J. Rdel, W. Jo, K. T. Seifert, E. Anton, and T. Granzow, Perspective on the Development of Lead-free Piezoceramics, Journal of the American Ceramic Society, vol.92, issue.6, p.1153, 2009.
DOI : 10.1111/j.1551-2916.2009.03061.x

W. Liu and X. Ren, Large Piezoelectric Effect in Pb-Free Ceramics, Physical Review Letters, vol.103, issue.25, p.257602, 2009.
DOI : 10.1103/PhysRevLett.103.257602

I. S. Jeludev, Ferroelectricity and Symmetry, Solid State Physics, 1971.

Y. C. Shu and K. Bhattacharya, Domain patterns and macroscopic behaviour of ferroelectric materials, Philosophical Magazine Part B, vol.75, issue.12, pp.2021-2054, 2001.
DOI : 10.1016/S1359-6454(98)00102-5

J. Y. Li, R. C. Rogan, E. Üstündag, and K. Bhattacharya, Domain switching in polycrystalline ferroelectric ceramics, Nature Materials, vol.93, issue.10, pp.776-781, 2005.
DOI : 10.1080/13642810110069576

W. Cao, Ferroelectrics: The strain limits on switching, Nature Materials, vol.58, issue.10, pp.727-728, 2005.
DOI : 10.1063/1.1722606

J. C. Tolédano and P. Tolédano, The Landau Theory of Phase Transition, World Scientific Lecture Notes in Physics, vol.3, 1987.
DOI : 10.1142/0215

W. Mason, Physical Acoustics and the Properties of Solids, 1958.

T. O. Ikeda, Fundamentals of piezoelectricity, 1990.

S. B. Lang and S. Muensit, Review of some lesser-known applications of piezoelectric and pyroelectric polymers, Applied Physics A, vol.17, issue.93, pp.125-134, 2006.
DOI : 10.1007/s00339-006-3688-8

S. Park and T. R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, Journal of Applied Physics, vol.82, issue.4, pp.1804-1811, 1997.
DOI : 10.1063/1.365983

V. M. Goldschmidt, Geochemische Verteilungsgesetze der Elemente VII: Die Gesetze der Krystallochemie'Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo, Shrifter Norskevidenskop-Akad. I. Matem.-Naturvid. Klasse, pp.5-116, 1926.

M. R. Suchomel and P. K. Davies, Predicting the position of the morphotropic phase boundary in high temperature PbTiO3-Bi(B???B???)O3 based dielectric ceramics, Journal of Applied Physics, vol.96, issue.8, pp.4405-4415, 2004.
DOI : 10.1063/1.1789267

D. I. Woodward, J. Knudsen, and I. M. Reaney, solid solution, Physical Review B, vol.72, issue.10, p.104110, 2005.
DOI : 10.1103/PhysRevB.72.104110

A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties and Applications, 2003.
DOI : 10.1002/0470867965

L. Bellaiche, A. García, and D. Vanderbilt, Alloys from First Principles, Physical Review Letters, vol.84, issue.23, pp.5427-5430, 2000.
DOI : 10.1103/PhysRevLett.84.5427

Y. M. Jin, Y. U. Wang, A. G. Khachaturyan, J. F. Li, and D. Viehland, Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomains, Journal of Applied Physics, vol.94, issue.5, p.3629, 2003.
DOI : 10.1063/1.1599632

A. G. Khachaturyan, S. M. Shapiro, and S. Semenovskaja, Adaptive phase formation in martensitic transformation, Physical Review B, vol.43, issue.13, p.10832, 1991.
DOI : 10.1103/PhysRevB.43.10832

Y. U. Wang, Diffraction theory of nanotwin superlattices with low symmetry phase, Physical Review B, vol.74, issue.10, p.104109, 2006.
DOI : 10.1103/PhysRevB.74.104109

D. Damjanovic and M. Demartin, Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics, Journal of Physics: Condensed Matter, vol.9, issue.23, pp.4943-53, 1997.
DOI : 10.1088/0953-8984/9/23/018

X. Du, J. Zheng, U. Belegundu, and K. Uchino, Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary, Applied Physics Letters, vol.72, issue.19, pp.2421-2424, 1998.
DOI : 10.1063/1.121373

