P. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A survey on sensor networks, IEEE Communications Magazine, vol.40, issue.8, pp.102-114, 2002.
DOI : 10.1109/MCOM.2002.1024422

A. , ]. S. Ali, and S. D. Silvey, A general class of coefficients of divergence of one distribution from another, Journal of the Royal Statistical Society. Series B (Methodological), vol.207, pp.131-142, 1966.

]. T. Arampatzis, J. Lygeros, and S. Manesis, A Survey of Applications of Wireless Sensors and Wireless Sensor Networks, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005., pp.719-724, 2005.
DOI : 10.1109/.2005.1467103

]. T. Aysal and K. E. Barner, Constrained Decentralized Estimation Over Noisy Channels for Sensor Networks, IEEE Transactions on Signal Processing, vol.56, issue.4, pp.1398-1410, 2008.
DOI : 10.1109/TSP.2007.909006

]. R. Bailey, Polar Generation of Random Variates with the t-Distribution, Mathematics of Computation, pp.779-781, 1994.

]. E. Baker and C. R. German, On the global distribution of hydrothermal vent fields. Mid-ocean ridges: hydrothermal interactions between the lithosphere and oceans, pp.245-266, 2004.

]. G. Benitz and J. A. Bucklew, Asymptotically optimal quantizers for detection of iid data. Information Theory, IEEE Transactions on, vol.35, issue.2, pp.316-325, 1989.

A. Benveniste, M. Métivier, and P. Priouret, Adaptive algorithms and stochastic approximations, pp.158-159, 1990.
DOI : 10.1007/978-3-642-75894-2

C. Berzuini, N. G. Best, W. R. Gilks, and C. Larizza, Dynamic Conditional Independence Models and Markov Chain Monte Carlo Methods, Journal of the American Statistical Association, vol.24, issue.440, pp.1403-1412, 1997.
DOI : 10.1080/01621459.1997.10473661

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.6455

]. R. Blahut, Principles and practice of information theory, 1987.

]. V. Borkar and S. K. , Mitteret al. LQG control with communication constraints, 1995.

]. G. Box and M. E. Muller, A Note on the Generation of Random Normal Deviates, The Annals of Mathematical Statistics, vol.29, issue.2, pp.610-611, 1958.
DOI : 10.1214/aoms/1177706645

]. S. Boyd and L. Vandenberghe, Convex optimization, 2004.

C. and S. P. Kumar, Sensor networks: evolution, opportunities, and challenges, Proceedings of the IEEE, pp.1247-1256, 2003.

]. J. Costa, A. Hero, and C. Vignat, On Solutions to Multivariate Maximum ??-Entropy Problems, Energy Minimization Methods in Computer Vision and Pattern Recognition, pp.211-226, 2003.
DOI : 10.1007/978-3-540-45063-4_14

URL : https://hal.archives-ouvertes.fr/hal-00621785

]. T. Cover and J. A. Thomas, Elements of information theory 2 nd edition, 2006.

]. D. Crisan and A. Doucet, Convergence of sequential Monte Carlo methods, Signal Processing Group, 2000.

]. M. Crowder, Maximum likelihood estimation for dependent observations, Journal of the Royal Statistical Society. Series B (Methodological), pp.45-53, 1976.

]. R. Curry, W. V. Velde, and J. Potter, Nonlinear estimation with quantized measurements?PCM, predictive quantization, and data compression. Information Theory, IEEE Transactions on, vol.16, issue.2, pp.152-161, 1970.

]. A. Doucet, S. Godsill, and C. Andrieu, On sequential Monte Carlo sampling methods for Bayesian filtering, Statistics and Computing, vol.10, issue.3, pp.197-208, 2000.
DOI : 10.1023/A:1008935410038

]. M. Durisic, Z. Tafa, G. Dimic, and V. Milutinovic, A survey of military applications of wireless sensor networks, Embedded Computing (MECO), 2012 Mediterranean Conference on, pp.196-199, 2012.

]. J. Fang and H. Li, Distributed Adaptive Quantization for Wireless Sensor Networks, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, pp.5246-5257, 2008.
DOI : 10.1109/ACSSC.2007.4487452

]. R. Gallager, Discrete Stochastic Processes, Journal of the Operational Research Society, vol.48, issue.1, 1996.
DOI : 10.1057/palgrave.jors.2600329

]. A. Gersho and R. M. Gray, Vector quantization and signal compression, pp.174-184, 0197.
DOI : 10.1007/978-1-4615-3626-0

]. G. Golub, Some Modified Matrix Eigenvalue Problems, SIAM Review, vol.15, issue.2, pp.318-334, 1973.
DOI : 10.1137/1015032

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.454.9868

]. G. Golub and J. M. Ortega, Scientific computing and differential equations: An introduction to numerical methods, 1991.

