.75µm

corresponds to the horizontal asymptote of the surface phonon dispersion relation, a large number of modes with

different values of the wave vector are excited. This leads to a highly localized subwavelength hot spot. At 9.15µm,

the spot is broader as expected : this is similar to the loss of resolution of surperlens away from the resonance. On the

right column of the figure, we show the intensity for δ/d = 50%. As already said, these results can also be understood

through the data of FIG. 109, when considering the flux in the domains A and B.

In FIG. 111 we show the radiative heat transfer coefficient h as a function of the separation distance L, for two

planes at temperatures T1 = 310 K and T2 = 290 K. This is done for different materials : silicon dioxide SiO2, as well

as gold Au, aluminum Al, copper Cu, and tungsten W [69]. We see that the heat flux associated with the profiles of

SiO2 has a convex dependence on the separation distance L, whereas the flux associated with all four metals display

a concave dependence on L. As a result, the black body limit ∼ 6.13 W.m2.K−1 is reached much faster for metals

with increasing separation distance L : we find this distance to be approximatively equal to 250 nm, 260 nm, 275

nm, and 340 nm for copper, gold, aluminum, and tungsten, respectively. This is to be compared with SiO2 where the

black body limit was seen on FIG. 109 to be reached around ∼ 3.7µm.

One should note that in near-field, the heat flux is highly dependant on the properties of the materials permittivity.

We use here in this context silicon dioxide which is known to have surface polaritons, but in the case of two metallic

gratings such as gold for instance [73], the property of shallow skin depth for gold compared to dielectrics together

with the presence of surface plasmons may present non-trivial effects on the flux.

Unlike for the Casimir force, the power laws here for the radiative heat transfer as a function of separation distance

depend on which domain of separation range A, B, or C on FIG. 109 is considered. However one could imagine that

gradually increasing the electrical conductivity of a given dielectric would progressivley shift its curve in the plot of

FIG. 111 from having a convex shape to a concave shape, thus approximating in between a straight line and hence a

power law for at a given conductivity over the whole separation range. For instance this could be done with silicon

for different levels of doping or charge carrier densities [117], or for materials such as UV-treated indium tin oxide

(ITO) [169].
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FIG. 111: Radiative heat transfer coefficient as a function of the separation distance L, for two planes of different materials at
temperatures T1 = 310 K and T2 = 290 K. Silicon dioxide SiO2 appears in purple, and its permittivity is extrapolated from
optical data [111, 112]. Gold appears in yellow, aluminum in gray, copper in dashed orange, and tungsten in black. These four
metals are described by a Drude model [70] given by equation (135) and FIG. 11.
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B. Radiative heat transfer between gratings

We from now on consider two dielectric gratings of silicon dioxide SiO2 at temperatures T1 = 310 K and T2 = 290 K,

and explore the variations of the heat transfer coefficient h when the gratings are not laterally shifted (δ/d = 0%), and

when they are by half-a-period (δ/d = 50%), as shown on FIG. 112. This is done for several geometrical parameters

specifying the grating and cavity profiles : for the separation distance L in FIG. 113, for the grating period d in FIG.

114, for the filling factor p in FIG. 115, and for the grating groove depth a in FIG. 116.

Furthermore on FIG. 117, we study the heat transfer coefficient h as a function of a continuous lateral shift δ. For

each of these numerical computations, the scattering results coming from the formalism developed in section VIC 2

are compared with Derjaguin’s Proximity Approximation [131]. Notice that for all these plots, we are in the extreme

near-field ranges of separation distances.

We can make some remarks on the results of FIG. 113-117 :

• We recover for gratings at δ/d = 50% the plane-plane case of a variation of the flux with separation distance

following a convex shape on the log-log plots of FIG. 113, as compared to FIG. 109.

• At long separation ranges the gratings at δ/d = 0% and δ/d = 50% converge to the same value (FIG. 113). This

is because the lateral modes contribution, which accounts for the difference between these two lateral shifts do

not play a major role anymore at large distances L.

• Regardless of the distance on FIG. 113, the Proximity Approximation for the heat transfer coefficient works

well at δ = 0, but not at δ = d/2. At L = 25nm, the error of the Proximity Approximation is of ∼ 3% for

δ = 0, and of ∼ 35% for δ = d/2. The reason for this is illustrated in FIG. 110, especially on the right column

of the figure, showing the intensity for δ = d/2. There we can see that the heated region is delocalized, which

explains why the Proximity Approximation is clearly not valid. In this regime, the heat transfer is no longer

due to a dipole-dipole interaction through the gap. Instead, a dipole excites modes of the structures. In turn,

these spatially extended modes produce dissipation in the walls. This discussion indicates that the Proximity

Approximation is valid if the gap width does not vary significantly on a length scale approximatively given by

the spatial extension of the modes.

• In FIG. 114, we see that the heat transfer coefficients at δ = 0 do not vary much with a change of period d and

this is a further confirmation of the validity of the Proximity Approximation in this configuration. At δ = d/2,

however the scattering and Proximity Approximation results radically differ for small periods, but tend to agree

for large periods. The reason for this is that when d → ∞, the ratio a/d tends to zero and we expect the heat

transfer to be well approximated by the plane-plane case, and hence the Proximity Approximation.
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• As we saw for the dependence of the Casimir energy on the filling factor, we see again on FIG. 115 a linear

variation of the heat flux with p when the gratings are not laterally shifted. In this case, the Proximity

Approximation thus fits the scattering results very well. However in the case where the gratings are shifted by

half-a-period, we find this linear variation appearing only beyond p ∼ 40%, and the Proximity Approximation

results progressively rejoin the scattering values of the flux beyond a filling factor of 50%.

• The dependence of the heat flux on corrugation groove depth a shown in FIG. 116 confirms this difference between

the shifted and non-shifted gratings. For trenches with a > 150 nm, we see that the curves corresponding to

the scattering results for these two cases are almost perfectly parallel. This is again a consequence of the heat

flux being exponentially dependent on separation distance, which is expressed here through a deepening of the

grating grooves, so that the bottom of the grooves contributes less and less with increasing a.

• However because of the slope of the curves beyond a = 150 nm, this doesn’t mean that the ratio of the δ/p = 50%

case over the non-shifted case remains constant —we see a slow decrease of this ratio along this range, from

95% at a = 150 nm to 40% at a = 1µm.

• Notice also that the Proximity Approximation increases in accuracy with deeper trenches for the non-shifted

gratings, and decreases in accuracy with deeper trenches for the shifted gratings. Both the scattering and

Proximity Approximation results converge perfectly as a→ 0, since the profiles recover the shape of two planes

separated by a distance L.

• FIG. 117 gives a precious information on the dependence of the flux with lateral shift δ within the two boundaries

δ/p = 0% and δ/p = 50% considered in the previous plots. As already seen for the Casimir energy in section

VIIB 5, the scattering results can be well fitted by a sinusoid, and the Proximity Approximation does not

describe well the variation of the flux with a continuous lateral shift δ. The change in slope of the Proximity

Approximation at δ/p = 30% is directly related to the value of the filling factor p = 30% beyond which the local

separation distance shifts along with δ from a situation where the grating surface exposed at L decreases and

the surface exposed at L + a increases, to a situation where suddenly no grating surface is exposed at L but

only at L+ a.
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FIG. 112: Two identical gratings facing each other at a distance L and relatively shifted by a lateral displacement δ. The
corrugations have a period d, height a and thickness p′. The filling factor p = p′/d is given as a percentage of the period d.
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FIG. 113: Radiative heat transfer coefficient as a function of the separation distance L, for two gratings of silicon dioxide SiO2

at temperatures T1 = 310 K and T2 = 290 K, for a lateral shift δ/d = 0% (blue curve) and δ/d = 50% (dashed blue curve).
These two scattering results are compared with the Proximity Approximation (respective red curves). The gratings have a
period d = 1500 nm, filling factor p = 20%, and groove depth a = 500 nm. The permittivity of SiO2 is extrapolated from
optical data [111, 112].
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FIG. 114: Radiative heat transfer coefficient as a function of the grating period d, for two gratings of silicon dioxide SiO2 at
temperatures T1 = 310 K and T2 = 290 K, for a lateral shift δ/d = 0% (purple curve) and δ/d = 50% (dashed purple curve).
These two scattering results are compared with the Proximity Approximation (respective red curves). The gratings are at a
separation distance L = 100 nm, filling factor p = 20%, and groove depth a = 500 nm. The permittivity of SiO2 is extrapolated
from optical data [111, 112].

0 20 40 60 80 100

50

100

150

200

250

300

Filling factor pH%L

H
ea

tt
ra

ns
fe

r
co

ef
fic

en
tHW

.m
-

2 .K
-

1 L

FIG. 115: Radiative heat transfer coefficient as a function of the filling factor p, for two gratings of silicon dioxide SiO2 at
temperatures T1 = 310 K and T2 = 290 K, for a lateral shift δ/d = 0% (blue curve) and δ/d = 50% (dashed blue curve). These
two scattering results are compared with the Proximity Approximation (respective red curves). The gratings have a period
d = 500 nm, separation distance L = 100 nm, and groove depth a = 500 nm. The permittivity of SiO2 is extrapolated from
optical data [111, 112].
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FIG. 116: Radiative heat transfer coefficient as a function of the grating groove depth a, for two gratings of silicon dioxide SiO2

at temperatures T1 = 310 K and T2 = 290 K, for a lateral shift δ/d = 0% (green curve) and δ/d = 50% (dashed green curve).
These two scattering results are compared with the Proximity Approximation (respective red curves). The gratings have a
period d = 500 nm, filling factor p = 20%, and separation distance L = 100 nm. The permittivity of SiO2 is extrapolated from
optical data [111, 112].
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FIG. 117: Radiative heat transfer coefficient as a function of the lateral shift δ, for two gratings of silicon dioxide SiO2

at temperatures T1 = 310 K and T2 = 290 K (blue curve). These scattering results are compared with the Proximity
Approximation (red curve). The gratings have a period d = 500 nm, filling factor p = 30%, groove depth a = 500 nm, and
separation distance L = 100 nm. The permittivity of SiO2 is extrapolated from optical data [111, 112].
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C. A thermal modulator device for nanosystems

In the previous section we have seen that, an important contribution to the total value of the flux can come from

the surface polaritons present in certain materials [80]. Here we focus on the interplay between the surface waves

excitation and the surface profile, as already shown on FIG. 112 and see how this modulates the flux. We already saw

in section IXB that for certain geometrical parameters, the radiative heat transfer varied strongly between the case

where the gratings were not laterally shifted (δ/p = 0%) and the case where they were by half-a-period (δ/p = 50%).

This modulation of the flux with lateral shift δ could easily find a practical nanotechnological application in the

form of a thermal modulator device for nanosystems. Although such a thermal modulator could also be based on a

variation of the separation distance L [72, 76] according to the results shown in FIG. 109 and 111, modulating the

flux through the lateral shift δ is much more stable in its implementation. Other thermal modulator devices could

be based on a rotation of the two plates with respect to one another along the z-axis [64]. Unfortunately no exact

method of calculation presently exists to estimate the efficiency of such devices yet.

Furthermore, radiative heat transfer is now being studied over a broad range of materials [68], such as different

alloys combining the polaritons of certain dielectrics and the near-field properties of metals. The issue of heat transfer

in near-field in the case of coatings [168], phase change materials [68, 70], metamaterials [166, 170], and graphene-

covered dielectrics [62] are also being explored. The practical applications of thermal modulators could therefore be

numerous and diverse.

In FIG. 118-121, we vary the different geometrical grating parameters in order to optimize the modulation of the

flux between δ/p = 0% and δ/p = 50%, and potentially specify an optimized thermal modulator. As mentioned

before, silicon dioxide SiO2 is a good choice of material for such a device, as it supports surface phonon-polaritons,

which are known to enhance the flux. This was practically shown in the field modulus map of FIG. 110, and the plots

of FIG. 109 and 111.

• We find an optimized value of the filling factor at p = 20%, as seen on FIG. 118, for corrugated profiles with

period d = 500 nm and at a distance L = 100 nm.

• The main result is that we have shown the possibility to modulate the heat flux by simply varying the gratings

laterally along δ by a modulation factor Wδ/d=0%/Wδ/d=50% of more than 36. This is shown on FIG. 119 in

extreme near-field at a separation distance L = 25 nm, for gratings with corrugation period d = 1500 nm, filling

factor p = 20%, and groove depth a = 500 nm. It is important to choose a filling factor p 6= 50% to optimize

the modulation enhancement, as this avoids the lateral modes contribution present at δ/d = 50%, as already

shown on the field modulus map of FIG. 110.
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• From the plots shown in FIG. 119-121, we can draw general rules of modulation enhancement by a convenient

choice of the grating geometrical parameters : one should design a thermal modulator based on gratings with a

separation distance L kept as small as possible, a grating period d as large as possible, a filling factor p kept at

around a fifth of the period, and for corrugation trenches as deep as possible.

• Based on our study of the previous section, these geometrical parameters should be determined through an exact

method such as scattering theory, not the Proximity Approximation which is used in metrology experiments and

nanotechnological applications. Had we used the Proximity Approximation to calculate the modulation factor

at L = 25 nm for the gratings of FIG. 119, we would have found a value of more than 54, thereby overestimating

the exact value of the modulation by more than 50%.
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FIG. 118: Radiative heat transfer coefficient as a function of the filling factor p, for two gratings of silicon dioxide SiO2 at
temperatures T1 = 310 K and T2 = 290 K, for a lateral shift δ/d = 0% (blue curve) and δ/d = 50% (dashed blue curve). The
results are plotted together with the percentage of modulation factor Wδ/d=0%/Wδ/d=50% (dotted gray line). The gratings have
a period d = 500 nm, separation distance L = 100 nm, and groove depth a = 500 nm. The permittivity of SiO2 is extrapolated
from optical data [111, 112].
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FIG. 119: Radiative heat transfer coefficient as a function of the separation distance L, for two gratings of silicon dioxide SiO2

at temperatures T1 = 310 K and T2 = 290 K, for a lateral shift δ/d = 0% (blue curve) and δ/d = 50% (dashed blue curve).
The results are plotted together with the percentage of modulation factor Wδ/d=0%/Wδ/d=50% (dotted gray line). The gratings
have a period d = 1500 nm, filling factor p = 20%, and groove depth a = 500 nm. The permittivity of SiO2 is extrapolated
from optical data [111, 112].
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FIG. 120: Radiative heat transfer coefficient as a function of the grating period d, for two gratings of silicon dioxide SiO2 at
temperatures T1 = 310 K and T2 = 290 K, for a lateral shift δ/d = 0% (purple curve) and δ/d = 50% (dashed purple curve).
The results are plotted together with the percentage of modulation factor Wδ/d=0%/Wδ/d=50% (dotted gray line). The gratings
are at a separation distance L = 100 nm, filling factor p = 20%, and groove depth a = 500 nm. The permittivity of SiO2 is
extrapolated from optical data [111, 112].
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FIG. 121: Radiative heat transfer coefficient as a function of the grating groove depth a, for two gratings of silicon dioxide
SiO2 at temperatures T1 = 310 K and T2 = 290 K, for a lateral shift δ/d = 0% (green curve) and δ/d = 50% (dashed green
curve). The results are plotted together with the percentage of modulation factor Wδ/d=0%/Wδ/d=50% (dotted gray line). The
gratings have a period d = 500 nm, filling factor p = 20%, and separation distance L = 100 nm. The permittivity of SiO2 is
extrapolated from optical data [111, 112].
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X. DISCUSSION OF THE RESULTS AND CONCLUSION

As discussed in the introduction, the Casimir energy and near-field radiative heat transfer are both theoretically

and experimentally well known between planar surfaces. But the real world of nanoengineering rarely deals with such

simples surfaces. In this thesis we have studied periodic nanogratings, which present a whole new level of complexity

in the calculation of both the Casimir force and the heat flux due to their associated diffraction of the electromagnetic

modes present in vacuum.

After briefly reviewing some main aspects of the quantum theory and thermodynamics in section V, we gave the

ensuing derivation of the Casimir energy and heat flux between nanogratings through a scattering formalism in section

VI. This was done for a Casimir force at thermal equilibrium in section VIB, and out-of-thermal equilibrium in section

VIC.

Then we presented numerical calculations by computing the Casimir energy at zero temperature for all kinds of

gratings in section VII, at non-zero temperatures for gratings in section VIIIA, and out-of thermal equilibrium for

gratings in section VIII B. We finished our study by calculating radiative heat transfer between gratings in section IX,

and the narrowing of several geometric and permittivity parameters for the design of a potential thermal modulator

for nanosystems. Let us now recall our most important results.

First concerning our results of sections VII-VIII on the Casimir effect :

• The variation of the Casimir energy with filling factor can be well approximated, regardless of the material, by a

straight line joining the two extremities p = 0% and p = 100%. This is a useful result because these two points

are basically computed from the trivial plane-plane case at the respective separation distances L and L+ 2a.

• The variations of the Casimir energy with the lateral shift are confined within an extremely narrow band,

regardless of the considered material. The results can be very well interpolated by a sinusoid, which is again a

useful result because one can well approximate the Casimir energy over different lateral shifts if only the values

at δ = 0 and δ = 50% are known. The Proximity Approximation does not well describe at all the variations of

energy with lateral shift.

• The magnitude of the lateral Casimir force is very small compared to the magnitudes of the normal Casimir

force. The lateral Casimir force for dielectrics is smaller than for metals by up to a factor two.

• The Proximity Approximation is in general a precise approximation when compared to the Casimir energy as a

function of separation distance for metallic gratings, but not for dielectrics.

• We then considered arbitrary periodic gratings. At a given distance, the Casimir energy for sawtooth gratings
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with specific period and groove depth is about half of the Casimir energy for rectangular gratings with same

period and groove depth.

• The Casimir energy of two barbed wire gratings with given period and groove depth is about three times larger

than the Casimir energy of rectangular gratings that are included within them. However, the rectangular

gratings that include barbed wire profiles have about the same Casimir energy as them.

• Rectangular and sinusoidal profiles share narrower Casimir energy values, and likewise for sawtooth and circular

profiles. An important result is that in the case of these arbitrary gratings, the Proximity Approximation can

be used in the neighborhood of δ = d/2.

• We then studied the Casimir energy at thermal equilibrium for non-zero temperatures. Regardless of the chosen

material, a non-zero temperature increases the value of the Casimir energy at long separation distances. But for

gold below the range of approximatively three microns, the Casimir energy at zero temperature is larger than

at 300 K.

• At a close separation distance, the gradual increase of temperature has but a small effect on the Casimir energy,

both for planes and gratings and regardless of the material. Conversely, at large distances the contribution of

non-zero temperatures to the Casimir energy is large.

• Concerning our results on the Casimir force out-of-thermal equilibrium, we conclude that both the non-

equilibrium and equilibrium contributions to the total Casimir force for two planes at temperatures 290 K

and 310 K follow a power law when plotted as a function of separation distance in 1/L3.

• When plotted as a function of corrugation groove depth for two gratings of silicon with same temperatures

290 K and 310 K, the non-equilibrium part does not decrease continuously with larger corrugation depths but

reaches a minimum at a = 300 nm. As in the plane-plane case, the non-equilibrium contribution is smaller than

the equilibrium part by almost three orders of magnitudes.

• We studied the interplay between temperature gradient, temperature average, and separation distance so as to

both explore the domain where the non-equilibrium contribution is negative, and to see when its proportion to

the total Casimir force becomes large enough to become interesting to experimental measurements and practical

applications. We found that for certain values of these variables, there exists a separation distance beyond

which the non-equilibrium part becomes negative, and it is possible to optimize those variables so that this

separation distance is decreased. Since the equilibrium part decreases with distance as well, the proportion of

the non-equilibrium part was found at three microns to reach almost a fourth of the equilibrium part. Since

these are recent results, the physical explanation of these effects is not ye fully clear.

Let us now recall our main results of section VIII on radiative heat transfer :
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• In the plane-plane case, the heat flux associated with the profiles of SiO2 has a convex dependence on the

separation distance, whereas the flux associated with metals display a concave shape on a logarithmic plot. As

a result, the black body limit is reached much faster for metals with increasing distance than silicon dioxide.

The heat flux associated with SiO2 can be divided into three domains, each displaying a local power law with

distance associated with the contributions of distinct physical phenomena.

• At long separation ranges the heat flux associated with gratings that are laterally shifted or not is approxima-

tively the same, but in extreme near-field this difference can be very large. At a separation distance of 25 nm,

we found it is thus possible to modulate the heat flux by simply shifting the gratings laterally with a modulation

factor of more than 36.