X. L. Zhang, Z. X. Chen, L. E. Cross, and W. A. Schulze, Dielectric and piezoelectric properties of modified lead titanate zirconate ceramics from 4.2 to 300 K, Journal of Materials Science, vol.33, issue.4, p.968, 1983.
DOI : 10.1007/BF00551962

A. Endriss, M. Hammer, M. J. Hoffmann, A. Kolleck, and G. A. Schneider, Microscopic and macroscopic ferroelectric???ferroelastic and piezoelectric behavior of PZT ceramics, Journal of the European Ceramic Society, vol.19, issue.6-7, p.1229, 1999.
DOI : 10.1016/S0955-2219(98)00408-7

J. Reszat, A. E. Glazounov, and M. J. Hoffmann, Analysis of intrinsic lattice deformation in PZT-ceramics of different compositions, Journal of the European Ceramic Society, vol.21, issue.10-11, p.1349, 2001.
DOI : 10.1016/S0955-2219(01)00016-4

C. A. Randall, N. Kim, J. Kucera, W. Cao, and T. R. Shrout, Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics, Journal of the American Ceramic Society, vol.70, issue.4, p.677, 1998.
DOI : 10.1111/j.1151-2916.1998.tb02389.x

G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, New ferroelectrics of complex composition, Sov. Phys.?Solid State, p.2651, 1961.

V. Dorcet, G. Trolliard, and P. Boullay, Reinvestigation of phase transitions in
URL : https://hal.archives-ouvertes.fr/hal-00354508

G. Trolliard and V. Dorcet, by TEM. Part II: Second Order Orthorhombic to Tetragonal Phase Transition, Chemistry of Materials, vol.20, issue.15, p.5074, 2008.
DOI : 10.1021/cm800464d

URL : https://hal.archives-ouvertes.fr/hal-01010514

S. Zhang, A. B. Kounga, E. Aulbach, and Y. Deng, Ceramics, Journal of the American Ceramic Society, vol.101, issue.12, p.3950, 2008.
DOI : 10.1111/j.1551-2916.2008.02778.x

URL : https://hal.archives-ouvertes.fr/hal-00867495

B. Chu, D. Chen, G. Li, and Q. Yin, Electrical properties of Na1/2Bi1/2TiO3???BaTiO3 ceramics, Journal of the European Ceramic Society, vol.22, issue.13, p.2115, 2002.
DOI : 10.1016/S0955-2219(02)00027-4

C. Xu, D. Lin, and K. W. Kwok, Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3???BaTiO3 lead-free piezoelectric ceramics, Solid State Sciences, vol.10, issue.7, p.934, 2008.
DOI : 10.1016/j.solidstatesciences.2007.11.003

C. F. Buhrer, Some Properties of Bismuth Perovskites, The Journal of Chemical Physics, vol.36, issue.3, p.798, 1962.
DOI : 10.1063/1.1732613

Y. Hiruma, R. Aoyagi, H. Nagata, and T. Takenaka, Ceramics, Japanese Journal of Applied Physics, vol.44, issue.7A, p.5040, 2005.
DOI : 10.1143/JJAP.44.5040

Y. Hiruma, H. Nagata, and T. Takenaka, Ceramics, Japanese Journal of Applied Physics, vol.46, issue.3A, p.1081, 2007.
DOI : 10.1143/JJAP.46.1081

T. Takenaka, H. Nagata, Y. Hiruma, Y. Yoshii, and K. Matumoto, Lead-free piezoelectric ceramics based on perovskite structures, Journal of Electroceramics, vol.43, issue.7, p.259, 2007.
DOI : 10.1007/s10832-007-9035-4

S. H. Choy, X. X. Wang, C. P. Chong, H. L. Chan, P. C. Liu et al., 0.90(Bi1/2Na1/2)TiO3???0.05(Bi1/2K1/2)TiO3??? 0.05BaTiO3 transducer for ultrasonic wirebonding applications, Applied Physics A, vol.30, issue.170, p.313, 2006.
DOI : 10.1007/s00339-006-3625-x

URL : https://hal.archives-ouvertes.fr/jpa-00255281

S. H. Choy, X. X. Wang, H. L. Chan, and C. L. Choy, Study of compressive type accelerometer based on lead-free BNKBT piezoceramics, Applied Physics A, vol.97, issue.170, p.715, 2006.
DOI : 10.1007/s00339-005-3421-z