]. N. Gordon, D. J. Salmond, and A. F. Smith, Novel approach to nonlinear/non-Gaussian Bayesian state estimation, Radar and Signal Processing, pp.107-113, 1993.
DOI : 10.1049/ip-f-2.1993.0015

]. J. Gubner, Distributed estimation and quantization. Information Theory, IEEE Transactions on, vol.39, issue.4, pp.1456-1459, 1993.

]. R. Gupta, A. O. Hero, and I. , High-rate vector quantization for detection. Information Theory, IEEE Transactions on, vol.49, issue.208, pp.1951-1969, 2003.

]. P. Herzig, M. D. Hannington, and S. Petersen, Polymetallic massive sulphide deposits at the modern seafloor and their resources potential, 2002.

]. P. Hoagland, S. Beaulieu, M. A. Tivey, R. G. Eggert, C. German et al., Deep-sea mining of seafloor massive sulfides, Marine Policy, vol.34, issue.3, pp.728-732, 2010.
DOI : 10.1016/j.marpol.2009.12.001

]. J. Hol, T. B. Schon, and F. Gustafsson, On Resampling Algorithms for Particle Filters, 2006 IEEE Nonlinear Statistical Signal Processing Workshop, pp.79-82, 2006.
DOI : 10.1109/NSSPW.2006.4378824

C. Intanagonwiwat, R. Govindan, and D. Estrin, Directed diffusion, Proceedings of the 6th annual international conference on Mobile computing and networking , MobiCom '00, pp.56-67, 2000.
DOI : 10.1145/345910.345920

]. A. Jazwinski, Stochastic processes and filtering theory, pp.91-97, 1970.

]. G. Karlsson and F. Gustafsson, Particle Filtering for Quantized Sensor Information, 13th European Signal Processing Conference, EUSIPCO. EURASIP, 2005, 2005.

]. S. Kassam, Optimum Quantization for Signal Detection, IEEE Transactions on Communications, vol.25, issue.5, pp.479-484, 1977.
DOI : 10.1109/TCOM.1977.1093858

]. S. Kay, Fundamentals of statistical signal processing Estimation theory, pp.91-95, 1993.

]. H. Khalil and J. W. Grizzle, Nonlinear systems, 1992.

]. D. Knuth, The art of computer programming Seminumerical algorithms, 1997.

]. A. Kong, J. S. Liu, and W. H. Wong, Sequential Imputations and Bayesian Missing Data Problems, Journal of the American Statistical Association, vol.52, issue.425, pp.278-288, 1994.
DOI : 10.1080/01621459.1987.10478458

]. K. Lange-1989, R. J. Lange, J. M. Little, and . Taylor, Robust Statistical Modeling Using the t Distribution, Journal of the American Statistical Association, vol.84, issue.408, pp.881-896, 1989.
DOI : 10.2307/2290063

]. J. Li-1999, N. Li, R. M. Chaddha, and . Gray, Asymptotic performance of vector quantizers with a perceptual distortion measure. Information Theory, IEEE Transactions on, vol.45, issue.188, pp.1082-1091, 1999.

]. H. Li-2007, J. Li, and . Fang, Distributed adaptive quantization and estimation for wireless sensor networks, Signal Processing Letters, IEEE, vol.14, issue.106, pp.669-672, 2007.

]. M. Longo, T. D. Lookabaugh, and R. M. Gray, Quantization for decentralized hypothesis testing under communication constraints. Information Theory, IEEE Transactions on, vol.36, issue.2, pp.241-255, 1990.
DOI : 10.1109/18.52470

S. Marano, V. Matta, and P. Willett, Asymptotic Design of Quantizers for Decentralized MMSE Estimation, IEEE Transactions on Signal Processing, vol.55, issue.11, pp.5485-5496, 2007.
DOI : 10.1109/TSP.2007.898755

]. G. Marsaglia and W. W. Tsang, A simple method for generating gamma variables, ACM Transactions on Mathematical Software, vol.26, issue.3, pp.363-372, 2000.
DOI : 10.1145/358407.358414

]. M. Nardon and P. Pianca, Simulation techniques for generalized Gaussian densities, Journal of Statistical Computation and Simulation, vol.30, issue.11, pp.1317-1329, 2009.
DOI : 10.1109/TSP.2002.801912

]. H. Papadopoulos, G. W. Wornell, and A. V. Oppenheim, Sequential signal encoding from noisy measurements using quantizers with dynamic bias control. Information Theory, IEEE Transactions on, vol.47, issue.106, pp.978-1002, 2001.