• At a separation distance of 25 nm, we found that the error of the Proximity Approximation is of 3% for the

non-shifted considered gratings, and of 35% when shifted.

• For silicon dioxide, the heat flux decreases with deeper corrugation grooves. This is in opposition to gratings of

gold [73], where digging the grooves may unintendedly create waveguides so that the flux is enhanced by surface

plasmons travelling into the trenches.

• There is a linear variation of the heat flux with increasing filling factor when the gratings are not laterally

shifted. When the gratings are shifted by half-a-period, we find this linear variation appearing only beyond a

filling factor of 40%.

• As for the Casimir energy, the heat flux as a function of lateral shift is well fitted by a sinusoid. However, the

variations reached by the flux over this shift are important.

• Our study allows us to draw general rules of thermal modulation enhancement by a convenient choice of the

grating geometrical parameters : smaller separation distance, larger grating periods, deeper corrugations grooves,

and a filling factor kept at around a fifth of the period.

Throughout these numerical calculations, we have systematically compared exact results from scattering theory

with Derjaguin’s Proximity Approximation [131]. The reason for this is not to exagerate the importance of this

approximation. Rather, it is used as a tool in the framework of scattering theory, which considers the sum of all

the diffracted modes at the interface : the contribution of the lateral modes to the total force or flux can then be

compared with the contribution of the normal modes through the Proximity Approximation results. Furthermore this

approximation is used in measurement experiments and nanoengineering [171], where the exact computation of the

force or flux faces an obvious challenge of time and complexity1 that can be only met by a systematic study like the

one presented here.

[1] It was not uncommon that the numerical computation of just one point of the plots of section VIII B on the out-of-thermal equilibrium
force, or of section IX on the heat flux, would take several weeks on a workstation.



192

Based on all these results, we can say that the field of research in Casimir physics and especially near-field heat

transfer has a strong potential. Future developments based on our work could lead to an in-depth study of the repulsive

regime of the Casimir force through out-of-thermal equilibrium conditions. From an application perspective [172, 173],

these could lead practically to a mechanical modulation of the Casimir force through temperature control of each

plate.

Also from an application perspective, the heat flux for arbitrary periodic gratings such as those seen in section VII E

for the Casimir energy, could also be evaluated. This could open the way to potentially greater factors of modulation

through lateral displacement. The issue of new materials that are of interest to heat transfer enhancement should

also be explored [68], as well as coatings [62, 168, 174] and metamaterials [166, 170].

Finally, the computations presented here are the first exact numerical calculations of the Casimir force out-of-

thermal equilibrium between gratings, and of the heat flux between dielectric gratings. From an experimental point of

view, our results are waiting for confirmation by precision measurements and should hence be a valuable information

to experimentalists.
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Appendix A : The Wave-Vector-Space Method Applied to Nonplanar Surfaces

We use the wave-vector-space method described in[175], and try to apply it to different nonplanar surfaces. In order

to do this, we will seek to Fourier-transform the wave equation of the field so that it is written in wave-vector-space.

We will do that for the case of a corrugated surface, and any surface bounded by an analytical function. We show

that this method is not particularly adapted to these nonplanar surfaces.

I. The polynomial theorem

Our first concern here will be to clearly outline the conditions of validity of an important theorem which is used in

the k-space method, which we shall call the polynomial theorem for further reference. We consider a one-dimensional

approach here only, but this will be done in view of an ultimate application in a two-dimensional environnement.

Generalization of this framework to a function of the vector variable k should be trivial.

• First let’s consider an analytical function f(k) where k is a component of the vector k, such as kx, ky, or kz.

• By Liouville’s theorem we know that f(k) must either be constant, or have poles. Disregarding the case where

it is constant, let’s write it as the sum of two parts f(k) = f (+)(k) + f (−)(k), such that f (+)(k) (resp. f−)(k))

is the part of f(k) with all the poles in the upper half (resp. lower half) complex k-plane.

• The poles must not be lying on the real axis. Assume we have M (resp. N) poles in the upper half (resp. lower

half) complex k-plane, and with the u-th (resp. l-th) pole at ku (resp. kl) and of order nu (resp. nl). Then if

we define pu(k) (resp. pl(k)) a given polynomial in k, we can express f (+)(k) and f−)(k) as :

f (+)(k) =
M∑

u=1

pu(k)

(k − ku)nu

f (−)(k) =

N∑

l=1

pl(k)

(k − kl)nl

• Now since for infinite k, f(k) tends to 0 at least as fast as 1/k, we can deduce that the degree of the polynomial

pu(k) (resp. pl(k)) must be below nu − 1 (resp. nl − 1).

• Now under these conditions we can express the polynomial theorem, for an infinitesimal positive quantity η :

1

2πi

∫ +∞

−∞

f(k′)dk′

k − k′ − iη
= f (+)(k)
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Proof : Let’s prove this equation above by considering the series expressing f (+)(k) :

1

2πi

∫ +∞

−∞

1

k − k′ − iη

M∑

u=1

pu(k
′)

(k′ − ku)nu
dk′

Now all poles k′ = ku are in the upper half-plane, and the other pole of the integrand is in the lower half-plane, at

k′ = k − iη.

This can be simplified by a contour integration over the perimeter of a semi-circle with the real axis forming the

straight side, and the semicircular arc extending into the lower half-plane.

Now the real integral is equal to the residue at pole k′ = k − iη, because the contribution along the semi-circular

arc vanishes as its radius becomes infinite (for the integrand approaches zero at least as fast as 1/k2 when k → ∞).

So we have, for η → 0 :

1

2πi

∫ +∞

−∞

f (+)(k′)dk′

k − k′ − iη
=

M∑

u=1

pu(k − iη)

(k − ku − iη)nu
= f (+)(k)

.

As for f (−)(k), the method follows a similar philosophy of contour integration, so that the real integral vanishes :

1

2πi

∫ +∞

−∞

f (−)(k′)dk′

k − k′ − iη
= 0

Then this equation together with the previous one proves our theorem.

II. The k-space method step by step

The wave-vector-space method works without boundary conditions, and thus differs from the real-space method.

In a nutshell, it works by Fourier-transforming the wave equation of the electric field, simplifying it in k-space so that

the poles of the field are determined and the electric field can be written as a function of the r and t amplitudes of the

S-matrix ; then in selected and specific conditions, these may be derived by re-inserting the electric field expressions

into the wave equation.

Following the example of the article, let’s proceed further and detail the step by step procedure :

1. Wisely choose a step function that will separate the vacuum θ(z) = 0 from the medium θ(z) = 1 (see [175]

equation 4). The boundary of z defines the geometry of the medium’s surface. Here we set it as equal to 0

because we consider a planar surface, but as we will see, we could have defined it as any analytical function of

z = γ(x) :
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θ(z) =

{
1 if z > 0
0 if z < 0

2. Fourier-transform it along with the whole wave equation describing the electric field in real-space (see [175]

equation 2), so as to have it expressed in wave-vector-space (see [175] equation 8) :

∇× [∇×E(x, ω)]− ω2

c2
[1 + θ(z)χ(ω)]E(x, ω) = 0

↓

∫
{k× [k×E(k)] +

ω2

c2
E(k)}eik.xdk

+
ω2

c2
χ

∫∫
δ(k′x)δ(k

′
y)

2πi(k′z − iη)
E(k′′)ei(k

′+k′′).xdk′dk′′ = 0

3. Write the electric field as a sum of two parts : one corresponding to the field in the medium E(+)(k) with

poles in the upper-half of the complex k-plane, and the other corresponding to the field in the vacuum E(−)(k)

with poles in the lower-half of the complex k-plane. And through the use of the polynomial theorem (see [175]

equation 11) :

1

2πi

∫
E(kx, ky, k

′
z)

kz − k′z − iη
dk′z = E(+)(k)

simplify the wave equation above in k-space (see [175] equation 13) :

k.E(−)(k) + κk.E(+)(k) = 0

4. Determine the poles of E(+)(k) and E(−)(k) through that simplified wave equation (see [175] equation 15,17).

{
kV ≡ [k20 − k2x − k2y]

1
2

kM ≡ [κk20 − k2x − k2y]
1
2

(417)

5. Write the electric fields E(+)(k) and E(−)(k) in terms of these poles, and in terms of yet undetermined functions

: t(−)(kx, ky), r
(−)(kx, ky), t

(+)(kx, ky), and r(+)(kx, ky) which we will later associate with the transmission and

reflection amplitudes of the electric fields, both for the medium and the vacuum (see [175] equation 18).
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{
E(+)(k) = 1

2πi [
t(+)(kx,ky)
kz−kM−iη +

r(+)(kx,ky)
kz+kM−iη ]

E(−)(k) = 1
2πi [−

t(−)(kx,ky)
kz−kV +iη − r(−)(kx,ky)

kz+kV +iη ]
(418)

6. Choose certain oblique incidences so as to specify these amplitudes (see [175] equation 19), and then recast them

into the expressions of the electric fields found in the previous step.





t(−)(kx, ky) = E0e1δ(kx − k0sinθi)δ(ky)
r(−)(kx, ky) = E0re2δ(kx − k0sinθr)δ(ky)

t(+)(kx, ky) = E0te3δ(kx − k0nsinθφ)δ(ky)
r(+)(kx, ky) = 0

(419)

7. Now replace these electric fields in the simplified wave equation from step 4 so as to now clearly specify their

poles (see [175] equation 23,24) :

{
kV = k0cosθ

kM = k0ncosφ
(420)

8. Substitute these poles in that obtained equation (see [175] equation 25).

−[(k20 − k2)e1 + k(k.e1)]
1

kz − k0cosθ

−[(k20 − k2)e2 + k(k.e2)]
r

kz + k0cosθ

+[(κk20 − k2)e3 + k(k.e3)]
t

kz − k0ncosφ
= 0

9. Finally choose a given s- or p-polarization (resp. TE or TM) in order to simplify the expressions of the unit

vectors e1, e2, and e3, and solve the equation, finding the corresponding amplitudes, and thus the S-matrix.

III. Application to different surfaces

We will now try to apply this wave-vector-space method, but now for different types of surfaces. As explained

earlier, the shape of the mirror’s surface appears as the boundary of z in the step-function θ. We will thus use a
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FIG. 122: Two-dimensional illustration of corrugated gratings.

step-function separating vacuum and medium, with a geometry corresponding to a corrugated surface and then to

any surface represented by an analytical z = γ(x) function in the x-z plane.

III.1 Corrugated surfaces

Let’s define a two-dimensional step function θ(x, z) describing a corrugated surface, ∀n ∈ Z defining the step of the

corrugation :

θ(x, z) =

{
1 if (z > b and 2na < x < [2n+ 1]a) or (z > 0 and [2n+ 1]a < x < [2n+ 2]a)
0 if (z < b and 2na < x < [2n+ 1]a) or (z < 0 and [2n+ 1]a < x < [2n+ 2]a)

Now this can be written ∀n ∈ Z as :

θ(x, z) = θ1(z)θ1(x) + θ2(z)θ2(x)

by defining the following smaller step functions :

θ1(z) =

{
1 if z > b
0 if z < b

θ2(z) =

{
1 if z > 0
0 if z < 0

θ1(x) =

{
1 if 2na < x < (2n+ 1)a
0 if (2n+ 1)a < x < (2n+ 2)a

θ2(x) =

{
1 if (2n+ 1)a < x < (2n+ 2)a
0 if 2na < x < (2n+ 1)a
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Now we can work out the Fourier transform of this product of simpler step-functions according to (see [175] equation

5) :

θ(k) = θ(kx, ky, kz) =
1

(2π)3

∫∫∫
[θ1(z)θ1(x) + θ2(z)θ2(x)]e

−i(kxx+kyy+kzz)dxdydz

The term in y is Fourier-transformed as 2πδ(ky), and so we are left with a sum of two double-integrals on x and z :

θ(k) =
δ(ky)

(2π)2

∫∫
θ1(z)θ1(x)e

−ikxxe−ikzzdxdz +
δ(ky)

(2π)2

∫∫
θ2(z)θ2(x)e

−ikxxe−ikzzdxdz

Now already at this early stage we can see that we will face difficulties in the application of the polynomial theorem

for this Fourier transform. Even if we fortunately came to a most simple form, such as :

ℑ{θ(x, z)} = θ(k) = ℑ{θ1(z)}ℑ{θ1(x)}+ ℑ{θ2(z)}ℑ{θ2(x)}

we would already see that the requirement of step 3 in the k-space method will not be met. This requirement

stressed that the polynomial theorem as applied to the step function in k-space allows one to write it as E(+),

hence greatly simplifying the wave equation. And since this is crucial to find the poles of these electric fields, which

themselves are to specify the r and t amplitudes later on, it seems we are confined to step 3 at least for now. Hence

in our case, even in the most optimistic scenario of a total Fourier transform θ(kx,kz) becoming a sum of products

of individual Fourier-transformed simpler step functions as, we couldn’t hope to recover the theorem in any trivial way.

Sidenote : We can already intuitively sense from this case of a corrugated surface, that both x- and z-components

will be appearing in the electric field wave equation, and hence deduce that the field coming from the vacuum and

interfering with the medium at a certain angle will likely be dispersed and not simply reflected.

III.2 Surfaces bounded by an analytical function z = γ(x)

Now let’s assume any given analytical function z = γ(x) describing the surface geometry of our mirror. For reasons

that will become clear later on, let’s also assume it is vanishing outside of the interval −l < x < l. Since we saw in

our previous section that the case of a corrugated surface doesn’t allow one to use the wave-vector-space method in

any trivial way beyond step 3, our methodology here will be to go as far as possible in the derivation of z = γ(x),

and then to see which of its analytical properties may simplify its Fourier-transform to the point where one could use

the polynomial theorem successfully. More specifically, one should keep in mind that the reason that the polynomial
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FIG. 123: Arbitrary gratings parametrized by an analytical function z = γ(x).

theorem is used is that it allows one to conveniently write the electric field into two parts, E(+)(k) and E(−)(k), and

hence simplify the wave equation in k-space to the point where it is easily solvable.

Let’s define the following step function :

Ω(x, y = 0, z) = Ω(x, z) =

{
1 if | z |< γ(x)
0 if | z |> γ(x)

To switch from real-space to wave-vector-space, let’s find its Fourier transform ℑ{Ω(x, y = 0, z)} = ℑ{Ω(x, z)} =

Ω(kx, ky, kz) = Ω(k) :

Ω(k) = 1
(2π)3

∫∫∫
Ω(x, z)e−i(kxx+ky.0+kzz)dzdydx

= 1
(2π)3

∫∫
[
∫ +γ(x)

−γ(x)
1.e−ikxxe−ikzzdz

+
∫ −γ(x)

−∞
0.e−ikxxe−ikzzdz

+
∫ +∞

+γ(x)
0.e−ikxxe−ikzzdz]dydx

= 1
(2π)3

∫
[
∫
[ e

−i(kxx+kzz)

−ikz
]
+γ(x)
−γ(x)dy]dx

=
δ(ky)
4π2ikz

∫ +l

−l
[e−ikxx+ikzγ(x) − e−ikxx−ikzγ(x)]dx

=
δ(ky)
4π2ikz

{[ e−ikxx−ikzγ(x)

ikx+ikzγ′(x) ]+l
−l + [ e

−ikxx+ikzγ(x)

−ikx+ikzγ′(x) ]
+l
−l}

Where, following the article, we Fourier-transformed the term in y as 2πδ(ky). Now, we can expand this expression,

but the result is so complex that it is nowhere near useful for the rest of our calculus in k-space. Nevertheless we can

operate some cuts on γ(x) and narrow its analytical properties in such a way that the expression of Ω(k) becomes

much simpler, allowing us hopefully to go on with the wave-vector-space method. So let’s choose γ(x) in such a way
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that :

{
γ(l) = γ(−l)

γ′(l) = γ′(−l) = 0
(421)

Eventually, we come to the much simpler form :

Ω(k) =
δ(ky)

π2kxkz
sin[kxl] sin[kzγ(l)]

This is an interesting result in view of the later task of finding the poles, since the sine functions are always

comprised between −1 and +1.

We must now replace this result into the electric field wave equation, and make the inverse Fourier-transform of it :

∫
{k× [k×E(k)] +

ω2

c2
E(k)}eik.xdk+

ω2

c2
χ.ℑ{Ω(x, z).E(x, ω)} = 0

Notice the nabla operators from real-space have become wave-vectors k, and that we used again χ(ω) as the

susceptibility. Then all we need, in order to simplify this equation is to find ℑ{Ω(x, z).E(x, ω)} :

ℑ{Ω(x, z).E(x, ω)} =
∫
{k′}

∫
{k′′}

Ω(k′)E(k′′)ei(k
′x+k′′x)dk′dk′′

= 1
π2

∫
{k′}

∫
{k′′}

sin[k′
xl]

k′
x

δ(k′y)
sin[k′

zγ(l)]
k′
z

·ei(k′
xx+k′

yy+k′
zz)ei(k

′′
xx+k′′

y y+k′′
z z)E(k′′x , k

′′
y , k

′′
z )dk

′dk′′

Where in the second equation we expanded k′ and k′′ in the integrand over their components (k′x, k
′
y, k

′
z) and

(k′′x , k
′′
y , k

′′
z ) respectively. Following [equ.9], we should now substitute k = k′ + k′′ and carry the k′y integration. The

result should manifest a two-dimensional version of the polynomial theorem, which would simplify to a trivial function

of E(+)(k).

IV. Discussion

At this stage, we need to find a proper derivation of the polynomial theorem for our two-dimensional case, so

that the k-space version of the wave equation may simplify (in view of finding the poles of the electric field). The

article implies that the generalization of its proof to any function f(k) is straightforward. But the result we found
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for ℑ{Ω(x, z)E(x, ω)} suggests that, at least for the cases of corrugated surfaces or for analytical functions γ(x) such

as we specified them, this will not be an easy task. And much less, when we will consider a Fabry-Pérot cavity later on.

However, we can already forsee the main analytical properties that an analytical function describing the surface of

a mirror will have to bear, so as to simplify ℑ{Ω(x, z)} and hence be usable. Among these properties, we may say

that :

• Any trigonometrical function, even written in exponential form, does not simplify Ω(k) particularly. This is due

to the fact that we Fourier-transform a step function, not γ(x) : our γ(x) function only appears in the exponent

of the exponential term, since it is the boundary of the medium and hence of the step-function when integrated.

Now we are not interested in having an exponential of an exponential.

• The interest of working in Fourier-space is that it is in general well-suited to the study of periodic signals.

Nevertheless, since we are Fourier-transforming a step-function and not a function describing the (periodic)

shape of our mirror, the property of periodicity is not of particular advantage to us.

• We could try to define γ(x) in such a way that it cancels this exponential term. However this is not an easy task,

because for example even if we could find nano-objects whose surface is described satisfactorily by logarithmic

functions (γ(x) = lnx), the logarithm term in the exponent wouldn’t simplify the exponential, since we are not

dealing with eln x but with e−ikz ln x.

• Last but not least, we used a medium that is bounded by two functions +γ(x) and −γ(x). So we are not in

the case of a medium whose surface’s shape is described by an analytical function, and that has the rest of its

frame spreading towards infinity. Also, we took our mirror surface to be delimited by x = ±l. And finally,

remember we required that γ(l) = γ(−l) and γ′(l) = γ′(−l) = 0. A simple way to sum up all these conditions

is to visualize a nano-mirror whose shape in the x-z plane is that of a vase, with its center being the origin, and

its extremities consisting of two discs of arbitrary thickness. Notice that if we had described a trigonometrical

or corrugated surface with an analytical function, we could have used our result here for Ω(k). Also, it still

has to be shown whether or not all these analytical requirements make γ(x) to describe potentially interesting

nano-surfaces.
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Résumé de la thèse “Energie de Casimir et transfert thermique radiatif entre surfaces
nanostructurées”, J. Lussange

Nous étudions dans cette thèse le cas d’une cavité formée par des plaques parallèles nanostruc-
turées séparées par du vide, lorsque les deux plaques sont à l’équilibre thermique et lorsqu’elles sont
hors-équilibre thermique. Par une méthode exacte basée sur l’approche de diffusion, nous évaluons
d’abord de façon numérique dans le premier cas la force de Casimir pour une température nulle puis
pour une température non nulle, et ensuite dans le deuxième cas nous nous intéressons à la force de
Casimir hors-équilibre puis au transfert thermique radiatif.