Y. Makiuchi, R. Aoyagi, Y. Hiruma, H. Nagata, and T. Takenaka, -Based Lead-Free Piezoelectric Ceramics, Japanese Journal of Applied Physics, vol.44, issue.6B, p.4350, 2005.
DOI : 10.1143/JJAP.44.4350

H. Birol, D. Damjanovic, and N. Setter, Preparation and characterization of (K0.5Na0.5)NbO3 ceramics, Journal of the European Ceramic Society, vol.26, issue.6, p.861, 2006.
DOI : 10.1016/j.jeurceramsoc.2004.11.022

H. L. Du, Z. M. Li, F. S. Tang, S. B. Qu, Z. B. Pei et al., Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering, Materials Science and Engineering: B, vol.131, issue.1-3, p.83, 2006.
DOI : 10.1016/j.mseb.2006.03.039

E. Ringgaard and T. Wurlitzer, Lead-free piezoceramics based on alkali niobates, Journal of the European Ceramic Society, vol.25, issue.12, p.2701, 2005.
DOI : 10.1016/j.jeurceramsoc.2005.03.126

R. E. Jaeger and L. Egerton, Hot Pressing of Potassium-Sodium Niobates, Journal of the American Ceramic Society, vol.43, issue.10, p.209, 1962.
DOI : 10.1111/j.1151-2916.1962.tb11127.x

L. Egerton, D. M. Dillon, and J. Am, Piezoelectric and Dielectric Properties of Ceramics in the System Potassium-Sodium Niobate, Journal of the American Ceramic Society, vol.96, issue.3, p.438, 1959.
DOI : 10.1111/j.1151-2916.1959.tb12971.x

Y. P. Guo, K. Kakimoto, and H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3???LiNbO3 ceramics, Applied Physics Letters, vol.85, issue.18, p.4121, 2004.
DOI : 10.1063/1.1813636

M. J. Haun, E. Furman, S. J. Jang, and L. E. Cross, Thermodynamic theory of the lead zirconate-titanate solid solution system, part V: Theoretical calculations, Ferroelectrics, vol.40, issue.1, p.63, 1989.
DOI : 10.1080/00150198508008964

D. Damjanovic and J. , Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics, Journal of the American Ceramic Society, vol.40, issue.10, p.2663, 2005.
DOI : 10.1063/1.1384475

D. Damjanovic, A morphotropic phase boundary system based on polarization rotation and polarization extension, Applied Physics Letters, vol.97, issue.6, p.62906, 2010.
DOI : 10.1063/1.3479479

Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, R. Von-der, L. Mühll et al., Effects of the substitution of titanium by iron and niobium on the structure and dielectric properties in BaTi1???x(Fe0.5Nb0.5)xO3 solid solution, Journal of Alloys and Compounds, vol.427, issue.1-2, p.260, 2007.
DOI : 10.1016/j.jallcom.2006.03.028

URL : https://hal.archives-ouvertes.fr/hal-00122592

A. Simon, J. Ravez, and M. Maglione, The crossover from a ferroelectric to a relaxor state in lead-free solid solutions, Journal of Physics: Condensed Matter, vol.16, issue.6, p.963, 2004.
DOI : 10.1088/0953-8984/16/6/023

URL : https://hal.archives-ouvertes.fr/hal-00136253

X. Cheng and M. Shen, Different microstructure and dielectric properties of Ba1???xCaxTiO3 ceramics and pulsed-laser-ablated films, Materials Research Bulletin, vol.42, issue.9, p.1662, 2007.
DOI : 10.1016/j.materresbull.2006.11.033

X. Chou, J. Zhai, H. Jiang, and X. Yao, Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics, Journal of Applied Physics, vol.102, issue.8, p.84106, 2007.
DOI : 10.1063/1.2799081

Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, Piezoelectric and strain properties of Ba(Ti1???xZrx)O3 ceramics, Journal of Applied Physics, vol.92, issue.3, p.1489, 2002.
DOI : 10.1063/1.1487435

H. Maiwa, Structure and properties of Ba(Zr0.2Ti0.8)O3 ceramics prepared by spark plasma sintering, Journal of Materials Science, vol.46, issue.19, p.6385, 2008.
DOI : 10.1007/s10853-008-2700-4

