T. Coupes-du-tungstène-fondu-dans, (a) comparaison pré et post fusion, (b) croissance en dendrite du tungstène resolidifié, (c) apparition de bulles après la resolidification, (d) zone resolidifiée au sein d'une zone non fondue [15, p.23

M. Dans-le, Récapitulatif des différentes interactions ion-surface : (A) diffusion, (B) neutralisation et diffusion, (C) érosion physique, p.39

S. Lignes-de-champs, en haut) et trajectoires (en bas) simulées sans (à gauche) et avec la lentille électromagnétique (à droite) conçue sous, p.62

. La-pollution-de-la-chambre, analyse (à gauche sur le collimateur, au centre sur la paroi de la chambre d'analyse), p.63

.. Automate-de-sécurité-et-de-contrôle, châssis cRIO-9074 avec module de lecture de courant (Ni 9208), module entrée logique (NI 9421), module sortie relais (NI 9481) et bloc alimentation 24V (NI PS-15) de National Instrument, p.65

T. Dispositif and L. , vue générale (en haut), échantillon sur son support (en bas à gauche) et sa mise en place dans l'installation (en bas à droite), p.88

L. Deutérium-en-surface-est-uniformément-réparti and Q. , en profondeur des zones particulièrement riches sont mises en évidence sur ces deux zones analysées par NRA : au centre une image de la zone analysée, à gauche l'image du deutérium surfacique (0-1 µm), à droite l'image du deutérium profond (1-11 µm), p.107

L. Effet-de, augmentation de la fluence reçue sur les profils d'une même zone lors d'une campagne d'une semaine

M. Images, un échantillon de CFC NB31 avant (a) et après (b) implantation à température ambiante d'ions deutérium à 200 eV à une fluence de 1, p.134

F. F. Chen, An Indispensable truth -How fusion power can save the planet, 2011.

J. Freidberg, Plasma Physics and Fusion Energy, 2007.
DOI : 10.1017/CBO9780511755705

G. A. Cottrell, A survey of plasma facing materials for fusion power plants, Materials Science and Technology, vol.60, issue.4, pp.869-880, 2006.
DOI : 10.1016/S0920-3796(99)00069-1

J. Roth, E. Tsitrone, and &. A. Loarte, Plasma???wall interaction: Important ion induced surface processes and strategy of the EU Task Force, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.258, issue.1, pp.253-263, 2007.
DOI : 10.1016/j.nimb.2006.12.168

R. Ruffe, Etude de surfaces de carbone en interaction avec le plasma de Tore Supra, 2012.

R. W. Conn, Pumped divertors and limiters for tokamaks, Fusion Engineering and Design, vol.14, issue.1-2, pp.81-97, 1991.
DOI : 10.1016/0920-3796(91)90236-J

R. W. Conn, R. P. Doerner, and &. J. Won, Beryllium as the plasma-facing material in fusion energy systems???experiments, evaluation, and comparison with alternative materials, Fusion Engineering and Design, vol.37, issue.4, pp.481-513, 1997.
DOI : 10.1016/S0920-3796(97)00092-6

V. Philipps, Tungsten as material for plasma-facing components in fusion devices, Journal of Nuclear Materials, vol.415, issue.1, pp.2-9, 2011.
DOI : 10.1016/j.jnucmat.2011.01.110

Y. Ueda, N. Ohno, S. Kajita, H. Kurishita, H. Iwakiri et al., Development of tungsten materials for plasma facing components in Japan, Fusion Science and Technology, vol.52, pp.513-520, 2007.

J. Roth and K. Schmid, Hydrogen in tungsten as plasma-facing material, Physica Scripta, vol.145, issue.9, 2011.
DOI : 10.1088/0031-8949/2011/T145/014031

G. De-temmerman, M. J. Baldwin, R. P. Doerner, D. Nishijima, R. Seraydarian et al., Insight into the co-deposition of deuterium with beryllium: Influence of the deposition conditions on the deuterium retention and release, Journal of Nuclear Materials, vol.390, issue.391, pp.390-91, 2009.
DOI : 10.1016/j.jnucmat.2009.01.102

V. N. Chernikov, H. Ullmaier, and &. A. Zakharov, Gas bubbles in beryllium implanted with He ions at temperatures ? 700 K and after postimplantation annealing, Journal of Nuclear Materials, vol.258, pp.694-699, 1998.

C. H. Skinner, A. A. Haasz, V. K. Alimow, N. Bekris, R. A. Causey et al., Recent Advances on Hydrogen Retention in ITER's Plasma-Facing Materials: Beryllium, Carbon, and Tungsten, Fusion Science and Technology, vol.54, issue.4, pp.891-945, 2008.
DOI : 10.13182/FST54-891

V. Kh, J. Alimov, and . Roth, Hydrogen isotope retention in plasma-facing materials : review of recent experimental results, Physica Scripta, vol.128, pp.6-13, 2007.