I. PROFILS À L’ÉQUILIBRE THERMIQUE

A. Température nulle

1. L’effet Casimir entre des surfaces planes

A la fin des années 1940, un jeune Hollandais du nom de Hendrik Casimir travaillait aux Laboratoires de Recherche

chez Philips aux Pays-Bas sur le sujet des solutions colloidales. Les solutions colloidales sont des solutions visqueuses,

soit gazeuses soit liquides, qui contiennent des particules de dimensions micromètriques en suspension —comme de

l’argile mélangée à de l’eau, du lait, de l’encre, ou encore de la fumée. Theodor Overbeek, qui était un collègue

de Casimir, se rendit compte que la théorie qui était utilisée jusqu’alors pour décrire les forces de van der Waals

entre ces particules en suspension était en contradiction avec les observations expérimentales. Il demanda à Casimir

d’étudier ce problème. Travaillant avec Dirk Polder, et après plusieurs suggestions émanant de Niels Bohr, Casimir

eut l’intuition que l’interaction de van der Waals entre des molécules neutres devait être correctement interprétée en

termes de fluctuations du vide. A partir de là, Casimir orienta son travail de recherche de la configuration particule-

particule vers le cas de deux mirroirs plans parallèles. En 1948 il fit ainsi la prédiction d’une attraction mécanique

d’origine quantique entre deux plaques conductrices plongées dans le vide. Cette force est aujourd’hui appelée force

de Casimir [1] et a depuis été fort bien étudiée dans son domaine de validité, aussi bien au niveau expérimental [2–13]

que théorique [14–19].

La force de Casimir vient d’une compréhension quantique du vide [20, 21]. At tout moment, l’énergie des champs

présents dans le vide oscille autour d’une valeur moyenne constante dite d’énergie de point zéro, ou énergie du vide.

Celle-ci est donnée par la quantification de l’oscillateur harmonique associé à chaque mode, sachant que l’énergie la

plus basse de chaque oscillateur est égale à la moitié de l’énergie du photon, à laquelle s’ajoute une fonction de densité

du nombre de photons n(ω, T ) en présence d’un champ thermique :

E(ω, T ) = ℏω

(
1

2
+ n(ω, T )

)
=

1

2
ℏω coth

ℏω

2kBT
avec n(ω, T ) =

1

eℏω/kBT − 1
(1)

Dans un espace non-confiné, les longueurs d’onde du spectre des champs ont toutes la même importance. En

revanche, dans une cavité formée par les deux mirroirs plans parallèles imaginés par Casimir, les fluctuations du vide

blank



2

de ces champs sont amplifiées à une résonance dite de cavité, qui apparait lorsque la distance de séparation des deux

mirroirs est égale à la moitié de la longueur d’onde des champs, multipliée par un entier. Reciproquement, le champ

est supprimé à toutes les autres longueurs d’onde. Ceci est dû aux multiples phénomènes d’interférence à l’intérieur

de la cavité.

�������

�������	��A

B

FIG. 1: Cavité de Fabry-Pérot formée par deux plaques parallèles de surface A, et séparées par une distance L dans le vide.

L’énergie du vide associée à ces champs à l’intérieur et à l’extérieur de la cavité est à l’origine d’une pression de

radiation des champs. A la résonance de cavité, la pression de radiation à l’intérieur de la cavité est plus grande

que celle qui est à l’extérieur si bien que les deux mirroirs sont repoussés l’un de l’autre. En revanche dans le cas

hors-résonance de cavité, la pression de radiation à l’intérieur de la cavité est plus petite que celle à l’extérieur et les

mirroirs sont poussés l’un vers l’autre. La force de Casimir est construite à partir de la somme de toutes les fréquences

des modes et apparâıt donc comme une force attractive entre les deux mirroirs.

Entre deux plaques de surface A séparées par une distance L à température nulle, la force de Casimir peut être

écrite comme la somme sur tous les modes du champ, spécifiés par leur polarisation p, composantes de vecteur d’onde

k = (kx, ky), et fréquence ξ(= −iω) :

F =
Aℏc

8π3

∑

p

∫

kx∈R

dkx

∫

ky∈R

dky

∫ ∞

0

dξκ
rpk,1(iξ)e

−κLrpk,2(iξ)e
−κL

1− rpk,1(iξ)e
−κLrpk,2(iξ)e

−κL

où les coefficients scalaires rpk,1 et rpk,2 sont les amplitudes de Fresnel-Stokes correspondant aux réflections spéculaires

sur les profils. Nous avons utilisé ici les conventions suivantes :
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ω2

c2
= k2x + k2y + k2z = k+ k2z avec κ =

√
ξ2

c2
+ k2 = ikz

Sur la FIG. 1, on peut voir une telle cavité dite de Fabry-Pérot, consistant en deux plaques parallèles séparées par

du vide. Dans la limite de miroirs parfaitement réfléchissants cette expression se réduit à la formule de Casimir :

Aℏcπ3

240L4
(2)

On peut voir dans l’équation précédente que la force de Casimir est donnée par une loi de puissance inverse avec la

distance de séparation entre les plaques. C’est la raison pour laquelle la force de Casimir devient si grande en champ

très proche —en général en dessous de quelques microns. A 100 nm, la force de Casimir à température nulle est

approximativement égale à 1 N.m−2 pour deux plaques de carbure de silicium SiC, et à 3 N.m−2 pour deux plaques

d’or Au. A 1µm, la force de Casimir décrôıt à environ 230 µN.m−2 et à 900 µN.m−2 dans ces deux cas, respectivement.

La propriété de dependence en champ extrêmement proche ainsi que la magnitude proportionnellement élevée de

la force de Casimir pourrait avoir de nombreuses applications pratiques au niveau nanotechnologique [22–26]. Notons

également le problème récurrent d’adhérence des sous-composants de systèmes nano- ou micro-électromécaniques

(NEMS et MEMS) à cause de la force de Casimir, à l’origine de toutes sortes de malfonctionnements [27]. A cause de

cela, le calcul précis et exact de la force de Casimir est un enjeu théorique et numérique important, ainsi qu’un défi

récurrent pour la recherche fondamentale.

FIG. 2: Mirco-actionneurs de force électrostatique (MEMS).

2. Casimir entre des surfaces corruguées

Comme le montre la FIG. 2, les applications nanotechnologiques réelles ont une architecture considérablement plus

complexe que le cas simplifié de deux mirroirs plans parallèles formant une cavité de Fabry-Pérot. Dans cette thèse,
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nous nous intéresserons particulièrement au cas de surfaces nanostructurées ou de réseaux périodiques corrugués,

comme illustrés sur la FIG. 3. La réflexion d’un mode par une surface plane obéit à une simple loi de Snell-Descartes,

mais ici les modes présents dans la cavité sont diffractés à incidence selon une diffusion complexe à cause des corru-

gations.

�

���������	A��B

FIG. 3: Cavité de Fabry-Pérot formée par deux profils en réseaux corrugués séparés par une distance L dans le vide.

La première étape de nos calculs numériques de la force de Casimir (et du transfert thermique radiatif) entre de

tels profils nanostructurés va dépendre de l’obtention des matrices S de chaque profil. Ces matrices S contiennent

toutes les amplitudes de Fresnel-Stokes pour la réflexion et la transmission des modes à l’interface des plaques avec

le vide. Les deux ensembles de paramètres spécifiant complètement un réseau donné sont contenus dans la matrice S

associée : ceux définissant sa géométrie (d, a, p sur la FIG. 4), et ceux définissant le matériau de ce réseau (fonction

de permittivité). On peut donc dire que la matrice S est utilisée pour définir le profil nanostructuré choisi, ainsi que

la façon dont les modes issus de la cavité sont diffractés à sa surface.

La base du formalisme mathématique que nous utiliserons pour calculer ces matrices S associées à chaque profil

corrugué repose sur la méthode ’Rigorous Coupled-Wave Analysis’ (RCWA), de la théorie de diffusion [28]. Con-

sidérons des réseaux périodiques unidimensionnels et infiniment longs, séparés par le vide comme le montre la FIG.

4. Par unidimensionnel nous entendons que les réseaux sont périodiques dans la direction des x et constants dans

la direction des y. Leur température est supposée égale à zéro. De plus, nous considérons ces profils comme étant
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FIG. 4: Principaux paramètres géométriques de plaques corruguées formant une cavité de Fabry-Pérot : on note d la période
des corrugations, p le facteur de remplissage (souvent exprimé comme un pourcentage de la période), a la profondeur des
corrugations, d1 l’espace entre les corrugations, L la distance de séparation entre les têtes des corrugations des deux plaques,
et δ le déplacement latéral selon l’axe des x. Les plaques ont une surface infinie dans les directions de x et y.

infiniment épais dans la direction z.

Les paramètres géométriques des réseaux sont la période des corrugations d, le facteur de remplissage p, la profondeur

des corrugations a, l’espacement des corrugations d1, la distance de séparation entre les profils L, et le déplacement

latéral δ selon l’axe des x.

On sait de la théorie de diffusion qu’au dessus et en dessous des corrugations, la solution du champ électromagnétique

est donnée par une expansion de Rayleigh. Il y a 2N + 1 modes couplés, ce qui représente le nombre de coefficients

présents dans une expansion de Rayleigh pour une onde monochromatique incidente, lorsque les composantes longi-

tudinales du champs au dessus des réseaux sont écrites sous la forme d’une telle expansion. Suivant une méthode

détaillée dans [29], nous dérivons à présent la matrice S de chaque réseau de facçon similaire à la méthode RCWA

originellement expliquée dans [28].

En utilisant l’invariance du problème selon y et t, on peut considérer les champs électriques et magnétiques selon

les directions x et z seulement :
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FIG. 5: Processus de diffusion d’un mode sur des réseaux. Après avoir fixé un ordre de diffraction N de telle manière que
p, n ∈ [−N, ...,−2,−1, 0,+1,+2, ...,+N ], on considère pour chaque mode incident p son nombre de modes diffractés n associé.

Chaque mode diffracté n est généré selon une orientation spécifique donnée par sa composante latérale k
(n)
x = 2πn/d appartenant

à la zone de Brillouin associée, et par son amplitude fixée à |k| = ω/c. Cette amplitude apparâıt comme le rayon du cercle
en pointillé sur la figure, dans lequel chaque mode diffracté a une amplitude |k| < ω/c, et est donc propagatif. Lorsque les
modes diffractés dépassent cette limite |k| > ω/c, ils appartiennent alors au secteur evanescent. Ceci est illustré par le mode en
pointillé, qui correspond à n = (−3). Notons qu’une réflexion speculaire peut apparâıtre lorsque le mode incident a un angle
d’incidence égal à l’angle de Bragg, dans quel cas le premier mode diffracté n = (0) est réfléchi dans la même direction que le
mode incident. L’énergie de Casimir entre des réseaux est dérivée d’une intégration sur toutes les composantes des modes kx,
kz, ω, à l’intérieur de chaque zone de Brillouin kx ∈ [0, 2π/d].

Ei(x, y, z, t) = Ei(x, z)e
i(kyy−ωt) (3)

Hi(x, y, z, t) = Hi(x, z)e
i(kyy−ωt) (4)

L’avantage mathématique de considérer des nanoréseaux périodiques est que l’on peut se réstreindre dans notre

dérivation mathématique de la force de Casimir à seulement une période donnée en tant que première zone de Brillouin.

Ainsi l’on considère le vecteur d’onde comme étant confiné dans 0 < kx < 2π/d. Nous avons seulement besoin de

trouver les composantes longitudinales en dehors de la région corruguée (z > a), et en-dessous de la région corruguée

(z 6 0).
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Pour z > a :

Ey(x, z) = I(e)p ei(αpx−β(1)
p z) +

+∞∑

n=−∞

R(e)
np e

i(αnx+β(1)
n z) (5)

Hy(x, z) = I(h)p ei(αpx−β(1)
p z) +

+∞∑

n=−∞

R(h)
np e

i(αnx+β(1)
n z) (6)

αp = kx +
2πp

d
and αn = kx +

2πn

d
(7)

β(1)2
p = ω2 − k2y − α2

p and β(1)2
n = ω2 − k2y − α2

n (8)

β(2)2
n = ω2ǫµ− k2z − α2

n (9)

où p est un entier. Pour chaque mode incident p on considère n ∈ {2N +1} modes diffractés, où 2N +1 est le nombre

de coefficients de Rayleigh, comme le montre la FIG. 5. Pour n = 0, une réflexion spéculaire est retrouvée.

Pour z 6 0 :

Ey(x, z) =
+∞∑

n=−∞

T (e)
np e

i(αnx−β(2)
n z) (10)

Hy(x, z) =
+∞∑

n=−∞

T (h)
np e

i(αnx−β(2)
n z) (11)

où Ip, Rnp, Tnp sont les matrices d’incidence, de réflexion, et de transmission respectivement, toutes de dimension

2N + 1.

Les sommes sont effectuées sur tous les entiers n. Par symétrie, les autres composantes des champs électriques et

magnétiques peuvent être exprimées en fonction des composantes selon z des deux champs. Nous devons à présent

calculer les coefficients de réflexion Rnp associés à ces réseaux corrugués. D’abord il faut ré-écrire les équations de

Maxwell à l’intérieur de la région corruguée 0 < z < a au moyen d’un ensemble d’équations différentielles du premier

ordre :

∂zF = MF (12)

avec F⊤ = (Ey, Ex, Hy, Hx), et M étant une matrice carrée constante de dimension 8N + 4. La solution des champs

s’écrit donc sous la forme :

F(z) = eMzF(0) (13)
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A partir de là, la méthode générale consiste à écrire les champs à l’intérieur des réseaux sous cette forme, et à les

réunir sous forme de relations de continuité pour chaque Ey, Hy, Ex, Hx avec les équations aux limites précédentes:

celles à la limite z = a pour les champs dans z > a, et celles à la limite z = 0 pour les champs dans z 6 0.

Eventuellement on peut trouver après quelques calculs les solutions écrites en fonction des matrices de transmission

Tnp, que l’on ré-écrit elles-mêmes en fonction des matrices de réflexion recherchées Rnp au travers des relations de

continuité à z = a.

On trouve finalement que la force de Casimir à température nulle entre deux réseaux corrugués peut être écrite [29]:

F =
Aℏc

8π3

∫ +π/d

kx=−π/d

dkx

∫

ky∈R

dky

∫ ∞

0

dξTr [Z1Z2]

avec :

Z1 = [I −R1(iξ)K(iξ)R2(iξ)K(iξ)]
−1

Z2 = R1(iξ)diag(κ)K(iξ)R2(iξ)K(iξ) +R1(iξ)K(iξ)R2(iξ)diag(κ)K(iξ)

K(iξ) = diag
[
exp

(
−L
√
ξ2 + k2y + [kx + (2nπ/d)]2

)]
et n = −N, . . . ,+N

Donc dans le cas de réseaux les réflexions spéculaires couplent les modes de polarisation et vecteurs d’onde transverse

différents. Les matrices de réflexion peuvent alors être écrites en terme de matrices par blocs r01 prenant en compte

ce couplage des polarisations :

R1(iξ) =

(
r
TE/TE
01 r

TE/TM
01

r
TM/TE
01 r

TM/TM
01

)

Tous les résultats touchant à la force de Casimir entre des réseaux à température nulle sont présentés dans les

sections VII.B-D du manuscrit.

3. L’effet Casimir entre des surfaces corruguées arbitraires

On peut utiliser le formalisme RCWA décrit ci-dessus pour décrire n’importe quels réseaux périodiques de formes

arbitraires, si on les modèle comme étant composés d’un empilement de fines tranches rectangulaires (cf. FIG. 6). La
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différence principale avec le calcul présenté auparavant repose dans une équation différentielle similaire à l’équation

(12) qui peut être résolue pour chaque tranche rectangulaire (i) afin de relier les champs à z = ia/K et z = (i+1)a/K,

de telle sorte qu’éventuellement le champ à z = a est relié au champ à z = 0 via la relation :

F(a) =

[
1∏

i=K

eM(i)a/K

]
F(0) (14)

�
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FIG. 6: Géométrie de réseaux arbitraires, avec paramètres associés dans l’approximation des réseaux par un empilement vertical
de K fines tranches rectangulaires (ici avec K = 4).

Ainsi nous pouvons définir toutes sortes de réseaux arbitraires, tels que ceux en forme de dents de scie, de fil barbelé,

de sinusöıde, ou d’ellipsöıdes (voir FIG. 7).

La FIG. 8 montre la dépendence de l’énergie de Casimir avec le déplacement latéral δ pour quatre réseaux périodiques

arbitraires de silicium intrinsèque. Les profils rectangulaires et sinusöıdaux ont en commun des valeurs voisines de

l’énergie de Casimir, et de même, les profils en dents de scie et circulaires ont également des valeurs voisines, mais

beaucoup plus faibles. Un résultat important est que dans le cas de ces réseaux arbitraires, l’Approximation de

Proximité peut être utilisée au voisinage de δ = d/2.

Une étude systématique de la force de Casimir entre des réseaux périodiques arbitraires est présentée dans la section

VII.E du manuscrit.

B. Température non-nulle

Il est possible de dériver le formalisme précédent pour la force de Casimir entre des réseaux lorsque les plaques

sont toutes à une même température non-nulle T 6= 0. On doit maintenant prendre en compte la contribution du

champ thermique à la densité d’énergie du vide E(ω, T ) de l’équation (1). Celle-ci apparâıt comme un facteur coth
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FIG. 7: Différentes géométries de réseaux arbitraires avec spécification associée de la fonction d’espacement entre les corrugations
d1(z).

FIG. 8: Dépendance de l’énergie de Casimir en fonction du déplacement latéral δ pour quatre types de réseaux arbitraires de
silicium intrinsèque, pour une distance de séparation L = 100 nm, une période d = 400 nm, et une profondeur de corrugation
a = 50 nm. Les profils rectangulaires sont paramétrés par d1 = 200 (courbe verte), les profils sinusöıdaux par d1(z) =
(400/π) arccos[1− (z/25)] (courbe orange), les profils en dents de scie par d1 = 4z + 200 (courbe noire), et les profils circulaires
par d1 = 400 − 2

√
50z − z2 (courbe bleue). Ces quatre ensembles de résultats exacts provenant de la théorie de diffusion

(courbes continues) sont comparés avec les résultats obtenus par l’Approximation de Proximité (courbes en pointillés de couleur
respectives).

dans l’intégrande de l’expression de la force de Casimir, avec des pôles apparaissant sous la formes de fréquences de

Matsubara:
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F =
A

4π2
kBT

′∑

m=0

∫ +π/d

kx=−π/d

dkx

∫

ky∈R

dkyTr [Z1Z2]

les fréquences de Matsubara étant données par :

ωm = iξm = im
2πkBT

ℏ
→ 0

On retrouve la limite de température nulle lorsque :

ωT =
2πkBT

ℏ
→ 0 avec λT =

ℏc

kBT
=

2πc

ωT

Pour des distances au-delà de la valeur de λT /2, les contributions thermiques à la force de Casimir sont importantes.

Ceci apparâıt clairement sur la FIG. 9, qui montre l’énergie de Casimir en fonction de la distance de séparation L

pour deux réseaux de silicium intrinsèque (à gauche) et d’or (à droite), à des températures T = 0 K et 300 K.

FIG. 9: Energie de Casimir en fonction de la distance de séparation, pour deux réseaux de silicium intrinsèque (à gauche) et
d’or (à droite), à des températures T = 0 K et 300 K. Les réseaux ont une période d = 200 nm, un facteur de remplissage
p = 50%, et une profondeur de corrugation a = 100 nm.

On voit que l’énergie de Casimir augmente avec la température. Ceci est particulièrement vrai pour de grandes

distances de séparation à cause de la contribution associée à des longueurs d’onde plus grandes que la longueur d’onde

thermique λT .