T. Kimura, Y. Yi, and F. Sakurai, Mechanisms of Texture Development in Lead-Free Piezoelectric Ceramics with Perovskite Structure Made by the Templated Grain Growth Process, Materials, vol.3, issue.11, p.4965, 2010.
DOI : 10.3390/ma3114965

S. Wada, K. Takeda, T. Muraishi, H. Kakemoto, T. Tsurumi et al., Domain Wall Engineering in Lead-Free Piezoelectric Grain-Oriented Ceramics, Ferroelectrics, vol.373, issue.1, p.11, 2008.
DOI : 10.1080/00150190802408531

W. Liu and X. Ren, Large Piezoelectric Effect in Pb-Free Ceramics, Physical Review Letters, vol.103, issue.25, p.257602, 2009.
DOI : 10.1103/PhysRevLett.103.257602

J. Ravez, C. Broustera, and A. Simon, Lead-free ferroelectric relaxor ceramics in the BaTiO3-BaZrO3-CaTiO3 system, Journal of Materials Chemistry, vol.9, issue.7, p.1609, 1999.
DOI : 10.1039/a902335f

J. Ravez, R. Der-mühll, A. Simon, and P. Sciau, A perovskite ceramic of composition Ba0.92Ca0.08(Ti0.75Zr0.25)O3 with both ferroelectric and relaxor properties, Journal of Materials Chemistry, vol.9, issue.11, p.2829, 1999.
DOI : 10.1039/a905910e

D. Bernache-assollant, Chimie-physique du frittage, Bernache-Assollant) Hermes FORCERAM Collection, issue.7, 1993.

M. Omori, Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS), Materials Science and Engineering: A, vol.287, issue.2, p.183, 2000.
DOI : 10.1016/S0921-5093(00)00773-5

M. Nygren and Z. Shen, On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering, Solid State Sciences, vol.5, issue.1, p.125, 2003.
DOI : 10.1016/S1293-2558(02)00086-9

Z. A. Munir and D. V. Quach, Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process, Journal of the American Ceramic Society, vol.20, issue.[4], 2011.
DOI : 10.1111/j.1551-2916.2010.04210.x

Z. A. Munir, U. Anselmi-tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of Materials Science, vol.19, issue.452, pp.763-777, 2006.
DOI : 10.1007/s10853-006-6555-2

T. Hungra, J. Galy, and A. Castro, Spark Plasma Sintering as a Useful Technique to the Nanostructuration of Piezo-Ferroelectric Materials, Advanced Engineering Materials, vol.94, issue.244, p.615, 2009.
DOI : 10.1002/adem.200900052

M. Brissaud, Matériaux piézoélectriques: caractérisation, modélisation et vibration', Presses polytechniques et universitaires romandes, 2007.

S. Sherrit and B. K. Mukherjee, Characterization of Piezoelectric Materials for Transducers, 2007.

R. L. Byer and C. B. Roundy, Pyroelectric coefficient direct measurement technique and application to a nsec response time detector, Ferroelectrics, vol.6, issue.1, pp.333-338, 1972.
DOI : 10.1080/00150197108241501

R. L. Byer and C. B. Roundy, Pyroelectric Coefficient Direct Measurement Technique and Application to a Nsec Response Time Detector, IEEE Transactions on Sonics and Ultrasonics, vol.19, issue.2, pp.333-338, 1972.
DOI : 10.1109/T-SU.1972.29679

I. Chapitre, Evolution des propriétés diélectriques, ferroélectriques et électromécaniques dans le système pseudo-binaire (1-x)BaTi0.8Zr0.2O3-x Ba0.7Ca0.3TiO3 : Corrélation structures et propriétés 120

W. Liu and X. Ren, Large Piezoelectric Effect in Pb-Free Ceramics, Physical Review Letters, vol.103, issue.25, p.257602, 2009.
DOI : 10.1103/PhysRevLett.103.257602

. Freund, Nine crystal multi-analyser stage for high resolution powder diffraction between 6

P. W. Stephens, Phenomenological model of anisotropic peak broadening in powder diffraction, Journal of Applied Crystallography, vol.32, issue.2, p.281, 1999.
DOI : 10.1107/S0021889898006001