T. Tanabe, On the possibility of ITER starting with full carbon, Fusion Engineering and Design, vol.81, issue.1-7, pp.139-147, 2006.
DOI : 10.1016/j.fusengdes.2005.08.083

H. Khodja, C. Brosset, and &. N. Bernier, Deuterium inventory in plasma facing materials by means of NRA : A microbeam probe approach, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, pp.1425-1429, 2008.

A. Ubai and . Arifov, Interaction of atomic particles with a solid surface, Consultants bureau, 1969.

M. Nastasi, J. W. Mayer, and &. J. Hirvonen, Ion-solid interactions : fundamentals and applications, Cambridge Solid State Science Series, 1996.
DOI : 10.1017/CBO9780511565007

G. Revel and &. P. Berger, Microsonde nucléaire -Principe et appareillage, 2005.

J. F. Ziegler, The Stopping and Range of Ions in Solids, 1985.

H. Mehrer, Diffusion in solids -Fundamentals, Materials, Diffusion-Controlled Processes, Springer Series in Solid State Science 155, 2007.

I. Takagi, T. Kobayashi, Y. Ueyama, H. Moriyama, M. Nakamichi et al., Deuterium diffusion in a chemical densified coating observed by NRA, Journal of Nuclear Materials, vol.386, issue.388, pp.682-684, 2009.
DOI : 10.1016/j.jnucmat.2008.12.275

G. M. Wright, D. G. Whyte, B. Lipschultz, R. P. Doerner, and &. J. Kulpin, Dynamics of hydrogenic retention in molybdenum: First results from DIONISOS, Journal of Nuclear Materials, vol.363, issue.365, pp.977-983, 2007.
DOI : 10.1016/j.jnucmat.2007.01.135

G. M. Wright, D. G. Whyte, and &. B. Lipschultz, Measurement of hydrogenic retention and release in molybdenum with the DIONISOS experiment, Journal of Nuclear Materials, vol.390, issue.391, pp.390-91, 2009.
DOI : 10.1016/j.jnucmat.2009.01.092

I. Takagi, S. Nagaoka, K. Shirai, K. Moritani, and &. H. Moriyama, Trapping of Hydrogen in Tantalum Bombarded with Helium-3 Ions, Physica Scripta, vol.103, issue.1, pp.121-124, 2003.
DOI : 10.1238/Physica.Topical.103a00121

J. Robertson, Amorphous carbon, Current Opinion in Solid State, Materials Science, vol.1, issue.4, pp.557-561, 1996.

M. Placide, Interfaces dans les revêtements de carbure de silicium, Thèse LCTS, 2007.

G. Pintsuk, J. Compan, T. Koppitz, J. Linke, A. T. Peacock et al., Mechanical and thermo-physical characterization of three-directional carbon fiber composites for W-7X and ITER, Fusion Engineering and Design, vol.84, issue.7-11, pp.1525-1530, 2009.
DOI : 10.1016/j.fusengdes.2008.11.062

M. Merola, C. H. Wu, and &. P. Team, Development of Carbon Materials and Plasma Facing Components for ITER, Physica Scripta, vol.111, issue.1, pp.152-156, 2004.
DOI : 10.1238/Physica.Topical.111a00152

I. Tiseanu, M. Mayer, T. Craciunescu, A. Hakola, S. Koivuranta et al., X-ray microbeam transmission/fluorescence method for non-destructive characterization of tungsten coated carbon materials, Surface and Coatings Technology, vol.205, pp.192-197, 2011.
DOI : 10.1016/j.surfcoat.2011.03.049

R. Anton, . Th, W. Wiegner, M. Naumann, C. Liebmann et al., Design and performance of a versatile, cost-effective microwave electron cyclotron resonance plasma source for surface and thin film processing, Review of Scientific Instruments, vol.71, issue.2, pp.1177-1180, 2000.
DOI : 10.1063/1.1150420

M. Reiser, Theory and design of charged particle beams, 2008.

O. Sise, M. Ulu, and &. M. Dogan, Multi-element cylindrical electrostatic lens systems for focusing and controlling charged particles, Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, pp.114-131, 2005.