]. B. Picinbono and P. Duvaut, Optimum quantization for detection, IEEE Transactions on Communications, vol.36, issue.11, pp.1254-1258, 1988.
DOI : 10.1109/26.8934

H. V. Poor and J. Thomas, Applications of Ali-Silvey Distance Measures in the Design Generalized Quantizers for Binary Decision Systems, IEEE Transactions on Communications, vol.25, issue.9, pp.893-900, 1977.
DOI : 10.1109/TCOM.1977.1093935

]. H. Poor, Fine quantization in signal detection and estimation. Information Theory, IEEE Transactions on, vol.34, issue.20, pp.960-972, 1988.

]. D. Puccinelli and M. Haenggi, Wireless sensor networks: applications and challenges of ubiquitous sensing. Circuits and Systems Magazine, IEEE, vol.5, issue.3, pp.19-31, 2005.

]. I. Rhodes, A tutorial introduction to estimation and filtering. Automatic Control, IEEE Transactions on, vol.16, issue.6, pp.688-706, 1971.

]. A. Ribeiro and G. B. Giannakis, Bandwidth-constrained distributed estimation for wireless sensor Networks-part I: Gaussian case, IEEE Transactions on Signal Processing, vol.54, issue.3, pp.1131-1143, 2006.
DOI : 10.1109/TSP.2005.863009

]. A. Ribeiro and G. B. Giannakis, Bandwidth-constrained distributed estimation for wireless sensor networks-part II: unknown probability density function, IEEE Transactions on Signal Processing, vol.54, issue.7, pp.2784-2796, 2006.
DOI : 10.1109/TSP.2006.874366

A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis, SOI-KF: Distributed Kalman Filtering With Low-Cost Communications Using the Sign of Innovations, IEEE Transactions on Signal Processing, vol.54, issue.12, pp.4782-4795, 2006.
DOI : 10.1109/TSP.2006.882059

]. C. Robert and G. Casella, Monte Carlo statistical methods, 1999.

Y. Ruan, P. Willett, A. Marrs, S. Marano, and F. Palmieri, Practical fusion of quantized measurements via particle filtering, Target Tracking 2004: Algorithms and Applications, IEE, pp.13-18, 2004.

]. G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian random processes: stochastic models with infinite variance, 1994.

]. K. Sigman, Appendix: A primer on heavy-tailed distributions, Queueing Systems, vol.33, issue.1/3, pp.261-275, 1999.
DOI : 10.1023/A:1019180230133

]. R. Sukhavasi and B. Hassibi, The Kalman like particle filter : Optimal estimation with quantized innovations/measurements, 2009.

]. R. Sukhavasi and B. Hassibi, Particle filtering for Quantized Innovations, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.2229-2232, 2009.
DOI : 10.1109/ICASSP.2009.4960062

]. P. Tichavsky, C. H. Muravchik, and A. Nehorai, Posterior Cramer-Rao bounds for discrete-time nonlinear filtering, IEEE Transactions on Signal Processing, vol.46, issue.5, pp.1386-1396, 1998.
DOI : 10.1109/78.668800

]. J. Tsitsiklis, Extremal properties of likelihood-ratio quantizers, IEEE Transactions on Communications, vol.41, issue.4, pp.550-558, 1993.
DOI : 10.1109/26.223779

]. M. Varanasi and B. Aazhang, Parametric generalized Gaussian density estimation, The Journal of the Acoustical Society of America, vol.86, issue.4, pp.1404-1415, 1989.
DOI : 10.1121/1.398700

]. J. Villard, P. Bianchi, E. Moulines, and P. Piantanida, High-rate quantization for the Neyman-Pearson detection of Hidden Markov Processes, IEEE Information Theory Workshop 2010 (ITW 2010), pp.1-5, 2010.
DOI : 10.1109/ITWKSPS.2010.5503209

URL : https://hal.archives-ouvertes.fr/hal-00528441

]. J. Villard and P. Bianchi, High-rate vector quantization for the Neyman? Pearson detection of correlated processes. Information Theory, IEEE Transactions on, vol.57, issue.8, pp.5387-5409, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00641758

]. L. Wang, G. Yin, J. F. Zhang, and Y. Zhao, System identification with quantized observations, pp.32-256, 2010.
DOI : 10.1007/978-0-8176-4956-2

]. L. Wasserman, All of statistics: a concise course in statistical inference, pp.53-68, 2003.
DOI : 10.1007/978-0-387-21736-9

]. K. You, L. Xie, S. Sun, and W. Xiao, Multiple-Level Quantized Innovation Kalman Filter, IFAC World Congress, pp.1420-1425, 2008.
DOI : 10.3182/20080706-5-KR-1001.00243

]. F. Zhao and L. Guibas, Wireless sensor networks: an information processing approach, 2004.