Les résultats pour la force de Casimir à l’équilibre thermique pour des températures non-nulles sont présentés dans

la section VIII.A du manuscrit.
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II. PROFILS HORS-ÉQUILIBRE THERMIQUE

A. Force de Casimir hors-équilibre

On peut également utiliser la méthode RCWA pour extraire les matrices de réflection de chaque profil et par

approche de diffusion calculer la force de Casimir hors-equilibre [30, 31]. Prenons les conventions suivantes :

kz =
√
ω2/c2 − k2

⊥ avec − π

2
6 arg kz 6

π

2

avec les projecteurs sur les secteurs propagatifs et evanescents :

Σpw
n = knzΠ

pw pour Πpw
ρρ′ = δρρ′

1 + sα
2

Σew
n = knzΠ

ew pour Πew
ρρ′ = δρρ′

1− sα
2

et sα ≡ sgn
(
ω2/c2 − k2

⊥

)
. On peut alors écrire l’expression de la force de Casimir hors-équilibre comme étant la

somme d’une partie à l’équilibre thermique et d’une partie non-équilibre [32] :

F (neq)
z (T1, T2) =

1

2
F (eq)
z (T1) +

1

2
F (eq)
z (T2) +

1

2
∆F (neq)

z (T1, T2)

avec :

F (eq)
z (T ) =

1

8π3
2Re

∫

ω>0

F (ω, T )

ω

∫ +π/d

kx=−π/d

∫

ky∈R

Tr
[
kz
(
U12S1S2 +U21S2S1

)]
dkydkxdω

∆F (neq)
z (T1, T2) =

1

8π3

∫

ω>0

F (ω, T1)− F (ω, T2)

ω

∫ +π/d

kx=−π/d

∫

ky∈R

Tr
[
J12 − J21

]
dkydkxdω

U12 =
[
1− S1S2

]−1

J12 = U12
(
Σ

pw
−1 − S1Σ

pw
−1S

1† + S1Σew
−1 −Σew

−1S
1†
)
×U12†

(
Σ

pw
2 + S2†Σ

pw
2 S2 + S2†Σew

2 +Σew
2 S2

)

et avec S1 = R1(ω) et S2 = eikzLR2(ω)e
ikzL. Comme le montre la FIG. 10, on peut utiliser ce résultat pour calculer

la force de Casimir en fonction de la profondeur des corrugations pour des profils corrugués de SiO2 à T1 = 250 K
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et de SiC à T2 = 350 K. Les profils sont séparés par une distance L = 100nm, et ont la même période d = 500nm et

facteur de remplissage p = 50%.
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FIG. 10: Dépendance logarithmique de la force de Casimir totale F
(neq)
z (T1, T2) en fonction de la profondeur des corrugations

a (courbe rouge continue), qui est égale à la somme de la contribution à l’équilibre (F
(eq)
z (T1) + F

(eq)
z (T2))/2 (courbe bleue

en pointillée) et de la contribution non-équilibre ∆F
(neq)
z (T1, T2). Un profil en réseaux de dioxyde de silicium SiO2 à une

température T1 = 250 K, se trouve en face d’un autre profil en réseaux de carbure de silicium SiC à température T2 = 350
K. Les deux réseaux sont séparés par une distance L = 100 nm, et ont la même période d = 500 nm et le même facteur de
remplissage p = 50%.

La comparaison entre la force totale (courbe rouge) et la partie équilibre (F
(eq)
z (T1) + F

(eq)
z (T2))/2 (courbe bleue)

révèle que la partie non-équilibre ∆F
(neq)
z (T1, T2) est considérablement plus petite –de presque trois ordres de grandeur.

Au vu de cette faible contribution, la question se pose naturellement de savoir s’il est possible d’augmenter la partie

non-équilibre par rapport à la force totale pour certaines configurations géométriques.

Cette thèse contient une étude qui prouve qu’à une distance de 3µm entre deux plans parallèles de SiO2 à T1 = 450

K et de SiC à T2 = 250 K, on peut atteindre un régime où le ratio ∆F (neq)/F (eq) dépasse les 22%. Les résultats pour

la force de Casimir hors-équilibre thermique sont présentés en détail dans la section VIII.B du manuscrit.

B. Transfert thermique radiatif

On peut également utiliser la méthode RCWA pour extraire les matrices S de chaque profil et par l’approche de

diffusion calculer le transfert thermique radiatif [30, 31] entre deux profils nanostructurés. On sait que le transfert

thermique radiatif entre deux plans parallèles est beaucoup plus grand en champ proche que l’émissivité du corps

noir [33, 34]. Avec les conventions précédentes, l’expression du coefficient de transfert thermique radiatif entre des

profils corrugués est donnée par :
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h =
1

8π3|T1 − T2|

∫

ω>0

(F (ω, T1)− F (ω, T2))

∫ +π/d

kx=−π/d

∫

ky∈R

Tr
[
H12

]
dkydkxdω

avec :

H12 =
[
U12

(
Σ

pw
−1 − S1Σ

pw
−1S

1† + S1Σew
−1 −Σew

−1S
1†
)
×U12†

(
Σ

pw
1 − S2†Σ

pw
1 S2 + S2†Σew

1 −Σew
1 S2

)]

On peut utiliser cette expression pour calculer le flux en fonction de la distance de séparation L (FIG. 11) pour

deux profils corrugués [35] de SiO2 avec les paramètres suivants : d = 1500nm, p = 20%, a = 500nm, T1 = 290 K,

et T2 = 310 K. On calcule le flux lorsque les corrugations de chaque profils sont en face les unes des autres (courbe

continue), et lorsque les profils sont latéralement décalés d’une demi-période (courbe en traits discontinus). On obtient

ainsi une forte modulation entre les deux cas (courbe pointillée). En particulier, à très courte distance L = 25 nm

ce facteur de modulation dépasse 35. Basé sur ces résultats, nous proposons ainsi dans la thèse un concept nouveau

d’application de modulateur thermique.
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FIG. 11: Coefficient de transfert thermique radiatif en fonction de la distance de séparation L pour deux réseaux de dioxyde de
silicium SiO2 à des températures réspectives T1 = 310 K et T2 = 290 K, pour un déplacement latéral δ/d = 0% (courbe bleue
continue) et δ/d = 50% (courbe bleue pointillée). Les résultats sont comparés avec le facteur de modulation Wδ/d=0%/Wδ/d=50%

(courbe grise pointillée). Les réseaux ont une période d = 1500 nm, un facteur de remplissage p = 20%, et une profondeur de
corrugations a = 500 nm.

On peut également calculer le flux en fonction de la profondeur des corrugations (FIG. 12) pour deux profils

corrugués d’or [36] avec les paramètres suivants : L = 1µm, p = 50%, T1 = 290 K, T2 = 310 K. On considère des

profils de période de corrugation variées : d = 1µm (en bleu), d = 2.5µm (en rouge), d = 10µm (en vert), et l’on

compare ces résultats exacts avec l’approximation de proximité (courbe noire pointillée). Il apparâıt que le flux est
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exalté lorsque l’on creuse les corrugations. Ceci s’explique par le fait que l’on créé ainsi des guides d’ondes qui donnent

naissance à un couplage des modes thermiques dans l’infra-rouge, tout en gardant la contribution en champ proche

des têtes des corrugations avec celles du profil opposé.

Tous les résultats du transfert thermique radiatif sont présentés dans la section IX du manuscrit.

FIG. 12: Coefficient de transfert thermique radiatif en fonction de la profondeur des corrugations a pour différents réseaux d’or
à des températures T1 = 310 K et T2 = 290 K. Ces résultats exacts provenant de la méthode de diffusion sont comparés à ceux
de l’Approximation de Proximité (courbe noire pointillée). Les réseaux sont à une distance de séparation L = 1000 nm, et ont
un facteur de remplissage p = 50%.

III. CONCLUSION

Nous rappelons ici les principaux résultats présentés dans la thèse. En dérivant la matrice S d’un profil donné grâce

à la méthode RCWA, nous avons effectué en utilisant la théorie de diffusion les premiers calculs numériques exacts

de la force de Casimir hors-équilibre et du transfert thermique radiatif entre des profils nanostructurés. Nos résultats

ouvrent des champs de recherche nouveaux, avec des découvertes potentielles liées aux domaines suivants :

• La force de Casimir entre des réseaux arbitraires, avec des applications directes de nano-ingénierie.

• La force de Casimir entre des réseaux hors-équilibre thermique, avec la présentation des premiers calculs exacts

déstinés aux expérimentateurs.

• Le flux de chaleur entre des réseaux, avec de vastes modulations dans le cas d’un déplacement latéral des profils.

En conclusion, ce travail théorique amène des applications potentielles directes :

• La modulation éventuelle de la force de Casimir et donc la possibilité de réduire les problèmes de malfonction-

nement dans les NEMS et les MEMS au travers d’un contrôle de la température des réseaux.



16

• Beaucoup de systèmes électromécaniques doivent être mis à la masse, souvent par le biais de revêtements d’or.

Rappelons la présence d’échanges de flux de chaleur tout-à-fait non-triviaux dans le cas de réseaux d’or.

• Le flux de chaleur entre des réseaux, avec la conception potentielle d’un modulateur thermique de facteur 35.
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We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectangular

corrugations with a depth comparable to the separation between the surfaces. In the proximity force

approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the force, leading

to a distance dependence that is distinct from a flat surface. The measured Casimir force is found to

deviate from the PFA by up to 10%, in good agreement with calculations based on scattering theory that

includes both geometry effects and the optical properties of the material.

DOI: 10.1103/PhysRevLett.105.250402 PACS numbers: 12.20.Fv, 03.70.+k, 12.20.Ds, 42.50.Lc

The Casimir force between two neutral conductors arises

from the change of the zero point energy associated with

quantum fluctuation of the electromagnetic field in the

presence of boundaries. Between two parallel plates, the

Casimir force is attractive and its magnitude increases rap-

idly as the separation decreases. In recent years, the Casimir

force has received significant attention, from fundamental

interests to possible applications in micro and nanoelectro-

mechanical systems [1–12]. For instance, fundamental ques-

tions on how to account for the temperature corrections to

the Casimir force remain a controversial topic [13]. At the

same time, there has been much progress in the control of

the Casimir force by modifying the optical properties of the

interacting surfaces, such as using dissimilar metals [6],

replacing one surface with semiconductors with different

carrier concentrations [7], and inserting fluid into the gap

between the surfaces [11]. In addition, a number of efforts

aim at generating repulsive Casimir forces with a vacuum

gap using metamaterials [14,15].

Apart from the optical properties of the material, the

Casimir force depends on the shape of the interacting

objects in nontrivial ways. For small deviations from the

planar geometry, the Casimir force can be estimated by the

proximity force approximation (PFA) [16]. In the common

experimental configuration of a sphere and plate, the PFA

works well provided that the separation is much smaller

than the radius of the sphere. However, the PFA breaks

down for other geometries. Theoretical analysis indicates

that for a thin conducting spherical shell [17] or a rectan-

gular box with a certain aspect ratio [18], the Casimir

energy has opposite sign to parallel plates, opening the

possibility of generating repulsive Casimir forces.

Advanced theoretical approaches are now capable of cal-

culating the Casimir force between structures of arbitrary

shapes [19–21]. These approaches are not limited to per-

fectly conducting objects, but can also take into account

the optical properties of the material. Experimentally, re-

vealing the strong geometry dependence of the Casimir

force involves introducing deformations on a planar sur-

face. The first such attempt was performed by Roy and

Mohideen, who measured the Casimir force on surfaces

with small sinusoidal corrugations [3]. Subsequently, the

lateral Casimir force in similar structures has been dem-

onstrated by the same team to deviate from the PFA [12].

Recently, we measured the Casimir force on a surface with

an array of high aspect ratio trenches [8]. A deviation of up

to 20% from the PFA is observed. While this experiment

provides evidence for the nontrivial boundary dependence

of the Casimir force, the measured results are smaller than

the predicted values for perfect metallic structures of the

same geometry [16]. It becomes apparent that a meaningful

comparison of experimental results to theory would require

both geometry effects and finite conductivity of the mate-

rial to be included.

In our previous experiment [8], we considered the

Casimir force between a surface with an array of deep

rectangular trenches and another flat surface on top. The

trench array is assumed to have solid volume fraction equal

to p. In the PFA picture, the total interaction is a sum of two

contributions: (i) the interaction between a fraction p of the

flat surface and the top surface of the trench array separated

by distance z; and (ii) the interaction between a fraction of

(1� p) of the flat surface and the bottom of the trench array

at distance zþ a, where a is the depth of the trenches. The

second contribution is negligible for such deep trenches

because the Casimir force at this separation (zþ a >
1 �m) is too small to be detected in our measurement setup.

Therefore, under the PFA, the force on the trench array is
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practically identical to the force between two parallel flat

surfaces at separation z multiplied by a constant factor p. In
other words, for the deep trenches, the distance dependence

of the force under the PFA is the same as a flat surface.

In this Letter, we report measurements of the Casimir

force between a gold sphere and a silicon plate with nano-

scale, rectangular corrugations with depth comparable to

the separation between the surfaces. In the PFA, both the

top and bottom surfaces of the corrugations contribute to

the force, yielding a distance dependence that is distinct

from a flat surface. The measured Casimir force is found to

deviate from the PFA by about 10%. We present calcula-

tions based on scattering theory that includes the finite

conductivity of silicon, yielding good agreement with

measurement. Our results demonstrate that for surfaces

with nanoscale deformations, the Casimir force depends

on a profound interplay between geometry effects and

material properties.

Figure 1(a) shows a scanning electron micrograph of the

cross section of the trench array with periodicity of 400 nm.

We fabricate the trenches by dry etching into a highly

p-doped silicon wafer with a lithographically defined silicon
oxide pattern as the etch mask. In the reactive ion etching

step, an inductively coupled plasma of SF6 and Ar was used
without any passivation gas. The reactant flow rate, pressure

and bias were optimized to yield a smooth and flat bottom

surface so that its contribution to the PFA can be easily

determined. Such a recipe, however, produced a sidewall at

94.6� to the top surface, close to but not exactly vertical.

After etching, the oxide mask is removed using hydrofluoric

acid (HF). Another sample, consisting of a flat surface with

no corrugations, is also prepared. Both samples are fabri-

cated from the same wafer to ensure that the optical prop-

erties of the silicon are identical.

Accurate determination of the dimensions of the trench

array is crucial in the electrostatic force and the Casimir

force calculations. Ten cross section views [similar to

Fig. 1(a)] at different positions of the trench array are taken

using a scanning electron microscope (SEM). The lengths

of the top surface and the bottom surface in one period are

measured to be l1 ¼ 185:3� 2:4 nm and l2 ¼ 199:1�
4:2 nm, respectively. An atomic force microscope is used

to obtain the depth of the trenches. The average of one set

of ten scans of 2 �m square and another set of 1 �m

square at different locations gives t ¼ 97:8� 0:7 nm.

This depth is chosen to be smaller than the typical separa-

tion between the two interacting bodies, so that the force

from the bottom surface is not negligible if the PFA is

assumed to be valid:

FPFA ¼ ð1=�Þ
Z �

0
FflatðzðxÞÞdx

¼ p1FflatðzÞ þ p2Fflatðzþ tÞ

þ 2
Z p3

0
Fflatðzþ tx=p3Þdx; (1)

where Fflat is the force on a flat surface made of the

same material, p1 ¼ l1=�, p2 ¼ l2=� and p3 ¼
ð1� p1 � p2Þ=2. In Eq. (1), the first two terms represent

the contributions of the top and bottom surfaces, respec-

tively, accounting for �97% of the force under the PFA.

The third term introduces a small modification originating

from the sidewalls that are not perfectly vertical. While

deriving the force on such corrugated structures using the

PFA is rather straight forward, the actual Casimir force is

expected to deviate from the PFA due to its nontrivial

dependence on the geometry of the interacting objects.

Since such deviations increase with the ratio z=� [16],

the corrugated sample is chosen to have the smallest �
that can be reproducibly fabricated with our lithography

and etching tools. Calculations of the Casimir force on this

exact geometry using scattering theories will be presented

later.

Figure 1(b) shows a schematic (not to scale) of a micro-

mechanical oscillator that measures the force gradient be-

tween the corrugated surface and a spherical surface. The

oscillator ismade of a 3:5 �m thick, 500 �m square heavily

doped polysilicon plate suspended by two torsional rods.

Underneath the oscillator’s top plate, there are two fixed

electrodes. Torsional oscillations of the top plate are electro-

statically excited when a small ac voltage close to the reso-

nant frequency of the oscillator (f0 ¼ 1783 Hz and quality

factor 32 000) is applied to one electrode. Motion of the top

plate is detected by the capacitance change between the top

plate and the electrodes using additional ac voltages at

amplitude of 100 mVand frequency of 102 kHz. Two glass

spheres, each with radius R ¼ 50 �m, are coated with a

layer of gold with thickness of 4000 A. They are stacked

and attached onto one side of the top plate using conductive

epoxy at a distance of b ¼ 210 �m from the rotation axis.

Preparation of the silicon surfaces for force measurement

involves a number of important steps. First, the native oxide

on the surfaces of the silicon samples was removed by HF.

This procedure also passivates the silicon surface so that

oxide does not re-form in ambient pressure for a few hours

[7]. To eliminate residual water on the corrugations, the

silicon chip was baked at 350 �C for 15 min. Afterwards,

the silicon sample is positioned face down at a few�m from

the top of the spheres. The chamber is then immediately

evacuated to a base pressure of 10�6 torr by dry pumps.

A closed-loop piezoelectric actuator controls the dis-

tance between the silicon sample and the sphere. The

FIG. 1. (a) Scanning electron micrograph of the cross section

view of the trench array. (b) Schematic of the experimental setup

(not to scale). (c) Measurement scheme with electrical connec-

tions. Vac1 and Vac2 are the excitation voltages applied to the

bottom electrodes.
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distance z is given by z ¼ z0 � zpiezo � b�, where z0 is the

initial gap between two surfaces, zpiezo is the piezo exten-

sion and b� is a correction term to account for the tilting

angle � of the top plate. A phase locked loop is used to

track the frequency shift of the oscillator as the sphere

approaches the silicon sample. At small oscillations where

nonlinear effects can be neglected, the shift in the resonant

frequency is proportional to the force gradient

�f ¼ C
@F

@z
; (2)

where C ¼ �b2=8�2If0 and I is the moment of inertia of

the top plate together with the two spheres. The oscillation

amplitude of the oscillator is reduced as z decreases to

avoid the oscillation from becoming nonlinear.

We apply electrostatic forces to calibrate the constant C
and the initial distance between the surfaces z0. The elec-
trostatic force between the grounded gold sphere and the

flat plate at voltage V is given by:

Fe ¼ 2��0ðV � V0Þ
2
X1

n¼1

½cothð�Þ � n cothðn�Þ�

sinhðn�Þ
; (3)

where �0 is the permittivity of vacuum, � ¼ cosh�1ð1þ
d=RÞ and d is the separation between the sphere and the

plate. The residual voltage V0 is measured to be �0:499 V
by finding the voltage at which the frequency shift �f
attains minimum at a fixed distance. V0 is found to change

by less than 3 mV for z ranging from 100 to 600 nm. In

Fig. 2, the solid circles represent the measured electrostatic

force gradient on the flat silicon sample at V � V0 ¼
300 mV and the solid line is a fit using Eqs. (2) and (3)

after subtracting the contribution of the Casimir force (the

measurement of which is described later).C is determined to

be 614� 3 mN�1 s�1 by averaging six sets of data with

V � V0 between 245 and 300 mV. For the corrugated silicon

sample, the calibration procedure is similar. However, since

there is no analytic expression for the electrostatic force, it is

necessary to solve Poisson’s equation in 2D numerically.

The boundary conditions, as shown in the inset of Fig. 2, are

set by maintaining a fixed potential between the trench array

and a flat surface, with periodic boundary conditions applied

to one period of the array. Then, the potential distribution is

calculated using finite element analysis, with the confined

area divided into N > 10; 000 triangles. Since R � z, the
proximity force approximation Fs;grat ¼ 2�REf;grat is used

to obtain the force Fs;grat between a sphere and a corrugated

surface, where Ef;grat is the electrostatic energy per unit area

between a flat surface and a corrugated surface. To ensure

the convergence of the numerical calculation, we checked

that the calculated force varies by less than 0.1% even when

N is doubled.