A. D. Appelhans and &. D. Dahl, SIMION ion optics simulations at atmospheric pressure, International Journal of Mass Spectrometry, vol.244, issue.1, pp.1-14, 2005.
DOI : 10.1016/j.ijms.2005.03.010

Z. B. Alfassi and &. M. Peisach, Elemental analysis by particle accelerators, 1992.

M. Mayer, SIMNRA User's Guide, 1997.

B. Wilken and &. T. Fritz, Energy distribution functions of low energy ions in silicon absorbers measured for large relative energy losses, Nuclear Instruments and Methods, p.331, 1976.

L. Daudin, H. Khodja, and &. Gallien, Development of ''position?charge?time'' tagged spectrometry for ion beam microanalysis, Nuclear Instruments and Methods in, Physics Research B, vol.210, pp.153-158, 2003.

C. Thomsen, S. Reich, and &. J. Maultzsch, The dependence on excitation energy of the D-mode in graphite and carbon nanotubes, AIP Conference Proceedings, pp.376-379, 2001.
DOI : 10.1063/1.1426891

A. C. Ferrari and &. J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, vol.61, issue.20, pp.61-14095, 2000.
DOI : 10.1103/PhysRevB.61.14095

F. Tuinstra and &. J. Koenig, Raman Spectrum of Graphite, The Journal of Chemical Physics, vol.53, issue.3, p.1126, 1970.
DOI : 10.1063/1.1674108

C. Casiraghi, A. C. Ferrari, and &. J. Robertson, Raman spectroscopy of hydrogenated amorphous carbons, Physical Review B, vol.72, issue.8, p.85401, 2005.
DOI : 10.1103/PhysRevB.72.085401

J. Adrien, Optimisation des cycles thermiques appliqués aux fontes G.S. ferritiques vis à vis des propriétés de fatigue, Thèse de doctorat, 2004.

H. M. Kuan, T. W. Bonner, and &. J. Risser, An investigation of the C12 + He3 reactions at bombarding energies between 1.8 and 5.4 MeV, Nuclear Physics, vol.51, p.481, 1964.
DOI : 10.1016/0029-5582(64)90289-5

E. G. Illsley, H. D. Holmgren, R. L. Johnston, and &. E. Wolicki, Reaction, Physical Review, vol.107, issue.2, pp.538-539, 1957.
DOI : 10.1103/PhysRev.107.538

V. K. Alimov, M. Mayer, and &. J. Roth, Differential cross-section of the D(He 3 , p)He 4 nuclear reaction and depth profiling of deuterium up to large depths, Nuclear Instruments, Physics Research Section B-Beam Interactions with Materials and Atoms, pp.169-175, 2005.

P. Trouslard, Pyrole : Un logiciel au service des analyses par faisceau d'ions, 1995.

L. C. Mcintyre, J. A. Leavitt, M. D. Ashbaugh, J. Borgardt, E. Andrade et al., Cross section measurements for the ( 3 He,p) nuclear reaction on B and N between 2 and 4 MeV, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, pp.219-223, 1996.

B. Pégourié and S. Panayotis, Deuterium Inventory in Tore Supra : coupled carbon-deuterium balance, Journal of Nuclear Matérials, 2012.

C. Pardanaud, E. Areou, C. Martin, R. Ruffe, T. Angot et al., Raman micro-spectroscopy as a tool to measure the absorption coefficient and the erosion rate of hydrogenated amorphous carbon films heat-treated under hydrogen bombardment, Diamond and Related Materials, vol.22, pp.92-95, 2012.
DOI : 10.1016/j.diamond.2011.12.015

URL : https://hal.archives-ouvertes.fr/hal-00852728

A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and &. U. Pöschl, Raman microscopy of soot and related carbonaceous materials : Spectra analysis and structural information, Carbon, pp.1731-1742, 2005.

C. Martin, B. Pegourie, R. Ruffe, Y. Marandet, G. Giacometti et al., Structural analysis of eroded carbon fiber composite tiles of Tore Supra: insights on ion transport and erosion parameters, Physica Scripta, vol.145, 2011.
DOI : 10.1088/0031-8949/2011/T145/014024

G. Gouades and &. P. Colomban, Raman spectroscopy of nanomaterials : how spectra relate to disorder, particle size and mechanical properties, Progress in Crystal Growth and Characterization of Materials, pp.1-56, 2007.

