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Résumé

Cette thèse se divise en deux parties. La première est consacrée aux points entiers sur

les courbes modulaires, et l’autre se concentre sur les courbes elliptiques à couplages sur

corps finis.

1. Majorations effectives des points entiers sur les courbes modulaires

La première partie est la partie principale. Dans cette partie, nous donnons quelques

majorations effectives de la hauteur des j-invariants des points entiers sur les courbes

modulaires quelconques associées aux sous-groupes de congruence sur les corps de nom-

bres quelconques en supposant que le nombre des pointes est au moins 3. De plus, dans le

cas d’un groupe de Cartan non-déployé nous fournissons de meilleures bornes. Comme

application, nous obtenons des résultats similaires pour certaines courbes modulaires

avec moins de 3 pointes.

Soit H le demi-plan de Poincaré: H = {τ ∈ C : Imτ > 0}. De plus on notera

H̄ = H∪Q∪ {i∞} le demi-plan de Poincaré étendu. Le groupe modulaire SL2(Z), agit

par homographie sur H, via l’action:

(
a b

c d

)
(τ) =

aτ + b

cτ + d
.

Soit Γ(N) le sous-groupe principal de congruence de niveau N qui est le sous-groupe

de SL2(Z) formé des classes de matrices congrues modulo N à la matrice identité. En

particulier, Γ(1) = SL2(Z). On appelle sous-groupe de congruence un sous-groupe de

SL2(Z) qui contient le sous-groupe Γ(N) pour un entier N .

Soit Γ un sous-groupe de congruence de SL2(Z), on définit alors la courbe modulaire

associée à Γ, par

XΓ = Γ\H̄.



Soit j l’invariant modulaire qui définit sur H par le développement familier suivant

j(τ) = q−1
τ + 744 + 196844qτ + · · · ,

où qτ = e2πiτ .

Le corps de fonctions de X(1) est Q(j). Le corps de définition de X(N) est Q(ζN ).

On note par Q(X(N)) le corps de fonctions de X(N). Alors, Q(X(N))/Q(j) est une

extension de Galois, est le groupe de Galois est isomorphe au groupe GL2(Z/NZ)/± 1.

Soit G un sous-groupe de GL2(Z/NZ) contenant −1. Par la théorie de Galois, G

correpond uniquement à un corps intermédiaires de Q(X(N))/Q(j). Donc, G correpond

uniquement à une courbe notée par XG. XG est une courbe modulaire de niveau N . On

note par ν∞(G) le nombre de pointes de XG.

Suppose que XG est défini sur un corps de nombres K. Soit S un ensemble de

valeurs absolues normalisées de K contenant les valeurs absolues archimédiennes. Soit

OS l’anneau de S-entiers de K. Soit P un K-point rationnel sur XG. Si j(P ) ∈ OS , on

dit que P est un point S-entier sur XG. En particulier, P s’appelle point entier sur XG

si j(P ) ∈ OK , où OK est l’anneau d’entiers de K. On définit l’ensemble

XG(OS) = {P ∈ X(K) : j(P ) ∈ OS}.

Le théroème de Siegel implique le théroème suivant.

Théorème [Siegel] XG(OS) est fini si le genre de XG est plus que zéro ou j a plus

que deux pôles.

En 1995, Bilu a obtenu un théroème suivant.

Théorème [Bilu] Le théroème de Siegel est effectif pour (XG, j) si XG a plus que

deux pointes.

Mais, il n’a pas donné des résultats quantitatifs. Dans cette partie, l’objectif prin-

cipal est de obtenir des résultats quantitatifs sur le théroème de Bilu par utiliser la

méthode de Baker.

Soit α un élément de K. On note par h(α) la hauteur logarithmique absolue.

Soit d = [K : Q] et s = |S|. On définit

∆0 = d−d
√
|DK |(log |DK |)d

∏

v∈S
v∤∞

logNK/Q(v),



∆ = d−d
√

NdN |DK |ϕ(N)
(
log(NdN |DK |ϕ(N))

)dϕ(N)



∏

v∈S
v∤∞

logNK/Q(v)




ϕ(N)

,

où DK le discriminant de K. On note par p le premier maximal au-dessous de S. Si

S contient juste les valeurs absolues archimédiennes, alors p = 1. On définit h(P ) =

h(j(P )) quand P est un point S-entier sur XG.

Théorème [Sha] Soit N pas une puissance d’un premier. Soit ν∞(G) ≥ 3. Soit P

un point S-entier sur XG. Alors,

h(P ) ≤
(
CdsN2

)2sN
(log(dN))3sNpdN∆,

où C est une constante absolue effective.

Théorème [Sha] Suppose que K ⊆ Q(ζN ), et S contient juste les valeurs absolues

archimédiennes. Soit N pas une puissance d’un premier. Soit ν∞(G) ≥ 3. Soit P un

point S-entier sur XG. Alors,

h(P ) ≤ Cϕ(N)N
3
2
ϕ(N)+10(logN)

5
2
ϕ(N)−2,

où C est une constante absolue effective, et ϕ(N) est la fonction d’Euler.

Théorème [Sha] Suppose que Q(ζN ) ⊆ K. Soit N pas une puissance d’un premier.

Soit ν∞(G) ≥ 3. Soit P un point S-entier sur XG. Alors,

h(P ) ≤ (Cds)2s(log d)3sN8pd∆0 log p,

où C est une constante absolue effective.

La situation est différente quand N est une pusissance d’un premier. Dans ce cas,

on définit

M =





2N si N n’est pas une puissance de 2,

3N si N est une puissance de 2.

Théorème [Sha] Soit N une puissance d’un premier. Soit ν∞(G) ≥ 3. Soit P un

point S-entier sur XG. Alors, on peut obtenir trois majorations effectives pour h(P ) par

replacer N par M dans les trois Théorèmes derniers.



A partir de maintenant, soit p un premier. Le normalisateur d’un sous-groupes de

Cartan non déployé est défini par

C+
ns(p) =

{(
α Ξβ

β α

)
,

(
α Ξβ

−β −α

)
: α, β ∈ Fp, (α, β) 6= (0, 0)

}
,

où Ξ est un non-résidu quadratique modulo p. On note par X+
ns(p) la courbe modulaire

correspondant à le groupe C+
ns(p).

Théorème [Bajolet et Sha] Soit p un premier plus que 5. Soit d un diviseur de
p−1
2 plus que 2. Soit P un point entier sur X+

ns(p). Alors,

h(P ) = log |j(P )| < C(d)p6d+5(log p)2,

où C(d) = 30d+5 · d−2d+4.5.

Théorème [Bajolet et Sha] Soit p un premier plus que 5. Soit P un point entier

sur X+
ns(p). Alors,

log |j(P )| < 41993 · 13p · p2p+7.5(log p)2.

Théorème [Bajolet et Sha] Suppose que un premier p ≥ 7 et p ≡ 1 (mod 3). Soit

P un point entier sur X+
ns(p). Alors,

log |j(P )| < 308 · p23(log p)2.

2. Analyses heuristiques sur les courbes elliptiques à couplages

En 1985 Miller et Koblitz ont introduit, indépendamment l’un de l’autre, la cryp-

tographie fondée sur les groupes des points rationnels d’une courbe elliptique définie

sur un corps fini. Ils proposent de généraliser des protocoles tels que léchange de clés

Diffie-Hellman ou la signature d’El Gamal.

En 2000, Joux met à profit les couplages sur les courbes elliptiques en expliquant

qu’il est possible, avec les propriétés de bilinéarité du couplage de Weil, de faire un

échange type Diffie-Hellman entre trois personnes en un tour seulement. Lors de la

conférence Crypto 2001, Boneh et Franklin proposent à leur tour un schéma de chiffre-

ment basé sur l’identité utilisant ce couplage. La cryptographie basée sur les couplages

connâıt depuis un véritable engouement.



Dans cette partie, nous donnons une nouvelle majoration du nombre de classes

d’isogénie de courbes elliptiques ordinaires à couplages. Nous analysons également

la méthode de Cocks-Pinch pour confirmer certaines de ses propriétés communément

conjecturées. Par ailleurs, nous présentons la première analyse heuristique connue qui

suggère que toute construction efficace de courbes elliptiques à couplages peut engen-

drer efficacement de telles courbes sur tout corps à couplages. Enfin, quelques données

numériques allant dans ce sens sont données.

Mots-clefs

courbe modulaire, point entier, j-invariant, méthode de Baker, courbe elliptique à cou-

plages, méthode de Cocks-Pinch, corps à couplages.



Abstract

Abstract

This thesis is divided into two parts. One is devoted to integral points on modular

curves, and the other concerns pairing-friendly elliptic curves.

In the first part, we give some effective upper bounds for the j-invariant of integral

points on arbitrary modular curves corresponding to congruence subgroups over arbi-

trary number fields assuming that the number of cusps is not less than 3. Especially,

in the non-split Cartan case we provide much better bounds. As an application, we get

similar results for certain modular curves with less than three cusps.

In the second part, a new heuristic upper bound for the number of isogeny classes

of ordinary pairing-friendly elliptic curves is given. We also heuristically analyze the

Cocks-Pinch method to confirm some of its general consensuses. Especially, we present

the first known heuristic which suggests that any efficient construction of pairing-friendly

elliptic curves can efficiently generate such curves over pairing-friendly fields. Finally,

some numerical evidence is given.

Keywords

modular curve, integral point, j-invariant, Baker’s method, pairing-friendly elliptic curve,

Cocks-Pinch method, pairing-friendly field.
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Chapter 1

Introduction

1.1 Modular Curves

We briefly recall some basic definitions and notation concerning modular curves. For all

missing details one may consult, for instance, [40, 63, 82].

Recall that for every positive integer N , the principal congruence subgroup Γ(N)

of SL2(Z) is the kernel of the reduction map SL2(Z) → SL2(Z/NZ). By convention we

define Γ(1) = SL2(Z). We say that a subgroup Γ of SL2(Z) is a congruence subgroup of

level N if it contains Γ(N). The minimal N with this property will be called the exact

level of Γ. For every positive integer N , there are two classical congruence subgroups of

level N :

Γ1(N) =

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡
(
1 ∗
0 1

)
(mod N)

}
,

Γ0(N) =

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}
.

Let H denote the Poincaré upper half-plane: H = {τ ∈ C : Imτ > 0}. We also put

H̄ = H ∪Q ∪ {i∞}. The modular group SL2(Z) acts on H̄ from the left as

(
a b

c d

)
(τ) =

aτ + b

cτ + d
.

As a set, the quotient space SL2(Z)\H̄ can be identified in a natural way with the set

D = {τ ∈ H : |τ | ≥ 1,−1

2
≤ Re(τ) ≤ 0} ∪ {τ ∈ H : |τ | > 1, 0 < Re(τ) <

1

2
},

- 2 -



Chapter 1. Introduction

and we call D the standard fundamental domain of SL2(Z). Notice that in Part II, we

will denote by D the CM discriminant by convention.

Under the group action above, for every congruence subgroup Γ of SL2(Z), the

quotient space Γ\H̄, supplied with the properly defined topology and analytic structure,

gives a Riemann surface XΓ. By Riemann existence theorem, XΓ is a complex algebraic

curve, known as modular curve. We call XΓ a modular curve of level N if Γ is a

congruence subgroup of level N . By convention, we denote YΓ = Γ\H, the finite part of

XΓ.

We defined the cusps of XΓ as the Γ-equivalence classes of Q∪{i∞} and denote by

ν∞(Γ) the number of cusps. A non-cuspidal point P ∈ XΓ is called elliptic if for some

τ ∈ H representing P the stabilizer Γτ 6= {±1}. It is well-known that the curve XΓ has

only finitely many elliptic points.

Since every finite subgroup of SL2(Z)/{±1} is cyclic of order 2 or 3, we say an

element of SL2(Z) is elliptic if its image in SL2(Z)/{±1} is of order 2 or 3. It is easy to

see that XΓ has elliptic points if and only if Γ has elliptic elements.

The modular curves corresponding to Γ(N),Γ1(N) and Γ0(N) are usually denoted

by X(N), X1(N) and X0(N), respectively.

The classical j-invariant function is defined on H by the familiar relation

j(τ) = q−1
τ + 744 + 196844qτ + · · · ,

where qτ = e2πiτ . Since j is SL2(Z)-automorphic, it defines a function on XΓ for every

congruence subgroup Γ. Moreover, it is meromorphic with poles exactly at the cusps.

In fact, everything above concerning modular curves is true for any finite index

subgroup Γ of SL2(Z). Note that there exist infinitely many finite index subgroups of

SL2(Z) which are not congruence subgroups.

For every positive integer N , the field of definition of X(N) is Q(ζN ), where ζN =

e2πi/N . Each function field Q(X(N)) = Q(ζN )(X(N)) is a Galois extension of the

function field Q(X(1)) = Q(j). For the Galois group, we have

Gal(Q(X(N))/Q(j)) ∼= GL2(Z/NZ)/± 1,

which is defined up to an inner automorphism; once it is fixed, we have the following

well-defined isomorphisms

Gal(Q(X(N))/Q(ζN , j)) ∼= SL2(Z/NZ)/± 1, Gal(Q(ζN )/Q) ∼= (Z/NZ)∗.
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LetG be a subgroup of GL2(Z/NZ) containing −1. By Galois theory, G corresponds

uniquely to an immediate field of the extension Q(X(N))/Q(j). This gives an algebraic

curve denoted by XG. We denote by detG the image of G under the determinant

map det : GL2(Z/NZ) → (Z/NZ)∗. The curve XG is defined over Q(ζN )detG. So in

particular it is defined over Q if detG = (Z/NZ)∗.

If Γ is the pullback of G ∩ SL2(Z/NZ) to SL2(Z), then the set XG(C) of complex

points is analytically isomorphic to the modular curve XΓ. Consequently, we also call

XG a modular curve of level N . Its finite part is denoted by YG (that is, XG deprived

of the cusps). In this case, we use the common notation ν∞(G) for the number of cusps

of XG.

Here, we want to mention two special subgroups of GL2(Z/pZ), p is a prime. The

normalizer of a split Cartan subgroup is given by

C+
s (p) =

{(
α 0

0 β

)
,

(
0 α

β 0

)
: α, β ∈ F∗

p

}
,

and the normalizer of a non-split Cartan subgroup is defined by

C+
ns(p) =

{(
α Ξβ

β α

)
,

(
α Ξβ

−β −α

)
: α, β ∈ Fp, (α, β) 6= (0, 0)

}
,

where Ξ is a quadratic non-residue modulo p. In particular, one can choose Ξ = −1 if

p ≡ 3 mod 4. Moreover, |C+
ns(p)| = 2(p2− 1) by [17, Formula (2.3)] and det C+

ns(p) = F∗
p.

The modular curves corresponding to C+
s (p) and C+

ns(p) are denoted by X+
split(p) and

X+
ns(p), respectively. Both of them are defined over Q and of level p.

1.2 Siegel’s Theorem

Let X be a smooth projective curve over a number field K of genus g and f ∈ K(X)

a non-constant rational function. Let S be a finite set of places of K, containing all

Archimedean places. Denote by OS the ring of S-integers of K.

We denote by X(K) the set of K-rational points and by X(OS , f) the set of S-

integral points with respect to f :

X(OS , f) = {P ∈ X(K) : f(P ) ∈ OS}.
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Theorem 1.1 (Siegel [83]). Assume that either g ≥ 1 or f has at least three distinct

poles. Then for any K and S as above, the set X(OS , f) is finite.

Furthermore, in 1983 Faltings [46] proved the Mordell’s conjecture, which says that

the set X(K) is finte if g ≥ 2.

However, the results of Siegel and Faltings are both ineffective in the sense that

they imply no effective or explicit bounds for the size of S-integral or rational points.

In spite of multiple efforts of many mathematicians, no effective approach to the study

of rational point is known. On the other hand, there is a general method for effective

analysis of integral points, developed by Alan Baker ([7–13]). Using Baker’s method,

we have known effective versions of Siegel’s theorem for curves of genus 0 and 1 and for

certain curves of higher genus.

Theorem 1.2. Siegel’s theorem is effective for (X, f) if

1. (folklore) g=0 and f has at least 3 poles, or

2. (Baker and Coates [14]) g=1, or

3. (Bilu [32], Dvornicich and Zannier [43] ) g ≥ 1 and K̄(X)/K̄(f) is a Galois

extension.

Since 1995, Bilu and his collaborators have succeeded in getting effective Siegel’s

theorem for various classes of modular curves when choosing f = j. In 1995, Bilu [23]

showed that Siegel’s theorem is effective for modular curve X if X has at least three

distinct cusps. In other words, the j-invariant of integral points of X can be effectively

bounded. But there was no quantitative version therein.

Theorem 1.3 (Bilu [23]). Let Γ be a finite index subgroup of SL2(Z). Then Siegel’s

theorem is effective for (XΓ, j) if

1. Γ is a congruence subgroup and ν∞(Γ) ≥ 3, or

2. Γ has no elliptic elements.

Theorem 1.3 is a fundamental criterion on effective Siegel’s theorem for modular

curves. For example, by Theorem 1.3, Siegel’s theorem is effective for (X(N), j) when

N ≥ 2, and for (X1(N), j) when N ≥ 4. Afterwards, Bilu [24] gave the following

refinement of Theorem 1.3.

Theorem 1.4 (Bilu [24]). Let Γ be a finite index subgroup of SL2(Z). Assume that Γ

has a congruence subgroup Γ′ with ν∞(Γ′) ≥ 3, and Γ′ contains all elliptic elements of

Γ. Then Siegel’s theorem is effective for (XΓ, j).
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Applying Theorem 1.4, Bilu [24] proved that Siegel’s theorem is effective for X0(N)

when N 6∈ {1, 2, 3, 5, 7, 13}. Furthermore, Bilu and Illengo [26] obtained effective Siegel’s

theorem for “almost every” modular curve. But they still gave no quantitative results.

Theorem 1.5 (Bilu and Illengo [26]). Let Γ be a congruence subgroup of level not

dividing the number 220 · 37 · 53 · 72 · 1113. Then Siegel’s theorem is effective for (XΓ, j).

By using Runge’s method, the first explicit bound for the j-invariant of the S-

integral points ofXG was given in [27, Theorem 1.2] whenXG satisfies “Runge condition”

which roughly says that all the cusps are not conjugate. Especially, when G = C+
s (p),

this bound can be sharply reduced, see [27, Theorem 6.1] and [28, Theorem 1.1].

Let G be a subgroup of GL2(Z/NZ) containing −1 such that the corresponding

modular curve XG is defined over K. Let C(G,K) be the set of Gal(K̄/K)-orbits of the

cusps. We denote by h(·) the usual absolute logarithmic height. For P ∈ XG(Q̄), we

write h(P ) = h(j(P )).

Theorem 1.6 (Bilu and Parent [27]). Assume that |C(G,K)| > |S| (the “Runge condi-

tion”). Then for any P ∈ YG(OS), we have

h(P ) ≤ 36ss/2+1(N2|G|/2)s log(2N),

where s = |S|. If S only contains Archimedean places, we even have

h(P ) ≤ 24ss/2+1(N2|G|/2)s log(3N).

Theorem 1.7 (Bilu and Parent [28]). There exists an absolute effective constant C such

that for any prime number p and any P ∈ Y +
split(p)(Z), we have

log |j(P )| ≤ 2πp1/2 + 6 log p+ C.

The main task of Part I is to give effective or explicit bounds for the j-invariant

of integral points on modular curves without Runge condition and by using Baker’s

method. More precisely, we will try to give quantitative versions for Theorems 1.3 and

1.4.

The problem of computing effective or explicit bounds for integral points on modular

curves is of obvious importance, with the recent work of Bilu and Parent [28] serving

as a prime example. In [28], the authors first obtained an effective upper bound for the

j-invariant of integral points on the modular curve X+
split(p). Then applying this bound,

they showed that the Q-rational points on X+
split(p) are exactly the CM points and cusps
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for p greater than an absolute constant. Subsequently, they solved Serre’s uniformity

problem in the split Cartan case and finally left this problem with the non-split Cartan

case. Moreover, Bilu, Parent and Rebolledo [29] showed that the Q-rational points on

X+
split(p

r) are exactly the CM points and cusps for all prime numbers p ≥ 11, p 6= 13,

and all integers r ≥ 1.

Actually, the interest in integral points on the modular curves corresponding to

normalizers of Cartan subgroups is motivated by their relation to imaginary quadratic

fields of low class number. See Appendix A in Serre’s book [78] for a nice historical

account and further explanations. In particular, integral points on the curves X+
ns(24)

and X+
ns(15) were studied by Heegner [55] and Siegel [84] in their classical work on

the class number 1 problem. Kenku [57] determined all integral points on X+
ns(7), and

Baran [16, 17] did this for X+
ns(9) and X+

ns(15). Most recently, a general method for

computing integral points on X+
ns(p) has been developed by Bajolet and Bilu in [5].

In addition, the following Bely̆ı’s theorem tells us that effective Siegel’s theorem

on modular curves is crucial to obtain effective Siegel’s theorem on general smooth

projective curves.

Theorem 1.8 (Bely̆ı [21]). A smooth projective curve X is defined over Q̄ if and only

if there exists a finite index subgroup Γ of SL2(Z) such that X is isomorphic to XΓ.