Next, the Casimir force gradient F0
c;flat on the flat silicon

surface is measured by setting V equal to V0. In Fig. 3(a),

the circles are the measured data and the solid line repre-

sents the theoretical values. To account for the finite con-

ductivity of the materials, the dielectric functions evaluated

at imaginary frequencies �ði!Þ are used in Lifshitz’s for-

mula. For gold, we use tabulated optical data. The low

frequency values are extrapolated by the Drude model

�gði!Þ ¼ 1þ
!2

p;g

!ð!þ�gÞ
with a plasma frequency !p;g ¼

9 eV and a relaxation rate �g ¼ 35 meV. For silicon, the

Drude-Lorentz model is used: �siði!Þ ¼ �iði!Þ þ
!2

p;si

!ð!þ�siÞ
. �iði!Þ is the dielectric function for intrinsic
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solid line is a fit using Eq. (3) for a flat surface and the dash line

is a fit using the numerical calculations for the corrugated

structure. Inset: Meshing of the gap between the two surfaces

to solve the Poisson equation in 2D (z ¼ 150 nm). The number

of triangles is 40 times larger in the actual calculation.
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FIG. 3. (a) Measured Casimir force gradient between the

gold sphere and the flat silicon surface F0
c;flat. The solid line

represents the theoretical calculation including finite conductiv-

ity and surface roughness corrections. (b) Dielectric functions

evaluated at imaginary frequencies for doped silicon (plain line)

and gold (dashed line). (c) Measured Casimir force gradient on

corrugated silicon structure. The line represents the force gra-

dient expected from the PFA. (d) The squares are the ratio � of

the measured Casimir force gradient to the force gradient ex-

pected from the PFA. The solid line plots the theoretical values

including both geometry and finite conductivity effects. The

dashed line is a linear interpolation between the two theoretical

values (solid circles) assuming perfect conductors.
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silicon, taken from Ref. [22]. The plasma frequency !p;si

(1:36� 1014 rad s�1) and the relaxation rate �si (4:75�
1013 rad s�1) are interpolated from the data in Ref. [23] for

a carrier density of 2� 1018 cm�3 determined from the dc

conductivity of the wafer. Figure 3(b) shows the dielectric

functions used for doped silicon and gold. The force calcu-

lated by Lifshitz’s formula is further modified by the

roughness correction using the geometrical averaging

method [24]. The contribution to the roughness correction

(< 1% of the total force) originates mainly from

the gold surface (� 4 nm rms) rather than the silicon wafer
(� 0:6 nm rms).

The Casimir force gradient F0
c;grat between the same gold

sphere and the corrugated silicon sample is then measured

and plotted as circles in Fig. 3(c). Comparison to the PFA is

performed by evaluating Eq. (1) with the measured Casimir

force on the flat silicon surface. As described earlier, the

force gradient on the corrugations under the PFA, F0
c;PFA, is

the sum of the force on the top and bottom surfaces, with a

small contribution from the slightly slanted sidewalls. The

deviations of the measured Casimir force from the PFA

arise due to the strong geometry dependence of the Casimir

force. For a more quantitative analysis of the deviation, the

ratio � ¼ F0
c;grat=F

0
c;PFA is plotted in Fig. 3(d). The mea-

sured F0
c;grat clearly exceeds F0

c;PFA, by up to 15%.

We perform exact calculations for the Casimir force

Fc;gratðzÞ per unit area between a flat gold plate and the

corrugated silicon surface, taking into account the nonspec-

ular reflections introduced by the grating structure. Then, we

use the PFA to relate the sphere-plane and the plane-plane

geometries according to F0
c;grat ¼ 2�RFc;flat. The theory for

calculating the Casimir energy based on scattering theory

[19] for structures involving gratings has been presented

elsewhere [25] and will be only briefly summarized. The

zero temperature Casimir force per unit area between two

reflecting objects separated by a distance z is

F ¼ �@

ZZZ

trðð1�MÞ�1@zMÞd2k?d	; (4)

where k? gathers the components of the wave vector in the

plane of the objects and 	 ¼ i! is the Wick-rotated

imaginary frequency. M is the open-loop function

M ¼ R1ð	Þe
��z

R2ð	Þe
��z withR1 and R2 the reflection

operators for the two objects and � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	2=c2 þ k
2
?

q

. For

planar objects, the reflection operators are diagonal in the

plane wave basis and collect the appropriate Fresnel

coefficients. For gratings, this does not hold anymore.

The reflection operators are not diagonal as they mix

different polarizations and account for nonspecular

reflections. Therefore, in general the matrices Ri and

e��z do not commute and we write �@zM ¼
R1ð	Þ�e

��z
R2ð	Þe

��z þR1ð	Þe
��z

R2ð	Þ�e
��z. The

results of the exact calculation, normalized by the PFA,

are plotted as the solid line in Fig. 3(d), yielding good

agreement with measurements. If the gold and silicon

surfaces were replaced by perfect metals, the calculated

deviations from the PFA for the corrugated surface becomes

considerably larger, exceeding the measured value by about

a factor of 2, as shown in the dashed line in Fig. 3(d). Here

the ratio � is calculated for zero temperature, a valid as-

sumption given that at 300 K, the thermal correcton to the

Casimir force on a flat surface at z < 0:5 �m is negligible.

Our results demonstrate that the optical properties of the

material must be included in predicting the Casimir force

between structures of nonconventional shapes, due to the

nontrivial interplay with geometry effects. It is possible to

both calculate and measure the Casimir force in nano-

structured surfaces with high accuracy. The interplay be-

tween finite conductivity and geometry effects holds

promise as an important tool to control the Casimir force

between mechanical components at close proximity.
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We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering

theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping

the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided

modes as a function of the grating’s geometry.
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The far-field radiative heat transfer between good conduc-

tive metals is very low at room temperature, since they are

very good reflectors at the infrared frequencies of blackbody

radiation. The radiative heat transfer is enhanced in the near

field, due to the contribution of evanescent surface modes.1–3

Polar materials such as SiO2 or SiC are in addition favored by

the contribution of surface phonon polaritons whose resonance

frequencies lie in the infrared.4 There is an analogous effect

for metals arising from the surface plasmon resonances but

those lie in the ultraviolet and do not contribute significantly

to the heat transfer.5

It has been shown recently that the radiative heat transfer

can be controlled by nanostructuring the interfaces periodi-

cally. When the period d is much smaller than the wavelength

λ and the separation distance L, the system can be treated using

an effective refractive index for the equivalent homogeneous

medium. It has been shown that the induced anisotropy

introduces additional modes6 and also allows modulating the

flux.7 For periods on the order of the wavelength, a full solution

of Maxwell equations is needed. The heat transfer between

two periodic slabs has been studied within a two-dimensional

approximation for p polarization using a finite difference time

domain (FDTD) technique.8 A flux enhancement attributed to

the excitation of the structure’s modes was found. While FDTD

allows modeling complex shapes easily, dealing with bulk

three-dimensional (3D) media and accounting for polarization

effects has not been achieved so far, to the best of our

knowledge.

In this Rapid Communication, we compute the radiative

heat transfer between one-dimensional (1D) gold lamellar grat-

ings in the framework of the scattering theory. We do include

all propagation directions (the so-called conical diffraction)

and all polarization states, which is of critical importance in

order to deal quantitatively with cross-polarization effects.9

The scattering theory is the most successful technique for

treating the Casimir effect between bodies at thermodynamic

equilibrium.10,11 The method determines the electromagnetic

field in the space between the two bodies in interaction in

order to compute the Casimir force in terms of the reflection

amplitudes on the two bodies. When the two bodies are not at

the same temperature, there is a net flux of energy transferred

from the warm body to the cold one. Recently, this heat transfer

problem between two bodies kept at different temperatures has

also been formulated in terms of the scattering properties of

the bodies.12–15

In the following, we use the scattering amplitudes which

have already been calculated for studying the Casimir in-

teraction between 1D lamellar gratings16 and deduce the

heat flux when the two bodies are at different temperatures.

We show that the heat flux is largely enhanced when the

corrugation depth is increased while keeping the distance of

closest approach fixed. We attribute the heat flux growth to

the excitation of guided modes and surface plasmons whose

frequencies change with the corrugation depth.

We consider the cavity formed by two gratings separated

by a distance of closest approach L measured so as to vanish

at contact (Fig. 1). The gratings are aligned and not displaced

laterally. We model the gold permittivity with a Drude model

ǫ(ω) = 1 −
ω2

P

ω(ω+ıγ )
with ωP = 9 eV and γ = 35 meV. We

write the heat flux q between two bodies at temperatures T1

and T2 as3

q =

∫∫∫

[

eT1
(ω) − eT2

(ω)
]

TL(k,ω)
dωd2k

(2π )3
, (1)

where eT (ω) = h̄ω(eh̄ω/kBT − 1)−1 is the mean energy per

mode of frequency ω at temperature T , while TL(k,ω) is

the sum (trace) of the transmission factors for all the modes

of frequency ω and lateral wave vector k between the two

gratings separated by a distance L.17,18 The expression of this

transmission factor is given by scattering amplitudes

TL(k,ω) = tr(DW1D†W2), (2a)

D = (1 − S1S2)−1, (2b)

W1 = �
pw

−1 − S1�
pw

−1 S1
† + S1�

ew
−1 − �

ew
−1S1

†, (2c)

W2 = �
pw

1 − S2
†
�

pw

1 S2 + S2
†
�

ew
1 − �

ew
1 S2, (2d)

S1 = R1(k,ω), (2e)

S2 = eıkzLR2(k,ω)eıkzL. (2f)

Mode counting is defined over frequency ω and lateral wave

vector k restricted to the first Brillouin zone, due to the Bloch

theorem. kz =
√

ω2/c2 − k2 is the longitudinal wave vector

for the Fabry-Pérot cavity, with the principal square root used

in its definition −π
2

< arg kz �
π
2

. The operators �
pw/ew
n =

kn
z �

pw/ew involve the projectors �
pw/ew on the propagative
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FIG. 1. The conventions used in the present article. The grating

period is d , the corrugation depth is a, and the distance of closest

approach of the two gratings is L. The lines of the grating are along

the y direction, while the Fabry-Pérot cavity between the two gratings

is along the z direction.

or the evanescent sector, respectively. S1 and S2 are scattering

operators defined from the reflection operators R1(k,ω) and

R2(k,ω). Si are represented in the basis of the wave vectors

{k(n)} coupled by the grating. We define k(n) = k + n 2π
d

êx

where d is the grating period, êx the direction perpendicular to

the lines of the grating (see Fig. 1), and n runs from −N

to +N , where N is the highest diffraction order retained.

The operators Si are square matrices of dimension 2(2N + 1)

(Ref. 16) as well as all bold operators appearing in Eqs. (2).

All scattering operators appearing in Eqs. (2) are represented

in the (s/p) (also denoted TE/TM) polarization basis, well

adapted to propagative fields. The reflection operators are cal-

culated following the rigorous coupled-wave analysis (RCWA)

method described in Ref. 19: The fields are expressed in terms

of a Rayleigh expansion in both homogeneous regions z < 0

and z > a. In the corrugated region 0 > z > a, the fields are

developed in Fourier components. The Maxwell equations

are solved in each region and writing the continuity of each

Rayleigh and Fourier components at the boundaries z = 0

and z = a leads to the reflection and transmission coefficients

for the grating. In the limit of an infinite number of Fourier

harmonics, this method solves exactly the diffraction of the

fields by the grating. Metallic gratings are known to be difficult

to account for using the RCWA method. We incorporate in

the RCWA formalism the modifications presented in Ref. 20

which greatly improve the convergence rate for the reflection

coefficients of a p-polarized light impinging on a metallic

grating, and our calculations are performed with N = 51

which shows converged results.

In the following, we apply formula (1) to compute the

heat transfer coefficient h defined as h =
q

T1−T2
for two

temperatures T1 and T2 close enough to each other, say,

for example, T1 = 310 K and T2 = 290 K. We note that

eT1
− eT2

acts as a cutoff function for frequencies greater

than the thermal frequency ωT = 2πc
λT

≈ 2.5 × 1014 rad s−1

(λT ≈ 7.6 μm). The transmission factor TL(k,ω) thus exhibits

the mode structure for the problem under study (Fig. 1) while

(1) integrates the contributions of all these modes to the heat

µ

FIG. 2. (Color online) The enhancement factor � between two

gold gratings as a function of the depth a of the corrugations, with

the distance of closest approach kept fixed L = 1 μm. Blue solid

curve (triangles): period d = 1 μm. Red solid curve (circles): period

d = 2.5 μm. Green dashed curve: period d = 10 μm. Black dotted

curve: proximity approximation.

transfer, taking into account the values of their frequencies

with respect to ωT (more discussions below).

For a depth of the corrugation a = 0, we recover the heat

transfer coefficient h0(L) = 0.16 W m−2K−1 between two

gold plates separated by a distance L = 1 μm. For a non-null

depth a, we introduce the factor of enhancement of heat

transfer with respect to noncorrugated plates

� =
h(L)

h0(L)
. (3)

We present in Fig. 2 the enhancement factor � as a function of

the corrugation depth a, with the distance of closest approach

L = 1 μm and the filling factor p = 0.5 kept fixed. The blue

solid curve corresponds to a period d = 1 μm for the gratings

while the red solid curve corresponds to a period d = 2.5 μm.

The dashed curve corresponds to a period d = 10 μm. As the

corrugations become deeper, we see a striking increase in the

heat transfer coefficient. We note that the enhancement factor

is largely independent of the grating period up to a corrugation

depth a ≈ 1 μm. For a period d = 1 μm for which the effect

is more important, we get an enhancement up to a factor 10

for a = 6 μm. For a period d = 2.5 μm, the enhancement

reaches nearly a factor 4 for a = 6 μm. For the largest period

d = 10 μm, the enhancement still reaches nearly a factor 2 at

a = 6 μm.

For comparison, we have shown as the dotted line in Fig. 2

the prediction of the proximity approximation (PA) which

amounts to adding plane-plane heat transfer contributions, as

if they were independent,

�PA = p + (1 − p)
h0(L + 2a)

h0(L)
. (4)

As expected, the PA predicts a decrease of � when a is

increased, in complete contradiction with the exact results

shown by the solid and dashed curves.

In the remainder of this Rapid Communication, we analyze

the electromagnetic mode structure in order to explain the

increase of the heat transfer.17,18 To this aim, we use the

scattering formula (1) and show that, as we increase the

corrugation depth, some modes of the system are indeed

brought to the infrared frequencies and thus are able to

180301-2
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a (μm)

3

FIG. 3. (Color online) The transmission factor for two gold

gratings as a function of the frequency ω and the corrugations depth

a. The lower curve is for plane-plane a = 0 while the upper one is

for a corrugations depth a = 3 μm. The vertical red line is the light

line. The horizontal arrow at a = 1.5 μm shows a cut of this plot

represented on Fig. 4.

contribute to the heat transfer. The mode structure is described

by the transmission factor TL(k,ω) that reaches its maximum

value 1 at the resonances of the corrugated cavity. Our system

is periodic so that the mode structure, distributed over the

whole range of wave vectors in the absence of corrugations,

now shows many branches folded in the first Brillouin zone.

More precisely, there are 2(2N + 1) branches where the factor

2 is due to the two polarizations and the factor 2N + 1 is the

number of orders (or branches) used when taking into account

mode coupling by diffraction on the gratings.

We represent in Fig. 3 the sum of transmission factors

TL(k,ω) over all polarizations and all branches. It is shown as

a function of the frequency ω and the depth of the corrugations

a for a fixed value of the transverse wave vector k = ( π
2d

,0),

here chosen to be in the middle of the positive-kx first Brillouin

zone. The plot corresponds to the period d = 2.5 μm, which

was shown as the solid curve in Fig. 2. The vertical red line

represents the light line ω = ckx ≈ 1.88 × 1014 rad s−1.

It clearly appears in Fig. 3 that the transmission factor takes

significant values only on resonances which correspond to

the mode structure of the corrugated cavity. The transmission

factor TL(k,ω) goes to a maximum value of 1 for each

nondegenerate mode (k,ω); it can be 2 if two modes cross

each other and we see one of these occurrences in the figure.

The general trend is clear on the diagram: As the depth a of the

corrugations is increased, new modes appear, with frequencies

decreasing as a increases. When these modes enter into the

thermal window ω � ωT they contribute more and more to the

heat transfer. This explains the enhancement of the heat flux,

due to the presence of additional modes in the thermal window

for a deeply corrugated structure.

We now examine in more detail the nature of the modes.

While varying the corrugation depth a from 0 to 3 μm we

0 2 1014 4 1014 6 1014 8 1014 1 1015

0.0

0.2

0.4

0.6

0.8

1.0

rad.s 1

L
k

,

ω

ω

FIG. 4. (Color online) The transmission factor for two gold

gratings with corrugation depth a = 1.5 μm as a function of

frequency ω. The arrows indicate the position of the modes in a

direct mode calculation [red (gray) for s polarization and black for p

polarization]. The dashed curve is the function
eT1

−eT2

kB(T1−T2)
.

can follow the evolution of each mode. Note that, for ky = 0,

the polarizations σ = s and σ = p are not mixed (however,

the computation of h takes into account all modes for which

polarization mixing is important).

We show in Fig. 4 the modes calculated for a particular

corrugation depth a = 1.5 μm indicated by the red horizontal

line on Fig. 3. The position of the peaks have been confirmed

through a direct mode calculation21 of the eigenfrequencies

of the structure modes obtained for p (black arrows) and

s (red arrows) polarizations. In addition to the excellent

agreement between the peaks of the transmission factor and

the directly calculated modes (arrows on Fig. 4), direct mode

calculations show the fields and, therefore, allow us to identify

the first few modes. For the second p polarization and the

first s polarization modes appearing at ω ≈ 2.4 × 1014 rad s−1

and ω ≈ 6.5 × 1014 rad s−1 in particular, the frequencies are

largely independent upon the value of kx , which is usually

the signature of guided modes. By looking at the fields

corresponding to those two modes, we indeed confirmed that

the electric field is to some extent confined in the waveguides

formed by the corrugations.

It is also worth discussing the shape of the resonance

curve drawn by the variation of the transmission factor in

the vicinity of a mode. In Fig. 5, we focus on the modes which

lie inside the thermal window. In the case considered here

of sharp, isolated modes, the resonance of the transmission

factor shows a Lorentzian profile. We have checked that the

two parameters of this profile are identified respectively to

the real and imaginary parts of the complex frequency, with

mode calculation of the dissipative structure defined with

complex frequencies and real wave vectors.3 This proves that

the variation of the transmission factor contains all the relevant

information about the mode structure. Not only the frequencies

but also their finite lifetime are well described in the case

considered here of lossy materials.

This discussion allows one to predict the effect of a change

of the dissipation parameter γ . As this parameter is the only

one to determine the widths of the peaks in the transmission

factor TL(k,ω), one deduces that these widths vary linearly

with γ . As a direct consequence of Eq. (1) and as long as

180301-3
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FIG. 5. (Color online) Same as Fig. 4 for the first two modes

which are in the thermal window. Each peak can be fitted by a

Lorentzian of resonance frequency ω0 and half width at half maximum

Ŵ. The dashed curve is the function
eT1

−eT2

kB(T1−T2)
.

the modes remain sharp and isolated, it follows that the heat

fluxes vary in proportion of γ , so that the enhancement factor

�, defined in Eq. (3) and drawn on Fig. 2, is independent of

the dissipation parameter γ .

We have theoretically demonstrated the enhancement of

the heat transfer between two nanocorrugated gold plates

in comparison with flat plates with the same distance of

closest approach. This enhancement is due to the presence of

additional modes in the thermal frequency window contribut-

ing to the heat transfer. We have described all the relevant

information about the mode structure in terms of the transmis-

sion factor TL(k,ω) which appears in the scattering formula

for the heat flux. We have discussed the enhancement of the

heat transfer in a regime where the three characteristic lengths

of the problem (the distance L between the gratings, the period

d of the gratings, and the height a of the corrugations) are of

the same order. We stress that neither the proximity nor the

effective medium approximations can work in this regime. We

have in fact shown that the proximity approximation predicts

a decrease of the heat transfer, in complete contradiction with

the striking enhancement of the heat flux observed in the exact

results.

The authors thank the ESF Research Networking Pro-

gramme CASIMIR (www.casimir-network.com) for providing

excellent possibilities for discussions and exchange. The

research described here has been supported by Triangle de

la Physique Contract No. EIEM 2010-037T. This work was

carried out under the auspices of the National Nuclear Security

Administration of the US Department of Energy at Los

Alamos National Laboratory under Contract No. DE-AC52-

06NA25396. R.G. and D.A.R.D. thank LANL and ENS,

respectively, for funding their stay at these institutions, where

part of this work was done.

1D. Polder and M. V. Hove, Phys. Rev. B 4, 3303

(1971).
2A. I. Volokitin and B. N. J. Persson, Rev. Mod. Phys. 79, 1291

(2007).
3K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet,

Surf. Sci. Rep. 57, 59 (2005).
4J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, Appl. Phys.

