Skip to Main content Skip to Navigation
Theses

Codes de Gray généralisés à l'énumération des objets d'une structure combinatoire sous contrainte

Abstract : The Fibonacci cube is an isometric subgraph of the hypercube having a Fibonacci number of vertices. The Fibonacci cube was originally proposed by W-J. Hsu as an interconnection network and like the hypercube it has very attractive topological properties but with a more moderated growth. Among these properties, we discuss the hamiltonicity in the Fibonacci cube and also in the Lucas cube which is obtained by removing all the strings that begin and end with 1 from the Fibonacci cube. We give also the eccentricity sequences of the Fibonacci and the Lucas cubes. Finally, we present a study of both cubes from the domination and the 2-packing points of view.
Document type :
Theses
Complete list of metadatas

Cited literature [1 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00876877
Contributor : Abes Star :  Contact
Submitted on : Friday, October 25, 2013 - 12:08:07 PM
Last modification on : Wednesday, November 4, 2020 - 2:37:14 PM
Long-term archiving on: : Monday, January 27, 2014 - 1:00:59 PM

File

23126_CASTRO1.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00876877, version 1

Collections

Citation

Aline Castro Trejo. Codes de Gray généralisés à l'énumération des objets d'une structure combinatoire sous contrainte. Mathématiques générales [math.GM]. Université de Grenoble, 2012. Français. ⟨NNT : 2012GRENM057⟩. ⟨tel-00876877⟩

Share

Metrics

Record views

595

Files downloads

294