Here, we also would like to indicate that Surroca [86, 87] showed that the abc

conjecture of Masser-Oesterlé implies an effective version of Siegel’s theorem, and the

converse is also true. In fact, this work was motivated by Elkies [44], who proved that

the abc conjecture implies an effective version of Mordell’s conjecture. It is interesting

to think about whether the effective versions of Siegel’s theorem on modular curves can

induce some effective results towards the truth of the abc conjecture.

1.3 Structure of Part I

In Chapter 2, we will give some effective bounds for the j-invariant of integral points

on arbitrary modular curves over arbitrary number fields assuming that the number of

cusps is not less than 3. This will be based on the article [81].

In Chapter 3, for the special modular curve X+
ns(p), we will give explicit bounds for

the j-invariant of integral points on X+
ns(p), which are much better than those given in

Chapter 2. This is the joint work with Aurélien Bajolet [6]. Here, we want to indicate

that Runge condition fails for X+
ns(p).
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In Chapter 4, applying the results in Chapter 2, Quantitative Riemann existence

theorem and Quantitative Chevalley-Weil theorem, we will give effective bounds for the

j-invariant of integral points on certain modular curves which have positive genus and

less than three cusps. For example, modular curves with no elliptic points. This will be

based on the manuscript [79].
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Chapter 2

Bounding the j-invariant of

integral points on modular curves

2.1 Main results

Let G be a subgroup of GL2(Z/NZ) containing −1 (N ≥ 2), and let XG be the corre-

sponding modular curve. Let K0 be a number field containing Q(ζN )detG. Then XG

is defined over K0. Let S0 be a finite set of absolute values of K0, containing all the

Archimedean (or infinite) places and normalized with respect to Q. Recall that a K0-

rational point P ∈ XG(K0) is an S0-integral point if j(P ) ∈ OS0 , where OS0 is the ring

of S0-integers in K0.

In this chapter, we apply Baker’s method, based on Matveev [68] and Yu [94], to

obtain some effective bounds for the j-invariant of S0-integral points on XG assuming

that ν∞(G) ≥ 3.

Theorem 2.1. Assume that K0 ⊆ Q(ζN ), N is not a power of any prime, ν∞(G) ≥ 3,

and S0 only consists of Archimedean places. Then for any S0-integral point P on XG,

we have

h(P ) ≤ Cϕ(N)N
3
2
ϕ(N)+10(logN)

5
2
ϕ(N)−2,

where C is an absolute effective constant and ϕ(N) is the Euler’s totient function.

Actually, we obtain a more general Theorem 2.2, which applies to any number field

and any ring of S0-integers in it.
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Put d0 = [K0 : Q] and s0 = |S0|. We define the following quantities

∆0 = d−d0
0

√
|D0|(log |D0|)d0

∏

v∈S0
v∤∞

logNK0/Q(v), (2.1)

∆ = d−d0
0

√
Nd0N |D0|ϕ(N)

(
log(Nd0N |D0|ϕ(N))

)d0ϕ(N)



∏

v∈S0
v∤∞

logNK0/Q(v)




ϕ(N)

,

(2.2)

where D0 is the absolute discriminant of K0, and the norm of a non-Archimedean (or

finite) place is, by definition, the absolute norm of the corresponding prime ideal. We

denote by p the maximal rational prime below S0, with the convention p = 1 if S0

consists only of the Archimedean places.

Theorem 2.2. Assume that N is not a power of any prime and ν∞(G) ≥ 3. Then for

any S0-integral point P on XG, we have

h(P ) ≤
(
Cd0s0N

2
)2s0N (log(d0N))3s0Npd0N∆,

where C is an absolute effective constant.

In particular, if Q(ζN ) ⊆ K0, we have the following theorem.

Theorem 2.3. Assume that Q(ζN ) ⊆ K0, N is not a power of any prime and ν∞(G) ≥
3. Then for any S0-integral point P on XG, we have

h(P ) ≤ (Cd0s0)
2s0(log d0)

3s0N8pd0∆0 log p,

where C is an absolute effective constant.

The situation is different when N is a prime power, see Section 2.7. In this case we

define

M =





2N if N is not a power of 2,

3N if N is a power of 2.

Notice that XG is also a modular curve of level M .

Theorem 2.4. Assume that N is a power of some prime and ν∞(G) ≥ 3. Then for

any S0-integral point P on XG, we can obtain two upper bounds for h(P ) by replacing

N with M in Theorems 2.1, 2.2 and 2.3.
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2.2 Notation and conventions

Throughout this chapter, log stands for two different objects without confusion according

to the context. One is the principal branch of the complex logarithm, in this case we

will use the following estimate without special reference

| log(1 + z)| ≤ | log(1− r)|
r

|z| for |z| ≤ r < 1,

see [27, Formula (4)]. The other one is the p-adic logarithm function, for example see

[58, Chapter IV Section 2].

For a = (a1, a2) ∈ Q2, we put ℓa = B2(a1 − ⌊a1⌋)/2, where B2(T ) = T 2 − T + 1
6

is the second Bernoulli polynomial and ⌊a1⌋ is the largest integer not greater than a1.

Obviously |ℓa| ≤ 1/12, this will be used without special reference.

Let AN be the subset of the abelian group (N−1Z/Z)2 consisting of the elements

with exact order N . Obviously,

|AN | = N2
∏

p|N
(1− p−2) < N2,

the product runs through all primes dividing N . Moreover, we always choose a represen-

tative element of a = (a1, a2) ∈ (N−1Z/Z)2 satisfying 0 ≤ a1, a2 < 1. So in the sequel,

for every a ∈ (N−1Z/Z)2, we have ℓa = B2(a1)/2.

Throughout this chapter, we fix an algebraic closure Q̄ of Q, which is assumed to

be a subfield of C. In particular, for every a ∈ Q we have the well-defined root of unity

e2πia ∈ Q̄. Every number field used in this chapter is presumed to be a subfield of Q̄.

If K is such a number field and v is a valuation on K, then we tacitly assume than v

is somehow extended to Q̄ = K̄; equivalently, we fix an algebraic closure K̄v and an

embedding Q̄ →֒ K̄v. In particular, the roots of unity e2πia are well-defined elements of

K̄v.

For a number field K, we denote by MK the set of all valuations (or places) of

K extending the standard infinite and p-adic valuations of Q: |2|v = 2 if v ∈ MK is

infinite, and |p|v = p−1 if v extends the p-adic valuation of Q. We denote by M∞
K and

M0
K the subsets of MK consisting of the infinite (or Archimedean) and the finite (or

non-Archimedean) valuations, respectively.

Given a number field K of degree d, for any v ∈ MK , Kv is the completion of K

with respect to the valuation v and K̄v its algebraic closure. We still denote by v the

unique extension of v in K̄v. Let dv = [Kv : Qv] be the local degree of v.
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For a number field K of degree d, the absolute logarithmic height of an alge-

braic number α ∈ K is defined by h(α) = d−1
∑

v∈MK
dv log

+ |α|v, where log+ |α|v =

logmax{|α|v, 1}.

Throughout the chapter, the symbol ≪ implies an absolute effective constant. We

also use the notation Ov(·). Precisely, A = Ov(B) means that |A|v ≤ B.

2.3 Preparations

In this section, we assume that N ≥ 2.

2.3.1 Siegel functions

Let a = (a1, a2) ∈ Q2 be such that a 6∈ Z2, and let ga : H → C be the corresponding

Siegel function, see [62, Section 2.1]. We have the following infinite product presentation

for ga, see [27, Formula (7)],

ga(qτ ) = −qB2(a1)/2
τ eπia2(a1−1)

∞∏

n=0

(1− qn+a1
τ e2πia2)(1− qn+1−a1

τ e−2πia2).

For the elementary properties of ga, see [62, Pages 27-31]. Especially, the order of

vanishing of ga at i∞ (i.e., the only rational number ℓ such that the limit limτ→i∞ q−ℓ
τ ga

exists and is nonzero) is equal to ℓa.

For a number field K and v ∈ MK , we define ga(q) as the above, where q ∈ K̄v

satisfies |q|v < 1. Notice that here we should fix q1/(12N
2) ∈ K̄v, then everything is well

defined.

Given two positive integers k and ℓ, we denote by Pk the set of partitions of k into

positive summands, and let pℓ(k) be the number of partitions of k into exactly ℓ positive

summands. By [3, Theorem 14.5], we easily get

|Pk| < ek/2, k ≥ 64.

Then according to the table of partitions or computer calculations, we can obtain

|Pk| < ek/2, k ≥ 1.
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Proposition 2.5. Let a ∈ AN . If q ∈ K̄v satisfies |q|v < 1, then we have

− q−ℓaγ−1
a

ga(q) = 1 +
∞∑

k=1

φa(k)q
k/N ,

where

γa =

{
eπia2(a1−1) if a1 6= 0,

e−πia2(1− e2πia2) if a1 = 0;

and

φa(k) =
∑

ℓ∈S1
ak

mℓ(−e2πia2)ℓ+
∑

ℓ∈S2
ak

m′
ℓ(−e−2πia2)ℓ+

∑

ℓ∈S3
ak

∑

(ℓ1,ℓ2)∈T ℓ
ak

mℓ1ℓ2(−e2πia2)ℓ1(−e−2πia2)ℓ2 ,

where S1
ak, S2

ak and S3
ak are three subsets of {1, 2, · · · , ⌊k/N⌋ + 1}, T ℓ

ak is a subset of

{(ℓ1, ℓ2) : 1 ≤ ℓ1, ℓ2 ≤ ⌊k/N⌋+ 1, ℓ1 + ℓ2 = ℓ}, and mℓ,m
′
ℓ, and mℓ1ℓ2 are some positive

integers. In particular, we have

|φa(k)|v ≤ ek.

Proof. In this proof, we fix an integer k ≥ 1.

Suppose that a1 = k1/N with 0 ≤ k1 ≤ N − 1. Let S1 = {nN + k1 : 0 ≤ n ≤
⌊k/N⌋, 0 < nN + k1 ≤ k} and S2 = {nN +N − k1 : 0 ≤ n ≤ ⌊k/N⌋, nN +N − k1 ≤ k}.
It is easy to see that if k1 = 0 or N/2, then S1 = S2; otherwise S1 ∩ S2 = ∅.

Notice that the coefficient φa(k) of q
k/N equals to the coefficient of qk in the expan-

sion of the following finite product,

∏

n∈S1

(1− qne2πia2)
∏

n∈S2

(1− qne−2πia2). (2.3)

If S1 and S2 are both empty, then the coefficient φa(k) = 0.

We say ℓ ∈ S1
ak if and only if there exist ℓ positive integers in S1 such that the sum

of them equals to k, and let mℓ count the number of different ways of such summations.

Similarly for the definitions of S2
ak and m′

ℓ.

We say ℓ ∈ S3
ak if and only if there exist ℓ1 positive integers in S1 and ℓ2 positive

integers in S2 such that the sum of them equals to k, then (ℓ1, ℓ2) ∈ T ℓ
ak and let mℓ1ℓ2

count the number of different ways of such summations.

Then the desired expression of φa(k) follows easily from the definitions.
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For each element x ∈ Pk, let mx be the number of the times of x appearing in the

expansion of (2.3). Then we obtain

|φa(k)|v ≤
∑

ℓ∈S1
ak

mℓ +
∑

ℓ∈S2
ak

m′
ℓ +

∑

ℓ∈S3
ak

∑

(ℓ1,ℓ2)∈T ℓ
ak

mℓ1ℓ2

=
∑

x∈Pk

mx.

If k1 6= 0 and N/2, then S1 ∩ S2 = ∅. So for each x ∈ Pk, we have mx = 0 or 1.

Hence, ∑

x∈Pk

mx ≤ |Pk| < ek/2.

If k1 = 0 or N/2, then S1 = S2. Suppose that ⌊k/N⌋ ≥ 3. Given x ∈ Pk with ℓ

entries, if ℓ ≤ ⌊k/N⌋, then we have mx ≤ 2ℓ; otherwise we have mx = 0. Hence,

∑

x∈Pk

mx ≤
∑

ℓ≤⌊k/N⌋
2ℓpℓ(k) ≤ 2⌊k/N⌋|Pk| < ek.

If ⌊k/N⌋ ≤ 2, one can verify the inequality by explicit computations.

2.3.2 Modular units on X(N)

Recall that by a modular unit on a modular curve we mean that a rational function

having poles and zeros only at the cusps.

For a ∈ (N−1Z/Z)2, we denote g12N
a

by ua, which is a modular unit on X(N).

Moreover, we have ua = ua′ when a ≡ a′ mod Z2. Hence, ua is well-defined when a is

a nonzero element of the abelian group (N−1Z/Z)2. Moreover, ua is integral over Z[j].

For more details, see [27, Section 4.2].

Furthermore, the Galois action on the set {ua} is compatible with the right linear

action of GL2(Z/NZ) on it. That is, for any σ ∈ Gal(Q(X(N))/Q(j)) = GL2(Z/NZ)/±
1 and any a ∈ (N−1Z/Z)2, we have

uσ
a
= uaσ.

Here, we borrow a result and its proof from [5] for subsequent applications and for

the conveniences of readers.
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Proposition 2.6 ([5]). We have

∏

a∈AN

ua = ±ΦN (1)12N =

{
±ℓ12N if N is a power of a prime ℓ,

±1 if N has at least two distinct prime factors,

where ΦN is the N -th cyclotomic polynomial.

Proof. We denote by u the left-hand side of the equality. Since the set AN is stable

with respect to GL2(Z/NZ), u is stable with respect to the Galois action over the field

Q(X(1)) = Q(j). So u ∈ Q(j). Moreover, since u is integral over Z[j], u ∈ Z[j]. Notice

that X(1) has only one cusp and u has no zeros and poles outside the cusps, so we must

have that u is a constant and u ∈ Z.

Furthermore, we have

u =
∏

(a1,a2)∈AN

q6NB2(a1)e12Nπia2(a1−1)
∞∏

n=0

(1− qn+a1e2πia2)12N (1− qn+1−a1e−2πia2)12N

q=0
=== ±

∏

(a1,a2)∈AN
a1=0

(1− e2πia2)12N

= ±
∏

1≤k<N
gcd(k,N)=1

(1− e2kπi/N )12N

= ±ΦN (1)12N .

2.3.3 XG and XG1

Let G1 = G ∩ SL2(Z/NZ) and XG1 be the modular curve corresponding to G1. In this

subsection, we assume that XG1 is defined over a number field K. Then XG is also

defined over K. Since XG and XG1 have the same geometrically integral model, every

K-rational point of XG is also a K-rational point of XG1 .

For each cusp c of XG1 , let tc be its local parameter constructed in [27, Section 3].

Put qc = tecc , where ec is the ramification index of the natural covering XG1 → X(1) at

c. Notice that ec|N . Furthermore, the familiar expansion j = q−1
c +744+196884qc+ · · ·

holds in a v-adic neighborhood of c, the right-hand side converging v-adically, where

v ∈ MK such that c ∈ XG1(K̄v).

For any v ∈ MK , let Ωc,v be the set constructed in [27, Section 3] on which tc and qc

are defined and analytic. Recall that D is the standard fundamental domain of SL2(Z).
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Actually, when v is Archimedean, define

D̃ = D ∪ {i∞} \ {the arc connecting i and e2πi/3},

then Ωc,v = Γ\σ(D̃ + Z), where Γ is the pullback of G1 to SL2(Z), and σ ∈ SL2(Z) is

chosen such that σ(i∞) represents the cusp c. If v is non-Archimedean, then Ωc,v =

{P ∈ XG1(K̄v) : |qc(P )|v < 1}.

Here, we quote [27, Proposition 3.1] as follows.

Proposition 2.7 ([27]). Put

XG1(K̄v)
+ =

{
{P ∈ XG1(K̄v) : |j(P )|v > 3500} if v ∈ M∞

K ,

{P ∈ XG1(K̄v) : |j(P )|v > 1} if v ∈ M0
K .

Then

XG1(K̄v)
+ ⊆

⋃

c

Ωc,v

with equality for the non-Archimedean v, where the union runs through all the cusps of

XG1. Moreover, for P ∈ Ωc,v we have

1

2
|j(P )|v ≤ |qc(P )−1|v ≤ 3

2
|j(P )|v (2.4)

if v is Archimedean, and |j(P )|v = |qc(P )−1|v if v is non-Archimedean.

We will use the above proposition several times without special reference. Moreover,

this proposition implies that for every P ∈ XG1(K̄v)
+ there exists a cusp c such that

P ∈ Ωc,v. We call c a v-nearby cusp of P .

We directly obtain the following corollary from Proposition 2.5.

Corollary 2.8. Let c be a cusp of XG1, v ∈ MK and P ∈ Ωc,v. Assume that |qc(P )|v ≤
10−N . For a ∈ AN , we have

− q−ℓa
c γ−1

a
ga(qc(P )) = 1 +Ov(4|qc(P )|1/Nv ).

The following proposition follows directly from [27, Propositions 2.3 and 2.5].

Proposition 2.9. Let c be a cusp of XG1, v ∈ MK and P ∈ Ωc,v. For every a ∈ AN ,

we have

|log |ga(qc(P ))|v − ℓa log |qc(P )|v|





≤ logN if v ∈ M∞
K ,

= 0 if |N |v = 1,

≤ log ℓ
ℓ−1 if v|ℓ|N,
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where ℓ is some prime factor of N .

2.3.4 Modular units on XG1

We apply the notation in the above subsection.

We denote by MN the set of elements of exact order N in (Z/NZ)2. Let us consider

the natural right group action of G1 on MN . Following the proof of [26, Lemma 2.3],

we see that the number of the orbits of MN/G1 is equal to ν∞(G), this also explain

why we transfer our problems on XG to those on XG1 .

Obviously, when we consider the natural right group action AN/G1, there are also

ν∞(G) orbits of this group action. So

ν∞(G) ≤ |AN | < N2.

Let T be any subset of AN , we define

uT =
∏

a∈T
ua.

Let O be an orbit of the right group action AN/G1, we have

uO =
∏

a∈O
ua. (2.5)

By [27, Proposition 4.2 (ii)], uO is a rational function on the modular curve XG1 . In

fact, uO is a modular unit on XG1 .

For any cusp c, we denote by Ordc(uO) the vanishing order of uO at c. For v ∈ MK ,

define

ρv =





12N3 logN if v ∈ M∞
K ,

0 if v ∈ M0
K and |N |v = 1,

12N3 log ℓ
ℓ−1 if v ∈ M0

K and v|ℓ|N,

where ℓ is some prime factor of N .

Then uO has the following properties:

Proposition 2.10. (i) Put λ = (1 − ζN )12N
3
. Then the functions uO and λu−1

O are

integral over Z[j].

- 17 -
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(ii) For the cusp c∞ at infinity, we have

Ordc∞(uO) = 12Nec∞
∑

a∈O
ℓa.

For any cusp c, we have |Ordc(uO)| < N4.

(iii) Let c be a cusp of XG1, v ∈ MK , and P ∈ Ωc,v. Assume that |qc(P )|v ≤ 10−N .

Then we have

qc(P )−Ordc(uO)/ecγ−1
O,cuO(P ) = 1 +Ov(4

12N3 |qc(P )|1/Nv ),

where γO,c ∈ Q(ζN ) and h(γO,c) ≤ 12N3 log 2.

(iv) Let c be a cusp of XG1 and v ∈ MK . For P ∈ Ωc,v, we have

∣∣∣∣log |uO(P )|v −
Ordc(uO)

ec
log |qc(P )|v

∣∣∣∣ ≤ ρv.

(v) For v ∈ M∞
K and P ∈ XG1(Kv), we have

|log |uO(P )|v| ≤ N3 log(|j(P )|v + 2400) + ρv.

(vi) The group generated by the principal divisor (uO), where O runs over the orbits

of AN/G1, is of rank ν∞(G)− 1.

Proof. (i) See [27, Proposition 4.2 (i)].

(ii) Similar to the proof of [27, Proposition 4.2 (iii)]. The q-order of vanishing of

uO at i∞ is 12N
∑
a∈O

ℓa. Then

Ordc∞(uO) = 12Nec∞
∑

a∈O
ℓa.

Since |ℓa| ≤ 1
12 , we have |Ordc∞(uO)| ≤ Nec∞ |O| < N4. The case of arbitrary c reduces

to the case c = c∞ by replacing O by Oσ where σ ∈ GL2(Z/NZ) is such that σ(c) = c∞.

(iii) Similar to the proof of [27, Proposition 4.4] by using Corollary 2.8 except

for the height of γO. In fact, if c = c∞, we have γO,c =
∏
a∈O

γ12N
a

. Then h(γO,c) ≤

12N
∑
a∈O

h(γa) ≤ 12N |O| log 2 < 12N3 log 2. The general case reduces to the case c = c∞

by applying a suitable Galois automorphism.

(iv) and (v) They follow from [27, Proposition 4.4].
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(vi) By Proposition 2.6, the rank of the free abelian group (uO) is at most ν∞(G)−1.

Then Manin-Drinfeld theorem, as stated in [62], tells us that this rank is maximal

possible.

2.4 Siegel’s theory of convenient units

We recall here Siegel’s construction [85] of convenient units in a number field K of degree

d, in the form adapted to the needs of the present work. The results of this section are

well-known, but not always in the set-up we wish them to have.