Lett. 78, 2931 (2011).
5S. Shen, A. Narayanaswamy, and G. Chen, Nano Lett. 9, 2909

(2009).
6S.-A. Biehs, P. Ben-Abdallah, F. S. S. Rosa,

K. Joulain, and J.-J. Greffet, Opt. Express 19, A1088

(2011).
7S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, Appl. Phys. Lett.

98, 243102 (2011).
8A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D.
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We present a theoretical study of radiative heat transfer between dielectric nanogratings in the scattering

approach. As a comparison with these exact results, we also evaluate the domain of validity of Derjaguin’s

proximity approximation (PA). We consider a system of two corrugated silica plates with various grating

geometries, separation distances, and lateral displacement of the plates with respect to one another. Numerical

computations show that while the PA is a good approximation for aligned gratings, it cannot be used when the

gratings are laterally displaced. We illustrate this by a thermal modulator device for nanosystems based on such

a displacement.

DOI: 10.1103/PhysRevB.86.085432 PACS number(s): 73.20.Mf, 44.40.+a, 41.20.Jb

I. INTRODUCTION

Recent experiments and theoretical work have given

promising perspectives in the field of radiative heat transfer

in the micrometer range.1,2 It has been shown that radiative

heat transfer greatly exceeds the black body limit for dis-

tances shorter than the average thermal wavelength, which is

understood as an effect arising from the contribution of the

evanescent waves. The studies of near-field heat transfer are of

great interest to the design of both NEMS and MEMS which

are naturally affected by possible side effects of heat exchange

at the nanoscale. Other potential applications lie in the

fields of nanotechnology, photonic crystals,3 metamaterials,4,5

thermalphotovoltaics,6,7 multilayered structures,8 improved

resolution in nanostructure imaging, and new nanofabrication

techniques.

While radiative heat transfer beyond Stefan-Boltzmann’s

law was observed experimentally9 and described

theoretically10 over the last forty years, radiative heat

transfer between two parallel flat plates at the nanoscale

has been considered experimentally only recently.11–13 The

most interesting features of this field are the possible side

effects of nontrivial geometries on the thermal emission

of nanoobjects. Thus an in-depth study of heat transfer for

different configurations has been performed over the years,

ranging from the case of a particle facing a surface,14–17

to particles or nanospheres facing each other,18–22 or more

recently to the sphere-plane geometry.23,24 One should

also note that for nearly flat surfaces where roughness is

considered as a perturbation factor, certain perturbative

approaches can be used.25,26 But for larger geometrical

irregularities, more accurate methods become necessary.27

These more complex geometries are best described through

a scattering approach.24,28–30 Another exciting perspective is

the study of the variation in heat transfer brought forth by

surface polaritons in certain materials.17 In this paper we

focus on the interplay between the surface waves excitation

and the surface profile, as shown in Fig. 1.

The fact that the radiative heat transfer in near-field

considerably changes with variation of the separation distance

between plane surfaces has already been shown.1,23,31 When

introducing a profile for the interfaces, the flux is expected to

depend on the relative lateral displacement of the two surfaces

denoted δ, as seen in Fig. 1.

This is all the more interesting as a simple argument

based on the proximity approximation suggests a strong

modulation of the flux. Indeed, by assuming that one can

use locally the plane-plane heat transfer coefficient, it is seen

that the flux is maximum for δ = 0. The validity of the

proximity approximation has been discussed in the context

of a plane sphere23 and between two spheres.18,19 This

validity in the context of lamellar gratings with subwavelength

periods remains an open question. Here, we investigate this

issue by using the exact formalism of scattering theory.

Furthermore, we discuss the physical phenomena involved

and show that the nature of the material needs to be taken

into account when discussing the validity of the proximity

approximation.

II. HEAT TRANSFER IN THE SCATTERING APPROACH

Based on the scattering formalism developed in Ref. 28,

we consider two corrugated profiles at temperatures T1 and T2,

as shown in Fig. 1. The heat transfer is constructed from the

statistical average of the (x,y) sum over the z component of

the Poynting vector Sz and is thus related to a flux. We define

the wave vector k = (k⊥,kz) with kz =
√

ω2/c2 − k2
⊥ defined

with −π/2 < arg kz � π/2.

Following,32 we then introduce the reflection operators

R1(ω) and R2(ω) of the two gratings separated by a distance

L, by which we understand the distance of closest approach,

equal to zero at contact. We then set our scattering operators

such that S1 = R1(ω) and S2 = eıkzLR2(ω)eıkzL. According to

the scattering formalism for gratings developed in Refs. 32

and 33, the scattering matrices are of dimensions 2(2N + 1),

where N is the order of diffraction.

We now define the operators �
pω/eω
n = 1

2
kn
z �

pω/eω as con-

structed from the projectors on the propagative and evanescent

sectors, respectively:

�
pω

αα′ = δαα′ [1 + sgn(ω2/c2 − k2
⊥)] (1)

�eω
αα′ = δαα′ [1 − sgn(ω2/c2 − k2

⊥)], (2)
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FIG. 1. (Color online) Two identical gratings facing each other at

a distance L and relatively shifted by a lateral displacement δ. The

corrugations have a period d , height a, and thickness p′. The filling

factor p = p′/d is given as a percentage of the period d .

where α = s,p represents the transverse electric and transverse

magnetic polarizations, respectively. The thermal energy

density per field mode at temperature T writes eT (ω) =
h̄ω/(eh̄ω/kBT − 1). We can now express the heat transfer

coefficient between two gratings of the same corrugation depth

a as

h =
1

|T1 − T2|

∫

dω

2π
[eT1

(ω) − eT2
(ω)]H12 (3)

with

H12 =
∫ +π/d

kx=−π/d

∫

ky∈R

dkxdky

4π2
tr(DW1D†W2) (4)

D = (1 − S1S2)−1 (5)

W1 = �
pω

−1 − S1�
pω

−1 S1
† + S1�

eω
−1 − �eω

−1S1
† (6)

W2 = �
pω

1 − S2
†�pω

1 S2 + S2
†�eω

1 − �eω
1 S2. (7)

It is noteworthy that the heat transfer depends on the shape and

material properties of the gratings only through their scattering

matrices S1 and S2. Furthermore, the factor eT1
(ω) − eT2

(ω)

introduces a cutoff for all frequencies larger than kBT/h̄. It is

hence H12 in equation (4), which corresponds to the sum of

the transmission factors of the modes, that gives rise to the

interesting modes pertaining to the near-field contribution.

Note also that the first perpendicular wave vector compo-

nent kx belongs to the first Brillouin zone between −π/d and

+π/d, whereas ky ∈ R is not restricted. A practical challenge

of the numerical integration of h lays in the choice of the

boundaries of ω and ky through a careful study of the integrand

of equation (4) plotted over the whole range of frequencies to

determine the modes.

III. NUMERICAL RESULTS FOR GRATINGS

We will from now on consider two gratings of silica

glass SiO2, the dielectric properties of which are given in

Ref. 34. This material is chosen as it supports surface phonon-

polaritons, which are known to enhance the flux. The gratings

temperatures are supposed to be T1 = 310 K and T2 = 290 K.

Two sets of data are systematically computed: The first one

corresponds to zero lateral displacement of the two plates along

the x axis (δ = 0) so that the corrugation maxima directly face

those from the opposite profile. The second one corresponds to

a lateral displacement of half the grating period (δ = d/2), so

that the corrugation peaks face the corrugation trenches of the

opposite profile. In near-field, the two structured plates expose

a larger surface to each other at δ = 0 than at δ = d/2, so that

we expect a strong modulation of the heat transfer coefficient

which will be discussed later. This is based on the assumption

that the plane-plane heat transfer coefficient is locally valid.

The results of the scattering approach can be compared

with the PA, which consists of the weighted sum of the planar

normal contributions h0(L) depending on the local separation

distances L within each period. Assuming that p < 50%, we

have for δ � p′:

hPA
δ (L) =

p′ − δ

d
h0(L) +

2δ

d
h0(L + a)

+
(

1 −
p′ + δ

d

)

h0(L + 2a). (8)

For δ > p, we find the following saturation value of

hPA
p′ (L) =

2p′

d
h0(L + a)

+
(

1 −
2p′

d

)

h0(L + 2a). (9)

In what follows, we study in detail the interplay between

surface waves and corrugations. The results are systematically

compared with those obtained within the PA. Figure 2 shows

the heat transfer coefficient for δ = 0 and δ = d/2, as a

function of the separation distance L, for two gratings of

period d = 1500 nm, filling factor p = 20%, and groove depth

a = 500 nm. Regardless of the distance, we can see that the

PA is a good approximation of the heat transfer coefficient at

δ = 0, but not at δ = d/2. At L = 25 nm, the error of the PA

is of ∼3% for δ = 0, and of ∼35% for δ = d/2.

The reason for this is illustrated in Fig. 3, which shows the

field modulus map for a given source dipole that is placed in the

middle of a corrugation right under the surface, and which is
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FIG. 2. (Color online) Heat transfer coefficients as a function of

separation distance L, when the gratings are not laterally displaced

(blue solid line) and when they are by half a period (blue dashed

line). This is compared with the proximity approximation in red. The

gratings have a period d = 1500 nm, filling factor p = 20%, and

groove depth a = 500 nm.
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FIG. 3. (Color online) Field modulus map of a given source dipole placed in the middle of a corrugation and right under the surface. The

field is here represented only in the upper grating, so as to highlight where the absorption takes place. This is for gratings at a separation distance

L = 25 nm. The two figures on the left display the profiles in the xz plane (in green) when they are aligned (δ = 0), and the two figures on the

right when they are laterally displaced by half a period (δ = d/2), both for two different wavelengths λ = 8.75 μm (top) and 9.15 μm (down).

oriented perpendicular to it. The color scale is logarithmic. The

intensity or square modulus of the electric field is represented

only in the upper grating so as to highlight the place of

absorption. The gratings have a separation distance L = 25

nm, corrugation depth a = 500 nm, period d = 1500 nm,

and filling factor p = 20%. Two different wavelengths λ =
8.75 μm and λ = 9.15 μm are considered, knowing that

SiO2 has two resonance frequencies at λ = 8.75 μm and

λ = 21 μm. In the case where δ = 0 and λ = 8.75 μm, we

see that the field is clearly both intense and confined. As

8.75 μm corresponds to the horizontal asymptote of the

surface phonon dispersion relation, a large number of modes

with different values of the wave vector are excited. This leads

to a highly localized subwavelength hot spot. At 9.15 μm,

the spot is broader than expected: This is similar to the loss

of resolution of superlens away from the resonance. On the

right column of the figure, we show the intensity for δ = d/2.

It is seen that the heated region is delocalized so that PA

is clearly not valid. In this regime, the heat transfer is no

longer due to a dipole-dipole interaction through the gap.

Instead, a dipole excites modes of the structures. In turn, these

spatially extended modes produce dissipation in the walls.

This discussion indicates that PA is valid if the gap width does

not vary significantly on a length scale given by the spatial

extension of the modes. Furthermore, we have already seen

in Fig. 2 the difference between the proximity approximation

and the scattering results. This difference can be interpreted as

an indicator of the contribution of the lateral modes, since the

proximity approximation considers normal modes only.

To further illustrate this qualitative dependence of the

radiative heat transfer on separation distance, we show in Fig. 4
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FIG. 4. (Color online) Heat transfer coefficients as a function

of the separation distance L between two plane mirrors of SiO2

(red solid curve), compared with the black body limit (blue dashed

line). One can divide the separation distance in three domains A, B,

and C, respectively corresponding to the extreme near-field below

200 nm, to the near-field from 200 nm to 10 μm, and to the domain

of Stefan-Boltzmann’s law beyond 10 μm. This can be seen by the

change of the slope of the curve along these three ranges.
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FIG. 5. (Color online) Heat transfer coefficients as a function of

grating period d , when the gratings are not laterally displaced (solid

blue line) and when they are displaced by half a period (dashed blue

line). This is compared with the PA in red. The gratings have a groove

depth a = 500 nm, filling factor p = 20%, and are at a separation

distance L = 100 nm.

the heat transfer coefficients as a function of the separation

distance L between two plates of SiO2. One can distinguish

three domains A, B, and C, corresponding respectively to

the extreme near-field below 200 nm, to the near-field from

200 nm to 10 μm, and to the domain of Stefan-Boltzmann’s

law beyond 10 μm. The heat transfer coefficient changes in

slope along these three ranges: The strongest contributions

come respectively from the dipole-dipole interaction, from

surface phonon-polaritons, and from the classical radiative

heat transfer. The contribution in the first domain corresponds

to the localized heat transfer seen in the upper-left-hand map

of Fig. 3, whereas the main contribution in the second domain

corresponds to the delocalized heat transfer mediated by the

surface wave seen on the right-hand maps of Fig. 3.

It is also instructive to study the heat transfer modulation as

a function of the corrugation period d, as shown in Fig. 5. We

have selected six types of gratings with corrugation periods

ranging from d = 250 to 1500 nm, each with a groove depth

a = 500 nm and filling factor still fixed at p = 20%. The

separation distance is L = 100 nm. The fact that the heat

transfer coefficients at δ = 0 do not vary much with a change

of period is further confirmation of the validity of the PA in

this configuration. At δ = d/2, however, the scattering and

PA results radically differ for small periods, but tend to agree

for large periods. The reason for this is that when d → ∞,

the ratio a/d tends to zero, and we expect the heat transfer

to be well approximated by the plane-plane case, and hence

the PA.

Let us finally turn to the discussion of the modulation effect.

Figure 2 shows that the heat transfer depends dramatically

on the lateral displacement of the two surfaces, opening the

possibility of a strong modulation via only lateral displacement

of one of the two plates at a fixed distance. To assess

the possible performance of such a system as a thermal

modulator we investigate the modulation factor hδ=0/hδ=d/2

for different filling factors. The results are illustrated in Fig. 6

for gratings with a period and groove depth a = 500 nm, and a
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FIG. 6. (Color online) Heat transfer coefficients as a function of

filling factor p, when the gratings are not laterally displaced (solid

blue line) and when they are displaced by half a period (dashed blue

line). Respective PA predictions are in red. The dotted gray line is

the percentage of the modulation factor hδ=0/hδ=d/2. Gratings have a

period and groove depth of 500 nm, and are separated by a distance

L = 100 nm.

separation distance L = 100 nm. For these large separations,

the modulation factor hδ=0/hδ=d/2 still reaches a maximum of

about 2.2, at a filling factor corresponding to 20% of the total

grating period. At short distances (L ∼ 25 nm) it can reach up

to 35 (c.f. Fig. 2).

IV. CONCLUSION

We have studied radiative heat transfer between laterally

shifted corrugated dielectric plates by using the scattering

method. When comparing the exact results thus obtained

with the commonly used Proximity Approximation, we have

clarified the origin of the success and failure of the latter

approximation by analyzing the interplay between surface

wave resonances and corrugations. We have shown for various

nanograting geometries and separation distances that the

proximity approximation has a better precision for δ = 0

than for δ = d/2. The key to the understanding of the

system is the comparison of the lateral length scale of the

surface corrugation with the lateral extension of surface waves

involved in the heat transfer. Finally, we have narrowed down

the optimum geometrical parameters of a thermal modulator

device for nanosystems based on a lateral displacement of two

corrugated plates facing each other at fixed distance. We found

in general a stronger modulation for small filling factors and

separation distances, and for large grating periods. In certain

regimes it is possible to reach a modulation factor of more

than 35. An in-depth study of the modes accounting for the

most important part of the heat transfer would be an interesting

prospect as well as to further enhance the modulation by using a

broader range of materials35 such as different alloys combining

the polaritons of certain dielectrics and the near-field properties

of metals. The issue of heat transfer in near-field in the case

of coatings,8 phase change materials,31,35 metamaterials,5,36

or graphene-covered dielectrics2 in this regard should also be

explored.
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The Casimir energy for profiles with arbitrary periodic corrugations

J. Lussange,1 R. Guérout,1 and A. Lambrecht1

1Laboratoire Kastler-Brossel, CNRS, ENS, UPMC, Case 74, F-75252 Paris, France

We study the dependence of the Casimir energy for different corrugated gratings of arbitrary
periodic profiles. We model to this end these profiles as stacks of horizontal rectangular slices
following the profiles’ shape. The way we study the Casimir energy dependency over these arbitrary
gratings is through a lateral displacement of the two corrugated plates before one another. We use a
numerical approach based on the scattering formalism for basic rectangular corrugations and apply
it individually to these slices, so that the greater the number of slices, the greater the accuracy of
this model. We also compare these results with the PFA. At comparable separation distance and
periodicity parameters, we find a strong dependency of the Casimir energy on the shape of these
profiles.

PACS numbers: PACS numbers: 03.70.+k, 12.20.Ds, 42.50.Lc

The Casimir force, which significantly arises between
nano-objects at the sub-micrometer range, is an exten-
sion of the van der Waals interaction where the finite
speed of light accounts for a manifestation of the rela-
tivistic retardation of the electromagnetic waves. The
dynamics of any electromagnetic field strongly depends
on its external boundary conditions, and in the case of
a Fabry-Pérot cavity formed by two flat mirrors sepa-
rated by vacuum such as first considered in 1948 by H.
Casimir [1], the variation in spectral density of the zero-
point fluctuations leads to a radiation pressure outside
of the cavity being greater than inside, so that the two
mirrors are pushed towards one another.

Recent progress have allowed accurate determination
and measurements of this force for different configura-
tions of micro-mirrors, ranging from the simplest case of
two flat mirrors for different materials [2], to more com-
plicated geometries such as the plane-sphere configura-
tion [3], or corrugated mirrors [4, 5]. This has been done
in the past decade through an extensive research into the
Casimir effect’s theoretical formalism with both numeri-
cal computations [6–9] and experimental setups [10–14].
The Casimir force, being proportional with an inverse
fourth power law with the separation distance between
the mirrors, is also highly dependent on their geometry.
The study of non-trivial gratings is therefore an impor-
tant field for future applications in the design of NEMS
and MEMS in nanotechnology, as it is for instance related
to the problems of stiction impairing these nanodevices.

We will here consider arbitrary periodic corrugations
for dielectric gratings in the case where each corrugation,
as taken independently, is symmetric before the y-axis.
This is shown in Fig. 1, where a grating having peri-
odic corrugations with arbitrary profiles can be divided
into a number of K horizontal slices of depth a vertically
stacked on each other. For a corrugation depth a, each
slice is treated as a lamellar rectangular grating whose
height along the y−axis is fixed at a/K and whose length
along the x−axis is given by the arbitrary profile’s length
at the level of that slice.

�

�

�
�
���

�

��

��

�

�������

�

�

�

�������

������	

������A

FIG. 1: Arbitrary gratings geometry and parameters in the
approximation of vertical stacks of rectangular slices (here for
K = 4).

Therefore profiles of arbitrary corrugations modeled as
such can be treated through an approach derived from
the formalism for rectangular corrugations. Such a for-
malism has already been well established in literature
within the scope of scattering formalism [4]. Let’s first
consider two such dielectric gratings made of rectangular
periodic corrugations, separated by a vacuum slit. Be-
cause of time and z-invariance, we can write the electric
and magnetic fields for i = (x, y, z) such as :

Ei(x, y, z, t) = Ei(x, y) exp(ikzz − iωt) (1)

Hi(x, y, z, t) = Hi(x, y) exp(ikzz − iωt). (2)

From now on, we take µ0 = µ = 1, and c = 1 in
vacuum. So all we need is to find the longitudinal com-
ponents outside the corrugated region (y > a) and within
the transmitted region (y 6 0).
In the case of two planar interfaces, we can write the

z−components of the fields in the vacuum region as an

blank
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incident and reflected one :

Ez(x, y) = Iee
ikxx−ikyy + ree

ikxx+ikyy (3)

Hz(x, y) = Ihe
ikxx−ikyy + rhe

ikxx+ikyy (4)

and in the material region, we can write the
z−components of the fields as a transmitted one :

Ez(x, y) = tee
ikxx−ik′

yy (5)

Hz(x, y) = the
ikxx−ik′

yy (6)

for k2y = ω2−k2x−k2z and k′2y = ǫω2−k2x−k2z , and where
re,h, te,h are the Fresnel-Stokes amplitudes. Then we can
generalize this for gratings, with a Rayleigh expansion for
an incident monochromatic wave for the field outside the
corrugated region, such that we consider p incident waves
and a diffraction order n ∈ [−N, . . . ,+N ] :

Ez(x, y)y>a = Iep exp(iαpx− iβ(1)
p y)

+
∑

n∈Z

Re
np exp(iαnx+ iβ(1)

n y) (7)

Hz(x, y)y>a = Ihp exp(iαpx− iβ(1)
p y)

+
∑

n∈Z

Rh
np exp(iαnx+ iβ(1)

n y) (8)

and within the transmitted region (y 6 0) :

Ez(x, y)y60 =
∑

n∈Z

T e
np exp(iαnx− iβ(2)

n y) (9)

Hz(x, y)y60 =
∑

n∈Z

Th
np exp(iαnx− iβ(2)

n y). (10)

where Ip, Rnp, and Tnp are now the incidence, reflection,
and transmission matrix elements respectively. Also, we
used :

αp = kx + 2πp/d (11)

αn = kx + 2πn/d (12)

β(1)2
p = ω2 − k2z − α2

p (13)

β(1)2
n = ω2 − k2z − α2

n (14)

β(2)2
n = ǫω2 − k2z − α2

n. (15)

where for n = 0 we have a specular reflection. By sym-
metry, the other field components of the electric and
magnetic fields can each be expressed through the z-
components of both fields, following Maxwell’s equations.