P. S. Dobal, A. Dixit, R. S. Katiyar, Z. Yu, R. Guo et al., Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3???BaZrO3 system, Journal of Applied Physics, vol.89, issue.12, p.8085, 2001.
DOI : 10.1063/1.1369399

Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3 ceramics, Journal of Applied Physics, vol.92, issue.5, p.2655, 2002.
DOI : 10.1063/1.1495069

C. Laulhé, F. Hippert, J. Kreisel, M. Maglione, A. Simon et al., edge, Physical Review B, vol.74, issue.1, p.14106, 2006.
DOI : 10.1103/PhysRevB.74.014106

J. D. Freire and R. S. Katiyar, structure, Physical Review B, vol.37, issue.4, p.2074, 1988.
DOI : 10.1103/PhysRevB.37.2074

URL : https://hal.archives-ouvertes.fr/hal-00273690

V. S. Puli, A. Kumar, D. B. Chrisey, M. Tomozawa, J. F. Scott et al., Barium zirconate-titanate/barium calcium-titanate ceramics via sol???gel process: novel high-energy-density capacitors, Journal of Physics D: Applied Physics, vol.44, issue.39, p.395403, 2011.
DOI : 10.1088/0022-3727/44/39/395403

N. K. Karan, R. S. Katiyar, T. Maiti, R. Guo, and A. S. Bhalla, ???1.00) phase diagram, Journal of Raman Spectroscopy, vol.10, issue.4, pp.370-375, 2009.
DOI : 10.1002/jrs.2134

H. Richter, Z. P. Wang, and L. Ley, The one phonon Raman spectrum in microcrystalline silicon, Solid State Communications, vol.39, issue.5, p.625, 1981.
DOI : 10.1016/0038-1098(81)90337-9

D. Barsani, P. P. Lottici, and X. Ding, Phonon confinement effects in the Raman scattering by TiO2 nanocrystals, Applied Physics Letters, vol.72, issue.1, p.73, 1998.
DOI : 10.1063/1.120648

D. Hennings and A. Schnell, Diffuse Ferroelectric Phase Transitions in Ba(Ti1-yZry)O3 Ceramics, Journal of the American Ceramic Society, vol.59, issue.1, p.539, 1982.
DOI : 10.1016/0025-5408(77)90177-5

I. G. Siny, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, Raman spectroscopy of Mg-Ta order-disorder in, Journal of Physics and Chemistry of Solids, vol.59, issue.2, p.181, 1998.
DOI : 10.1016/S0022-3697(97)00154-6

I. Chapitre, Evolution des propriétés diélectriques, ferroélectriques et électromécaniques dans le système pseudo-binaire (1-x)BaTi0.8Zr0.2O3-x Ba0.7Ca0.3TiO3 : Corrélation structures et propriétés 121

G. A. Rossetti, J. , L. E. Cross, and K. Kushida, thin films, Applied Physics Letters, vol.59, issue.20, p.2524, 1991.
DOI : 10.1063/1.105940

P. S. Dobal, S. Bhaskar, S. B. Majumder, and R. S. Katiyar, Micro-Raman investigation of stress variations in lead titanate films on sapphire, Journal of Applied Physics, vol.86, issue.2, p.828, 1999.
DOI : 10.1063/1.370810

J. Ravez, C. Broustera, and A. Simon, Lead-free ferroelectric relaxor ceramics in the BaTiO3-BaZrO3-CaTiO3 system, Journal of Materials Chemistry, vol.9, issue.7, p.1609, 1999.
DOI : 10.1039/a902335f

K. Uchino, S. Nomura, and F. , Critical exponents of the dielectric constants in diffused-phase-transition crystals, Ferroelectrics Letters Section, vol.44, issue.3, p.55, 1982.
DOI : 10.1080/07315178208201875

C. A. Randall, N. Kim, J. Kucera, W. Cao, and T. R. Shrout, Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics, Journal of the American Ceramic Society, vol.70, issue.4, p.677, 1998.
DOI : 10.1111/j.1151-2916.1998.tb02389.x

R. G. Sabat, B. K. Mukherjee, W. Ren, and G. Yang, Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics, Journal of Applied Physics, vol.101, issue.6, p.64111, 2007.
DOI : 10.1063/1.2560441

D. Xue, Y. Zhou, H. Bao, C. Zhou, J. Gao et al., Pb-free ceramic at the morphotropic phase boundary, Journal of Applied Physics, vol.109, issue.5, p.54110, 2011.
DOI : 10.1063/1.3549173