Let S be a finite set of absolute values of K, containing all the Archimedean valu-

ations and normalized with respect to Q. Fix a valuation v0 ∈ S, we put

S′ = S \ {v0}, s = |S| ≥ 2, r = s− 1, d′ = max{d, 3}, ζ = 1201

(
log d′

log log d′

)3

.

Let ξ1, · · · , ξr be a fundamental system of S-units. The S-regulator R(S) is the absolute

value of the determinant of the r × r matrix

(dv log |ξk|v) v∈S′

1≤k≤r
(2.6)

(we fix some ordering for the set S′), where dv = [Kv : Qv] is the local degree of v. It is

well-defined and is equal to the usual regulator RK when S is the set of infinite places.

Proposition 2.11. There exists a fundamental system of S-units η1, · · · , ηr satisfying

h(η1) · · · h(ηr) ≤ d−rr2rR(S),

(ζd)−1 ≤ h(ηk) ≤ d−1r2rζr−1R(S) (k = 1, · · · , r).

Furthermore, the entries of the inverse matrix of (2.6) are bounded in absolute value by

r2rζ.

Proof. See [37, Lemma 1]. Notice that the left-hand inequality in the second inequality

is a well-known result of Dobrowolski [41].

Corollary 2.12. For the unit η = ηb11 · · · ηbrr , where η1, · · · , ηr are from Proposition 2.11

and b1, · · · , br ∈ Z, put B∗ = max{|b1|, · · · , |br|}, then we have

h(η) ≤ d−1r2r+1ζr−1B∗R(S),

B∗ ≤ 2dr2rζh(η).
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Proof. The first inequality follows from Proposition 2.11 and standard height estimates.

Write

dv log |η|v =
r∑

k=1

dvbk log |ηk|v, v ∈ S′.

Resolving this in terms of b1, · · · , br and using the final statement of Proposition 2.11,

we obtain

B∗ ≤ r2rζ
∑

v∈S′

dv| log |η|v| ≤ r2rζ
∑

v∈S
dv| log |η|v|.

Since η is an S-unit,

∑

v∈S
dv| log |η|v| = d(h(η) + h(η−1)) = 2dh(η).

Then the corollary is proved.

Finally, we quote two estimates of the S-regulator in terms of the usual regulator

RK , the class number hK , the degree d, and the discriminant DK of the field K.

Proposition 2.13. We have

0.1 ≤ R(S) ≤ hKRK

∏

v∈S
v∤∞

logN (v),

R(S) ≪ d−d
√

|DK |(log |DK |)d−1
∏

v∈S
v∤∞

logN (v).

For the first inequality see [37, Lemma 3]; one may remark that the lower bound

R(S) ≥ 0.1 follows from Friedman’s famous lower bound [50] for the usual regulator

RK ≥ 0.2. The second one follows from Siegel’s estimate [85, Satz 1]

hKRK ≪ d−d
√
|DK |(log |DK |)d−1;

in fact there is an explicit bound for hKRK therein.

2.5 Baker’s inequality

In this section we state Baker’s inequality, which is the main technical tool of the proofs.

It is actually an adaptation of a result in [1]. For the convenience of readers, we also

quote its proof with slight change.
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For a number field K and v ∈ MK , we denote by pv the underlying prime of v

when v is non-Archimedean. Next, we let

• θ0, θ1, · · · , θr be nonzero algebraic numbers, belonging to K;

• Θ0,Θ1, · · · ,Θr be real numbers satisfying

Θk ≥ max {dh(θk), 1} (k = 0, 1, · · · , r);

• b1, . . . , br be rational integers, Λ = θ0θ
b1
1 · · · θbrr , B∗ = max{|b1|, |b2|, · · · , |br|}.

Theorem 2.14 ([1]). There exists an absolute constant C that can be determined ex-

plicitly such that the following holds. Assume that Λ 6= 1. Then for any real number B

satisfying B ≥ B∗ and B ≥ max{3,Θ1, · · · ,Θr}, we have

|Λ− 1|v ≥ e−ΥΘ0Θ1···Θr logB,

where

Υ =




Crd2 log(2d), v | ∞,

(Cd)2r+6pdv, v|pv < ∞.

Proof. The Archimedean case is due to Matveev, see Corollary 2.3 from [68]. We use

this result with n = r + 1, with 1, b1, . . . , br as Matveev’s bn, b1, . . . , bn−1, respectively,

Θ0,Θ1, . . . ,Θr as Matveev’s An, A1, . . . , An−1, respectively, and B as Matveev’s B.

Notice that Matveev assumes (in our notation) that

Θk ≥ | log θk|, (2.7)

with some choice of the complex value of the logarithm. However, if we pick the principal

value of the logarithm, then

| log θk| ≤ | log |θk||+ π ≤ dh(θk) + π ≤ (1 + π)Θk.

Hence we may disregard (2.7) at the cost of increasing the absolute constant C in the

definition of Υ.

In the case of non-Archimedean v we employ the result of Yu [94]. Precisely, we

use the second consequence of his “Main Theorem” on page 190 (see the bottom of

page 190 and the top of page 191), which asserts that, assuming (1.19) of [94], but

without assuming (1.5) and (1.15), the first displayed equation on the top of page 191

of [94] holds.
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In our notation, taking, as in the Archimedean case, n = r + 1, using 1, b1, . . . , br as

Yu’s bn, b1, . . . , bn−1, noticing that Yu’s parameters hn, h1, . . . , hn−1 do not exceed our

d−1Θ0, d
−1Θ1, . . . , d

−1Θr, and setting Yu’s Bn to be 1, we re-state Yu’s result as follows.

Let p be the prime ideal corresponding to v and δ a real number satisfying 0 < δ ≤ 1/2;

then

Ordp(Λ− 1) < (Cd)2r+5 pdv
(log pv)2

max {Θ0Θ1 · · ·Θr logQ, δB} ,

Q = δ−1e6r
2
d2rprdv Θ1 · · ·Θr.

Here, we replace Yu’s c0 by dr+1, Yu’s c1 by e6r
2
d3r, and Yu’s C0 by (Cd)3r+6pdv(log pv)

−2,

the constant C being absolute. Observing that

logQ = log
(
δ−1Θ1 · · ·Θr

)
+O(r2d log pv),

and modifying the absolute constant C, we obtain

Ordp(Λ− 1) < (Cd)2r+6 pdv
log pv

max
{
Θ0Θ1 · · ·Θr log

(
δ−1Θ1 · · ·Θr

)
, δB

}
. (2.8)

Notice that B ≥ 3, then logB > 1. Set now

δ = min

{
Θ1 · · ·Θr

logB

B
,
1

2

}
.

If δ < 1/2 then the maximum in (2.8) does not exceed Θ0Θ1 · · ·Θr logB. And if δ = 1/2,

then
B

logB
≤ 2Θ1 · · ·Θr,

which, by [25, Lemma 2.3.3], implies that

B ≤ 4Θ1 · · ·Θr log (2Θ1 · · ·Θr) ≤ 4(r + 1)Θ1 · · ·Θr logB,

and the maximum in (2.8) is at most 2(r+1)Θ0Θ1 · · ·Θr logB. So in any case we obtain

(again slightly adjusting the absolute constant C) the estimate

Ordp(Λ− 1) < (Cd)2r+6 pdv
log pv

Θ0Θ1 · · ·Θr logB. (2.9)

Finally, since |Λ− 1|v = e
− log pv

ep
Ordp(Λ−1)

, where ep is the absolute ramification index

of p, we obtain the result in the non-Archimedean case as well.

Remark 2.15. We choose the form of Baker’s inequality in Theorem 2.14 because of its

convenience for our computations, although it is effective but not explicit. If one wants to
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get an explicit bound for h(P ), one can apply Matveev [68] and Yu [94] respectively, like

[73], and one can also apply [22, Theorem C] to handle uniformly with the Archimedean

and non-Archimedean cases.

2.6 The case of mixed level

In this section, we assume that N has at least two distinct prime factors. Then we will

apply Baker’s inequality to prove Theorems 2.1 and 2.2.

In the sequel, we assume that P is an S0-integral point of XG and ν∞(G) ≥ 3.

What we want to do is to obtain some bounds for h(P ).

From now on we let K = K0 ·Q(ζN ) = K0(ζN ). Let S be the set consisting of the

extensions of the places from S0 to K, that is,

S = {v ∈ MK : v|v0 ∈ S0}.

Then P is also an S-integral point of XG.

Put d = [K : Q], s = |S| and r = s− 1. Since j(P ) ∈ OS , we have

h(P ) = d−1
∑

v∈S
dv log

+ |j(P )|v ≤
∑

v∈S
log+ |j(P )|v.

Then there exists some w ∈ S such that

h(P ) ≤ s log |j(P )|w.

We fix this valuation w from now on. Therefore, we only need to bound log |j(P )|w.

As the discussion in Section 2.3.3, P is also an S-integral point of XG1 . Hence for

our purposes, we only need to focus on the modular curve XG1 .

We partition the set S into three pairwise disjoint subsets: S = S1∪S2∪S3, where S1

consists of places v ∈ S such that P ∈ XG1(K̄v)
+, S2 = M∞

K \S1, and S3 = S \(S1∪S2).

From now on, for v ∈ S1 let cv be a v-nearby cusp of P , and we write qv for qcv and

ev for ecv . Notice that for any v ∈ S3, it is non-Archimedean with |j(P )|v ≤ 1.

In the sequel, we can assume that |j(P )|w > 3500, otherwise we can get a better

bound than those given in Section 2.1. Then we have w ∈ S1 and P ∈ Ωcw,w for some

cusp cw. Therefore, by (2.4) we only need to bound log |qw(P )−1|w.
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From now on we assume that |qw(P )|w ≤ 10−N . Indeed, applying (2.4) the inequal-

ity |qw(P )|w > 10−N yields h(P ) < 3sN , which is a much better estimate for h(P ) than

those given in Section 2.1.

Notice that under our assumptions, we see that N ≥ 2. Moreover, in this section

we assume that s ≥ 2. In fact, if s = 1, then we can add another valuation to S such

that s = 2, and then the final results of this section also hold.

2.6.1 Preparation for Baker’s inequality

We fix an orbit O of the group action AN/G1 as follows. Put U = uO, where uO is

defined in (2.5).

If OrdcwU 6= 0, we choose O such that OrdcwU < 0 according to Proposition 2.6.

Noticing v∞(G) ≥ 3 and combining with Proposition 2.10 (vi), we can choose another

orbit O′ such that U and V are multiplicatively independent modulo constants with

OrdcwV > 0, where V = uO′ .

Define the following function

W =





U if OrdcwU = 0,

UOrdcwV V −OrdcwU if OrdcwU 6= 0.

So we always have OrdcwW = 0 and W (P ) ∈ OS . In particular, W is integral over Z[j].

Moreover, W is not a constant by Proposition 2.10 (vi).

By Proposition 2.10 (ii) and (iii), we have

γ−1
w W (P ) = 1 +Ow(4

24N7 |qw(P )|1/Nw ), (2.10)

where

γw =





γO,cw if OrdcwU = 0,

γ
OrdcwV
O,cw

γ
−OrdcwU
O′,cw

if OrdcwU 6= 0;

and

h(γw) ≤ 24N7 log 2.

By Proposition 2.6, we know thatW (P ) is a unit of OS . So there exist some integers

b1, · · · , br ∈ Z such that W (P ) = ωηb11 · · · ηbrr , where ω is a root of unity and η1, · · · , ηr
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are from Proposition 2.11. Let η0 = ωγ−1
w . Then we set

Λ = γ−1
w W (P ) = η0η

b1
1 · · · ηbrr . (2.11)

Notice that η0, · · · , ηr ∈ K and

|Λ− 1|w ≤ 424N
7 |qw(P )|1/Nw . (2.12)

For subsequent deductions, we need to bound h(W (P )).

Proposition 2.16. We have

h(W (P )) ≤ 2sN8 log |q−1
w (P )|w + 94sN8 logN.

Proof. First suppose that OrdcwU = 0. Then W = U . For v ∈ S3, j(P ) is a v-adic

integer. Hence, so is the number W (P ). In addition, it is easy to see that

∑

v∈M∞

K

dvρv = 12dN3 logN,
∑

v∈M0
K

dvρv ≤ 12dN3 logN.

Notice that for v ∈ S1, |Ordcv(W )| ≤ N4. Applying Proposition 2.10 (iv) and (2.4),

we have

d−1
∑

v∈S1

dv log
+ |W (P )|v ≤ N4d−1

∑

v∈S1

dv log |qv(P )−1|v + d−1
∑

v∈S1

dvρv

≤ N4d−1
∑

v∈S1

dv log |j(P )|v + sN4 log
3

2
+ 24N3 logN

≤ N4h(P ) + sN4 log
3

2
+ 24N3 logN

≤ sN4 log |j(P )|w + sN4 log
3

2
+ 24N3 logN

≤ sN4 log |qw(P )−1|w + sN4 log 3 + 24N3 logN.

It follows from Proposition 2.10 (v) that

d−1
∑

v∈S2

dv log
+ |W (P )|v ≤ N3 log 5900 + 12N3 logN.
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Hence, we get

h(W (P )) = d−1
∑

v∈S1∪S2

dv log
+ |W (P )|v

≤ sN4 log |qw(P )−1|w + sN4 log 3 + 36N3 logN +N3 log 5900.

Now suppose that OrdcwU 6= 0. For any v ∈ S1, we have

| log |W (P )|v| ≤
|Ordcv(W )|

ev
log |qv(P )−1|v + 2N4ρv.

Here note that |Ordcv(W )| ≤ 2N8. For any v ∈ M∞
K , we have

| log |W (P )|v| ≤ 2N7 log(|j(P )|v + 2400) + 2N4ρv.

Apply the same argument as the above, we obtain

h(W (P )) ≤ 2sN8 log |qw(P )−1|w + 2sN8 log 3 + 72N7 logN + 2N7 log 5900.

Now it is easy to get the desired result.

2.6.2 Using Baker’s inequality

If Λ = 1, we can get better bounds for h(P ) than those given in Section 2.1, see Section

2.8. So in the rest of this section we assume that Λ 6= 1.

Let B∗ = max{|b1|, · · · , |br|}, and let Θ0,Θ1, · · · ,Θr be real numbers satisfying

Θk ≥ max{dh(ηk), 1}, k = 0, · · · , r.

By Theorem 2.14, there exists an absolute constant C which can be determined

explicitly such that the following holds. Choosing B ≥ B∗ and B ≥ max{3,Θ1, · · · ,Θr},
we have

|Λ− 1|w ≥ e−ΥΘ0Θ1···Θr logB, (2.13)

where

Υ =




Crd2 log(2d), w | ∞,

(Cd)2r+6pd, otherwise.

Recall that p is the maximal rational prime below S0, with the convention p = 1 if S0

consists only of the Archimedean places.
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Applying (2.12), we have

e−ΥΘ0Θ1···Θr logB ≤ 424N
7 |qw(P )|1/Nw .

Hence, we obtain

log |qw(P )−1|w ≤ NΥΘ0Θ1 · · ·Θr logB + 48N8 log 2. (2.14)

According to Proposition 2.11, we can choose

Θk = dζh(ηk), k = 1, · · · , r.

So we have

Θ1 · · ·Θr ≤ r2rζrR(S).

Since

dh(η0) = dh(γw) ≤ 24dN7 log 2,

we can choose

Θ0 = 24dN7 log 2.

Corollary 2.12 tells us that

B∗ ≤ 2dr2rζh(W (P )).

Notice that we also need B ≥ max{3,Θ1, · · · ,Θr}, by Proposition 2.11 and Proposition

2.16 we can choose

B = r2rζrR(S) + 2dr2rζ
(
2sN8 log |qw(P )−1|w + 94sN8 logN

)
.

Again, we write B = α log |qw(P )−1|w + β, where

α = 4dsr2rζN8,

β = r2rζrR(S) + 188dsr2rζN8 logN.

Hence, (2.14) yields

α log |qw(P )−1|w + β ≤ αNΥΘ0Θ1 · · ·Θr log(α log |qw(P )−1|w + β) + 48αN8 log 2 + β.
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Here we put C1 = αNΥΘ0Θ1 · · ·Θr and C2 = 48αN8 log 2 + β, then

α log |qw(P )−1|w + β ≤ C1 log(α log |qw(P )−1|w + β) + C2.

Therefore, by [25, Lemma 2.3.3] we obtain

α log |qw(P )−1|w + β ≤ 2(C1 logC1 + C2).

Hence

log |qw(P )−1|w ≤ 2α−1C1 logC1 + α−1(2C2 − β).

That is

log |j(P )|w ≤ 2α−1C1 logC1 + α−1(2C2 − β) + log 2.

So we have

h(P ) ≤ 2sα−1C1 logC1 + sα−1(2C2 − β) + s log 2.

Finally we get

h(P ) ≪ dsr2rζrN8ΥR(S) log(d2sr4rζr+1N16ΥR(S)). (2.15)

To get a bound for h(P ), we only need to calculate the quantities in the above

inequality.

2.6.3 Proof of Theorem 2.1

Under the assumptions of Theorem 2.1, we have K = Q(ζN ) and S = M∞
K . Since we

have assumed that s ≥ 2, we have ϕ(N) ≥ 4.

Then |D| ≤ Nϕ(N) according to [93, Proposition 2.7]. It follows from Proposition

2.13 that

R(S) ≪ ϕ(N)−1Nϕ(N)/2(logN)ϕ(N)−1.
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Notice that

s = ϕ(N)/2,

ζ ≪ (logϕ(N))3,

Υ = C
ϕ(N)

2
−1ϕ(N)2 log(2ϕ(N)),

log(d2sr4rζr+1N16ΥR(S)) ≪ ϕ(N) logN.

Applying (2.15) we obtain

h(P ) ≤ Cϕ(N)(ϕ(N))ϕ(N)+2(logϕ(N))
3
2
ϕ(N)−2N

1
2
ϕ(N)+8(logN)ϕ(N),

≤ Cϕ(N)N
3
2
ϕ(N)+10(logN)

5
2
ϕ(N)−2,

the constant C being modified. Hence we prove Theorem 2.1.

2.6.4 Proof of Theorem 2.2

Now we need to give a bound for h(P ) based on the parameters of K0 with the assump-

tions of Theorem 2.2.

First, notice that

s ≤ s0ϕ(N),

r = s− 1 ≤ s0ϕ(N)− 1,

d ≤ d0ϕ(N),

ζ ≪ (log d)3 ≤ (log(d0ϕ(N)))3.

Using Proposition 2.13, we estimate R(S) as follows:

R(S) ≪ d−d
√

|DK |(log |DK |)d−1
∏

v∈S
v∤∞

logNK/Q(v).

Since NK/Q(v) ≤ p[K:Q] = pd, this implies the upper bound

logR(S) ≪ 1

2
log |DK |+ d log log |DK |+ s log(dp). (2.16)
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Let DK/K0
be the relative discriminant of K/K0. Recall that D0 is the absolute

discriminant of K0. We have

DK = NK0/Q(DK/K0
)D

[K:K0]
0 .

We denote by OK0 and OK the ring of integers of K0 and K, respectively. Since

K = K0(ζN ), we have

OK0 ⊆ OK0 [ζN ] ⊆ OK .

By [51, III (2.20) (b)] and note that the absolute value of the discriminant of the poly-

nomial xN − 1 is NN , we get

DK/K0
|NN .

So

|NK0/Q(DK/K0
)| ≤ Nd0N .

Hence

|DK | ≤ Nd0N |D0|ϕ(N).

Now let v0 be a non-Archimedean place of K0, and v1, · · · , vm all its extensions to

K, their residue degrees over K0 being f1, · · · , fm, respectively. Then f1 + · · · + fm ≤
[K : K0] ≤ ϕ(N), which implies that f1 · · · fm ≤ 2ϕ(N). Notice that we always have

2 logNK0/Q(v0) > 1. Since NK/Q(vk) = NK0/Q(v0)
fk for 1 ≤ k ≤ m and m ≤ ϕ(N), we

have

m∏

k=1

logNK/Q(vk) ≤ 2ϕ(N)(logNK0/Q(v0))
m

≤ 2ϕ(N)(2 logNK0/Q(v0))
m

≤ 4ϕ(N)(logNK0/Q(v0))
ϕ(N).

Hence

∏

v∈S
v∤∞

logNK/Q(v) ≤ 4s0ϕ(N)



∏

v∈S0
v∤∞

logNK0/Q(v)




ϕ(N)

. (2.17)
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If we now denote by ∆ the quantity defined in (2.2), then using (2.16) and (2.17),

we obtain the following estimates:

R(S) ≪ 4s0ϕ(N)∆,

R(S) logR(S) ≪ 4s0ϕ(N)s0∆ log p,

R(S) log(d2sr4rζr+1N16ΥR(S)) ≪ 4s0ϕ(N)s0∆ log(ps0).

Here we always choose Υ = (Cd)2r+6pd.

Finally, using (2.15) and noticing that d0 ≤ 2s0, we get

h(P ) ≤
(
Cd0s0ϕ(N)2

)2s0ϕ(N)
(log(d0ϕ(N)))3s0ϕ(N)N8pd0ϕ(N)∆ log p

≤
(
Cd0s0N

2
)2s0N (log(d0N))3s0Npd0N∆.

the constant C being modified.

Therefore, Theorem 2.2 is proved.

2.6.5 Proof of Theorem 2.3

Under the assumptions of Theorem 2.3, we have K = K0, d = d0, s = s0, and r = s0−1.