For example, if we define κ2 = ǫω2

c2 − k2z , we have :

Ex =
ikz
κ2
∂xEz +

iω

κ2
∂yHz. (16)

Hx =
ikz
κ2
∂xHz +

iωǫ

κ2
∂yEz. (17)

Now what we need are the reflection coefficients Rnp

of these rectangular corrugated gratings. First, we must
rewrite the Maxwell equations inside the corrugated re-
gion 0 < y < a through the set of first-order differential
equations ∂yF = MF, for F⊤ = (Ex, Ez, Hx, Hz) and
M a constant square matrix of dimension 8N + 4. The
solution of the fields is then of the form :

F(y) = eMyF(0) (18)

with :

M =




0 0 −ikzαn

ǫω −i ǫω
2−α2

n

ǫω

0 0 i
ǫω2−k2

z

ǫω
ikzαn

ǫω
ikzαn

ω i
ǫω2−α2

n

ω 0 0

−i ǫω
2−k2

z

ω
−ikzαn

ω 0 0




(19)

where the elements appearing in matrix M are in fact
block matrices of dimension 2N + 1. We can then write
the fields inside the corrugation region and match them
in continuity relations for each Ex, Ez, Hx, Hz, with
equation (18), at boundary y = a for y > a, and at
boundary y = 0 for y 6 0. Eventually we can find the
vectors F(a) and F(0), which can be written as a product
of a matrix and the vector of variables X :

F(a) = TX + Y and F(0) = SX (20)

with XT = (Re
np, R

h
np, T

e
np, T

h
np, . . .), and Y being the

variable-independent term including the polarization of
the incident waves, since must take into account the
two polarizations independently : we take for example

I
(e)
p = 1 and I

(h)
p = 0 for electric waves (Hz = 0), and

I
(e)
p = 0 and I

(h)
p = 1 for magnetic waves (Ez = 0). Y

hence characterizes the two separate solutions for e-waves
and h-waves. Here we wrote two superscript labels, the
first referring to the polarization of the reflected field, and
the second referring to the incident field. Note that in
the presence of gratings, the polarization of the reflected
field can be either e or h for a given incident field e. The
solution is then given by :

X = (eMaS − T )Y (21)

we have :

X
(
I(e)p = 1, I(h)p = 0

)
=




R
(e,e)
np

R
(h,e)
np

...


 (22)

X
(
I(e)p = 0, I(h)p = 1

)
=




R
(e,h)
np

R
(h,h)
np

...


 (23)
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so that we obtain the reflection matrix for each grating :

R(ω) =

(
R

(e,e)
np R

(e,h)
np

R
(h,e)
np R

(h,h)
np

)
(24)

After making use of Cauchy’s argument principle, we
arrive to the exact expression of the Casimir energy as the
usual sum over the modes issuing from these reflection
matrices R1(iω) and R2(iω) associated with each grating
:

E =
~d

8π3

∫

R+∗

dω

∫

R

dkz

∫ π/d

−π/d

dkx

× ln det[I −R1(iω)P (iω)R2(iω)P (iω)] (25)

for :

P (iω) =

(
G 0
0 G

)
(26)

with G = diag
(
e−L

√
ω2+k2

y+[kx+(2mπ/d)]2
)

and m =

−N, . . . ,+N . The matrices P thus act as propagation
matrices within the cavity.

Now for our case of arbitrary profiles modeled as stacks
of K horizontal rectangular slices, the difference appears
in the parameter d1, which will now depend on y. Ar-
bitrary profiles defined by d1(y) can be divided into K
slices, each being seen as a rectangular corrugation, as de-
scribed in Fig. 1. For each slice (i), the spacing between

the corrugations ridges is d
(i)
1 , and the former scattering

formalism for rectangular corrugations can be applied.
More specifically, a differential equation akin to equation
(18) ∂yF = M(i)F can be solved within each slice (i) to
relate the fields at boundary y = i a

K and y = (i+ 1) a
K .

In a similar way that for the case K = 1 above, the
field at y = a is thus related to the field at y = 0 via the
relation :

F(a) =

[
1∏

i=K

eM
(i) a

K

]
F(0) (27)

where the product
∏

runs from i = K to i = 1, in that
order.

The greater the number of slices K, the greater the fit-
ting of the gratings’ shape will be, and thus the accuracy
of the overall model. This convergence in K is shown
in Fig. 4 for given profiles shaped as sawteeth, with a
separation distance L = 100 nm, grating period d = 400
nm, corrugation depth a = 50 nm, and distance between
ridges d1(y) = 4y+200. Hence a correct parametrization
of the quantity d1 as a function of y allows one to generate
arbitrary symmetric profiles for the corrugations. The ar-
bitrary profiles that we will study are shown on Fig. 2
and Fig. 3. For instance, sawtooth profiles where dl = d
(as seen on Fig. 2a and Fig. 3a) are generated by the

�
�
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�

� �

�
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�

FIG. 2: Two-dimensional perspective on the different consid-
ered periodic gratings. (a) and (c) are at the same scale, but
the scale of (b) has been increased by a factor two.

function d1(y) =
d
ay, and sinusoidal profiles by d1(y) =

(d/π) arccos[1 − (2y/a)]. Barbed wire profiles, where
dh > dl (as seen on Fig. 2b) are generated by the function
d1(y) = (dl − dh)y/a + dh. Ellipsoid profiles along the
x−axis are generated by d1(y) = d− 2R

r

√
r2 − (y − Y )2

(as seen on Fig. 2c), and those along the y−axis are gen-
erated by d1(y) = d − 2r

R

√
R2 − (y − Y )2, for R and r

being the major and minor axes of the ellipse respectively,
and Y being the value in y of the ellipse center. Circular
periodic profiles are also generated by these expressions
(as seen on Fig. 2c and Fig. 3c), with R = r being the
radius of these 2D circles in the xy-plane. Notice that
what we call for example “circular” periodic profiles in
two dimensions, look more in fact like periodic “tubes” in
the actual three-dimensional gratings, as shown on Fig.
3.

We can also compare the results of the scattering
theory presented here with Derjaguin’s Proximity Force
Approximation (PFA) [15]. The PFA comes from the
weighted sum of the planar normal contributions EPP(L)
depending on the local separation distances L within each
period, and hence on the lateral displacement δ between
the gratings. If we express the shapes of the arbitrary pe-
riodic gratings in an analytical form such as y = f(x, δ)
for the lower grating and y = L + 2a − f(x, δ = 0) for
the upper grating in the xy-plane shown on Fig. 1, we
can then define the function h(x, δ) = L+ 2a− f(x, δ =
0)−f(x, δ) expressing the local distance of separation be-
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FIG. 3: Three-dimensional perspective on the sawtooth, rect-
angular, sinusoidal, and circular periodic gratings shown in
Fig. 2. The profiles are here represented at the same scale.

tween the two profiles, as a function of x and δ. Dividing
the period d in a number η → ∞ of intervals of individual
widths d/η → 0, we then obtain a general expression of
the Casimir energy in the PFA for arbitrary gratings as
a function of lateral displacement δ :

EPFA(L, δ) =
1

d

∫ d

0

EPP (h(x, δ)) dx (28)

=
1

η

η∑

i=1

EPP

(
L = h

(
x = i

d

η
, δ

))

We now consider several types of arbitrary profiles and
review the dependence of the Casimir energy as a func-
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FIG. 4: Dependence of the Casimir energy to the number of
slices K for the case of sawtooth gratings, with L = 100 nm,
d = 400 nm, a = 50 nm, and d1(y) = 4y + 200.

tion of the two mirrors’ lateral displacement δ with re-
spect to one another. As for the rest of this text, the
material chosen for these profiles is intrinsic silicon, such
as modeled by a Drude model from [5, 16].

To begin with, let’s take L = 100 nm, d = 400 nm,
a = 50 nm, and a number of slices K = 20. We consider
five corrugated periodic profiles parametrized by d1(y) =
4y+200, d1(y) = 3y+200, d1(y) = 2y+200, d1(y) = y+
200, and d1(y) = 200 nm respectively, as shown in Fig. 5.
With these parameters, we can study the dependence of
the Casimir energy for gratings ranging from sawtooth (in
black) all the way to rectangular corrugations (in orange)
so that dl ranges from d = 400 nm to dh = 200 nm
progressively by steps of 50 nm. This is also compared
with sinusoidal profiles of same sizes for d, a, and L, but
parametrized by d1(y) = (d/π) arccos[1− (2y/a)].

One can see that the Casimir energy increases as dl de-
creases, and that this is especially true at δ = d/2. So we
can say that both the Casimir energy and its modulation
over lateral displacement are larger for smaller dl such as
rectangular corrugations and smaller for larger dl such
as sawtooth profiles. Note also the behavior of the sinu-
soidal profile at δ = d/2, which shows that such profiles
are less sensitive to lateral displacement than sawtooth
profiles or rectangular gratings.

On Fig. 6 we show a comparison between the scat-
tering results and the PFA for the sawtooth, sinusoidal,
and rectangular profiles seen in Fig. 5. It is clear
that regardless of the considered profile, the PFA does
not approximate well the case δ = 0. The error ratio
EPFA−Escattering/EPFA at δ = 0 is roughly equal to 11%
for sawtooth, 12% for sinusoidal, and 15% for rectangu-
lar gratings. Furthermore, as one shifts δ to half-a-period
d/2, the error becomes much smaller for the sawtooth and
sinusoidal gratings, but for all cases, the PFA is not a
good approximation to the rectangular gratings in this
configuration.

On Fig. 7 we show the results issuing for different
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FIG. 5: Dependence of the Casimir energy to the mutual
lateral translation of two corrugated periodic profiles of in-
trinsic silicon. We took here L = 100 nm, K = 20, d = 400
nm, a = 50 nm, and d1 = 4y + 200 (sawtooth in black),
d1 = 3y + 200 (blue), d1 = 2y + 200 (red), d1 = y + 200
(green), d1 = 200 (rectangular corrugations in orange). This
is compared with a sinusoidal profile (magenta curve) with
same parameters, except d1 = (d/π) arccos[1 − (2y/a)].
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FIG. 6: Comparison between the scattering and PFA results
for the sawtooth, sinusoidal, and rectangular profiles of Fig.
5.

profiles shaped as barbed wire, which is for dh > dl.
We take L = 20 nm, d = 100 nm, a = 50 nm, and
a number of slices K = 20. By carefully choosing
dh = 85 nm and dl = 60 nm, we get a filling factor
d1 = (dl − dh)y/a + dh = d1 = 85 − y/2. Now we com-
pare the case with d1(y) = 85 − y/2 with two differ-
ent corrugated rectangular gratings : the first one with
d1 = dh = 85 nm so that the corrugations are as wide
as the top of the barbed wires, and the second one with
d1 = dl = 60 nm so that the corrugations are as wide
as the base of the barbed wires. One can see that the
Casimir energy of these profiles in barbed wire are much
closer to the latter rectangular gratings than the former.

Finally we consider two different gratings as shown in
Fig. 8, each with L = 100 nm, d = 400 nm, a = 50
nm, and a number of slices K = 15. The first one has
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FIG. 7: Dependence of the Casimir energy to the mutual
lateral translation of two barbed wire periodic profiles of in-
trinsic silicon. We took here L = 20 nm, K = 20, d = 100
nm, a = 50 nm, and d1 = −0.5y + 85 (dashed black line),
d1 = −0.5y + 65 (dashed blue line), d1 = −0.5y + 45 (dashed
red line), d1 = −0.5y + 25 (dashed green line). This is com-
pared with two rectangular corrugated profiles of different
value d1 = dh = 85 nm (dotted gray line), and d1 = dl = 60
nm (dashed gray line).Notice that while we varied the spacing
between the corrugations d1, the grating period d was kept
constant.

the shape of periodic horizontal ellipses, with major axis
R = 50 nm along x, minor axis r = 25 nm, and origin at
y = Y = 25 nm, so that d1(y) = 400− 4

√
50y − y2. The

second grating has the shape of periodic circles with radii
R = 25 nm and center at y = Y = 25 nm, such that d1 =
400− 2

√
50y − y2. One can see that the Casimir energy

increases with the ratio R/r. This is again especially true
at δ = d/2.

One should note that compared to the profiles studied
in Fig. 5, the energy variation over δ for these ellipsoid
and circular gratings varies very slowly except around
δ = d/4, where a sudden increase in energy is found. This
could be a probable consequence of the concave nature
of these shapes for y < Y .

As a conclusion, we have studied the dependence of
the Casimir energy over different arbitrary periodic grat-
ings, ranging from the case of sawtooth and sinusoidal
profiles, to barbed wires, circular and ellipsoid shapes.
These all have practical applications; the circular profiles
describe the geometries of carbon nanotubes, for exam-
ple. It seems that in general, at same separation distance
L, period d, and corrugation depth a, periodic gratings
presenting concave shapes (such as those considered in
Fig. 7 and Fig. 8) have a tendency to maximize the
Casimir energy compared to those of convex shape (such
as those considered in Fig. 5). This is a probable con-
sequence of the fact that for a given mirror, the greater
the exposed surface in near field to the other mirror, the
greater the Casimir energy [17]. An interesting topic to
further investigate would be to parametrize the profiles
in such a way that the lateral displacement δ also de-
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FIG. 8: Dependence of the Casimir energy to the mutual
lateral translation of two corrugated periodic profiles shaped
as circular (black dashed line) and ellipsoid (red solid line).
We took here L = 100 nm, K = 15, d = 400 nm, a = 50
nm, and d1 = 400 − 2

p

50y − y2 for circles in black (with

R = r = Y = 25 nm), and d1 = 400−4
p

50y − y2 for ellipses
in red (with r = Y = 25 nm and R = 50 nm).

pends on y, thus generating asymmetric profiles. This,
as well as our previous results, should also be put in re-
lation with the recent results and measurements of the
Casimir lateral force and Casimir torque effect.

We thank for support the European Science Founda-
tion (ESF) within the activity New Trends and Applica-
tions of the Casimir Effect (www.casimir-network.com).
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We present detailed calculations for the Casimir force between a plane and a nanostructured surface at finite

temperature in the framework of the scattering theory. We then study numerically the effect of finite temperature

as a function of the grating parameters and the separation distance. We also infer nontrivial geometrical effects

on the Casimir interaction via a comparison with the proximity force approximation. Finally, we compare our

calculations with data from experiments performed with nanostructured surfaces.
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I. INTRODUCTION

The Casimir interaction at finite temperature consists of

two parts: a purely quantum one which subsists as T → 0 K

involving the zero-point energy of the electromagnetic vacuum

[1] and a thermal one [2] which takes into account the real

thermal photons emitted by the bodies. For the thermal part

to become noticeable, frequencies relevant to the Casimir

interaction must fall in the range of relevant thermal frequen-

cies. For this reason, at room temperature the thermal part

of the Casimir interaction becomes important for separation

distances of the order of micrometers or tens of micrometers.

At those separation distances, the absolute value of the Casimir

force is small as it decreases as the inverse third power of the

separation distance. Experimentally, there is thus a tradeoff

when one wants to measure the thermal component of the

Casimir interaction: at small separation distance where the

Casimir force is comparably large, the thermal part is small,

whereas at large separation distance where the thermal part

is large, the total Casimir force is small. A solution is to use

“large” interacting bodies to maximize the Casimir force at

large distances [3].

The above reasoning is well adapted to the parallel-plates

geometry (or a plate-sphere situation when the radius of

the sphere is large) where the only characteristic length

is the separation distance. In the case of a plate-grating

situation, additional characteristic lengths such as the grating

period or the corrugation depth are to be taken into account.

The importance played by the thermal part of the Casimir

interaction is highly nontrivial in the case of the plate-

grating geometry and full calculations become necessary. First

calculations for this geometry for perfect reflectors at zero

temperature have used a path integral approach [4]. A first

exact solution for the Casimir force between two periodic

dielectric gratings was given in [5]. On the basis of this method

a scattering approach to the Casimir force in the gratings

geometry at zero temperature has been presented in [6]. In this

paper we use the scattering approach to Casimir forces [7–9]

to calculate the Casimir interaction between a plate and a

grating at arbitrary temperature. Alternatively, the Casimir

force in such geometries can also be calculated using a modal

approach [10], which is in principle identical to the method

presented in [6] and in this paper. There are, however, a few

differences that will lead to slightly different results which we

will detail later. In the following we study the contribution

of the thermal part as a function of the grating parameters

and assess the validity of the proximity force approximation

(PFA). We finally compare our results with experimental data

presented elsewhere [6,11]. The most important result is that

in the grating geometry the thermal contribution to the Casimir

interaction is overall enhanced and occurs at shorter separa-

tion distance, which opens interesting perspectives for new

experiments.

II. THEORY: THERMAL CASIMIR FORCE

BETWEEN GRATINGS

We study the Casimir interaction within the scattering

approach between a plate and a 1D lamellar grating as depicted

in Fig. 1. Above the grating z > 0, we have a homogeneous

region labeled I characterized by a permittivity ǫi . Below the

grating z < −a, a homogeneous region labeled III charac-

terized by a permittivity ǫt . The plate is characterized by a

permittivity ǫp for z > L. In the grating region −a � z � 0,

the permittivity is a periodic function of x, ǫ(x).

In the following we will use c = 1 for convenience and work

with a generalized complex frequency � = ω + iξ having real

and imaginary parts ω and ξ , respectively. The Casimir force

per unit area between two parallel plates is given by the Lifshitz

formula [12] with specular reflection on the plates described

by Fresnel coefficients. The scattering theory generalizes this

formula by treating nonspecular reflections from a grating

through the use of reflection operators coupling different

plane-wave modes [8]. The Casimir force per unit area Fp,g(L)

between a plane and a grating at finite temperature T , separated

by a distance L, is

Fp,g(L; T )

= 2πkBT

∞
∑

n=0

′
∫∫

tr[(1 − Mn)−1∂LMn]dkxdky, (1)

where the prime on the sum means that the term with n = 0

is to be multiplied by a factor 1/2. The discrete sum in the

above equation runs over the Matsubara frequencies iξn =
i 2πnkBT

h̄
, which are the poles of the function coth( h̄�

2kBT
) =

1 + 2(eh̄�/kBT − 1)−1 and take into account zero-point energy

fluctuations as well as thermal fluctuations. It originates from

a contour integration in the complex frequency plane.

052514-11050-2947/2013/87(5)/052514(6) ©2013 American Physical Society
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FIG. 1. (Color online) A 1D lamellar grating and its associated

reference frame.

The operatorMn is evaluated at the Matsubara frequencies

and reads M(iξn) = Rp(iξn)e−κLRg(iξn)e−κL. It describes a

full round-trip of the field between the two scatterers, that is, a

reflection on the plate via the operator Rp, the free propagation

from the plate to the grating corresponding to the translational

operator e−κL with the imaginary wave vector κ = −ikz =
(ǫiξ

2
n + k2

x + k2
y)1/2, the scattering on the grating via the

reflection operator Rg and a free propagation back to the plate.

The vector kx of dimension 2N + 1 collects the diffracted

wave vectors kx = (kx − N 2π
d

, . . . ,kx, . . . ,kx + N 2π
d

), where

N is the highest diffraction order retained in the calculation.

The integration in Eq. (1) is restricted to the first Brillouin

zone, i.e., −π
d
� kx � π

d
.