M. J. Haun, E. Furman, S. J. Jang, and L. E. Cross, Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: Phenomenology, Ferroelectrics, vol.42, issue.1, p.13, 1989.
DOI : 10.1080/14786435608238078

G. A. Rossetti, J. , A. G. Khachaturyan, G. Akcay, and Y. Ni, Ferroelectric solid solutions with morphotropic boundaries: Vanishing polarization anisotropy, adaptive, polar glass, and two-phase states, Journal of Applied Physics, vol.103, issue.11, p.114113, 2008.
DOI : 10.1063/1.2930883

Y. Ishibashi, M. Iwata, and J. , Morphotropic Phase Boundary in Solid Solution Systems of Perovskite-Type Oxide Ferroelectrics, Japanese Journal of Applied Physics, vol.37, issue.Part 2, No. 8B, p.985, 1998.
DOI : 10.1143/JJAP.37.L985

M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera et al., Origin of morphotropic phase boundaries in ferroelectrics, Nature, vol.34, issue.7178, p.545, 2008.
DOI : 10.1038/nature06459

J. Gao, D. Xue, Y. Wang, D. Wang, L. Zhang et al., ceramics, Applied Physics Letters, vol.99, issue.9, p.92901, 2011.
DOI : 10.1063/1.3629784

URL : https://hal.archives-ouvertes.fr/hal-01284720

I. Chapitre, Evolution des propriétés diélectriques, ferroélectriques et électromécaniques dans le système pseudo-binaire (1-x)BaTi0.8Zr0.2O3-x Ba0.7Ca0.3TiO3 : Corrélation structures et propriétés 122

M. Davis, M. Budimir, D. Damjanovic, and N. Setter, Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics, Journal of Applied Physics, vol.101, issue.5, p.54112, 2007.
DOI : 10.1063/1.2653925

Z. Kutnjak, J. Petzelt, and R. Blinc, The giant electromechanical response in ferroelectric relaxors as a critical phenomenon, Nature, vol.95, issue.7096, p.956, 2006.
DOI : 10.1038/nature04854

S. W. Wang, L. D. Chen, and T. Hirai, High-Performance Ceramics, Proceedings, pp.242-244, 2001.

R. M. German, Sintering Theory and Practice, p.482, 1996.

T. Takeuchi, M. Tabuchi, and H. Kageyama, Preparation of Dense BaTiO3 Ceramics with Submicrometer Grains by Spark Plasma Sintering, Journal of the American Ceramic Society, vol.79, issue.67, p.939, 1999.
DOI : 10.1111/j.1151-2916.1999.tb01857.x

J. Li, K. Wang, B. Zhang, and L. Zhang, Ferroelectric and Piezoelectric Properties of Fine-Grained Na0.5K0.5NbO3 Lead-Free Piezoelectric Ceramics Prepared by Spark Plasma Sintering, Journal of the American Ceramic Society, vol.87, issue.2, p.706, 2006.
DOI : 10.1016/j.matlet.2004.07.057

N. Kim, Grain Size Effect on the Dielectric and Piezoelectric Properties in Compositions Which are Near the Morphotropic Phase Boundary of Lead Zirconate-Titanate Based Ceramics, 1994.

G. Arlt, The influence of microstructure on the properties of ferroelectric ceramics, Ferroelectrics, vol.36, issue.1, pp.217-244, 1990.
DOI : 10.1111/j.1151-2916.1989.tb05958.x

C. A. Randall, N. Kim, J. Kucera, W. Cao, and T. R. Shrout, Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics, Journal of the American Ceramic Society, vol.70, issue.4, p.677, 1998.
DOI : 10.1111/j.1151-2916.1998.tb02389.x

D. Hennings, Barium titanate based ceramic materials for dielectric use, International Journal of High Technology Ceramics, vol.3, issue.2, p.91, 1987.
DOI : 10.1016/0267-3762(87)90031-2

M. Demartin, Elaboration et de la Microstructure sur le Déplacement des Parois de Domaine et les Propriétés Electro-Mécaniques de Céramiques de Pb(Zr,Ti)O 3 et BaTiO 3, 1996.