Similar to the proof of Theorem 2.2, we get

R(S) ≪ ∆0,

R(S) logR(S) ≪ s0∆0 log p,

R(S) log(d2sr4rζr+1N16ΥR(S)) ≪ s0∆0 log(ps0).

Then using (2.15) and noticing that d0 ≤ 2s0, we obtain

h(P ) ≤ (Cd0s0)
2s0(log d0)

3s0N8pd0∆0 log p,

where C is an absolute effective constant.

Therefore, Theorem 2.3 is proved.

2.7 The case of prime power level

In this section, we assume that N is a prime power.
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As Section 2.6, we can define a similar function W . But in this case W (P ) is not a

unit of OS by Proposition 2.6. So we need to raise the level. Put

M =





2N if N is not a power of 2,

3N if N is a power of 2.

Notice that XG is also a modular curve of level M and ν∞(G) ≥ 3, since we have the

following natural sequence of morphisms

X(M) → X(N) → XG → X(1).

Since Gal(Q(X(M))/Q(j)) = GL2(Z/MZ)/±1, XG corresponds to a subgroup G̃ of

GL2(Z/MZ) containing ±1. In fact, The restriction of G̃ on X(N) is G. The modular

curve X
G̃

has the same integral geometric model as XG. In particular, P is also an

S0-integral point of XG̃
.

Therefore, from Theorems 2.1, 2.2 and 2.3, we can get two upper bounds for h(P )

by replacing N by M , which proves Theorem 2.4.

2.8 The case Λ = 1

In this section, we suppose that N is not a prime power without loss of generality. Under

the assumption Λ = 1 we can obtain better bounds for h(P ) than those given in Section

2.1.

Let c be a cusp of XG1 and v ∈ MK . We also denote by v the unique extension of v

to K̄v. Recall Ωc,v and the q-parameter qc mentioned in Section 2.3.3, for the modular

function U defined in Section 2.6.1, we get the following lemma.

Lemma 2.17. There exist an integer-valued function f(·) with respect to qc and λc
1, λ

c
2, λ

c
3 · · · ∈

Q(ζN ) such that the following identity holds in v-adic sense,

log
U(qc)

γO,cq
OrdcU

ec
c

= 2πf(qc)i+
∞∑

k=1

λc
kq

k/N
c , (2.18)

and

|λc
k|v ≤

{
|k|−1

v if v is finite,

24N2(k +N) if v is infinite.
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In particular, for every k ≥ 1, we have

h(λc
k) ≤ log(24N3 + 24kN2) + log k.

Proof. By definition, we have

U(qc)

γO,cq
OrdcU

ec
c

=
∏

a∈O

∞∏

n=0
n+a1 6=0

(1− qn+a1
c e2πia2)12N

∞∏

n=0

(1− qn+1−a1
c e−2πia2)12N . (2.19)

Since

∑

a∈O




∞∑

n=0
n+a1 6=0

12N |qc|n+a1
v +

∞∑

n=0

12N |qc|n+1−a1
v




is convergent, it follows from [2, Chapter 5 Section 2.2 Theorem 6] that the right-hand

side of (2.19) is absolutely convergent (v is infinite). It is also true when v is finite.

Then we can write (2.19) as the form
∞∏
n=1

(1 + dn) such that
∞∏
n=1

(1 + dn) is absolutely

convergent. Hence, [2, Chapter 5 Section 2.2 Theorem 5] (v is infinite) and [58, Chapter

IV Section 2] (v is finite) give

log
U(qc)

γO,cq
OrdcU

ec
c

= 2πf(qc)i+
∑

a∈O




∞∑

n=0
n+a1 6=0

12N log(1− qn+a1
c e2πia2) +

∞∑

n=0

12N log(1− qn+1−a1
c e−2πia2)


 ,

where by default f(qc) is always equal to 0 if v is finite. Applying the Taylor expansion

of the logarithm function to the right-hand side of the above formula, we get the desired

formula for log U(qc)

γO,cq
OrdcU

ec
c

.

For a fixed non-negative integer n (where we assume n > 0 if a1 = 0), write

log(1− qn+a1
c e2πia2) =

∞∑

k=1

αkq
k/N .

An immediate verification shows that

|αk|v ≤
{

|k|−1
v if v is finite,

1 if v is infinite.

Same estimates hold true for the coefficients of the q-series for log(1− qn+1−a1
c e−2πia2).
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For each a ∈ O, the number of coefficients in the q-series for log(1 − qn+a1
c e2πia2)

which may contribute to λc
k (those with 0 ≤ n ≤ k/N) is at most k/N +1, and the same

is true for the q-series for log(1 − qn+1−a1
c e−2πia2). The bound for |λc

k|v now follows by

summation.

Corollary 2.18. Assume that OrdcU = 0. Then λc
k 6= 0 for some k ≤ N6.

Proof. Since U is not a constant, there must exist some λc
k 6= 0. Under the assumption

OrdcU = 0, we have U(c) = γO,c, and then f(qc(c)) = 0 by (2.18). We extend the ad-

ditive valuation Ordc from the fieldK(XG1) to the field of formal power seriesK((q
1/ec
c )).

Then Ordcq
1/ec
c = 1 and Ordc (−2πf(qc)i+ log(U/γO,c)) ≤ Ordc log(U/γO,c) = Ordc(U/γO,c−

1). The latter quantity is bounded by the degree of U/γO,c − 1, which is equal to the

degree of U .

The degree of U is equal to 1
2

∑
c0

|Ordc0 U |, here the sum runs through all the cusps

of XG1 . Then the result follows from Proposition 2.10 (ii).

Now we can prove a general result.

Proposition 2.19. Assume that OrdcU = 0. Then for P ∈ Ωc,v such that U(P ) = γO,c,

we have

log |qc(P )−1|v ≤ Nϕ(N) log(24N14 + 24N9) +N log(48N2(N6 +N + 1)).

Proof. Let n be the smallest k such that λc
k 6= 0. Then n ≤ N6. We assume that

|qc(P )|v ≤ 10−N , otherwise there is nothing to prove. Since OrdcU = 0 and U(P ) = γO,c,

it follows from Lemma 2.17 that 2πf(qc(P ))i+
∞∑
k=n

λc
kqc(P )k/N = 0.

Suppose that f(qc(P )) = 0. Then |λc
nqc(P )n/N |v = |

∞∑
k=n+1

λc
kqc(P )k/N |v. On the

one hand, we have

|
∞∑

k=n+1

λc
kqc(P )k/N |v ≤

∞∑

k=n+1

|λc
k|v|qc(P )|k/Nv

≤
∞∑

k=n+1

24N2(k +N)|qc(P )|k/Nv

= 48N2(n+N + 1)|qc(P )|(n+1)/N
v .

On the other hand, using Liouville’s inequality (see [92, Formula (3.13)]), we get

|λc
n|v ≥ e−[Q(ζN ):Q]h(λc

n) ≥ (24nN3 + 24n2N2)−ϕ(N).
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Then the desired result follows easily.

Suppose that f(qc(P )) 6= 0. Then 2π ≤ |
∞∑
k=n

λc
kqc(P )k/N |v ≤ 48N2(n+N)|qc(P )|n/Nv .

Then we get

log |qc(P )−1|v ≤ N log(48N2(N6 +N)).

Now we assume that OrdcwU = 0. Then we have W = U . Since Λ = 1, W (P ) =

γO,cw . For the S-integral point P of XG1 fixed in Section 2.6, applying the above

proposition to W , we obtain

h(P ) ≤ s(log |qw(P )−1|w + log 2)

≤ s0N
(
Nϕ(N) log(24N14 + 24N9) +N log(48N2(N6 +N + 1)) + log 2

)
.

Now we assume that OrdcwU 6= 0. ThenW = UOrdcwV V −OrdcwU with OrdcwW = 0.

Proposition 2.10 (vi) guarantees that W is not a constant. Applying the same method

as the above without difficulties, we can also get a better bound than Theorems 2.1 and

2.2. We omit the details here.

In conclusion, if assuming Λ = 1, we can get polynomial bounds for h(P ) in terms

of s0 and N , which are obviously better than those in Theorems 2.1-2.4.
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Chapter 3

Bounding the j-invariant of

integral points on X+
ns(p)

3.1 Background

In 1972, Serre [77] proved that for any elliptic curve E over Q without complex multi-

plication, there exists a constant C(E) > 0 with respect to E such that for every prime

p > C(E), the natural Galois representation

ρE,p : Gal(Q̄/Q) → GL(E[p]) ∼= GL2(Z/pZ)

is surjective, where E[p] is the p-torsion subgroup of E and GL(E[p]) is its automorphism

group.

Serre asked whether there exist an absolute constant C such that for any elliptic

curve E without complex multiplication over Q and any prime p > C, ρE,p is surjective,

which now is called “Serre’s uniformity problem”.

As is well-known, the group GL2(Z/pZ) has the following types of maximal proper

subgroups: Borel subgroups, exceptional subgroups, and normalizers of (split and non-

split) Cartan subgroups. To solve Serre’s uniformity problem, one has to show that for

sufficiently large p, the image of ρE,p is not contained in any of the above listed maximal

subgroups. The cases of exceptional subgroups and Borel subgroups have been solved

by Serre and Mazur, respectively. For the case of normalizers of Cartan subgroups, it is

equivalent to prove that for sufficiently large p, the only Q-rational points of the modular

curves X+
split(p) and X+

ns(p) are the cusps and CM points.
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Bilu and Parent [28] first obtained an effective upper bound for the j-invariant of

integral points on the modular curve X+
split(p). Then applying this bound, they showed

that the Q-rational points on X+
split(p) are exactly the cusps and CM points for p greater

than an absolute constant. Subsequently, they solved Serre’s uniformity problem in the

split Cartan case and finally left this problem with the non-split Cartan case.

In this chapter, we will obtain some effective upper bounds for the j-invariant of

integral points on X+
ns(p).

3.2 Main Results

Throughout this chapter we fix a prime number p ≥ 7. We call a rational point

P ∈ X+
ns(p)(Q) an integral point with respect to j if j(P ) ∈ Z.

The modular curve X+
ns(p) has p−1

2 cusps, and all its cusps are conjugate over Q.

Hence, by Siegel’s theorem, the curve X+
ns(p) has only finitely many integral points.

Moreover, as follows from [23, Proposition 5.1(a)], their size can be bounded effectively

in terms of p.

In this chapter we use Baker’s method, more precisely Baker’s inequality in the

form due to Matveev [68, Corollary 2.3], to obtain two explicit bounds in terms of p for

the j-invariant of integral points on X+
ns(p).

Theorem 3.1. Assume that p ≥ 7 and let d ≥ 3 be a divisor of (p− 1)/2. Then for any

integral point P on X+
ns(p) we have

log |j(P )| < C(d)p6d+5(log p)2,

where C(d) = 30d+5 · d−2d+4.5.

In particular, if we choose d = p−1
2 in Theorem 3.1, we obtain a bound which is

explicit in p.

Theorem 3.2. Assume that p ≥ 7. Then for any integral point P on X+
ns(p) we have

log |j(P )| < 41993 · 13p · p2p+7.5(log p)2.

By comparing these two theorems, the bound in Theorem 3.3 can be drastically

reduced if p−1
2 has a small divisor. For example, if p ≡ 1 (mod 3), we have the following

theorem.
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Theorem 3.3. Assume that p ≥ 7 and p ≡ 1 (mod 3). Then for any integral point P

on X+
ns(p) we have

log |j(P )| < 308 · p23(log p)2.

3.3 Notation and conventions

Throughout this chapter, log stands for the principal branch of the complex logarithm,

and let G = C+
ns(p).

In the sequel, we fix a subgroup H of F×
p such that −1 ∈ H and [F×

p : H] ≥ 3. Put

d = [F×
p : H], then we have

d

∣∣∣∣
p− 1

2
and d = [K : Q],

where K = Q(ζp)
H and ζp = e

2πi
p . We can identify the Galois group Gal(K/Q) with

F×
p /H, we also identify Gal(Q(ζp)/K) with H. In particular, K ⊆ Q(ζp)

+, where

Q(ζp)
+ = Q(ζp + ζ̄p).

Put

GH = {g ∈ G : det g ∈ H}.

Then the determinant map induces an isomorphism: G/GH
∼= F×

p /H. We denote by XH

the modular curve corresponding to GH , which is defined over K. Here XH and X+
ns(p)

have the same geometrically integral model, and the function field of XH is K(X+
ns(p)).

The curveXH also has the same cusps asX+
ns(p). In particular, Gal(K(XH)/Q(X+

ns(p)))
∼=

Gal(K/Q).

Hence, in this chapter we identify the following four groups: Gal(K(XH)/Q(X+
ns(p))),

Gal(K/Q), F×
p /H and G/GH . The readers should interpret the exact meaning based on

the context.

For a = (a1, a2) ∈ Q2, we put ℓa = B2(a1 − ⌊a1⌋)/2, where B2(T ) = T 2 − T + 1
6

is the second Bernoulli polynomial. Obviously |ℓa| ≤ 1/12, this will be used without

special reference.

We put A =
(
p−1Z/Z

)2 \ {(0, 0)}. In this chapter, we also identify p−1Z/Z with

p−1Fp. Moreover we always choose a representative element of a = (a1, a2) ∈ (p−1Z/Z)2

satisfying 0 ≤ a1, a2 < 1. So in the sequel for every a ∈ (p−1Z/Z)2, we have ℓa =

B2(a1)/2.
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In this chapter, we use the notation O1(·). Precisely, A = O1(B) means that

|A| ≤ B.

3.4 Preparations

3.4.1 Siegel functions and modular units

Recall the definition of Siegel function in Section 2.3.1. From the proof of [27, Proposition

2.3] and replacing 3|qτ | by 2.03|qτ | in [27, Formula (11)], we directly get the following

lemma. Note that D is the standard fundamental domain of SL2(Z).

Lemma 3.4. Let a ∈ Q2 \ Z2. Then for τ ∈ D, we have

log |ga(τ)| = ℓa log |qτ |+ log |1− qa1τ e2πia2 |+ log |1− q1−a1
τ e−2πia2 |+O1(2.03|qτ |).

For a ∈ (p−1Z)2\Z2, we denote g12pa by ua, which is a modular unit on the principal

modular curve X(p) of level p. Moreover, we have ua = ua′ when a ≡ a′ mod Z2. Hence,

ua is well-defined when a ∈ A. In addition, every ua is integral over Z[j]. For more

details, see [27, Section 4.2].

Furthermore, the Galois action on the set {ua} is compatible with the right linear ac-

tion of GL2(Z/pZ) on it. That is, for any σ ∈ Gal(Q(X(p))/Q(X(1))) ∼= GL2(Z/pZ)/±1

and any a ∈ A, we have

uσ
a
= uaσ.

Here we borrow a result and its proof from [5] for the conveniences of readers. In

fact, it is a refinement of Proposition 2.6 in the present case.

Lemma 3.5 ([5]). We have ∏

a∈A
ua = p12p.

Proof. We denote by u the left-hand side of the equality. Since the set A is stable

with respect to GL2(Z/pZ), u is stable with respect to the Galois action over the field

Q(X(1)) = Q(j). So u ∈ Q(j). Moreover, since u is integral over Z[j], u ∈ Z[j]. Notice

that X(1) has only one cusp and u has no zeros and poles outside the cusps, so u must

be a constant and u ∈ Z. Since

∑

(a1,a2)∈A
B2(a1) = 0 and

∑

(a1,a2)∈A
a2(1− a1) =

p2 − 1

4
,
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Taking q = 0, we have

u =
∏

(a1,a2)∈A,a1=0

(1− e2πia2)12p =
∏

1≤k<p

(1− e2kπi/p)12p = p12p.

3.4.2 X+
ns(p) and XH

It is known that the cusps of X+
ns(p) correspond to the orbits of the (left) action of

G ∩ SL2(Z/pZ) on the set F2
p \ {

(
0
0

)
}, see [26, Lemma 2.3]. By definition, these orbits

are the sets La, defined by x2 −Ξy2 = ±a, where a runs through F×
p /{±1}, the cusp at

infinity corresponds to a = 1.

From now on, we fix an integral point P of X+
ns(p) and assume that |j(P )| > 3500.

Since every integral point of X+
ns(p) is also an integral point of XH , P is also an integral

point of XH . Hence for our purposes, we only need to focus on the modular curve XH .

Notice that since all the cusps have ramification index p in the natural covering

X+
ns(p) → X(1), so as the natural covering XH → X(1).

We fix a uniformization XH(C) = H̄/Γ, and let τ0 ∈ H̄ be a lift of P . Pick

σc ∈ SL2(Z) such that τ = σ−1
c (τ0) ∈ D. As in the proof of [27, Proposition 3.1] and

with the notations therein, we can choose the cusp c = σc(i∞) and construct a certain

set Ωc as Section 2.3.3. Recall that for the cusp c, tc is its local parameter and qc = tpc ,

both of them are defined and analytic on Ωc. Moreover, qc(P ) = qτ .

According to [27, Proposition 3.1], we have

1

2
|j(P )| ≤ |qc(P )−1| ≤ 3

2
|j(P )|. (3.1)

We will use (3.1) several times without special reference.

In the sequel we can assume that |qc(P )| ≤ 10−p. Indeed, the inequality |qc(P )| > 10−p

yields a much better estimate for log |j(P )| than those given in Theorems 3.1 and 3.3.

3.4.3 Modular units on XH

The group GL2(Fp) acts naturally (on the right) on the set A. Since GH ⊂ GL2(Fp), let

us consider the natural right group action of GH on A. There are d orbits of this group

action. These orbits are the sets Oa, defined by {(x/p, y/p) : x2 − Ξ−1y2 ∈ aH}, where
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a runs through F×
p /H. In fact, if (x, y) ∈ Oa, then for any g ∈ GH , noticing the two

possible representations of g, it is straightforward to show that (x, y) · g ∈ Oa.

Based on our conventions in Section 3.3, we consider the natural right group action

of Gal(K/Q) on the set of orbits of the group action A/GH . Moreover, for any σ ∈
Gal(K/Q) and any orbit Oa, we have

Oaσ = Oaσ.

It is easy to see that this group action is transitive. So we obtain the following lemma.

Lemma 3.6. We have |Oa| = (p2 − 1)/d.

Let O be an orbit of A/GH . As (2.5), we define

uO =
∏

a∈O
ua. (3.2)

By [27, Proposition 4.2 (ii)], uO is a rational function on the modular curve XH . Fur-

thermore, uO is a modular unit on XH .

We denote by Ordc(uO) the vanishing order of uO at c. The following lemma is

derived directly from Lemma 3.4 and [27, Proposition 4.2 (iii)].

Lemma 3.7. We have

log |uO(P )| = Ordc(uO)
p

log |qc(P )|+ log |γc|+O1(17p
3|qc(P )|1/p) (3.3)

where

Ordc(uO) = 12p2
∑

a∈Oσc

ℓa and γc =
∏

(a1,a2)∈Oσc
a1=0

(1− e2πia2)12p.

Proof. Here we use the following identity:

uO(P ) = uO(τ0) = uO(σc(σ
−1
c (τ0))) = uOσc(τ).

Notice that for |z| ≤ r < 1, we have

| log |1 + z|| ≤ − log(1− r)

r
|z|,
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see [27, Formula (4)]. Taking r = 0.1 and combining Lemma 3.4 with Lemma 3.6, we

have

log |uO(P )| =Ordc(uO)
p

log |qc(P )|+ log |γc|

+O1

(
26p

p2 − 1

d
|qc(P )|1/p + 25p

p2 − 1

d
|qc(P )|

)
.

Then this lemma follows from d ≥ 3.

We want to indicate that γc is a real algebraic number. Because if (0, a2) ∈ Oσc,

then we have (0,−a2) ∈ Oσc based on the fact that if (x, y) ∈ O, then (−x,−y) ∈ O.

Lemma 3.8. The group generated by the principal divisor (uO), where O runs over the

orbits of A/GH , is of rank d− 1.

Proof. By Lemma 3.5, the rank of the free abelian group (uO) is at most d − 1. Then

Manin-Drinfeld theorem, as stated in [62], tells us that this rank is maximal possible.

3.5 Baker’s method on XH

In this section we obtain a bound for log |j(P )|, involving various parameters. Recall

that P is the integral point of X+
ns(p) fixed in Section 3.4.2.

3.5.1 Baker’s inequality

Here, we recall Baker’s inequality in the Archimedean case due to Matveev, see [68,

Corollary 2.3].

Let F be a number field of degree d over Q and embedded in C. If F ⊆ R, we put

δ = 1, and otherwise δ = 2. We let

• α1, · · · , αn be nonzero algebraic numbers, belonging to F ;

• A1, · · · , An be real numbers satisfying

Ak ≥ max {dh(αk), | logαk|} (k = 1, · · · , n);

• b1, . . . , bn be rational integers, Λ = b1 logα1+· · ·+bn logαn, B = {|b1|, |b2|, · · · , |bn|}.
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Theorem 3.9 (Matveev). Suppose that Λ 6= 0. Then we have

log |Λ| > −C1(n)d
2A1 · · ·An log(ed) log(eB),

where C1(n) = min{1
δ (

1
2en)

δ30n+3n3.5, 26n+20}.