C. Martin, R. Ruffe, C. Pardanaud, M. Cabie, C. Dominici et al., Structure of the carbon layers deposited on the toroidal pump limiter of Tore Supra, 2011) Structure of the carbon layers deposited on the toroidal pump limiter of Tore Supra, pp.258-261
DOI : 10.1016/j.jnucmat.2010.11.006

URL : https://hal.archives-ouvertes.fr/hal-00542718

J. Roth, V. Kh, A. V. Alimov, R. P. Golubera, J. Doerner et al., Deuterium retention in carbon fibre composites NB31 and N11 irradiated with low-energy D ions, Journal of Nuclear Materials, vol.363, issue.365, pp.363-365, 2007.
DOI : 10.1016/j.jnucmat.2007.01.164

K. Sugiyama, V. K. Alimov, and &. J. Roth, Long-term deuterium release from CFC NB31 in the air atmosphere, Physica Scripta, vol.138, 2009.
DOI : 10.1088/0031-8949/2009/T138/014026

R. Pugno, K. Schmid, M. J. Baldwin, R. Doerner, J. Hanna et al., Saturation in deuterium retention of CFC graphite targets exposed to beryllium-seeded plasmas on PISCES-B, Journal of Nuclear Materials, vol.375, issue.2, pp.168-172, 2008.
DOI : 10.1016/j.jnucmat.2007.11.007

A. A. Haasz, P. Franzen, J. W. Davis, S. Chiu, and &. S. Pitcher, Two???region model for hydrogen trapping in and release from graphite, Journal of Applied Physics, vol.77, issue.1, pp.66-86, 1995.
DOI : 10.1063/1.359356

L. Begrambekov, O. Buzhinsky, A. Gordeev, E. Miljaeva, P. Leikin et al., TDS Investifation of hydrogen retention in graphites and carbon based materials, Physica Scripta, vol.108, pp.72-75, 2004.

G. Federici and &. C. Wu, Modeling of plasma hydrogen isotope behavior in porous materials (graphites/carbon???carbon composites), Journal of Nuclear Materials, vol.186, issue.2, pp.131-152, 1992.
DOI : 10.1016/0022-3115(92)90329-J

A. Pisarev, T. Tanabe, B. Emmoth, N. Trifonov, A. Rusinov et al., Deuterium accumulation in carbon materials at high fluence, Journal of Nuclear Materials, vol.390, issue.391, pp.390-91, 2009.
DOI : 10.1016/j.jnucmat.2009.01.186

C. F. Sang, X. Bonnin, M. Warrier, A. Rai, and R. Schneider, Modelling of hydrogen isotope inventory in mixed materials including porous deposited layers in fusion devices, Nuclear Fusion, vol.52, issue.4, p.43003, 2012.
DOI : 10.1088/0029-5515/52/4/043003

A. Rai, M. Warrier, and &. R. Schneider, A hierarchical multi-scale method to simulate reactive???diffusive transport in porous media, Computational Materials Science, vol.46, issue.2, pp.469-478, 2009.
DOI : 10.1016/j.commatsci.2009.03.038

M. Warrier, R. Schneider, E. Salonen, and &. K. Nordlund, Effect of the porous structure of graphite on atomic hydrogen diffusion and inventory, Nuclear Fusion, vol.47, issue.12, pp.1656-1663, 2007.
DOI : 10.1088/0029-5515/47/12/003

M. Warrier, R. Schneider, E. Salonen, and &. K. Nordlund, Multi???scale modeling of hydrogen isotope diffusion in graphite, Contributions to Plasma Physics, vol.44, issue.13, pp.307-310, 2004.
DOI : 10.1002/ctpp.200410047

W. Moller, Hydrogen trapping and transport in carbon, Journal of Nuclear Materials, vol.162, issue.164, pp.138-150, 1989.
DOI : 10.1016/0022-3115(89)90264-X

H. Atsumi, T. Tanabe, and &. T. Shikama, Hydrogen behavior in carbon and graphite before and after neutron irradiation ??? Trapping, diffusion and the simulation of bulk retention???, Journal of Nuclear Materials, vol.417, issue.1-3, pp.633-636, 2011.
DOI : 10.1016/j.jnucmat.2010.12.100

H. Atsumi, Mechanism of Hydrogen Trapping and Transport in Carbon Materials, Physica Scripta, vol.103, issue.1, pp.77-80, 2003.
DOI : 10.1238/Physica.Topical.103a00077

G. Cartry, L. Schiesko, C. Hopf, A. Ahmad, M. Carrere et al., calculations, 2012) Production of negative ions on graphite surface in H 2 /D 2 plasmas : Experiments and SRIM calculations, p.63503
DOI : 10.1063/1.4725188

M. A. Gleeson and A. W. Kleyn, Effects of Cs-adsorption on the scattering of low energy hydrogen ions from HOPG, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, pp.48-54, 1999.

R. A. Vidal, F. Bonetto, J. Ferron, M. A. Romero, E. A. Garcia et al., Electron capture and loss in the scattering of H+ from HOPG graphite, Surface Science, vol.605, issue.1-2, pp.18-23
DOI : 10.1016/j.susc.2010.09.016