The plate’s reflection operator Rp is diagonal and col-

lects the appropriate Fresnel reflection coefficients Rp =
diag(

κ−κp

κ+κp
,
ǫpκ−ǫiκp

ǫpκ+ǫiκp
) with κp = (ǫpξ 2

n + k2
x + k2

y)1/2. We cal-

culate the grating reflection operator Rg in the framework

of the rigorous coupled wave analysis (RCWA) or Fourier

modal method. We use a method of resolution inspired by

the formalism presented, e.g., in [13], which we will briefly

outline below.

The physical problem is time and y invariant. A global

dependence in ei(kyy−ωt) can be factored out of all the fields.

For an incident wave characterized by a wave vector

k
(p)

i = (αp,ky, − γ (i)
p ), a grating structure with period d will

generate an infinite number of reflected waves with wave

vectors k(n)
r = (αn,ky,γ

(i)
n ) and transmitted waves with wave

vectors k
(n)
t = (αn,ky, − γ (t)

n ). αn = kx + n 2π
d

and γ
(i/t)
n =

(ǫi/tω
2 − α2

n − k2
y)1/2.

In region I, the y components of the fields are written as a

Rayleigh expansion involving incident and reflected fields of

order p and n, respectively:

Ey(x,z) =
+∞
∑

n=−∞
δnpI (e)

p ei(αpx−γ
(i)
p z) + R(e)

npei(αnx+γ
(i)
n z), (2a)

Hy(x,z) =
+∞
∑

n=−∞
δnpI (h)

p ei(αpx−γ
(i)
p z) + R(h)

np ei(αnx+γ
(i)
n z), (2b)

whereas in region III, the Rayleigh expansion involves the

transmitted fields

Ey(x,z) =
+∞
∑

n=−∞
T (e)

np ei[αnx−γ
(t)
n (z+a)], (3a)

Hy(x,z) =
+∞
∑

n=−∞
T (h)

np ei[αnx−γ
(t)
n (z+a)]. (3b)

Whether in region I or III, the x components of the fields

are obtained from the y components thanks to the Maxwell’s

curl equations:

Ex(x,z) =
iky

ǫi/tω2 − k2
y

∂xEy(x,z) +
iω

ǫi/tω2 − k2
y

∂zHy(x,z),

(4a)

Hx(x,z) =
iky

ǫi/tω2 − k2
y

∂xHy(x,z) −
iωǫi/t

ǫi/tω2 − k2
y

∂zEy(x,z).

(4b)

In the grating region −a � z � 0, owing to the periodicity

along the x direction the fields as well as the permittivity ǫ(x)

and its reciprocal 1/ǫ(x) can be expanded in Fourier series.

We have

Ex(x,z) =
∑

n

e(n)
x (z)eikxxe2inπx/d , (5a)

Ey(x,z) =
∑

n

e(n)
y (z)eikxxe2inπx/d , (5b)

Hx(x,z) =
∑

n

h(n)
x (z)eikxxe2inπx/d , (5c)

Hy(x,z) =
∑

n

h(n)
y (z)eikxxe2inπx/d , (5d)

ǫ(x) =
∑

n

ǫne
2inπx/d , (5e)

1/ǫ(x) =
∑

n

�n e2inπx/d . (5f)

With those notations, we are able to express the Maxwell’s

curl equations in a compact matrix form. Let F be a

column vector collecting the Fourier components of the fields

F = (ex,ey,hx,hy)T, we then may write

∂zF = MF (6a)

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 − iky

ω
αǫ−1 −iω1 + i

ω
αǫ−1α

0 0 iω1 − ik2
y

ω
ǫ−1 iky

ω
ǫ−1α

iky

ω
α iωǫ − i

ω
αα 0 0

−iω ���
−1 + ik2

y

ω
1 − iky

ω
α 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

≡
(

0 M1

M2 0

)

. (6b)
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In the above equation, α = diag(αn), 1 is the identity and

ǫ, resp. ���, are Toeplitz matrices whose structure is defined

as having elements {ǫn,n � 0} on the first line and elements

{ǫn,n � 0} on the first column. Note that in accordance

with Ref. [14], we have replaced the matrix ǫ by ���
−1 in

the lower-left block of the matrix M. This constitutes an

improvement with respect to Ref. [5], where this replacement

had not been done. Note that our operator M in Eq. (6b)

bears resemblance with Eq. (22) of Ref. [10], but these two

operators are slightly different. They coincide only when an

infinite number of diffraction orders are retained but they differ

upon truncation. The matrix F has dimension 4 × 1 in units of

2N + 1. A particular column of F corresponds to a particular

incident order p. In the following, bold quantities are matrices

whose dimensions will be given in units of 2N + 1 if not

trivial. As an example, in Eq. (6b), α, ǫ, ���, and 1 are matrices

of dimension 1 × 1, whereas M1 and M2 are of dimension

2 × 2.

In [5] Eq. (6a) had been numerically solved. Here we follow

a different path, which has proven to lead to more stable numer-

ical calculations. Because of the block antidiagonal structure of

matrix M, Eq. (6a) can be recast as a Helmholtz-like equation

for the electric fields provided that M is independent of z,

which is the case for the lamellar gratings we consider here:

∂2
z2

(

ex

ey

)

= M1M2

(

ex

ey

)

≡ M
(e)

(

ex

ey

)

. (7)

This equation is solved as (
ex
ey

)(z)=e

√
M(e)zC++e−

√
M(e)zC−, where

C+ and C− are unknown coefficients to be determined. Let

φ, λ be, respectively, the eigenvectors and eigenvalues of the

matrix M(e) such that M(e) = φ diag(λ) φ−1. Writing explicitly

the expression for e±
√

M(e)z, we can include the matrix φ−1 in

the unknown coefficients C+ and C−; furthermore, we want to

avoid exponentially growing solutions at z = −a. Following

the prescriptions in [13] we finally arrive at

(

ex

ey

)

(z) = φe
√

λz
C

+ + φe−
√

λ(z+a)
C

−, (8a)

(

hx

hy

)

(z) = M
−1
1 φ

√
λe

√
λz

C
+ − M

−1
1 φ

√
λe−

√
λ(z+a)

C
−,

(8b)

where Eq. (8b) has been obtained by injecting Eq. (8a) into

(
hx

hy
) = M

−1
1 ∂z(

ex

ey
) from Eq. (6b).

We can use Eqs. (2) and (4) to write the fields at z = 0, and

Eqs. (3) to write the fields at z = −a. In compact matrix form,

this leads to

F(−a)=

⎛

⎜

⎜

⎜

⎜

⎝

− kyα

ǫtω2−k2
y

ωγ (t)

ǫtω2−k2
y

1 0

− ωǫtγ
(t)

ǫtω2−k2
y

− kyα

ǫtω2−k2
y

0 1

⎞

⎟

⎟

⎟

⎟

⎠

(

T(e)

T(h)

)

≡
(

te

th

)(

T(e)

T(h)

)

(9)

and

F(0) =

⎛

⎜

⎜

⎜

⎜

⎝

− kyα

ǫiω2−k2
y

ωγ (i)

ǫiω2−k2
y

1 0

− ωǫiγ
(i)

ǫiω2−k2
y

− kyα

ǫiω2−k2
y

0 1

⎞

⎟

⎟

⎟

⎟

⎠

(

Iσ=e

Iσ=h

)

+

⎛

⎜

⎜

⎜

⎜

⎝

− kyα

ǫiω2−k2
y

− ωγ (i)

ǫiω2−k2
y

1 0

ωǫiγ
(i)

ǫiω2−k2
y

− kyα

ǫiω2−k2
y

0 1

⎞

⎟

⎟

⎟

⎟

⎠

(

R(e)

R(h)

)

≡
(

iee ieh

ihe ihh

)(

Iσ=e

Iσ=h

)

+
(

re

rh

)(

R(e)

R(h)

)

, (10)

where γ (i/t) = diag(γ
(i/t)
n ), and we have introduced the basis

of polarizations σ that we use, denoted e and h. The

polarizations σ = e,h are defined by imposing Hy = 0 and

Ey = 0, respectively. Hence, in the above equation for incident

σ = e waves, we impose Iσ=e = 1 and Iσ=h = 0 and vice versa

for incident σ = h waves. Note that te, th, re, and rh are of

dimension 2 × 2, whereas iee, ieh, ihe, and ihh are of dimension

2 × 1. Other dimensions are deduced so as to be consistent

with those of F.

Evaluating Eqs. (8) at z = −a and z = 0 and identifying

with Eqs. (9) and (10) leads to a linear system of equations of

dimension 8(2N + 1) for the 8(2N + 1) unknowns C+, C−,

R(e), R(h), T(e), and T(h). Nevertheless, it is numerically more

stable to eliminate the reflection and transmission unknowns

from this system and to solve instead a reduced system of

dimension 4(2N + 1) for solely C+ and C−. All done, this

system reads as follows:

(

(

φ − tet
−1
h V

)

e−
√

λa φ + tet
−1
h V

φ − rer
−1
h V

(

φ + rer
−1
h V

)

e−
√

λa

)

(

C+

C−

)

=

⎛

⎝

0

(

iee − rer
−1
h ihe ieh − rer

−1
h ihh

)

(

Iσ=e

Iσ=h

)

⎞

⎠ , (11)

where we have defined V = M
−1
1 φ

√
λ. Once the unknown

coefficients C+ and C− are determined by solving Eq. (11),

the reflection and transmission coefficients are
(

R(e)

R(h)

)

= r
−1
h

[

V(C+ − e−
√

λa
C

−) − (ihe ihh)

(

Iσ=e

Iσ=h

)]

,

(12a)
(

T(e)

T(h)

)

= t
−1
h [V(e−

√
λa

C
+ − C

−)]. (12b)

Resolution of Eqs. (11) and (12) first for incident σ = e

waves and then for incident σ = h waves leads to the complete

reflection and transmission matrices Rg and Tg:

Rg =
(

R(e)(σ = e) R(e)(σ = h)

R(h)(σ = e) R(h)(σ = h)

)

, (13a)

Tg =
(

T(e)(σ = e) T(e)(σ = h)

T(h)(σ = e) T(h)(σ = h)

)

. (13b)
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The force at T = 0 K is recovered by the substitution

2πkBT

∞
∑

n=0

′ → h̄

∫ ∞

0

dξ. (14)

We define two quantities, ϑF (L) and ηF (L), to assess,

respectively, the effect of the finite temperature and the

deviation from PFA:

ϑF (L) =
Fp,g(L; T = 300 K)

Fp,g(L; T = 0 K)
, (15)

ηF (L; T ) =
Fp,g(L; T )

F PFA
p,g (L; T )

, (16)

where F PFA
p,g (L; T ) = 1

d

∫ d

0
Fp,p[L(x); T ]dx, and Fp,p(L; T ),

the force between two plane-parallel plates, is given by the

Lifshitz formula [12].

III. NUMERICAL EVALUATIONS

We now study the thermal Casimir interaction between a

gold plate and a doped silicon grating. Therefore, ǫt ≡ ǫSi(ω)

and ǫp ≡ ǫAu(ω). The plate and the grating are separated by

vacuum ǫi ≡ ǫ0 = 1 ∀ω. As described in [11], the permittivity

of gold is taken from experimental data extrapolated to low

frequencies by the Drude model. The permittivity of doped

silicon is modeled by a two-oscillator model: one describing

the intrinsic part of silicon and the other one describing

its metallic behavior at low frequencies [15]. The metallic

part of doped silicon is determined by a doping level of

2 × 1018 cm−3. In the calculations, we choose to truncate

our reflection operator at N = 10, which is sufficient to show

convergence at all separation distances studied. This is another

difference with respect to Ref. [10] where N = 5 has been

used. The situation is characterized by four length scales: the

separation distance L, the corrugation height a, the grating

period d, and the corrugation width w. (For this last quantity,

we will prefer to work with the filling factor f = w/d). A

complete analysis would in principle involve full Casimir force

calculations in a four-dimensional parameters space. Instead

we explore here the parameter space at fixed filling factor

and grating period d corresponding to the experimental setup

in [11].

In Fig. 2 we illustrate the effect of the temperature in

the plate-grating geometry by plotting the ratio ϑF (L,a) as

a function of both the separation distance L and the trench

depth a. The grating period d and the filling factor f are

fixed, respectively, at d = 400 nm and f = 0.5. For this choice

of materials, we find over the whole range of parameters

ϑF (L,a) > 1 so that the thermal photons always lead to an in-

crease in the Casimir force. For a = 0 we recover the two-plate

configuration and we have necessarily limL→0 ϑF (L,a = 0) =
1. The total temperature effect ϑF (L,a = ∞) − ϑF (L,a = 0)

increases with larger separation distances L. The limiting value

ϑF (L,a = ∞) is reached for larger a as the separation distance

L increases, since this limiting value rather means a ≫ L.

Interestingly, for a fixed separation distance L, there is a

steep increase of ϑF as a function of the corrugation depth

a towards saturation, as shown in detail in Fig. 3. At a

distance of 1.2 μm the temperature corrections increase the

zero temperature force by ∼5% between two flat plates.

2.5

3.0

3.5

log10 L
0

500

1000

1500

a nm

1.0

1.2

1.4

1.6

1.8

ΘF

FIG. 2. (Color online) Effect of temperature on the Casimir force

given by the ratio ϑF as a function of the separation distance L and

corrugation depth a.

Remarkably, this increase becomes ∼20% if the doped Si

plate contains deep trenches (a ∼ 1.4 μm). For L = 600 nm

the effect is less pronounced but still amounts to an increase

from 3 to about 10. Clearly the use of a structured surface

increases the thermal Casimir force and makes the effect easier

to be observed at shorter distances. A possible explanation

is that the nanostructures change the spectral mode density,

especially in the infrared frequency domain, so that thermal

effects become enhanced, as it has already been pointed out in

heat-transfer phenomena between gratings [16,17].

Next, we turn to assess the validity of PFA. Figure 4 shows

the deviation from PFA ηF as a function of the separation

distance L and the corrugation depth a. By definition,

ηF (L,a = 0) = 1. For a fixed separation distance L, the error

made by PFA increases with deeper trench depth a. We have

ηF (L,a; T = 300 K) > ηF (L,a; T = 0 K) for all values of

separation distance L and trench depth a so that a finite

temperature is seen to always increase the deviation from PFA.

At large separation distances, we expect PFA to be valid so that

limL→∞ ηF (L,a; T ) = 1. In particular, for a fixed corrugation

depth a, the functions ηF show a maximum for a particular

distance L = Lmax, as illustrated in Fig. 5. Qualitatively, we

0 200 400 600 800 1000 1200 1400

1.05

1.10

1.15

Corrugation height a nm

Θ F

FIG. 3. (Color online) Effect of the temperature ϑF on the Casimir

force for L = 150, 300, 600, and 1200 nm (from bottom to top) as a

function of the trench depth a.
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FIG. 4. (Color online) Deviation from PFA ηF as a function of

the separation distance L and trench depth a. The lower surface is for

T = 0 K, the upper one for T = 300 K.

can say that this value Lmax ≈ a. More precisely, we find

Lmax � a for T = 0 K and Lmax � a for T = 300 K. Thus the

deviation from PFA increases with increasing distances for

L � a and decreases with increasing distances for L � a. The

deviation from PFA for T �= 0 K shows the same qualitative

behavior as for T = 0 K.

IV. COMPARISON WITH EXPERIMENTAL DATA

We are now in the position to compare our calculations

with experimental data from [6,11]. In these experiments the

interaction between a nanostructured silicon surface and a

gold-coated sphere with a radius of 50 μm was measured.

The force was detected at ambient temperature using a silicon

micromechanical resonator onto which the gold sphere was

attached. As the distance between the nanostructured surface

and the sphere was varied, the change in the resonant frequency

of the resonator was recorded. This quantity is proportional to

the Casimir force gradient ∂LFs,g(L) between the gold sphere

and the silicon grating. Since the separation distance between

the sphere and the grating is small compared to the radius

of the sphere, we can relate this Casimir force gradient to

the Casimir pressure Fp,g(L) between a plate and the grating

200 500 1000 2000 5000

1.10

1.15

1.20

1.25

1.30

Separation distance L nm

Η
F

FIG. 5. (Color online) Deviation from PFA ηF at fixed trench

depth a = 900 nm as a function of the separation distance L for

T = 0 K (bottom) and T = 300 K (top).
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FIG. 6. (Color online) Experimental data for the Casimir force

gradient between a gold sphere and a silicon grating with deep

trenches (black dots with error bars). The data are normalized to

their PFA expression. This is compared with our calculations both for

T = 0 K (blue, lower line) and T = 300 K (red).

as ∂LFs,g(L) = 2πRFp,g(L). Under these assumptions, the

measured quantity ∂LFs,g(L) when normalized by its PFA

value is identical to ηF , i.e., ∂LF (L)/∂LF PFA(L) = ηF (L),

where we have omitted for simplicity the indices indicating

the sphere grating geometry.

In Fig. 6 we plot ηF (L) for a silicon structure with deep

trenches (sample B in Ref. [6]). This sample has a period

d = 400 nm, trench depth a = 980 nm, and filling factor

f = 0.478. The experimental data are plotted as circles with

error bars. Our calculations for T = 0 K and T = 300 K

are plotted as the blue and red curves, respectively. As

first reported in [6], the measured values of ηF (L) between

gold and silicon surfaces were found to be smaller than

predictions using perfect reflectors at zero temperature [4].

The inclusion of the material properties at zero temperature

leads to better agreement [5]. Our zero-temperature results

presented here are larger than those in Refs. [5] and [10] by

about ∂LF/∂LF PFA ≈ 0.05. We attribute these differences to

the replacement of the matrix ǫ by ���
−1 in the lower-left block

of the matrix M in Eq. (6b) and to solving the differential

equations (7) instead of (6a) compared to results in [5] and

to a higher truncation at N = 10 here, compared to N = 5

in [10].

Let us now discuss the thermal effects. The red line in

Fig. 6 plots the calculated results for T = 300 K, at separation

L from ≈ 150 nm to L ≈ 500 nm. Following our previous

discussion of Fig. 5, since the experiment was conducted in

a regime where L < a, both ηF and ∂LF/∂LF PFA increase

with separation distance. In Fig. 6, the difference between

the red line for T = 300 K and the blue line for T = 0 K

is clearly visible. When compared to the experimental data

measured at ambient temperature, the theory curve calculated

for T = 300 K gives better agreement than the one at T =
0 K. Unambiguous demonstration of the thermal contributions

of the Casimir force in this sample, however, would require

experimental improvements to further reduce the measurement

uncertainty.

So far, the thermal contributions to the Casimir force

have only been observed at distances larger than 1 μm

between smooth surfaces [3]. At smaller distances, the thermal

effects decrease significantly. As shown in Fig. 3, the thermal
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FIG. 7. (Color online) Experimental data for the Casimir force

gradient between a gold sphere and a silicon grating with shallow

trenches (black dots with error bars). The data are normalized to

their PFA expression. This is compared with our calculations both for

T = 0 K (blue) and T = 300 K (red).

contributions to the Casimir force between flat surfaces are

expected to be only about 3% at ∼500 nm. By replacing

one of the surfaces with a grating with deep trenches, the

thermal contributions increase by a factor of 3. Nanostructured

surfaces therefore hold promise for precise measurements of

the thermal Casimir force.

Next we focus on gratings with shallow trenches that were

used in Ref. [11]. The period was again d = 400 nm, but

the trench depth was only a = 98 nm. The filling factor was

approximately f = 0.48. Figure 7 shows the measured data

points from this experiment together with the results of our

calculations for this sample both at T = 300 K (red curve)

and T = 0 K (blue curve). In the calculation we take into

account the exact trapezoidal shape of the corrugation profile

via a generalization of the formalism presented above [18].

As the range of separation distances is the same as in the

experiment with deep trenches, the situation now corresponds

to a regime where L > a. Therefore ηF and thus ∂LF/∂LF PFA

both decrease with increasing distance to reach its asymptotic

value of 1. Again the theoretical prediction at 300 K is in good

agreement with the measured data. The overall temperature

effect is less pronounced here than for the deep trenches, as

the trench depth is about a factor of 10 smaller.

V. CONCLUSIONS

We have calculated the Casimir interaction between a plate

and a grating at finite temperature. We find good agreement

between our calculations for T = 300 K and experimental

data taken at ambient temperature. Even though the experi-

ments are performed at relatively small separation distances

L < 500 nm, the use of gratings enhances the thermal

contributions of the Casimir force. Our findings provide

an alternative approach to study thermal Casimir forces

without having to reach separation distances of the order of

micrometers.
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