3.5.2 Cyclotomic units

We introduce a set of independent cyclotomic units of Q(ζp)
+ as follows,

ξk−1 = ζ(1−k)/2
p ·

1− ζkp
1− ζp

=
ζ̄p

k/2 − ζ
k/2
p

ζ̄p
1/2 − ζ

1/2
p

, k = 2, . . . ,
p− 1

2
,

for details see [93, Lemma 8.1]. In particular, {−1, ξ1, · · · , ξ p−3
2
} is a set of independent

generators for the full group of cyclotomic units of Q(ζp)
+. Let m′ be the index of

〈ξ1, · · · , ξ p−3
2
〉 in the full unit group of Q(ζp)

+ modulo roots of unity, which is equal to

the class number of Q(ζp)
+.

We put

ηk = NQ(ζp)+/K(ξk) =
∏

σ∈Gal(Q(ζp)+/K)

ξσk , k = 1, . . . ,
p− 3

2
.

Let m be the exponent of 〈η1, · · · , η p−3
2
〉 in the full unit group of K modulo roots of

unity. Since [Q(ζp)
+ : K] = |H|/2 = p−1

2d , we have

m

∣∣∣∣
m′(p− 1)

2d
. (3.4)

Since m is finite and the rank of the full unit group of K is d−1, the group 〈η1, · · · , η p−3
2
〉

modulo roots of unity has rank d − 1. In particular, in the sequel we assume that

η1, · · · , ηd−1 are multiplicatively independent without loss of generality.

3.5.3 More about modular units on XH

We fix an orbit O of the group action A/GH . Put U = uO, where uO is defined in (3.2).

Based on our conventions in Section 3.3, for any σ ∈ Gal(K/Q), we can define Uσ as

the natural Galois action. Indeed, we can view σ as an element of Gal(K(XH)/Q(X+
ns(p)))

and U ∈ K(XH). Moreover, we have Uσ = uOσ and U(P )σ = Uσ(P ).
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Since the Galois group Gal(K/Q) acts transitively on the set of orbits of A/GH , we

can rewrite Lemma 3.5 as follows.

Lemma 3.10. We have ∏

σ∈Gal(K/Q)

Uσ = p12p.

By Lemma 3.6 and the formula for OrdcuO appearing in Lemma 3.7 we obtain a

bound for the vanishing order of U at c.

Lemma 3.11. We have

|OrdcU | ≤ p2(p2 − 1)

d
.

For 1− ζp, we take the Q(ζp)/K-norm, setting µ = NQ(ζp)/K(1− ζp).

Lemma 3.12. We have (U(P )) =
(
µ12p

)
.

Proof. Since P is an integral point of XH , by [27, Proposition 4.2 (i)] and Lemma 3.10,

the principal ideal (U(P )) is an integral ideal of the field K of the form pn, where p = (µ)

and n is a positive integer.

In addition, since p is stable under the Galois action over Q, we have (Uσ(P )) = pn

for every σ ∈ Gal(K/Q). Noticing that pd = (p), it follows from Lemma 3.10 that

n = 12p.

So Dirichlet’s unit theorem gives

U(P )m = ±ηm0 ηb11 . . . η
bd−1

d−1 ,

where η0 = µ12p and b1, · · · , bd−1 are some rational integers.

Let

V = U/η0,

then we have

V (P )m = ±ηb11 . . . η
bd−1

d−1 ,

and OrdcV = OrdcU . For every σ ∈ Gal(K/Q), we have

V σ(P )m = ±(ησ1 )
b1 . . . (ησd−1)

bd−1 , (3.5)

where V σ = Uσ/ησ0 . Furthermore, by (3.3), we have

log |V σ(P )| = OrdcV
σ

p
log |qc(P )|+ log |Υc,σ|+O1

(
17p3|qc(P )|1/p

)
, (3.6)
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where Υc,σ = γc,σ/η
σ
0 and

γc,σ =
∏

(a1,a2)∈Oσσc
a1=0

(1− e2πia2)12p.

Notice that γc,σ = γc when σ is the identity. So Υc,1 = γc/η0.

Finally we put

B = max{|b1|, · · · , |bd−1|,m}.

3.5.4 Upper bound for B

We fix an order on the elements of the Galois group by supposing

Gal(K/Q) = {σ0 = 1, σ1, · · · , σd−1}.

Since the real algebraic numbers η1, · · · , ηd−1 are multiplicatively independent, the (d−
1)× (d− 1) real matrix A =

(
log |ησk

ℓ |
)
1≤k,ℓ≤d−1

is non-singular. Let (αkℓ)1≤k,ℓ≤d−1 be

the inverse matrix. Then by (3.5) we have

bk = m

d−1∑

ℓ=1

αkℓ log |V σℓ(P )|, 1 ≤ k ≤ d− 1.

Define the following quantities:

δc,k =
m

p

d−1∑

ℓ=1

αkℓOrdcV
σℓ ,

βc,k = m

d−1∑

ℓ=1

αkℓ log |Υc,σℓ
|,

κ = max{max
k

d−1∑

ℓ=1

|αkℓ|, 1}.

According to (3.6), we have

bk = δc,k log |qc(P )|+ βc,k +O1

(
17p3mκ|qc(P )|1/p

)
.

Let δ = max
k

|δc,k| and β = max
k

|βc,k|. Then we have

B ≤ δ log |qc(P )−1|+ β + 2p3mκ. (3.7)
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3.5.5 Preparation for Baker’s inequality

We define the following function

W =





V if OrdcV = 0,

V OrdcV σ
(V σ)−OrdcV if OrdcV 6= 0,

where σ ∈ Gal(K/Q) and σ 6= 1. So we always have OrdcW = 0. Moreover, W is not a

constant by Lemma 3.8. In Section 2.8 we will choose special U (i.e. V ) and σ to deal

with an exceptional case that will occur.

Define

αd =





|Υc,1|−1 if OrdcV = 0,

∣∣∣∣
ΥOrdcV

σ

c,1

ΥOrdcV
c,σ

∣∣∣∣
−1

if OrdcV 6= 0.

Then by (3.6) and Lemma 3.11 we obtain

log |W (P )| = − logαd +O1

(
12p7|qc(P )|1/p

)
. (3.8)

Put

Λ = m log |W (P )|+m logαd.

If OrdcV = 0, by (3.5), we have

Λ = b1 log |η1|+ · · ·+ bd−1 log |ηd−1|+m logαd.

In this case, we put αk = |ηk| for 1 ≤ k ≤ d− 1.

If OrdcV 6= 0, by (3.5), we have

Λ = b1 log

∣∣∣∣∣
ηOrdcV σ

1

(ησ1 )
OrdcV

∣∣∣∣∣+ · · ·+ bd−1 log

∣∣∣∣∣
ηOrdcV σ

d−1

(ησd−1)
OrdcV

∣∣∣∣∣+m logαd.

In this case, we put αk =

∣∣∣∣
ηOrdcV

σ

k

(ησk )
OrdcV

∣∣∣∣ for 1 ≤ k ≤ d− 1.

Hence, in both two cases we have

Λ = b1 logα1 + · · ·+ bd−1 logαd−1 +m logαd. (3.9)

Notice that all αk, 1 ≤ k ≤ d, are contained in Q(ζp)
+.
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3.5.6 Using Baker’s inequality

If Λ = 0, we can get a better bound for log |j(P )|, see Section 2.8. So here we assume

that Λ 6= 0.

Using Theorem 3.9 and combining (3.7) and (3.8), we have





|Λ| > exp
(
−C1(d)Ω(

p−1
2 )2(1 + log p−1

2 )(1 + logB)
)
,

|Λ| ≤ λ|qc(P )|1/p ≤ λ exp
(
−B+β+2p3mκ

δp

)
,

(3.10)

where

C1(d) = min
{e
2
d4.530d+3, 26d+20

}
,

Ak ≥ max{p− 1

2
h(αk), | logαk|, 0.16}, 1 ≤ k ≤ d,

Ω = A1 · · ·Ad, λ = 12p7m,

and h(·) is the usual absolute logarithmic height.

We obtain B ≤ K1 logB +K2, where

K1 = δpC1(d)Ω(
p− 1

2
)2(1 + log

p− 1

2
),

K2 = δpC1(d)Ω(
p− 1

2
)2(1 + log

p− 1

2
) + β + 2p3mκ+ δp log λ.

By [25, Lemma 2.3.3], we obtain

B ≤ B0 = 2(K1 logK1 +K2).

Then by (3.10), we have

|qc(P )−1| < λp exp(pC1(d)Ω(
p− 1

2
)2(1 + log

p− 1

2
)(1 + logB0)).

Finally we have

log |j(P )| < pC1(d)Ω(
p− 1

2
)2(1 + log

p− 1

2
)(1 + logB0) + p log λ+ log 2. (3.11)

Hence, to get a bound for log |j(P )|, we only need to calculate the quantities in the

above inequality, and we will do this in the next section.
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It is easy to see that

C1(d) = min
{e
2
d4.530d+3, 26d+20

}
< 2d4.530d+3.

3.6 Computations

3.6.1 Upper Bound for m

Let h+, R+ and D+ be the class number, regulator and discriminant of Q(ζp)
+, respec-

tively.

By [93, Lemma 8.1 and Theorem 8.2], we have m′ = h+. By [93, Proposition 2.1

and Lemma 4.19], we have |D+| = p
p−3
2 . Then the class number formula (see [93, Page

37]) gives

h+ =
(p
4

) p−3
4 · 1

R+

∏

χ 6=1

L(1, χ).

Using [39, Theorem 2] to the field extension Q(ζp)
+/Q, we have R+ > 0.32. Applying

[65, Theorem 1] to the field extension Q(ζp)
+/Q and noticing the constant µQ below

Formula (6) of [65], we get

|L(1, χ)| < 1

2
log p+ 0.03 < log p, if χ 6= 1.

Hence we have

h+ < p
p−3
4 (log p)

p−3
2 .

Finally by (3.4), we obtain

m ≤ h+(p− 1)

2d
< p

p+1
4 (log p)

p−3
2 . (3.12)

In the sequel we use the following formulas. For any n ∈ Z and a1, · · · , ak, α ∈ Q̄,

we have

h(a1 + · · ·+ ak) ≤ h(a1) + · · ·+ h(ak) + log k,

h(a1 · · · ak) ≤ h(a1) + · · ·+ h(ak),

h(αn) = |n|h(α),
h(ζ) = 0 for any root of unity ζ ∈ C.
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3.6.2 Height of ηk−1 for k = 2, . . . , (p− 1)/2

Let a ∈ F×
p and σa ∈ Gal (Q(ζp)/Q) induced by the automorphism of Q(ζp) : ζp → ζap .

Since ξσa
k−1 =

ζ̄p
ak/2−ζ

ak/2
p

ζ̄p
a/2−ζ

a/2
p

, we have h(ξσa
k−1) ≤ 2 log 2. So

h(ησa
k−1) ≤

(p− 1) log 2

d
.

Notice that if −π
2 < x < π

2 , then
sinx
x > 2

π . Since ξσa
k−1 =

sin(πak/p)
sin(πa/p) , we have

|ξσa
k−1| ≤

1

| sin(πa/p)| ≤
1

sin(π/p)
<

p

2
,

and

|ξσa
k−1| ≥ | sin(πak/p)| ≥ sin(π/p) >

2

p
.

So we have | log |ξσa
k−1|| < log p

2 . Hence

| log |ησa
k−1|| <

(p− 1) log p
2

2d
.

Since we can view Gal(K/Q) as a quotient group of Gal(Q(ζp)/Q), for any σ ∈
Gal(K/Q), we have

h(ησk−1) ≤
(p− 1) log 2

d
and | log |ησk−1|| <

(p− 1) log p
2

2d
. (3.13)

3.6.3 Height of η0

Following the method in Section 3.6.2, we have h(1− ζσa
p ) ≤ log 2. So

h(ησa
0 ) ≤ 12p(p− 1) log 2

d
.

First we have |1− ζσa
p | ≤ 2. Second we have

|1− ζσa
p |2 ≥ 2− 2 cos

π

p
= 4

(
sin

π

2p

)2

>

(
2

p

)2

.

So we have | log |1− ζσa
p || < log p

2 . Hence

| log |ησa
0 || < 12p(p− 1) log p

2

d
.
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Since we can view Gal(K/Q) as a quotient group of Gal(Q(ζp)/Q), for any σ ∈
Gal(K/Q), we obtain

h(ησ0 ) ≤
12p(p− 1) log 2

d
and | log |ησ0 || <

12p(p− 1) log p
2

d
. (3.14)

3.6.4 Height of |Υc,σ|

Recall that Υc,σ = γc,σ/η
σ
0 , σ ∈ Gal(K/Q) and

γc,σ =
∏

(a1,a2)∈Oσσc
a1=0

(1− e2iπa2)12p.

Notice the description of O in Section 3.4.3, we have |{(a1, a2) ∈ Oσσc : a1 = 0}| ≤
2|H| = 2(p−1)

d . Following the method in Section 3.6.2, we get

h(γc,σ) ≤
24p(p− 1) log 2

d
.

Since Υc,σ = γc,σ/η
σ
0 , we have, by (3.14),

h(Υc,σ) ≤ h(γc,σ) + h(ησ0 ) ≤
36p(p− 1) log 2

d
.

Noticing that |Υc,σ|2 = Υc,σῩc,σ, we get

h(|Υc,σ|) ≤
36p(p− 1) log 2

d
. (3.15)

Since a1 = 0, we have a2 ∈ {1
p , · · · ,

p−1
p }. First we have |1− e2iπa2 | ≤ 2. Second

|1− e2iπa2 |2 = 2(1− cos 2πa2) ≥ 2(1− cosπ/p) = 4 sin2
π

2p
≥ 4

p2
.

So we have | log |1− e2iπa2 || ≤ log p
2 , and then

| log |γc,σ|| ≤
24p(p− 1) log p

2

d
.

Hence we have, by (3.14),

| log |Υc,σ|| ≤
36p(p− 1) log p

2

d
. (3.16)
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3.6.5 Calculation of Ω

Recall that Ω = A1 · · ·Ad, where

Ak ≥ max{p− 1

2
h(αk), | logαk|, 0.16}, 1 ≤ k ≤ d.

If OrdcV = 0, then αk = |ηk| = ±ηk, 1 ≤ k ≤ d − 1, and αd = |Υc,1|−1. Then, by

(3.13), for 1 ≤ k ≤ d−1, we can choose Ak = p2/d. For Ad, we can choose Ad = 36p3/d,

by (3.15) and (3.16).

If OrdcV 6= 0, then αk =

∣∣∣∣
ηOrdcV

σ

k

(ησk )
OrdcV

∣∣∣∣, 1 ≤ k ≤ d − 1, and αd =

∣∣∣∣
ΥOrdcV

σ

c,1

ΥOrdcV
c,σ

∣∣∣∣
−1

. For

1 ≤ k ≤ d − 1, combining Lemma 3.11 with (3.13) we can choose Ak = p6/d2. For Ad,

we can choose Ad = 36p7/d2.

Therefore, we can choose

Ω = 36p6d+1/d2d. (3.17)

3.6.6 Calculation of B0

For our purpose we need to calculate δ, β and κ. In fact, all we want to do is to get a

bound for |αkℓ|, 1 ≤ k, ℓ ≤ d− 1.

Let RK be the regulator of K. By [93, Lemma 4.15], we have | detA| ≥ mRK .

Applying [39, Theorem 2] to the field extension K/Q, we have RK > 0.32. So we get

| detA| > 0.32m.

Notice that αkℓ = 1
detAAℓk, where Alk is the relative cofactor. The reader should

not confuse the matrix A, the constants Ak introduced in Section 3.5.6 and the cofactors

Alk.

By Hadamard’s inequality and (3.13), we have

|Aℓk| ≤
[
(p− 1)

√
d− 2 log p

2

2d

]d−2

.

Then we have

|αkℓ| <
[
(p− 1)

√
d− 2 log p

2

2d

]d−2

· 1

0.32m

< (p
√
p log p)

p−1
2

−2 /m

= p
3p−15

4 (log p)
p−5
2 /m.
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Hence, we obtain

δ < p
3p−3

4 (log p)
p−5
2 ,

β < 36p
3p−7

4 (log p)
p−3
2 ,

κ < p
3p−11

4 (log p)
p−5
2 /m.

Notice that d ≤ (p− 1)/2 and p ≥ 7, so we get C1(d) ≤ pp+8. Therefore, we have

K1 < p5p+9(log p)p−1, K2 < 4p5p+9(log p)p−1,

and then

B0 < 16p5p+10(log p)p, 1 + logB0 < 8p log p.

3.6.7 Final results

Finally, by (3.11) we get an explicit bound for log |j(P )| as follows

log |j(P )| < 2pC1(d)Ω(
p− 1

2
)2(1 + log

p− 1

2
)(1 + logB0)

< C(d)p6d+5(log p)2,

where C(d) = 30d+5 · d−2d+4.5. Hence we obtain Theorem 3.1.

If we choose d = (p − 1)/2, applying the bound p − 1 ≥ 6p/7 and a few numerical

computations, we get Theorem 3.3.

3.7 The case Λ = 0

In this section, we suppose that Λ = 0. Using the method in Section 2.8, we will obtain

a better bound for log |j(P )| than Theorem 3.1.

First we assume that OrdcV = 0, i.e. OrdcU = 0. Then we have |U(P )| = |γc|.
Since U(P ) and γc are real, we have U(P )2 = γ2c , i.e. U

2(P ) = γ2c .

Recall Ωc and the q-parameter qc mentioned in Section 3.4.2. Let v be an absolute

value of Q(ζp) normalized to extend a standard absolute value on Q. For the modular

function U2, by Lemma 2.17 we get the following lemma.
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Lemma 3.13. There exist an integer function f(·) with respect to qc and λc
1, λ

c
2, λ

c
3 · · · ∈

Q(ζp) such that the following identity holds in Ωc,

log
U2(qc)

γ2c q
2OrdcU

p
c

= 2πf(qc)i+
∞∑

k=1

λc
kq

k/p
c , (3.18)

and

|λc
k|v ≤

{
|k|−1

v if v is finite,

48p2(k + p) if v is infinite.

In particular, for every k ≥ 1 we have

h(λc
k) ≤ log(48p3 + 48kp2) + log k.

Corollary 3.14. With the assumption OrdcU = 0, we have λc
k 6= 0 for some k ≤ p5.

Proof. Since OrdcU = 0 and U is not a constant, there must exist some λc
k 6= 0. Un-

der the assumption OrdcU = 0, we have U(c) = γc, and then f(qc(c)) = 0 by (3.18).

We extend the additive valuation Ordc from the field K(XH) to the field of formal

power series K((q
1/p
c )). Then Ordcq

1/p
c = 1 and Ordc

(
−2πf(qc)i+ log(U2/γ2c )

)
≤

Ordc log(U
2/γ2c ) = Ordc(U

2/γ2c − 1). The latter quantity is bounded by the degree

of U2/γ2c − 1, which is equal to the degree of U2.

The degree of U2 is equal to
∑
c0

|Ordc0 U |, here the sum runs through all the cusps

of XH . Then the result follows from Lemma 3.11.

Now we can get a bound for log |j(P )|.

Proposition 3.15. Under the assumptions Λ = 0 and OrdcU = 0, we have

log |j(P )| ≤ p2 log(48p12 + 48p8) + p log(96p2(p5 + p+ 1)) + log 2.

Proof. Let n be the smallest k such that λc
k 6= 0. Then n ≤ p5. We assume that

|qc(P )| ≤ 10−p, otherwise there is nothing to prove. Since OrdcU = 0 and U2(P ) = γ2c ,

it follows from (3.18) that 2πf(qc(P ))i+
∞∑
k=n

λc
kqc(P )k/p = 0.

Suppose that f(qc(P )) = 0. Then |λc
nqc(P )n/p| = |

∞∑
k=n+1

λc
kqc(P )k/p|. On one side,

we have

|
∞∑

k=n+1

λc
kqc(P )k/p| ≤

∞∑

k=n+1

|λc
k||qc(P )|k/p ≤

∞∑

k=n+1

48p2(k + p)|qc(P )|k/p

≤ 96p2(n+ p+ 1)|qc(P )|(n+1)/p.
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On the other side, using Liouville’s inequality (see [92, Formula (3.13)]), we get

|λc
n| ≥ e−[Q(ζp):Q]h(λc

n) ≥ (48np3 + 48n2p2)−p+1.

Then we obtain

log |qc(P )−1| ≤ p2 log(48p12 + 48p8) + p log(96p2(p5 + p+ 1)).

Finally, the desired result follows from (3.1).

Suppose that f(qc(P )) 6= 0. Then 2π ≤ |
∞∑
k=n

λc
kqc(P )k/p| ≤ 96p2(n + p)|qc(P )|n/p.

Then we get log |qc(P )−1| ≤ p log(96p2(p5 + p)). So we have

log |j(P )| ≤ p log(96p2(p5 + p)) + log 2.

Now we assume that OrdcV 6= 0, i.e. OrdcU 6= 0. By Lemma 3.10, we can choose a

U such that OrdcU < 0. Then we choose a σ such that OrdcU
σ > 0. Put n1 = −OrdcU

and n2 = OrdcU
σ. Since U(P ) and γc are real, we have U(P )2n2Uσ(P )2n1 = γ2n2

c γ2n1
c,σ ,

i.e. U2n2(Uσ)2n1(P ) = γ2n2
c γ2n1

c,σ . Lemma 3.8 guarantees that U2n2(Uσ)2n1 is not a

constant.