X. G. Tang and H. L. Chan, Effect of grain size on the electrical properties of (Ba,Ca)(Zr,Ti)O3 relaxor ferroelectric ceramics, Journal of Applied Physics, vol.97, issue.3, p.34109, 2005.
DOI : 10.1063/1.1849817

W. R. Buessem, L. E. Cross, and A. K. Goswami, Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate, Journal of the American Ceramic Society, vol.10, issue.3, p.33, 1966.
DOI : 10.1111/j.1151-2916.1966.tb13144.x

M. H. Frey and D. A. Payne, Grain-size effect on structure and phase transformations for barium titanate, Physical Review B, vol.54, issue.5, p.3158, 1996.
DOI : 10.1103/PhysRevB.54.3158

H. T. Martirenat and J. C. Burfoot, Grain-size effects on properties of some ferroelectric ceramics, Journal of Physics C: Solid State Physics, vol.7, issue.17, p.3182, 1974.
DOI : 10.1088/0022-3719/7/17/024

H. Yu, H. X. Liu, H. Hao, L. L. Guo, C. J. Jin et al., Grain size dependence of relaxor behavior in CaCu3Ti4O12 ceramics, Applied Physics Letters, vol.91, issue.22, p.222911, 2007.
DOI : 10.1063/1.2820446

H. Orihara, S. Hashimoto, Y. Ishibashi, and J. , A Theory of D-E Hysteresis Loop Based on the Avrami Model, Journal of the Physical Society of Japan, vol.63, issue.3, p.1031, 1994.
DOI : 10.1143/JPSJ.63.1031

C. Kuper, R. Pankrath, and H. Hesse, Growth and dielectric properties of congruently melting Ba 1-x Ca x TiO 3 crystals, Applied Physics A: Materials Science & Processing, vol.65, issue.3, p.301, 1997.
DOI : 10.1007/s003390050583

Z. Yu, R. Guo, and A. S. Bhalla, Orientation dependence of the ferroelectric and piezoelectric behavior of Ba(Ti1???xZrx)O3 single crystals, Applied Physics Letters, vol.77, issue.10, p.1535, 2000.
DOI : 10.1063/1.1308276

D. Fu, M. Itoh, and S. Koshihara, Crystal growth and piezoelectricity of BaTiO3???CaTiO3 solid solution, Applied Physics Letters, vol.93, issue.1, p.12904, 2008.
DOI : 10.1063/1.2956400

G. S. Fulcher, ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES, Journal of the American Ceramic Society, vol.8, issue.6, p.339, 1925.
DOI : 10.1111/j.1151-2916.1925.tb16731.x

D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, Freezing of the polarization fluctuations in lead magnesium niobate relaxors, Journal of Applied Physics, vol.68, issue.6, p.2916, 1990.
DOI : 10.1063/1.346425

J. Ravez, C. Broustera, and A. Simon, Lead-free ferroelectric relaxor ceramics in the BaTiO3-BaZrO3-CaTiO3 system, Journal of Materials Chemistry, vol.9, issue.7, p.1609, 1999.
DOI : 10.1039/a902335f

A. Simon, J. Ravez, and M. Maglione, The crossover from a ferroelectric to a relaxor state in lead-free solid solutions, Journal of Physics: Condensed Matter, vol.16, issue.6, p.963, 2004.
DOI : 10.1088/0953-8984/16/6/023

URL : https://hal.archives-ouvertes.fr/hal-00136253

S. Park and T. R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, Journal of Applied Physics, vol.82, issue.4, p.1804, 1997.
DOI : 10.1063/1.365983

A. A. Bokov and Z. Ye, Recent progress in relaxor ferroelectrics with perovskite structure, Journal of Materials Science, vol.45, issue.156, p.31, 2006.
DOI : 10.1007/s10853-005-5915-7

Y. Zeng, Y. Zheng, X. Tu, Z. Lu, and E. Shi, Growth and characterization of lead-free Ba(1???x)CaxTi(1???y)ZryO3 single crystal, Journal of Crystal Growth, vol.343, issue.1, p.17, 2012.
DOI : 10.1016/j.jcrysgro.2012.01.009

D. Damjanovic and ). Feres, A morphotropic phase boundary system based on polarization rotation and polarization extension, Applied Physics Letters, vol.97, issue.6, p.62906, 2010.
DOI : 10.1063/1.3479479