Applying the same method as above without difficulties, we can also get a better

bound than Theorem 3.1. We omit the details here.
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Bounding the j-invariant of

integral points on certain

modular curves

4.1 Main Results

Let Γ be a congruence subgroup of level N (N ≥ 2) and XΓ its corresponding modular

curve. Assume that XΓ is defined over a number field K. Let S be a finite set of absolute

values of K, containing all the Archimedean valuations and normalized with respect to

Q.

In this chapter, we will give quantitative version for Theorem 1.4. As an application,

it is also a quantitative version for Theorem 1.3 when Γ has no elliptic elements, as well

as for certain modular curves which have positive genus and less than three cusps. For

example, the classical modular curve X0(p) for a prime p > 13, it has positive genus and

two cusps.

Recall that a non-cuspidal point P ∈ XΓ is called elliptic if for some τ ∈ H repre-

senting P the stabilizer Γz 6= {±1}. Notice that the curve XΓ has finitely many elliptic

points. We assume that the set of its elliptic points is {P1, P2, · · · , Pn}. For each elliptic

point Pi, we fix a pre-image zi in H. We denote by Γzi the stabilizer of zi in Γ. It is

well-known that each Γzi is cyclic of order 3, 4, or 6.

Let Γ̃ be the congruence subgroup generated by Γ(N) and {Γz1 , · · · ,Γzn}. Consider
the natural finite covering φ : X

Γ̃
→ XΓ. For any point P̃ ∈ X

Γ̃
, fix a pre-image z ∈ H,
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the ramification index of P̃ over XΓ is equal to the index [±Γz : ±Γ̃z] which does not

depend on the choice of z. Therefore, φ is unramified outside the cusps.

Assume that Γ has a congruence subgroup Γ′ such that XΓ′ has at least three cusps

and the finite covering XΓ′ → XΓ is unramified outside the cusps. Then we must have

Γ̃ ⊆ Γ′, subsequently X
Γ̃
also has at least three cusps. Under this assumption, by the

results in Chapter 2 we can get effective Siegel’s theorem for X
Γ̃
. Then the effective

Siegel’s theorem for XΓ follows from quantitative Riemann existence theorem [30] and

quantitative Chevalley-Weil theorem [31].

First we fix some notation. Put

dN =





1
2N

3
∏

ℓ|N (1− 1/ℓ2) if N > 2,

6 if N = 2,

where ℓ runs through all primes dividing N . Let d = [K : Q], s = |S|, and

D∗ = DdN
K e(h(S)+(1+log 1728)Λ)ddN ,

where DK is the absolute discriminant of K,

Λ =

(
(
dN (N − 6)

12N
+ 2)dN

)25(
dN (N−6)

12N
+2)dN

,

and

h(S) =
1

d

∑

v∈S
v∤∞

logNK/Q(v).

Next we define

∆1 = d−d
√

NNddN |D∗|ϕ(N)
(
log(NNddN |D∗|ϕ(N))

)ϕ(N)ddN



∏

v∈S
v∤∞

logNK/Q(v)




ϕ(N)dN

.

(4.1)

In addition, we denote by p the maximal rational prime below S, with the convention

p = 1 if S consists only of the infinite places. Now we are ready to state the main results.

Theorem 4.1. Assume that Γ has a congruence subgroup Γ′ with ν∞(Γ′) ≥ 3, and Γ′

contains all elliptic elements of Γ. Furthermore, suppose that N is not a power of any

prime. Then for any S-integral point P on XΓ, we have

h(P ) ≤
(
Cdsd2NN2

)2sNdN (log(dNdN ))3sNdNpdNdN∆1,
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where C is an absolute effective constant.

When N is a prime power, we define

M =





2N if N is not a power of 2,

3N if N is a power of 2.

Theorem 4.2. Assume that Γ has a congruence subgroup Γ′ with ν∞(Γ′) ≥ 3, and Γ′

contains all elliptic elements of Γ. Furthermore, suppose that N is a power of some

prime. Then for any S-integral point P on XΓ, we can get an upper bound for h(P ) by

replacing N with M in Theorem 4.1.

Here, we would like to give some examples satisfying the assumptions in Theorems

4.1 and 4.2.

Example 4.3. Assume that Γ has no elliptic elements. Then the principal congruence

subgroup Γ(N) is such a subgroup of Γ when N ≥ 2.

Example 4.4. For a prime p > 13, the classical modular curve X0(p) has positive

genus and two cusps. By [24, Proof of Theorem 10], it has a congruence subgroup Γ′

with ν∞(Γ′) ≥ 3, and Γ′ contains all elliptic elements of Γ0(p).

Example 4.5. Assume that Γz1 , · · · ,Γzn generate a finite subgroup G and |G| <
1
4N

2
∏
ℓ|N

(1 − ℓ−2), where the product being taken over all primes ℓ dividing N . By

[26, Corollary 2.4], X
Γ̃
has at least three cusps. Then Γ̃ is such a subgroup of Γ.

4.2 Quantitative Riemann existence theorem for XΓ̃

The Riemann Existence Theorem asserts that every compact Riemann surface is (ana-

lytically isomorphic to) a complex algebraic curve. Bilu and Strambi [30, Theorem 1.2]

gave a quantitative version of Riemann Existence Theorem, which is a key tool in this

chapter.

Notice that the j-invariant induces naturally two coverings XΓ → P1(C) and X
Γ̃
→

P1(C), respectively. We use the same notation j to denote both of them without confu-

sions. In addition, the j-invariant also defines an isomorphism X(1) ∼= P1(C).

For the covering j : X
Γ̃
→ P1(C), we assume that its degree is ñ and the genus of

the curve X
Γ̃
is g̃. Then there exists a rational function y ∈ K̄(X

Γ̃
) such that K̄(X

Γ̃
) =
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K̄(j, y) and the rational functions j, y ∈ K̄(X
Γ̃
) satisfy the equation f̃(j, y) = 0, where

f̃(X,Y ) ∈ K̄[X,Y ] is an absolutely irreducible polynomial satisfying

degX f̃ = g̃ + 1, degY f̃ = ñ. (4.2)

Consider the natural sequence of coverings X(N) → X
Γ̃
→ P1(C). Applying the

formula in the bottom of [40, Page 101], we know that the degree of the coveringX(N) →
P1(C) is dN . Combining with the genus formula of X(N) (see [40, Figure 3.4]), we have

ñ ≤ dN , g̃ ≤ 1 +
dN (N − 6)

12N
. (4.3)

4.3 Quantitative Chevalley-Weil theorem for φ : XΓ̃ → XΓ

The Chevalley-Weil theorem asserts that for an étale covering of projective varieties over

a number field F , the discriminant of the field of definition of the fiber over an F -rational

point is uniformly bounded. Bilu, Strambi and Surroca [31] got a fully explicit version

of this theorem in dimension one, which is another key tool of this chapter.

For the covering j : XΓ → P1(C), since there are only two elliptic points SL2(Z)i

and SL2(Z)e
2πi/3 of X(1), it is unramified outside the two points j(i) = 1728 and

j(e2πi/3) = 0, and the point at infinity. For the covering φ : X
Γ̃
→ XΓ, it is unramified

outside the cusps. Notice that the poles of j-invariant are exactly the cusps. Then by

[31, Theorem 1.6], for every P ∈ XΓ(K) and P̃ ∈ X
Γ̃
(K̄) such that φ(P̃ ) = P , we have

NK/Q(DK(P̃ )/K) ≤ e[K(P̃ ):Q]·(h(S)+(1+log 1728)Λ̃), (4.4)

where DK(P̃ )/K is the relative discriminant of K(P̃ )/K, and Λ̃ = ((g̃ + 1)ñ)25(g̃+1)ñ.

According to (4.3), we have Λ̃ ≤ Λ. Hence

NK/Q(DK(P̃ )/K) ≤ e[K(P̃ ):Q]·(h(S)+(1+log 1728)Λ). (4.5)

Notice that the degree [K(P̃ ) : K] = [K(P̃ ) : K(P )], which is not greater than the

degree of φ. So we have [K(P̃ ) : K] ≤ dN .
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4.4 Proof of Theorems

Under the assumptions of Theorems 4.1 and 4.2, the curve X
Γ̃
has at least three cusps.

In this section, we fix an S-integral point P on XΓ and a point P̃ on X
Γ̃
such that

φ(P̃ ) = P .

Let K0 = K(P̃ ) and d0 = [K0 : Q]. Let S0 be the set consisting of the extensions

of the places from S to K0, that is,

S0 = {v ∈ MK0 : v|w ∈ S},

where MK0 is the set of all valuations (or places) of K0 extending the standard infinite

and p-adic valuations of Q. Put s0 = |S0|. We define the following quantity

∆0 = d−d0
0

√
Nd0N |D0|ϕ(N)

(
log(Nd0N |D0|ϕ(N))

)d0ϕ(N)



∏

v∈S0
v∤∞

logNK0/Q(v)




ϕ(N)

,

(4.6)

where D0 is the absolute discriminant of K0.

Notice that d0 ≤ ddN and s0 ≤ sdN . Let DK0/K be the relative discriminant of

K0/K. By Formula (4.5), we have

D0 = NK/Q(DK0/K)D
[K0:K]
K

≤ D∗.

Now let w be a non-archimedean place of K, and v1, · · · , vm all its extensions to

K0, their residue degrees over K being f1, · · · , fm respectively. Then f1 + · · · + fm ≤
[K0 : K] ≤ dN , which implies that f1 · · · fm ≤ 2dN . Since NK0/Q(vk) = NK/Q(w)

fk for

1 ≤ k ≤ m, we have

∏

v|w
logNK0/Q(v) ≤ 2dN (logNK/Q(w))

dN .

Hence

∏

v∈S0
v∤∞

logNK0/Q(v) ≤ 2sdN



∏

v∈S
v∤∞

logNK/Q(v)




dN

. (4.7)
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Combining with d0 ≥ d, we have

∆0 ≤ 2sϕ(N)dN∆1.

First we assume that N is not a power of any prime. By Theorem 2.2, we have

h(P̃ ) ≤
(
Cd0s0N

2
)2s0N (log(d0N))3s0Npd0N∆0,

where C is an absolute effective constant. Note that j(P ) = j(P̃ ), we have h(P ) = h(P̃ ).

Then we have

h(P ) ≤
(
Cdsd2NN2

)2sNdN (log(dNdN ))3sNdNpdNdN∆1, (4.8)

the constant C being modified. So we prove Theorem 4.1.

For the case that N is a prime power, applying Theorem 2.3, we can easily prove

Theorem 4.2.
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Chapter 5

Introduction

5.1 Motivation

In 1985, Koblitz [59] and Miller [70] independently proposed elliptic curve cryptography.

At the same time, Lenstra [64] succeeded in using elliptic curves for integer factoriza-

tion. Afterwards, elliptic curves over finite fields and their cryptographic applications

are intensively studied by both mathematicians and computer scientists. Currently, el-

liptic curve cryptography is one of the most popular practical public-key cryptographic

schemes.

In recent years, mainly inspired by the following pioneering works: three-party one-

round key agreement [56], identity-based encryption [33, 75], short signature scheme

[34], easing the cryptographic applications of pairings [91] and efficient computation of

pairings associated to elliptic curves [71], there has been a flurry of activity in the design

and analysis of cryptographic protocols by using pairings on elliptic curves over finite

fields. For example, the Tate pairing and the Weil pairing have been used to construct

many novel cryptographic systems for which no other practical implementation is known.

More in-depth studies of pairing-based cryptography can be found in the expository

articles [52, 74].

The elliptic curves suitable for implementing pairing-based systems should have a

small embedding degree with respect to a large prime-order subgroup, we call them

pairing-friendly elliptic curves. More precisely, a pairing-friendly elliptic curve over a

finite field Fq contains a subgroup of large prime order r such that for some k, r|qk − 1

and r ∤ qi − 1 for 0 < i < k, and the parameters q, r and k should satisfy the following

conditions:
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• r should be large enough so that the Discrete Logarithm Problem (DLP) in an

order-r subgroup of E(Fq) is infeasible.

• k should be sufficiently large so that DLP in F∗
qk

is intractable.

• k should be small enough so that arithmetic in Fqk is feasible.

Here, k is called the embedding degree of E with respect to r, and the ratio log q
log r called

the rho-value of E with respect to r. There is a specific definition for pairing-friendly

elliptic curve in [48, Definition 2.3], that is, it should meet r ≥ √
q and k ≤ log2(r)/8.

Balasubramanian and Koblitz [15] showed that in general the embedding degree k

can be expected to be around r. Thus, the above conditions make pairing-friendly curves

rare, and they can not be constructed by random generation. This naturally produces

two important problems:

• Finding efficient constructions of pairing-friendly curves.

• Analyzing these constructions, including the frequency of curves constructed, effi-

ciency, security level, etc.

The earliest constructions of pairing-friendly curves involved supersingular curves.

However, on the one hand due to MOV attack [69], Frey-Rück reduction [49] and most

recently [54], supersingular curves are widely believed to have some cryptographic weak-

nesses; on the other hand, for supersingular curves the embedding degree k has only 5

choices, i.e. k ∈ {1, 2, 3, 4, 6}. Thus, it seems quite important to construct ordinary

curves with the above properties.

After consecutive efforts of many researchers, many methods for constructing or-

dinary curves are found. An exhaustive survey can be found in [48], furthermore the

authors gave a coherent framework of all existing constructions. Unfortunately, none

of these constructions has been rigorously analyzed. Even heuristic analysis is far from

sufficiency except for the so-called MNT curves [72]. For the heuristic analysis of MNT

curves, see [66, 90]. Most recently, a heuristic asymptotic formula for the number of

isogeny classes of pairing-friendly curves over prime fields was presented in [35], some

heuristic arguments about Barreto-Naehrig family [19] were also given therein.

It is widely accepted that the Cocks-Pinch method [38] is one of the most flexible

algorithms for constructing pairing-friendly curves, such as with many curves possible,

with arbitrary embedding degree, with prime-order subgroups of nearly arbitrary size,

and so on. We will recall it in Chapter 7. The other general algorithm is the Dupont-

Enge-Morain method [42].
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In addition, pairing-friendly fields were introduced by Koblitz and Menezes [60] as

an efficient way to implement cryptographic bilinear pairings. They define a field Fpk

as being pairing-friendly if the prime characteristic p ≡ 1 (mod 12) and the embedding

degree k = 2i3j , i > 0. If j = 0, it only needs p ≡ 1 (mod 4). Definitely pairing-friendly

curves over pairing-friendly fields are attractive.

5.2 Structure of Part II

Firstly, we continue the counting approach of [66, 67, 90] for pairing-friendly curves. We

give a new heuristic upper bound for the number of isogeny classes of ordinary pairing-

friendly curves, which seems to have slight improvement upon the previous bounds.

Secondly, we give two different kinds of heuristics to justify the same asymptotic

formula about the Cocks-Pinch method, which confirms some of its general consensuses,

such as many curves possible and with rho-value around 2. One is based on the prime

ideal theorem, the other is based on the Bateman-Horn conjecture. Finally, we will see

that the formula is compatible with numerical data.

Thirdly, we illustrate the first known heuristics about pairing-friendly curves over

pairing-friendly fields. The heuristics suggest that any efficient construction of pairing-

friendly curves is also an efficient construction of such curves over pairing-friendly fields,

naturally including the Cocks-Pinch method. Especially, the heuristics will be confirmed

by the numerical data from the Cocks-Pinch method.

This part is based on the manuscript [80].

5.3 Preliminary and Notation

Let Φk be the k-th cyclotomic polynomial. The existing constructions of ordinary curves

with small embedding degree typically work in the following two steps.

1. Find an odd prime r, integers k ≥ 2 and t, and a prime power q such that

|t| ≤ 2
√
q, gcd(q, t) = 1, r|q + 1− t, r|Φk(q). (5.1)

2. Construct an elliptic curve E over Fq with |E(Fq)| = q + 1− t.
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Since r|Φk(q), k is the multiplicative order of q modulo r and then k|r − 1. For

satisfying the practical requirements, k should be reasonably small, while the rho-value

should be as small as possible, preferably close to 1.

Unfortunately, the second step above is feasible only if t2 − 4q has a very small

square-free part; that is, if the so-called CM equation

4q = t2 +Du2 (5.2)

with some integers u and D, where D is a small square-free positive integer. In this case,

for example D ≤ 1013 (see [88]), E can be efficiently constructed via the CM method

(see [4, Section 18.1]). Here, D is called the CM discriminant of E.

For the imaginary quadratic field Q(
√
−D), let hD be the class number of Q(

√
−D)

and wD the number of roots of unity in Q(
√
−D). We denote its discriminant by D∗.

Then put e(k,D) = 2 if D∗|k (namely Q(
√
−D) ⊆ Q(ζk)), otherwise put e(k,D) = 1.

Recall that a well-known kind of constructions of pairing-friendly curves with k

and D fixed is called the complete polynomial family, which is due to [18, 36, 72, 76].

Briefly speaking, the idea is to parameterize t, r, q, u as polynomials and then choose

t(x), r(x), q(x), u(x) satisfying Conditions (5.1) and (5.2) for any x. Here we define the

ratio deg q(x)
deg r(x) as the rho-value of the family. See [48, Section 2.1] for more details.

Throughout this part, we use the Landau symbols O and o and the Vinogradov

symbol ≪. We recall that the assertions U = O(V ) and U ≪ V are both equivalent to

the inequality |U | ≤ cV with some constant c, while U = o(V ) means that U/V → 0.

In this part, we also use the asymptotic notation ∼. Let f and g be two real

functions with respect to x, both of them are strictly positive for sufficiently large x.

We say that f is asymptotically equivalent to g if f(x)/g(x) → 1 when x → ∞, denoted

by f(x) ∼ g(x).
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Upper bound for isogeny classes

of ordinary pairing-friendly

elliptic curves

In this chapter, we will obtain a new heuristic upper bound for isogeny classes of ordinary

pairing-friendly elliptic curves, see Theorem 6.1.

For positive real numbers x, y and z, let Qk(x, y, z) be the number of prime powers

q ≤ x for which there exist a prime r ≥ y and an integer t satisfying Conditions (5.1)

and (5.2) with some square-free positive integer D ≤ z. We also denote by Ik(x, y, z)

the number of pairs (q, t) of prime powers q ≤ x and integers t such that Conditions

(5.1) and (5.2) are satisfied with some prime r ≥ y and some square-free positive integer

D ≤ z. That is, Ik(x, y, z) is exactly the number of isogeny classes of the corresponding

ordinary elliptic curves.

The function Qk(x, y, z) was first introduced in [66], The authors provided an upper

bound for it therein and improved it in [67]. In [90], by introducing and bounding the

function Ik(x, y, z) the authors obtained a better bound for Qk(x, y, z), namely,

Qk(x, y, z) ≤ Ik(x, y, z) ≪ ϕ(k)(xy−1 + x1/2)z1/2
log x

log log x
, (6.1)

where ϕ is the Euler’s totient function.

We will see that the new upper bound presented here gives slight improvement upon

the inequality (6.1) in the instance of main practical interest.
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Estimate 6.1. For any integer k ≥ 2 and positive real numbers x, y and z, we heuris-

tically have

Ik(x, y, z) ≪
ϕ(k)xy−1z

log log x
. (6.2)

Proof. First fixing D, we want to bound the number of pairs (q, t) with q ≤ x and

satisfying Condition (5.2). Here we borrow an idea from [35, Section 1]. For a given

positive square-free integer D, we consider the element

α =
t+ u

√
−D

2

of the imaginary quadratic field Q(
√
−D). Since α is a root of X2 − tX + q, α is an

algebraic integer. If we denote by N (·) the absolute norm of Q(
√
−D), then N (α) = q.

We also notice that gcd(t, q) = 1 from Condition (5.1). Thus, the condition that q is

a prime power is equivalent to the condition that α generates a prime ideal power of

Q(
√
−D). Denote by π(x) the number of prime ideals of Q(

√
−D) with norm bounded

by x, the prime ideal theorem gives

π(x) ∼ x/ log x.

Then the number of prime ideal powers of Q(
√
−D) with norm bounded by x is bounded

by
log x∑

n=1

x1/n/ log(x1/n) ≪ x/ log x+ x1/2 log x ≪ x/ log x.

Hence, for fixed D, the number of such pairs (q, t) is O( x
log x).

For a given pair (q, t) with q ≤ x, we need to estimate that probability that there

exists a prime r satisfying Condition (5.1). Let ω(n) denote the number of prime divisors

of an integer n, we know that

ω(n) ≪ log n

log log n
,

see the proof of [66, Theorem 1]. So ω(q+1−t) ≪ log x
log log x . For a prime r, the probability

that r|Φk(q) is at most ϕ(k)/r.

It is well-known that there are (6/π2 + o(1))z positive square-free integers D ≤ z

as z → ∞, for example see [53, Theorem 334].

Therefore, we get

Ik(x, y, z) ≪
x

log x
· log x

log log x
· ϕ(k)

y
· z =

ϕ(k)xy−1z

log log x
.
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Assume that y ≥ x1/2+o(1) and z = xo(1), which is the most interesting case from

the cryptographic point of view. Then (6.2) becomes

Ik(x, y, z) ≪ x1/2+o(1),

which can be compared with the number x3/2+o(1) of all possible isogeny classes (i.e. of

pairs (q, t)) of elliptic curves over finite fields with q ≤ x. Thus, one can not expect to

generate suitable elliptic curves by random selection.

In particular, under the assumption z = xo(1), the bound in (6.2) is slightly better

than that in (6.1). Recall that there is a heuristic lower bound of Ik(x, y, z) under some

assumptions in [90, Section 2.3], that is, for any fixed k and ε > 0, we have

Ik(x, y, z) ≥ c(ε, k)xy−1+εz1/2,

where c(ε, k) depends only on ε and k. Compared with (6.2), this lower bound is tight.

Noticing the trivial inequality Qk(x, y, z) ≤ Ik(x, y, z), we get the following corol-

lary.

Estimate 6.2. For any integer k ≥ 2 and positive real numbers x, y and z, we heuris-

tically have

Qk(x, y, z) ≪
ϕ(k)xy−1z

log log x
. (6.3)

- 68 -



Chapter 7

Heuristics of the Cocks-Pinch

method

7.1 Background on the Cocks-Pinch method

In an unpublished manuscript [38], Cocks and Pinch proposed an algorithm for con-

structing pairing-friendly curves with arbitrary embedding degree. More precisely, see

[48, Theorem 4.1] or [52, Algorithm IX.4], fix an embedding degree k and a CM discrim-

inant D, then execute the following steps:

Step 1. Choose a prime r such that k|r − 1 and −D is square modulo r.

Step 2. Choose an integer g which is a primitive k-th root of unity in (Z/rZ)∗.

Step 3. Put t′ = g + 1 and choose an integer u′ ≡ (t′ − 2)/
√
−D (mod r).

Step 4. Let t ∈ Z be congruent to t′ modulo r, and let u ∈ Z be congruent to u′ modulo

r. Put q = (t2 +Du2)/4.

Step 5. If q is an integer and prime, then there exists an elliptic curve E over Fq with

an order-r subgroup and embedding degree k. If D is not to large, then E can

be efficiently constructed via the CM method.

Notice that for any pairing triple (r, t, q), it satisfies the Cocks-Pinch method. In

other words, when executing the method, it can generate (r, t, q). This can explain why

the Cocks-Pinch method is highly important.

Given a real number ρ > 0, let Fk,D,ρ(x) be the number of triples (r, t, q) constructed

by the Cocks-Pinch method with fixed k and D such that q is an odd prime, r ≤ x and
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q ≤ rρ. The previous paragraph implies that there is a natural one to one correspondence

between the triples (r, t, q) here and the triples in [35, Estimate 1]. The reason we use

the parameter q in the triples here is that we want to underline its importance.

In the sequel, first we will extend [35, Estimate 1] to all ρ > 1 for Fk,D,ρ(x), for the

sake of completeness. Then we will give another approach to this heuristic formula by

applying the Bateman-Horn conjecture. In Chapter 9, we will see that this formula is

compatible with numerical data.

7.2 Heuristics from algebraic number theory

As the above discussions, Boxall [35, Estimate 1] actually got a heuristic asymptotic

formula for Fk,D,ρ(x) when 1 < ρ < 2. In this section, we will extend this formula to all

ρ > 1 by applying the same techniques.

First, we need the following lemma, which can be gathered from [93, Chapter 2].

Lemma 7.1. Let k ≥ 1 be an integer and r ∤ k a prime. Then the following statements

are equivalent.

1. Φk(X) has a root modulo r.

2. Φk(X) can be factored into distinct linear factors modulo r.

3. r splits completely over the cyclotomic field Q(ζk).

4. k|r − 1.

Estimate 7.2. Given an integer k ≥ 3, a positive square-free integer D and a real ρ > 1.

Suppose that

1. (k,D) 6= (3, 3), (4, 1) and (6, 3);

2. If there exists a complete family (t(x), r(x), q(x)) of pairing-friendly curves with

rho-value 1, embedding degree k and CM discriminant D, then ρ > 1 + 1
deg r(x) .

Then we have the following heuristic asymptotic formula

Fk,D,ρ(x) ∼
e(k,D)wD

2ρhD

∫ x

5

dz

z2−ρ(log z)2
. (7.1)
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Proof. We investigate the first four steps of the Cocks-Pinch method one by one.

Let r ≥ 2 be any integer. The probability that r is prime is 1/ log r, here we use

the regular heuristic that the probability of a random integer n to be prime is 1/ log n.

Since k has finitely many prime factors, for an arbitrary prime r, the probability that

r ∤ k is 1. Notice that there are ϕ(k) residue classes modulo k which consist of integers

prime to k, the probability that r is prime and k|r − 1 is 1
ϕ(k) log r .

Since k|r − 1, r is completely splitting over Q(ζk) by Lemma 7.1. Therefore, if

Q(
√
−D) ⊆ Q(ζk), i.e. the discriminant of Q(

√
−D) divides k, then r is completely

splitting over Q(
√
−D), thus −D is square modulo r. Otherwise, if Q(

√
−D) 6⊆ Q(ζk),

the probability that −D is square modulo r is 1/2. So the probability that −D is square

modulo r is e(k,D)/2.

When r is fixed, the number of choices of g is ϕ(k). After fixing g, t′ is fixed and

u′ has two choices.

Thus, for an arbitrary integer r ≥ 2, the probability that r satisfies Steps 1, 2 and

3 is e(k,D)/ log r. Moreover, since k|r − 1 and k ≥ 3, we have r ≥ k + 1 ≥ 4. So r ≥ 5.

In the sequel, we investigate Step 4.

We consider the element

α =
t+ u

√
−D

2

of Q(
√
−D). We have known that α is an algebraic integer, N (α) = q and N (α− 1) =

q+1− t. So the condition that q is prime is equivalent to the condition that α generates

a principal prime ideal of Q(
√
−D) whose underlying prime number is not inert in

Q(
√
−D). By the prime ideal theorem for ideal classes, the number of principal prime

ideals of Q(
√
−D) with norm bounded by x is asymptotically equivalent to x

hD log x as

x → ∞. Notice that the number of prime ideals of Q(
√
−D) with norm bounded by x

and underlying prime number inert is O(
√
x

log
√
x
) as x → ∞. So the number of principal

prime ideals ofQ(
√
−D) with norm bounded by x and underlying prime number not inert

is asymptotically equivalent to x
hD log x as x → ∞. In the ring of integers of Q(

√
−D),

the units are exactly the roots of unity in Q(
√
−D). For any such root of unity β 6= 1,

αβ and α generate the same ideal but αβ 6= α. Note that ±u correspond to the same

triple (r, t, q). Here we also notice that if t′ and u′ are fixed, then the residue classes

modulo r which t and u belong to are fixed. Thus, the expected number of pairs (t, q)

associated to a triple (r, t′, u′) with q ≤ rρ is asymptotically equivalent to wDrρ

2ρhDr2 log r
as

r → ∞.
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Therefore, we have

Fk,D,ρ(x) ∼
∑

k+1≤r≤x

e(k,D)

log r
· wDr

ρ

2ρhDr2 log r
(7.2)

∼ e(k,D)wD

2ρhD

∫ x

k+1

dz

z2−ρ(log z)2
.

Notice that the above integral tends to infinity as x → ∞. For uniformity, we can take

Fk,D,ρ(x) ∼
e(k,D)wD

2ρhD

∫ x

5

dz

z2−ρ(log z)2
.

As explained in [35], without the two assumptions in Estimate 7.2, the asymptotic

formula may not hold any more. In particular, if there exists a complete polynomial

family with rho-value 1, embedding degree k and CM discriminant D, then this family

can generate more triples than predicted by (7.1). For example, the Barreto-Naehrig

family is currently the only known complete polynomial family with rho-value 1, for this

family k = 12, D = 3 and deg r(x) = 4, see Table 9.7 for numerical data.

Now we want to say more about the parameters in (7.1). It is well-known that wD

is given by the following formula:

wD =





4 if D = 1,

6 if D = 3,

2 if D = 2 or D > 3.

Furthermore, by the well-known Dirichlet’s class number formula of imaginary quadratic

fields (for example see [45, Exercise 10.5.12]), we know

hD =

{ √
DwDLD/π if D ≡ 1, 2 (mod 4),√
DwDLD/(2π) if D ≡ 3 (mod 4),

(7.3)

where LD =
∞∑
n=1

(
D∗

n

)
/n =

∏
prime p

(
1−

(
D∗

p

)
/p
)−1

, D∗ is the discriminant of Q(
√
−D)

and ( ··) is the Kronecker symbol.

Based on the following lemma, we can get another version of the above proposition,

that is,

Fk,D,ρ(x) ∼
e(k,D)wD

2ρ(ρ− 1)hD

xρ−1

(log x)2
, (7.4)

see also [35, Formula (0.1)]. We are sure that the lemma is well-known. It is more

convenient to give a simple proof rather than find some references. We will use it later.
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Lemma 7.3. For any real numbers a,m, s with a > 1 and s < 1, we have

∫ x

a

dz

zs(log z)m
∼ x1−s

(1− s)(log x)m
.

Proof. Integrating by parts, we obtain

∫ x

a

dz

zs(log z)m
=

z1−s

(1− s)(log z)m

∣∣∣
x

a
+

m

1− s

∫ x

a

dz

zs(log z)m+1
,

and ∫ x

a

dz

zs(log z)m+1
=

z1−s

(1− s)(log z)m+1

∣∣∣
x

a
+

m+ 1

1− s

∫ x

a

dz

zs(log z)m+2
.

We choose a positive real number A such that A > a and logA > m+1
1−s . Notice that for

x > A, we have

∫ x

a

dz

zs(log z)m+2
≤
∫ A

a

dz

zs(log z)m+2
+

1

logA

∫ x

A

dz

zs(log z)m+1
.

Then we get ∫ x

a

dz

zs(log z)m+1
≪ x1−s

(1− s)(log x)m+1
.

Finally, we have ∫ x

a

dz

zs(log z)m
∼ x1−s

(1− s)(log x)m
.

It is widely accepted that the rho-value of curves produced by the Cocks-Pinch

method tends to be around 2. From (7.4) we can easily see that when ρ is close to 1,

the curves with relevant rho-value are rare among the whole family constructed by the

Cocks-Pinch method.

As explained in [35], when 1 < ρ < 2, Estimate 7.2 also predicts a heuristic asymp-

totic estimate for the number of isogeny classes of elliptic curves with given k ≥ 3 and

D defined over primes fields Fq and possessing a subgroup of prime order r ≤ x such

that q ≤ rρ. In addition, for this number, by applying the same arguments as the first

two paragraphs of the proof of Estimate 6.1, we can get the following upper bound

cϕ(k)xρ−1

log log x
,

where c is an absolute constant. By (7.4), it is easy to see that these two results are

compatible.
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7.3 Heuristics from the Bateman-Horn conjecture

The Bateman-Horn conjecture has been used to analyze some constructions of pairing-

friendly elliptic curves, see [35, 90]. In this section, applying the Bateman-Horn con-

jecture we will give another approach to justify the heuristic asymptotic formula of

Fk,D,ρ(x) in Estimate 7.2.

The Bateman-Horn conjecture provides a conjectured density for the positive inte-

gers at which a given system of polynomials all have prime values, see [20]. We recall it

here for the conveniences of readers.

Given any finite set F = {f1, f2, · · · , fm} consisting of irreducible polynomials

f1(T ), · · · , fm(T ) ∈ Z[T ] with positive leading coefficients and such that there is no

prime p with p|f1(n) · · · fm(n) for every integer n ≥ 1, the Bateman-Horn conjecture

says

|{1 ≤ n ≤ X : f1(n), · · · , fm(n) are all prime}| ∼ C(F)

deg f1 · · · deg fm

∫ X

2

dz

(log z)m
, (7.5)

where C(F) is given by the conditionally convergent infinite product

C(F) =
∏

p prime

1− ωp(F)/p

(1− 1/p)m
,

and

ωp(F) = |{1 ≤ n ≤ p : f1(n) · · · fm(n) ≡ 0 (mod p)}|.

Based on Lemma 7.3, we can get another version of the Bateman-Horn conjecture,

that is,

|{1 ≤ n ≤ X : f1(n), · · · , fm(n) are all prime}| ∼ C(F)

deg f1 · · · deg fm
X

(logX)m
, (7.6)

which we will use in the sequel.

Notice that the ring of integer of Q(
√
−D) is Z⊕Z1+

√
−D

2 if D ≡ 3 (mod 4), and it

is Z⊕ Z
√
−D if D ≡ 1 or 2 (mod 4). Since α = t+u

√
−D

2 should be an algebraic integer

of Q(
√
−D), t and u must have the same parity if D ≡ 3 (mod 4), and otherwise both

of them must be even.

Estimate 7.4. For any integer k ≥ 3, and positive square-free integer D ≡ 1, 2 (mod

4), under the same assumptions as Estimate 7.2, we heuristically have

Fk,D,ρ(x) ∼
e(k,D)wD

2ρhD

∫ x

5

dz

z2−ρ(log z)2
. (7.7)
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Proof. As the proof of Estimate 7.2, for an arbitrary integer r ≥ 2, the probability that

r satisfies Steps 1, 2 and 3 is e(k,D)/ log r. Moreover, it also needs that r ≥ 5. In the

sequel, we investigate Step 4.

SinceD ≡ 1, 2 (mod 4), t and umust be even. So it is equivalent to count the number

of integer pairs (t, u) such that q = t2+Du2 is prime with q ≤ rρ. Then for the integers

t and u, we have |t| ≤
√
rρ and |u| ≤

√
rρ/D. Notice that the ratio between the area

of the ellipse t2 +Du2 = rρ and that of the rectangle {(t, u) : |t| ≤
√
rρ, |u| ≤

√
rρ/D}

is π/4. Now we first count the number of (t, q) with q = t2 +Du2 prime, t ≤
√
rρ and

u ≤
√

rρ/D, and then to get the final result we need to multiply this amount by π/4 .

For every positive integer u ≤
√

rρ/D, let fu(T ) = T 2+Du2 ∈ Z[T ]. For F = {fu},
it satisfies the required conditions. By the Bateman-Horn conjecture, we have

|{1 ≤ t ≤
√
rρ : fu(t) is prime}| ∼ C(fu)

√
rρ

ρ log r
,

where

C(fu) =
∏

p prime

1− ωp(fu)/p

1− 1/p
,

and

ωp(fu) = |{1 ≤ n ≤ p : n2 ≡ −Du2 (mod p)}|.

It is easy to see that

ωp(fu) =





1 if p = 2 or p|u,(
−D
p

)
+ 1 if p ≥ 3 and p ∤ u.

Put

g(u) =
∏

p ≥ 3, p|u

p− 1

p− 1−
(
−D
p

) .

We also set g(2n) = 1 for any integer n ≥ 0, this makes g(u) a multiplicative function.

Notice that

C(f1) = C(f2) =
∏

prime p ≥ 3

p− 1−
(
−D
p

)

p− 1
.

Obviously, C(fu) = C(f1) · g(u). Then we have

∑

1≤u≤
√

rρ/D

C(fu)
√
rρ

ρ log r
=

C(f1)
√
rρ

ρ log r

∑

1≤u≤
√

rρ/D

g(u).
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Here we need an asymptotic formula for

S(X) =
∑

1≤u≤X

g(u).

Notice that g(u) is a multiplicative function and 1 − 1/p ≤ g(p) ≤ 1 + 3
p for any prime

p. Recall the Mertens’ second theorem

∑

prime p ≤ X

1

p
= log logX +B1 + o(1),

where B1 is an absolute constant, see [53, Theorem 427]. Then we get

∑

prime p ≤ X

g(p) =
X

logX
+O(log logX).

Then by [47, Proposition 4] which concerns the sum of multiplicative functions, we have

S(X) = (Cg + o(1))X,

where Cg =
∏

prime p
(1 + g(p)

p + g(p2)
p2

+ · · · )(1− 1
p).

Notice that g(pn) = g(p) for any prime p and any n ≥ 1. Then we have

Cg =
∏

prime p ≥ 3

p− 1

p


1 +

1

p− 1−
(
−D
p

)


 ,

and thus

C(f1)Cg =
∏

prime p ≥ 3

(
1−

(−D

p

)
/p

)
= L−1

D ,

where LD has been defined in (7.3). Hence

∑

1≤u≤
√

rρ/D

C(fu)
√
rρ

ρ log r
= (L−1

D + o(1))
rρ√

Dρ log r

∼ rρ

ρLD

√
D log r

=
wDr

ρ

πρhD log r
.

Note that t can be taken negative integer. We also note that if t′ and u′ are fixed,

then the residue classes modulo r which t and u belong to are also fixed. So the expected

number of pairs (t, q) associated to a triple (r, t′, u′) with q ≤ rρ is asymptotically

equivalent to
π

4
· wDr

ρ

πρhD log r
· 2 · 1

r2
=

wD

2ρhDr2−ρ log r
,
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as r → ∞.

Therefore, we have

Fk,D,ρ(x) ∼
∑

5≤r≤x

e(k,D)

log r
· wD

2ρhDr2−ρ log r

∼ e(k,D)wD

2ρhD

∫ x

5

dz

z2−ρ(log z)2
.

For the Cocks-Pinch method, it is lucky that we can apply two different kinds of

heuristics. But in general, the Bateman-Horn conjecture is indispensable when inves-

tigating the constructions of pairing-friendly curves. Estimate 7.4 tells us that such

investigations based on the Bateman-Horn conjecture are likely to be reasonable.
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Involving Pairing-friendly Fields

In this chapter, we want to heuristically count the number of triples (r, t, q) such that

q ≡ 1 (mod 4 or 12) constructed by the Cocks-Pinch method.

Similar as before, let Gk,D,ρ(x) be the number of triples (r, t, q) constructed by the

Cocks-Pinch method with fixed k and D such that q is an odd prime, q ≡ 1 (mod 4),

r ≤ x and q ≤ rρ. If furthermore requiring q ≡ 1 (mod 12), let Hk,D,ρ(x) be the number

of such triples (r, t, q).

From the CM equation: q = t2+Du2

4 , it is easy to see that q ≡ 1 (mod 12) if and

only if q ≡ 1 (mod 4) and t2 +Du2 ≡ 1 (mod 3).

First, we study the probability that t2 +Du2 ≡ 1 (mod 3).

Proposition 8.1. If 3|D, then we always have t2 +Du2 ≡ 1 (mod 3).

Proof. Since 3|D, t2 +Du2 ≡ t2 ≡ 1 (mod 3) holds only if 3 ∤ t. Assume that 3|t. Then
we have 3|q, thus q = 3. Then t = 0, D = 3 and u = ±2. Since r|q + 1 ± t and r ≥ 5,

there is no possible r. So we must have 3 ∤ t, and thus we always have t2 + Du2 ≡ 1

(mod 3).

Corollary 8.2. If 3|D, then we always have Gk,D,ρ(x) = Hk,D,ρ(x).

Proposition 8.3. No matter D ≡ 1 or 2 (mod 3), the formula t2 +Du2 ≡ 1 (mod 3)

is true with the probability of 1/2, under some assumptions.

Proof. Suppose that D ≡ 1 (mod 3). Then t2 + Du2 ≡ t2 + u2 ≡ 1 (mod 3) holds

only if 3 exactly divides one of t and u. For pairs (t, u), they can be divided into nine

classes according to the residue classes modulo 3 which t and u belong to. Notice that
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3 does not divide t and u at the same time. So there are only eight classes which can

appear. Assume that all the eight classes have the same probability. Thus the desired

probability is 1/2.

Suppose that D ≡ 2 (mod 3). Then t2 +Du2 ≡ t2 + 2u2 ≡ 1 (mod 3) holds only if

3 ∤ t and 3|u. Assume that 3 ∤ t and 3 ∤ u. Then 3|t2 +Du2. Since q is a prime, q = 3,

which contradicts q ≡ 1 (mod 4). Thus it is impossible. So 3 must exactly divide one

of t and u, which is naturally divided into two cases. Suppose that these two cases have

the same probability. Then the desired probability is 1/2.

Proposition 8.4. Assume that k ≥ 3 and D ≡ 1 (mod 4). Then the followings hold.

(1) Gk,D,ρ(x) = Fk,D,ρ(x).

(2) If furthermore D ≡ 0 (mod 3), we have Hk,D,ρ(x) = Fk,D,ρ(x).

Proof. (1) Since D ≡ 1 (mod 4), for a constructed prime q = t2+Du2

4 , t and u must be

even. Notice that since D and q are odd, t
2 and u

2 must have different parities. Thus it

is always true that q ≡ 1 (mod 4). So we prove (1).

(2) Since q ≡ 1 (mod 4), we know that q ≡ 1 (mod 12) if and only if t2 +Du2 ≡ 1

(mod 3). Then (2) follows from Proposition 8.1.

Estimate 8.5. Assume that k ≥ 3, D ≡ 1 (mod 4) and D ≡ 1, 2 (mod 3). we heuristi-

cally have Hk,D,ρ(x) ∼ 1
2Fk,D,ρ(x).

Proof. Since D ≡ 1 (mod 4), we have q ≡ 1 (mod 4). So, q ≡ 1 (mod 12) if and only if

t2 +Du2 ≡ 1 (mod 3). Then the desired result follows from Proposition 8.3.

For the case D ≡ 2, 3 (mod 4), the heuristics are also straightforward.

Estimate 8.6. Assume that k ≥ 3 and D ≡ 2, 3 (mod 4). Then the followings hold

heuristically.

(1) Gk,D,ρ(x) ∼ 1
2Fk,D,ρ(x).

(2) If furthermore D ≡ 0 (mod 3), we have Hk,D,ρ(x) ∼ 1
2Fk,D,ρ(x).

(3) If furthermore D ≡ 1, 2 (mod 3), we have Hk,D,ρ(x) ∼ 1
4Fk,D,ρ(x).

Proof. We divide the proof into three parts according to three cases.

(I) Assume that D ≡ 2 (mod 4).
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(1) Since D ≡ 2 (mod 4), for a constructed prime q = t2+Du2

4 , t and u must be

even. Notice that since D is even and q is odd, t
2 must be odd. Then ( t2)

2 +D(u2 )
2 ≡ 1

(mod 4) holds only if u
2 is even. Suppose that the even parity and odd parity of u

2 have

the same probability. Then the probability that q ≡ 1 (mod 4) is 1/2, which proves (1).

(2) and (3) By Propositions 8.1 and 8.3, under the same assumptions, the probability

that t2 + Du2 ≡ 1 (mod 3) is 1, 1/2 or 1/2 corresponding to D ≡ 0, 1 or 2 (mod 3),

respectively. Suppose that the two events q ≡ 1 (mod 4) and t2 +Du2 ≡ 1 (mod 3) are

independent. Then we can get the desired results.

(II) Assume that D ≡ 7, 15 (mod 16).

(1) Since D ≡ 3 (mod 4), for a constructed prime q = t2+Du2

4 , t and u must have

the same parity. Furthermore, since D ≡ 7, 15 (mod 16), we claim that t and u must be

even.

Suppose that t and u are odd. Consider the CM equation 4q = t2+Du2. Since q is

odd, 4q is equal to 4 or 12 modulo 16. But t2 +Du2 is equal to 0 or 8 modulo 16 under

the condition D ≡ 7, 15 (mod 16). This leads to a contradiction.

Since D and q are odd, t
2 and u

2 must have different parities, which is naturally

divided into two cases. Suppose that these two cases have the same probability. Then

the probability that ( t2)
2 +D(u2 )

2 ≡ 1 (mod 4) is 1/2, which proves (1).

(2) and (3) Apply the same arguments as (I).

(III) Assume that D ≡ 3, 11 (mod 16).

(1) Since D ≡ 3 (mod 4), for a constructed prime q = t2+Du2

4 , t and u must have

the same parity. Furthermore, the two parities may occur due to D ≡ 3, 11 (mod 16).

First suppose that both of t and u are even. The deduction and the result of this

case are the same as (II).

Now suppose that both of t and u are odd. Notice that when n is an odd integer,

then n2 ≡ 1, 9 (mod 16). In this case, pairs (t2, u2) can be divided into four classes

according to the residue classes modulo 16 which t2 and u2 belong to. Suppose that

all the four classes have the same probability. Then, when D ≡ 3, 11 (mod 16), the

probability that t2 +Du2 ≡ 4 (mod 16) is 1/2.

Notice that we obtain the same result for the two parities, then the probability that

q ≡ 1 (mod 4) is 1/2. So we prove (1).

(2) and (3) Apply the same arguments as (I).
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From the above results, the heuristics suggest that pairing-friendly curves over

pairing-friendly fields can be efficiently constructed by the Cocks-Pinch method. Notice

that there are 18 cases in the above proofs according to D modulo 4 or 16 and D modulo

3. In the next chapter, we will see that the heuristic results of this section are compatible

with numerical data.

Remark 8.7. Notice that the above heuristics are independent of the Cocks-Pinch

method, they can be applied to any other constructions. So we can say that any efficient

construction of pairing-friendly curves is also an efficient construction of pairing-friendly

curves over pairing-friendly fields.
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For testing Estimate 7.2 and the heuristic results in Chapter 8, we write a programme in

PARI/GP [89] to executive the Cocks-Pinch method for searching all the triples (r, t, q)

with k,D and ρ being given, and r in some interval [a, b].

For given k,D, ρ, a and b, we denote by N1(k,D, ρ, a, b) the number of triples

(r, t, q) as in Estimate 7.2 with a ≤ r ≤ b. If furthermore requiring q ≡ 1 (mod 4)

(resp. q ≡ 1 (mod 12)), we denote the number of such triples by N2(k,D, ρ, a, b) (resp.

N3(k,D, ρ, a, b)). The outputs of the programme are these three quantities.

For N1(k,D, ρ, a, b), under some assumptions, there exists a heuristic formula from

Estimate 7.2, stated as follows

I(k,D, ρ, a, b) =
e(k,D)wD

2ρhD

∫ b

a

dz

z2−ρ(log z)2
. (9.1)

Let I0 = e(k,D)−1I(k,D, ρ, a, b). Then I0 depends only on D and ρ but not on k.

In Chapter 8, we present some definite or heuristic results about the relations among

Ni(k,D, ρ, a, b), i = 1, 2, 3. We list them as follows,

{
N2(k,D, ρ, a, b) = N1(k,D, ρ, a, b) if D ≡ 1 (mod 4),

N2(k,D, ρ, a, b) ≈ 1
2N1(k,D, ρ, a, b) if D ≡ 2, 3 (mod 4);

(9.2)





N3(k,D, ρ, a, b) = N1(k,D, ρ, a, b) if D ≡ 1 (mod 4) and D ≡ 0 (mod 3),

N3(k,D, ρ, a, b) ≈ 1
2N1(k,D, ρ, a, b) if D ≡ 1 (mod 4) and D ≡ 1, 2 (mod 3),

N3(k,D, ρ, a, b) ≈ 1
2N1(k,D, ρ, a, b) if D ≡ 2, 3 (mod 4) and D ≡ 0 (mod 3),

N3(k,D, ρ, a, b) ≈ 1
4N1(k,D, ρ, a, b) if D ≡ 2, 3 (mod 4) and D ≡ 1, 2 (mod 3);

(9.3)

N2(k,D, ρ, a, b) = N3(k,D, ρ, a, b), if D ≡ 0 (mod 3). (9.4)

- 82 -



Chapter 9. Numerical Evidence

In this chapter, we will test all these results by numerical data.

In fact, [35, Table 1 and Table 2] gave the values of N1(k,D, 1.7, 106, 85 698 768)

and N1(k,D, 1.5, 106, 2× 108) respectively, for 3 ≤ k ≤ 30 and all square-free integer D

with D ≤ 15. These two tables are compatible with (9.1). In the sequel, we will choose

more narrow interval [a, b] and even choose a = 5 for testing.

Here, for each entry in the following tables, if its actual value is not an integer, then

it is rounded to the nearest whole number.

Table 9.1 gives the values of N1(k,D, 1.8, 5, 5 × 105) for all k with 3 ≤ k ≤ 18

and various square-free D. Notice that in Chapter 8 there are 18 cases according to D

modulo 4 (or 16) and D modulo 3. The choices of D here exactly cover all these cases.

The second line gives the value of I0. The main part of the table contains the values of

N1(k,D, 1.8, 5, 5 × 105), the entries corresponding to values of (k,D) with e(k,D) = 2

are highlighted in bold; (9.1) predicts that they should be close to 2I0 and thus roughly

twice as large as the other entries in the same column. The entries corresponding to

values of (k,D) = (3, 3), (4, 1) and (6, 3) are left blank. The last line gives the average

value of each column as k varies from 3 to 18, the cases where e(k,D) = 2 being counted

with weight 1
2 and the excluded values (k,D) = (3, 3), (4, 1) and (6, 3) omitted. (9.1)

predicts that each of these averages should be close to I0.

Table 9.2 gives the values of N2(k,D, 1.8, 5, 5 × 105) for the same values of (k,D)

as Table 9.1. When D ≡ 1 (mod 4), (9.2) tells us that N2(k,D, 1.8, 5, 5 × 105) =

N1(k,D, 1.8, 5, 5×105) for each value of (k,D). Otherwise, when D ≡ 2, 3 (mod 4), (9.2)

predicts that N2(k,D, 1.8, 5, 5× 105) should be close to half of N1(k,D, 1.8, 5, 5× 105).

Table 9.3 gives the values of N3(k,D, 1.8, 5, 5 × 105) for the same values of (k,D)

as Table 9.1. (9.3) presents some definite or heuristic results about the relation between

N3(k,D, 1.8, 5, 5× 105) and N1(k,D, 1.8, 5, 5× 105). For example, when D ≡ 1 (mod 4)

and D ≡ 0 (mod 3), we have N3(k,D, 1.8, 5, 5× 105) = N1(k,D, 1.8, 5, 5× 105). If 3|D,

(9.4) says that N2(k,D, 1.8, 5, 5× 105) = N3(k,D, 1.8, 5, 5× 105).

The explanations of Tables 9.4, 9.5 and 9.6 are the same as Tables 9.1, 9.2 and

9.3, respectively. Here, we choose another choices of D to exactly cover the 18 cases in

Chapter 8.

Although Tables 9.1–9.6 show that (9.2)–(9.4) are supported by numerical data,

there is some discrepancy between the expected values and the calculated values. For

Tables 9.1 and 9.4, this is expected. Because for the Bateman-Horn conjecture, there

seems to be no good conjecture for the remainder, for example see [61] for a discussion

of the case of prime pairs. Thus, it may be also a hard problem to find one in the
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Table 9.1: Values of N1(k,D, 1.8, 5, 5× 105) for various k and D

D 1 2 3 5 6 7 10 11 15 19 21 23 31 35 39 43 47 123

I0 377 189 566 94 94 189 94 189 94 189 47 63 63 94 47 189 38 94

k = 3 403 184 101 89 174 85 196 88 222 44 75 62 105 43 198 42 94

4 174 583 112 107 221 97 211 87 196 58 49 68 101 49 203 32 126

5 429 217 570 105 96 218 101 184 92 213 48 60 63 100 53 212 37 103

6 388 193 95 105 199 109 180 88 182 52 57 62 107 60 206 44 116

7 420 193 627 96 92 374 94 195 104 202 42 75 74 88 44 218 34 109

8 802 365 592 130 85 172 88 200 103 200 57 71 54 89 51 176 44 111

9 371 182 1190 93 117 188 105 215 92 194 53 74 64 100 40 183 38 99

10 409 189 592 107 95 206 92 197 109 199 46 65 55 83 33 231 32 94

11 371 179 589 95 91 178 105 395 86 186 53 60 59 98 43 182 41 94

12 846 182 1230 85 87 206 101 181 85 189 50 57 69 91 49 197 28 96

13 380 197 622 99 79 180 102 200 89 206 47 60 61 93 40 172 35 106

14 413 190 582 78 83 423 99 197 89 202 55 68 57 94 49 217 29 97

15 405 184 1167 93 109 187 89 185 173 208 44 54 74 100 50 178 51 106

16 800 386 609 101 95 175 84 201 84 201 48 55 74 81 43 201 52 96

17 358 202 579 98 103 193 103 202 100 227 49 72 69 88 40 208 52 114

18 397 201 1203 87 91 195 100 209 90 195 54 55 79 106 51 190 43 91

Avg 398 190 596 98 95 193 97 197 97 201 50 63 65 95 46 198 40 103

Table 9.2: Values of N2(k,D, 1.8, 5, 5× 105) for various k and D

D 1 2 3 5 6 7 10 11 15 19 21 23 31 35 39 43 47 123

k = 3 403 84 101 52 84 34 101 48 109 44 38 28 46 25 93 18 41

4 83 305 112 50 96 38 111 43 99 58 22 27 51 26 105 15 59

5 429 118 290 105 42 107 55 95 43 97 48 31 33 48 22 86 19 57

6 388 104 95 62 103 48 89 45 97 52 28 35 50 26 94 20 64

7 420 95 304 96 49 203 40 94 49 96 42 34 29 47 23 97 12 56

8 802 186 297 130 42 87 40 84 57 101 57 33 27 52 30 83 17 57

9 371 86 603 93 60 90 47 109 54 109 53 38 32 41 23 100 15 59

10 409 105 289 107 45 103 45 103 49 96 46 34 24 48 19 120 20 50

11 371 99 260 95 44 89 47 184 43 102 53 31 31 53 21 92 24 41

12 846 91 623 85 36 81 56 90 39 109 50 30 37 48 24 96 14 53

13 380 100 312 99 32 96 49 110 56 102 47 30 23 46 17 80 11 54

14 413 92 271 78 47 215 52 104 49 110 55 38 35 42 26 118 13 41

15 405 93 574 93 61 103 41 93 86 112 44 30 32 49 16 93 22 48

16 800 195 314 101 43 89 38 111 44 102 48 25 38 46 25 109 26 46

17 358 96 296 98 55 93 50 94 49 113 49 33 34 40 26 112 28 55

18 397 105 653 87 47 101 51 96 51 102 54 28 45 53 24 97 18 34

Avg 398 96 297 98 48 96 46 99 48 104 50 31 32 48 23 98 18 51

context of Estimate 7.2. The discrepancy in Tables 9.2, 9.3, 9.5 and 9.6 arises from the

assumptions made in Chapter 8, it seems also hard to make them more precisely. But

most of the calculated values and all the average values are close to the expected values,

this make us have confidence in the heuristic results.

Table 9.7 gives the values of Ni(12, 3, ρ, 10
4, 108) for various ρ and i = 1, 2, 3. It

shows that there is a big gap between I(12, 3, ρ, 104, 108) and N1(12, 3, ρ, 10
4, 108) when

ρ < 1.25, because in this case the Barreto-Naehrig family makes the assumptions in

Estimate 7.2 not satisfied. But in this exceptional case, (9.2)–(9.4) are also compatible

with numerical data.

- 84 -



Chapter 9. Numerical Evidence

Table 9.3: Values of N3(k,D, 1.8, 5, 5× 105) for various k and D

D 1 2 3 5 6 7 10 11 15 19 21 23 31 35 39 43 47 123

k = 3 193 42 46 52 43 14 53 48 59 44 20 9 25 25 45 8 41

4 35 305 54 50 48 17 55 43 47 58 9 16 27 26 59 8 59

5 233 69 290 46 42 51 24 43 43 40 48 11 17 25 22 40 8 57

6 193 45 50 62 42 20 42 45 48 52 8 16 29 26 45 10 64

7 215 51 304 55 49 111 19 43 49 50 42 20 13 19 23 49 6 56

8 402 84 297 60 42 40 21 40 57 59 57 13 12 26 30 45 6 57

9 186 40 603 43 60 46 25 54 54 56 53 18 17 18 23 41 6 59

10 198 55 289 56 45 55 18 47 49 45 46 19 6 18 19 63 10 50

11 187 42 260 50 44 46 25 90 43 61 53 18 12 21 21 49 11 41

12 414 37 623 44 36 43 28 52 39 55 50 21 21 25 24 46 6 53

13 203 53 312 42 32 37 24 59 56 47 47 13 10 23 17 31 3 54

14 209 50 271 42 47 104 27 50 49 53 55 17 17 22 26 66 6 41

15 185 57 574 46 61 49 15 49 86 45 44 16 18 34 16 50 10 48

16 401 106 314 45 43 43 13 54 44 45 48 12 13 24 25 64 14 46

17 179 45 296 52 55 41 23 41 49 58 49 18 20 22 26 57 14 55

18 199 49 653 46 47 45 23 49 51 54 54 13 24 26 24 42 3 34

Avg 199 48 297 49 48 46 21 49 48 51 50 15 15 24 23 50 8 51

Table 9.4: Values of N1(k,D, 2, 5, 105) for various k and D

D 13 14 17 22 30 33 51 55 59 67 71 79 83 87 91 95 111 219

I0 236 118 118 236 118 118 236 118 157 472 67 94 157 79 236 59 59 118

k = 3 248 115 132 240 109 131 256 135 156 513 89 91 149 81 229 56 58 117

4 251 118 119 250 138 116 227 128 194 498 77 106 167 86 242 75 67 144

5 249 117 126 272 100 109 227 119 170 488 66 92 149 78 250 57 63 144

6 261 118 104 273 133 106 229 118 171 514 72 85 203 77 249 62 64 107

7 244 131 130 229 122 132 250 120 152 498 79 104 180 81 240 64 65 133

8 277 111 128 238 111 116 269 124 127 480 79 93 150 72 238 65 54 112

9 264 139 136 248 118 109 236 125 164 522 62 104 156 75 256 56 74 109

10 233 126 125 246 131 103 230 102 168 486 58 103 161 78 254 66 54 121

11 240 117 126 223 131 135 239 124 156 441 65 101 174 96 253 59 58 99

12 243 125 110 245 116 128 211 125 151 503 75 87 152 79 244 63 52 126

13 256 124 121 237 118 116 285 114 167 493 62 96 152 88 249 57 49 137

14 246 127 131 225 136 128 253 114 164 475 69 87 163 74 235 66 67 119

15 257 117 109 265 108 108 249 119 137 453 51 111 177 88 240 68 62 130

16 250 121 106 250 112 106 242 108 178 454 66 91 165 81 223 60 68 122

17 240 110 147 240 130 119 227 107 155 454 74 107 147 93 248 70 67 138

18 235 125 105 227 125 128 266 141 171 496 72 104 147 85 237 81 63 136

Avg 250 121 122 244 121 118 244 120 161 486 70 98 162 82 243 64 62 125
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Table 9.5: Values of N2(k,D, 2, 5, 105) for various k and D

D 13 14 17 22 30 33 51 55 59 67 71 79 83 87 91 95 111 219

k = 3 248 56 132 137 60 131 130 68 79 268 38 42 82 40 112 33 30 54

4 251 64 119 129 67 116 110 69 103 238 42 53 86 43 127 30 33 78

5 249 70 126 131 55 109 115 63 82 244 31 42 75 45 113 28 27 78

6 261 56 104 134 64 106 102 56 86 245 26 52 102 30 122 37 30 59

7 244 65 130 108 60 132 130 55 76 239 45 51 91 44 119 30 24 62

8 277 60 128 117 61 116 117 62 62 237 36 40 77 38 120 35 32 50

9 264 72 136 113 62 109 126 65 73 266 31 52 91 36 124 26 38 55

10 233 64 125 117 67 103 121 47 85 248 26 57 79 30 123 30 22 54

11 240 56 126 113 60 135 116 59 77 239 33 52 95 44 119 30 30 48

12 243 73 110 131 58 128 108 65 83 250 36 42 87 36 125 32 30 54

13 256 62 121 129 53 116 133 61 87 240 31 45 80 32 113 29 24 58

14 246 62 131 105 62 128 129 59 79 254 31 40 96 40 129 34 37 65

15 257 60 109 132 59 108 124 53 52 233 19 69 86 51 122 33 32 68

16 250 63 106 126 56 106 127 55 93 228 29 53 82 53 120 28 28 64

17 240 61 147 122 64 119 125 62 80 214 33 50 80 53 128 27 31 68

18 235 63 105 112 51 128 141 78 89 249 28 46 73 45 128 37 32 74

Avg 250 63 122 122 60 118 122 61 80 243 32 49 85 41 122 31 30 62

Table 9.6: Values of N3(k,D, 2, 5, 105) for various k and D

D 13 14 17 22 30 33 51 55 59 67 71 79 83 87 91 95 111 219

k = 3 141 32 65 69 60 131 130 35 36 127 19 23 46 40 56 16 30 54

4 139 32 70 63 67 116 110 37 50 114 22 23 43 43 56 13 33 78

5 127 31 63 64 55 109 115 38 40 119 13 23 40 45 50 20 27 78

6 129 32 54 70 64 106 102 29 43 110 11 23 51 30 68 16 30 59

7 128 33 62 51 60 132 130 24 33 125 22 26 50 44 68 13 24 62

8 130 28 60 67 61 116 117 31 34 115 20 16 33 38 66 18 32 50

9 116 32 71 58 62 109 126 28 33 135 15 27 51 36 56 11 38 55

10 130 41 61 58 67 103 121 31 43 129 10 27 42 30 61 14 22 54

11 110 21 66 56 60 135 116 28 37 120 13 25 43 44 54 14 30 48

12 123 38 46 59 58 128 108 35 45 110 16 18 47 36 63 13 30 54

13 115 30 58 72 53 116 133 36 49 113 17 20 38 32 52 14 24 58

14 115 30 64 60 62 128 129 28 36 139 16 18 45 40 64 21 37 65

15 114 41 54 64 59 108 124 30 24 124 8 32 48 51 47 15 32 68

16 129 37 58 61 56 106 127 28 52 111 15 31 44 53 64 9 28 64

17 107 38 88 59 64 119 125 26 40 111 20 25 47 53 61 11 31 68

18 123 25 53 50 51 128 141 36 48 126 17 17 37 45 69 18 32 74

Avg 124 33 62 61 60 118 122 31 40 121 16 23 44 41 60 15 30 62

Table 9.7: Values of Ni(12, 3, ρ, 10
4, 108), i = 1, 2, 3, for various ρ

ρ 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

I(12, 3, ρ, 104, 108) 1 2 4 8 16 32 67 142 304 658

N1(12, 3, ρ, 10
4, 108) 8 12 15 22 33 47 83 177 355 706

N2(12, 3, ρ, 10
4, 108) 2 5 7 11 16 23 43 88 178 388

N3(12, 3, ρ, 10
4, 108) 2 5 7 11 16 23 43 88 178 388
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